/* * drivers/clk/tegra/clk-emc.c * * Copyright (c) 2014, NVIDIA CORPORATION. All rights reserved. * * Author: * Mikko Perttunen * * This software is licensed under the terms of the GNU General Public * License version 2, as published by the Free Software Foundation, and * may be copied, distributed, and modified under those terms. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include "clk.h" #define CLK_SOURCE_EMC 0x19c #define CLK_SOURCE_EMC_EMC_2X_CLK_DIVISOR_SHIFT 0 #define CLK_SOURCE_EMC_EMC_2X_CLK_DIVISOR_MASK 0xff #define CLK_SOURCE_EMC_EMC_2X_CLK_DIVISOR(x) (((x) & CLK_SOURCE_EMC_EMC_2X_CLK_DIVISOR_MASK) << \ CLK_SOURCE_EMC_EMC_2X_CLK_DIVISOR_SHIFT) #define CLK_SOURCE_EMC_EMC_2X_CLK_SRC_SHIFT 29 #define CLK_SOURCE_EMC_EMC_2X_CLK_SRC_MASK 0x7 #define CLK_SOURCE_EMC_EMC_2X_CLK_SRC(x) (((x) & CLK_SOURCE_EMC_EMC_2X_CLK_SRC_MASK) << \ CLK_SOURCE_EMC_EMC_2X_CLK_SRC_SHIFT) static const char * const emc_parent_clk_names[] = { "pll_m", "pll_c", "pll_p", "clk_m", "pll_m_ud", "pll_c2", "pll_c3", "pll_c_ud" }; /* * List of clock sources for various parents the EMC clock can have. * When we change the timing to a timing with a parent that has the same * clock source as the current parent, we must first change to a backup * timing that has a different clock source. */ #define EMC_SRC_PLL_M 0 #define EMC_SRC_PLL_C 1 #define EMC_SRC_PLL_P 2 #define EMC_SRC_CLK_M 3 #define EMC_SRC_PLL_C2 4 #define EMC_SRC_PLL_C3 5 static const char emc_parent_clk_sources[] = { EMC_SRC_PLL_M, EMC_SRC_PLL_C, EMC_SRC_PLL_P, EMC_SRC_CLK_M, EMC_SRC_PLL_M, EMC_SRC_PLL_C2, EMC_SRC_PLL_C3, EMC_SRC_PLL_C }; struct emc_timing { unsigned long rate, parent_rate; u8 parent_index; struct clk *parent; u32 ram_code; }; struct tegra_clk_emc { struct clk_hw hw; void __iomem *clk_regs; struct clk *prev_parent; bool changing_timing; struct device_node *emc_node; struct tegra_emc *emc; int num_timings; struct emc_timing *timings; spinlock_t *lock; }; /* Common clock framework callback implementations */ static unsigned long emc_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct tegra_clk_emc *tegra; u32 val, div; tegra = container_of(hw, struct tegra_clk_emc, hw); /* * CCF wrongly assumes that the parent won't change during set_rate, * so get the parent rate explicitly. */ parent_rate = clk_hw_get_rate(clk_hw_get_parent(hw)); val = readl(tegra->clk_regs + CLK_SOURCE_EMC); div = val & CLK_SOURCE_EMC_EMC_2X_CLK_DIVISOR_MASK; return parent_rate / (div + 2) * 2; } /* * Rounds up unless no higher rate exists, in which case down. This way is * safer since things have EMC rate floors. Also don't touch parent_rate * since we don't want the CCF to play with our parent clocks. */ static int emc_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) { struct tegra_clk_emc *tegra; u8 ram_code = tegra_read_ram_code(); struct emc_timing *timing = NULL; int i; tegra = container_of(hw, struct tegra_clk_emc, hw); for (i = 0; i < tegra->num_timings; i++) { if (tegra->timings[i].ram_code != ram_code) continue; timing = tegra->timings + i; if (timing->rate > req->max_rate) { i = max(i, 1); req->rate = tegra->timings[i - 1].rate; return 0; } if (timing->rate < req->min_rate) continue; if (timing->rate >= req->rate) { req->rate = timing->rate; return 0; } } if (timing) { req->rate = timing->rate; return 0; } req->rate = clk_hw_get_rate(hw); return 0; } static u8 emc_get_parent(struct clk_hw *hw) { struct tegra_clk_emc *tegra; u32 val; tegra = container_of(hw, struct tegra_clk_emc, hw); val = readl(tegra->clk_regs + CLK_SOURCE_EMC); return (val >> CLK_SOURCE_EMC_EMC_2X_CLK_SRC_SHIFT) & CLK_SOURCE_EMC_EMC_2X_CLK_SRC_MASK; } static struct tegra_emc *emc_ensure_emc_driver(struct tegra_clk_emc *tegra) { struct platform_device *pdev; if (tegra->emc) return tegra->emc; if (!tegra->emc_node) return NULL; pdev = of_find_device_by_node(tegra->emc_node); if (!pdev) { pr_err("%s: could not get external memory