/* * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved. * Copyright (c) 2021-2024 Qualcomm Innovation Center, Inc. All rights reserved. * * Permission to use, copy, modify, and/or distribute this software for * any purpose with or without fee is hereby granted, provided that the * above copyright notice and this permission notice appear in all * copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR * PERFORMANCE OF THIS SOFTWARE. */ #include "hal_hw_headers.h" #include "hal_api.h" #include "hal_reo.h" #include "target_type.h" #include "qdf_module.h" #include "wcss_version.h" #include #include "qdf_ssr_driver_dump.h" struct tcl_data_cmd gtcl_data_symbol __attribute__((used)); #ifdef QCA_WIFI_QCA8074 void hal_qca6290_attach(struct hal_soc *hal); #endif #ifdef QCA_WIFI_QCA8074 void hal_qca8074_attach(struct hal_soc *hal); #endif #if defined(QCA_WIFI_QCA8074V2) || defined(QCA_WIFI_QCA6018) || \ defined(QCA_WIFI_QCA9574) void hal_qca8074v2_attach(struct hal_soc *hal); #endif #ifdef QCA_WIFI_QCA6390 void hal_qca6390_attach(struct hal_soc *hal); #endif #ifdef QCA_WIFI_QCA6490 void hal_qca6490_attach(struct hal_soc *hal); #endif #ifdef QCA_WIFI_QCN9000 void hal_qcn9000_attach(struct hal_soc *hal); #endif #ifdef QCA_WIFI_QCN9224 void hal_qcn9224v2_attach(struct hal_soc *hal); #endif #if defined(QCA_WIFI_QCN6122) || defined(QCA_WIFI_QCN9160) void hal_qcn6122_attach(struct hal_soc *hal); #endif #ifdef QCA_WIFI_QCN6432 void hal_qcn6432_attach(struct hal_soc *hal); #endif #ifdef QCA_WIFI_QCA6750 void hal_qca6750_attach(struct hal_soc *hal); #endif #ifdef QCA_WIFI_QCA5018 void hal_qca5018_attach(struct hal_soc *hal); #endif #ifdef QCA_WIFI_QCA5332 void hal_qca5332_attach(struct hal_soc *hal); #endif #ifdef QCA_WIFI_KIWI void hal_kiwi_attach(struct hal_soc *hal); #endif #ifdef ENABLE_VERBOSE_DEBUG bool is_hal_verbose_debug_enabled; #endif #define HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(x) ((x) + 0x4) #define HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR(x) ((x) + 0x8) #define HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR(x) ((x) + 0xc) #define HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR(x) ((x) + 0x10) #ifdef ENABLE_HAL_REG_WR_HISTORY struct hal_reg_write_fail_history hal_reg_wr_hist; void hal_reg_wr_fail_history_add(struct hal_soc *hal_soc, uint32_t offset, uint32_t wr_val, uint32_t rd_val) { struct hal_reg_write_fail_entry *record; int idx; idx = hal_history_get_next_index(&hal_soc->reg_wr_fail_hist->index, HAL_REG_WRITE_HIST_SIZE); record = &hal_soc->reg_wr_fail_hist->record[idx]; record->timestamp = qdf_get_log_timestamp(); record->reg_offset = offset; record->write_val = wr_val; record->read_val = rd_val; } static void hal_reg_write_fail_history_init(struct hal_soc *hal) { hal->reg_wr_fail_hist = &hal_reg_wr_hist; qdf_atomic_set(&hal->reg_wr_fail_hist->index, -1); } #else static void hal_reg_write_fail_history_init(struct hal_soc *hal) { } #endif /** * hal_get_srng_ring_id() - get the ring id of a described ring * @hal: hal_soc data structure * @ring_type: type enum describing the ring * @ring_num: which ring of the ring type * @mac_id: which mac does the ring belong to (or 0 for non-lmac rings) * * Return: the ring id or -EINVAL if the ring does not exist. */ static int hal_get_srng_ring_id(struct hal_soc *hal, int ring_type, int ring_num, int mac_id) { struct hal_hw_srng_config *ring_config = HAL_SRNG_CONFIG(hal, ring_type); int ring_id; if (ring_num >= ring_config->max_rings) { QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO, "%s: ring_num exceeded maximum no. of supported rings", __func__); /* TODO: This is a programming error. Assert if this happens */ return -EINVAL; } /* * Some DMAC rings share a common source ring, hence don't provide them * with separate ring IDs per LMAC. */ if (ring_config->lmac_ring && !ring_config->dmac_cmn_ring) { ring_id = (ring_config->start_ring_id + ring_num + (mac_id * HAL_MAX_RINGS_PER_LMAC)); } else { ring_id = ring_config->start_ring_id + ring_num; } return ring_id; } static struct hal_srng *hal_get_srng(struct hal_soc *hal, int ring_id) { /* TODO: Should we allocate srng structures dynamically? */ return &(hal->srng_list[ring_id]); } #ifndef SHADOW_REG_CONFIG_DISABLED #define HP_OFFSET_IN_REG_START 1 #define OFFSET_FROM_HP_TO_TP 4 static void hal_update_srng_hp_tp_address(struct hal_soc *hal_soc, int shadow_config_index, int ring_type, int ring_num) { struct hal_srng *srng; int ring_id; struct hal_hw_srng_config *ring_config = HAL_SRNG_CONFIG(hal_soc, ring_type); ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, 0); if (ring_id < 0) return; srng = hal_get_srng(hal_soc, ring_id); if (ring_config->ring_dir == HAL_SRNG_DST_RING) { srng->u.dst_ring.tp_addr = SHADOW_REGISTER(shadow_config_index) + hal_soc->dev_base_addr; hal_debug("tp_addr=%pK dev base addr %pK index %u", srng->u.dst_ring.tp_addr, hal_soc->dev_base_addr, shadow_config_index); } else { srng->u.src_ring.hp_addr = SHADOW_REGISTER(shadow_config_index) + hal_soc->dev_base_addr; hal_debug("hp_addr=%pK dev base addr %pK index %u", srng->u.src_ring.hp_addr, hal_soc->dev_base_addr, shadow_config_index); } } #endif #ifdef GENERIC_SHADOW_REGISTER_ACCESS_ENABLE void hal_set_one_target_reg_config(struct hal_soc *hal, uint32_t target_reg_offset, int list_index) { int i = list_index; qdf_assert_always(i < MAX_GENERIC_SHADOW_REG); hal->list_shadow_reg_config[i].target_register = target_reg_offset; hal->num_generic_shadow_regs_configured++; } qdf_export_symbol(hal_set_one_target_reg_config); #define REO_R0_DESTINATION_RING_CTRL_ADDR_OFFSET 0x4 #define MAX_REO_REMAP_SHADOW_REGS 4 QDF_STATUS hal_set_shadow_regs(void *hal_soc) { uint32_t target_reg_offset; struct hal_soc *hal = (struct hal_soc *)hal_soc; int i; struct hal_hw_srng_config *srng_config = &hal->hw_srng_table[WBM2SW_RELEASE]; uint32_t reo_reg_base; reo_reg_base = hal_get_reo_reg_base_offset(hal_soc); target_reg_offset = HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR(reo_reg_base); for (i = 0; i < MAX_REO_REMAP_SHADOW_REGS; i++) { hal_set_one_target_reg_config(hal, target_reg_offset, i); target_reg_offset += REO_R0_DESTINATION_RING_CTRL_ADDR_OFFSET; } target_reg_offset = srng_config->reg_start[HP_OFFSET_IN_REG_START]; target_reg_offset += (srng_config->reg_size[HP_OFFSET_IN_REG_START] * HAL_IPA_TX_COMP_RING_IDX); hal_set_one_target_reg_config(hal, target_reg_offset, i); return QDF_STATUS_SUCCESS; } qdf_export_symbol(hal_set_shadow_regs); QDF_STATUS hal_construct_shadow_regs(void *hal_soc) { struct hal_soc *hal = (struct hal_soc *)hal_soc; int shadow_config_index = hal->num_shadow_registers_configured; int i; int num_regs = hal->num_generic_shadow_regs_configured; for (i = 0; i < num_regs; i++) { qdf_assert_always(shadow_config_index < MAX_SHADOW_REGISTERS); hal->shadow_config[shadow_config_index].addr = hal->list_shadow_reg_config[i].target_register; hal->list_shadow_reg_config[i].shadow_config_index = shadow_config_index; hal->list_shadow_reg_config[i].va = SHADOW_REGISTER(shadow_config_index) + (uintptr_t)hal->dev_base_addr; hal_debug("target_reg %x, shadow register 0x%x shadow_index 0x%x", hal->shadow_config[shadow_config_index].addr, SHADOW_REGISTER(shadow_config_index), shadow_config_index); shadow_config_index++; hal->num_shadow_registers_configured++; } return QDF_STATUS_SUCCESS; } qdf_export_symbol(hal_construct_shadow_regs); #endif #ifndef SHADOW_REG_CONFIG_DISABLED QDF_STATUS hal_set_one_shadow_config(void *hal_soc, int ring_type, int ring_num) { uint32_t target_register; struct hal_soc *hal = (struct hal_soc *)hal_soc; struct hal_hw_srng_config *srng_config = &hal->hw_srng_table[ring_type]; int shadow_config_index = hal->num_shadow_registers_configured; if (shadow_config_index >= MAX_SHADOW_REGISTERS) { QDF_ASSERT(0); return QDF_STATUS_E_RESOURCES; } hal->num_shadow_registers_configured++; target_register = srng_config->reg_start[HP_OFFSET_IN_REG_START]; target_register += (srng_config->reg_size[HP_OFFSET_IN_REG_START] *ring_num); /* if the ring is a dst ring, we need to shadow the tail pointer */ if (srng_config->ring_dir == HAL_SRNG_DST_RING) target_register += OFFSET_FROM_HP_TO_TP; hal->shadow_config[shadow_config_index].addr = target_register; /* update hp/tp addr in the hal_soc structure*/ hal_update_srng_hp_tp_address(hal_soc, shadow_config_index, ring_type, ring_num); hal_debug("target_reg %x, shadow register 0x%x shadow_index 0x%x, ring_type %d, ring num %d", target_register, SHADOW_REGISTER(shadow_config_index), shadow_config_index, ring_type, ring_num); return QDF_STATUS_SUCCESS; } qdf_export_symbol(hal_set_one_shadow_config); QDF_STATUS hal_construct_srng_shadow_regs(void *hal_soc) { int ring_type, ring_num; struct hal_soc *hal = (struct hal_soc *)hal_soc; for (ring_type = 0; ring_type < MAX_RING_TYPES; ring_type++) { struct hal_hw_srng_config *srng_config = &hal->hw_srng_table[ring_type]; if (ring_type == CE_SRC || ring_type == CE_DST || ring_type == CE_DST_STATUS) continue; if (srng_config->lmac_ring) continue; for (ring_num = 0; ring_num < srng_config->max_rings; ring_num++) hal_set_one_shadow_config(hal_soc, ring_type, ring_num); } return QDF_STATUS_SUCCESS; } qdf_export_symbol(hal_construct_srng_shadow_regs); #else QDF_STATUS hal_construct_srng_shadow_regs(void *hal_soc) { return QDF_STATUS_SUCCESS; } qdf_export_symbol(hal_construct_srng_shadow_regs); QDF_STATUS hal_set_one_shadow_config(void *hal_soc, int ring_type, int ring_num) { return QDF_STATUS_SUCCESS; } qdf_export_symbol(hal_set_one_shadow_config); #endif void hal_get_shadow_config(void *hal_soc, struct pld_shadow_reg_v2_cfg **shadow_config, int *num_shadow_registers_configured) { struct hal_soc *hal = (struct hal_soc *)hal_soc; *shadow_config = &hal->shadow_config[0].v2; *num_shadow_registers_configured = hal->num_shadow_registers_configured; } qdf_export_symbol(hal_get_shadow_config); #ifdef CONFIG_SHADOW_V3 void hal_get_shadow_v3_config(void *hal_soc, struct pld_shadow_reg_v3_cfg **shadow_config, int *num_shadow_registers_configured) { struct hal_soc *hal = (struct hal_soc *)hal_soc; *shadow_config = &hal->shadow_config[0].v3; *num_shadow_registers_configured = hal->num_shadow_registers_configured; } qdf_export_symbol(hal_get_shadow_v3_config); #endif static bool hal_validate_shadow_register(struct hal_soc *hal, uint32_t *destination, uint32_t *shadow_address) { unsigned int index; uint32_t *shadow_0_offset = SHADOW_REGISTER(0) + hal->dev_base_addr; int destination_ba_offset = ((char *)destination) - (char *)hal->dev_base_addr; index = shadow_address - shadow_0_offset; if (index >= MAX_SHADOW_REGISTERS) { QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR, "%s: index %x out of bounds", __func__, index); goto error; } else if (hal->shadow_config[index].addr != destination_ba_offset) { QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR, "%s: sanity check failure, expected %x, found %x", __func__, destination_ba_offset, hal->shadow_config[index].addr); goto error; } return true; error: qdf_print("baddr %pK, destination %pK, shadow_address %pK s0offset %pK index %x", hal->dev_base_addr, destination, shadow_address, shadow_0_offset, index); QDF_BUG(0); return false; } static void hal_target_based_configure(struct hal_soc *hal) { /* * Indicate Initialization of srngs to avoid force wake * as umac power collapse is not enabled yet */ hal->init_phase = true; switch (hal->target_type) { #ifdef QCA_WIFI_QCA6290 case TARGET_TYPE_QCA6290: hal->use_register_windowing = true; hal_qca6290_attach(hal); break; #endif #ifdef QCA_WIFI_QCA6390 case TARGET_TYPE_QCA6390: hal->use_register_windowing = true; hal_qca6390_attach(hal); break; #endif #ifdef QCA_WIFI_QCA6490 case TARGET_TYPE_QCA6490: hal->use_register_windowing = true; hal_qca6490_attach(hal); break; #endif #ifdef QCA_WIFI_QCA6750 case TARGET_TYPE_QCA6750: hal->use_register_windowing = true; hal->static_window_map = true; hal_qca6750_attach(hal); break; #endif #ifdef QCA_WIFI_KIWI case TARGET_TYPE_KIWI: case TARGET_TYPE_MANGO: case TARGET_TYPE_PEACH: hal->use_register_windowing = true; hal_kiwi_attach(hal); break; #endif #if defined(QCA_WIFI_QCA8074) && defined(WIFI_TARGET_TYPE_3_0) case TARGET_TYPE_QCA8074: hal_qca8074_attach(hal); break; #endif #if defined(QCA_WIFI_QCA8074V2) case TARGET_TYPE_QCA8074V2: hal_qca8074v2_attach(hal); break; #endif #if defined(QCA_WIFI_QCA6018) case TARGET_TYPE_QCA6018: hal_qca8074v2_attach(hal); break; #endif #if defined(QCA_WIFI_QCA9574) case TARGET_TYPE_QCA9574: hal_qca8074v2_attach(hal); break; #endif #if defined(QCA_WIFI_QCN6122) case TARGET_TYPE_QCN6122: hal->use_register_windowing = true; /* * Static window map is enabled for qcn9000 to use 2mb bar * size and use multiple windows to write into registers. */ hal->static_window_map = true; hal_qcn6122_attach(hal); break; #endif #if defined(QCA_WIFI_QCN9160) case TARGET_TYPE_QCN9160: hal->use_register_windowing = true; /* * Static window map is enabled for qcn9160 to use 2mb bar * size and use multiple windows to write into registers. */ hal->static_window_map = true; hal_qcn6122_attach(hal); break; #endif #if defined(QCA_WIFI_QCN6432) case TARGET_TYPE_QCN6432: hal->use_register_windowing = true; /* * Static window map is enabled for qcn6432 to use 2mb bar * size and use multiple windows to write into registers. */ hal->static_window_map = true; hal_qcn6432_attach(hal); break; #endif #ifdef QCA_WIFI_QCN9000 case TARGET_TYPE_QCN9000: hal->use_register_windowing = true; /* * Static window map is enabled for qcn9000 to use 2mb bar * size and use multiple windows to write into registers. */ hal->static_window_map = true; hal_qcn9000_attach(hal); break; #endif #ifdef QCA_WIFI_QCA5018 case TARGET_TYPE_QCA5018: hal->use_register_windowing = true; hal->static_window_map = true; hal_qca5018_attach(hal); break; #endif #ifdef QCA_WIFI_QCN9224 case TARGET_TYPE_QCN9224: hal->use_register_windowing = true; hal->static_window_map = true; if (hal->version == 1) qdf_assert_always(0); else hal_qcn9224v2_attach(hal); break; #endif #ifdef