1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #ifndef BTRFS_INODE_H
7 #define BTRFS_INODE_H
8
9 #include <linux/hash.h>
10 #include "extent_map.h"
11 #include "extent_io.h"
12 #include "ordered-data.h"
13 #include "delayed-inode.h"
14
15 /*
16 * ordered_data_close is set by truncate when a file that used
17 * to have good data has been truncated to zero. When it is set
18 * the btrfs file release call will add this inode to the
19 * ordered operations list so that we make sure to flush out any
20 * new data the application may have written before commit.
21 */
22 enum {
23 BTRFS_INODE_ORDERED_DATA_CLOSE = 0,
24 BTRFS_INODE_DUMMY,
25 BTRFS_INODE_IN_DEFRAG,
26 BTRFS_INODE_HAS_ASYNC_EXTENT,
27 BTRFS_INODE_NEEDS_FULL_SYNC,
28 BTRFS_INODE_COPY_EVERYTHING,
29 BTRFS_INODE_IN_DELALLOC_LIST,
30 BTRFS_INODE_READDIO_NEED_LOCK,
31 BTRFS_INODE_HAS_PROPS,
32 BTRFS_INODE_SNAPSHOT_FLUSH,
33 };
34
35 /* in memory btrfs inode */
36 struct btrfs_inode {
37 /* which subvolume this inode belongs to */
38 struct btrfs_root *root;
39
40 /* key used to find this inode on disk. This is used by the code
41 * to read in roots of subvolumes
42 */
43 struct btrfs_key location;
44
45 /*
46 * Lock for counters and all fields used to determine if the inode is in
47 * the log or not (last_trans, last_sub_trans, last_log_commit,
48 * logged_trans).
49 */
50 spinlock_t lock;
51
52 /* the extent_tree has caches of all the extent mappings to disk */
53 struct extent_map_tree extent_tree;
54
55 /* the io_tree does range state (DIRTY, LOCKED etc) */
56 struct extent_io_tree io_tree;
57
58 /* special utility tree used to record which mirrors have already been
59 * tried when checksums fail for a given block
60 */
61 struct extent_io_tree io_failure_tree;
62
63 /* held while logging the inode in tree-log.c */
64 struct mutex log_mutex;
65
66 /* held while doing delalloc reservations */
67 struct mutex delalloc_mutex;
68
69 /* used to order data wrt metadata */
70 struct btrfs_ordered_inode_tree ordered_tree;
71
72 /* list of all the delalloc inodes in the FS. There are times we need
73 * to write all the delalloc pages to disk, and this list is used
74 * to walk them all.
75 */
76 struct list_head delalloc_inodes;
77
78 /* node for the red-black tree that links inodes in subvolume root */
79 struct rb_node rb_node;
80
81 unsigned long runtime_flags;
82
83 /* Keep track of who's O_SYNC/fsyncing currently */
84 atomic_t sync_writers;
85
86 /* full 64 bit generation number, struct vfs_inode doesn't have a big
87 * enough field for this.
88 */
89 u64 generation;
90
91 /*
92 * transid of the trans_handle that last modified this inode
93 */
94 u64 last_trans;
95
96 /*
97 * transid that last logged this inode
98 */
99 u64 logged_trans;
100
101 /*
102 * log transid when this inode was last modified
103 */
104 int last_sub_trans;
105
106 /* a local copy of root's last_log_commit */
107 int last_log_commit;
108
109 /* total number of bytes pending delalloc, used by stat to calc the
110 * real block usage of the file
111 */
112 u64 delalloc_bytes;
113
114 /*
115 * Total number of bytes pending delalloc that fall within a file
116 * range that is either a hole or beyond EOF (and no prealloc extent
117 * exists in the range). This is always <= delalloc_bytes.
118 */
119 u64 new_delalloc_bytes;
120
121 /*
122 * total number of bytes pending defrag, used by stat to check whether
123 * it needs COW.
124 */
125 u64 defrag_bytes;
126
127 /*
128 * the size of the file stored in the metadata on disk. data=ordered
129 * means the in-memory i_size might be larger than the size on disk
130 * because not all the blocks are written yet.
