/* * Copyright (c) 2019-2021, The Linux Foundation. All rights reserved. * Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include "qdf_module.h" #include "dp_types.h" #include "hal_rx_flow.h" #include "qdf_ssr_driver_dump.h" /** * hal_rx_flow_get_cmem_fse() - Get FSE from CMEM * @hal_soc_hdl: HAL SOC handle * @fse_offset: CMEM FSE offset * @fse: reference where FSE will be copied * @len: length of FSE * * Return: If read is successful or not */ static void hal_rx_flow_get_cmem_fse(hal_soc_handle_t hal_soc_hdl, uint32_t fse_offset, uint32_t *fse, qdf_size_t len) { struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl; if (hal_soc->ops->hal_rx_flow_get_cmem_fse) { return hal_soc->ops->hal_rx_flow_get_cmem_fse( hal_soc, fse_offset, fse, len); } } #if defined(WLAN_SUPPORT_RX_FISA) static inline void hal_rx_dump_fse(struct rx_flow_search_entry *fse, int index) { dp_info("index %d:" " src_ip_127_96 0x%x" " src_ip_95_640 0x%x" " src_ip_63_32 0x%x" " src_ip_31_0 0x%x" " dest_ip_127_96 0x%x" " dest_ip_95_64 0x%x" " dest_ip_63_32 0x%x" " dest_ip_31_0 0x%x" " src_port 0x%x" " dest_port 0x%x" " l4_protocol 0x%x" " valid 0x%x" " reo_destination_indication 0x%x" " msdu_drop 0x%x" " reo_destination_handler 0x%x" " metadata 0x%x" " aggregation_count0x%x" " lro_eligible 0x%x" " msdu_count 0x%x" " msdu_byte_count 0x%x" " timestamp 0x%x" " cumulative_l4_checksum 0x%x" " cumulative_ip_length 0x%x" " tcp_sequence_number 0x%x", index, fse->src_ip_127_96, fse->src_ip_95_64, fse->src_ip_63_32, fse->src_ip_31_0, fse->dest_ip_127_96, fse->dest_ip_95_64, fse->dest_ip_63_32, fse->dest_ip_31_0, fse->src_port, fse->dest_port, fse->l4_protocol, fse->valid, fse->reo_destination_indication, fse->msdu_drop, fse->reo_destination_handler, fse->metadata, fse->aggregation_count, fse->lro_eligible, fse->msdu_count, fse->msdu_byte_count, fse->timestamp, #ifdef QCA_WIFI_KIWI_V2 fse->cumulative_ip_length_pmac1, #else fse->cumulative_l4_checksum, #endif fse->cumulative_ip_length, fse->tcp_sequence_number); } void hal_rx_dump_fse_table(struct hal_rx_fst *fst) { int i = 0; struct rx_flow_search_entry *fse = (struct rx_flow_search_entry *)fst->base_vaddr; dp_info("Number flow table entries %d", fst->add_flow_count); for (i = 0; i < fst->max_entries; i++) { if (fse[i].valid) hal_rx_dump_fse(&fse[i], i); } } void hal_rx_dump_cmem_fse(hal_soc_handle_t hal_soc_hdl, uint32_t fse_offset, int index) { struct rx_flow_search_entry fse = {0}; if (!fse_offset) return; hal_rx_flow_get_cmem_fse(hal_soc_hdl, fse_offset, (uint32_t *)&fse, sizeof(struct rx_flow_search_entry)); if (fse.valid) hal_rx_dump_fse(&fse, index); } #else void hal_rx_dump_fse_table(struct hal_rx_fst *fst) { } void hal_rx_dump_cmem_fse(hal_soc_handle_t hal_soc_hdl, uint32_t fse_offset, int index) { } #endif void * hal_rx_flow_setup_fse(hal_soc_handle_t hal_soc_hdl, struct hal_rx_fst *fst, uint32_t table_offset, struct hal_rx_flow *flow) { struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl; if (hal_soc->ops->hal_rx_flow_setup_fse) { return hal_soc->ops->hal_rx_flow_setup_fse((uint8_t *)fst, table_offset, (uint8_t *)flow); } return NULL; } qdf_export_symbol(hal_rx_flow_setup_fse); uint32_t hal_rx_flow_setup_cmem_fse(hal_soc_handle_t hal_soc_hdl, uint32_t cmem_ba, uint32_t table_offset, struct hal_rx_flow *flow) { struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl; if (hal_soc->ops->hal_rx_flow_setup_cmem_fse) { return hal_soc->ops->hal_rx_flow_setup_cmem_fse( hal_soc, cmem_ba, table_offset, (uint8_t *)flow); } return 