/* * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved. * Copyright (c) 2021-2024 Qualcomm Innovation Center, Inc. All rights reserved. * * Permission to use, copy, modify, and/or distribute this software for * any purpose with or without fee is hereby granted, provided that the * above copyright notice and this permission notice appear in all * copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR * PERFORMANCE OF THIS SOFTWARE. */ #ifndef __DP_TX_H #define __DP_TX_H #include #include #include "dp_types.h" #ifdef FEATURE_PERPKT_INFO #if defined(QCA_SUPPORT_LATENCY_CAPTURE) || \ defined(QCA_TX_CAPTURE_SUPPORT) || \ defined(QCA_MCOPY_SUPPORT) #include "if_meta_hdr.h" #endif #endif #include "dp_internal.h" #include "hal_tx.h" #include #ifdef CONFIG_SAWF #include "dp_sawf.h" #endif #include #include "dp_ipa.h" #ifdef IPA_OFFLOAD #include #endif #define DP_INVALID_VDEV_ID 0xFF #define DP_TX_MAX_NUM_FRAGS 6 /* invalid peer id for reinject*/ #define DP_INVALID_PEER 0XFFFE void dp_tx_nawds_handler(struct dp_soc *soc, struct dp_vdev *vdev, struct dp_tx_msdu_info_s *msdu_info, qdf_nbuf_t nbuf, uint16_t sa_peer_id); int dp_tx_proxy_arp(struct dp_vdev *vdev, qdf_nbuf_t nbuf); /* * DP_TX_DESC_FLAG_FRAG flags should always be defined to 0x1 * please do not change this flag's definition */ #define DP_TX_DESC_FLAG_FRAG 0x1 #define DP_TX_DESC_FLAG_TO_FW 0x2 #define DP_TX_DESC_FLAG_SIMPLE 0x4 #define DP_TX_DESC_FLAG_RAW 0x8 #define DP_TX_DESC_FLAG_MESH 0x10 #define DP_TX_DESC_FLAG_QUEUED_TX 0x20 #define DP_TX_DESC_FLAG_COMPLETED_TX 0x40 #define DP_TX_DESC_FLAG_ME 0x80 #define DP_TX_DESC_FLAG_TDLS_FRAME 0x100 #define DP_TX_DESC_FLAG_ALLOCATED 0x200 #define DP_TX_DESC_FLAG_MESH_MODE 0x400 #define DP_TX_DESC_FLAG_UNMAP_DONE 0x800 #define DP_TX_DESC_FLAG_TX_COMP_ERR 0x1000 #define DP_TX_DESC_FLAG_FLUSH 0x2000 #define DP_TX_DESC_FLAG_TRAFFIC_END_IND 0x4000 #define DP_TX_DESC_FLAG_RMNET 0x8000 #define DP_TX_DESC_FLAG_FASTPATH_SIMPLE 0x10000 #define DP_TX_DESC_FLAG_PPEDS 0x20000 #define DP_TX_DESC_FLAG_FAST 0x40000 #define DP_TX_DESC_FLAG_SPECIAL 0x80000 #define DP_TX_EXT_DESC_FLAG_METADATA_VALID 0x1 #define DP_TX_FREE_SINGLE_BUF(soc, buf) \ do { \ qdf_nbuf_unmap(soc->osdev, buf, QDF_DMA_TO_DEVICE); \ qdf_nbuf_free(buf); \ } while (0) #define OCB_HEADER_VERSION 1 #ifdef TX_PER_PDEV_DESC_POOL #ifdef QCA_LL_TX_FLOW_CONTROL_V2 #define DP_TX_GET_DESC_POOL_ID(vdev) (vdev->vdev_id) #else /* QCA_LL_TX_FLOW_CONTROL_V2 */ #define DP_TX_GET_DESC_POOL_ID(vdev) (vdev->pdev->pdev_id) #endif /* QCA_LL_TX_FLOW_CONTROL_V2 */ #define DP_TX_GET_RING_ID(vdev) (vdev->pdev->pdev_id) #else #ifdef TX_PER_VDEV_DESC_POOL #define DP_TX_GET_DESC_POOL_ID(vdev) (vdev->vdev_id) #define DP_TX_GET_RING_ID(vdev) (vdev->pdev->pdev_id) #endif /* TX_PER_VDEV_DESC_POOL */ #endif /* TX_PER_PDEV_DESC_POOL */ #define DP_TX_QUEUE_MASK 0x3 #define MAX_CDP_SEC_TYPE 12 /* number of dwords for htt_tx_msdu_desc_ext2_t */ #define DP_TX_MSDU_INFO_META_DATA_DWORDS 9 #define dp_tx_alert(params...) QDF_TRACE_FATAL(QDF_MODULE_ID_DP_TX, params) #define dp_tx_err(params...) QDF_TRACE_ERROR(QDF_MODULE_ID_DP_TX, params) #define dp_tx_err_rl(params...) QDF_TRACE_ERROR_RL(QDF_MODULE_ID_DP_TX, params) #define dp_tx_warn(params...) QDF_TRACE_WARN(QDF_MODULE_ID_DP_TX, params) #define dp_tx_info(params...) \ __QDF_TRACE_FL(QDF_TRACE_LEVEL_INFO_HIGH, QDF_MODULE_ID_DP_TX, ## params) #define dp_tx_debug(params...) QDF_TRACE_DEBUG(QDF_MODULE_ID_DP_TX, params) #define dp_tx_comp_alert(params...) QDF_TRACE_FATAL(QDF_MODULE_ID_DP_TX_COMP, params) #define dp_tx_comp_err(params...) QDF_TRACE_ERROR(QDF_MODULE_ID_DP_TX_COMP, params) #define dp_tx_comp_warn(params...) QDF_TRACE_WARN(QDF_MODULE_ID_DP_TX_COMP, params) #define dp_tx_comp_info(params...) \ __QDF_TRACE_FL(QDF_TRACE_LEVEL_INFO_HIGH, QDF_MODULE_ID_DP_TX_COMP, ## params) #define dp_tx_comp_info_rl(params...) \ __QDF_TRACE_RL(QDF_TRACE_LEVEL_INFO_HIGH, QDF_MODULE_ID_DP_TX_COMP, ## params) #define dp_tx_comp_debug(params...) QDF_TRACE_DEBUG(QDF_MODULE_ID_DP_TX_COMP, params) #ifndef QCA_HOST_MODE_WIFI_DISABLED /** * struct dp_tx_frag_info_s * @vaddr: hlos virtual address for buffer * @paddr_lo: physical address lower 32bits * @paddr_hi: physical address higher bits * @len: length of the buffer */ struct dp_tx_frag_info_s { uint8_t *vaddr; uint32_t paddr_lo; uint16_t paddr_hi; uint16_t len; }; /** * struct dp_tx_seg_info_s - Segmentation Descriptor * @nbuf: NBUF pointer if segment corresponds to separate nbuf * @frag_cnt: Fragment count in this segment * @total_len: Total length of segment * @frags: per-Fragment information * @next: pointer to next MSDU segment */ struct dp_tx_seg_info_s { qdf_nbuf_t nbuf; uint16_t frag_cnt; uint16_t total_len; struct dp_tx_frag_info_s frags[DP_TX_MAX_NUM_FRAGS]; struct dp_tx_seg_info_s *next; }; #endif /* QCA_HOST_MODE_WIFI_DISABLED */ /** * struct dp_tx_sg_info_s - Scatter Gather Descriptor * @num_segs: Number of segments (TSO/ME) in the frame * @total_len: Total length of the frame * @curr_seg: Points to current segment descriptor to be processed. Chain of * descriptors for SG frames/multicast-unicast converted packets. * * Used for SG (802.3 or Raw) frames and Multicast-Unicast converted frames to * carry fragmentation information * Raw Frames will be handed over to driver as an SKB chain with MPDU boundaries * indicated through flags in SKB CB (first_msdu and last_msdu). This will be * converted into set of skb sg (nr_frags) structures. */ struct dp_tx_sg_info_s { uint32_t num_segs; uint32_t total_len; struct dp_tx_seg_info_s *curr_seg; }; /** * struct dp_tx_queue - Tx queue * @desc_pool_id: Descriptor Pool to be used for the tx queue * @ring_id: TCL descriptor ring ID corresponding to the tx queue * * Tx queue contains information of the software (Descriptor pool) * and hardware resources (TCL ring id) to be used for a particular * transmit queue (obtained from skb_queue_mapping in case of linux) */ struct dp_tx_queue { uint8_t desc_pool_id; uint8_t ring_id; }; /** * struct dp_tx_msdu_info_s - MSDU Descriptor * @frm_type: Frame type - Regular/TSO/SG/Multicast enhancement * @tx_queue: Tx queue on which this MSDU should be transmitted * @num_seg: Number of segments (TSO) * @tid: TID (override) that is sent from HLOS * @exception_fw: Duplicate frame to be sent to firmware * @is_tx_sniffer: Indicates if the packet has to be sniffed * @u: union of frame information structs * @u.tso_info: TSO information for TSO frame types * (chain of the TSO segments, number of segments) * @u.sg_info: Scatter Gather information for non-TSO SG frames * @meta_data: Mesh meta header information * @ppdu_cookie: 16-bit ppdu_cookie that has to be replayed back in completions * @xmit_type: xmit type of packet Link (0)/MLD (1) * @gsn: global sequence for reinjected mcast packets * @vdev_id : vdev_id for reinjected mcast packets * @skip_hp_update : Skip HP update for TSO segments and update in last segment * @buf_len: * @payload_addr: * @driver_ingress_ts: driver ingress timestamp * * This structure holds the complete MSDU information needed to program the * Hardware TCL and MSDU extension descriptors for different frame types * */ struct dp_tx_msdu_info_s { enum dp_tx_frm_type frm_type; struct dp_tx_queue tx_queue; uint32_t num_seg; uint8_t tid; uint8_t exception_fw; uint8_t is_tx_sniffer; union { struct qdf_tso_info_t tso_info; struct dp_tx_sg_info_s sg_info; } u; uint32_t meta_data[DP_TX_MSDU_INFO_META_DATA_DWORDS]; uint16_t ppdu_cookie; uint8_t xmit_type; #if defined(WLAN_FEATURE_11BE_MLO) && defined(WLAN_MLO_MULTI_CHIP) #ifdef WLAN_MCAST_MLO uint16_t gsn; uint8_t vdev_id; #endif #endif #ifdef WLAN_DP_FEATURE_SW_LATENCY_MGR uint8_t skip_hp_update; #endif #ifdef QCA_DP_TX_RMNET_OPTIMIZATION uint16_t buf_len; uint8_t *payload_addr; #endif #ifdef WLAN_FEATURE_TX_LATENCY_STATS qdf_ktime_t driver_ingress_ts; #endif }; #ifndef QCA_HOST_MODE_WIFI_DISABLED /** * dp_tx_deinit_pair_by_index() - Deinit TX rings based on index * @soc: core txrx context * @index: index of ring to deinit * * Deinit 1 TCL and 1 WBM2SW release ring on as needed basis using * index of the respective TCL/WBM2SW release in soc structure. * For example, if the index is 2 then &soc->tcl_data_ring[2] * and &soc->tx_comp_ring[2] will be deinitialized. * * Return: none */ void dp_tx_deinit_pair_by_index(struct dp_soc *soc, int index); #endif /* QCA_HOST_MODE_WIFI_DISABLED */ /** * dp_tx_comp_process_desc_list() - Tx complete software descriptor handler * @soc: core txrx main context * @comp_head: software descriptor head pointer * @ring_id: ring number * * This function will process batch of descriptors reaped by dp_tx_comp_handler * and release the software descriptors after processing is complete * * Return: none */ void dp_tx_comp_process_desc_list(struct dp_soc *soc, struct dp_tx_desc_s *comp_head, uint8_t ring_id); /** * dp_tx_comp_process_desc_list_fast() - Tx complete fast sw descriptor handler * @soc: core txrx main context * @head_desc: software descriptor head pointer * @tail_desc: software descriptor tail pointer * @ring_id: ring number * @fast_desc_count: Total descriptor count in the list * * This function will process batch of descriptors reaped by dp_tx_comp_handler * and append the list of descriptors to the freelist * * Return: none */ void dp_tx_comp_process_desc_list_fast(struct dp_soc *soc, struct dp_tx_desc_s *head_desc, struct dp_tx_desc_s *tail_desc, uint8_t ring_id, uint32_t fast_desc_count); /** * dp_tx_comp_free_buf() - Free nbuf associated with the Tx Descriptor * @soc: Soc handle * @desc: software Tx descriptor to be processed * @delayed_free: defer freeing of nbuf * * Return: nbuf to be freed later */ qdf_nbuf_t dp_tx_comp_free_buf(struct dp_soc *soc, struct dp_tx_desc_s *desc, bool delayed_free); /** * dp_tx_desc_release() - Release Tx Descriptor * @soc: Soc handle * @tx_desc: Tx Descriptor * @desc_pool_id: Descriptor Pool ID * * Deallocate all resources attached to Tx descriptor and free the Tx * descriptor. * * Return: */ void dp_tx_desc_release(struct dp_soc *soc, struct dp_tx_desc_s *tx_desc, uint8_t desc_pool_id); /** * dp_tx_compute_delay() - Compute and fill in all timestamps * to pass in correct fields * @vdev: pdev handle * @tx_desc: tx descriptor * @tid: tid value * @ring_id: TCL or WBM ring number for transmit path * * Return: none */ void dp_tx_compute_delay(struct dp_vdev *vdev, struct dp_tx_desc_s *tx_desc, uint8_t tid, uint8_t ring_id); /** * dp_tx_comp_process_tx_status() - Parse and Dump Tx completion status info * @soc: DP soc handle * @tx_desc: software descriptor head pointer * @ts: Tx completion status * @txrx_peer: txrx peer handle * @ring_id: ring number * * Return: none */ void dp_tx_comp_process_tx_status(struct dp_soc *soc, struct dp_tx_desc_s *tx_desc, struct hal_tx_completion_status *ts, struct dp_txrx_peer *txrx_peer, uint8_t ring_id); /** * dp_tx_comp_process_desc() - Process tx descriptor and free associated nbuf * @soc: DP Soc handle * @desc: software Tx descriptor * @ts: Tx completion status from HAL/HTT descriptor * @txrx_peer: DP peer context * * Return: none */ void dp_tx_comp_process_desc(struct dp_soc *soc, struct dp_tx_desc_s *desc, struct hal_tx_completion_status *ts, struct dp_txrx_peer *txrx_peer); /** * dp_tx_reinject_handler() - Tx Reinject Handler * @soc: datapath soc handle * @vdev: datapath vdev handle * @tx_desc: software descriptor head pointer * @status: Tx completion status from HTT descriptor * @reinject_reason: reinject reason from HTT descriptor * * This function reinjects frames back to Target. * Todo - Host queue needs to be added * * Return: none */ void dp_tx_reinject_handler(struct dp_soc *soc, struct dp_vdev *vdev, struct dp_tx_desc_s *tx_desc, uint8_t *status, uint8_t reinject_reason); /** * dp_tx_inspect_handler() - Tx Inspect Handler * @soc: datapath soc handle * @vdev: datapath vdev handle * @tx_desc: software descriptor head pointer * @status: Tx completion status from HTT descriptor * * Handles Tx frames sent back to Host for inspection * (ProxyARP) * * Return: none */ void dp_tx_inspect_handler(struct dp_soc *soc, struct dp_vdev *vdev, struct dp_tx_desc_s *tx_desc, uint8_t *status); /** * dp_tx_update_peer_basic_stats() - Update peer basic stats * @txrx_peer: Datapath txrx_peer handle * @length: Length of the packet * @tx_status: Tx status from TQM/FW * @update: enhanced flag value present in dp_pdev * * Return: none */ void dp_tx_update_peer_basic_stats(struct dp_txrx_peer *txrx_peer, uint32_t length, uint8_t tx_status, bool update); #ifdef DP_UMAC_HW_RESET_SUPPORT /** * dp_tx_drop() - Drop the frame on a given VAP * @soc: DP soc handle * @vdev_id: id of DP vdev handle * @nbuf: skb * * Drop all the incoming packets * * Return: nbuf */ qdf_nbuf_t dp_tx_drop(struct cdp_soc_t *soc, uint8_t vdev_id, qdf_nbuf_t nbuf); /** * dp_tx_exc_drop() - Drop the frame on a given VAP * @soc_hdl: DP soc handle * @vdev_id: id of DP vdev handle * @nbuf: skb * @tx_exc_metadata: Handle that holds exception path meta data * * Drop all the incoming packets * * Return: nbuf */ qdf_nbuf_t dp_tx_exc_drop(struct cdp_soc_t *soc_hdl, uint8_t vdev_id, qdf_nbuf_t nbuf, struct cdp_tx_exception_metadata *tx_exc_metadata); #endif #ifdef WLAN_SUPPORT_PPEDS qdf_nbuf_t dp_ppeds_tx_desc_free(struct dp_soc *soc, struct dp_tx_desc_s *tx_desc); #else static inline qdf_nbuf_t dp_ppeds_tx_desc_free(struct dp_soc *soc, struct dp_tx_desc_s *tx_desc) { return NULL; } #endif /** * dp_get_updated_tx_desc() - get updated tx_desc value * @psoc: psoc object * @pool_num: Tx desc pool Id * @current_desc: Current Tx Desc value * * In Lowmem profiles the number of Tx desc in 4th pool is reduced to quarter * for memory optimizations via this flag DP_TX_DESC_POOL_OPTIMIZE * * Return: Updated Tx Desc value */ #ifdef DP_TX_DESC_POOL_OPTIMIZE static inline uint32_t dp_get_updated_tx_desc(struct cdp_ctrl_objmgr_psoc *psoc, uint8_t pool_num, uint32_t current_desc) { if (pool_num == 3) return cfg_get(psoc, CFG_DP_TX_DESC_POOL_3); else return current_desc; } #else static inline uint32_t dp_get_updated_tx_desc(struct cdp_ctrl_objmgr_psoc *psoc, uint8_t pool_num, uint32_t current_desc) { return current_desc; } #endif #ifdef DP_TX_EXT_DESC_POOL_OPTIMIZE /** * dp_tx_ext_desc_pool_override() - Override tx ext desc pool Id * @desc_pool_id: Desc pool Id * * For low mem profiles the number of ext_tx_desc_pool