/* * Copyright (c) 2017-2021 The Linux Foundation. All rights reserved. * Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved. * * Permission to use, copy, modify, and/or distribute this software for * any purpose with or without fee is hereby granted, provided that the * above copyright notice and this permission notice appear in all * copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR * PERFORMANCE OF THIS SOFTWARE. */ #include "hal_hw_headers.h" #ifndef RX_DEFRAG_DO_NOT_REINJECT #ifndef DP_BE_WAR #include "li/hal_li_rx.h" #endif #endif #include "dp_types.h" #include "dp_rx.h" #include "dp_peer.h" #include "hal_api.h" #include "qdf_trace.h" #include "qdf_nbuf.h" #include "dp_internal.h" #include "dp_rx_defrag.h" #include /* LLC_SNAP_HDR_LEN */ #include "dp_rx_defrag.h" #include "dp_ipa.h" #include "dp_rx_buffer_pool.h" const struct dp_rx_defrag_cipher dp_f_ccmp = { "AES-CCM", IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN, IEEE80211_WEP_MICLEN, 0, }; const struct dp_rx_defrag_cipher dp_f_tkip = { "TKIP", IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN, IEEE80211_WEP_CRCLEN, IEEE80211_WEP_MICLEN, }; const struct dp_rx_defrag_cipher dp_f_wep = { "WEP", IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN, IEEE80211_WEP_CRCLEN, 0, }; /* * The header and mic length are same for both * GCMP-128 and GCMP-256. */ const struct dp_rx_defrag_cipher dp_f_gcmp = { "AES-GCMP", WLAN_IEEE80211_GCMP_HEADERLEN, WLAN_IEEE80211_GCMP_MICLEN, WLAN_IEEE80211_GCMP_MICLEN, }; /** * dp_rx_defrag_frames_free() - Free fragment chain * @frames: Fragment chain * * Iterates through the fragment chain and frees them * Return: None */ static void dp_rx_defrag_frames_free(qdf_nbuf_t frames) { qdf_nbuf_t next, frag = frames; while (frag) { next = qdf_nbuf_next(frag); dp_rx_nbuf_free(frag); frag = next; } } #ifndef WLAN_SOFTUMAC_SUPPORT /* WLAN_SOFTUMAC_SUPPORT */ /** * dp_rx_clear_saved_desc_info() - Clears descriptor info * @txrx_peer: Pointer to the peer data structure * @tid: Transmit ID (TID) * * Saves MPDU descriptor info and MSDU link pointer from REO * ring descriptor. The cache is created per peer, per TID * * Return: None */ static void dp_rx_clear_saved_desc_info(struct dp_txrx_peer *txrx_peer, unsigned int tid) { if (txrx_peer->rx_tid[tid].dst_ring_desc) qdf_mem_free(txrx_peer->rx_tid[tid].dst_ring_desc); txrx_peer->rx_tid[tid].dst_ring_desc = NULL; txrx_peer->rx_tid[tid].head_frag_desc = NULL; } static void dp_rx_return_head_frag_desc(struct dp_txrx_peer *txrx_peer, unsigned int tid) { struct dp_soc *soc; struct dp_pdev *pdev; struct dp_srng *dp_rxdma_srng; struct rx_desc_pool *rx_desc_pool; union dp_rx_desc_list_elem_t *head = NULL; union dp_rx_desc_list_elem_t *tail = NULL; uint8_t pool_id; pdev = txrx_peer->vdev->pdev; soc = pdev->soc; if (txrx_peer->rx_tid[tid].head_frag_desc) { pool_id = txrx_peer->rx_tid[tid].head_frag_desc->pool_id; dp_rxdma_srng = &soc->rx_refill_buf_ring[pool_id]; rx_desc_pool = &soc->rx_desc_buf[pool_id]; dp_rx_add_to_free_desc_list(&head, &tail, txrx_peer->rx_tid[tid].head_frag_desc); dp_rx_buffers_replenish(soc, 0, dp_rxdma_srng, rx_desc_pool, 1, &head, &tail, false); } if (txrx_peer->rx_tid[tid].dst_ring_desc) { if (dp_rx_link_desc_return(soc, txrx_peer->rx_tid[tid].dst_ring_desc, HAL_BM_ACTION_PUT_IN_IDLE_LIST) != QDF_STATUS_SUCCESS) QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, "%s: Failed to return link desc", __func__); } } #else static void dp_rx_clear_saved_desc_info(struct dp_txrx_peer *txrx_peer, unsigned int tid) { } static void dp_rx_return_head_frag_desc(struct dp_txrx_peer *txrx_peer, unsigned int tid) { } #endif /* WLAN_SOFTUMAC_SUPPORT */ void dp_rx_reorder_flush_frag(struct dp_txrx_peer *txrx_peer, unsigned int tid) { dp_info_rl("Flushing TID %d", tid); if (!txrx_peer) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, "%s: NULL peer", __func__); return; } dp_rx_return_head_frag_desc(txrx_peer, tid); dp_rx_defrag_cleanup(txrx_peer, tid); } void dp_rx_defrag_waitlist_flush(struct dp_soc *soc) { struct dp_rx_tid_defrag *waitlist_elem = NULL; struct dp_rx_tid_defrag *tmp; uint32_t now_ms = qdf_system_ticks_to_msecs(qdf_system_ticks()); TAILQ_HEAD(, dp_rx_tid_defrag) temp_list; dp_txrx_ref_handle txrx_ref_handle = NULL; TAILQ_INIT(&temp_list); dp_debug("Current time %u", now_ms); qdf_spin_lock_bh(&soc->rx.defrag.defrag_lock); TAILQ_FOREACH_SAFE(waitlist_elem, &soc->rx.defrag.waitlist, defrag_waitlist_elem, tmp) { uint32_t tid; if (waitlist_elem->defrag_timeout_ms > now_ms) break; tid = waitlist_elem->tid; if (tid >= DP_MAX_TIDS) { qdf_assert(0); continue; } TAILQ_REMOVE(&soc->rx.defrag.waitlist, waitlist_elem, defrag_waitlist_elem); DP_STATS_DEC(soc, rx.rx_frag_wait, 1); /* Move to temp list and clean-up later */ TAILQ_INSERT_TAIL(&temp_list, waitlist_elem, defrag_waitlist_elem); } if (waitlist_elem) { soc->rx.defrag.next_flush_ms = waitlist_elem->defrag_timeout_ms; } else { soc->rx.defrag.next_flush_ms = now_ms + soc->rx.defrag.timeout_ms; } qdf_spin_unlock_bh(&soc->rx.defrag.defrag_lock); TAILQ_FOREACH_SAFE(waitlist_elem, &temp_list, defrag_waitlist_elem, tmp) { struct dp_txrx_peer *txrx_peer, *temp_peer = NULL; qdf_spin_lock_bh(&waitlist_elem->defrag_tid_lock); TAILQ_REMOVE(&temp_list, waitlist_elem, defrag_waitlist_elem); /* get address of current peer */ txrx_peer = waitlist_elem->defrag_peer; qdf_spin_unlock_bh(&waitlist_elem->defrag_tid_lock); temp_peer = dp_txrx_peer_get_ref_by_id(soc, txrx_peer->peer_id, &txrx_ref_handle, DP_MOD_ID_RX_ERR); if (temp_peer == txrx_peer) { qdf_spin_lock_bh(&waitlist_elem->defrag_tid_lock); dp_rx_reorder_flush_frag(txrx_peer, waitlist_elem->tid); qdf_spin_unlock_bh(&waitlist_elem->defrag_tid_lock); } if (temp_peer) dp_txrx_peer_unref_delete(txrx_ref_handle, DP_MOD_ID_RX_ERR); } } void dp_rx_defrag_waitlist_add(struct dp_txrx_peer *txrx_peer, unsigned int tid) { struct dp_soc *psoc = txrx_peer->vdev->pdev->soc; struct dp_rx_tid_defrag *waitlist_elem = &txrx_peer->rx_tid[tid]; dp_debug("Adding TID %u to waitlist for peer %pK with peer_id = %d ", tid, txrx_peer, txrx_peer->peer_id); /* TODO: use LIST macros instead of TAIL macros */ qdf_spin_lock_bh(&psoc->rx.defrag.defrag_lock); if (TAILQ_EMPTY(&psoc->rx.defrag.waitlist)) psoc->rx.defrag.next_flush_ms = waitlist_elem->defrag_timeout_ms; TAILQ_INSERT_TAIL(&psoc->rx.defrag.waitlist, waitlist_elem, defrag_waitlist_elem); DP_STATS_INC(psoc, rx.rx_frag_wait, 1); qdf_spin_unlock_bh(&psoc->rx.defrag.defrag_lock); } void dp_rx_defrag_waitlist_remove(struct dp_txrx_peer *txrx_peer, unsigned int tid) { struct dp_pdev *pdev = txrx_peer->vdev->pdev; struct dp_soc *soc = pdev->soc; struct dp_rx_tid_defrag *waitlist_elm; struct dp_rx_tid_defrag *tmp; dp_debug("Removing TID %u to waitlist for peer %pK peer_id = %d ", tid, txrx_peer, txrx_peer->peer_id); if (tid >= DP_MAX_TIDS) { dp_err("TID out of bounds: %d", tid); qdf_assert_always(0); } qdf_spin_lock_bh(&soc->rx.defrag.defrag_lock); TAILQ_FOREACH_SAFE(waitlist_elm, &soc->rx.defrag.waitlist, defrag_waitlist_elem, tmp) { struct dp_txrx_peer *peer_on_waitlist; /* get address of current peer */ peer_on_waitlist = waitlist_elm->defrag_peer; /* Ensure it is TID for same peer */ if (peer_on_waitlist == txrx_peer && waitlist_elm->tid == tid) { TAILQ_REMOVE(&soc->rx.defrag.waitlist, waitlist_elm, defrag_waitlist_elem); DP_STATS_DEC(soc, rx.rx_frag_wait, 1); } } qdf_spin_unlock_bh(&soc->rx.defrag.defrag_lock); } QDF_STATUS dp_rx_defrag_fraglist_insert(struct dp_txrx_peer *txrx_peer, unsigned int tid, qdf_nbuf_t *head_addr, qdf_nbuf_t *tail_addr, qdf_nbuf_t frag, uint8_t *all_frag_present) { struct dp_soc *soc = txrx_peer->vdev->pdev->soc; qdf_nbuf_t next; qdf_nbuf_t prev = NULL; qdf_nbuf_t cur; uint16_t head_fragno, cur_fragno, next_fragno; uint8_t last_morefrag = 1, count = 0; struct dp_rx_tid_defrag *rx_tid = &txrx_peer->rx_tid[tid]; uint8_t *rx_desc_info; qdf_assert(frag); qdf_assert(head_addr); qdf_assert(tail_addr); *all_frag_present = 0; rx_desc_info = qdf_nbuf_data(frag); cur_fragno = dp_rx_frag_get_mpdu_frag_number(soc, rx_desc_info); dp_debug("cur_fragno %d", cur_fragno); /* If this is the first fragment */ if (!