0; } qdf_export_symbol(hal_rx_flow_setup_cmem_fse); uint32_t hal_rx_flow_get_cmem_fse_timestamp(hal_soc_handle_t hal_soc_hdl, uint32_t fse_offset) { struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl; if (hal_soc->ops->hal_rx_flow_get_cmem_fse_ts) { return hal_soc->ops->hal_rx_flow_get_cmem_fse_ts(hal_soc, fse_offset); } return 0; } qdf_export_symbol(hal_rx_flow_get_cmem_fse_timestamp); QDF_STATUS hal_rx_flow_delete_entry(hal_soc_handle_t hal_soc_hdl, struct hal_rx_fst *fst, void *hal_rx_fse) { struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl; if (hal_soc->ops->hal_rx_flow_delete_entry) { return hal_soc->ops->hal_rx_flow_delete_entry((uint8_t *)fst, hal_rx_fse); } return QDF_STATUS_E_NOSUPPORT; } qdf_export_symbol(hal_rx_flow_delete_entry); #ifndef WLAN_SUPPORT_RX_FISA /** * hal_rx_fst_key_configure() - Configure the Toeplitz key in the FST * @fst: Pointer to the Rx Flow Search Table * * Return: Success/Failure */ static void hal_rx_fst_key_configure(struct hal_rx_fst *fst) { uint8_t key_bytes[HAL_FST_HASH_KEY_SIZE_BYTES]; qdf_mem_copy(key_bytes, fst->key, HAL_FST_HASH_KEY_SIZE_BYTES); /* * The Toeplitz algorithm as per the Microsoft spec works in a * “big-endian” manner, using the MSBs of the key to hash the * initial bytes of the input going on to use up the lower order bits * of the key to hash further bytes of the input until the LSBs of the * key are used finally. * * So first, rightshift 320-bit input key 5 times to get 315 MS bits */ key_bitwise_shift_left(key_bytes, HAL_FST_HASH_KEY_SIZE_BYTES, 5); key_reverse(fst->shifted_key, key_bytes, HAL_FST_HASH_KEY_SIZE_BYTES); } #else static void hal_rx_fst_key_configure(struct hal_rx_fst *fst) { } #endif /** * hal_rx_fst_get_base() - Retrieve the virtual base address of the Rx FST * @fst: Pointer to the Rx Flow Search Table * * Return: Success/Failure */ static inline void *hal_rx_fst_get_base(struct hal_rx_fst *fst) { return fst->base_vaddr; } /** * hal_rx_fst_get_fse_size() - Retrieve the size of each entry(flow) in Rx FST * @hal_soc_hdl: HAL SOC handle * * Return: size of each entry/flow in Rx FST */ static inline uint32_t hal_rx_fst_get_fse_size(hal_soc_handle_t hal_soc_hdl) { struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl; if (hal_soc->ops->hal_rx_fst_get_fse_size) return hal_soc->ops->hal_rx_fst_get_fse_size(); return 0; } /** * hal_rx_flow_get_tuple_info() - Get a flow search entry in HW FST * @hal_soc_hdl: HAL SOC handle * @fst: Pointer to the Rx Flow Search Table * @hal_hash: HAL 5 tuple hash * @tuple_info: 5-tuple info of the flow returned to the caller * * Return: Success/Failure */ void * hal_rx_flow_get_tuple_info(hal_soc_handle_t hal_soc_hdl, struct hal_rx_fst *fst, uint32_t hal_hash, struct hal_flow_tuple_info *tuple_info) { struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl; if (hal_soc->ops->hal_rx_flow_get_tuple_info) return hal_soc->ops->hal_rx_flow_get_tuple_info( (uint8_t *)fst, hal_hash, (uint8_t *)tuple_info); return NULL; } #ifndef WLAN_SUPPORT_RX_FISA /** * hal_flow_toeplitz_create_cache() - Calculate hashes for each possible * byte value with the key taken as is * @fst: FST Handle * * Return: None */ static void hal_flow_toeplitz_create_cache(struct hal_rx_fst *fst) { int bit; int val; int i; uint8_t *key = fst->shifted_key; /* * Initialise to first 32 bits of the key; shift in further key material * through the loop */ uint32_t cur_key = (key[0] << 24) | (key[1] << 16) | (key[2] << 8) | key[3]; for (i = 0; i < HAL_FST_HASH_KEY_SIZE_BYTES; i++) { uint8_t