131 */
132 u64 disk_i_size;
133
134 /*
135 * if this is a directory then index_cnt is the counter for the index
136 * number for new files that are created
137 */
138 u64 index_cnt;
139
140 /* Cache the directory index number to speed the dir/file remove */
141 u64 dir_index;
142
143 /* the fsync log has some corner cases that mean we have to check
144 * directories to see if any unlinks have been done before
145 * the directory was logged. See tree-log.c for all the
146 * details
147 */
148 u64 last_unlink_trans;
149
150 /*
151 * Track the transaction id of the last transaction used to create a
152 * hard link for the inode. This is used by the log tree (fsync).
153 */
154 u64 last_link_trans;
155
156 /*
157 * Number of bytes outstanding that are going to need csums. This is
158 * used in ENOSPC accounting.
159 */
160 u64 csum_bytes;
161
162 /* flags field from the on disk inode */
163 u32 flags;
164
165 /*
166 * Counters to keep track of the number of extent item's we may use due
167 * to delalloc and such. outstanding_extents is the number of extent
168 * items we think we'll end up using, and reserved_extents is the number
169 * of extent items we've reserved metadata for.
170 */
171 unsigned outstanding_extents;
172
173 struct btrfs_block_rsv block_rsv;
174
175 /*
176 * Cached values of inode properties
177 */
178 unsigned prop_compress; /* per-file compression algorithm */
179 /*
180 * Force compression on the file using the defrag ioctl, could be
181 * different from prop_compress and takes precedence if set
182 */
183 unsigned defrag_compress;
184
185 struct btrfs_delayed_node *delayed_node;
186
187 /* File creation time. */
188 struct timespec64 i_otime;
189
190 /* Hook into fs_info->delayed_iputs */
191 struct list_head delayed_iput;
192
193 /*
194 * To avoid races between lockless (i_mutex not held) direct IO writes
195 * and concurrent fsync requests. Direct IO writes must acquire read
196 * access on this semaphore for creating an extent map and its
197 * corresponding ordered extent. The fast fsync path must acquire write
198 * access on this semaphore before it collects ordered extents and
199 * extent maps.
200 */
201 struct rw_semaphore dio_sem;
202
203 struct inode vfs_inode;
204 };
205
206 extern unsigned char btrfs_filetype_table[];
207
BTRFS_I(const struct inode * inode)208 static inline struct btrfs_inode *BTRFS_I(const struct inode *inode)
209 {
210 return container_of(inode, struct btrfs_inode, vfs_inode);
211 }
212
btrfs_inode_hash(u64 objectid,const struct btrfs_root * root)213 static inline unsigned long btrfs_inode_hash(u64 objectid,
214 const struct btrfs_root *root)
215 {
216 u64 h = objectid ^ (root->objectid * GOLDEN_RATIO_PRIME);
217
218 #if BITS_PER_LONG == 32
219 h = (h >> 32) ^ (h & 0xffffffff);
220 #endif
221
222 return (unsigned long)h;
223 }
224
btrfs_insert_inode_hash(struct inode * inode)225 static inline void btrfs_insert_inode_hash(struct inode *inode)
226 {
227 unsigned long h = btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root);
228
229 __insert_inode_hash(inode, h);
230 }
231
btrfs_ino(const struct btrfs_inode * inode)232 static inline u64 btrfs_ino(const struct btrfs_inode *inode)
233 {
234 u64 ino = inode->location.objectid;
235
236 /*
237 * !ino: btree_inode
238 * type == BTRFS_ROOT_ITEM_KEY: subvol dir
239 */
240 if (!ino || inode->location.type == BTRFS_ROOT_ITEM_KEY)
241 ino = inode->vfs_inode.i_ino;
242 return ino;
243 }
244
btrfs_i_size_write(struct btrfs_inode * inode,u64 size)245 static inline void btrfs_i_size_write(struct btrfs_inode *inode, u64 size)
246 {
247 i_size_write(&inode->vfs_inode, size);
248 inode->disk_i_size = size;
249 }
250
btrfs_is_free_space_inode(struct btrfs_inode * inode)251 static inline bool btrfs_is_free_space_inode(struct btrfs_inode *inode)
252 {
253 struct btrfs_root *root = inode->root;
254
255 if (root == root->fs_info->tree_root &&
256 btrfs_ino(inode) != BTRFS_BTREE_INODE_OBJECTID)
257 return true;
258 if (inode->location.objectid == BTRFS_FREE_INO_OBJECTID)
259 return true;
260 return false;
261 }
262
btrfs_mod_outstanding_extents(struct btrfs_inode * inode,int mod)263 static inline void btrfs_mod_outstanding_extents(struct btrfs_inode *inode,
264 int mod)
265 {
266 lockdep_assert_held(&inode->lock);
267 inode->outstanding_extents += mod;
268 if (btrfs_is_free_space_inode(inode))
269 return;
270 trace_btrfs_inode_mod_outstanding_extents(inode->root, btrfs_ino(inode),
271 mod);
272 }
273
btrfs_inode_in_log(struct btrfs_inode * inode,u64 generation)274 static inline int btrfs_inode_in_log(struct btrfs_inode *inode, u64 generation)
275 {
276 int ret = 0;
277
278 spin_lock(&inode->lock);
279 if (inode->logged_trans == generation &&
280 inode->last_sub_trans <= inode->last_log_commit &&
281 inode->last_sub_trans <= inode->root->last_log_commit) {
282 /*
283 * After a ranged fsync we might have left some extent maps
284 * (that fall outside the fsync's range). So return false
285 * here if the list isn't empty, to make sure btrfs_log_inode()
286 * will be called and process those extent maps.