QCA_WIFI_QCA5332 case TARGET_TYPE_QCA5332: hal->use_register_windowing = true; hal->static_window_map = true; hal_qca5332_attach(hal); break; #endif #ifdef QCA_WIFI_WCN6450 case TARGET_TYPE_WCN6450: hal->use_register_windowing = true; hal->static_window_map = true; hal_wcn6450_attach(hal); break; #endif default: break; } } uint32_t hal_get_target_type(hal_soc_handle_t hal_soc_hdl) { struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl; struct hif_target_info *tgt_info = hif_get_target_info_handle(hal_soc->hif_handle); return tgt_info->target_type; } qdf_export_symbol(hal_get_target_type); #if defined(FEATURE_HAL_DELAYED_REG_WRITE) /** * hal_is_reg_write_tput_level_high() - throughput level for delayed reg writes * @hal: hal_soc pointer * * Return: true if throughput is high, else false. */ static inline bool hal_is_reg_write_tput_level_high(struct hal_soc *hal) { int bw_level = hif_get_bandwidth_level(hal->hif_handle); return (bw_level >= PLD_BUS_WIDTH_MEDIUM) ? true : false; } static inline char *hal_fill_reg_write_srng_stats(struct hal_srng *srng, char *buf, qdf_size_t size) { qdf_scnprintf(buf, size, "enq %u deq %u coal %u direct %u", srng->wstats.enqueues, srng->wstats.dequeues, srng->wstats.coalesces, srng->wstats.direct); return buf; } /* bytes for local buffer */ #define HAL_REG_WRITE_SRNG_STATS_LEN 100 #ifndef WLAN_SOFTUMAC_SUPPORT void hal_dump_reg_write_srng_stats(hal_soc_handle_t hal_soc_hdl) { struct hal_srng *srng; char buf[HAL_REG_WRITE_SRNG_STATS_LEN]; struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl; srng = hal_get_srng(hal, HAL_SRNG_SW2TCL1); hal_debug("SW2TCL1: %s", hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf))); srng = hal_get_srng(hal, HAL_SRNG_WBM2SW0_RELEASE); hal_debug("WBM2SW0: %s", hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf))); srng = hal_get_srng(hal, HAL_SRNG_REO2SW1); hal_debug("REO2SW1: %s", hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf))); srng = hal_get_srng(hal, HAL_SRNG_REO2SW2); hal_debug("REO2SW2: %s", hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf))); srng = hal_get_srng(hal, HAL_SRNG_REO2SW3); hal_debug("REO2SW3: %s", hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf))); } void hal_dump_reg_write_stats(hal_soc_handle_t hal_soc_hdl) { uint32_t *hist; struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl; hist = hal->stats.wstats.sched_delay; hal_debug("wstats: enq %u deq %u coal %u direct %u q_depth %u max_q %u sched-delay hist %u %u %u %u", qdf_atomic_read(&hal->stats.wstats.enqueues), hal->stats.wstats.dequeues, qdf_atomic_read(&hal->stats.wstats.coalesces), qdf_atomic_read(&hal->stats.wstats.direct), qdf_atomic_read(&hal->stats.wstats.q_depth), hal->stats.wstats.max_q_depth, hist[REG_WRITE_SCHED_DELAY_SUB_100us], hist[REG_WRITE_SCHED_DELAY_SUB_1000us], hist[REG_WRITE_SCHED_DELAY_SUB_5000us], hist[REG_WRITE_SCHED_DELAY_GT_5000us]); } #else void hal_dump_reg_write_srng_stats(hal_soc_handle_t hal_soc_hdl) { } /* TODO: Need separate logic for Evros */ void hal_dump_reg_write_stats(hal_soc_handle_t hal_soc_hdl) { } #endif int hal_get_reg_write_pending_work(void *hal_soc) { struct hal_soc *hal = (struct hal_soc *)hal_soc; return qdf_atomic_read(&hal->active_work_cnt); } #endif #ifdef FEATURE_HAL_DELAYED_REG_WRITE #ifdef MEMORY_DEBUG /* * Length of the queue(array) used to hold delayed register writes. * Must be a multiple of 2. */ #define HAL_REG_WRITE_QUEUE_LEN 128 #else #define HAL_REG_WRITE_QUEUE_LEN 32 #endif #ifdef QCA_WIFI_QCA6750 #define HAL_DEL_WRITE_FORCE_UPDATE_THRES 5 static inline void hal_srng_update_last_hptp(struct hal_srng *srng) { if (srng->ring_dir == HAL_SRNG_SRC_RING) srng->updated_hp = srng->u.src_ring.hp; else srng->updated_tp = srng->u.dst_ring.tp; srng->force_cnt = 0; } /* If HP/TP register updates are delayed due to delayed reg * write work not getting scheduled, hardware would see HP/TP * delta and will fire interrupts until the HP/TP updates reach * the hardware. * * When system is heavily stressed, this delay in HP/TP updates * would result in IRQ storm further stressing the system. Force * update HP/TP to the hardware under such scenarios to avoid this. */ void hal_srng_check_and_update_hptp(struct hal_soc *hal_soc, struct hal_srng *srng, bool update) { uint32_t value; if (!update) return; SRNG_LOCK(&srng->lock); if (srng->ring_dir == HAL_SRNG_SRC_RING) { value = srng->u.src_ring.hp; if (value == srng->updated_hp || srng->force_cnt++ < HAL_DEL_WRITE_FORCE_UPDATE_THRES) goto out_unlock; hal_write_address_32_mb(hal_soc, srng->u.src_ring.hp_addr, value, false); } else { value = srng->u.dst_ring.tp; if (value == srng->updated_tp || srng->force_cnt++ < HAL_DEL_WRITE_FORCE_UPDATE_THRES) goto out_unlock; hal_write_address_32_mb(hal_soc, srng->u.dst_ring.tp_addr, value, false); } hal_srng_update_last_hptp(srng); hal_srng_reg_his_add(srng, value); qdf_atomic_inc(&hal_soc->stats.wstats.direct); srng->wstats.direct++; out_unlock: SRNG_UNLOCK(&srng->lock); } #else static inline void hal_srng_update_last_hptp(struct hal_srng *srng) { } #endif /* QCA_WIFI_QCA6750 */ /** * hal_process_reg_write_q_elem() - process a register write queue element * @hal: hal_soc pointer * @q_elem: pointer to hal register write queue element * * Return: The value which was written to the address */ static uint32_t hal_process_reg_write_q_elem(struct hal_soc *hal, struct hal_reg_write_q_elem *q_elem) { struct hal_srng *srng = q_elem->srng; uint32_t write_val; SRNG_LOCK(&srng->lock); srng->reg_write_in_progress = false; srng->wstats.dequeues++; if (srng->ring_dir == HAL_SRNG_SRC_RING) { q_elem->dequeue_val = srng->u.src_ring.hp; hal_write_address_32_mb(hal, srng->u.src_ring.hp_addr, srng->u.src_ring.hp, false); write_val = srng->u.src_ring.hp; } else { q_elem->dequeue_val = srng->u.dst_ring.tp; hal_write_address_32_mb(hal, srng->u.dst_ring.tp_addr, srng->u.dst_ring.tp, false); write_val = srng->u.dst_ring.tp; } hal_srng_update_last_hptp(srng); hal_srng_reg_his_add(srng, write_val); q_elem->valid = 0; srng->last_dequeue_time = q_elem->dequeue_time; SRNG_UNLOCK(&srng->lock); return write_val; } /** * hal_reg_write_fill_sched_delay_hist() - fill reg write delay histogram in hal * @hal: hal_soc pointer * @delay_us: delay in us * * Return: None */ static inline void hal_reg_write_fill_sched_delay_hist(struct hal_soc *hal, uint64_t delay_us) { uint32_t *hist; hist = hal->stats.wstats.sched_delay; if (delay_us < 100) hist[REG_WRITE_SCHED_DELAY_SUB_100us]++; else if (delay_us < 1000) hist[REG_WRITE_SCHED_DELAY_SUB_1000us]++; else if (delay_us < 5000) hist[REG_WRITE_SCHED_DELAY_SUB_5000us]++; else hist[REG_WRITE_SCHED_DELAY_GT_5000us]++; } #ifdef SHADOW_WRITE_DELAY #define SHADOW_WRITE_MIN_DELTA_US 5 #define SHADOW_WRITE_DELAY_US 50 /* * Never add those srngs which are performance relate. * The delay itself will hit performance heavily. */ #define IS_SRNG_MATCH(s) ((s)->ring_id == HAL_SRNG_CE_1_DST_STATUS || \ (s)->ring_id == HAL_SRNG_CE_1_DST) static inline bool hal_reg_write_need_delay(struct