is reduced to 1. * Since in Tx path the desc_pool_id is filled based on CPU core, * dp_tx_ext_desc_pool_override will return the desc_pool_id as 0 for lowmem * profiles. * * Return: updated tx_ext_desc_pool Id */ static inline uint8_t dp_tx_ext_desc_pool_override(uint8_t desc_pool_id) { return 0; } /** * dp_get_ext_tx_desc_pool_num() - get the number of ext_tx_desc pool * @soc: core txrx main context * * For lowmem profiles the number of ext_tx_desc pool is reduced to 1 for * memory optimizations. * Based on this flag DP_TX_EXT_DESC_POOL_OPTIMIZE dp_get_ext_tx_desc_pool_num * will return reduced desc_pool value 1 for low mem profile and for the other * profiles it will return the same value as tx_desc pool. * * Return: number of ext_tx_desc pool */ static inline uint8_t dp_get_ext_tx_desc_pool_num(struct dp_soc *soc) { return 1; } #else static inline uint8_t dp_tx_ext_desc_pool_override(uint8_t desc_pool_id) { return desc_pool_id; } static inline uint8_t dp_get_ext_tx_desc_pool_num(struct dp_soc *soc) { return wlan_cfg_get_num_tx_desc_pool(soc->wlan_cfg_ctx); } #endif #ifndef QCA_HOST_MODE_WIFI_DISABLED /** * dp_tso_soc_attach() - TSO Attach handler * @txrx_soc: Opaque Dp handle * * Reserve TSO descriptor buffers * * Return: QDF_STATUS_E_FAILURE on failure or * QDF_STATUS_SUCCESS on success */ QDF_STATUS dp_tso_soc_attach(struct cdp_soc_t *txrx_soc); /** * dp_tso_soc_detach() - TSO Detach handler * @txrx_soc: Opaque Dp handle * * Deallocate TSO descriptor buffers * * Return: QDF_STATUS_E_FAILURE on failure or * QDF_STATUS_SUCCESS on success */ QDF_STATUS dp_tso_soc_detach(struct cdp_soc_t *txrx_soc); /** * dp_tx_send() - Transmit a frame on a given VAP * @soc_hdl: DP soc handle * @vdev_id: id of DP vdev handle * @nbuf: skb * * Entry point for Core Tx layer (DP_TX) invoked from * hard_start_xmit in OSIF/HDD or from dp_rx_process for intravap forwarding * cases * * Return: NULL on success, * nbuf when it fails to send */ qdf_nbuf_t dp_tx_send(struct cdp_soc_t *soc_hdl, uint8_t vdev_id, qdf_nbuf_t nbuf); /** * dp_tx_send_vdev_id_check() - Transmit a frame on a given VAP in special * case to avoid check in per-packet path. * @soc_hdl: DP soc handle * @vdev_id: id of DP vdev handle * @nbuf: skb * * Entry point for Core Tx layer (DP_TX) invoked from * hard_start_xmit in OSIF/HDD to transmit packet through dp_tx_send * with special condition to avoid per pkt check in dp_tx_send * * Return: NULL on success, * nbuf when it fails to send */ qdf_nbuf_t dp_tx_send_vdev_id_check(struct cdp_soc_t *soc_hdl, uint8_t vdev_id, qdf_nbuf_t nbuf); /** * dp_tx_send_exception() - Transmit a frame on a given VAP in exception path * @soc_hdl: DP soc handle * @vdev_id: id of DP vdev handle * @nbuf: skb * @tx_exc_metadata: Handle that holds exception path meta data * * Entry point for Core Tx layer (DP_TX) invoked from * hard_start_xmit in OSIF/HDD to transmit frames through fw * * Return: NULL on success, * nbuf when it fails to send */ qdf_nbuf_t dp_tx_send_exception(struct cdp_soc_t *soc_hdl, uint8_t vdev_id, qdf_nbuf_t nbuf, struct cdp_tx_exception_metadata *tx_exc_metadata); /** * dp_tx_send_exception_vdev_id_check() - Transmit a frame on a given VAP * in exception path in special case to avoid regular exception path chk. * @soc_hdl: DP soc handle * @vdev_id: id of DP vdev handle * @nbuf: skb * @tx_exc_metadata: Handle that holds exception path meta data * * Entry point for Core Tx layer (DP_TX) invoked from * hard_start_xmit in OSIF/HDD to transmit frames through fw * * Return: NULL on success, * nbuf when it fails to send */ qdf_nbuf_t dp_tx_send_exception_vdev_id_check(struct cdp_soc_t *soc_hdl, uint8_t vdev_id, qdf_nbuf_t nbuf, struct cdp_tx_exception_metadata *tx_exc_metadata); /** * dp_tx_send_mesh() - Transmit mesh frame on a given VAP * @soc_hdl: DP soc handle * @vdev_id: DP vdev handle * @nbuf: skb * * Entry point for Core Tx layer (DP_TX) invoked from * hard_start_xmit in OSIF/HDD * * Return: NULL on success, * nbuf when it fails to send */ qdf_nbuf_t dp_tx_send_mesh(struct cdp_soc_t *soc_hdl, uint8_t vdev_id, qdf_nbuf_t nbuf); /** * dp_tx_send_msdu_single() - Setup descriptor and enqueue single MSDU to TCL * @vdev: DP vdev handle * @nbuf: skb * @msdu_info: MSDU information * @peer_id: peer_id of the peer in case of NAWDS frames * @tx_exc_metadata: Handle that holds exception path metadata * * Return: NULL on success, * nbuf when it fails to send */ qdf_nbuf_t dp_tx_send_msdu_single(struct dp_vdev *vdev, qdf_nbuf_t nbuf, struct dp_tx_msdu_info_s *msdu_info, uint16_t peer_id, struct cdp_tx_exception_metadata *tx_exc_metadata); /** * dp_tx_mcast_enhance() - Multicast enhancement on TX * @vdev: DP vdev handle * @nbuf: network buffer to be transmitted * * Return: true on success * false on failure */ bool dp_tx_mcast_enhance(struct dp_vdev *vdev, qdf_nbuf_t nbuf); /** * dp_tx_send_msdu_multiple() - Enqueue multiple MSDUs * @vdev: DP vdev handle * @nbuf: skb * @msdu_info: MSDU info to be setup in MSDU extension descriptor * * Prepare descriptors for multiple MSDUs (TSO segments) and enqueue to TCL * * Return: NULL on success, * nbuf when it fails to send */ #if QDF_LOCK_STATS noinline qdf_nbuf_t dp_tx_send_msdu_multiple(struct dp_vdev *vdev, qdf_nbuf_t nbuf, struct dp_tx_msdu_info_s *msdu_info); #else qdf_nbuf_t dp_tx_send_msdu_multiple(struct dp_vdev *vdev, qdf_nbuf_t nbuf, struct dp_tx_msdu_info_s *msdu_info); #endif #ifdef FEATURE_WLAN_TDLS /** * dp_tx_non_std() - Allow the control-path SW to send data frames * @soc_hdl: Datapath soc handle * @vdev_id: id of vdev * @tx_spec: what non-standard handling to apply to the tx data frames * @msdu_list: NULL-terminated list of tx MSDUs * * Return: NULL on success, * nbuf when it fails to send */ qdf_nbuf_t dp_tx_non_std(struct cdp_soc_t *soc_hdl, uint8_t vdev_id, enum ol_tx_spec tx_spec, qdf_nbuf_t msdu_list); #endif /** * dp_tx_frame_is_drop() - checks if the packet is loopback * @vdev: DP vdev handle * @srcmac: source MAC address * @dstmac: destination MAC address * * Return: 1 if frame needs to be dropped else 0 */ int dp_tx_frame_is_drop(struct dp_vdev *vdev, uint8_t *srcmac, uint8_t *dstmac); #ifndef WLAN_SOFTUMAC_SUPPORT /** * dp_tx_comp_handler() - Tx completion handler * @int_ctx: pointer to DP interrupt context * @soc: core txrx main context * @hal_srng: Opaque HAL SRNG pointer * @ring_id: completion ring id * @quota: No. of packets/descriptors that can be serviced in one loop * * This function will collect hardware release ring element contents and * handle descriptor contents. Based on contents, free packet or handle error * conditions * * Return: Number of TX completions processed */ uint32_t dp_tx_comp_handler(struct dp_intr *int_ctx, struct dp_soc *soc, hal_ring_handle_t hal_srng, uint8_t ring_id, uint32_t quota); #endif void dp_tx_comp_process_desc_list(struct dp_soc *soc, struct dp_tx_desc_s *comp_head, uint8_t ring_id); QDF_STATUS dp_tx_prepare_send_me(struct dp_vdev *vdev, qdf_nbuf_t nbuf); QDF_STATUS dp_tx_prepare_send_igmp_me(struct dp_vdev *vdev, qdf_nbuf_t nbuf); #endif /* QCA_HOST_MODE_WIFI_DISABLED */ #if defined(QCA_HOST_MODE_WIFI_DISABLED) || !defined(ATH_SUPPORT_IQUE) static