(*head_addr)) { *head_addr = *tail_addr = frag; qdf_nbuf_set_next(*tail_addr, NULL); rx_tid->curr_frag_num = cur_fragno; goto insert_done; } /* In sequence fragment */ if (cur_fragno > rx_tid->curr_frag_num) { qdf_nbuf_set_next(*tail_addr, frag); *tail_addr = frag; qdf_nbuf_set_next(*tail_addr, NULL); rx_tid->curr_frag_num = cur_fragno; } else { /* Out of sequence fragment */ cur = *head_addr; rx_desc_info = qdf_nbuf_data(cur); head_fragno = dp_rx_frag_get_mpdu_frag_number(soc, rx_desc_info); if (cur_fragno == head_fragno) { dp_rx_nbuf_free(frag); goto insert_fail; } else if (head_fragno > cur_fragno) { qdf_nbuf_set_next(frag, cur); cur = frag; *head_addr = frag; /* head pointer to be updated */ } else { while ((cur_fragno > head_fragno) && cur) { prev = cur; cur = qdf_nbuf_next(cur); if (cur) { rx_desc_info = qdf_nbuf_data(cur); head_fragno = dp_rx_frag_get_mpdu_frag_number( soc, rx_desc_info); } } if (cur_fragno == head_fragno) { dp_rx_nbuf_free(frag); goto insert_fail; } qdf_nbuf_set_next(prev, frag); qdf_nbuf_set_next(frag, cur); } } next = qdf_nbuf_next(*head_addr); rx_desc_info = qdf_nbuf_data(*tail_addr); last_morefrag = dp_rx_frag_get_more_frag_bit(soc, rx_desc_info); /* TODO: optimize the loop */ if (!last_morefrag) { /* Check if all fragments are present */ do { rx_desc_info = qdf_nbuf_data(next); next_fragno = dp_rx_frag_get_mpdu_frag_number(soc, rx_desc_info); count++; if (next_fragno != count) break; next = qdf_nbuf_next(next); } while (next); if (!next) { *all_frag_present = 1; return QDF_STATUS_SUCCESS; } else { /* revisit */ } } insert_done: return QDF_STATUS_SUCCESS; insert_fail: return QDF_STATUS_E_FAILURE; } /** * dp_rx_defrag_tkip_decap() - decap tkip encrypted fragment * @soc: DP SOC * @msdu: Pointer to the fragment * @hdrlen: 802.11 header length (mostly useful in 4 addr frames) * * decap tkip encrypted fragment * * Return: QDF_STATUS */ static QDF_STATUS dp_rx_defrag_tkip_decap(struct dp_soc *soc, qdf_nbuf_t msdu, uint16_t hdrlen) { uint8_t *ivp, *orig_hdr; int rx_desc_len = soc->rx_pkt_tlv_size; /* start of 802.11 header info */ orig_hdr = (uint8_t *)(qdf_nbuf_data(msdu) + rx_desc_len); /* TKIP header is located post 802.11 header */ ivp = orig_hdr + hdrlen; if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)) { QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR, "IEEE80211_WEP_EXTIV is missing in TKIP fragment"); return QDF_STATUS_E_DEFRAG_ERROR; } qdf_nbuf_trim_tail(msdu, dp_f_tkip.ic_trailer); return QDF_STATUS_SUCCESS; } /** * dp_rx_defrag_ccmp_demic() - Remove MIC information from CCMP fragment * @soc: DP SOC * @nbuf: Pointer to the fragment buffer * @hdrlen: 802.11 header length (mostly useful in 4 addr frames) * * Remove MIC information from CCMP fragment * * Return: QDF_STATUS */ static QDF_STATUS dp_rx_defrag_ccmp_demic(struct dp_soc *soc, qdf_nbuf_t nbuf, uint16_t hdrlen) { uint8_t *ivp, *orig_hdr; int rx_desc_len = soc->rx_pkt_tlv_size; /* start of the 802.11 header */ orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len); /* CCMP header is located after 802.11 header */ ivp = orig_hdr + hdrlen; if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)) return QDF_STATUS_E_DEFRAG_ERROR; qdf_nbuf_trim_tail(nbuf, dp_f_ccmp.ic_trailer); return QDF_STATUS_SUCCESS; } /** * dp_rx_defrag_ccmp_decap() - decap CCMP encrypted fragment * @soc: DP SOC * @nbuf: Pointer to the fragment * @hdrlen: length of the header information * * decap CCMP encrypted fragment * * Return: QDF_STATUS */ static QDF_STATUS dp_rx_defrag_ccmp_decap(struct dp_soc *soc, qdf_nbuf_t nbuf, uint16_t hdrlen) { uint8_t *ivp, *origHdr; int rx_desc_len = soc->rx_pkt_tlv_size; origHdr = (uint8_t *) (qdf_nbuf_data(nbuf) + rx_desc_len); ivp = origHdr + hdrlen; if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)) return QDF_STATUS_E_DEFRAG_ERROR; return QDF_STATUS_SUCCESS; } /** * dp_rx_defrag_wep_decap() - decap WEP encrypted fragment * @soc: DP SOC * @msdu: Pointer to the fragment * @hdrlen: length of the header information * * decap WEP encrypted fragment * * Return: QDF_STATUS */ static QDF_STATUS dp_rx_defrag_wep_decap(struct dp_soc *soc, qdf_nbuf_t msdu, uint16_t hdrlen) { uint8_t *origHdr; int rx_desc_len = soc->rx_pkt_tlv_size; origHdr = (uint8_t *) (qdf_nbuf_data(msdu) + rx_desc_len); qdf_mem_move(origHdr + dp_f_wep.ic_header, origHdr, hdrlen); qdf_nbuf_trim_tail(msdu, dp_f_wep.ic_trailer); return QDF_STATUS_SUCCESS; } /** * dp_rx_defrag_hdrsize() - Calculate the header size of the received fragment * @soc: soc handle * @nbuf: Pointer to the fragment * * Calculate the header size of the received fragment * * Return: header size (uint16_t) */ static uint16_t dp_rx_defrag_hdrsize(struct dp_soc *soc, qdf_nbuf_t nbuf) { uint8_t *rx_tlv_hdr = qdf_nbuf_data(nbuf); uint16_t size = sizeof(struct ieee80211_frame); uint16_t fc = 0; uint32_t to_ds, fr_ds; uint8_t frm_ctrl_valid; uint16_t frm_ctrl_field; to_ds = hal_rx_mpdu_get_to_ds(soc->hal_soc, rx_tlv_hdr); fr_ds = hal_rx_mpdu_get_fr_ds(soc->hal_soc, rx_tlv_hdr); frm_ctrl_valid = hal_rx_get_mpdu_frame_control_valid(soc->hal_soc, rx_tlv_hdr); frm_ctrl_field = hal_rx_get_frame_ctrl_field(soc->hal_soc, rx_tlv_hdr); if (to_ds && fr_ds) size += QDF_MAC_ADDR_SIZE; if (frm_ctrl_valid) { fc = frm_ctrl_field; /* use 1-st byte for validation */ if (DP_RX_DEFRAG_IEEE80211_QOS_HAS_SEQ(fc & 0xff)) { size += sizeof(uint16_t); /* use 2-nd byte for validation */ if (((fc & 0xff00) >> 8) & IEEE80211_FC1_ORDER) size += sizeof(struct ieee80211_htc); } } return size; } /** * dp_rx_defrag_michdr() - Calculate a pseudo MIC header * @wh0: Pointer to the wireless header of the fragment * @hdr: Array to hold the pseudo header * * Calculate a pseudo MIC header * * Return: None */ static void dp_rx_defrag_michdr(const struct ieee80211_frame *wh0, uint8_t hdr[]) { const struct ieee80211_frame_addr4 *wh = (const struct ieee80211_frame_addr4 *)wh0; switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) { case IEEE80211_FC1_DIR_NODS: DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */ DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE, wh->i_addr2); break; case IEEE80211_FC1_DIR_TODS: DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */ DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE, wh->i_addr2); break; case IEEE80211_FC1_DIR_FROMDS: DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */ DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE, wh->i_addr3); break; case IEEE80211_FC1_DIR_DSTODS: DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */ DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE, wh->i_addr4); break; } /* * Bit 7 is QDF_IEEE80211_FC0_SUBTYPE_QOS for data frame, but * it could also be set for deauth, disassoc, action, etc. for * a mgt type frame. It comes into picture for MFP. */ if (wh->i_fc[0] & QDF_IEEE80211_FC0_SUBTYPE_QOS) { if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) == IEEE80211_FC1_DIR_DSTODS) { const struct ieee80211_qosframe_addr4 *qwh = (const struct ieee80211_qosframe_addr4 *)wh; hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID; } else { const struct ieee80211_qosframe *qwh = (const struct ieee80211_qosframe *)wh; hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID; } } else { hdr[12] = 0; } hdr[13] = hdr[14] = hdr[15] = 0; /* reserved */ } /** * dp_rx_defrag_mic() - Calculate MIC header * @soc: DP SOC * @key: Pointer to the key * @wbuf: fragment buffer * @off: Offset * @data_len: Data length * @mic: Array to hold MIC * * Calculate a pseudo MIC header * * Return: QDF_STATUS */ static QDF_STATUS dp_rx_defrag_mic(struct dp_soc *soc, const uint8_t *key, qdf_nbuf_t wbuf, uint16_t off, uint16_t data_len, uint8_t mic[]) { uint8_t hdr[16] = { 0, }; uint32_t l, r; const uint8_t *data; uint32_t space; int rx_desc_len = soc->rx_pkt_tlv_size; dp_rx_defrag_michdr((struct ieee80211_frame *)(qdf_nbuf_data(wbuf) + rx_desc_len), hdr); l = dp_rx_get_le32(key); r = dp_rx_get_le32(key + 4); /* Michael MIC pseudo header: DA, SA, 3 x 0, Priority */ l ^= dp_rx_get_le32(hdr); dp_rx_michael_block(l, r); l ^= dp_rx_get_le32(&hdr[4]); dp_rx_michael_block(l, r); l ^= dp_rx_get_le32(&hdr[8]); dp_rx_michael_block(l, r); l ^= dp_rx_get_le32(&hdr[12]); dp_rx_michael_block(l, r); /* first buffer has special handling */ data = (uint8_t *)qdf_nbuf_data(wbuf) + off; space = qdf_nbuf_len(wbuf) - off; for (;; ) { if (space > data_len) space = data_len; /* collect 32-bit blocks from current buffer */ while (space >= sizeof(uint32_t)) { l ^= dp_rx_get_le32(data); dp_rx_michael_block(l, r); data += sizeof(uint32_t); space -= sizeof(uint32_t); data_len -= sizeof(uint32_t); } if (data_len < sizeof(uint32_t)) break; wbuf = qdf_nbuf_next(wbuf); if (!wbuf) return QDF_STATUS_E_DEFRAG_ERROR; if (space != 0) { const uint8_t *data_next; /* * Block straddles buffers, split references. */ data_next = (uint8_t *)qdf_nbuf_data(wbuf) + off; if ((qdf_nbuf_len(wbuf)) < sizeof(uint32_t) - space) { return QDF_STATUS_E_DEFRAG_ERROR; } switch (space) { case 1: l ^= dp_rx_get_le32_split(data[0], data_next[0], data_next[1], data_next[2]); data = data_next + 3; space = (qdf_nbuf_len(wbuf) - off) - 3; break; case 2: l ^= dp_rx_get_le32_split(data[0], data[1], data_next[0], data_next[1]); data = data_next + 2; space = (qdf_nbuf_len(wbuf) - off) - 2; break; case 3: l ^= dp_rx_get_le32_split(data[0], data[1], data[2], data_next[0]); data = data_next + 1; space = (qdf_nbuf_len(wbuf) - off) - 1; break; } dp_rx_michael_block(l, r); data_len -= sizeof(uint32_t); } else { /* * Setup for next buffer. */ data = (uint8_t *)qdf_nbuf_data(wbuf) + off; space = qdf_nbuf_len(wbuf) - off; } } /* Last block and padding (0x5a, 4..7 x 0) */ switch (data_len) { case 0: l ^= dp_rx_get_le32_split(0x5a, 0, 0, 0); break; case 1: l ^= dp_rx_get_le32_split(data[0], 0x5a, 0, 0); break; case 2: l ^= dp_rx_get_le32_split(data[0], data[1], 0x5a, 0); break; case 3: l ^= dp_rx_get_le32_split(data[0], data[1], data[2], 0x5a); break; } dp_rx_michael_block(l, r); dp_rx_michael_block(l, r); dp_rx_put_le32(mic, l); dp_rx_put_le32(mic + 4, r); return QDF_STATUS_SUCCESS; } /** * dp_rx_defrag_tkip_demic() - Remove MIC header from the TKIP frame * @soc: DP SOC * @key: Pointer to the key * @msdu: fragment buffer * @hdrlen: Length of the header information * * Remove MIC information from the TKIP frame * * Return: QDF_STATUS */ static QDF_STATUS dp_rx_defrag_tkip_demic(struct dp_soc *soc, const uint8_t *key, qdf_nbuf_t msdu, uint16_t hdrlen) { QDF_STATUS status; uint32_t pktlen = 0, prev_data_len; uint8_t mic[IEEE80211_WEP_MICLEN]; uint8_t mic0[IEEE80211_WEP_MICLEN]; qdf_nbuf_t prev = NULL, prev0, next; uint8_t len0 = 0; next = msdu; prev0 = msdu; while (next) { pktlen += (qdf_nbuf_len(next) - hdrlen); prev = next; dp_debug("pktlen %u", (uint32_t)(qdf_nbuf_len(next) - hdrlen)); next = qdf_nbuf_next(next); if (next && !qdf_nbuf_next(next)) prev0 = prev; } if (!prev) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, "%s Defrag chaining failed !\n", __func__); return QDF_STATUS_E_DEFRAG_ERROR; } prev_data_len = qdf_nbuf_len(prev) - hdrlen; if (prev_data_len < dp_f_tkip.ic_miclen) { if (prev0 == prev) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, "%s Fragments don't have MIC header !\n", __func__); return QDF_STATUS_E_DEFRAG_ERROR; } len0 = dp_f_tkip.ic_miclen - (uint8_t)prev_data_len; qdf_nbuf_copy_bits(prev0, qdf_nbuf_len(prev0) - len0, len0, (caddr_t)mic0); qdf_nbuf_trim_tail(prev0, len0); } qdf_nbuf_copy_bits(prev, (qdf_nbuf_len(prev) - (dp_f_tkip.ic_miclen - len0)), (dp_f_tkip.ic_miclen - len0), (caddr_t)(&mic0[len0])); qdf_nbuf_trim_tail(prev, (dp_f_tkip.ic_miclen - len0)); pktlen -= dp_f_tkip.ic_miclen; if (((qdf_nbuf_len(prev) - hdrlen) == 0) && prev != msdu) { dp_rx_nbuf_free(prev); qdf_nbuf_set_next(prev0, NULL); } status = dp_rx_defrag_mic(soc, key, msdu, hdrlen, pktlen, mic); if (QDF_IS_STATUS_ERROR(status)) return status; if (qdf_mem_cmp(mic, mic0, dp_f_tkip.ic_miclen)) return QDF_STATUS_E_DEFRAG_ERROR; return QDF_STATUS_SUCCESS; } /** * dp_rx_frag_pull_hdr() - Pulls the RXTLV & the 802.11 headers * @soc: DP SOC * @nbuf: buffer pointer * @hdrsize: size of the header to be pulled * * Pull the RXTLV & the 802.11 headers * * Return: None */ static void dp_rx_frag_pull_hdr(struct dp_soc *soc, qdf_nbuf_t nbuf, uint16_t hdrsize) { hal_rx_print_pn(soc->hal_soc, qdf_nbuf_data(nbuf)); qdf_nbuf_pull_head(nbuf, soc->rx_pkt_tlv_size + hdrsize); dp_debug("final pktlen %d .11len %d", (uint32_t)qdf_nbuf_len(nbuf), hdrsize); } /** * dp_rx_defrag_pn_check() - Check the PN of current fragmented with prev PN * @soc: DP SOC * @msdu: msdu to get the current PN * @cur_pn128: PN extracted from current msdu * @prev_pn128: Prev PN * * Return: 0 on success, non zero on failure */ static int dp_rx_defrag_pn_check(struct dp_soc *soc, qdf_nbuf_t msdu, uint64_t *cur_pn128, uint64_t *prev_pn128) { int out_of_order = 0; hal_rx_tlv_get_pn_num(soc->hal_soc, qdf_nbuf_data(msdu), cur_pn128); if (cur_pn128[1] == prev_pn128[1]) out_of_order = (cur_pn128[0] - prev_pn128[0] != 1); else out_of_order = (cur_pn128[1] - prev_pn128[1] != 1); return out_of_order; } /** * dp_rx_construct_fraglist() - Construct a nbuf fraglist * @txrx_peer: Pointer to the txrx peer * @tid: Transmit ID (TID) * @head: Pointer to list of fragments * @hdrsize: Size of the header to be pulled * * Construct a nbuf fraglist * * Return: None */ static int dp_rx_construct_fraglist(struct dp_txrx_peer *txrx_peer, int tid, qdf_nbuf_t head, uint16_t hdrsize) { struct dp_soc *soc = txrx_peer->vdev->pdev->soc; qdf_nbuf_t msdu = qdf_nbuf_next(head); qdf_nbuf_t rx_nbuf = msdu; struct dp_rx_tid_defrag *rx_tid = &txrx_peer->rx_tid[tid]; uint32_t len = 0; uint64_t cur_pn128[2] = {0, 0}, prev_pn128[2]; int out_of_order = 0; int index; int needs_pn_check = 0; enum cdp_sec_type sec_type; prev_pn128[0] = rx_tid->pn128[0]; prev_pn128[1] = rx_tid->pn128[1]; index = hal_rx_msdu_is_wlan_mcast(soc->hal_soc, msdu) ? dp_sec_mcast : dp_sec_ucast; sec_type = txrx_peer->security[index].sec_type; if (!