hal_reg_write_q_elem *elem) { struct hal_srng *srng = elem->srng; struct hal_soc *hal; qdf_time_t now; qdf_iomem_t real_addr; if (qdf_unlikely(!srng)) return false; hal = srng->hal_soc; if (qdf_unlikely(!hal)) return false; /* Check if it is target srng, and valid shadow reg */ if (qdf_likely(!IS_SRNG_MATCH(srng))) return false; if (srng->ring_dir == HAL_SRNG_SRC_RING) real_addr = SRNG_SRC_ADDR(srng, HP); else real_addr = SRNG_DST_ADDR(srng, TP); if (!hal_validate_shadow_register(hal, real_addr, elem->addr)) return false; /* Check the time delta from last write of same srng */ now = qdf_get_log_timestamp(); if (qdf_log_timestamp_to_usecs(now - srng->last_dequeue_time) > SHADOW_WRITE_MIN_DELTA_US) return false; /* Delay dequeue, and record */ qdf_udelay(SHADOW_WRITE_DELAY_US); srng->wstats.dequeue_delay++; hal->stats.wstats.dequeue_delay++; return true; } #else static inline bool hal_reg_write_need_delay(struct hal_reg_write_q_elem *elem) { return false; } #endif #define MAX_DELAYED_REG_WRITE_RETRY 5 /** * hal_reg_write_work() - Worker to process delayed writes * @arg: hal_soc pointer * * Return: None */ static void hal_reg_write_work(void *arg) { int32_t q_depth, write_val; struct hal_soc *hal = arg; struct hal_reg_write_q_elem *q_elem; uint64_t delta_us; uint8_t ring_id; uint32_t *addr; uint32_t num_processed = 0; uint8_t retry_count = 0; q_elem = &hal->reg_write_queue[(hal->read_idx)]; q_elem->work_scheduled_time = qdf_get_log_timestamp(); q_elem->cpu_id = qdf_get_cpu(); /* Make sure q_elem consistent in the memory for multi-cores */ qdf_rmb(); if (!q_elem->valid) return; q_depth = qdf_atomic_read(&hal->stats.wstats.q_depth); if (q_depth > hal->stats.wstats.max_q_depth) hal->stats.wstats.max_q_depth = q_depth; if (hif_prevent_link_low_power_states(hal->hif_handle)) { hal->stats.wstats.prevent_l1_fails++; return; } while (true) { qdf_rmb(); if (!q_elem->valid) break; qdf_rmb(); /* buy some more time to make sure all fields * in q_elem is updated per different CPUs, in * case wmb/rmb is not taken effect */ if (qdf_unlikely(!q_elem->srng || (qdf_atomic_read(&q_elem->ring_id) != q_elem->srng->ring_id))) { hal_err_rl("q_elem fields not up to date 0x%x 0x%x", q_elem->srng ? q_elem->srng->ring_id : 0xDEAD, qdf_atomic_read(&q_elem->ring_id)); if (retry_count++ < MAX_DELAYED_REG_WRITE_RETRY) { /* Sleep for 1ms before retry */ qdf_sleep(1); continue; } qdf_assert_always(0); } q_elem->dequeue_time = qdf_get_log_timestamp(); ring_id = q_elem->srng->ring_id; addr = q_elem->addr; delta_us = qdf_log_timestamp_to_usecs(q_elem->dequeue_time - q_elem->enqueue_time); hal_reg_write_fill_sched_delay_hist(hal, delta_us); hal->stats.wstats.dequeues++; qdf_atomic_dec(&hal->stats.wstats.q_depth); if (hal_reg_write_need_delay(q_elem)) hal_verbose_debug("Delay reg writer for srng 0x%x, addr 0x%pK", q_elem->srng->ring_id, q_elem->addr); write_val = hal_process_reg_write_q_elem(hal, q_elem); hal_verbose_debug("read_idx %u srng 0x%x, addr 0x%pK dequeue_val %u sched delay %llu us", hal->read_idx, ring_id, addr, write_val, delta_us); qdf_trace_dp_del_reg_write(ring_id, q_elem->enqueue_val, q_elem->dequeue_val, q_elem->enqueue_time, q_elem->dequeue_time); num_processed++; hal->read_idx = (hal->read_idx + 1) & (HAL_REG_WRITE_QUEUE_LEN - 1); q_elem = &hal->reg_write_queue[(hal->read_idx)]; retry_count = 0; } hif_allow_link_low_power_states(hal->hif_handle); /* * Decrement active_work_cnt by the number of elements dequeued after * hif_allow_link_low_power_states. * This makes sure that hif_try_complete_tasks will wait till we make * the bus access in hif_allow_link_low_power_states. This will avoid * race condition between delayed register worker and bus suspend * (system suspend or runtime suspend). * * The following decrement should be done at the end! */ qdf_atomic_sub(num_processed, &hal->active_work_cnt); } static void __hal_flush_reg_write_work(struct hal_soc *hal) { qdf_flush_work(&hal->reg_write_work); qdf_disable_work(&hal->reg_write_work); } void hal_flush_reg_write_work(hal_soc_handle_t hal_handle) { __hal_flush_reg_write_work((struct hal_soc *)hal_handle); } /** * hal_reg_write_enqueue() - enqueue register writes into kworker * @hal_soc: hal_soc pointer * @srng: srng pointer * @addr: iomem address of register * @value: value to be written to iomem address * * This function executes from within the SRNG LOCK * * Return: None */ static void hal_reg_write_enqueue(struct hal_soc *hal_soc, struct hal_srng *srng, void __iomem *addr, uint32_t value) { struct hal_reg_write_q_elem *q_elem; uint32_t write_idx; if (srng->reg_write_in_progress) { hal_verbose_debug("Already in progress srng ring id 0x%x addr 0x%pK val %u", srng->ring_id, addr, value); qdf_atomic_inc(&hal_soc->stats.wstats.coalesces); srng->wstats.coalesces++; return; } write_idx = qdf_atomic_inc_return(&hal_soc->write_idx); write_idx = write_idx & (HAL_REG_WRITE_QUEUE_LEN - 1); q_elem = &hal_soc->reg_write_queue[write_idx]; if (q_elem->valid) { hal_err("queue full"); QDF_BUG(0); return; } qdf_atomic_inc(&hal_soc->stats.wstats.enqueues); srng->wstats.enqueues++; qdf_atomic_inc(&hal_soc->stats.wstats.q_depth); q_elem->srng = srng; q_elem->addr = addr; qdf_atomic_set(&q_elem->ring_id, srng->ring_id); q_elem->enqueue_val = value; q_elem->enqueue_time = qdf_get_log_timestamp(); /* * Before the valid flag is set to true, all the other * fields in the q_elem needs to be updated in memory. * Else there is a chance that the dequeuing worker thread * might read stale entries and process incorrect srng. */ qdf_wmb(); q_elem->valid = true; /* * After all other fields in the q_elem has been updated * in memory successfully, the valid flag needs to be updated * in memory in time too. * Else there is a chance that the dequeuing worker thread * might read stale valid flag and the work will be bypassed * for this round. And if there is no other work scheduled * later, this hal register writing won't be updated any more. */ qdf_wmb(); srng->reg_write_in_progress = true; qdf_atomic_inc(&hal_soc->active_work_cnt); hal_verbose_debug("write_idx %u srng ring id 0x%x addr 0x%pK val %u", write_idx, srng->ring_id, addr, value); qdf_queue_work(hal_soc->qdf_dev, hal_soc->reg_write_wq, &hal_soc->reg_write_work); } /** * hal_delayed_reg_write_init() - Initialization function for delayed reg writes * @hal: hal_soc pointer * * Initialize main data structures to process register writes in a delayed * workqueue. * * Return: QDF_STATUS_SUCCESS on success else a QDF error. */ static QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal) { hal->reg_write_wq = qdf_alloc_high_prior_ordered_workqueue("hal_register_write_wq"); qdf_create_work(0, &hal->reg_write_work, hal_reg_write_work, hal); hal->reg_write_queue = qdf_mem_malloc(HAL_REG_WRITE_QUEUE_LEN * sizeof(*hal->reg_write_queue)); if (!hal->reg_write_queue) { hal_err("unable to allocate memory"); QDF_BUG(0); return QDF_STATUS_E_NOMEM; } /* Initial value of indices */ hal->read_idx = 0; qdf_atomic_set(&hal->write_idx, -1); return