new_key_byte; uint32_t shifted_key[8]; if (i + 4 < HAL_FST_HASH_KEY_SIZE_BYTES) new_key_byte = key[i + 4]; else new_key_byte = 0; shifted_key[0] = cur_key; for (bit = 1; bit < 8; bit++) { /* * For each iteration, shift out one more bit of the * current key and shift in one more bit of the new key * material */ shifted_key[bit] = cur_key << bit | new_key_byte >> (8 - bit); } for (val = 0; val < (1 << 8); val++) { uint32_t hash = 0; int mask; /* * For each bit set in the input, XOR in * the appropriately shifted key */ for (bit = 0, mask = 1 << 7; bit < 8; bit++, mask >>= 1) if ((val & mask)) hash ^= shifted_key[bit]; fst->key_cache[i][val] = hash; } cur_key = cur_key << 8 | new_key_byte; } } #else static void hal_flow_toeplitz_create_cache(struct hal_rx_fst *fst) { } #endif struct hal_rx_fst * hal_rx_fst_attach(hal_soc_handle_t hal_soc_hdl, qdf_device_t qdf_dev, uint64_t *hal_fst_base_paddr, uint16_t max_entries, uint16_t max_search, uint8_t *hash_key, uint64_t fst_cmem_base) { struct hal_rx_fst *fst = qdf_mem_malloc(sizeof(struct hal_rx_fst)); uint32_t fst_entry_size; if (!fst) { QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR, FL("hal fst allocation failed")); return NULL; } qdf_mem_set(fst, sizeof(struct hal_rx_fst), 0); fst->key = hash_key; fst->max_skid_length = max_search; fst->max_entries = max_entries; fst->hash_mask = max_entries - 1; fst_entry_size = hal_rx_fst_get_fse_size(hal_soc_hdl); fst->fst_entry_size = fst_entry_size; QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG, "HAL FST allocation %pK %d * %d\n", fst, fst->max_entries, fst_entry_size); qdf_ssr_driver_dump_register_region("hal_rx_fst", fst, sizeof(*fst)); if (fst_cmem_base == 0) { /* FST is in DDR */ fst->base_vaddr = (uint8_t *)qdf_mem_alloc_consistent(qdf_dev, qdf_dev->dev, (fst->max_entries * fst_entry_size), &fst->base_paddr); if (!fst->base_vaddr) { QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR, FL("hal fst->base_vaddr allocation failed")); qdf_mem_free(fst); return NULL; } qdf_ssr_driver_dump_register_region("dp_fisa_hw_fse_table", fst->base_vaddr, (fst->max_entries * fst_entry_size)); *hal_fst_base_paddr = (uint64_t)fst->base_paddr; } else { *hal_fst_base_paddr = fst_cmem_base; goto out; } QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO, "hal_rx_fst base address 0x%pK", (void *)fst->base_paddr); QDF_TRACE_HEX_DUMP(QDF_MODULE_ID_ANY, QDF_TRACE_LEVEL_DEBUG, (void *)fst->key, HAL_FST_HASH_KEY_SIZE_BYTES); qdf_mem_set((uint8_t *)fst->base_vaddr, (fst->max_entries * fst_entry_size), 0); out: hal_rx_fst_key_configure(fst); hal_flow_toeplitz_create_cache(fst); return fst; } qdf_export_symbol(hal_rx_fst_attach); void hal_rx_fst_detach(hal_soc_handle_t hal_soc_hdl, struct hal_rx_fst *rx_fst, qdf_device_t qdf_dev, uint64_t fst_cmem_base) { if (!rx_fst || !qdf_dev) return; qdf_ssr_driver_dump_unregister_region("hal_rx_fst"); if (fst_cmem_base == 0 && rx_fst->base_vaddr) { qdf_ssr_driver_dump_unregister_region("dp_fisa_hw_fse_table"); qdf_mem_free_consistent(qdf_dev, qdf_dev->dev, rx_fst->max_entries * rx_fst->fst_entry_size, rx_fst->base_vaddr, rx_fst->base_paddr, 0); } qdf_mem_free(rx_fst); } qdf_export_symbol(hal_rx_fst_detach); #ifndef WLAN_SUPPORT_RX_FISA uint32_t hal_flow_toeplitz_hash(void *hal_fst, struct hal_rx_flow *flow) { int i, j; uint32_t hash = 0; struct hal_rx_fst *fst = (struct hal_rx_fst *)hal_fst; uint32_t input[HAL_FST_HASH_KEY_SIZE_WORDS]; uint8_t *tuple; qdf_mem_zero(input, HAL_FST_HASH_KEY_SIZE_BYTES); *(uint32_t *)&input[0] = qdf_htonl(flow->tuple_info.src_ip_127_96); *(uint32_t *)&input[1] = qdf_htonl(flow->tuple_info.src_ip_95_64); *(uint32_t *)&input[2] = qdf_htonl(flow->tuple_info.src_ip_63_32); *(uint32_t *)&input[3] = qdf_htonl(flow->tuple_info.src_ip_31_0); *(uint32_t *)&input[4] = qdf_htonl(flow->tuple_info.dest_ip_127_96); *(uint32_t *)&input[5] = qdf_htonl(flow->tuple_info.dest_ip_95_64); *(uint32_t *)&input[6] = qdf_htonl(flow->tuple_info.dest_ip_63_32); *(uint32_t *)&input[7] = qdf_htonl(flow->tuple_info.dest_ip_31_0); *(uint32_t *)&input[8] = (flow->tuple_info.dest_port << 16) | (flow->tuple_info.src_port); *(uint32_t *)&input[9] = flow->tuple_info.l4_protocol; tuple = (uint8_t *)input; QDF_TRACE_HEX_DUMP(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG, tuple, sizeof(input)); for (i = 0, j = HAL_FST_HASH_DATA_SIZE - 1; i < HAL_FST_HASH_KEY_SIZE_BYTES && j >= 0; i++, j--) { hash ^= fst->key_cache[i][tuple[j]]; } QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_LOW, "Hash value %u %u truncated hash %u\n", hash, (hash >> 12), (hash >> 12) % (fst->max_entries)); hash >>= 12; hash &= (fst->max_entries - 1); return hash; } #else uint32_t hal_flow_toeplitz_hash(void *hal_fst, struct hal_rx_flow *flow) { return 0; } #endif qdf_export_symbol(hal_flow_toeplitz_hash); uint32_t hal_rx_get_hal_hash(struct hal_rx_fst *hal_fst, uint32_t flow_hash) { uint32_t trunc_hash = flow_hash; /* Take care of hash wrap around scenario */ if (flow_hash >= hal_fst->max_entries) trunc_hash &= hal_fst->hash_mask; return trunc_hash; } qdf_export_symbol(hal_rx_get_hal_hash); QDF_STATUS hal_rx_insert_flow_entry(hal_soc_handle_t hal_soc, struct hal_rx_fst *fst, uint32_t flow_hash, void *flow_tuple_info, uint32_t *flow_idx) { int i; void *hal_fse = NULL; uint32_t hal_hash = 0; struct hal_flow_tuple_info hal_tuple_info = { 0 }; for (i = 0; i < fst->max_skid_length; i++) { hal_hash = hal_rx_get_hal_hash(fst, (flow_hash + i)); hal_fse = hal_rx_flow_get_tuple_info(hal_soc, fst, hal_hash, &hal_tuple_info); if (!hal_fse) break; /* Find the matching flow entry in HW FST */ if (!qdf_mem_cmp(&hal_tuple_info, flow_tuple_info, sizeof(struct hal_flow_tuple_info))) { dp_err("Duplicate flow entry in FST %u at skid %u ", hal_hash, i); return QDF_STATUS_E_EXISTS; } } if (i == fst->max_skid_length) { dp_err("Max skid length reached for hash %u", flow_hash); return QDF_STATUS_E_RANGE; } *flow_idx = hal_hash; dp_info("flow_hash = %u, skid_entry = %d, flow_addr = %pK flow_idx = %d", flow_hash, i, hal_fse, *flow_idx); return QDF_STATUS_SUCCESS; } qdf_export_symbol(hal_rx_insert_flow_entry); QDF_STATUS hal_rx_find_flow_from_tuple(hal_soc_handle_t hal_soc_hdl, struct hal_rx_fst *fst, uint32_t flow_hash, void *flow_tuple_info, uint32_t *flow_idx) { int i; void *hal_fse = NULL; uint32_t hal_hash = 0; struct hal_flow_tuple_info hal_tuple_info = { 0 }; for (i = 0; i < fst->max_skid_length; i++) { hal_hash = hal_rx_get_hal_hash(fst, (flow_hash + i)); hal_fse = hal_rx_flow_get_tuple_info(hal_soc_hdl, fst, hal_hash, &hal_tuple_info); if (!hal_fse) continue; /* Find the matching flow entry in HW FST */ if (!qdf_mem_cmp(&hal_tuple_info, flow_tuple_info, sizeof(struct hal_flow_tuple_info))) { break; } } if (i == fst->max_skid_length) { dp_err("Max skid length reached for hash %u", flow_hash); return QDF_STATUS_E_RANGE; } *flow_idx = hal_hash; dp_info("flow_hash = %u, skid_entry = %d, flow_addr = %pK flow_idx = %d", flow_hash, i, hal_fse, *flow_idx); return QDF_STATUS_SUCCESS; } qdf_export_symbol(hal_rx_find_flow_from_tuple);