/* * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved. * Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved. * * Permission to use, copy, modify, and/or distribute this software for * any purpose with or without fee is hereby granted, provided that the * above copyright notice and this permission notice appear in all * copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR * PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include "dp_htt.h" #include "dp_types.h" #include "dp_internal.h" #include "dp_peer.h" #include "dp_rx_defrag.h" #include "dp_rx.h" #include #include #include #include #ifdef WIFI_MONITOR_SUPPORT #include #endif #ifdef FEATURE_WDS #include "dp_txrx_wds.h" #endif #include #ifdef QCA_PEER_EXT_STATS #include "dp_hist.h" #endif #ifdef BYPASS_OL_OPS #include #endif #ifdef REO_QDESC_HISTORY #define REO_QDESC_HISTORY_SIZE 512 uint64_t reo_qdesc_history_idx; struct reo_qdesc_event reo_qdesc_history[REO_QDESC_HISTORY_SIZE]; #endif #ifdef REO_QDESC_HISTORY static inline void dp_rx_reo_qdesc_history_add(struct reo_desc_list_node *free_desc, enum reo_qdesc_event_type type) { struct reo_qdesc_event *evt; struct dp_rx_tid *rx_tid = &free_desc->rx_tid; uint32_t idx; reo_qdesc_history_idx++; idx = (reo_qdesc_history_idx & (REO_QDESC_HISTORY_SIZE - 1)); evt = &reo_qdesc_history[idx]; qdf_mem_copy(evt->peer_mac, free_desc->peer_mac, QDF_MAC_ADDR_SIZE); evt->qdesc_addr = rx_tid->hw_qdesc_paddr; evt->ts = qdf_get_log_timestamp(); evt->type = type; } #ifdef WLAN_DP_FEATURE_DEFERRED_REO_QDESC_DESTROY static inline void dp_rx_reo_qdesc_deferred_evt_add(struct reo_desc_deferred_freelist_node *desc, enum reo_qdesc_event_type type) { struct reo_qdesc_event *evt; uint32_t idx; reo_qdesc_history_idx++; idx = (reo_qdesc_history_idx & (REO_QDESC_HISTORY_SIZE - 1)); evt = &reo_qdesc_history[idx]; qdf_mem_copy(evt->peer_mac, desc->peer_mac, QDF_MAC_ADDR_SIZE); evt->qdesc_addr = desc->hw_qdesc_paddr; evt->ts = qdf_get_log_timestamp(); evt->type = type; } #define DP_RX_REO_QDESC_DEFERRED_FREE_EVT(desc) \ dp_rx_reo_qdesc_deferred_evt_add((desc), REO_QDESC_FREE) #define DP_RX_REO_QDESC_DEFERRED_GET_MAC(desc, freedesc) \ qdf_mem_copy((desc)->peer_mac, (freedesc)->peer_mac, QDF_MAC_ADDR_SIZE) #endif /* WLAN_DP_FEATURE_DEFERRED_REO_QDESC_DESTROY */ #define DP_RX_REO_QDESC_GET_MAC(freedesc, peer) \ qdf_mem_copy((freedesc)->peer_mac, (peer)->mac_addr.raw, QDF_MAC_ADDR_SIZE) #define DP_RX_REO_QDESC_UPDATE_EVT(free_desc) \ dp_rx_reo_qdesc_history_add((free_desc), REO_QDESC_UPDATE_CB) #define DP_RX_REO_QDESC_FREE_EVT(free_desc) \ dp_rx_reo_qdesc_history_add((free_desc), REO_QDESC_FREE) #else #define DP_RX_REO_QDESC_GET_MAC(freedesc, peer) #define DP_RX_REO_QDESC_UPDATE_EVT(free_desc) #define DP_RX_REO_QDESC_FREE_EVT(free_desc) #define DP_RX_REO_QDESC_DEFERRED_FREE_EVT(desc) #define DP_RX_REO_QDESC_DEFERRED_GET_MAC(desc, freedesc) #endif static inline void dp_set_ssn_valid_flag(struct hal_reo_cmd_params *params, uint8_t valid) { params->u.upd_queue_params.update_svld = 1; params->u.upd_queue_params.svld = valid; dp_peer_debug("Setting SSN valid bit to %d", valid); } #ifdef IPA_OFFLOAD void dp_peer_update_tid_stats_from_reo(struct dp_soc *soc, void *cb_ctxt, union hal_reo_status *reo_status) { struct dp_peer *peer = NULL; struct dp_rx_tid *rx_tid = NULL; unsigned long comb_peer_id_tid; struct hal_reo_queue_status *queue_status = &reo_status->queue_status; uint16_t tid; uint16_t peer_id; if (queue_status->header.status != HAL_REO_CMD_SUCCESS) { dp_err("REO stats failure %d", queue_status->header.status); return; } comb_peer_id_tid = (unsigned long)cb_ctxt; tid = DP_PEER_GET_REO_STATS_TID(comb_peer_id_tid); peer_id = DP_PEER_GET_REO_STATS_PEER_ID(comb_peer_id_tid); peer = dp_peer_get_ref_by_id(soc, peer_id, DP_MOD_ID_GENERIC_STATS); if (!peer) return; rx_tid = &peer->rx_tid[tid]; if (!rx_tid) { dp_peer_unref_delete(peer, DP_MOD_ID_GENERIC_STATS); return; } rx_tid->rx_msdu_cnt.bytes += queue_status->total_cnt; rx_tid->rx_msdu_cnt.num += queue_status->msdu_frms_cnt; dp_peer_unref_delete(peer, DP_MOD_ID_GENERIC_STATS); } qdf_export_symbol(dp_peer_update_tid_stats_from_reo); #endif void dp_rx_tid_stats_cb(struct dp_soc *soc, void *cb_ctxt, union hal_reo_status *reo_status) { struct dp_rx_tid *rx_tid = (struct dp_rx_tid *)cb_ctxt; struct hal_reo_queue_status *queue_status = &reo_status->queue_status; if (queue_status->header.status == HAL_REO_CMD_DRAIN) return; if (queue_status->header.status != HAL_REO_CMD_SUCCESS) { DP_PRINT_STATS("REO stats failure %d for TID %d", queue_status->header.status, rx_tid->tid); return; } DP_PRINT_STATS("REO queue stats (TID: %d):\n" "ssn: %d\n" "curr_idx : %d\n" "pn_31_0 : %08x\n" "pn_63_32 : %08x\n" "pn_95_64 : %08x\n" "pn_127_96 : %08x\n" "last_rx_enq_tstamp : %08x\n" "last_rx_deq_tstamp : %08x\n" "rx_bitmap_31_0 : %08x\n" "rx_bitmap_63_32 : %08x\n" "rx_bitmap_95_64 : %08x\n" "rx_bitmap_127_96 : %08x\n" "rx_bitmap_159_128 : %08x\n" "rx_bitmap_191_160 : %08x\n" "rx_bitmap_223_192 : %08x\n" "rx_bitmap_255_224 : %08x\n", rx_tid->tid, queue_status->ssn, queue_status->curr_idx, queue_status->pn_31_0, queue_status->pn_63_32, queue_status->pn_95_64, queue_status->pn_127_96, queue_status->last_rx_enq_tstamp, queue_status->last_rx_deq_tstamp, queue_status->rx_bitmap_31_0, queue_status->rx_bitmap_63_32, queue_status->rx_bitmap_95_64, queue_status->rx_bitmap_127_96, queue_status->rx_bitmap_159_128, queue_status->rx_bitmap_191_160, queue_status->rx_bitmap_223_192, queue_status->rx_bitmap_255_224); DP_PRINT_STATS( "curr_mpdu_cnt : %d\n" "curr_msdu_cnt : %d\n" "fwd_timeout_cnt : %d\n" "fwd_bar_cnt : %d\n" "dup_cnt : %d\n" "frms_in_order_cnt : %d\n" "bar_rcvd_cnt : %d\n" "mpdu_frms_cnt : %d\n" "msdu_frms_cnt : %d\n" "total_byte_cnt : %d\n" "late_recv_mpdu_cnt : %d\n" "win_jump_2k : %d\n" "hole_cnt : %d\n", queue_status->curr_mpdu_cnt, queue_status->curr_msdu_cnt, queue_status->fwd_timeout_cnt, queue_status->fwd_bar_cnt, queue_status->dup_cnt, queue_status->frms_in_order_cnt, queue_status->bar_rcvd_cnt, queue_status->mpdu_frms_cnt, queue_status->msdu_frms_cnt, queue_status->total_cnt, queue_status->late_recv_mpdu_cnt, queue_status->win_jump_2k, queue_status->hole_cnt); DP_PRINT_STATS("Addba Req : %d\n" "Addba Resp : %d\n" "Addba Resp success : %d\n" "Addba Resp failed : %d\n" "Delba Req received : %d\n" "Delba Tx success : %d\n" "Delba Tx Fail : %d\n" "BA window size : %d\n" "Pn size : %d\n", rx_tid->num_of_addba_req, rx_tid->num_of_addba_resp, rx_tid->num_addba_rsp_success, rx_tid->num_addba_rsp_failed, rx_tid->num_of_delba_req, rx_tid->delba_tx_success_cnt, rx_tid->delba_tx_fail_cnt, rx_tid->ba_win_size, rx_tid->pn_size); } static void dp_rx_tid_update_cb(struct dp_soc *soc, void *cb_ctxt, union hal_reo_status *reo_status) { struct dp_rx_tid *rx_tid = (struct dp_rx_tid *)cb_ctxt; if ((reo_status->rx_queue_status.header.status != HAL_REO_CMD_SUCCESS) && (reo_status->rx_queue_status.header.status != HAL_REO_CMD_DRAIN)) { /* Should not happen normally. Just print error for now */ dp_peer_err("%pK: Rx tid HW desc update failed(%d): tid %d", soc, reo_status->rx_queue_status.header.status, rx_tid->tid); } } bool dp_get_peer_vdev_roaming_in_progress(struct dp_peer *peer) { struct ol_if_ops *ol_ops = NULL; bool is_roaming = false; uint8_t vdev_id = -1; struct cdp_soc_t *soc; if (!peer) { dp_peer_info("Peer is NULL. No roaming possible"); return false; } soc = dp_soc_to_cdp_soc_t(peer->vdev->pdev->soc); ol_ops = peer->vdev->pdev->soc->cdp_soc.ol_ops; if (ol_ops && ol_ops->is_roam_inprogress) { dp_get_vdevid(soc, peer->mac_addr.raw, &vdev_id); is_roaming = ol_ops->is_roam_inprogress(vdev_id); } dp_peer_info("peer: " QDF_MAC_ADDR_FMT ", vdev_id: %d, is_roaming: %d", QDF_MAC_ADDR_REF(peer->mac_addr.raw), vdev_id, is_roaming); return is_roaming; } #ifdef WLAN_FEATURE_11BE_MLO /** * dp_rx_tid_setup_allow() - check if rx_tid and reo queue desc * setup is necessary * @peer: DP peer handle * * Return: true - allow, false - disallow */ static inline bool dp_rx_tid_setup_allow(struct dp_peer *peer) { if (IS_MLO_DP_LINK_PEER(peer) && !peer->first_link) return false; return true; } /** * dp_rx_tid_update_allow() - check if rx_tid update needed * @peer: DP peer handle * * Return: true - allow, false - disallow */ static inline bool dp_rx_tid_update_allow(struct dp_peer *peer) { /* not as expected for MLO connection link peer */ if (IS_MLO_DP_LINK_PEER(peer)) { QDF_BUG(0); return false; } return true; } #else static inline bool dp_rx_tid_setup_allow(struct dp_peer *peer) { return true; } static inline bool dp_rx_tid_update_allow(struct dp_peer *peer) { return true; } #endif QDF_STATUS dp_rx_tid_update_wifi3(struct dp_peer *peer, int tid, uint32_t ba_window_size, uint32_t start_seq, bool bar_update) { struct dp_rx_tid *rx_tid = &peer->rx_tid[tid]; struct dp_soc *soc = peer->vdev->pdev->soc; struct hal_reo_cmd_params params; if (!dp_rx_tid_update_allow(peer)) { dp_peer_err("skip tid update for peer:" QDF_MAC_ADDR_FMT, QDF_MAC_ADDR_REF(peer->mac_addr.raw)); return QDF_STATUS_E_FAILURE; } qdf_mem_zero(¶ms, sizeof(params)); params.std.need_status = 1; params.std.addr_lo = rx_tid->hw_qdesc_paddr & 0xffffffff; params.std.addr_hi = (uint64_t)(rx_tid->hw_qdesc_paddr) >> 32; params.u.upd_queue_params.update_ba_window_size = 1; params.u.upd_queue_params.ba_window_size = ba_window_size; if (start_seq < IEEE80211_SEQ_MAX) { params.u.upd_queue_params.update_ssn = 1; params.u.upd_queue_params.ssn = start_seq; } else { dp_set_ssn_valid_flag(¶ms, 0); } if (dp_reo_send_cmd(soc, CMD_UPDATE_RX_REO_QUEUE, ¶ms, dp_rx_tid_update_cb, rx_tid)) { dp_err_log("failed to send reo cmd CMD_UPDATE_RX_REO_QUEUE"); DP_STATS_INC(soc, rx.err.reo_cmd_send_fail, 1); } rx_tid->ba_win_size = ba_window_size; if (dp_get_peer_vdev_roaming_in_progress(peer)) return QDF_STATUS_E_PERM; if (!bar_update) dp_peer_rx_reorder_queue_setup(soc, peer, BIT(tid), ba_window_size); return QDF_STATUS_SUCCESS; } #ifdef WLAN_DP_FEATURE_DEFERRED_REO_QDESC_DESTROY /** * dp_reo_desc_defer_free_enqueue() - enqueue REO QDESC to be freed into * the deferred list * @soc: Datapath soc handle * @freedesc: REO DESC reference that needs to be freed * * Return: true if enqueued, else false */ static bool dp_reo_desc_defer_free_enqueue(struct dp_soc *soc, struct reo_desc_list_node *freedesc) { struct reo_desc_deferred_freelist_node *desc; if (!qdf_atomic_read(&soc->cmn_init_done)) return false; desc = qdf_mem_malloc(sizeof(*desc)); if (!desc) return false; desc->hw_qdesc_paddr = freedesc->rx_tid.hw_qdesc_paddr; desc->hw_qdesc_alloc_size = freedesc->rx_tid.hw_qdesc_alloc_size; desc->hw_qdesc_vaddr_unaligned = freedesc->rx_tid.hw_qdesc_vaddr_unaligned; desc->free_ts = qdf_get_system_timestamp(); DP_RX_REO_QDESC_DEFERRED_GET_MAC(desc, freedesc); qdf_spin_lock_bh(&soc->reo_desc_deferred_freelist_lock); if (!soc->reo_desc_deferred_freelist_init) { qdf_mem_free(desc); qdf_spin_unlock_bh(&soc->reo_desc_deferred_freelist_lock); return false; } qdf_list_insert_back(&soc->reo_desc_deferred_freelist, (qdf_list_node_t *)desc); qdf_spin_unlock_bh(&soc->reo_desc_deferred_freelist_lock); return true; } /** * dp_reo_desc_defer_free() - free the REO QDESC in the deferred list * based on time threshold * @soc: Datapath soc handle * * Return: true if enqueued, else false */ static void dp_reo_desc_defer_free(struct dp_soc *soc) { struct reo_desc_deferred_freelist_node *desc; unsigned long curr_ts = qdf_get_system_timestamp(); qdf_spin_lock_bh(&soc->reo_desc_deferred_freelist_lock); while ((qdf_list_peek_front(&soc->reo_desc_deferred_freelist, (qdf_list_node_t **)&desc) == QDF_STATUS_SUCCESS) && (curr_ts > (desc->free_ts + REO_DESC_DEFERRED_FREE_MS))) { qdf_list_remove_front(&soc->reo_desc_deferred_freelist, (qdf_list_node_t **)&desc); DP_RX_REO_QDESC_DEFERRED_FREE_EVT(desc); qdf_mem_unmap_nbytes_single(soc->osdev, desc->hw_qdesc_paddr, QDF_DMA_BIDIRECTIONAL, desc->hw_qdesc_alloc_size); qdf_mem_free(desc->hw_qdesc_vaddr_unaligned); qdf_mem_free(desc); curr_ts = qdf_get_system_timestamp(); } qdf_spin_unlock_bh(&soc->reo_desc_deferred_freelist_lock); } #else static inline bool dp_reo_desc_defer_free_enqueue(struct dp_soc *soc, struct reo_desc_list_node *freedesc) { return false; } static void dp_reo_desc_defer_free(struct dp_soc *soc) { } #endif /* !WLAN_DP_FEATURE_DEFERRED_REO_QDESC_DESTROY */ void check_free_list_for_invalid_flush(struct dp_soc *soc) { uint32_t i; uint32_t *addr_deref_val; unsigned long curr_ts = qdf_get_system_timestamp(); uint32_t max_list_size; max_list_size = soc->wlan_cfg_ctx->qref_control_size; if (max_list_size == 0) return; for (i = 0; i < soc->free_addr_list_idx; i++) { addr_deref_val = (uint32_t *) soc->list_qdesc_addr_free[i].hw_qdesc_vaddr_unalign; if (*addr_deref_val == 0xDDBEEF84 || *addr_deref_val == 0xADBEEF84 || *addr_deref_val == 0xBDBEEF84 || *addr_deref_val == 0xCDBEEF84) { if (soc->list_qdesc_addr_free[i].ts_hw_flush_back == 0) soc->list_qdesc_addr_free[i].ts_hw_flush_back = curr_ts; } } } /** * dp_reo_desc_free() - Callback free reo descriptor memory after * HW cache flush * * @soc: DP SOC handle * @cb_ctxt: Callback context * @reo_status: REO command status */ static void dp_reo_desc_free(struct dp_soc *soc, void *cb_ctxt, union hal_reo_status *reo_status) { struct reo_desc_list_node *freedesc = (struct reo_desc_list_node *)cb_ctxt; struct dp_rx_tid *rx_tid = &freedesc->rx_tid; unsigned long curr_ts = qdf_get_system_timestamp(); if ((reo_status->fl_cache_status.header.status != HAL_REO_CMD_SUCCESS) && (reo_status->fl_cache_status.header.status != HAL_REO_CMD_DRAIN)) { dp_peer_err("%pK: Rx tid HW desc flush failed(%d): tid %d", soc, reo_status->rx_queue_status.header.status, freedesc->rx_tid.tid); } dp_peer_info("%pK: %lu hw_qdesc_paddr: %pK, tid:%d", soc, curr_ts, (void *)(rx_tid->hw_qdesc_paddr), rx_tid->tid); /* REO desc is enqueued to be freed at a later point * in time, just free the freedesc alone and return */ if (dp_reo_desc_defer_free_enqueue(soc, freedesc)) goto out; DP_RX_REO_QDESC_FREE_EVT(freedesc); add_entry_free_list(soc, rx_tid); hal_reo_shared_qaddr_cache_clear(soc->hal_soc); qdf_mem_unmap_nbytes_single(soc->osdev, rx_tid->hw_qdesc_paddr, QDF_DMA_BIDIRECTIONAL, rx_tid->hw_qdesc_alloc_size); check_free_list_for_invalid_flush(soc); *(uint32_t *)rx_tid->hw_qdesc_vaddr_unaligned = 0; qdf_mem_free(rx_tid->hw_qdesc_vaddr_unaligned); out: qdf_mem_free(freedesc); } #if defined(CONFIG_WIFI_EMULATION_WIFI_3_0) && defined(BUILD_X86) /* Hawkeye emulation requires bus address to be >= 0x50000000 */ static inline int dp_reo_desc_addr_chk(qdf_dma_addr_t dma_addr) { if (dma_addr < 0x50000000) return QDF_STATUS_E_FAILURE; else return QDF_STATUS_SUCCESS; } #else static inline int dp_reo_desc_addr_chk(qdf_dma_addr_t dma_addr) { return QDF_STATUS_SUCCESS; } #endif static inline void dp_rx_tid_setup_error_process(uint32_t tid_bitmap, struct dp_peer *peer) { struct dp_rx_tid *rx_tid; int tid; struct dp_soc *soc = peer->vdev->pdev->soc; for (tid = 0; tid < DP_MAX_TIDS; tid++) { if (!