QDF_STATUS_SUCCESS; } /** * hal_delayed_reg_write_deinit() - De-Initialize delayed reg write processing * @hal: hal_soc pointer * * De-initialize main data structures to process register writes in a delayed * workqueue. * * Return: None */ static void hal_delayed_reg_write_deinit(struct hal_soc *hal) { __hal_flush_reg_write_work(hal); qdf_flush_workqueue(0, hal->reg_write_wq); qdf_destroy_workqueue(0, hal->reg_write_wq); qdf_mem_free(hal->reg_write_queue); } #else static inline QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal) { return QDF_STATUS_SUCCESS; } static inline void hal_delayed_reg_write_deinit(struct hal_soc *hal) { } #endif #ifdef FEATURE_HAL_DELAYED_REG_WRITE #ifdef HAL_RECORD_SUSPEND_WRITE static struct hal_suspend_write_history g_hal_suspend_write_history[HAL_SUSPEND_WRITE_HISTORY_MAX]; static void hal_event_suspend_record(uint8_t ring_id, uint32_t value, uint32_t count) { uint32_t index = qdf_atomic_read(g_hal_suspend_write_history.index) & (HAL_SUSPEND_WRITE_HISTORY_MAX - 1); struct hal_suspend_write_record *cur_event = &hal_suspend_write_event.record[index]; cur_event->ts = qdf_get_log_timestamp(); cur_event->ring_id = ring_id; cur_event->value = value; cur_event->direct_wcount = count; qdf_atomic_inc(g_hal_suspend_write_history.index); } static inline void hal_record_suspend_write(uint8_t ring_id, uint32_t value, uint32_t count) { if (hif_rtpm_get_state() >= HIF_RTPM_STATE_SUSPENDING) hal_event_suspend_record(ring_id, value, count); } #else static inline void hal_record_suspend_write(uint8_t ring_id, uint32_t value, uint32_t count) { } #endif #ifdef QCA_WIFI_QCA6750 void hal_delayed_reg_write(struct hal_soc *hal_soc, struct hal_srng *srng, void __iomem *addr, uint32_t value) { uint8_t vote_access; switch (srng->ring_type) { case CE_SRC: case CE_DST: case CE_DST_STATUS: vote_access = hif_get_ep_vote_access(hal_soc->hif_handle, HIF_EP_VOTE_NONDP_ACCESS); if ((vote_access == HIF_EP_VOTE_ACCESS_DISABLE) || (vote_access == HIF_EP_VOTE_INTERMEDIATE_ACCESS && PLD_MHI_STATE_L0 == pld_get_mhi_state(hal_soc->qdf_dev->dev))) { hal_write_address_32_mb(hal_soc, addr, value, false); hal_srng_update_last_hptp(srng); hal_srng_reg_his_add(srng, value); qdf_atomic_inc(&hal_soc->stats.wstats.direct); srng->wstats.direct++; } else { hal_reg_write_enqueue(hal_soc, srng, addr, value); } break; default: if (hif_get_ep_vote_access(hal_soc->hif_handle, HIF_EP_VOTE_DP_ACCESS) == HIF_EP_VOTE_ACCESS_DISABLE || hal_is_reg_write_tput_level_high(hal_soc) || PLD_MHI_STATE_L0 == pld_get_mhi_state(hal_soc->qdf_dev->dev)) { hal_write_address_32_mb(hal_soc, addr, value, false); hal_srng_reg_his_add(srng, value); qdf_atomic_inc(&hal_soc->stats.wstats.direct); srng->wstats.direct++; } else { hal_reg_write_enqueue(hal_soc, srng, addr, value); } break; } } #else void hal_delayed_reg_write(struct hal_soc *hal_soc, struct hal_srng *srng, void __iomem *addr, uint32_t value) { if (hal_is_reg_write_tput_level_high(hal_soc) || pld_is_device_awake(hal_soc->qdf_dev->dev)) { qdf_atomic_inc(&hal_soc->stats.wstats.direct); srng->wstats.direct++; hal_write_address_32_mb(hal_soc, addr, value, false); hal_srng_update_last_hptp(srng); hal_srng_reg_his_add(srng, value); } else { hal_reg_write_enqueue(hal_soc, srng, addr, value); } hal_record_suspend_write(srng->ring_id, value, srng->wstats.direct); } #endif #endif #ifdef HAL_SRNG_REG_HIS_DEBUG inline void hal_free_srng_history(struct hal_soc *hal) { int i; for (i = 0; i < HAL_SRNG_ID_MAX; i++) qdf_mem_free(hal->srng_list[i].reg_his_ctx); } inline bool hal_alloc_srng_history(struct hal_soc *hal) { int i; for (i = 0; i < HAL_SRNG_ID_MAX; i++) { hal->srng_list[i].reg_his_ctx = qdf_mem_malloc(sizeof(struct hal_srng_reg_his_ctx)); if (!hal->srng_list[i].reg_his_ctx) { hal_err("srng_hist alloc failed"); hal_free_srng_history(hal); return false; } } return true; } #else inline void hal_free_srng_history(struct hal_soc *hal) { } inline bool hal_alloc_srng_history(struct hal_soc *hal) { return true; } #endif void *hal_attach(struct hif_opaque_softc *hif_handle, qdf_device_t qdf_dev) { struct hal_soc *hal; int i; hal = qdf_mem_common_alloc(sizeof(*hal)); if (!hal) { QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR, "%s: hal_soc allocation failed", __func__); goto fail0; } hal->hif_handle = hif_handle; hal->dev_base_addr = hif_get_dev_ba(hif_handle); /* UMAC */ hal->dev_base_addr_ce = hif_get_dev_ba_ce(hif_handle); /* CE */ hal->dev_base_addr_cmem = hif_get_dev_ba_cmem(hif_handle); /* CMEM */ hal->dev_base_addr_pmm = hif_get_dev_ba_pmm(hif_handle); /* PMM */ hal->qdf_dev = qdf_dev; hal->shadow_rdptr_mem_vaddr = (uint32_t *)qdf_mem_alloc_consistent( qdf_dev, qdf_dev->dev, sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX, &(hal->shadow_rdptr_mem_paddr)); if (!hal->shadow_rdptr_mem_paddr) { QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR, "%s: hal->shadow_rdptr_mem_paddr allocation failed", __func__); goto fail1; } qdf_mem_zero(hal->shadow_rdptr_mem_vaddr, sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX); hal->shadow_wrptr_mem_vaddr = (uint32_t *)qdf_mem_alloc_consistent(qdf_dev, qdf_dev->dev, sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS, &(hal->shadow_wrptr_mem_paddr)); if (!hal->shadow_wrptr_mem_vaddr) { QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR, "%s: hal->shadow_wrptr_mem_vaddr allocation failed", __func__); goto fail2; } qdf_mem_zero(hal->shadow_wrptr_mem_vaddr, sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS); if (!hal_alloc_srng_history(hal)) goto fail2; for (i = 0; i < HAL_SRNG_ID_MAX; i++) { hal->srng_list[i].initialized = 0; hal->srng_list[i].ring_id = i; } qdf_spinlock_create(&hal->register_access_lock); hal->register_window = 0; hal->target_type = hal_get_target_type(hal_soc_to_hal_soc_handle(hal)); hal->version = hif_get_soc_version(hif_handle); hal->ops = qdf_mem_malloc(sizeof(*hal->ops)); if (!hal->ops) { hal_err("unable to allocable memory for HAL ops"); goto fail3; } hal_target_based_configure(hal); hal_reg_write_fail_history_init(hal); qdf_minidump_log(hal, sizeof(*hal), "hal_soc"); qdf_ssr_driver_dump_register_region("hal_soc", hal, sizeof(*hal)); qdf_atomic_init(&hal->active_work_cnt); if (hal_delayed_reg_write_init(hal) != QDF_STATUS_SUCCESS) { hal_err("unable to initialize delayed reg write"); goto fail4; } hif_rtpm_register(HIF_RTPM_ID_HAL_REO_CMD, NULL); return (void *)hal; fail4: qdf_ssr_driver_dump_unregister_region("hal_soc"); qdf_minidump_remove(hal, sizeof(*hal), "hal_soc"); qdf_mem_free(hal->ops); fail3: qdf_mem_free_consistent(qdf_dev, qdf_dev->dev, sizeof(*hal->shadow_wrptr_mem_vaddr) * HAL_MAX_LMAC_RINGS, hal->shadow_wrptr_mem_vaddr, hal->shadow_wrptr_mem_paddr, 0); fail2: qdf_mem_free_consistent(qdf_dev, qdf_dev->dev, sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX, hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0); fail1: qdf_mem_common_free(hal); fail0: return NULL; } qdf_export_symbol(hal_attach); void hal_get_meminfo(hal_soc_handle_t hal_soc_hdl, struct