/* tsort - topological sort.
Copyright (C) 1998-2023 Free Software Foundation, Inc.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see . */
/* Written by Mark Kettenis . */
/* The topological sort is done according to Algorithm T (Topological
sort) in Donald E. Knuth, The Art of Computer Programming, Volume
1/Fundamental Algorithms, page 262. */
#include
#include
#include "system.h"
#include "assure.h"
#include "long-options.h"
#include "fadvise.h"
#include "readtokens.h"
#include "stdio--.h"
#include "quote.h"
/* The official name of this program (e.g., no 'g' prefix). */
#define PROGRAM_NAME "tsort"
#define AUTHORS proper_name ("Mark Kettenis")
/* Token delimiters when reading from a file. */
#define DELIM " \t\n"
/* Members of the list of successors. */
struct successor
{
struct item *suc;
struct successor *next;
};
/* Each string is held in memory as the head of a list of successors. */
struct item
{
char const *str;
struct item *left, *right;
signed char balance; /* -1, 0, or +1 */
bool printed;
size_t count;
struct item *qlink;
struct successor *top;
};
/* The head of the sorted list. */
static struct item *head = nullptr;
/* The tail of the list of 'zeros', strings that have no predecessors. */
static struct item *zeros = nullptr;
/* Used for loop detection. */
static struct item *loop = nullptr;
/* The number of strings to sort. */
static size_t n_strings = 0;
void
usage (int status)
{
if (status != EXIT_SUCCESS)
emit_try_help ();
else
{
printf (_("\
Usage: %s [OPTION] [FILE]\n\
Write totally ordered list consistent with the partial ordering in FILE.\n\
"), program_name);
emit_stdin_note ();
fputs (_("\
\n\
"), stdout);
fputs (HELP_OPTION_DESCRIPTION, stdout);
fputs (VERSION_OPTION_DESCRIPTION, stdout);
emit_ancillary_info (PROGRAM_NAME);
}
exit (status);
}
/* Create a new item/node for STR. */
static struct item *
new_item (char const *str)
{
/* T1. Initialize (COUNT[k] <- 0 and TOP[k] <- ^). */
struct item *k = xzalloc (sizeof *k);
if (str)
k->str = xstrdup (str);
return k;
}
/* Search binary tree rooted at *ROOT for STR. Allocate a new tree if
*ROOT is null. Insert a node/item for STR if not found. Return
the node/item found/created for STR.
This is done according to Algorithm A (Balanced tree search and
insertion) in Donald E. Knuth, The Art of Computer Programming,
Volume 3/Searching and Sorting, pages 455--457. */
static struct item *
search_item (struct item *root, char const *str)
{
struct item *p, *q, *r, *s, *t;
int a;
/* Make sure the tree is not empty, since that is what the algorithm
below expects. */
if (root->right == nullptr)
return (root->right = new_item (str));
/* A1. Initialize. */
t = root;
s = p = root->right;
while (true)
{
/* A2. Compare. */
a = strcmp (str, p->str);
if (a == 0)
return p;
/* A3 & A4. Move left & right. */
if (a < 0)
q = p->left;
else
q = p->right;
if (q == nullptr)
{
/* A5. Insert. */
q = new_item (str);
/* A3 & A4. (continued). */
if (a < 0)
p->left = q;
else
p->right = q;
/* A6. Adjust balance factors. */
a = strcmp (str, s->str);
if (a < 0)
{
r = p = s->left;
a = -1;
}
else
{
affirm (0 < a);
r = p = s->right;
a = 1;
}
while (p != q)
{
int cmp = strcmp (str, p->str);
if (cmp < 0)
{
p->balance = -1;
p = p->left;
}
else
{
affirm (0 < cmp);
p->balance = 1;
p = p->right;
}
}
/* A7. Balancing act. */
if (s->balance == 0 || s->balance == -a)
{
s->balance += a;
return q;
}
if (r->balance == a)
{
/* A8. Single Rotation. */
p = r;
if (a < 0)
{
s->left = r->right;
r->right = s;
}
else
{
s->right = r->left;
r->left = s;
}
s->balance = r->balance = 0;
}
else
{
/* A9. Double rotation. */
if (a < 0)
{
p = r->right;
r->right = p->left;
p->left = r;
s->left = p->right;
p->right = s;
}
else
{
p = r->left;
r->left = p->right;
p->right = r;
s->right = p->left;
p->left = s;
}
s->balance = 0;
r->balance = 0;
if (p->balance == a)
s->balance = -a;
else if (p->balance == -a)
r->balance = a;
p->balance = 0;
}
/* A10. Finishing touch. */
if (s == t->right)
t->right = p;
else
t->left = p;
return q;
}
/* A3 & A4. (continued). */
if (q->balance)
{
t = p;
s = q;
}
p = q;
}
/* NOTREACHED */
}
/* Record the fact that J precedes K. */
static void
record_relation (struct item *j, struct item *k)
{
struct successor *p;
if (!STREQ (j->str, k->str))
{
k->count++;
p = xmalloc (sizeof *p);
p->suc = k;
p->next = j->top;
j->top = p;
}
}
static bool
count_items (MAYBE_UNUSED struct item *unused)
{
n_strings++;
return false;
}
static bool
scan_zeros (struct item *k)
{
/* Ignore strings that have already been printed. */
if (k->count == 0 && !k->printed)
{
if (head == nullptr)
head = k;
else
zeros->qlink = k;
zeros = k;
}
return false;
}
/* Try to detect the loop. If we have detected that K is part of a
loop, print the loop on standard error, remove a relation to break
the loop, and return true.