(BIT(tid) & tid_bitmap)) continue; rx_tid = &peer->rx_tid[tid]; if (!rx_tid->hw_qdesc_vaddr_unaligned) continue; if (dp_reo_desc_addr_chk(rx_tid->hw_qdesc_paddr) == QDF_STATUS_SUCCESS) qdf_mem_unmap_nbytes_single( soc->osdev, rx_tid->hw_qdesc_paddr, QDF_DMA_BIDIRECTIONAL, rx_tid->hw_qdesc_alloc_size); qdf_mem_free(rx_tid->hw_qdesc_vaddr_unaligned); rx_tid->hw_qdesc_vaddr_unaligned = NULL; rx_tid->hw_qdesc_paddr = 0; } } static QDF_STATUS dp_single_rx_tid_setup(struct dp_peer *peer, int tid, uint32_t ba_window_size, uint32_t start_seq) { struct dp_rx_tid *rx_tid = &peer->rx_tid[tid]; struct dp_vdev *vdev = peer->vdev; struct dp_soc *soc = vdev->pdev->soc; uint32_t hw_qdesc_size; uint32_t hw_qdesc_align; int hal_pn_type; void *hw_qdesc_vaddr; uint32_t alloc_tries = 0, ret; QDF_STATUS status = QDF_STATUS_SUCCESS; struct dp_txrx_peer *txrx_peer; rx_tid->delba_tx_status = 0; rx_tid->ppdu_id_2k = 0; rx_tid->num_of_addba_req = 0; rx_tid->num_of_delba_req = 0; rx_tid->num_of_addba_resp = 0; rx_tid->num_addba_rsp_failed = 0; rx_tid->num_addba_rsp_success = 0; rx_tid->delba_tx_success_cnt = 0; rx_tid->delba_tx_fail_cnt = 0; rx_tid->statuscode = 0; /* TODO: Allocating HW queue descriptors based on max BA window size * for all QOS TIDs so that same descriptor can be used later when * ADDBA request is received. This should be changed to allocate HW * queue descriptors based on BA window size being negotiated (0 for * non BA cases), and reallocate when BA window size changes and also * send WMI message to FW to change the REO queue descriptor in Rx * peer entry as part of dp_rx_tid_update. */ hw_qdesc_size = hal_get_reo_qdesc_size(soc->hal_soc, ba_window_size, tid); hw_qdesc_align = hal_get_reo_qdesc_align(soc->hal_soc); /* To avoid unnecessary extra allocation for alignment, try allocating * exact size and see if we already have aligned address. */ rx_tid->hw_qdesc_alloc_size = hw_qdesc_size; try_desc_alloc: rx_tid->hw_qdesc_vaddr_unaligned = qdf_mem_malloc(rx_tid->hw_qdesc_alloc_size); if (!rx_tid->hw_qdesc_vaddr_unaligned) { dp_peer_err("%pK: Rx tid HW desc alloc failed: tid %d", soc, tid); return QDF_STATUS_E_NOMEM; } if ((unsigned long)(rx_tid->hw_qdesc_vaddr_unaligned) % hw_qdesc_align) { /* Address allocated above is not aligned. Allocate extra * memory for alignment */ qdf_mem_free(rx_tid->hw_qdesc_vaddr_unaligned); rx_tid->hw_qdesc_vaddr_unaligned = qdf_mem_malloc(rx_tid->hw_qdesc_alloc_size + hw_qdesc_align - 1); if (!rx_tid->hw_qdesc_vaddr_unaligned) { dp_peer_err("%pK: Rx tid HW desc alloc failed: tid %d", soc, tid); return QDF_STATUS_E_NOMEM; } hw_qdesc_vaddr = (void *)qdf_align((unsigned long) rx_tid->hw_qdesc_vaddr_unaligned, hw_qdesc_align); dp_peer_debug("%pK: Total Size %d Aligned Addr %pK", soc, rx_tid->hw_qdesc_alloc_size, hw_qdesc_vaddr); } else { hw_qdesc_vaddr = rx_tid->hw_qdesc_vaddr_unaligned; } rx_tid->hw_qdesc_vaddr_aligned = hw_qdesc_vaddr; txrx_peer = dp_get_txrx_peer(peer); /* TODO: Ensure that sec_type is set before ADDBA is received. * Currently this is set based on htt indication * HTT_T2H_MSG_TYPE_SEC_IND from target */ switch (txrx_peer->security[dp_sec_ucast].sec_type) { case cdp_sec_type_tkip_nomic: case cdp_sec_type_aes_ccmp: case cdp_sec_type_aes_ccmp_256: case cdp_sec_type_aes_gcmp: case cdp_sec_type_aes_gcmp_256: hal_pn_type = HAL_PN_WPA; break; case cdp_sec_type_wapi: if (vdev->opmode == wlan_op_mode_ap) hal_pn_type = HAL_PN_WAPI_EVEN; else hal_pn_type = HAL_PN_WAPI_UNEVEN; break; default: hal_pn_type = HAL_PN_NONE; break; } hal_reo_qdesc_setup(soc->hal_soc, tid, ba_window_size, start_seq, hw_qdesc_vaddr, rx_tid->hw_qdesc_paddr, hal_pn_type, vdev->vdev_stats_id); ret = qdf_mem_map_nbytes_single(soc->osdev, hw_qdesc_vaddr, QDF_DMA_BIDIRECTIONAL, rx_tid->hw_qdesc_alloc_size, &rx_tid->hw_qdesc_paddr); if (!ret) add_entry_alloc_list(soc, rx_tid, peer, hw_qdesc_vaddr); if (dp_reo_desc_addr_chk(rx_tid->hw_qdesc_paddr) != QDF_STATUS_SUCCESS || ret) { if (alloc_tries++ < 10) { qdf_mem_free(rx_tid->hw_qdesc_vaddr_unaligned); rx_tid->hw_qdesc_vaddr_unaligned = NULL; goto try_desc_alloc; } else { dp_peer_err("%pK: Rx tid %d desc alloc fail (lowmem)", soc, tid); status = QDF_STATUS_E_NOMEM; goto error; } } return QDF_STATUS_SUCCESS; error: dp_rx_tid_setup_error_process(1 << tid, peer); return status; } QDF_STATUS dp_rx_tid_setup_wifi3(struct dp_peer *peer, uint32_t tid_bitmap, uint32_t ba_window_size, uint32_t start_seq) { QDF_STATUS status; int tid; struct dp_rx_tid *rx_tid; struct dp_vdev *vdev = peer->vdev; struct dp_soc *soc = vdev->pdev->soc; uint8_t setup_fail_cnt = 0; if (!qdf_atomic_read(&peer->is_default_route_set)) return QDF_STATUS_E_FAILURE; if (!dp_rx_tid_setup_allow(peer)) { dp_peer_info("skip rx tid setup for peer" QDF_MAC_ADDR_FMT, QDF_MAC_ADDR_REF(peer->mac_addr.raw)); goto send_wmi_reo_cmd; } dp_peer_info("tid_bitmap 0x%x, ba_window_size %d, start_seq %d", tid_bitmap, ba_window_size, start_seq); for (tid = 0; tid < DP_MAX_TIDS; tid++) { if (!(BIT(tid) & tid_bitmap)) continue; rx_tid = &peer->rx_tid[tid]; rx_tid->ba_win_size = ba_window_size; if (rx_tid->hw_qdesc_vaddr_unaligned) { status = dp_rx_tid_update_wifi3(peer, tid, ba_window_size, start_seq, false); if (QDF_IS_STATUS_ERROR(status)) { /* Not continue to update other tid(s) and * return even if they have not been set up. */ dp_peer_err("Update tid %d fail", tid); return status; } dp_peer_info("Update tid %d", tid); tid_bitmap &= ~BIT(tid); continue; } status = dp_single_rx_tid_setup(peer, tid, ba_window_size, start_seq); if (QDF_IS_STATUS_ERROR(status)) { dp_peer_err("Set up tid %d fail, status=%d", tid, status); tid_bitmap &= ~BIT(tid); setup_fail_cnt++; continue; } } /* tid_bitmap == 0 means there is no tid(s) for further setup */ if (!tid_bitmap) { dp_peer_info("tid_bitmap=0, no tid setup, setup_fail_cnt %d", setup_fail_cnt); /* If setup_fail_cnt==0, all tid(s) has been * successfully updated, so we return success. */ if (!setup_fail_cnt) return QDF_STATUS_SUCCESS; else return QDF_STATUS_E_FAILURE; } send_wmi_reo_cmd: if (dp_get_peer_vdev_roaming_in_progress(peer)) { status = QDF_STATUS_E_PERM; goto error; } dp_peer_info("peer %pK, tids 0x%x, multi_reo %d, s_seq %d, w_size %d", peer, tid_bitmap, soc->features.multi_rx_reorder_q_setup_support, start_seq, ba_window_size); status = dp_peer_rx_reorder_queue_setup(soc, peer, tid_bitmap, ba_window_size); if (QDF_IS_STATUS_SUCCESS(status)) return status; error: dp_rx_tid_setup_error_process(tid_bitmap, peer); return status; } #ifdef DP_UMAC_HW_RESET_SUPPORT static void dp_peer_rst_tids(struct dp_soc *soc, struct dp_peer *peer, void *arg) { int tid; for (tid = 0; tid < (DP_MAX_TIDS - 1); tid++) { struct dp_rx_tid *rx_tid = &peer->rx_tid[tid]; void *vaddr = rx_tid->hw_qdesc_vaddr_aligned; if (vaddr) dp_reset_rx_reo_tid_queue(soc, vaddr, rx_tid->hw_qdesc_alloc_size); } } void dp_reset_tid_q_setup(struct dp_soc *soc) { dp_soc_iterate_peer(soc, dp_peer_rst_tids, NULL, DP_MOD_ID_UMAC_RESET); } #endif #ifdef REO_DESC_DEFER_FREE /** * dp_reo_desc_clean_up() - If cmd to flush base desc fails add * desc back to freelist and defer the deletion * * @soc: DP SOC handle * @desc: Base descriptor to be freed * @reo_status: REO command status */ static void dp_reo_desc_clean_up(struct dp_soc *soc, struct reo_desc_list_node *desc, union hal_reo_status *reo_status) { desc->free_ts = qdf_get_system_timestamp(); DP_STATS_INC(soc, rx.err.reo_cmd_send_fail, 1); qdf_list_insert_back(&soc->reo_desc_freelist, (qdf_list_node_t *)desc); } /** * dp_reo_limit_clean_batch_sz() - Limit number REO CMD queued to cmd * ring in avoid of REO hang * * @list_size: REO desc list size to be cleaned */ static inline void dp_reo_limit_clean_batch_sz(uint32_t *list_size) { unsigned long curr_ts = qdf_get_system_timestamp(); if ((*list_size) > REO_DESC_FREELIST_SIZE) { dp_err_log("%lu:freedesc number %d in freelist", curr_ts, *list_size); /* limit the batch queue size */ *list_size = REO_DESC_FREELIST_SIZE; } } #else /** * dp_reo_desc_clean_up() - If send cmd to REO inorder to flush * cache fails free the base REO desc anyway * * @soc: DP SOC handle * @desc: Base descriptor to be freed * @reo_status: REO command status */ static void dp_reo_desc_clean_up(struct dp_soc *soc, struct reo_desc_list_node *desc, union hal_reo_status *reo_status) { if (reo_status) { qdf_mem_zero(reo_status, sizeof(*reo_status)); reo_status->fl_cache_status.header.status = 0; dp_reo_desc_free(soc, (void *)desc, reo_status); } } /** * dp_reo_limit_clean_batch_sz() - Limit number REO CMD queued to cmd * ring in avoid of REO hang * * @list_size: REO desc list size to be cleaned */ static inline void dp_reo_limit_clean_batch_sz(uint32_t *list_size) { } #endif /** * dp_resend_update_reo_cmd() - Resend the UPDATE_REO_QUEUE * cmd and re-insert desc into free list if send fails. * * @soc: DP SOC handle * @desc: desc with resend update cmd flag set * @rx_tid: Desc RX tid associated with update cmd for resetting * valid field to 0 in h/w * * Return: QDF status */ static QDF_STATUS dp_resend_update_reo_cmd(struct dp_soc *soc, struct reo_desc_list_node *desc, struct dp_rx_tid *rx_tid) { struct hal_reo_cmd_params params; qdf_mem_zero(¶ms, sizeof(params)); params.std.need_status = 1; params.std.addr_lo = rx_tid->hw_qdesc_paddr & 0xffffffff; params.std.addr_hi = (uint64_t)(rx_tid->hw_qdesc_paddr) >> 32; params.u.upd_queue_params.update_vld = 1; params.u.upd_queue_params.vld = 0; desc->resend_update_reo_cmd = false; /* * If the cmd send fails then set resend_update_reo_cmd flag * and insert the desc at the end of the free list to retry. */ if (dp_reo_send_cmd(soc, CMD_UPDATE_RX_REO_QUEUE, ¶ms, dp_rx_tid_delete_cb, (void *)desc) != QDF_STATUS_SUCCESS) { desc->resend_update_reo_cmd = true; desc->free_ts = qdf_get_system_timestamp(); qdf_list_insert_back(&soc->reo_desc_freelist, (qdf_list_node_t *)desc); dp_err_log("failed to send reo cmd CMD_UPDATE_RX_REO_QUEUE"); DP_STATS_INC(soc, rx.err.reo_cmd_send_fail, 1); return QDF_STATUS_E_FAILURE; } return QDF_STATUS_SUCCESS; } void dp_rx_tid_delete_cb(struct dp_soc *soc, void *cb_ctxt, union hal_reo_status *reo_status) { struct reo_desc_list_node *freedesc = (struct reo_desc_list_node *)cb_ctxt; uint32_t list_size; struct reo_desc_list_node *desc = NULL; unsigned long curr_ts = qdf_get_system_timestamp(); uint32_t desc_size, tot_desc_size; struct hal_reo_cmd_params params; bool flush_failure = false; DP_RX_REO_QDESC_UPDATE_EVT(freedesc); if (reo_status->rx_queue_status.header.status == HAL_REO_CMD_DRAIN) { qdf_mem_zero(reo_status, sizeof(*reo_status)); reo_status->fl_cache_status.header.status = HAL_REO_CMD_DRAIN; dp_reo_desc_free(soc, (void *)freedesc, reo_status); DP_STATS_INC(soc, rx.err.reo_cmd_send_drain, 1); return; } else if (reo_status->rx_queue_status.header.status != HAL_REO_CMD_SUCCESS) { /* Should not happen normally. Just print error for now */ dp_info_rl("Rx tid HW desc deletion failed(%d): tid %d", reo_status->rx_queue_status.header.status, freedesc->rx_tid.tid); } dp_peer_info("%pK: rx_tid: %d status: %d", soc, freedesc->rx_tid.tid, reo_status->rx_queue_status.header.status); qdf_spin_lock_bh(&soc->reo_desc_freelist_lock); freedesc->free_ts = curr_ts; qdf_list_insert_back_size(&soc->reo_desc_freelist, (qdf_list_node_t *)freedesc, &list_size); /* MCL path add the desc back to reo_desc_freelist when REO FLUSH * failed. it may cause the number of REO queue pending in free * list is even larger than REO_CMD_RING max size and lead REO CMD * flood then cause REO HW in an unexpected condition. So it's * needed to limit the number REO cmds in a batch operation. */ dp_reo_limit_clean_batch_sz(&list_size); while ((qdf_list_peek_front(&soc->reo_desc_freelist, (qdf_list_node_t **)&desc) == QDF_STATUS_SUCCESS) && ((list_size >= REO_DESC_FREELIST_SIZE) || (curr_ts > (desc->free_ts + REO_DESC_FREE_DEFER_MS)) || (desc->resend_update_reo_cmd && list_size))) { struct dp_rx_tid *rx_tid; qdf_list_remove_front(&soc->reo_desc_freelist, (qdf_list_node_t **)&desc); list_size--; rx_tid = &desc->rx_tid; /* First process descs with resend_update_reo_cmd set */ if (desc->resend_update_reo_cmd) { if (dp_resend_update_reo_cmd(soc, desc, rx_tid) != QDF_STATUS_SUCCESS) break; else continue; } /* Flush and invalidate REO descriptor from HW cache: Base and * extension descriptors should be flushed separately */ if (desc->pending_ext_desc_size) tot_desc_size = desc->pending_ext_desc_size; else tot_desc_size = rx_tid->hw_qdesc_alloc_size; /* Get base descriptor size by passing non-qos TID */ desc_size = hal_get_reo_qdesc_size(soc->hal_soc, 0, DP_NON_QOS_TID); /* Flush reo extension descriptors */ while ((tot_desc_size -= desc_size) > 0) { qdf_mem_zero(¶ms, sizeof(params)); params.std.addr_lo = ((uint64_t)(rx_tid->hw_qdesc_paddr) + tot_desc_size) & 0xffffffff; params.std.addr_hi = (uint64_t)(rx_tid->hw_qdesc_paddr) >> 32; if (QDF_STATUS_SUCCESS != dp_reo_send_cmd(soc, CMD_FLUSH_CACHE, ¶ms, NULL, NULL)) { dp_info_rl("fail to send CMD_CACHE_FLUSH:" "tid %d desc %pK", rx_tid->tid, (void *)(rx_tid->hw_qdesc_paddr)); desc->pending_ext_desc_size = tot_desc_size + desc_size; dp_reo_desc_clean_up(soc, desc, reo_status); flush_failure = true; break; } } if (flush_failure) break; desc->pending_ext_desc_size = desc_size; /* Flush base descriptor */ qdf_mem_zero(¶ms, sizeof(params)); params.std.need_status = 1; params.std.addr_lo = (uint64_t)(rx_tid->hw_qdesc_paddr) & 