hal_mem_info *mem) { struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl; mem->dev_base_addr = (void *)hal->dev_base_addr; mem->shadow_rdptr_mem_vaddr = (void *)hal->shadow_rdptr_mem_vaddr; mem->shadow_wrptr_mem_vaddr = (void *)hal->shadow_wrptr_mem_vaddr; mem->shadow_rdptr_mem_paddr = (void *)hal->shadow_rdptr_mem_paddr; mem->shadow_wrptr_mem_paddr = (void *)hal->shadow_wrptr_mem_paddr; hif_read_phy_mem_base((void *)hal->hif_handle, (qdf_dma_addr_t *)&mem->dev_base_paddr); mem->lmac_srng_start_id = HAL_SRNG_LMAC1_ID_START; return; } qdf_export_symbol(hal_get_meminfo); void hal_detach(void *hal_soc) { struct hal_soc *hal = (struct hal_soc *)hal_soc; hif_rtpm_deregister(HIF_RTPM_ID_HAL_REO_CMD); hal_delayed_reg_write_deinit(hal); hal_reo_shared_qaddr_detach((hal_soc_handle_t)hal); qdf_ssr_driver_dump_unregister_region("hal_soc"); qdf_minidump_remove(hal, sizeof(*hal), "hal_soc"); qdf_mem_free(hal->ops); hal_free_srng_history(hal); qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev, sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX, hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0); qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev, sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS, hal->shadow_wrptr_mem_vaddr, hal->shadow_wrptr_mem_paddr, 0); qdf_mem_common_free(hal); return; } qdf_export_symbol(hal_detach); #define HAL_CE_CHANNEL_DST_DEST_CTRL_ADDR(x) ((x) + 0x000000b0) #define HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK 0x0000ffff #define HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_ADDR(x) ((x) + 0x00000040) #define HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_RMSK 0x00000007 /** * hal_ce_dst_setup() - Initialize CE destination ring registers * @hal: HAL SOC handle * @srng: SRNG ring pointer * @ring_num: ring number */ static inline void hal_ce_dst_setup(struct hal_soc *hal, struct hal_srng *srng, int ring_num) { uint32_t reg_val = 0; uint32_t reg_addr; struct hal_hw_srng_config *ring_config = HAL_SRNG_CONFIG(hal, CE_DST); /* set DEST_MAX_LENGTH according to ce assignment */ reg_addr = HAL_CE_CHANNEL_DST_DEST_CTRL_ADDR( ring_config->reg_start[R0_INDEX] + (ring_num * ring_config->reg_size[R0_INDEX])); reg_val = HAL_REG_READ(hal, reg_addr); reg_val &= ~HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK; reg_val |= srng->u.dst_ring.max_buffer_length & HAL_CE_CHANNEL_DST_DEST_CTRL_DEST_MAX_LENGTH_BMSK; HAL_REG_WRITE(hal, reg_addr, reg_val); if (srng->prefetch_timer) { reg_addr = HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_ADDR( ring_config->reg_start[R0_INDEX] + (ring_num * ring_config->reg_size[R0_INDEX])); reg_val = HAL_REG_READ(hal, reg_addr); reg_val &= ~HAL_CE_CHANNEL_DST_DEST_RING_CONSUMER_PREFETCH_TIMER_RMSK; reg_val |= srng->prefetch_timer; HAL_REG_WRITE(hal, reg_addr, reg_val); reg_val = HAL_REG_READ(hal, reg_addr); } } void hal_reo_read_write_ctrl_ix(hal_soc_handle_t hal_soc_hdl, bool read, uint32_t *ix0, uint32_t *ix1, uint32_t *ix2, uint32_t *ix3) { uint32_t reg_offset; struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl; uint32_t reo_reg_base; reo_reg_base = hal_get_reo_reg_base_offset(hal_soc_hdl); if (read) { if (ix0) { reg_offset = HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR( reo_reg_base); *ix0 = HAL_REG_READ(hal, reg_offset); } if (ix1) { reg_offset = HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR( reo_reg_base); *ix1 = HAL_REG_READ(hal, reg_offset); } if (ix2) { reg_offset = HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR( reo_reg_base); *ix2 = HAL_REG_READ(hal, reg_offset); } if (ix3) { reg_offset = HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR( reo_reg_base); *ix3 = HAL_REG_READ(hal, reg_offset); } } else { if (ix0) { reg_offset = HAL_REO_DESTINATION_RING_CTRL_IX_0_ADDR( reo_reg_base); HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset, *ix0, true); } if (ix1) { reg_offset = HAL_REO_DESTINATION_RING_CTRL_IX_1_ADDR( reo_reg_base); HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset, *ix1, true); } if (ix2) { reg_offset = HAL_REO_DESTINATION_RING_CTRL_IX_2_ADDR( reo_reg_base); HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset, *ix2, true); } if (ix3) { reg_offset = HAL_REO_DESTINATION_RING_CTRL_IX_3_ADDR( reo_reg_base); HAL_REG_WRITE_CONFIRM_RETRY(hal, reg_offset, *ix3, true); } } } qdf_export_symbol(hal_reo_read_write_ctrl_ix); void hal_srng_dst_set_hp_paddr_confirm(struct hal_srng *srng, uint64_t paddr) { SRNG_DST_REG_WRITE_CONFIRM(srng, HP_ADDR_LSB, paddr & 0xffffffff); SRNG_DST_REG_WRITE_CONFIRM(srng, HP_ADDR_MSB, paddr >> 32); } qdf_export_symbol(hal_srng_dst_set_hp_paddr_confirm); void hal_srng_dst_init_hp(struct hal_soc_handle *hal_soc, struct hal_srng *srng, uint32_t *vaddr) { uint32_t reg_offset; struct hal_soc *hal = (struct hal_soc *)hal_soc; if (!srng) return; srng->u.dst_ring.hp_addr = vaddr; reg_offset = SRNG_DST_ADDR(srng, HP) - hal->dev_base_addr; HAL_REG_WRITE_CONFIRM_RETRY( hal, reg_offset, srng->u.dst_ring.cached_hp, true); if (vaddr) { *srng->u.dst_ring.hp_addr = srng->u.dst_ring.cached_hp; QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG, "hp_addr=%pK, cached_hp=%d", (void *)srng->u.dst_ring.hp_addr, srng->u.dst_ring.cached_hp); } } qdf_export_symbol(hal_srng_dst_init_hp); void hal_srng_dst_update_hp_addr(struct hal_soc_handle *hal_soc, hal_ring_handle_t hal_ring_hdl) { struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl; int32_t hw_hp; int32_t hw_tp; if (!srng) return; if (srng->u.dst_ring.hp_addr) { hal_get_hw_hptp(hal_soc, hal_ring_hdl, &hw_hp, &hw_tp, WBM2SW_RELEASE); *srng->u.dst_ring.hp_addr = hw_hp; QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG, "hw_hp=%d", hw_hp); } } qdf_export_symbol(hal_srng_dst_update_hp_addr); /** * hal_srng_hw_init - Private function to initialize SRNG HW * @hal: HAL SOC handle * @srng: SRNG ring pointer * @idle_check: Check if ring is idle * @idx: ring index */ static inline void hal_srng_hw_init(struct hal_soc *hal, struct hal_srng *srng, bool idle_check, uint32_t idx) { if (srng->ring_dir == HAL_SRNG_SRC_RING) hal_srng_src_hw_init(hal, srng, idle_check, idx); else hal_srng_dst_hw_init(hal, srng, idle_check, idx); } #ifdef WLAN_FEATURE_NEAR_FULL_IRQ bool hal_srng_is_near_full_irq_supported(hal_soc_handle_t hal_soc, int ring_type, int ring_num) { struct hal_soc *hal = (struct hal_soc *)hal_soc; struct hal_hw_srng_config *ring_config = HAL_SRNG_CONFIG(hal, ring_type); return ring_config->nf_irq_support; } /** * hal_srng_set_msi2_params() - Set MSI2 params to SRNG data structure from * ring params * @srng: SRNG handle * @ring_params: ring params for this SRNG * * Return: None */ static inline void hal_srng_set_msi2_params(struct hal_srng *srng, struct hal_srng_params *ring_params) { srng->msi2_addr = ring_params->msi2_addr; srng->msi2_data = ring_params->msi2_data; } /** * hal_srng_get_nf_params() - Get the near full MSI2 params from srng * @srng: SRNG handle * @ring_params: ring params for this SRNG * * Return: None */ static inline