(sec_type == cdp_sec_type_none || sec_type == cdp_sec_type_wep128 || sec_type == cdp_sec_type_wep104 || sec_type == cdp_sec_type_wep40)) needs_pn_check = 1; while (msdu) { if (qdf_likely(needs_pn_check)) out_of_order = dp_rx_defrag_pn_check(soc, msdu, &cur_pn128[0], &prev_pn128[0]); if (qdf_unlikely(out_of_order)) { dp_info_rl("cur_pn128[0] 0x%llx cur_pn128[1] 0x%llx prev_pn128[0] 0x%llx prev_pn128[1] 0x%llx", cur_pn128[0], cur_pn128[1], prev_pn128[0], prev_pn128[1]); return QDF_STATUS_E_FAILURE; } prev_pn128[0] = cur_pn128[0]; prev_pn128[1] = cur_pn128[1]; /* * Broadcast and multicast frames should never be fragmented. * Iterating through all msdus and dropping fragments if even * one of them has mcast/bcast destination address. */ if (hal_rx_msdu_is_wlan_mcast(soc->hal_soc, msdu)) { QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR, "Dropping multicast/broadcast fragments"); return QDF_STATUS_E_FAILURE; } dp_rx_frag_pull_hdr(soc, msdu, hdrsize); len += qdf_nbuf_len(msdu); msdu = qdf_nbuf_next(msdu); } qdf_nbuf_append_ext_list(head, rx_nbuf, len); qdf_nbuf_set_next(head, NULL); qdf_nbuf_set_is_frag(head, 1); dp_debug("head len %d ext len %d data len %d ", (uint32_t)qdf_nbuf_len(head), (uint32_t)qdf_nbuf_len(rx_nbuf), (uint32_t)(head->data_len)); return QDF_STATUS_SUCCESS; } /** * dp_rx_defrag_err() - rx defragmentation error handler * @vdev: handle to vdev object * @nbuf: packet buffer * * This function handles rx error and send MIC error notification * * Return: None */ static void dp_rx_defrag_err(struct dp_vdev *vdev, qdf_nbuf_t nbuf) { struct ol_if_ops *tops = NULL; struct dp_pdev *pdev = vdev->pdev; int rx_desc_len = pdev->soc->rx_pkt_tlv_size; uint8_t *orig_hdr; struct ieee80211_frame *wh; struct cdp_rx_mic_err_info mic_failure_info; orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len); wh = (struct ieee80211_frame *)orig_hdr; qdf_copy_macaddr((struct qdf_mac_addr *)&mic_failure_info.da_mac_addr, (struct qdf_mac_addr *)&wh->i_addr1); qdf_copy_macaddr((struct qdf_mac_addr *)&mic_failure_info.ta_mac_addr, (struct qdf_mac_addr *)&wh->i_addr2); mic_failure_info.key_id = 0; mic_failure_info.multicast = IEEE80211_IS_MULTICAST(wh->i_addr1); qdf_mem_zero(mic_failure_info.tsc, MIC_SEQ_CTR_SIZE); mic_failure_info.frame_type = cdp_rx_frame_type_802_11; mic_failure_info.data = (uint8_t *)wh; mic_failure_info.vdev_id = vdev->vdev_id; tops = pdev->soc->cdp_soc.ol_ops; if (tops->rx_mic_error) tops->rx_mic_error(pdev->soc->ctrl_psoc, pdev->pdev_id, &mic_failure_info); } /** * dp_rx_defrag_nwifi_to_8023() - Transcap 802.11 to 802.3 * @soc: dp soc handle * @txrx_peer: txrx_peer handle * @tid: Transmit ID (TID) * @nbuf: Pointer to the fragment buffer * @hdrsize: Size of headers * * Transcap the fragment from 802.11 to 802.3 * * Return: None */ static void dp_rx_defrag_nwifi_to_8023(struct dp_soc *soc, struct dp_txrx_peer *txrx_peer, int tid, qdf_nbuf_t nbuf, uint16_t hdrsize) { struct llc_snap_hdr_t *llchdr; struct ethernet_hdr_t *eth_hdr; uint8_t ether_type[2]; uint16_t fc = 0; union dp_align_mac_addr mac_addr; uint8_t *rx_desc_info = qdf_mem_malloc(soc->rx_pkt_tlv_size); struct dp_rx_tid_defrag *rx_tid = &txrx_peer->rx_tid[tid]; struct ieee80211_frame_addr4 wh = {0}; hal_rx_tlv_get_pn_num(soc->hal_soc, qdf_nbuf_data(nbuf), rx_tid->pn128); hal_rx_print_pn(soc->hal_soc, qdf_nbuf_data(nbuf)); if (!rx_desc_info) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, "%s: Memory alloc failed ! ", __func__); QDF_ASSERT(0); return; } qdf_mem_zero(&wh, sizeof(struct ieee80211_frame_addr4)); if (hal_rx_get_mpdu_mac_ad4_valid(soc->hal_soc, qdf_nbuf_data(nbuf))) qdf_mem_copy(&wh, qdf_nbuf_data(nbuf) + soc->rx_pkt_tlv_size, hdrsize); qdf_mem_copy(rx_desc_info, qdf_nbuf_data(nbuf), soc->rx_pkt_tlv_size); llchdr = (struct llc_snap_hdr_t *)(qdf_nbuf_data(nbuf) + soc->rx_pkt_tlv_size + hdrsize); qdf_mem_copy(ether_type, llchdr->ethertype, 2); qdf_nbuf_pull_head(nbuf, (soc->rx_pkt_tlv_size + hdrsize + sizeof(struct llc_snap_hdr_t) - sizeof(struct ethernet_hdr_t))); eth_hdr = (struct ethernet_hdr_t *)(qdf_nbuf_data(nbuf)); if (hal_rx_get_mpdu_frame_control_valid(soc->hal_soc, rx_desc_info)) fc = hal_rx_get_frame_ctrl_field(soc->hal_soc, rx_desc_info); dp_debug("Frame control type: 0x%x", fc); switch (((fc & 0xff00) >> 8) & IEEE80211_FC1_DIR_MASK) { case IEEE80211_FC1_DIR_NODS: hal_rx_mpdu_get_addr1(soc->hal_soc, rx_desc_info, &mac_addr.raw[0]); qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0], QDF_MAC_ADDR_SIZE); hal_rx_mpdu_get_addr2(soc->hal_soc, rx_desc_info, &mac_addr.raw[0]); qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0], QDF_MAC_ADDR_SIZE); break; case IEEE80211_FC1_DIR_TODS: hal_rx_mpdu_get_addr3(soc->hal_soc, rx_desc_info, &mac_addr.raw[0]); qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0], QDF_MAC_ADDR_SIZE); hal_rx_mpdu_get_addr2(soc->hal_soc, rx_desc_info, &mac_addr.raw[0]); qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0], QDF_MAC_ADDR_SIZE); break; case IEEE80211_FC1_DIR_FROMDS: hal_rx_mpdu_get_addr1(soc->hal_soc, rx_desc_info, &mac_addr.raw[0]); qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0], QDF_MAC_ADDR_SIZE); hal_rx_mpdu_get_addr3(soc->hal_soc, rx_desc_info, &mac_addr.raw[0]); qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0], QDF_MAC_ADDR_SIZE); break; case IEEE80211_FC1_DIR_DSTODS: hal_rx_mpdu_get_addr3(soc->hal_soc, rx_desc_info, &mac_addr.raw[0]); qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0], QDF_MAC_ADDR_SIZE); qdf_mem_copy(eth_hdr->src_addr, &wh.i_addr4[0], QDF_MAC_ADDR_SIZE); break; default: QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, "%s: Unknown frame control type: 0x%x", __func__, fc); } qdf_mem_copy(eth_hdr->ethertype, ether_type, sizeof(ether_type)); qdf_nbuf_push_head(nbuf, soc->rx_pkt_tlv_size); qdf_mem_copy(qdf_nbuf_data(nbuf), rx_desc_info, soc->rx_pkt_tlv_size); qdf_mem_free(rx_desc_info); } #ifdef RX_DEFRAG_DO_NOT_REINJECT /** * dp_rx_defrag_deliver() - Deliver defrag packet to stack * @txrx_peer: Pointer to the peer * @tid: Transmit Identifier * @head: Nbuf to be delivered * * Return: None */ static inline void dp_rx_defrag_deliver(struct dp_txrx_peer *txrx_peer, unsigned int tid, qdf_nbuf_t head) { struct dp_vdev *vdev = txrx_peer->vdev; struct dp_soc *soc = vdev->pdev->soc; qdf_nbuf_t deliver_list_head = NULL; qdf_nbuf_t deliver_list_tail = NULL; uint8_t *rx_tlv_hdr; rx_tlv_hdr = qdf_nbuf_data(head); QDF_NBUF_CB_RX_VDEV_ID(head) = vdev->vdev_id; qdf_nbuf_set_tid_val(head, tid); qdf_nbuf_pull_head(head, soc->rx_pkt_tlv_size); DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail, head); dp_rx_deliver_to_stack(soc, vdev, txrx_peer, deliver_list_head, deliver_list_tail); } /** * dp_rx_defrag_reo_reinject() - Reinject the fragment chain back into REO * @txrx_peer: Pointer to the peer * @tid: Transmit Identifier * @head: Buffer to be reinjected back * * Reinject the fragment chain back into REO * * Return: QDF_STATUS */ static QDF_STATUS dp_rx_defrag_reo_reinject(struct dp_txrx_peer *txrx_peer, unsigned int tid, qdf_nbuf_t head) { struct dp_rx_reorder_array_elem *rx_reorder_array_elem; rx_reorder_array_elem = txrx_peer->rx_tid[tid].array; dp_rx_defrag_deliver(txrx_peer, tid, head); rx_reorder_array_elem->head = NULL; rx_reorder_array_elem->tail = NULL; dp_rx_return_head_frag_desc(txrx_peer, tid); return QDF_STATUS_SUCCESS; } #else #ifdef WLAN_FEATURE_DP_RX_RING_HISTORY /** * dp_rx_reinject_ring_record_entry() - Record reinject ring history * @soc: Datapath soc structure * @paddr: paddr of the buffer reinjected to SW2REO ring * @sw_cookie: SW cookie of the buffer reinjected to SW2REO ring * @rbm: Return buffer manager of the buffer reinjected to SW2REO ring * * Return: None */ static inline void dp_rx_reinject_ring_record_entry(struct dp_soc *soc, uint64_t paddr, uint32_t sw_cookie, uint8_t rbm) { struct dp_buf_info_record *record; uint32_t idx; if (qdf_unlikely(!soc->rx_reinject_ring_history)) return; idx = dp_history_get_next_index(&soc->rx_reinject_ring_history->index, DP_RX_REINJECT_HIST_MAX); /* No NULL check needed for record since its an array */ record = &soc->rx_reinject_ring_history->entry[idx]; record->timestamp = qdf_get_log_timestamp(); record->hbi.paddr = paddr; record->hbi.sw_cookie = sw_cookie; record->hbi.rbm = rbm; } #else static inline void dp_rx_reinject_ring_record_entry(struct dp_soc *soc, uint64_t paddr, uint32_t sw_cookie, uint8_t rbm) { } #endif /** * dp_rx_defrag_reo_reinject() - Reinject the fragment chain back into REO * @txrx_peer: Pointer to the txrx_peer * @tid: Transmit Identifier * @head: Buffer to be reinjected back * * Reinject the fragment chain back into REO * * Return: QDF_STATUS */ static QDF_STATUS dp_rx_defrag_reo_reinject(struct dp_txrx_peer *txrx_peer, unsigned int tid, qdf_nbuf_t head) { struct dp_pdev *pdev = txrx_peer->vdev->pdev; struct dp_soc *soc = pdev->soc; struct hal_buf_info buf_info; struct hal_buf_info temp_buf_info; void *link_desc_va; void *msdu0, *msdu_desc_info; void *ent_ring_desc, *ent_mpdu_desc_info, *ent_qdesc_addr; void *dst_mpdu_desc_info; uint64_t dst_qdesc_addr; qdf_dma_addr_t paddr; uint32_t nbuf_len, seq_no, dst_ind; uint32_t ret, cookie; hal_ring_desc_t dst_ring_desc = txrx_peer->rx_tid[tid].dst_ring_desc; hal_ring_handle_t hal_srng = soc->reo_reinject_ring.hal_srng; struct dp_rx_desc *rx_desc = txrx_peer->rx_tid[tid].head_frag_desc; struct dp_rx_reorder_array_elem *rx_reorder_array_elem = txrx_peer->rx_tid[tid].array; qdf_nbuf_t nbuf_head; struct rx_desc_pool *rx_desc_pool = NULL; void *buf_addr_info = HAL_RX_REO_BUF_ADDR_INFO_GET(dst_ring_desc); uint8_t rx_defrag_rbm_id = dp_rx_get_defrag_bm_id(soc); /* do duplicate link desc address check */ dp_rx_link_desc_refill_duplicate_check( soc, &soc->last_op_info.reo_reinject_link_desc, buf_addr_info); nbuf_head = dp_ipa_handle_rx_reo_reinject(soc, head); if (qdf_unlikely(!nbuf_head)) { dp_err_rl("IPA RX REO reinject failed"); return QDF_STATUS_E_FAILURE; } /* update new allocated skb in case IPA is enabled */ if (nbuf_head != head) { head = nbuf_head; rx_desc->nbuf = head; rx_reorder_array_elem->head = head; } ent_ring_desc = hal_srng_src_get_next(soc->hal_soc, hal_srng); if (!ent_ring_desc) { dp_err_rl("HAL src ring next entry NULL"); return QDF_STATUS_E_FAILURE; } hal_rx_reo_buf_paddr_get(soc->hal_soc, dst_ring_desc, &buf_info); /* buffer_addr_info is the first element of ring_desc */ hal_rx_buf_cookie_rbm_get(soc->hal_soc, (uint32_t *)dst_ring_desc, &buf_info); link_desc_va = dp_rx_cookie_2_link_desc_va(soc, &buf_info); qdf_assert_always(link_desc_va); msdu0 = hal_rx_msdu0_buffer_addr_lsb(soc->hal_soc, link_desc_va); nbuf_len = qdf_nbuf_len(head) - soc->rx_pkt_tlv_size; HAL_RX_UNIFORM_HDR_SET(link_desc_va, OWNER, UNI_DESC_OWNER_SW); HAL_RX_UNIFORM_HDR_SET(link_desc_va, BUFFER_TYPE, UNI_DESC_BUF_TYPE_RX_MSDU_LINK); /* msdu reconfig */ msdu_desc_info = hal_rx_msdu_desc_info_ptr_get(soc->hal_soc, msdu0); dst_ind = hal_rx_msdu_reo_dst_ind_get(soc->hal_soc, link_desc_va); qdf_mem_zero(msdu_desc_info, sizeof(struct rx_msdu_desc_info)); hal_msdu_desc_info_set(soc->hal_soc, msdu_desc_info, dst_ind, nbuf_len); /* change RX TLV's */ hal_rx_tlv_msdu_len_set(soc->hal_soc, qdf_nbuf_data(head), nbuf_len); hal_rx_buf_cookie_rbm_get(soc->hal_soc, (uint32_t *)msdu0, &temp_buf_info); cookie = temp_buf_info.sw_cookie; rx_desc_pool = &soc->rx_desc_buf[pdev->lmac_id]; /* map the nbuf before reinject it into HW */ ret = qdf_nbuf_map_nbytes_single(soc->osdev, head, QDF_DMA_FROM_DEVICE, rx_desc_pool->buf_size); if (qdf_unlikely(ret == QDF_STATUS_E_FAILURE)) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, "%s: nbuf map failed !", __func__); return QDF_STATUS_E_FAILURE; } dp_ipa_handle_rx_buf_smmu_mapping(soc, head, rx_desc_pool->buf_size, true, __func__, __LINE__); dp_audio_smmu_map(soc->osdev, qdf_mem_paddr_from_dmaaddr(soc->osdev, QDF_NBUF_CB_PADDR(head)), QDF_NBUF_CB_PADDR(head), rx_desc_pool->buf_size); /* * As part of rx frag handler buffer was unmapped and rx desc * unmapped is set to 1. So again for defrag reinject frame reset * it back to 0. */ rx_desc->unmapped = 0; paddr = qdf_nbuf_get_frag_paddr(head, 0); ret = dp_check_paddr(soc, &head, &paddr, rx_desc_pool); if (ret == QDF_STATUS_E_FAILURE) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, "%s: x86 check failed !", __func__); return QDF_STATUS_E_FAILURE; } hal_rxdma_buff_addr_info_set(soc->hal_soc, msdu0, paddr, cookie, rx_defrag_rbm_id); /* Lets fill entrance ring now !!! */ if (qdf_unlikely(hal_srng_access_start(soc->hal_soc, hal_srng))) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, "HAL RING Access For REO entrance SRNG Failed: %pK", hal_srng); return QDF_STATUS_E_FAILURE; } dp_rx_reinject_ring_record_entry(soc, paddr, cookie, rx_defrag_rbm_id); paddr = (uint64_t)buf_info.paddr; /* buf addr */ hal_rxdma_buff_addr_info_set(soc->hal_soc, ent_ring_desc, paddr, buf_info.sw_cookie, soc->idle_link_bm_id); /* mpdu desc info */ ent_mpdu_desc_info = hal_ent_mpdu_desc_info(soc->hal_soc, ent_ring_desc); dst_mpdu_desc_info = hal_dst_mpdu_desc_info(soc->hal_soc, dst_ring_desc); qdf_mem_copy(ent_mpdu_desc_info, dst_mpdu_desc_info, sizeof(struct rx_mpdu_desc_info)); qdf_mem_zero(ent_mpdu_desc_info, sizeof(uint32_t)); seq_no = hal_rx_get_rx_sequence(soc->hal_soc, rx_desc->rx_buf_start); hal_mpdu_desc_info_set(soc->hal_soc, ent_ring_desc, ent_mpdu_desc_info, seq_no); /* qdesc addr */ ent_qdesc_addr = hal_get_reo_ent_desc_qdesc_addr(soc->hal_soc, (uint8_t *)ent_ring_desc); dst_qdesc_addr = soc->arch_ops.get_reo_qdesc_addr( soc->hal_soc, (uint8_t *)dst_ring_desc, qdf_nbuf_data(head), txrx_peer, tid); qdf_mem_copy(ent_qdesc_addr, &dst_qdesc_addr, 5); hal_set_reo_ent_desc_reo_dest_ind(soc->hal_soc, (uint8_t *)ent_ring_desc, dst_ind); hal_srng_access_end(soc->hal_soc, hal_srng); DP_STATS_INC(soc, rx.reo_reinject, 1); dp_debug("reinjection done !"); return QDF_STATUS_SUCCESS; } #endif /** * dp_rx_defrag_gcmp_demic() - Remove MIC information from GCMP fragment * @soc: Datapath soc structure * @nbuf: Pointer to the fragment buffer * @hdrlen: 802.11 header length * * Remove MIC information from GCMP fragment * * Return: QDF_STATUS */ static QDF_STATUS dp_rx_defrag_gcmp_demic(struct dp_soc *soc, qdf_nbuf_t nbuf, uint16_t hdrlen) { uint8_t *ivp, *orig_hdr; int rx_desc_len = soc->rx_pkt_tlv_size; /* start of the 802.11 header */ orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len); /* * GCMP header is located after 802.11 header and EXTIV * field should always be set to 1 for GCMP protocol. */ ivp = orig_hdr + hdrlen; if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)) return QDF_STATUS_E_DEFRAG_ERROR; qdf_nbuf_trim_tail(nbuf, dp_f_gcmp.ic_trailer); return QDF_STATUS_SUCCESS; } QDF_STATUS dp_rx_defrag(struct dp_txrx_peer *txrx_peer, unsigned int tid, qdf_nbuf_t frag_list_head, qdf_nbuf_t frag_list_tail) { qdf_nbuf_t tmp_next; qdf_nbuf_t cur = frag_list_head, msdu; uint32_t index, tkip_demic = 0; uint16_t hdr_space; uint8_t key[DEFRAG_IEEE80211_KEY_LEN]; struct dp_vdev *vdev = txrx_peer->vdev; struct dp_soc *soc = vdev->pdev->soc; uint8_t status = 0; if (!cur) return QDF_STATUS_E_DEFRAG_ERROR; hdr_space = dp_rx_defrag_hdrsize(soc, cur); index = hal_rx_msdu_is_wlan_mcast(soc->hal_soc, cur) ? dp_sec_mcast : dp_sec_ucast; /* Remove FCS from all fragments */ while (cur) { tmp_next = qdf_nbuf_next(cur); qdf_nbuf_set_next(cur, NULL); qdf_nbuf_trim_tail(cur, DEFRAG_IEEE80211_FCS_LEN); qdf_nbuf_set_next(cur, tmp_next); cur = tmp_next; } cur = frag_list_head; QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG, "%s: index %d Security type: %d", __func__, index, txrx_peer->security[index].sec_type); switch (txrx_peer->security[index].sec_type) { case cdp_sec_type_tkip: tkip_demic = 1; fallthrough; case cdp_sec_type_tkip_nomic: while (cur) { tmp_next = qdf_nbuf_next(cur); if (dp_rx_defrag_tkip_decap(soc, cur, hdr_space)) { QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR, "dp_rx_defrag: TKIP decap failed"); return QDF_STATUS_E_DEFRAG_ERROR; } cur = tmp_next; } /* If success, increment header to be stripped later */ hdr_space += dp_f_tkip.ic_header; break; case cdp_sec_type_aes_ccmp: while (cur) { tmp_next = qdf_nbuf_next(cur); if (dp_rx_defrag_ccmp_demic(soc, cur, hdr_space)) { QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR, "dp_rx_defrag: CCMP demic failed"); return QDF_STATUS_E_DEFRAG_ERROR; } if (dp_rx_defrag_ccmp_decap(soc, cur, hdr_space)) { QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR, "dp_rx_defrag: CCMP decap failed"); return QDF_STATUS_E_DEFRAG_ERROR; } cur = tmp_next; } /* If success, increment header to be stripped later */ hdr_space += dp_f_ccmp.ic_header; break; case cdp_sec_type_wep40: case cdp_sec_type_wep104: case cdp_sec_type_wep128: while (cur) { tmp_next = qdf_nbuf_next(cur); if (dp_rx_defrag_wep_decap(soc, cur, hdr_space)) { QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR, "dp_rx_defrag: WEP decap failed"); return QDF_STATUS_E_DEFRAG_ERROR; } cur = tmp_next; } /* If success, increment header to be stripped later */ hdr_space += dp_f_wep.ic_header; break; case cdp_sec_type_aes_gcmp: case cdp_sec_type_aes_gcmp_256: while (cur) { tmp_next = qdf_nbuf_next(cur); if (dp_rx_defrag_gcmp_demic(soc, cur, hdr_space)) { QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR, "dp_rx_defrag: GCMP demic failed"); return QDF_STATUS_E_DEFRAG_ERROR; } cur = tmp_next; } hdr_space += dp_f_gcmp.ic_header; break; default: break; } if (tkip_demic) { msdu = frag_list_head; qdf_mem_copy(key, &txrx_peer->security[index].michael_key[0], IEEE80211_WEP_MICLEN); status = dp_rx_defrag_tkip_demic(soc, key, msdu, soc->rx_pkt_tlv_size + hdr_space); if (status) { dp_rx_defrag_err(vdev, frag_list_head); QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR, "%s: TKIP demic failed status %d", __func__, status); return QDF_STATUS_E_DEFRAG_ERROR; } } /* Convert the header to 802.3 header */ dp_rx_defrag_nwifi_to_8023(soc, txrx_peer, tid, frag_list_head, hdr_space); if (qdf_nbuf_next(frag_list_head)) { if (dp_rx_construct_fraglist(txrx_peer, tid, frag_list_head, hdr_space)) return QDF_STATUS_E_DEFRAG_ERROR; } return QDF_STATUS_SUCCESS; } void dp_rx_defrag_cleanup(struct dp_txrx_peer *txrx_peer, unsigned int tid) { struct dp_rx_reorder_array_elem *rx_reorder_array_elem = txrx_peer->rx_tid[tid].array; if (rx_reorder_array_elem) { /* Free up nbufs */ dp_rx_defrag_frames_free(rx_reorder_array_elem->head); rx_reorder_array_elem->head = NULL; rx_reorder_array_elem->tail = NULL; } else { dp_info("Cleanup self peer %pK and TID %u", txrx_peer, tid); } /* Free up saved ring descriptors */ dp_rx_clear_saved_desc_info(txrx_peer, tid); txrx_peer->rx_tid[tid].defrag_timeout_ms = 0; txrx_peer->rx_tid[tid].curr_frag_num = 0; txrx_peer->rx_tid[tid].curr_seq_num = 0; } #ifdef DP_RX_DEFRAG_ADDR1_CHECK_WAR #ifdef WLAN_FEATURE_11BE_MLO /** * dp_rx_defrag_vdev_mac_addr_cmp() - function to check whether mac address * matches VDEV mac * @vdev: dp_vdev object of the VDEV on which this data packet is received * @mac_addr: Address to compare * * Return: 1 if the mac matching, * 0 if this frame is not correctly destined to this VDEV/MLD */ static int dp_rx_defrag_vdev_mac_addr_cmp(struct dp_vdev *vdev, uint8_t *mac_addr) { return ((qdf_mem_cmp(mac_addr, &vdev->mac_addr.raw[0], QDF_MAC_ADDR_SIZE) == 0) || (qdf_mem_cmp(mac_addr, &vdev->mld_mac_addr.raw[0], QDF_MAC_ADDR_SIZE) == 0)); } #else static int dp_rx_defrag_vdev_mac_addr_cmp(struct dp_vdev *vdev, uint8_t *mac_addr) { return (qdf_mem_cmp(mac_addr, &vdev->mac_addr.raw[0], QDF_MAC_ADDR_SIZE) == 0); } #endif static bool dp_rx_defrag_addr1_check(struct dp_soc *soc, struct dp_vdev *vdev, uint8_t *rx_tlv_hdr) { union dp_align_mac_addr mac_addr; /* If address1 is not valid discard the fragment */ if (hal_rx_mpdu_get_addr1(soc->hal_soc, rx_tlv_hdr, &mac_addr.raw[0]) != QDF_STATUS_SUCCESS) { DP_STATS_INC(soc, rx.err.defrag_ad1_invalid, 1); return false; } /* WAR suggested by HW team to avoid crashing incase of packet * corruption issue * * recipe is to compare VDEV mac or MLD mac address with ADDR1 * in case of mismatch consider it as corrupted packet and do * not process further */ if (!dp_rx_defrag_vdev_mac_addr_cmp(vdev, &mac_addr.raw[0])) { DP_STATS_INC(soc, rx.err.defrag_ad1_invalid, 1); return false; } return true; } #else static inline bool dp_rx_defrag_addr1_check(struct dp_soc *soc, struct dp_vdev *vdev, uint8_t *rx_tlv_hdr) { return true; } #endif QDF_STATUS dp_rx_defrag_add_last_frag(struct dp_soc *soc, struct dp_txrx_peer *txrx_peer, uint16_t tid, uint16_t rxseq, qdf_nbuf_t nbuf) { struct dp_rx_tid_defrag *rx_tid = &txrx_peer->rx_tid[tid]; struct dp_rx_reorder_array_elem *rx_reorder_array_elem; uint8_t