0xffffffff; params.std.addr_hi = (uint64_t)(rx_tid->hw_qdesc_paddr) >> 32; if (rx_tid->ba_win_size > 256) params.u.fl_cache_params.flush_q_1k_desc = 1; params.u.fl_cache_params.fwd_mpdus_in_queue = 1; if (QDF_STATUS_SUCCESS != dp_reo_send_cmd(soc, CMD_FLUSH_CACHE, ¶ms, dp_reo_desc_free, (void *)desc)) { union hal_reo_status reo_status; /* * If dp_reo_send_cmd return failure, related TID queue desc * should be unmapped. Also locally reo_desc, together with * TID queue desc also need to be freed accordingly. * * Here invoke desc_free function directly to do clean up. * * In case of MCL path add the desc back to the free * desc list and defer deletion. */ dp_info_rl("fail to send REO cmd to flush cache: tid %d", rx_tid->tid); dp_reo_desc_clean_up(soc, desc, &reo_status); DP_STATS_INC(soc, rx.err.reo_cmd_send_fail, 1); break; } } qdf_spin_unlock_bh(&soc->reo_desc_freelist_lock); dp_reo_desc_defer_free(soc); } /** * dp_rx_tid_delete_wifi3() - Delete receive TID queue * @peer: Datapath peer handle * @tid: TID * * Return: 0 on success, error code on failure */ static int dp_rx_tid_delete_wifi3(struct dp_peer *peer, int tid) { struct dp_rx_tid *rx_tid = &peer->rx_tid[tid]; struct dp_soc *soc = peer->vdev->pdev->soc; union hal_reo_status reo_status; struct hal_reo_cmd_params params; struct reo_desc_list_node *freedesc = qdf_mem_malloc(sizeof(*freedesc)); if (!freedesc) { dp_peer_err("%pK: malloc failed for freedesc: tid %d", soc, tid); qdf_assert(0); return -ENOMEM; } freedesc->rx_tid = *rx_tid; freedesc->resend_update_reo_cmd = false; qdf_mem_zero(¶ms, sizeof(params)); DP_RX_REO_QDESC_GET_MAC(freedesc, peer); reo_status.rx_queue_status.header.status = HAL_REO_CMD_SUCCESS; dp_rx_tid_delete_cb(soc, freedesc, &reo_status); rx_tid->hw_qdesc_vaddr_unaligned = NULL; rx_tid->hw_qdesc_alloc_size = 0; rx_tid->hw_qdesc_paddr = 0; return 0; } #ifdef DP_LFR static void dp_peer_setup_remaining_tids(struct dp_peer *peer) { int tid; uint32_t tid_bitmap = 0; for (tid = 1; tid < DP_MAX_TIDS-1; tid++) tid_bitmap |= BIT(tid); dp_peer_info("Sett up tid_bitmap 0x%x for peer %pK peer->local_id %d", tid_bitmap, peer, peer->local_id); dp_rx_tid_setup_wifi3(peer, tid_bitmap, 1, 0); } #else static void dp_peer_setup_remaining_tids(struct dp_peer *peer) {}; #endif #ifdef WLAN_FEATURE_11BE_MLO /** * dp_peer_rx_tids_init() - initialize each tids in peer * @peer: peer pointer * * Return: None */ static void dp_peer_rx_tids_init(struct dp_peer *peer) { int tid; struct dp_rx_tid *rx_tid; struct dp_rx_tid_defrag *rx_tid_defrag; if (!IS_MLO_DP_LINK_PEER(peer)) { for (tid = 0; tid < DP_MAX_TIDS; tid++) { rx_tid_defrag = &peer->txrx_peer->rx_tid[tid]; rx_tid_defrag->array = &rx_tid_defrag->base; rx_tid_defrag->defrag_timeout_ms = 0; rx_tid_defrag->defrag_waitlist_elem.tqe_next = NULL; rx_tid_defrag->defrag_waitlist_elem.tqe_prev = NULL; rx_tid_defrag->base.head = NULL; rx_tid_defrag->base.tail = NULL; rx_tid_defrag->tid = tid; rx_tid_defrag->defrag_peer = peer->txrx_peer; } } /* if not first assoc link peer, * not to initialize rx_tids again. */ if (IS_MLO_DP_LINK_PEER(peer) && !peer->first_link) return; for (tid = 0; tid < DP_MAX_TIDS; tid++) { rx_tid = &peer->rx_tid[tid]; rx_tid->tid = tid; rx_tid->ba_win_size = 0; rx_tid->ba_status = DP_RX_BA_INACTIVE; } } #else static void dp_peer_rx_tids_init(struct dp_peer *peer) { int tid; struct dp_rx_tid *rx_tid; struct dp_rx_tid_defrag *rx_tid_defrag; for (tid = 0; tid < DP_MAX_TIDS; tid++) { rx_tid = &peer->rx_tid[tid]; rx_tid_defrag = &peer->txrx_peer->rx_tid[tid]; rx_tid->tid = tid; rx_tid->ba_win_size = 0; rx_tid->ba_status = DP_RX_BA_INACTIVE; rx_tid_defrag->base.head = NULL; rx_tid_defrag->base.tail = NULL; rx_tid_defrag->tid = tid; rx_tid_defrag->array = &rx_tid_defrag->base; rx_tid_defrag->defrag_timeout_ms = 0; rx_tid_defrag->defrag_waitlist_elem.tqe_next = NULL; rx_tid_defrag->defrag_waitlist_elem.tqe_prev = NULL; rx_tid_defrag->defrag_peer = peer->txrx_peer; } } #endif void dp_peer_rx_tid_setup(struct dp_peer *peer) { struct dp_soc *soc = peer->vdev->pdev->soc; struct dp_txrx_peer *txrx_peer = dp_get_txrx_peer(peer); struct dp_vdev *vdev = peer->vdev; dp_peer_rx_tids_init(peer); /* Setup default (non-qos) rx tid queue */ dp_rx_tid_setup_wifi3(peer, BIT(DP_NON_QOS_TID), 1, 0); /* Setup rx tid queue for TID 0. * Other queues will be setup on receiving first packet, which will cause * NULL REO queue error. For Mesh peer, if on one of the mesh AP the * mesh peer is not deleted, the new addition of mesh peer on other mesh AP * doesn't do BA negotiation leading to mismatch in BA windows. * To avoid this send max BA window during init. */ if (qdf_unlikely(vdev->mesh_vdev) || qdf_unlikely(txrx_peer->nawds_enabled)) dp_rx_tid_setup_wifi3( peer, BIT(0), hal_get_rx_max_ba_window(soc->hal_soc, 0), 0); else dp_rx_tid_setup_wifi3(peer, BIT(0), 1, 0); /* * Setup the rest of TID's to handle LFR */ dp_peer_setup_remaining_tids(peer); } void dp_peer_rx_cleanup(struct dp_vdev *vdev, struct dp_peer *peer) { int tid; uint32_t tid_delete_mask = 0; if (!peer->txrx_peer) return; dp_info("Remove tids for peer: %pK", peer); for (tid = 0; tid < DP_MAX_TIDS; tid++) { struct dp_rx_tid *rx_tid = &peer->rx_tid[tid]; struct dp_rx_tid_defrag *defrag_rx_tid = &peer->txrx_peer->rx_tid[tid]; qdf_spin_lock_bh(&defrag_rx_tid->defrag_tid_lock); if (!peer->bss_peer || peer->vdev->opmode == wlan_op_mode_sta) { /* Cleanup defrag related resource */ dp_rx_defrag_waitlist_remove(peer->txrx_peer, tid); dp_rx_reorder_flush_frag(peer->txrx_peer, tid); } qdf_spin_unlock_bh(&defrag_rx_tid->defrag_tid_lock); qdf_spin_lock_bh(&rx_tid->tid_lock); if (peer->rx_tid[tid].hw_qdesc_vaddr_unaligned) { dp_rx_tid_delete_wifi3(peer, tid); tid_delete_mask |= (1 << tid); } qdf_spin_unlock_bh(&rx_tid->tid_lock); } #ifdef notyet /* See if FW can remove queues as part of peer cleanup */ if (soc->ol_ops->peer_rx_reorder_queue_remove) { soc->ol_ops->peer_rx_reorder_queue_remove(soc->ctrl_psoc, peer->vdev->pdev->pdev_id, peer->vdev->vdev_id, peer->mac_addr.raw, tid_delete_mask); } #endif } /** * dp_teardown_256_ba_sessions() - Teardown sessions using 256 * window size when a request with * 64 window size is received. * This is done as a WAR since HW can * have only one setting per peer (64 or 256). * For HKv2, we use per tid buffersize setting * for 0 to per_tid_basize_max_tid. For tid * more than per_tid_basize_max_tid we use HKv1 * method. * @peer: Datapath peer * * Return: void */ static void dp_teardown_256_ba_sessions(struct dp_peer *peer) { uint8_t delba_rcode = 0; int tid; struct dp_rx_tid *rx_tid = NULL; tid = peer->vdev->pdev->soc->per_tid_basize_max_tid; for (; tid < DP_MAX_TIDS; tid++) { rx_tid = &peer->rx_tid[tid]; qdf_spin_lock_bh(&rx_tid->tid_lock); if (rx_tid->ba_win_size <= 64) { qdf_spin_unlock_bh(&rx_tid->tid_lock); continue; } else { if (rx_tid->ba_status == DP_RX_BA_ACTIVE || rx_tid->ba_status == DP_RX_BA_IN_PROGRESS) { /* send delba */ if (!rx_tid->delba_tx_status) { rx_tid->delba_tx_retry++; rx_tid->delba_tx_status = 1; rx_tid->delba_rcode = IEEE80211_REASON_QOS_SETUP_REQUIRED; delba_rcode = rx_tid->delba_rcode; qdf_spin_unlock_bh(&rx_tid->tid_lock); if (peer->vdev->pdev->soc->cdp_soc.ol_ops->send_delba) peer->vdev->pdev->soc->cdp_soc.ol_ops->send_delba( peer->vdev->pdev->soc->ctrl_psoc, peer->vdev->vdev_id, peer->mac_addr.raw, tid, delba_rcode, CDP_DELBA_REASON_NONE); } else { qdf_spin_unlock_bh(&rx_tid->tid_lock); } } else { qdf_spin_unlock_bh(&rx_tid->tid_lock); } } } } int dp_addba_resp_tx_completion_wifi3(struct cdp_soc_t *cdp_soc, uint8_t *peer_mac, uint16_t vdev_id, uint8_t tid, int status) { struct dp_peer *peer = dp_peer_get_tgt_peer_hash_find( (struct dp_soc *)cdp_soc, peer_mac, 0, vdev_id, DP_MOD_ID_CDP); struct dp_rx_tid *rx_tid = NULL; if (!peer) { dp_peer_debug("%pK: Peer is NULL!", cdp_soc); goto fail; } rx_tid = &peer->rx_tid[tid]; qdf_spin_lock_bh(&rx_tid->tid_lock); if (status) { rx_tid->num_addba_rsp_failed++; if (rx_tid->hw_qdesc_vaddr_unaligned) dp_rx_tid_update_wifi3(peer, tid, 1, IEEE80211_SEQ_MAX, false); rx_tid->ba_status = DP_RX_BA_INACTIVE; qdf_spin_unlock_bh(&rx_tid->tid_lock); dp_err("RxTid- %d addba rsp tx completion failed", tid); goto success; } rx_tid->num_addba_rsp_success++; if (rx_tid->ba_status == DP_RX_BA_INACTIVE) { qdf_spin_unlock_bh(&rx_tid->tid_lock); dp_peer_err("%pK: Rx Tid- %d hw qdesc is not in IN_PROGRESS", cdp_soc, tid); goto fail; } if (!qdf_atomic_read(&peer->is_default_route_set)) { qdf_spin_unlock_bh(&rx_tid->tid_lock); dp_peer_debug("%pK: default route is not set for peer: " QDF_MAC_ADDR_FMT, cdp_soc, QDF_MAC_ADDR_REF(peer->mac_addr.raw)); goto fail; } if (dp_rx_tid_update_wifi3(peer, tid, rx_tid->ba_win_size, rx_tid->startseqnum, false)) { dp_err("Failed update REO SSN"); } dp_info("tid %u window_size %u start_seq_num %u", tid, rx_tid->ba_win_size, rx_tid->startseqnum); /* First Session */ if (peer->active_ba_session_cnt == 0) { if (rx_tid->ba_win_size > 64 && rx_tid->ba_win_size <= 256) peer->hw_buffer_size = 256; else if (rx_tid->ba_win_size <= 1024 && rx_tid->ba_win_size > 256) peer->hw_buffer_size = 1024; else peer->hw_buffer_size = 64; } rx_tid->ba_status = DP_RX_BA_ACTIVE; peer->active_ba_session_cnt++; qdf_spin_unlock_bh(&rx_tid->tid_lock); /* Kill any session having 256 buffer size * when 64 buffer size request is received. * Also, latch on to 64 as new buffer size. */ if (peer->kill_256_sessions) { dp_teardown_256_ba_sessions(peer); peer->kill_256_sessions = 0; } success: dp_peer_unref_delete(peer, DP_MOD_ID_CDP); return QDF_STATUS_SUCCESS; fail: if (peer) dp_peer_unref_delete(peer, DP_MOD_ID_CDP); return QDF_STATUS_E_FAILURE; } QDF_STATUS dp_addba_responsesetup_wifi3(struct cdp_soc_t *cdp_soc, uint8_t *peer_mac, uint16_t vdev_id, uint8_t tid, uint8_t *dialogtoken, uint16_t *statuscode, uint16_t *buffersize, uint16_t *batimeout) { struct dp_rx_tid *rx_tid = NULL; QDF_STATUS status = QDF_STATUS_SUCCESS; struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)cdp_soc, peer_mac, 0, vdev_id, DP_MOD_ID_CDP); if (!peer) { dp_peer_debug("%pK: Peer is NULL!", cdp_soc); return QDF_STATUS_E_FAILURE; } rx_tid = &peer->rx_tid[tid]; qdf_spin_lock_bh(&rx_tid->tid_lock); rx_tid->num_of_addba_resp++; /* setup ADDBA response parameters */ *dialogtoken = rx_tid->dialogtoken; *statuscode = rx_tid->statuscode; *buffersize = rx_tid->ba_win_size; *batimeout = 0; qdf_spin_unlock_bh(&rx_tid->tid_lock); dp_peer_unref_delete(peer, DP_MOD_ID_CDP); return status; } /** * dp_check_ba_buffersize() - Check buffer size in request * and latch onto this size based on * size used in first active session. * @peer: Datapath peer * @tid: Tid * @buffersize: Block ack window size * * Return: void */ static void dp_check_ba_buffersize(struct dp_peer *peer, uint16_t tid, uint16_t buffersize) { struct dp_rx_tid *rx_tid = NULL; struct dp_soc *soc = peer->vdev->pdev->soc; uint16_t max_ba_window; max_ba_window = hal_get_rx_max_ba_window(soc->hal_soc, tid); dp_info("Input buffersize %d, max dp allowed %d", buffersize, max_ba_window); /* Adjust BA window size, restrict it to max DP allowed */ buffersize = QDF_MIN(buffersize, max_ba_window); dp_info(QDF_MAC_ADDR_FMT" per_tid_basize_max_tid %d tid %d buffersize %d hw_buffer_size %d", QDF_MAC_ADDR_REF(peer->mac_addr.raw), soc->per_tid_basize_max_tid, tid, buffersize, peer->hw_buffer_size); rx_tid = &peer->rx_tid[tid]; if (soc->per_tid_basize_max_tid && tid < soc->per_tid_basize_max_tid) { rx_tid->ba_win_size = buffersize; goto out; } else { if (peer->active_ba_session_cnt == 0) { rx_tid->ba_win_size = buffersize; } else { if (peer->hw_buffer_size == 64) { if (buffersize <= 64) rx_tid->ba_win_size = buffersize; else rx_tid->ba_win_size = peer->hw_buffer_size; } else if (peer->hw_buffer_size == 256) { if (buffersize > 64) { rx_tid->ba_win_size = buffersize; } else { rx_tid->ba_win_size = buffersize; peer->hw_buffer_size = 64; peer->kill_256_sessions = 1; } } else if (buffersize <= 1024) { /* * Above checks are only for HK V2 * Set incoming buffer size for others */ rx_tid->ba_win_size = buffersize; } else { dp_err("Invalid buffer size %d", buffersize); qdf_assert_always(0); } } } out: dp_info("rx_tid->ba_win_size %d peer->hw_buffer_size %d peer->kill_256_sessions %d", rx_tid->ba_win_size, peer->hw_buffer_size, peer->kill_256_sessions); } QDF_STATUS dp_rx_tid_update_ba_win_size(struct cdp_soc_t *cdp_soc, uint8_t *peer_mac, uint16_t vdev_id, uint8_t tid, uint16_t buffersize) { struct dp_rx_tid *rx_tid = NULL; struct dp_peer *peer; peer = dp_peer_get_tgt_peer_hash_find((struct dp_soc *)cdp_soc, peer_mac, 0, vdev_id, DP_MOD_ID_CDP); if (!peer) { dp_peer_debug("%pK: Peer is NULL!", cdp_soc); return QDF_STATUS_E_FAILURE; } rx_tid = &peer->rx_tid[tid]; qdf_spin_lock_bh(&rx_tid->tid_lock); rx_tid->ba_win_size = buffersize; qdf_spin_unlock_bh(&rx_tid->tid_lock); dp_info("peer "QDF_MAC_ADDR_FMT", tid %d, update BA win size to %d", QDF_MAC_ADDR_REF(peer->mac_addr.raw), tid, buffersize); dp_peer_unref_delete(peer, DP_MOD_ID_CDP); return QDF_STATUS_SUCCESS; } #define DP_RX_BA_SESSION_DISABLE 1 int dp_addba_requestprocess_wifi3(struct cdp_soc_t *cdp_soc, uint8_t *peer_mac, uint16_t vdev_id, uint8_t dialogtoken, uint16_t tid, uint16_t batimeout, uint16_t buffersize, uint16_t startseqnum) { QDF_STATUS status = QDF_STATUS_SUCCESS; struct dp_rx_tid *rx_tid = NULL; struct dp_peer *peer; peer = dp_peer_get_tgt_peer_hash_find((struct dp_soc *)cdp_soc, peer_mac, 0, vdev_id, DP_MOD_ID_CDP); if (!peer) { dp_peer_debug("%pK: Peer is NULL!", cdp_soc); return QDF_STATUS_E_FAILURE; } rx_tid = &peer->rx_tid[tid]; qdf_spin_lock_bh(&rx_tid->tid_lock); rx_tid->num_of_addba_req++; if ((rx_tid->ba_status == DP_RX_BA_ACTIVE && rx_tid->hw_qdesc_vaddr_unaligned)) { dp_rx_tid_update_wifi3(peer, tid, 1, IEEE80211_SEQ_MAX, false); rx_tid->ba_status = DP_RX_BA_INACTIVE; peer->active_ba_session_cnt--; dp_peer_debug("%pK: Rx Tid- %d hw qdesc is already setup", cdp_soc, tid); } if (rx_tid->ba_status == DP_RX_BA_IN_PROGRESS) { qdf_spin_unlock_bh(&rx_tid->tid_lock); status = QDF_STATUS_E_FAILURE; goto fail; } if (rx_tid->rx_ba_win_size_override == DP_RX_BA_SESSION_DISABLE) { dp_peer_info("%pK: disable BA session", cdp_soc); buffersize = 1; } else if (rx_tid->rx_ba_win_size_override) { dp_peer_info("%pK: override BA win to %d", cdp_soc, rx_tid->rx_ba_win_size_override); buffersize = rx_tid->rx_ba_win_size_override; } else { dp_peer_info("%pK: restore BA win %d based on addba req", cdp_soc, buffersize); } dp_check_ba_buffersize(peer, tid, buffersize); if (dp_rx_tid_setup_wifi3(peer, BIT(tid), rx_tid->ba_win_size, startseqnum)) { rx_tid->ba_status = DP_RX_BA_INACTIVE; qdf_spin_unlock_bh(&rx_tid->tid_lock); status = QDF_STATUS_E_FAILURE; goto fail; } rx_tid->ba_status = DP_RX_BA_IN_PROGRESS; rx_tid->dialogtoken = dialogtoken; rx_tid->startseqnum = startseqnum; if (rx_tid->userstatuscode != IEEE80211_STATUS_SUCCESS) rx_tid->statuscode = rx_tid->userstatuscode; else rx_tid->statuscode = IEEE80211_STATUS_SUCCESS; if (rx_tid->rx_ba_win_size_override == DP_RX_BA_SESSION_DISABLE) rx_tid->statuscode = IEEE80211_STATUS_REFUSED; qdf_spin_unlock_bh(&rx_tid->tid_lock); fail: dp_peer_unref_delete(peer, DP_MOD_ID_CDP); return status; } QDF_STATUS dp_set_addba_response(struct cdp_soc_t *cdp_soc, uint8_t *peer_mac, uint16_t vdev_id, uint8_t tid, uint16_t statuscode) { struct dp_peer *peer = dp_peer_get_tgt_peer_hash_find( (struct dp_soc *)cdp_soc, peer_mac, 0, vdev_id, DP_MOD_ID_CDP); struct dp_rx_tid *rx_tid; if (!peer) { dp_peer_debug("%pK: Peer is NULL!", cdp_soc); return QDF_STATUS_E_FAILURE; } rx_tid = &peer->rx_tid[tid]; qdf_spin_lock_bh(&rx_tid->tid_lock); rx_tid->userstatuscode = statuscode; qdf_spin_unlock_bh(&rx_tid->tid_lock); dp_peer_unref_delete(peer, DP_MOD_ID_CDP); return QDF_STATUS_SUCCESS; } int dp_delba_process_wifi3(struct cdp_soc_t *cdp_soc, uint8_t *peer_mac, uint16_t vdev_id, int tid, uint16_t reasoncode) { QDF_STATUS status = QDF_STATUS_SUCCESS; struct dp_rx_tid *rx_tid; struct dp_peer *peer = dp_peer_get_tgt_peer_hash_find( (struct dp_soc *)cdp_soc, peer_mac, 0, vdev_id, DP_MOD_ID_CDP); if (!peer) { dp_peer_debug("%pK: Peer is NULL!", cdp_soc); return QDF_STATUS_E_FAILURE; } rx_tid = &peer->rx_tid[tid]; qdf_spin_lock_bh(&rx_tid->tid_lock); if (rx_tid->ba_status == DP_RX_BA_INACTIVE || rx_tid->ba_status == DP_RX_BA_IN_PROGRESS) { qdf_spin_unlock_bh(&rx_tid->tid_lock); status = QDF_STATUS_E_FAILURE; goto fail; } /* TODO: See if we can delete the existing REO queue descriptor and * replace with a new one without queue extension descript to save * memory */ rx_tid->delba_rcode = reasoncode; rx_tid->num_of_delba_req++; dp_rx_tid_update_wifi3(peer, tid, 1, IEEE80211_SEQ_MAX, false); rx_tid->ba_status = DP_RX_BA_INACTIVE; peer->active_ba_session_cnt--; qdf_spin_unlock_bh(&rx_tid->tid_lock); fail: dp_peer_unref_delete(peer, DP_MOD_ID_CDP); return status; } int dp_delba_tx_completion_wifi3(struct cdp_soc_t *cdp_soc, uint8_t *peer_mac, uint16_t vdev_id, uint8_t tid, int status) { QDF_STATUS ret = QDF_STATUS_SUCCESS; struct dp_rx_tid *rx_tid = NULL; struct dp_peer *peer = dp_peer_get_tgt_peer_hash_find( (struct dp_soc *)cdp_soc, peer_mac, 0, vdev_id, DP_MOD_ID_CDP); if (!peer) { dp_peer_debug("%pK: Peer is NULL!", cdp_soc); return QDF_STATUS_E_FAILURE; } rx_tid = &peer->rx_tid[tid]; qdf_spin_lock_bh(&rx_tid->tid_lock); if (status) { rx_tid->delba_tx_fail_cnt++; if (rx_tid->delba_tx_retry >= DP_MAX_DELBA_RETRY) { rx_tid->delba_tx_retry = 0; rx_tid->delba_tx_status = 0; qdf_spin_unlock_bh(&rx_tid->tid_lock); } else { rx_tid->delba_tx_retry++; rx_tid->delba_tx_status = 1; qdf_spin_unlock_bh(&rx_tid->tid_lock); if (peer->vdev->pdev->soc->cdp_soc.ol_ops->send_delba) peer->vdev->pdev->soc->cdp_soc.ol_ops->send_delba( peer->vdev->pdev->soc->ctrl_psoc, peer->vdev->vdev_id, peer->mac_addr.raw, tid, rx_tid->delba_rcode, CDP_DELBA_REASON_NONE); } goto end; } else { rx_tid->delba_tx_success_cnt++; rx_tid->delba_tx_retry = 0; rx_tid->delba_tx_status = 0; } if (rx_tid->ba_status == DP_RX_BA_ACTIVE) { dp_rx_tid_update_wifi3(peer, tid, 1, IEEE80211_SEQ_MAX, false); rx_tid->ba_status = DP_RX_BA_INACTIVE; peer->active_ba_session_cnt--; } if (rx_tid->ba_status == DP_RX_BA_IN_PROGRESS) { dp_rx_tid_update_wifi3(peer, tid, 1, IEEE80211_SEQ_MAX, false); rx_tid->ba_status = DP_RX_BA_INACTIVE; } qdf_spin_unlock_bh(&rx_tid->tid_lock); end: dp_peer_unref_delete(peer, DP_MOD_ID_CDP); return ret; } QDF_STATUS dp_set_pn_check_wifi3(struct cdp_soc_t *soc_t, uint8_t vdev_id, uint8_t *peer_mac, enum cdp_sec_type sec_type, uint32_t *rx_pn) { struct dp_pdev *pdev; int i; uint8_t pn_size; struct hal_reo_cmd_params params; struct dp_peer *peer = NULL; struct dp_vdev *vdev = NULL; struct dp_soc *soc = NULL; peer = dp_peer_get_tgt_peer_hash_find((struct dp_soc *)soc_t, peer_mac, 0, vdev_id, DP_MOD_ID_CDP); if (!peer) { dp_peer_debug("%pK: Peer is NULL!", soc); return QDF_STATUS_E_FAILURE; } vdev = peer->vdev; if (!vdev) { dp_peer_debug("%pK: VDEV is NULL!", soc); dp_peer_unref_delete(peer, DP_MOD_ID_CDP); return QDF_STATUS_E_FAILURE; } pdev = vdev->pdev; soc = pdev->soc; qdf_mem_zero(¶ms, sizeof(params)); params.std.need_status = 1; params.u.upd_queue_params.update_pn_valid = 1; params.u.upd_queue_params.update_pn_size = 1; params.u.upd_queue_params.update_pn = 1; params.u.upd_queue_params.update_pn_check_needed = 1; params.u.upd_queue_params.update_svld = 1; params.u.upd_queue_params.svld = 0; switch (sec_type) { case cdp_sec_type_tkip_nomic: case cdp_sec_type_aes_ccmp: case cdp_sec_type_aes_ccmp_256: case cdp_sec_type_aes_gcmp: case cdp_sec_type_aes_gcmp_256: params.u.upd_queue_params.pn_check_needed = 1; params.u.upd_queue_params.pn_size = PN_SIZE_48; pn_size = 48; break; case cdp_sec_type_wapi: params.u.upd_queue_params.pn_check_needed = 1; params.u.upd_queue_params.pn_size = PN_SIZE_128; pn_size = 128; if (vdev->opmode == wlan_op_mode_ap) { params.u.upd_queue_params.pn_even = 1; params.u.upd_queue_params.update_pn_even = 1; } else { params.u.upd_queue_params.pn_uneven = 1; params.u.upd_queue_params.update_pn_uneven = 1; } break; default: params.u.upd_queue_params.pn_check_needed = 0; pn_size = 0; break; } for (i = 0; i < DP_MAX_TIDS; i++) { struct dp_rx_tid *rx_tid = &peer->rx_tid[i]; qdf_spin_lock_bh(&rx_tid->tid_lock); if (rx_tid->hw_qdesc_vaddr_unaligned) { params.std.addr_lo = rx_tid->hw_qdesc_paddr & 0xffffffff; params.std.addr_hi = (uint64_t)(rx_tid->hw_qdesc_paddr) >> 32; if (pn_size) { dp_peer_info("%pK: PN set for TID:%d pn:%x:%x:%x:%x", soc, i, rx_pn[3], rx_pn[2], rx_pn[1], rx_pn[0]); params.u.upd_queue_params.update_pn_valid = 1; params.u.upd_queue_params.pn_31_0 = rx_pn[0]; params.u.upd_queue_params.pn_63_32 = rx_pn[1]; params.u.upd_queue_params.pn_95_64 = rx_pn[2]; params.u.upd_queue_params.pn_127_96 = rx_pn[3]; } rx_tid->pn_size = pn_size; if (dp_reo_send_cmd(soc, CMD_UPDATE_RX_REO_QUEUE, ¶ms, dp_rx_tid_update_cb, rx_tid)) { dp_err_log("fail to send CMD_UPDATE_RX_REO_QUEUE" "tid %d desc %pK", rx_tid->tid, (void *)(rx_tid->hw_qdesc_paddr)); DP_STATS_INC(soc, rx.err.reo_cmd_send_fail, 1); } } else { dp_peer_info("%pK: PN Check not setup for TID :%d ", soc, i); } qdf_spin_unlock_bh(&rx_tid->tid_lock); } dp_peer_unref_delete(peer, DP_MOD_ID_CDP); return QDF_STATUS_SUCCESS; } QDF_STATUS dp_rx_delba_ind_handler(void *soc_handle, uint16_t peer_id, uint8_t tid, uint16_t win_sz) { struct dp_soc *soc = (struct dp_soc *)soc_handle; struct dp_peer *peer; struct dp_rx_tid *rx_tid; QDF_STATUS status = QDF_STATUS_SUCCESS; peer = dp_peer_get_ref_by_id(soc, peer_id, DP_MOD_ID_HTT); if (!peer) { dp_peer_err("%pK: Couldn't find peer from ID %d", soc, peer_id); return QDF_STATUS_E_FAILURE; } qdf_assert_always(tid < DP_MAX_TIDS); rx_tid = &peer->rx_tid[tid]; if (rx_tid->hw_qdesc_vaddr_unaligned) { if (!rx_tid->delba_tx_status) { dp_peer_info("%pK: PEER_ID: %d TID: %d, BA win: %d ", soc, peer_id, tid, win_sz); qdf_spin_lock_bh(&rx_tid->tid_lock); rx_tid->delba_tx_status = 1; rx_tid->rx_ba_win_size_override = qdf_min((uint16_t)63, win_sz); rx_tid->delba_rcode = IEEE80211_REASON_QOS_SETUP_REQUIRED; qdf_spin_unlock_bh(&rx_tid->tid_lock); if (soc->cdp_soc.ol_ops->send_delba) soc->cdp_soc.ol_ops->send_delba( peer->vdev->pdev->soc->ctrl_psoc, peer->vdev->vdev_id, peer->mac_addr.raw, tid, rx_tid->delba_rcode, CDP_DELBA_REASON_NONE); } } else { dp_peer_err("%pK: BA session is not setup for TID:%d ", soc, tid); status = QDF_STATUS_E_FAILURE; } dp_peer_unref_delete(peer, DP_MOD_ID_HTT); return status; } #ifdef IPA_OFFLOAD int dp_peer_get_rxtid_stats_ipa(struct dp_peer *peer, dp_rxtid_stats_cmd_cb dp_stats_cmd_cb) { struct dp_soc *soc = peer->vdev->pdev->soc; struct hal_reo_cmd_params params; int i; int stats_cmd_sent_cnt = 0; QDF_STATUS status; uint16_t peer_id = peer->peer_id; unsigned long comb_peer_id_tid; struct dp_rx_tid *rx_tid; if (!dp_stats_cmd_cb) return stats_cmd_sent_cnt; qdf_mem_zero(¶ms, sizeof(params)); for (i = 0; i < DP_MAX_TIDS; i++) { if ((i >= CDP_DATA_TID_MAX) && (i != CDP_DATA_NON_QOS_TID)) continue; rx_tid = &peer->rx_tid[i]; if (rx_tid->hw_qdesc_vaddr_unaligned) { params.std.need_status = 1; params.std.addr_lo = rx_tid->hw_qdesc_paddr & 0xffffffff; params.std.addr_hi = (uint64_t)(rx_tid->hw_qdesc_paddr) >> 32; params.u.stats_params.clear = 1; comb_peer_id_tid = ((i << DP_PEER_REO_STATS_TID_SHIFT) | peer_id); status = dp_reo_send_cmd(soc, CMD_GET_QUEUE_STATS, ¶ms, dp_stats_cmd_cb, (void *)comb_peer_id_tid); if (QDF_IS_STATUS_SUCCESS(status)) stats_cmd_sent_cnt++; /* Flush REO descriptor from HW cache to update stats * in descriptor memory. This is to help debugging */ qdf_mem_zero(¶ms, sizeof(params)); params.std.need_status = 0; params.std.addr_lo = rx_tid->hw_qdesc_paddr & 0xffffffff; params.std.addr_hi = (uint64_t)(rx_tid->hw_qdesc_paddr) >> 32; params.u.fl_cache_params.flush_no_inval = 1; dp_reo_send_cmd(soc, CMD_FLUSH_CACHE, ¶ms, NULL, NULL); } } return stats_cmd_sent_cnt; } qdf_export_symbol(dp_peer_get_rxtid_stats_ipa); #endif int dp_peer_rxtid_stats(struct dp_peer *peer, dp_rxtid_stats_cmd_cb dp_stats_cmd_cb, void *cb_ctxt) { struct dp_soc *soc = peer->vdev->pdev->soc; struct hal_reo_cmd_params params; int i; int stats_cmd_sent_cnt = 0; QDF_STATUS status; struct dp_rx_tid *rx_tid; if (!dp_stats_cmd_cb) return stats_cmd_sent_cnt; qdf_mem_zero(¶ms, sizeof(params)); for (i = 0; i < DP_MAX_TIDS; i++) { if ((i >= CDP_DATA_TID_MAX) && (i != CDP_DATA_NON_QOS_TID)) continue; rx_tid = &peer->rx_tid[i]; if (rx_tid->hw_qdesc_vaddr_unaligned) { params.std.need_status = 1; params.std.addr_lo = rx_tid->hw_qdesc_paddr & 0xffffffff; params.std.addr_hi = (uint64_t)(rx_tid->hw_qdesc_paddr) >> 32; if (cb_ctxt) { status = dp_reo_send_cmd( soc, CMD_GET_QUEUE_STATS, ¶ms, dp_stats_cmd_cb, cb_ctxt); } else { status = dp_reo_send_cmd( soc, CMD_GET_QUEUE_STATS, ¶ms, dp_stats_cmd_cb, rx_tid); } if (QDF_IS_STATUS_SUCCESS(status)) stats_cmd_sent_cnt++; /* Flush REO descriptor from HW cache to update stats * in descriptor memory. This is to help debugging */ qdf_mem_zero(¶ms, sizeof(params)); params.std.need_status = 0; params.std.addr_lo = rx_tid->hw_qdesc_paddr & 0xffffffff; params.std.addr_hi = (uint64_t)(rx_tid->hw_qdesc_paddr) >> 32; params.u.fl_cache_params.flush_no_inval = 1; dp_reo_send_cmd(soc, CMD_FLUSH_CACHE, ¶ms, NULL, NULL); } } return stats_cmd_sent_cnt; } QDF_STATUS dp_peer_rx_tids_create(struct dp_peer *peer) { uint8_t i; if (IS_MLO_DP_MLD_PEER(peer)) { dp_peer_info("skip for mld peer"); return QDF_STATUS_SUCCESS; } if (peer->rx_tid) { QDF_BUG(0); dp_peer_err("peer rx_tid mem already exist"); return QDF_STATUS_E_FAILURE; } peer->rx_tid = qdf_mem_malloc(DP_MAX_TIDS * sizeof(struct dp_rx_tid)); if (!peer->rx_tid) { dp_err("fail to alloc tid for peer" QDF_MAC_ADDR_FMT, QDF_MAC_ADDR_REF(peer->mac_addr.raw)); return QDF_STATUS_E_NOMEM; } qdf_mem_zero(peer->rx_tid, DP_MAX_TIDS * sizeof(struct dp_rx_tid)); for (i = 0; i < DP_MAX_TIDS; i++) qdf_spinlock_create(&peer->rx_tid[i].tid_lock); return QDF_STATUS_SUCCESS; } void dp_peer_rx_tids_destroy(struct dp_peer *peer) { uint8_t i; if (!IS_MLO_DP_LINK_PEER(peer)) { for (i = 0; i < DP_MAX_TIDS; i++) qdf_spinlock_destroy(&peer->rx_tid[i].tid_lock); qdf_mem_free(peer->rx_tid); } peer->rx_tid = NULL; } #ifdef DUMP_REO_QUEUE_INFO_IN_DDR void dp_dump_rx_reo_queue_info( struct dp_soc *soc, void *cb_ctxt, union hal_reo_status *reo_status) { struct dp_rx_tid *rx_tid = (struct dp_rx_tid *)cb_ctxt; if (!rx_tid) return; if (reo_status->fl_cache_status.header.status != HAL_REO_CMD_SUCCESS) { dp_err_rl("Rx tid REO HW desc flush failed(%d)", reo_status->rx_queue_status.header.status); return; } qdf_spin_lock_bh(&rx_tid->tid_lock); hal_dump_rx_reo_queue_desc(rx_tid->hw_qdesc_vaddr_aligned); qdf_spin_unlock_bh(&rx_tid->tid_lock); } void dp_send_cache_flush_for_rx_tid( struct dp_soc *soc, struct dp_peer *peer) { int i; struct dp_rx_tid *rx_tid; struct hal_reo_cmd_params params; if (!peer) { dp_err_rl("Peer is NULL"); return; } for (i = 0; i < DP_MAX_TIDS; i++) { rx_tid = &peer->rx_tid[i]; if (!rx_tid) continue; qdf_spin_lock_bh(&rx_tid->tid_lock); if (rx_tid->hw_qdesc_vaddr_aligned) { qdf_mem_zero(¶ms, sizeof(params)); params.std.need_status = 1; params.std.addr_lo = rx_tid->hw_qdesc_paddr & 0xffffffff; params.std.addr_hi = (uint64_t)(rx_tid->hw_qdesc_paddr) >> 32; params.u.fl_cache_params.flush_no_inval = 0; if (rx_tid->ba_win_size > 256) params.u.fl_cache_params.flush_q_1k_desc = 1; params.u.fl_cache_params.fwd_mpdus_in_queue = 1; if (QDF_STATUS_SUCCESS != dp_reo_send_cmd( soc, CMD_FLUSH_CACHE, ¶ms, dp_dump_rx_reo_queue_info, (void *)rx_tid)) { dp_err_rl("cache flush send failed tid %d", rx_tid->tid); qdf_spin_unlock_bh(&rx_tid->tid_lock); break; } } qdf_spin_unlock_bh(&rx_tid->tid_lock); } } void dp_get_rx_reo_queue_info( struct cdp_soc_t *soc_hdl, uint8_t vdev_id) { struct dp_soc *soc = (struct dp_soc *)soc_hdl; struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_GENERIC_STATS); struct dp_peer *peer = NULL; if (!vdev) { dp_err_rl("vdev is null for vdev_id: %u", vdev_id); goto failed; } peer = dp_vdev_bss_peer_ref_n_get(soc, vdev, DP_MOD_ID_GENERIC_STATS); if (!peer) { dp_err_rl("Peer is NULL"); goto failed; } dp_send_cache_flush_for_rx_tid(soc, peer); failed: if (peer) dp_peer_unref_delete(peer, DP_MOD_ID_GENERIC_STATS); if (vdev) dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_GENERIC_STATS); } #endif /* DUMP_REO_QUEUE_INFO_IN_DDR */