controller\n", __func__); return NULL; } of_node_put(tegra->emc_node); tegra->emc_node = NULL; tegra->emc = platform_get_drvdata(pdev); if (!tegra->emc) { put_device(&pdev->dev); pr_err("%s: cannot find EMC driver\n", __func__); return NULL; } return tegra->emc; } static int emc_set_timing(struct tegra_clk_emc *tegra, struct emc_timing *timing) { int err; u8 div; u32 car_value; unsigned long flags = 0; struct tegra_emc *emc = emc_ensure_emc_driver(tegra); if (!emc) return -ENOENT; pr_debug("going to rate %ld prate %ld p %s\n", timing->rate, timing->parent_rate, __clk_get_name(timing->parent)); if (emc_get_parent(&tegra->hw) == timing->parent_index && clk_get_rate(timing->parent) != timing->parent_rate) { BUG(); return -EINVAL; } tegra->changing_timing = true; err = clk_set_rate(timing->parent, timing->parent_rate); if (err) { pr_err("cannot change parent %s rate to %ld: %d\n", __clk_get_name(timing->parent), timing->parent_rate, err); return err; } err = clk_prepare_enable(timing->parent); if (err) { pr_err("cannot enable parent clock: %d\n", err); return err; } div = timing->parent_rate / (timing->rate / 2) - 2; err = tegra_emc_prepare_timing_change(emc, timing->rate); if (err) return err; spin_lock_irqsave(tegra->lock, flags); car_value = readl(tegra->clk_regs + CLK_SOURCE_EMC); car_value &= ~CLK_SOURCE_EMC_EMC_2X_CLK_SRC(~0); car_value |= CLK_SOURCE_EMC_EMC_2X_CLK_SRC(timing->parent_index); car_value &= ~CLK_SOURCE_EMC_EMC_2X_CLK_DIVISOR(~0); car_value |= CLK_SOURCE_EMC_EMC_2X_CLK_DIVISOR(div); writel(car_value, tegra->clk_regs + CLK_SOURCE_EMC); spin_unlock_irqrestore(tegra->lock, flags); tegra_emc_complete_timing_change(emc, timing->rate); clk_hw_reparent(&tegra->hw, __clk_get_hw(timing->parent)); clk_disable_unprepare(tegra->prev_parent); tegra->prev_parent = timing->parent; tegra->changing_timing = false; return 0; } /* * Get backup timing to use as an intermediate step when a change between * two timings with the same clock source has been requested. First try to * find a timing with a higher clock rate to avoid a rate below any set rate * floors. If that is not possible, find a lower rate. */ static struct emc_timing *get_backup_timing(struct tegra_clk_emc *tegra, int timing_index) { int i; u32 ram_code = tegra_read_ram_code(); struct emc_timing *timing; for (i = timing_index+1; i < tegra->num_timings; i++) { timing = tegra->timings + i; if (timing->ram_code != ram_code) continue; if (emc_parent_clk_sources[timing->parent_index] != emc_parent_clk_sources[ tegra->timings[timing_index].parent_index]) return timing; } for (i = timing_index-1; i >= 0; --i) { timing = tegra->timings + i; if (timing->ram_code != ram_code) continue; if (emc_parent_clk_sources[timing->parent_index] != emc_parent_clk_sources[ tegra->timings[timing_index].parent_index]) return timing; } return NULL; } static int emc_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct tegra_clk_emc *tegra; struct emc_timing *timing = NULL; int i, err; u32 ram_code = tegra_read_ram_code(); tegra = container_of(hw, struct tegra_clk_emc, hw); if (clk_hw_get_rate(hw) == rate) return 0; /* * When emc_set_timing changes the parent rate, CCF will propagate * that downward to us, so ignore any set_rate calls while a rate * change is already going on. */ if (tegra->changing_timing) return 0; for (i = 0; i < tegra->num_timings; i++) { if (tegra->timings[i].rate == rate && tegra->timings[i].ram_code == ram_code) { timing = tegra->timings + i; break; } } if (!timing) { pr_err("cannot switch to rate %ld without emc table\n", rate); return -EINVAL; } if (emc_parent_clk_sources[emc_get_parent(hw)] == emc_parent_clk_sources[timing->parent_index] && clk_get_rate(timing->parent) != timing->parent_rate) { /* * Parent clock source not changed but parent rate has changed, * need to temporarily switch to another parent */ struct emc_timing *backup_timing; backup_timing = get_backup_timing(tegra, i); if (!backup_timing) { pr_err("cannot