all_frag_present; uint32_t msdu_len; QDF_STATUS status; rx_reorder_array_elem = txrx_peer->rx_tid[tid].array; /* * HW may fill in unexpected peer_id in RX PKT TLV, * if this peer_id related peer is valid by coincidence, * but actually this peer won't do dp_peer_rx_init(like SAP vdev * self peer), then invalid access to rx_reorder_array_elem happened. */ if (!rx_reorder_array_elem) { dp_verbose_debug( "peer id:%d drop rx frame!", txrx_peer->peer_id); DP_STATS_INC(soc, rx.err.defrag_peer_uninit, 1); dp_rx_nbuf_free(nbuf); goto fail; } if (rx_reorder_array_elem->head && rxseq != rx_tid->curr_seq_num) { /* Drop stored fragments if out of sequence * fragment is received */ dp_rx_reorder_flush_frag(txrx_peer, tid); QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, "%s: No list found for TID %d Seq# %d", __func__, tid, rxseq); dp_rx_nbuf_free(nbuf); goto fail; } msdu_len = hal_rx_msdu_start_msdu_len_get(soc->hal_soc, qdf_nbuf_data(nbuf)); qdf_nbuf_set_pktlen(nbuf, (msdu_len + soc->rx_pkt_tlv_size)); status = dp_rx_defrag_fraglist_insert(txrx_peer, tid, &rx_reorder_array_elem->head, &rx_reorder_array_elem->tail, nbuf, &all_frag_present); if (QDF_IS_STATUS_ERROR(status)) { QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR, "%s Fragment insert failed", __func__); goto fail; } if (soc->rx.flags.defrag_timeout_check) dp_rx_defrag_waitlist_remove(txrx_peer, tid); if (!all_frag_present) { uint32_t now_ms = qdf_system_ticks_to_msecs(qdf_system_ticks()); txrx_peer->rx_tid[tid].defrag_timeout_ms = now_ms + soc->rx.defrag.timeout_ms; dp_rx_defrag_waitlist_add(txrx_peer, tid); return QDF_STATUS_SUCCESS; } status = dp_rx_defrag(txrx_peer, tid, rx_reorder_array_elem->head, rx_reorder_array_elem->tail); if (QDF_IS_STATUS_ERROR(status)) { QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR, "%s Fragment processing failed", __func__); dp_rx_return_head_frag_desc(txrx_peer, tid); dp_rx_defrag_cleanup(txrx_peer, tid); goto fail; } /* Re-inject the fragments back to REO for further processing */ status = dp_rx_defrag_reo_reinject(txrx_peer, tid, rx_reorder_array_elem->head); if (QDF_IS_STATUS_SUCCESS(status)) { rx_reorder_array_elem->head = NULL; rx_reorder_array_elem->tail = NULL; QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO, "%s: Frag seq successfully reinjected", __func__); } else { QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR, "%s: Frag seq reinjection failed", __func__); dp_rx_return_head_frag_desc(txrx_peer, tid); } dp_rx_defrag_cleanup(txrx_peer, tid); return QDF_STATUS_SUCCESS; fail: return QDF_STATUS_E_DEFRAG_ERROR; } #ifndef WLAN_SOFTUMAC_SUPPORT /* WLAN_SOFTUMAC_SUPPORT */ /** * dp_rx_defrag_save_info_from_ring_desc() - Save info from REO ring descriptor * @soc: Pointer to the SOC data structure * @ring_desc: Pointer to the dst ring descriptor * @rx_desc: Pointer to rx descriptor * @txrx_peer: Pointer to the peer * @tid: Transmit Identifier * * Return: None */ static QDF_STATUS dp_rx_defrag_save_info_from_ring_desc(struct dp_soc *soc, hal_ring_desc_t ring_desc, struct dp_rx_desc *rx_desc, struct dp_txrx_peer *txrx_peer, unsigned int tid) { void *dst_ring_desc; dst_ring_desc = qdf_mem_malloc(hal_srng_get_entrysize(soc->hal_soc, REO_DST)); if (!dst_ring_desc) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, "%s: Memory alloc failed !", __func__); QDF_ASSERT(0); return QDF_STATUS_E_NOMEM; } qdf_mem_copy(dst_ring_desc, ring_desc, hal_srng_get_entrysize(soc->hal_soc, REO_DST)); txrx_peer->rx_tid[tid].dst_ring_desc = dst_ring_desc; txrx_peer->rx_tid[tid].head_frag_desc = rx_desc; return QDF_STATUS_SUCCESS; } /** * dp_rx_defrag_store_fragment() - Store incoming fragments * @soc: Pointer to the SOC data structure * @ring_desc: Pointer to the ring descriptor * @head: * @tail: * @mpdu_desc_info: MPDU descriptor info * @tid: Traffic Identifier * @rx_desc: Pointer to rx descriptor * @rx_bfs: Number of bfs consumed * * Return: QDF_STATUS */ static QDF_STATUS dp_rx_defrag_store_fragment(struct dp_soc *soc, hal_ring_desc_t ring_desc, union dp_rx_desc_list_elem_t **head, union dp_rx_desc_list_elem_t **tail, struct hal_rx_mpdu_desc_info *mpdu_desc_info, unsigned int tid, struct dp_rx_desc *rx_desc, uint32_t *rx_bfs) { struct dp_rx_reorder_array_elem *rx_reorder_array_elem; struct dp_pdev *pdev; struct dp_txrx_peer *txrx_peer = NULL; dp_txrx_ref_handle txrx_ref_handle = NULL; uint16_t peer_id; uint8_t fragno, more_frag, all_frag_present = 0; uint16_t rxseq = mpdu_desc_info->mpdu_seq; QDF_STATUS status; struct dp_rx_tid_defrag *rx_tid; uint8_t mpdu_sequence_control_valid; uint8_t mpdu_frame_control_valid; qdf_nbuf_t frag = rx_desc->nbuf; uint32_t msdu_len; if (qdf_nbuf_len(frag) > 0) { dp_info("Dropping unexpected packet with skb_len: %d " "data len: %d cookie: %d", (uint32_t)qdf_nbuf_len(frag), frag->data_len, rx_desc->cookie); DP_STATS_INC(soc, rx.rx_frag_err_len_error, 1); goto discard_frag; } if (dp_rx_buffer_pool_refill(soc, frag, rx_desc->pool_id)) { /* fragment queued back to the pool, free the link desc */ goto err_free_desc; } msdu_len = hal_rx_msdu_start_msdu_len_get(soc->hal_soc, rx_desc->rx_buf_start); qdf_nbuf_set_pktlen(frag, (msdu_len + soc->rx_pkt_tlv_size)); qdf_nbuf_append_ext_list(frag, NULL, 0); /* Check if the packet is from a valid peer */ peer_id = dp_rx_peer_metadata_peer_id_get(soc, mpdu_desc_info->peer_meta_data); txrx_peer = dp_txrx_peer_get_ref_by_id(soc, peer_id, &txrx_ref_handle, DP_MOD_ID_RX_ERR); if (!txrx_peer) { /* We should not receive anything from unknown peer * however, that might happen while we are in the monitor mode. * We don't need to handle that here */ dp_info_rl("Unknown peer with peer_id %d, dropping fragment", peer_id); DP_STATS_INC(soc, rx.rx_frag_err_no_peer, 1); goto discard_frag; } if (tid >= DP_MAX_TIDS) { dp_info("TID out of bounds: %d", tid); qdf_assert_always(0); goto discard_frag; } if (!dp_rx_defrag_addr1_check(soc, txrx_peer->vdev, rx_desc->rx_buf_start)) { dp_info("Invalid address 1"); goto discard_frag; } mpdu_sequence_control_valid = hal_rx_get_mpdu_sequence_control_valid(soc->hal_soc, rx_desc->rx_buf_start); /* Invalid MPDU sequence control field, MPDU is of no use */ if (!mpdu_sequence_control_valid) { QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR, "Invalid MPDU seq control field, dropping MPDU"); qdf_assert(0); goto discard_frag; } mpdu_frame_control_valid = hal_rx_get_mpdu_frame_control_valid(soc->hal_soc, rx_desc->rx_buf_start); /* Invalid frame control field */ if (!mpdu_frame_control_valid) { QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR, "Invalid frame control field, dropping MPDU"); qdf_assert(0); goto discard_frag; } /* Current mpdu sequence */ more_frag = dp_rx_frag_get_more_frag_bit(soc, rx_desc->rx_buf_start); /* HW does not populate the fragment number as of now * need to get from the 802.11 header */ fragno = dp_rx_frag_get_mpdu_frag_number(soc, rx_desc->rx_buf_start); pdev = txrx_peer->vdev->pdev; rx_tid = &txrx_peer->rx_tid[tid]; dp_rx_err_send_pktlog(soc, pdev, mpdu_desc_info, frag, QDF_TX_RX_STATUS_OK, false); qdf_spin_lock_bh(&rx_tid->defrag_tid_lock); rx_reorder_array_elem = txrx_peer->rx_tid[tid].array; if (!rx_reorder_array_elem) { dp_err_rl("Rcvd Fragmented pkt before tid setup for peer %pK", txrx_peer); qdf_spin_unlock_bh(&rx_tid->defrag_tid_lock); goto discard_frag; } /* * !more_frag: no more fragments to be delivered * !frag_no: packet is not fragmented * !rx_reorder_array_elem->head: no saved fragments so far */ if ((!more_frag) && (!fragno) && (!rx_reorder_array_elem->head)) { /* We should not get into this situation here. * It means an unfragmented packet with fragment flag * is delivered over the REO exception ring. * Typically it follows normal rx path. */ QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR, "Rcvd unfragmented pkt on REO Err srng, dropping"); qdf_spin_unlock_bh(&rx_tid->defrag_tid_lock); qdf_assert(0); goto discard_frag; } /* Check if the fragment is for the same sequence or a different one */ dp_debug("rx_tid %d", tid); if (rx_reorder_array_elem->head) { dp_debug("rxseq %d", rxseq); if (rxseq != rx_tid->curr_seq_num) { dp_debug("mismatch cur_seq %d rxseq %d", rx_tid->curr_seq_num, rxseq); /* Drop stored fragments if out of sequence * fragment is received */ dp_rx_reorder_flush_frag(txrx_peer, tid); DP_STATS_INC(soc, rx.rx_frag_oor, 1); dp_debug("cur rxseq %d", rxseq); /* * The sequence number for this fragment becomes the * new sequence number to be processed */ rx_tid->curr_seq_num = rxseq; } } else { /* Check if we are processing first fragment if it is * not first fragment discard fragment. */ if (fragno) { qdf_spin_unlock_bh(&rx_tid->defrag_tid_lock); goto discard_frag; } dp_debug("cur rxseq %d", rxseq); /* Start of a new sequence */ dp_rx_defrag_cleanup(txrx_peer, tid); rx_tid->curr_seq_num = rxseq; /* store PN number also */ } /* * If the earlier sequence was dropped, this will be the fresh start. * Else, continue with next fragment in a given sequence */ status = dp_rx_defrag_fraglist_insert(txrx_peer, tid, &rx_reorder_array_elem->head, &rx_reorder_array_elem->tail, frag, &all_frag_present); /* * Currently, we can have only 6 MSDUs per-MPDU, if the current * packet sequence has more than 6 MSDUs for some reason, we will * have to use the next MSDU link descriptor and chain them together * before reinjection. * ring_desc is validated in dp_rx_err_process. */ if ((fragno == 0) && (status == QDF_STATUS_SUCCESS) && (rx_reorder_array_elem->head == frag)) { status = dp_rx_defrag_save_info_from_ring_desc(soc, ring_desc, rx_desc, txrx_peer, tid); if (status != QDF_STATUS_SUCCESS) { QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, "%s: Unable to store ring desc !", __func__); qdf_spin_unlock_bh(&rx_tid->defrag_tid_lock); goto discard_frag; } } else { dp_rx_add_to_free_desc_list(head, tail, rx_desc); (*rx_bfs)++; /* Return the non-head link desc */ if (dp_rx_link_desc_return(soc, ring_desc, HAL_BM_ACTION_PUT_IN_IDLE_LIST) != QDF_STATUS_SUCCESS) QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, "%s: Failed to return link desc", __func__); } if (pdev->soc->rx.flags.defrag_timeout_check) dp_rx_defrag_waitlist_remove(txrx_peer, tid); /* Yet to receive more fragments for this sequence number */ if (!all_frag_present) { uint32_t now_ms = qdf_system_ticks_to_msecs(qdf_system_ticks()); txrx_peer->rx_tid[tid].defrag_timeout_ms = now_ms + pdev->soc->rx.defrag.timeout_ms; dp_rx_defrag_waitlist_add(txrx_peer, tid); dp_txrx_peer_unref_delete(txrx_ref_handle, DP_MOD_ID_RX_ERR); qdf_spin_unlock_bh(&rx_tid->defrag_tid_lock); return QDF_STATUS_SUCCESS; } QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG, "All fragments received for sequence: %d", rxseq); /* Process the fragments */ status = dp_rx_defrag(txrx_peer, tid, rx_reorder_array_elem->head, rx_reorder_array_elem->tail); if (QDF_IS_STATUS_ERROR(status)) { QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR, "Fragment processing failed"); dp_rx_add_to_free_desc_list(head, tail, txrx_peer->rx_tid[tid].head_frag_desc); (*rx_bfs)++; if (dp_rx_link_desc_return(soc, txrx_peer->rx_tid[tid].dst_ring_desc, HAL_BM_ACTION_PUT_IN_IDLE_LIST) != QDF_STATUS_SUCCESS) QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, "%s: Failed to return link desc", __func__); dp_rx_defrag_cleanup(txrx_peer, tid); qdf_spin_unlock_bh(&rx_tid->defrag_tid_lock); goto end; } /* Re-inject the fragments back to REO for further processing */ status = dp_rx_defrag_reo_reinject(txrx_peer, tid, rx_reorder_array_elem->head); if (QDF_IS_STATUS_SUCCESS(status)) { rx_reorder_array_elem->head = NULL; rx_reorder_array_elem->tail = NULL; QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG, "Fragmented sequence successfully reinjected"); } else { QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR, "Fragmented sequence reinjection failed"); dp_rx_return_head_frag_desc(txrx_peer, tid); } dp_rx_defrag_cleanup(txrx_peer, tid); qdf_spin_unlock_bh(&rx_tid->defrag_tid_lock); dp_txrx_peer_unref_delete(txrx_ref_handle, DP_MOD_ID_RX_ERR); return QDF_STATUS_SUCCESS; discard_frag: dp_rx_nbuf_free(frag); err_free_desc: dp_rx_add_to_free_desc_list(head, tail, rx_desc); if (dp_rx_link_desc_return(soc, ring_desc, HAL_BM_ACTION_PUT_IN_IDLE_LIST) != QDF_STATUS_SUCCESS) QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR, "%s: Failed to return link desc", __func__); (*rx_bfs)++; end: if (txrx_peer) dp_txrx_peer_unref_delete(txrx_ref_handle, DP_MOD_ID_RX_ERR); DP_STATS_INC(soc, rx.rx_frag_err, 1); return QDF_STATUS_E_DEFRAG_ERROR; } uint32_t dp_rx_frag_handle(struct dp_soc *soc, hal_ring_desc_t ring_desc, struct hal_rx_mpdu_desc_info *mpdu_desc_info, struct dp_rx_desc *rx_desc, uint8_t *mac_id, uint32_t quota) { uint32_t rx_bufs_used = 0; qdf_nbuf_t msdu = NULL; uint32_t tid; uint32_t rx_bfs = 0; struct dp_pdev *pdev; QDF_STATUS status = QDF_STATUS_SUCCESS; struct rx_desc_pool *rx_desc_pool; qdf_assert(soc); qdf_assert(mpdu_desc_info); qdf_assert(rx_desc); dp_debug("Number of MSDUs to process, num_msdus: %d", mpdu_desc_info->msdu_count); if (qdf_unlikely(mpdu_desc_info->msdu_count == 0)) { QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR, "Not sufficient MSDUs to process"); return rx_bufs_used; } /* all buffers in MSDU link belong to same pdev */ pdev = dp_get_pdev_for_lmac_id(soc, rx_desc->pool_id); if (!pdev) { dp_nofl_debug("pdev is null for pool_id = %d", rx_desc->pool_id); return rx_bufs_used; } *mac_id = rx_desc->pool_id; msdu = rx_desc->nbuf; rx_desc_pool = &soc->rx_desc_buf[rx_desc->pool_id]; if (rx_desc->unmapped) return rx_bufs_used; dp_ipa_rx_buf_smmu_mapping_lock(soc); dp_rx_nbuf_unmap_pool(soc, rx_desc_pool, rx_desc->nbuf); rx_desc->unmapped = 1; dp_ipa_rx_buf_smmu_mapping_unlock(soc); rx_desc->rx_buf_start = qdf_nbuf_data(msdu); tid = hal_rx_mpdu_start_tid_get(soc->hal_soc, rx_desc->rx_buf_start); /* Process fragment-by-fragment */ status = dp_rx_defrag_store_fragment(soc, ring_desc, &pdev->free_list_head, &pdev->free_list_tail, mpdu_desc_info, tid, rx_desc, &rx_bfs); if (rx_bfs) rx_bufs_used += rx_bfs; if (!QDF_IS_STATUS_SUCCESS(status)) dp_info_rl("Rx Defrag err seq#:0x%x msdu_count:%d flags:%d", mpdu_desc_info->mpdu_seq, mpdu_desc_info->msdu_count, mpdu_desc_info->mpdu_flags); return rx_bufs_used; } #endif /* WLAN_SOFTUMAC_SUPPORT */