void hal_srng_get_nf_params(struct hal_srng *srng, struct hal_srng_params *ring_params) { ring_params->msi2_addr = srng->msi2_addr; ring_params->msi2_data = srng->msi2_data; } /** * hal_srng_set_nf_thresholds() - Set the near full thresholds in SRNG * @srng: SRNG handle where the params are to be set * @ring_params: ring params, from where threshold is to be fetched * * Return: None */ static inline void hal_srng_set_nf_thresholds(struct hal_srng *srng, struct hal_srng_params *ring_params) { srng->u.dst_ring.nf_irq_support = ring_params->nf_irq_support; srng->u.dst_ring.high_thresh = ring_params->high_thresh; } #else static inline void hal_srng_set_msi2_params(struct hal_srng *srng, struct hal_srng_params *ring_params) { } static inline void hal_srng_get_nf_params(struct hal_srng *srng, struct hal_srng_params *ring_params) { } static inline void hal_srng_set_nf_thresholds(struct hal_srng *srng, struct hal_srng_params *ring_params) { } #endif #if defined(CLEAR_SW2TCL_CONSUMED_DESC) /** * hal_srng_last_desc_cleared_init - Initialize SRNG last_desc_cleared ptr * @srng: Source ring pointer * * Return: None */ static inline void hal_srng_last_desc_cleared_init(struct hal_srng *srng) { srng->last_desc_cleared = srng->ring_size - srng->entry_size; } #else static inline void hal_srng_last_desc_cleared_init(struct hal_srng *srng) { } #endif /* CLEAR_SW2TCL_CONSUMED_DESC */ #ifdef WLAN_DP_SRNG_USAGE_WM_TRACKING static inline void hal_srng_update_high_wm_thresholds(struct hal_srng *srng) { srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_90_to_100] = ((srng->num_entries * 90) / 100); srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_80_to_90] = ((srng->num_entries * 80) / 100); srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_70_to_80] = ((srng->num_entries * 70) / 100); srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_60_to_70] = ((srng->num_entries * 60) / 100); srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_50_to_60] = ((srng->num_entries * 50) / 100); /* Below 50% threshold is not needed */ srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_BELOW_50_PERCENT] = 0; hal_info("ring_id: %u, wm_thresh- <50:%u, 50-60:%u, 60-70:%u, 70-80:%u, 80-90:%u, 90-100:%u", srng->ring_id, srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_BELOW_50_PERCENT], srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_50_to_60], srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_60_to_70], srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_70_to_80], srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_80_to_90], srng->high_wm.bin_thresh[HAL_SRNG_HIGH_WM_BIN_90_to_100]); } #else static inline void hal_srng_update_high_wm_thresholds(struct hal_srng *srng) { } #endif void *hal_srng_setup_idx(void *hal_soc, int ring_type, int ring_num, int mac_id, struct hal_srng_params *ring_params, bool idle_check, uint32_t idx) { int ring_id; struct hal_soc *hal = (struct hal_soc *)hal_soc; hal_soc_handle_t hal_hdl = (hal_soc_handle_t)hal; struct hal_srng *srng; struct hal_hw_srng_config *ring_config = HAL_SRNG_CONFIG(hal, ring_type); void *dev_base_addr; int i; ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, mac_id); if (ring_id < 0) return NULL; hal_verbose_debug("mac_id %d ring_id %d", mac_id, ring_id); srng = hal_get_srng(hal_soc, ring_id); if (srng->initialized) { hal_verbose_debug("Ring (ring_type, ring_num) already initialized"); return NULL; } hal_srng_reg_his_init(srng); dev_base_addr = hal->dev_base_addr; srng->ring_id = ring_id; srng->ring_type = ring_type; srng->ring_dir = ring_config->ring_dir; srng->ring_base_paddr = ring_params->ring_base_paddr; srng->ring_base_vaddr = ring_params->ring_base_vaddr; srng->entry_size = ring_config->entry_size; srng->num_entries = ring_params->num_entries; srng->ring_size = srng->num_entries * srng->entry_size; srng->ring_size_mask = srng->ring_size - 1; srng->ring_vaddr_end = srng->ring_base_vaddr + srng->ring_size; srng->msi_addr = ring_params->msi_addr; srng->msi_data = ring_params->msi_data; srng->intr_timer_thres_us = ring_params->intr_timer_thres_us; srng->intr_batch_cntr_thres_entries = ring_params->intr_batch_cntr_thres_entries; srng->pointer_timer_threshold = ring_params->pointer_timer_threshold; srng->pointer_num_threshold = ring_params->pointer_num_threshold; if (!idle_check) srng->prefetch_timer = ring_params->prefetch_timer; srng->hal_soc = hal_soc; hal_srng_set_msi2_params(srng, ring_params); hal_srng_update_high_wm_thresholds(srng); for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++) { srng->hwreg_base[i] = dev_base_addr + ring_config->reg_start[i] + (ring_num * ring_config->reg_size[i]); } /* Zero out the entire ring memory */ qdf_mem_zero(srng->ring_base_vaddr, (srng->entry_size * srng->num_entries) << 2); srng->flags = ring_params->flags; /* For cached descriptors flush and invalidate the memory*/ if (srng->flags & HAL_SRNG_CACHED_DESC) { qdf_nbuf_dma_clean_range( srng->ring_base_vaddr, srng->ring_base_vaddr + ((srng->entry_size * srng->num_entries))); qdf_nbuf_dma_inv_range( srng->ring_base_vaddr, srng->ring_base_vaddr + ((srng->entry_size * srng->num_entries))); } #ifdef BIG_ENDIAN_HOST /* TODO: See if we should we get these flags from caller */ srng->flags |= HAL_SRNG_DATA_TLV_SWAP; srng->flags |= HAL_SRNG_MSI_SWAP; srng->flags |= HAL_SRNG_RING_PTR_SWAP; #endif hal_srng_last_desc_cleared_init(srng); if (srng->ring_dir == HAL_SRNG_SRC_RING) { srng->u.src_ring.hp = 0; srng->u.src_ring.reap_hp = srng->ring_size - srng->entry_size; srng->u.src_ring.tp_addr = &(hal->shadow_rdptr_mem_vaddr[ring_id]); srng->u.src_ring.low_threshold = ring_params->low_threshold * srng->entry_size; if (srng->u.src_ring.tp_addr) qdf_mem_zero(srng->u.src_ring.tp_addr, sizeof(*hal->shadow_rdptr_mem_vaddr)); if (ring_config->lmac_ring) { /* For LMAC rings, head pointer updates will be done * through FW by writing to a shared memory location */ srng->u.src_ring.hp_addr = &(hal->shadow_wrptr_mem_vaddr[ring_id - HAL_SRNG_LMAC1_ID_START]); srng->flags |= HAL_SRNG_LMAC_RING; if (srng->u.src_ring.hp_addr) qdf_mem_zero(srng->u.src_ring.hp_addr, sizeof(*hal->shadow_wrptr_mem_vaddr)); } else if (ignore_shadow || (srng->u.src_ring.hp_addr == 0)) { srng->u.src_ring.hp_addr = hal_get_window_address(hal, SRNG_SRC_ADDR(srng, HP)); if (CHECK_SHADOW_REGISTERS) { QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR, "%s: Ring (%d, %d) missing shadow config", __func__, ring_type, ring_num); } } else { hal_validate_shadow_register(hal, SRNG_SRC_ADDR(srng, HP), srng->u.src_ring.hp_addr); } } else { /* During initialization loop count in all the descriptors * will be set to zero, and HW will set it to 1 on completing * descriptor update in first loop, and increments it by 1 on * subsequent loops (loop count wraps around after reaching * 0xffff). The 'loop_cnt' in SW ring state is the expected * loop count in descriptors updated by HW (to be processed * by SW). */ hal_srng_set_nf_thresholds(srng, ring_params); srng->u.dst_ring.loop_cnt = 1; srng->u.dst_ring.tp = 0; srng->u.dst_ring.hp_addr = &(hal->shadow_rdptr_mem_vaddr[ring_id]); if (srng->u.dst_ring.hp_addr) qdf_mem_zero(srng->u.dst_ring.hp_addr, sizeof(*hal->shadow_rdptr_mem_vaddr)); if (ring_config->lmac_ring) { /* For LMAC rings, tail pointer updates will be done * through FW by writing to a shared memory location */ srng->u.dst_ring.tp_addr = &(hal->shadow_wrptr_mem_vaddr[ring_id - HAL_SRNG_LMAC1_ID_START]); srng->flags |= HAL_SRNG_LMAC_RING; if (srng->u.dst_ring.tp_addr) qdf_mem_zero(srng->u.dst_ring.tp_addr, sizeof(*hal->shadow_wrptr_mem_vaddr)); } else if (ignore_shadow || srng->u.dst_ring.tp_addr == 0) { srng->u.dst_ring.tp_addr = hal_get_window_address(hal, SRNG_DST_ADDR(srng, TP)); if (CHECK_SHADOW_REGISTERS) { QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR, "%s: Ring (%d, %d) missing shadow config", __func__, ring_type, ring_num); } } else { hal_validate_shadow_register(hal, SRNG_DST_ADDR(srng, TP), srng->u.dst_ring.tp_addr); } } if (!