inline void dp_tx_me_exit(struct dp_pdev *pdev) { return; } #endif /** * dp_tx_pdev_init() - dp tx pdev init * @pdev: physical device instance * * Return: QDF_STATUS_SUCCESS: success * QDF_STATUS_E_RESOURCES: Error return */ static inline QDF_STATUS dp_tx_pdev_init(struct dp_pdev *pdev) { struct dp_soc *soc = pdev->soc; /* Initialize Flow control counters */ qdf_atomic_init(&pdev->num_tx_outstanding); pdev->tx_descs_max = 0; if (wlan_cfg_per_pdev_tx_ring(soc->wlan_cfg_ctx)) { /* Initialize descriptors in TCL Ring */ hal_tx_init_data_ring(soc->hal_soc, soc->tcl_data_ring[pdev->pdev_id].hal_srng); } return QDF_STATUS_SUCCESS; } /** * dp_tx_prefetch_hw_sw_nbuf_desc() - function to prefetch HW and SW desc * @soc: Handle to HAL Soc structure * @hal_soc: HAL SOC handle * @num_avail_for_reap: descriptors available for reap * @hal_ring_hdl: ring pointer * @last_prefetched_hw_desc: pointer to the last prefetched HW descriptor * @last_prefetched_sw_desc: pointer to last prefetch SW desc * @last_hw_desc: pointer to last HW desc * * Return: None */ #ifdef QCA_DP_TX_HW_SW_NBUF_DESC_PREFETCH static inline void dp_tx_prefetch_hw_sw_nbuf_desc(struct dp_soc *soc, hal_soc_handle_t hal_soc, uint32_t num_avail_for_reap, hal_ring_handle_t hal_ring_hdl, void **last_prefetched_hw_desc, struct dp_tx_desc_s **last_prefetched_sw_desc, void *last_hw_desc) { if (*last_prefetched_sw_desc) { qdf_prefetch((uint8_t *)(*last_prefetched_sw_desc)->nbuf); qdf_prefetch((uint8_t *)(*last_prefetched_sw_desc)->nbuf + 64); } if (qdf_unlikely(last_hw_desc && (*last_prefetched_hw_desc == last_hw_desc))) return; if (num_avail_for_reap && *last_prefetched_hw_desc) { soc->arch_ops.tx_comp_get_params_from_hal_desc(soc, *last_prefetched_hw_desc, last_prefetched_sw_desc); if ((uintptr_t)*last_prefetched_hw_desc & 0x3f) *last_prefetched_hw_desc = hal_srng_dst_prefetch_next_cached_desc( hal_soc, hal_ring_hdl, (uint8_t *)*last_prefetched_hw_desc); else *last_prefetched_hw_desc = hal_srng_dst_get_next_32_byte_desc(hal_soc, hal_ring_hdl, (uint8_t *)*last_prefetched_hw_desc); } } #else static inline void dp_tx_prefetch_hw_sw_nbuf_desc(struct dp_soc *soc, hal_soc_handle_t hal_soc, uint32_t num_avail_for_reap, hal_ring_handle_t hal_ring_hdl, void **last_prefetched_hw_desc, struct dp_tx_desc_s **last_prefetched_sw_desc, void *last_hw_desc) { } #endif #ifndef FEATURE_WDS static inline void dp_tx_mec_handler(struct dp_vdev *vdev, uint8_t *status) { return; } #endif #ifndef QCA_MULTIPASS_SUPPORT static inline bool dp_tx_multipass_process(struct dp_soc *soc, struct dp_vdev *vdev, qdf_nbuf_t nbuf, struct dp_tx_msdu_info_s *msdu_info) { return true; } static inline void dp_tx_vdev_multipass_deinit(struct dp_vdev *vdev) { } #else /** * dp_tx_multipass_process() - Process vlan frames in tx path * @soc: dp soc handle * @vdev: DP vdev handle * @nbuf: skb * @msdu_info: msdu descriptor * * Return: status whether frame needs to be dropped or transmitted */ bool dp_tx_multipass_process(struct dp_soc *soc, struct dp_vdev *vdev, qdf_nbuf_t nbuf, struct dp_tx_msdu_info_s *msdu_info); /** * dp_tx_vdev_multipass_deinit() - set vlan map for vdev * @vdev: pointer to vdev * * return: void */ void dp_tx_vdev_multipass_deinit(struct dp_vdev *vdev); /** * dp_tx_add_groupkey_metadata() - Add group key in metadata * @vdev: DP vdev handle * @msdu_info: MSDU info to be setup in MSDU descriptor * @group_key: Group key index programmed in metadata * * Return: void */ void dp_tx_add_groupkey_metadata(struct dp_vdev *vdev, struct dp_tx_msdu_info_s *msdu_info, uint16_t group_key); #endif /** * dp_tx_hw_to_qdf()- convert hw status to qdf status * @status: hw status * * Return: qdf tx rx status */ static inline enum qdf_dp_tx_rx_status dp_tx_hw_to_qdf(uint16_t status) { switch (status) { case HAL_TX_TQM_RR_FRAME_ACKED: return QDF_TX_RX_STATUS_OK; case HAL_TX_TQM_RR_REM_CMD_TX: return QDF_TX_RX_STATUS_NO_ACK; case HAL_TX_TQM_RR_REM_CMD_REM: case HAL_TX_TQM_RR_REM_CMD_NOTX: case HAL_TX_TQM_RR_REM_CMD_AGED: return QDF_TX_RX_STATUS_FW_DISCARD; default: return QDF_TX_RX_STATUS_DEFAULT; } } #ifndef QCA_HOST_MODE_WIFI_DISABLED /** * dp_tx_get_queue() - Returns Tx queue IDs to be used for this Tx frame * @vdev: DP Virtual device handle * @nbuf: Buffer pointer * @queue: queue ids container for nbuf * * TX packet queue has 2 instances, software descriptors id and dma ring id * Based on tx feature and hardware configuration queue id combination could be * different. * For example - * With XPS enabled,all TX descriptor pools and dma ring are assigned per cpu id * With no XPS,lock based resource protection, Descriptor pool ids are different * for each vdev, dma ring id will be same as single pdev id * * Return: None */ #ifdef QCA_OL_TX_MULTIQ_SUPPORT #if defined(IPA_OFFLOAD) && defined(QCA_IPA_LL_TX_FLOW_CONTROL) #ifdef IPA_WDI3_TX_TWO_PIPES static inline void dp_tx_get_queue(struct dp_vdev *vdev, qdf_nbuf_t nbuf, struct dp_tx_queue *queue) { queue->ring_id = qdf_get_cpu(); if (vdev->pdev->soc->wlan_cfg_ctx->ipa_enabled) if ((queue->ring_id == IPA_TCL_DATA_RING_IDX) || (queue->ring_id == IPA_TX_ALT_RING_IDX)) queue->ring_id = 0; queue->desc_pool_id = queue->ring_id; } #else static inline void dp_tx_get_queue(struct dp_vdev *vdev, qdf_nbuf_t nbuf, struct dp_tx_queue *queue) { queue->ring_id = qdf_get_cpu(); if (vdev->pdev->soc->wlan_cfg_ctx->ipa_enabled) if (queue->ring_id == IPA_TCL_DATA_RING_IDX) queue->ring_id = 0; queue->desc_pool_id = queue->ring_id; } #endif #else #ifdef WLAN_TX_PKT_CAPTURE_ENH static inline void dp_tx_get_queue(struct dp_vdev *vdev, qdf_nbuf_t nbuf, struct dp_tx_queue *queue) { if (qdf_unlikely(vdev->is_override_rbm_id)) queue->ring_id = vdev->rbm_id; else queue->ring_id = qdf_get_cpu(); queue->desc_pool_id = queue->ring_id; } #else static inline void dp_tx_get_queue(struct dp_vdev *vdev, qdf_nbuf_t nbuf, struct dp_tx_queue *queue) { queue->ring_id = qdf_get_cpu(); queue->desc_pool_id = queue->ring_id; } #endif #endif /** * dp_tx_get_hal_ring_hdl() - Get the hal_tx_ring_hdl for data transmission * @soc: DP soc structure pointer * @ring_id: Transmit Queue/ring_id to be used when XPS is enabled * * Return: HAL ring handle */ static inline hal_ring_handle_t dp_tx_get_hal_ring_hdl(struct dp_soc *soc, uint8_t ring_id) { if (ring_id == soc->num_tcl_data_rings) return soc->tcl_cmd_credit_ring.hal_srng; return soc->tcl_data_ring[ring_id].hal_srng; } #else /* QCA_OL_TX_MULTIQ_SUPPORT */ #ifdef TX_MULTI_TCL #ifdef IPA_OFFLOAD static inline void dp_tx_get_queue(struct dp_vdev *vdev, qdf_nbuf_t nbuf, struct dp_tx_queue *queue) { /* get flow id */ queue->desc_pool_id = DP_TX_GET_DESC_POOL_ID(vdev); if (vdev->pdev->soc->wlan_cfg_ctx->ipa_enabled && !ipa_config_is_opt_wifi_dp_enabled()) queue->ring_id = DP_TX_GET_RING_ID(vdev); else queue->ring_id = (qdf_nbuf_get_queue_mapping(nbuf) % vdev->pdev->soc->num_tcl_data_rings); } #else static inline void dp_tx_get_queue(struct dp_vdev *vdev, qdf_nbuf_t nbuf, struct dp_tx_queue *queue) { /* get flow id */ queue->desc_pool_id = DP_TX_GET_DESC_POOL_ID(vdev); queue->ring_id = (qdf_nbuf_get_queue_mapping(nbuf) % vdev->pdev->soc->num_tcl_data_rings); } #endif #else static inline void dp_tx_get_queue(struct