find backup timing\n"); return -EINVAL; } pr_debug("using %ld as backup rate when going to %ld\n", backup_timing->rate, rate); err = emc_set_timing(tegra, backup_timing); if (err) { pr_err("cannot set backup timing: %d\n", err); return err; } } return emc_set_timing(tegra, timing); } /* Initialization and deinitialization */ static int load_one_timing_from_dt(struct tegra_clk_emc *tegra, struct emc_timing *timing, struct device_node *node) { int err, i; u32 tmp; err = of_property_read_u32(node, "clock-frequency", &tmp); if (err) { pr_err("timing %pOF: failed to read rate\n", node); return err; } timing->rate = tmp; err = of_property_read_u32(node, "nvidia,parent-clock-frequency", &tmp); if (err) { pr_err("timing %pOF: failed to read parent rate\n", node); return err; } timing->parent_rate = tmp; timing->parent = of_clk_get_by_name(node, "emc-parent"); if (IS_ERR(timing->parent)) { pr_err("timing %pOF: failed to get parent clock\n", node); return PTR_ERR(timing->parent); } timing->parent_index = 0xff; for (i = 0; i < ARRAY_SIZE(emc_parent_clk_names); i++) { if (!strcmp(emc_parent_clk_names[i], __clk_get_name(timing->parent))) { timing->parent_index = i; break; } } if (timing->parent_index == 0xff) { pr_err("timing %pOF: %s is not a valid parent\n", node, __clk_get_name(timing->parent)); clk_put(timing->parent); return -EINVAL; } return 0; } static int cmp_timings(const void *_a, const void *_b) { const struct emc_timing *a = _a; const struct emc_timing *b = _b; if (a->rate < b->rate) return -1; else if (a->rate == b->rate) return 0; else return 1; } static int load_timings_from_dt(struct tegra_clk_emc *tegra, struct device_node *node, u32 ram_code) { struct device_node *child; int child_count = of_get_child_count(node); int i = 0, err; tegra->timings = kcalloc(child_count, sizeof(struct emc_timing), GFP_KERNEL); if (!tegra->timings) return -ENOMEM; tegra->num_timings = child_count; for_each_child_of_node(node, child) { struct emc_timing *timing = tegra->timings + (i++); err = load_one_timing_from_dt(tegra, timing, child); if (err) { of_node_put(child); return err; } timing->ram_code = ram_code; } sort(tegra->timings, tegra->num_timings, sizeof(struct emc_timing), cmp_timings, NULL); return 0; } static const struct clk_ops tegra_clk_emc_ops = { .recalc_rate = emc_recalc_rate, .determine_rate = emc_determine_rate, .set_rate = emc_set_rate, .get_parent = emc_get_parent, }; struct clk *tegra_clk_register_emc(void __iomem *base, struct device_node *np, spinlock_t *lock) { struct tegra_clk_emc *tegra; struct clk_init_data init; struct device_node *node; u32 node_ram_code; struct clk *clk; int err; tegra = kcalloc(1, sizeof(*tegra), GFP_KERNEL); if (!tegra) return ERR_PTR(-ENOMEM); tegra->clk_regs = base; tegra->lock = lock; tegra->num_timings = 0; for_each_child_of_node(np, node) { err = of_property_read_u32(node, "nvidia,ram-code", &node_ram_code); if (err) continue; /* * Store timings for all ram codes as we cannot read the * fuses until the apbmisc driver is loaded. */ err = load_timings_from_dt(tegra, node, node_ram_code); of_node_put(node); if (err) return ERR_PTR(err); break; } if (tegra->num_timings == 0) pr_warn("%s: no memory timings registered\n", __func__); tegra->emc_node = of_parse_phandle(np, "nvidia,external-memory-controller", 0); if (!tegra->emc_node) pr_warn("%s: couldn't find node for EMC driver\n", __func__); init.name = "emc"; init.ops = &tegra_clk_emc_ops; init.flags = CLK_IS_CRITICAL; init.parent_names = emc_parent_clk_names; init.num_parents = ARRAY_SIZE(emc_parent_clk_names); tegra->hw.init = &init; clk = clk_register(NULL, &tegra->hw); if (IS_ERR(clk)) return clk; tegra->prev_parent = clk_hw_get_parent_by_index( &tegra->hw, emc_get_parent(&tegra->hw))->clk; tegra->changing_timing = false; /* Allow debugging tools to see the EMC clock */ clk_register_clkdev(clk, "emc", "tegra-clk-debug"); clk_prepare_enable(clk); return clk; };