(ring_config->lmac_ring)) { /* * UMAC reset has idle check enabled. * During UMAC reset Tx ring halt is set * by Wi-Fi FW during pre-reset stage, * avoid Tx ring halt again. */ if (idle_check && idx) { if (!hal->ops->hal_tx_ring_halt_get(hal_hdl)) { qdf_print("\nTx ring halt not set:Ring(%d, %d)", ring_type, ring_num); qdf_assert_always(0); } hal_srng_hw_init(hal, srng, idle_check, idx); goto ce_setup; } if (idx) { hal->ops->hal_tx_ring_halt_set(hal_hdl); do { hal_info("Waiting for ring reset"); } while (!(hal->ops->hal_tx_ring_halt_poll(hal_hdl))); } hal_srng_hw_init(hal, srng, idle_check, idx); if (idx) { hal->ops->hal_tx_ring_halt_reset(hal_hdl); } ce_setup: if (ring_type == CE_DST) { srng->u.dst_ring.max_buffer_length = ring_params->max_buffer_length; hal_ce_dst_setup(hal, srng, ring_num); } } SRNG_LOCK_INIT(&srng->lock); srng->srng_event = 0; srng->initialized = true; return (void *)srng; } qdf_export_symbol(hal_srng_setup_idx); /** * hal_srng_setup - Initialize HW SRNG ring. * @hal_soc: Opaque HAL SOC handle * @ring_type: one of the types from hal_ring_type * @ring_num: Ring number if there are multiple rings of same type (staring * from 0) * @mac_id: valid MAC Id should be passed if ring type is one of lmac rings * @ring_params: SRNG ring params in hal_srng_params structure. * @idle_check: Check if ring is idle * * Callers are expected to allocate contiguous ring memory of size * 'num_entries * entry_size' bytes and pass the physical and virtual base * addresses through 'ring_base_paddr' and 'ring_base_vaddr' in * hal_srng_params structure. Ring base address should be 8 byte aligned * and size of each ring entry should be queried using the API * hal_srng_get_entrysize * * Return: Opaque pointer to ring on success * NULL on failure (if given ring is not available) */ void *hal_srng_setup(void *hal_soc, int ring_type, int ring_num, int mac_id, struct hal_srng_params *ring_params, bool idle_check) { return hal_srng_setup_idx(hal_soc, ring_type, ring_num, mac_id, ring_params, idle_check, 0); } qdf_export_symbol(hal_srng_setup); void hal_srng_cleanup(void *hal_soc, hal_ring_handle_t hal_ring_hdl, bool umac_reset_inprogress) { struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl; SRNG_LOCK_DESTROY(&srng->lock); srng->initialized = 0; if (umac_reset_inprogress) hal_srng_hw_disable(hal_soc, srng); } qdf_export_symbol(hal_srng_cleanup); uint32_t hal_srng_get_entrysize(void *hal_soc, int ring_type) { struct hal_soc *hal = (struct hal_soc *)hal_soc; struct hal_hw_srng_config *ring_config = HAL_SRNG_CONFIG(hal, ring_type); return ring_config->entry_size << 2; } qdf_export_symbol(hal_srng_get_entrysize); uint32_t hal_srng_max_entries(void *hal_soc, int ring_type) { struct hal_soc *hal = (struct hal_soc *)hal_soc; struct hal_hw_srng_config *ring_config = HAL_SRNG_CONFIG(hal, ring_type); return ring_config->max_size / ring_config->entry_size; } qdf_export_symbol(hal_srng_max_entries); enum hal_srng_dir hal_srng_get_dir(void *hal_soc, int ring_type) { struct hal_soc *hal = (struct hal_soc *)hal_soc; struct hal_hw_srng_config *ring_config = HAL_SRNG_CONFIG(hal, ring_type); return ring_config->ring_dir; } void hal_srng_dump(struct hal_srng *srng) { if (srng->ring_dir == HAL_SRNG_SRC_RING) { hal_debug("=== SRC RING %d ===", srng->ring_id); hal_debug("hp %u, reap_hp %u, tp %u, cached tp %u", srng->u.src_ring.hp, srng->u.src_ring.reap_hp, *srng->u.src_ring.tp_addr, srng->u.src_ring.cached_tp); } else { hal_debug("=== DST RING %d ===", srng->ring_id); hal_debug("tp %u, hp %u, cached tp %u, loop_cnt %u", srng->u.dst_ring.tp, *srng->u.dst_ring.hp_addr, srng->u.dst_ring.cached_hp, srng->u.dst_ring.loop_cnt); } } void hal_get_srng_params(hal_soc_handle_t hal_soc_hdl, hal_ring_handle_t hal_ring_hdl, struct hal_srng_params *ring_params) { struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl; int i =0; ring_params->ring_id = srng->ring_id; ring_params->ring_dir = srng->ring_dir; ring_params->entry_size = srng->entry_size; ring_params->ring_base_paddr = srng->ring_base_paddr; ring_params->ring_base_vaddr = srng->ring_base_vaddr; ring_params->num_entries = srng->num_entries; ring_params->msi_addr = srng->msi_addr; ring_params->msi_data = srng->msi_data; ring_params->intr_timer_thres_us = srng->intr_timer_thres_us; ring_params->intr_batch_cntr_thres_entries = srng->intr_batch_cntr_thres_entries; ring_params->low_threshold = srng->u.src_ring.low_threshold; ring_params->flags = srng->flags; ring_params->ring_id = srng->ring_id; for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++) ring_params->hwreg_base[i] = srng->hwreg_base[i]; hal_srng_get_nf_params(srng, ring_params); } qdf_export_symbol(hal_get_srng_params); void hal_set_low_threshold(hal_ring_handle_t hal_ring_hdl, uint32_t low_threshold) { struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl; srng->u.src_ring.low_threshold = low_threshold * srng->entry_size; } qdf_export_symbol(hal_set_low_threshold); #ifdef FEATURE_RUNTIME_PM void hal_srng_rtpm_access_end(hal_soc_handle_t hal_soc_hdl, hal_ring_handle_t hal_ring_hdl, uint32_t rtpm_id) { struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl; if (qdf_unlikely(!hal_ring_hdl)) { qdf_print("Error: Invalid hal_ring\n"); return; } if (hif_rtpm_get(HIF_RTPM_GET_ASYNC, rtpm_id) == 0) { if (hif_system_pm_state_check(hal_soc->hif_handle)) { hal_srng_access_end_reap(hal_soc_hdl, hal_ring_hdl); hal_srng_set_event(hal_ring_hdl, HAL_SRNG_FLUSH_EVENT); hal_srng_inc_flush_cnt(hal_ring_hdl); } else { hal_srng_access_end(hal_soc_hdl, hal_ring_hdl); } hif_rtpm_put(HIF_RTPM_PUT_ASYNC, rtpm_id); } else { hal_srng_access_end_reap(hal_soc_hdl, hal_ring_hdl); hal_srng_set_event(hal_ring_hdl, HAL_SRNG_FLUSH_EVENT); hal_srng_inc_flush_cnt(hal_ring_hdl); } } qdf_export_symbol(hal_srng_rtpm_access_end); #endif /* FEATURE_RUNTIME_PM */ #ifdef FORCE_WAKE void hal_set_init_phase(hal_soc_handle_t soc, bool init_phase) { struct hal_soc *hal_soc = (struct hal_soc *)soc; hal_soc->init_phase = init_phase; } #endif /* FORCE_WAKE */