287 */
288 smp_mb();
289 if (list_empty(&inode->extent_tree.modified_extents))
290 ret = 1;
291 }
292 spin_unlock(&inode->lock);
293 return ret;
294 }
295
296 #define BTRFS_DIO_ORIG_BIO_SUBMITTED 0x1
297
298 struct btrfs_dio_private {
299 struct inode *inode;
300 unsigned long flags;
301 u64 logical_offset;
302 u64 disk_bytenr;
303 u64 bytes;
304 void *private;
305
306 /* number of bios pending for this dio */
307 atomic_t pending_bios;
308
309 /* IO errors */
310 int errors;
311
312 /* orig_bio is our btrfs_io_bio */
313 struct bio *orig_bio;
314
315 /* dio_bio came from fs/direct-io.c */
316 struct bio *dio_bio;
317
318 /*
319 * The original bio may be split to several sub-bios, this is
320 * done during endio of sub-bios
321 */
322 blk_status_t (*subio_endio)(struct inode *, struct btrfs_io_bio *,
323 blk_status_t);
324 };
325
326 /*
327 * Disable DIO read nolock optimization, so new dio readers will be forced
328 * to grab i_mutex. It is used to avoid the endless truncate due to
329 * nonlocked dio read.
330 */
btrfs_inode_block_unlocked_dio(struct btrfs_inode * inode)331 static inline void btrfs_inode_block_unlocked_dio(struct btrfs_inode *inode)
332 {
333 set_bit(BTRFS_INODE_READDIO_NEED_LOCK, &inode->runtime_flags);
334 smp_mb();
335 }
336
btrfs_inode_resume_unlocked_dio(struct btrfs_inode * inode)337 static inline void btrfs_inode_resume_unlocked_dio(struct btrfs_inode *inode)
338 {
339 smp_mb__before_atomic();
340 clear_bit(BTRFS_INODE_READDIO_NEED_LOCK, &inode->runtime_flags);
341 }
342
btrfs_print_data_csum_error(struct btrfs_inode * inode,u64 logical_start,u32 csum,u32 csum_expected,int mirror_num)343 static inline void btrfs_print_data_csum_error(struct btrfs_inode *inode,
344 u64 logical_start, u32 csum, u32 csum_expected, int mirror_num)
345 {
346 struct btrfs_root *root = inode->root;
347
348 /* Output minus objectid, which is more meaningful */
349 if (root->objectid >= BTRFS_LAST_FREE_OBJECTID)
350 btrfs_warn_rl(root->fs_info,
351 "csum failed root %lld ino %lld off %llu csum 0x%08x expected csum 0x%08x mirror %d",
352 root->objectid, btrfs_ino(inode),
353 logical_start, csum, csum_expected, mirror_num);
354 else
355 btrfs_warn_rl(root->fs_info,
356 "csum failed root %llu ino %llu off %llu csum 0x%08x expected csum 0x%08x mirror %d",
357 root->objectid, btrfs_ino(inode),
358 logical_start, csum, csum_expected, mirror_num);
359 }
360
361 #endif
362