The loop detection strategy is as follows: Realize that what we're
dealing with is essentially a directed graph. If we find an item
that is part of a graph that contains a cycle we traverse the graph
in backwards direction. In general there is no unique way to do
this, but that is no problem. If we encounter an item that we have
encountered before, we know that we've found a cycle. All we have
to do now is retrace our steps, printing out the items until we
encounter that item again. (This is not necessarily the item that
we started from originally.) Since the order in which the items
are stored in the tree is not related to the specified partial
ordering, we may need to walk the tree several times before the
loop has completely been constructed. If the loop was found, the
global variable LOOP will be null. */
static bool
detect_loop (struct item *k)
{
if (k->count > 0)
{
/* K does not have to be part of a cycle. It is however part of
a graph that contains a cycle. */
if (loop == nullptr)
/* Start traversing the graph at K. */
loop = k;
else
{
struct successor **p = &k->top;
while (*p)
{
if ((*p)->suc == loop)
{
if (k->qlink)
{
/* We have found a loop. Retrace our steps. */
while (loop)
{
struct item *tmp = loop->qlink;
error (0, 0, "%s", (loop->str));
/* Until we encounter K again. */
if (loop == k)
{
/* Remove relation. */
struct successor *s = *p;
s->suc->count--;
*p = s->next;
IF_LINT (free (s));
break;
}
/* Tidy things up since we might have to
detect another loop. */
loop->qlink = nullptr;
loop = tmp;
}
while (loop)
{
struct item *tmp = loop->qlink;
loop->qlink = nullptr;
loop = tmp;
}
/* Since we have found the loop, stop walking
the tree. */
return true;
}
else
{
k->qlink = loop;
loop = k;
break;
}
}
p = &(*p)->next;
}
}
}
return false;
}
/* Recurse (sub)tree rooted at ROOT, calling ACTION for each node.
Stop when ACTION returns true. */
static bool
recurse_tree (struct item *root, bool (*action) (struct item *))
{
if (root->left == nullptr && root->right == nullptr)
return (*action) (root);
else
{
if (root->left != nullptr)
if (recurse_tree (root->left, action))
return true;
if ((*action) (root))
return true;
if (root->right != nullptr)
if (recurse_tree (root->right, action))
return true;
}
return false;
}
/* Walk the tree specified by the head ROOT, calling ACTION for
each node. */
static void
walk_tree (struct item *root, bool (*action) (struct item *))
{
if (root->right)
recurse_tree (root->right, action);
}
/* Do a topological sort on FILE. Exit with appropriate exit status. */
static _Noreturn void
tsort (char const *file)
{
bool ok = true;
struct item *j = nullptr;
struct item *k = nullptr;
token_buffer tokenbuffer;
bool is_stdin = STREQ (file, "-");
/* Initialize the head of the tree holding the strings we're sorting. */
struct item *root = new_item (nullptr);
if (!is_stdin && ! freopen (file, "r", stdin))
error (EXIT_FAILURE, errno, "%s", quotef (file));
fadvise (stdin, FADVISE_SEQUENTIAL);
init_tokenbuffer (&tokenbuffer);
while (true)
{
/* T2. Next Relation. */
size_t len = readtoken (stdin, DELIM, sizeof (DELIM) - 1, &tokenbuffer);
if (len == (size_t) -1)
{
if (ferror (stdin))
error (EXIT_FAILURE, errno, _("%s: read error"), quotef (file));
break;
}
affirm (len != 0);
k = search_item (root, tokenbuffer.buffer);
if (j)
{
/* T3. Record the relation. */
record_relation (j, k);
k = nullptr;
}
j = k;
}
if (k != nullptr)
error (EXIT_FAILURE, 0, _("%s: input contains an odd number of tokens"),
quotef (file));
/* T1. Initialize (N <- n). */
walk_tree (root, count_items);
while (n_strings > 0)
{
/* T4. Scan for zeros. */
walk_tree (root, scan_zeros);
while (head)
{
struct successor *p = head->top;
/* T5. Output front of queue. */
puts (head->str);
head->printed = true;
n_strings--;
/* T6. Erase relations. */
while (p)
{
p->suc->count--;
if (p->suc->count == 0)
{
zeros->qlink = p->suc;
zeros = p->suc;
}
p = p->next;
}
/* T7. Remove from queue. */
head = head->qlink;
}
/* T8. End of process. */
if (n_strings > 0)
{
/* The input contains a loop. */
error (0, 0, _("%s: input contains a loop:"), quotef (file));
ok = false;
/* Print the loop and remove a relation to break it. */
do
walk_tree (root, detect_loop);
while (loop);
}
}
if (fclose (stdin) != 0)
error (EXIT_FAILURE, errno, "%s",
is_stdin ? _("standard input") : quotef (file));
exit (ok ? EXIT_SUCCESS : EXIT_FAILURE);
}
int
main (int argc, char **argv)
{
initialize_main (&argc, &argv);
set_program_name (argv[0]);
setlocale (LC_ALL, "");
bindtextdomain (PACKAGE, LOCALEDIR);
textdomain (PACKAGE);
atexit (close_stdout);
parse_gnu_standard_options_only (argc, argv, PROGRAM_NAME, PACKAGE_NAME,
Version, true, usage, AUTHORS,
(char const *) nullptr);
if (1 < argc - optind)
{
error (0, 0, _("extra operand %s"), quote (argv[optind + 1]));
usage (EXIT_FAILURE);
}
tsort (optind == argc ? "-" : argv[optind]);
}