dp_vdev *vdev, qdf_nbuf_t nbuf, struct dp_tx_queue *queue) { /* get flow id */ queue->desc_pool_id = DP_TX_GET_DESC_POOL_ID(vdev); queue->ring_id = DP_TX_GET_RING_ID(vdev); } #endif static inline hal_ring_handle_t dp_tx_get_hal_ring_hdl(struct dp_soc *soc, uint8_t ring_id) { return soc->tcl_data_ring[ring_id].hal_srng; } #endif #ifdef QCA_OL_TX_LOCK_LESS_ACCESS /** * dp_tx_hal_ring_access_start() - hal_tx_ring access for data transmission * @soc: DP soc structure pointer * @hal_ring_hdl: HAL ring handle * * Return: None */ static inline int dp_tx_hal_ring_access_start(struct dp_soc *soc, hal_ring_handle_t hal_ring_hdl) { return hal_srng_access_start_unlocked(soc->hal_soc, hal_ring_hdl); } /** * dp_tx_hal_ring_access_end() - hal_tx_ring access for data transmission * @soc: DP soc structure pointer * @hal_ring_hdl: HAL ring handle * * Return: None */ static inline void dp_tx_hal_ring_access_end(struct dp_soc *soc, hal_ring_handle_t hal_ring_hdl) { hal_srng_access_end_unlocked(soc->hal_soc, hal_ring_hdl); } /** * dp_tx_hal_ring_access_end_reap() - hal_tx_ring access for data transmission * @soc: DP soc structure pointer * @hal_ring_hdl: HAL ring handle * * Return: None */ static inline void dp_tx_hal_ring_access_end_reap(struct dp_soc *soc, hal_ring_handle_t hal_ring_hdl) { } #else static inline int dp_tx_hal_ring_access_start(struct dp_soc *soc, hal_ring_handle_t hal_ring_hdl) { return hal_srng_access_start(soc->hal_soc, hal_ring_hdl); } static inline void dp_tx_hal_ring_access_end(struct dp_soc *soc, hal_ring_handle_t hal_ring_hdl) { hal_srng_access_end(soc->hal_soc, hal_ring_hdl); } static inline void dp_tx_hal_ring_access_end_reap(struct dp_soc *soc, hal_ring_handle_t hal_ring_hdl) { hal_srng_access_end_reap(soc->hal_soc, hal_ring_hdl); } #endif #ifdef ATH_TX_PRI_OVERRIDE #define DP_TX_TID_OVERRIDE(_msdu_info, _nbuf) \ ((_msdu_info)->tid = qdf_nbuf_get_priority(_nbuf)) #else #define DP_TX_TID_OVERRIDE(_msdu_info, _nbuf) #endif /* TODO TX_FEATURE_NOT_YET */ static inline void dp_tx_comp_process_exception(struct dp_tx_desc_s *tx_desc) { return; } /* TODO TX_FEATURE_NOT_YET */ /** * dp_tx_desc_flush() - release resources associated * to TX Desc * * @pdev: Handle to DP pdev structure * @vdev: virtual device instance * NULL: no specific Vdev is required and check all allcated TX desc * on this pdev. * Non-NULL: only check the allocated TX Desc associated to this Vdev. * * @force_free: * true: flush the TX desc. * false: only reset the Vdev in each allocated TX desc * that associated to current Vdev. * * This function will go through the TX desc pool to flush * the outstanding TX data or reset Vdev to NULL in associated TX * Desc. */ void dp_tx_desc_flush(struct dp_pdev *pdev, struct dp_vdev *vdev, bool force_free); /** * dp_tx_vdev_attach() - attach vdev to dp tx * @vdev: virtual device instance * * Return: QDF_STATUS_SUCCESS: success * QDF_STATUS_E_RESOURCES: Error return */ QDF_STATUS dp_tx_vdev_attach(struct dp_vdev *vdev); /** * dp_tx_vdev_detach() - detach vdev from dp tx * @vdev: virtual device instance * * Return: QDF_STATUS_SUCCESS: success * QDF_STATUS_E_RESOURCES: Error return */ QDF_STATUS dp_tx_vdev_detach(struct dp_vdev *vdev); /** * dp_tx_vdev_update_search_flags() - Update vdev flags as per opmode * @vdev: virtual device instance * * Return: void * */ void dp_tx_vdev_update_search_flags(struct dp_vdev *vdev); /** * dp_soc_tx_desc_sw_pools_alloc() - Allocate tx descriptor pool memory * @soc: core txrx main context * * This function allocates memory for following descriptor pools * 1. regular sw tx descriptor pools (static pools) * 2. TX extension descriptor pools (ME, RAW, TSO etc...) * 3. TSO descriptor pools * * Return: QDF_STATUS_SUCCESS: success * QDF_STATUS_E_RESOURCES: Error return */ QDF_STATUS dp_soc_tx_desc_sw_pools_alloc(struct dp_soc *soc); /** * dp_soc_tx_desc_sw_pools_init() - Initialise TX descriptor pools * @soc: core txrx main context * * This function initializes the following TX descriptor pools * 1. regular sw tx descriptor pools (static pools) * 2. TX extension descriptor pools (ME, RAW, TSO etc...) * 3. TSO descriptor pools * * Return: QDF_STATUS_SUCCESS: success * QDF_STATUS_E_RESOURCES: Error return */ QDF_STATUS dp_soc_tx_desc_sw_pools_init(struct dp_soc *soc); /** * dp_soc_tx_desc_sw_pools_free() - free all TX descriptors * @soc: core txrx main context * * This function frees all tx related descriptors as below * 1. Regular TX descriptors (static pools) * 2. extension TX descriptors (used for ME, RAW, TSO etc...) * 3. TSO descriptors * */ void dp_soc_tx_desc_sw_pools_free(struct dp_soc *soc); /** * dp_soc_tx_desc_sw_pools_deinit() - de-initialize all TX descriptors * @soc: core txrx main context * * This function de-initializes all tx related descriptors as below * 1. Regular TX descriptors (static pools) * 2. extension TX descriptors (used for ME, RAW, TSO etc...) * 3. TSO descriptors * */ void dp_soc_tx_desc_sw_pools_deinit(struct dp_soc *soc); #ifndef WLAN_SOFTUMAC_SUPPORT /** * dp_handle_wbm_internal_error() - handles wbm_internal_error case * @soc: core DP main context * @hal_desc: hal descriptor * @buf_type: indicates if the buffer is of type link disc or msdu * * wbm_internal_error is seen in following scenarios : * * 1. Null pointers detected in WBM_RELEASE_RING descriptors * 2. Null pointers detected during delinking process * * Some null pointer cases: * * a. MSDU buffer pointer is NULL * b. Next_MSDU_Link_Desc pointer is NULL, with no last msdu flag * c. MSDU buffer pointer is NULL or Next_Link_Desc pointer is NULL * * Return: None */ void dp_handle_wbm_internal_error(struct dp_soc *soc, void *hal_desc, uint32_t buf_type); #endif #else /* QCA_HOST_MODE_WIFI_DISABLED */ static inline QDF_STATUS dp_soc_tx_desc_sw_pools_alloc(struct dp_soc *soc) { return QDF_STATUS_SUCCESS; } static inline QDF_STATUS dp_soc_tx_desc_sw_pools_init(struct dp_soc *soc) { return QDF_STATUS_SUCCESS; } static inline void dp_soc_tx_desc_sw_pools_free(struct dp_soc *soc) { } static inline void dp_soc_tx_desc_sw_pools_deinit(struct dp_soc *soc) { } static inline void dp_tx_desc_flush(struct dp_pdev *pdev, struct dp_vdev *vdev, bool force_free) { } static inline QDF_STATUS dp_tx_vdev_attach(struct dp_vdev *vdev) { return QDF_STATUS_SUCCESS; } static inline QDF_STATUS dp_tx_vdev_detach(struct dp_vdev *vdev) { return QDF_STATUS_SUCCESS; } static inline void dp_tx_vdev_update_search_flags(struct dp_vdev *vdev) { } #endif /* QCA_HOST_MODE_WIFI_DISABLED */ #if defined(QCA_SUPPORT_LATENCY_CAPTURE) || \ defined(QCA_TX_CAPTURE_SUPPORT) || \ defined(QCA_MCOPY_SUPPORT) #ifdef FEATURE_PERPKT_INFO /** * dp_get_completion_indication_for_stack() - send completion to stack * @soc : dp_soc handle * @pdev: dp_pdev handle * @txrx_peer: dp peer handle * @ts: transmit completion status structure * @netbuf: Buffer pointer for free * @time_latency: * * This function is used for indication whether buffer needs to be * sent to stack for freeing or not * * Return: QDF_STATUS */ QDF_STATUS dp_get_completion_indication_for_stack(struct dp_soc *soc, struct dp_pdev *pdev, struct dp_txrx_peer *txrx_peer, struct hal_tx_completion_status *ts, qdf_nbuf_t netbuf, uint64_t time_latency); /** * dp_send_completion_to_stack() - send completion to stack * @soc : dp_soc handle * @pdev: dp_pdev handle * @peer_id: peer_id of the peer for which completion came * @ppdu_id: ppdu_id * @netbuf: Buffer pointer for free * * This function is used to send completion to stack * to free buffer * * Return: QDF_STATUS */ void dp_send_completion_to_stack(struct dp_soc *soc, struct dp_pdev *pdev, uint16_t peer_id, uint32_t ppdu_id, qdf_nbuf_t netbuf); #endif #else static inline QDF_STATUS dp_get_completion_indication_for_stack(struct dp_soc *soc, struct dp_pdev *pdev, struct dp_txrx_peer *peer, struct hal_tx_completion_status *ts, qdf_nbuf_t netbuf, uint64_t time_latency) { return QDF_STATUS_E_NOSUPPORT; } static inline void dp_send_completion_to_stack(struct dp_soc *soc, struct dp_pdev *pdev, uint16_t peer_id, uint32_t ppdu_id, qdf_nbuf_t netbuf) { } #endif #ifdef WLAN_FEATURE_PKT_CAPTURE_V2 /** * dp_send_completion_to_pkt_capture() - send tx completion to packet capture * @soc: dp_soc handle * @desc: Tx Descriptor * @ts: HAL Tx completion descriptor contents * * This function is used to send tx completion to packet capture */ void dp_send_completion_to_pkt_capture(struct dp_soc *soc, struct dp_tx_desc_s *desc, struct hal_tx_completion_status *ts); #else static inline void dp_send_completion_to_pkt_capture(struct dp_soc *soc, struct dp_tx_desc_s *desc, struct hal_tx_completion_status *ts) { } #endif #ifndef QCA_HOST_MODE_WIFI_DISABLED #ifdef WLAN_DP_FEATURE_SW_LATENCY_MGR /** * dp_tx_update_stats() - Update soc level tx stats * @soc: DP soc handle * @tx_desc: TX descriptor reference * @ring_id: TCL ring id * * Return: none */ void dp_tx_update_stats(struct dp_soc *soc, struct dp_tx_desc_s *tx_desc, uint8_t ring_id); /** * dp_tx_attempt_coalescing() - Check and attempt TCL register write coalescing * @soc: Datapath soc handle * @vdev: DP vdev handle * @tx_desc: tx packet descriptor * @tid: TID for pkt transmission * @msdu_info: MSDU info of tx packet * @ring_id: TCL ring id * * Return: 1, if coalescing is to be done * 0, if coalescing is not to be done */ int dp_tx_attempt_coalescing(struct dp_soc *soc, struct dp_vdev *vdev, struct dp_tx_desc_s *tx_desc, uint8_t tid, struct dp_tx_msdu_info_s *msdu_info, uint8_t ring_id); /** * dp_tx_ring_access_end() - HAL ring access end for data transmission * @soc: Datapath soc handle * @hal_ring_hdl: HAL ring handle * @coalesce: Coalesce the current write or not * * Return: none */ void dp_tx_ring_access_end(struct dp_soc *soc, hal_ring_handle_t hal_ring_hdl, int coalesce); #else /** * dp_tx_update_stats() - Update soc level tx stats * @soc: DP soc handle * @tx_desc: TX descriptor reference * @ring_id: TCL ring id * * Return: none */ static inline void dp_tx_update_stats(struct dp_soc *soc, struct dp_tx_desc_s *tx_desc, uint8_t ring_id){ } static inline void dp_tx_ring_access_end(struct dp_soc *soc, hal_ring_handle_t hal_ring_hdl, int coalesce) { dp_tx_hal_ring_access_end(soc, hal_ring_hdl); } static inline int dp_tx_attempt_coalescing(struct dp_soc *soc, struct dp_vdev *vdev, struct dp_tx_desc_s *tx_desc, uint8_t tid, struct dp_tx_msdu_info_s *msdu_info, uint8_t ring_id) { return 0; } #endif /* WLAN_DP_FEATURE_SW_LATENCY_MGR */ #ifdef FEATURE_RUNTIME_PM /** * dp_set_rtpm_tput_policy_requirement() - Update RTPM throughput policy * @soc_hdl: DP soc handle * @is_high_tput: flag to indicate whether throughput is high * * Return: none */ static inline void dp_set_rtpm_tput_policy_requirement(struct cdp_soc_t *soc_hdl, bool is_high_tput) { struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl); qdf_atomic_set(&soc->rtpm_high_tput_flag, is_high_tput); } /** * dp_tx_ring_access_end_wrapper() - Wrapper for ring access end * @soc: Datapath soc handle * @hal_ring_hdl: HAL ring handle * @coalesce: Coalesce the current write or not * * Feature-specific wrapper for HAL ring access end for data * transmission * * Return: none */ void dp_tx_ring_access_end_wrapper(struct dp_soc *soc, hal_ring_handle_t hal_ring_hdl, int coalesce); #else #ifdef DP_POWER_SAVE void dp_tx_ring_access_end_wrapper(struct dp_soc *soc, hal_ring_handle_t hal_ring_hdl, int coalesce); #else static inline void dp_tx_ring_access_end_wrapper(struct dp_soc *soc, hal_ring_handle_t hal_ring_hdl, int coalesce) { dp_tx_ring_access_end(soc, hal_ring_hdl, coalesce); } #endif static inline void dp_set_rtpm_tput_policy_requirement(struct cdp_soc_t *soc_hdl, bool is_high_tput) { } #endif #endif /* QCA_HOST_MODE_WIFI_DISABLED */ #ifdef DP_TX_HW_DESC_HISTORY static inline void dp_tx_hw_desc_update_evt(uint8_t *hal_tx_desc_cached, hal_ring_handle_t hal_ring_hdl, struct dp_soc *soc, uint8_t ring_id) { struct dp_tx_hw_desc_history *tx_hw_desc_history = &soc->tx_hw_desc_history; struct dp_tx_hw_desc_evt *evt; uint32_t idx = 0; uint16_t slot = 0; if (!tx_hw_desc_history->allocated) return; dp_get_frag_hist_next_atomic_idx(&tx_hw_desc_history->index, &idx, &slot, DP_TX_HW_DESC_HIST_SLOT_SHIFT, DP_TX_HW_DESC_HIST_PER_SLOT_MAX, DP_TX_HW_DESC_HIST_MAX); evt = &tx_hw_desc_history->entry[slot][idx]; qdf_mem_copy(evt->tcl_desc, hal_tx_desc_cached, HAL_TX_DESC_LEN_BYTES); evt->posted = qdf_get_log_timestamp(); evt->tcl_ring_id = ring_id; hal_get_sw_hptp(soc->hal_soc, hal_ring_hdl, &evt->tp, &evt->hp); } #else static inline void dp_tx_hw_desc_update_evt(uint8_t *hal_tx_desc_cached, hal_ring_handle_t hal_ring_hdl, struct dp_soc *soc, uint8_t ring_id) { } #endif #if defined(WLAN_FEATURE_TSF_AUTO_REPORT) || defined(WLAN_CONFIG_TX_DELAY) /** * dp_tx_compute_hw_delay_us() - Compute hardware Tx completion delay * @ts: Tx completion status * @delta_tsf: Difference between TSF clock and qtimer * @delay_us: Delay in microseconds * * Return: QDF_STATUS_SUCCESS : Success * QDF_STATUS_E_INVAL : Tx completion status is invalid or * delay_us is NULL * QDF_STATUS_E_FAILURE : Error in delay calculation */ QDF_STATUS dp_tx_compute_hw_delay_us(struct hal_tx_completion_status *ts, uint32_t delta_tsf, uint32_t *delay_us); /** * dp_set_delta_tsf() - Set delta_tsf to dp_soc structure * @soc_hdl: cdp soc pointer * @vdev_id: vdev id * @delta_tsf: difference between TSF clock and qtimer * * Return: None */ void dp_set_delta_tsf(struct cdp_soc_t *soc_hdl, uint8_t vdev_id, uint32_t delta_tsf); #endif #ifdef WLAN_FEATURE_TSF_UPLINK_DELAY /** * dp_set_tsf_ul_delay_report() - Enable or disable reporting uplink delay * @soc_hdl: cdp soc pointer * @vdev_id: vdev id * @enable: true to enable and false to disable * * Return: QDF_STATUS */ QDF_STATUS dp_set_tsf_ul_delay_report(struct cdp_soc_t *soc_hdl, uint8_t vdev_id, bool enable); /** * dp_get_uplink_delay() - Get uplink delay value * @soc_hdl: cdp soc pointer * @vdev_id: vdev id * @val: pointer to save uplink delay value * * Return: QDF_STATUS */ QDF_STATUS dp_get_uplink_delay(struct cdp_soc_t *soc_hdl, uint8_t vdev_id, uint32_t *val); #endif /* WLAN_FEATURE_TSF_UPLINK_TSF */ /** * dp_tx_pkt_tracepoints_enabled() - Get the state of tx pkt tracepoint * * Return: True if any tx pkt tracepoint is enabled else false */ static inline bool dp_tx_pkt_tracepoints_enabled(void) { return (qdf_trace_dp_tx_comp_tcp_pkt_enabled() || qdf_trace_dp_tx_comp_udp_pkt_enabled() || qdf_trace_dp_tx_comp_pkt_enabled()); } #ifdef QCA_SUPPORT_DP_GLOBAL_CTX static inline struct dp_tx_desc_pool_s *dp_get_tx_desc_pool(struct dp_soc *soc, uint8_t pool_id) { struct dp_global_context *dp_global = NULL; dp_global = wlan_objmgr_get_global_ctx(); return dp_global->tx_desc[soc->arch_id][pool_id]; } static inline struct dp_tx_desc_pool_s *dp_get_spcl_tx_desc_pool(struct dp_soc *soc, uint8_t pool_id) { struct dp_global_context *dp_global = NULL; dp_global = wlan_objmgr_get_global_ctx(); return dp_global->spcl_tx_desc[soc->arch_id][pool_id]; } #else static inline struct dp_tx_desc_pool_s *dp_get_tx_desc_pool(struct dp_soc *soc, uint8_t pool_id) { return &soc->tx_desc[pool_id]; } static inline struct dp_tx_desc_pool_s *dp_get_spcl_tx_desc_pool(struct dp_soc *soc, uint8_t pool_id) { return &soc->tx_desc[pool_id]; } #endif #ifdef DP_TX_TRACKING /** * dp_tx_desc_set_timestamp() - set timestamp in tx descriptor * @tx_desc: tx descriptor * * Return: None */ static inline void dp_tx_desc_set_timestamp(struct dp_tx_desc_s *tx_desc) { tx_desc->timestamp_tick = qdf_system_ticks(); } /** * dp_tx_desc_check_corruption() - Verify magic pattern in tx descriptor * @tx_desc: tx descriptor * * Check for corruption in tx descriptor, if magic pattern is not matching * trigger self recovery * * Return: none */ void dp_tx_desc_check_corruption(struct dp_tx_desc_s *tx_desc); #else static inline void dp_tx_desc_set_timestamp(struct dp_tx_desc_s *tx_desc) { } static inline void dp_tx_desc_check_corruption(struct dp_tx_desc_s *tx_desc) { } #endif #ifndef CONFIG_SAWF static inline bool dp_sawf_tag_valid_get(qdf_nbuf_t nbuf) { return false; } #endif #ifdef HW_TX_DELAY_STATS_ENABLE /** * dp_tx_desc_set_ktimestamp() - set kernel timestamp in tx descriptor * @vdev: DP vdev handle * @tx_desc: tx descriptor * * Return: true when descriptor is timestamped, false otherwise */ static inline bool dp_tx_desc_set_ktimestamp(struct dp_vdev *vdev, struct dp_tx_desc_s *tx_desc) { if (qdf_unlikely(vdev->pdev->delay_stats_flag) || qdf_unlikely(vdev->pdev->soc->wlan_cfg_ctx->pext_stats_enabled) || qdf_unlikely(dp_tx_pkt_tracepoints_enabled()) || qdf_unlikely(vdev->pdev->soc->peerstats_enabled) || qdf_unlikely(dp_is_vdev_tx_delay_stats_enabled(vdev)) || qdf_unlikely(wlan_cfg_is_peer_jitter_stats_enabled(vdev->pdev->soc->wlan_cfg_ctx))) { tx_desc->timestamp = qdf_ktime_real_get(); return true; } return false; } #else static inline bool dp_tx_desc_set_ktimestamp(struct dp_vdev *vdev, struct dp_tx_desc_s *tx_desc) { if (qdf_unlikely(vdev->pdev->delay_stats_flag) || qdf_unlikely(vdev->pdev->soc->wlan_cfg_ctx->pext_stats_enabled) || qdf_unlikely(dp_tx_pkt_tracepoints_enabled()) || qdf_unlikely(vdev->pdev->soc->peerstats_enabled) || qdf_unlikely(wlan_cfg_is_peer_jitter_stats_enabled(vdev->pdev->soc->wlan_cfg_ctx))) { tx_desc->timestamp = qdf_ktime_real_get(); return true; } return false; } #endif #ifdef CONFIG_DP_PKT_ADD_TIMESTAMP /** * dp_pkt_add_timestamp() - add timestamp in data payload * * @vdev: dp vdev * @index: index to decide offset in payload * @time: timestamp to add in data payload * @nbuf: network buffer * * Return: none */ void dp_pkt_add_timestamp(struct dp_vdev *vdev, enum qdf_pkt_timestamp_index index, uint64_t time, qdf_nbuf_t nbuf); /** * dp_pkt_get_timestamp() - get current system time * * @time: return current system time * * Return: none */ void dp_pkt_get_timestamp(uint64_t *time); #else #define dp_pkt_add_timestamp(vdev, index, time, nbuf) static inline void dp_pkt_get_timestamp(uint64_t *time) { } #endif #ifdef CONFIG_WLAN_SYSFS_MEM_STATS /** * dp_update_tx_desc_stats - Update the increase or decrease in * outstanding tx desc count * values on pdev and soc * @pdev: DP pdev handle * * Return: void */ static inline void dp_update_tx_desc_stats(struct dp_pdev *pdev) { int32_t tx_descs_cnt = qdf_atomic_read(&pdev->num_tx_outstanding); if (pdev->tx_descs_max < tx_descs_cnt) pdev->tx_descs_max = tx_descs_cnt; qdf_mem_tx_desc_cnt_update(pdev->num_tx_outstanding, pdev->tx_descs_max); } #else /* CONFIG_WLAN_SYSFS_MEM_STATS */ static inline void dp_update_tx_desc_stats(struct dp_pdev *pdev) { } #endif /* CONFIG_WLAN_SYSFS_MEM_STATS */ #ifdef QCA_SUPPORT_DP_GLOBAL_CTX /** * dp_tx_get_global_desc_in_use() - read global descriptors in usage * @dp_global: Datapath global context * * Return: global descriptors in use */ static inline int32_t dp_tx_get_global_desc_in_use(struct dp_global_context *dp_global) { return qdf_atomic_read(&dp_global->global_descriptor_in_use); } #endif #ifdef QCA_TX_LIMIT_CHECK static inline bool is_spl_packet(qdf_nbuf_t nbuf) { if (qdf_nbuf_is_ipv4_eapol_pkt(nbuf)) return true; return false; } #ifdef QCA_SUPPORT_DP_GLOBAL_CTX /** * dp_tx_limit_check - Check if allocated tx descriptors reached * global max reg limit and pdev max reg limit for regular packets. Also check * if the limit is reached for special packets. * @vdev: DP vdev handle * @nbuf: network buffer * * Return: true if allocated tx descriptors reached max limit for regular * packets and in case of special packets, if the limit is reached max * configured vale for the soc/pdev, else false */ static inline bool dp_tx_limit_check(struct dp_vdev *vdev, qdf_nbuf_t nbuf) { return false; } static inline bool __dp_tx_limit_check(struct dp_soc *soc) { return false; } #else /** * is_dp_spl_tx_limit_reached - Check if the packet is a special packet to allow * allocation if allocated tx descriptors are within the soc max limit * and pdev max limit. * @vdev: DP vdev handle * @nbuf: network buffer * * Return: true if allocated tx descriptors reached max configured value, else * false */ static inline bool is_dp_spl_tx_limit_reached(struct dp_vdev *vdev, qdf_nbuf_t nbuf) { struct dp_pdev *pdev = vdev->pdev; struct dp_soc *soc = pdev->soc; if (is_spl_packet(nbuf)) { if (qdf_atomic_read(&soc->num_tx_outstanding) >= soc->num_tx_allowed) return true; if (qdf_atomic_read(&pdev->num_tx_outstanding) >= pdev->num_tx_allowed) return true; return false; } return true; } static inline bool __dp_tx_limit_check(struct dp_soc *soc) { return (qdf_atomic_read(&soc->num_tx_outstanding) >= soc->num_reg_tx_allowed); } /** * dp_tx_limit_check - Check if allocated tx descriptors reached * soc max reg limit and pdev max reg limit for regular packets. Also check if * the limit is reached for special packets. * @vdev: DP vdev handle * @nbuf: network buffer * * Return: true if allocated tx descriptors reached max limit for regular * packets and in case of special packets, if the limit is reached max * configured vale for the soc/pdev, else false */ static inline bool dp_tx_limit_check(struct dp_vdev *vdev, qdf_nbuf_t nbuf) { struct dp_pdev *pdev = vdev->pdev; struct dp_soc *soc = pdev->soc; uint8_t xmit_type = qdf_nbuf_get_vdev_xmit_type(nbuf); if (__dp_tx_limit_check(soc)) { if (is_dp_spl_tx_limit_reached(vdev, nbuf)) { dp_tx_info("queued packets are more than max tx, drop the frame"); DP_STATS_INC(vdev, tx_i[xmit_type].dropped.desc_na.num, 1); return true; } } if (qdf_atomic_read(&pdev->num_tx_outstanding) >= pdev->num_reg_tx_allowed) { if (is_dp_spl_tx_limit_reached(vdev, nbuf)) { dp_tx_info("queued packets are more than max tx, drop the frame"); DP_STATS_INC(vdev, tx_i[xmit_type].dropped.desc_na.num, 1); DP_STATS_INC(vdev, tx_i[xmit_type].dropped.desc_na_exc_outstand.num, 1); return true; } } return false; } #endif /** * dp_tx_exception_limit_check - Check if allocated tx exception descriptors * reached soc max limit * @vdev: DP vdev handle * @xmit_type: xmit type of packet - MLD/Link * * Return: true if allocated tx descriptors reached max configured value, else * false */ static inline bool dp_tx_exception_limit_check(struct dp_vdev *vdev, uint8_t xmit_type) { struct dp_pdev *pdev = vdev->pdev; struct dp_soc *soc = pdev->soc; if (qdf_atomic_read(&soc->num_tx_exception) >= soc->num_msdu_exception_desc) { dp_info("exc packets are more than max drop the exc pkt"); DP_STATS_INC(vdev, tx_i[xmit_type].dropped.exc_desc_na.num, 1); return true; } return false; } #ifdef QCA_SUPPORT_DP_GLOBAL_CTX /** * dp_tx_outstanding_inc - Inc outstanding tx desc values on global and pdev * @pdev: DP pdev handle * * Return: void */ static inline void dp_tx_outstanding_inc(struct dp_pdev *pdev) { } static inline void __dp_tx_outstanding_inc(struct dp_soc *soc) { } static inline void __dp_tx_outstanding_dec(struct dp_soc *soc) { } /** * dp_tx_outstanding_dec - Dec outstanding tx desc values on global and pdev * @pdev: DP pdev handle * * Return: void */ static inline void dp_tx_outstanding_dec(struct dp_pdev *pdev) { } /** * dp_tx_outstanding_sub - Subtract outstanding tx desc values on pdev * @pdev: DP pdev handle * @count: count of descs to subtract from outstanding * * Return: void */ static inline void dp_tx_outstanding_sub(struct dp_pdev *pdev, uint32_t count) { } #else static inline void __dp_tx_outstanding_inc(struct dp_soc *soc) { qdf_atomic_inc(&soc->num_tx_outstanding); } /** * dp_tx_outstanding_inc - Increment outstanding tx desc values on pdev and soc * @pdev: DP pdev handle * * Return: void */ static inline void dp_tx_outstanding_inc(struct dp_pdev *pdev) { struct dp_soc *soc = pdev->soc; __dp_tx_outstanding_inc(soc); qdf_atomic_inc(&pdev->num_tx_outstanding); dp_update_tx_desc_stats(pdev); } static inline void __dp_tx_outstanding_dec(struct dp_soc *soc) { qdf_atomic_dec(&soc->num_tx_outstanding); } /** * dp_tx_outstanding_dec - Decrement outstanding tx desc values on pdev and soc * @pdev: DP pdev handle * * Return: void */ static inline void dp_tx_outstanding_dec(struct dp_pdev *pdev) { struct dp_soc *soc = pdev->soc; __dp_tx_outstanding_dec(soc); qdf_atomic_dec(&pdev->num_tx_outstanding); dp_update_tx_desc_stats(pdev); } /** * __dp_tx_outstanding_sub - Sub outstanding tx desc values from soc * @soc: DP soc handle * @count: count of descs to subtract from outstanding * * Return: void */ static inline void __dp_tx_outstanding_sub(struct dp_soc *soc, uint32_t count) { qdf_atomic_sub(count, &soc->num_tx_outstanding); } /** * dp_tx_outstanding_sub - Subtract outstanding tx desc values on pdev * @pdev: DP pdev handle * @count: count of descs to subtract from outstanding * * Return: void */ static inline void dp_tx_outstanding_sub(struct dp_pdev *pdev, uint32_t count) { struct dp_soc *soc = pdev->soc; __dp_tx_outstanding_sub(soc, count); qdf_atomic_sub(count, &pdev->num_tx_outstanding); dp_update_tx_desc_stats(pdev); } #endif /* QCA_SUPPORT_DP_GLOBAL_CTX */ #else //QCA_TX_LIMIT_CHECK static inline bool __dp_tx_limit_check(struct dp_soc *soc) { return false; } static inline bool dp_tx_limit_check(struct dp_vdev *vdev, qdf_nbuf_t nbuf) { return false; } static inline bool dp_tx_exception_limit_check(struct dp_vdev *vdev, uint8_t xmit_type) { return false; } static inline void __dp_tx_outstanding_inc(struct dp_soc *soc) { } static inline void dp_tx_outstanding_inc(struct dp_pdev *pdev) { qdf_atomic_inc(&pdev->num_tx_outstanding); dp_update_tx_desc_stats(pdev); } static inline void __dp_tx_outstanding_dec(struct dp_soc *soc) { } static inline void dp_tx_outstanding_dec(struct dp_pdev *pdev) { qdf_atomic_dec(&pdev->num_tx_outstanding); dp_update_tx_desc_stats(pdev); } static inline void __dp_tx_outstanding_sub(struct dp_soc *soc, uint32_t count) { } /** * dp_tx_outstanding_sub - Subtract outstanding tx desc values on pdev * @pdev: DP pdev handle * @count: count of descs to subtract from outstanding * * Return: void */ static inline void dp_tx_outstanding_sub(struct dp_pdev *pdev, uint32_t count) { qdf_atomic_sub(count, &pdev->num_tx_outstanding); dp_update_tx_desc_stats(pdev); } #endif //QCA_TX_LIMIT_CHECK /** * dp_tx_get_pkt_len() - Get the packet length of a msdu * @tx_desc: tx descriptor * * Return: Packet length of a msdu. If the packet is fragmented, * it will return the single fragment length. * * In TSO mode, the msdu from stack will be fragmented into small * fragments and each of these new fragments will be transmitted * as an individual msdu. * * Please note that the length of a msdu from stack may be smaller * than the length of the total length of the fragments it has been * fragmentted because each of the fragments has a nbuf header. */ static inline uint32_t dp_tx_get_pkt_len(struct dp_tx_desc_s *tx_desc) { return tx_desc->frm_type == dp_tx_frm_tso ? tx_desc->msdu_ext_desc->tso_desc->seg.total_len : tx_desc->length; } #ifdef FEATURE_RUNTIME_PM static inline int dp_get_rtpm_tput_policy_requirement(struct dp_soc *soc) { return qdf_atomic_read(&soc->rtpm_high_tput_flag) && (hif_rtpm_get_state() <= HIF_RTPM_STATE_ON); } #else static inline int dp_get_rtpm_tput_policy_requirement(struct dp_soc *soc) { return 0; } #endif #if defined WLAN_FEATURE_11BE_MLO && defined DP_MLO_LINK_STATS_SUPPORT /** * dp_tx_set_nbuf_band() - Set band info in nbuf cb * @nbuf: nbuf pointer * @txrx_peer: txrx_peer pointer * @link_id: Peer Link ID * * Return: None */ static inline void dp_tx_set_nbuf_band(qdf_nbuf_t nbuf, struct dp_txrx_peer *txrx_peer, uint8_t link_id) { qdf_nbuf_tx_set_band(nbuf, txrx_peer->band[link_id]); } #else static inline void dp_tx_set_nbuf_band(qdf_nbuf_t nbuf, struct dp_txrx_peer *txrx_peer, uint8_t link_id) { } #endif #ifdef WLAN_FEATURE_TX_LATENCY_STATS /** * dp_tx_latency_stats_fetch() - fetch transmit latency statistics for * specified link mac address * @soc_hdl: Handle to struct dp_soc * @vdev_id: vdev id * @mac: link mac address of remote peer * @latency: buffer to hold per-link transmit latency statistics * * Return: QDF_STATUS */ QDF_STATUS dp_tx_latency_stats_fetch(struct cdp_soc_t *soc_hdl, uint8_t vdev_id, uint8_t *mac, struct cdp_tx_latency *latency); /** * dp_tx_latency_stats_config() - config transmit latency statistics for * specified vdev * @soc_hdl: Handle to struct dp_soc * @vdev_id: vdev id * @cfg: configuration for transmit latency statistics * * Return: QDF_STATUS */ QDF_STATUS dp_tx_latency_stats_config(struct cdp_soc_t *soc_hdl, uint8_t vdev_id, struct cdp_tx_latency_config *cfg); /** * dp_tx_latency_stats_register_cb() - register transmit latency statistics * callback * @handle: Handle to struct dp_soc * @cb: callback function for transmit latency statistics * * Return: QDF_STATUS */ QDF_STATUS dp_tx_latency_stats_register_cb(struct cdp_soc_t *handle, cdp_tx_latency_cb cb); #endif #endif