1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #ifndef BTRFS_INODE_H
7 #define BTRFS_INODE_H
8 
9 #include <linux/hash.h>
10 #include "extent_map.h"
11 #include "extent_io.h"
12 #include "ordered-data.h"
13 #include "delayed-inode.h"
14 
15 /*
16  * ordered_data_close is set by truncate when a file that used
17  * to have good data has been truncated to zero.  When it is set
18  * the btrfs file release call will add this inode to the
19  * ordered operations list so that we make sure to flush out any
20  * new data the application may have written before commit.
21  */
22 enum {
23 	BTRFS_INODE_ORDERED_DATA_CLOSE = 0,
24 	BTRFS_INODE_DUMMY,
25 	BTRFS_INODE_IN_DEFRAG,
26 	BTRFS_INODE_HAS_ASYNC_EXTENT,
27 	BTRFS_INODE_NEEDS_FULL_SYNC,
28 	BTRFS_INODE_COPY_EVERYTHING,
29 	BTRFS_INODE_IN_DELALLOC_LIST,
30 	BTRFS_INODE_READDIO_NEED_LOCK,
31 	BTRFS_INODE_HAS_PROPS,
32 	BTRFS_INODE_SNAPSHOT_FLUSH,
33 };
34 
35 /* in memory btrfs inode */
36 struct btrfs_inode {
37 	/* which subvolume this inode belongs to */
38 	struct btrfs_root *root;
39 
40 	/* key used to find this inode on disk.  This is used by the code
41 	 * to read in roots of subvolumes
42 	 */
43 	struct btrfs_key location;
44 
45 	/*
46 	 * Lock for counters and all fields used to determine if the inode is in
47 	 * the log or not (last_trans, last_sub_trans, last_log_commit,
48 	 * logged_trans).
49 	 */
50 	spinlock_t lock;
51 
52 	/* the extent_tree has caches of all the extent mappings to disk */
53 	struct extent_map_tree extent_tree;
54 
55 	/* the io_tree does range state (DIRTY, LOCKED etc) */
56 	struct extent_io_tree io_tree;
57 
58 	/* special utility tree used to record which mirrors have already been
59 	 * tried when checksums fail for a given block
60 	 */
61 	struct extent_io_tree io_failure_tree;
62 
63 	/* held while logging the inode in tree-log.c */
64 	struct mutex log_mutex;
65 
66 	/* held while doing delalloc reservations */
67 	struct mutex delalloc_mutex;
68 
69 	/* used to order data wrt metadata */
70 	struct btrfs_ordered_inode_tree ordered_tree;
71 
72 	/* list of all the delalloc inodes in the FS.  There are times we need
73 	 * to write all the delalloc pages to disk, and this list is used
74 	 * to walk them all.
75 	 */
76 	struct list_head delalloc_inodes;
77 
78 	/* node for the red-black tree that links inodes in subvolume root */
79 	struct rb_node rb_node;
80 
81 	unsigned long runtime_flags;
82 
83 	/* Keep track of who's O_SYNC/fsyncing currently */
84 	atomic_t sync_writers;
85 
86 	/* full 64 bit generation number, struct vfs_inode doesn't have a big
87 	 * enough field for this.
88 	 */
89 	u64 generation;
90 
91 	/*
92 	 * transid of the trans_handle that last modified this inode
93 	 */
94 	u64 last_trans;
95 
96 	/*
97 	 * transid that last logged this inode
98 	 */
99 	u64 logged_trans;
100 
101 	/*
102 	 * log transid when this inode was last modified
103 	 */
104 	int last_sub_trans;
105 
106 	/* a local copy of root's last_log_commit */
107 	int last_log_commit;
108 
109 	/* total number of bytes pending delalloc, used by stat to calc the
110 	 * real block usage of the file
111 	 */
112 	u64 delalloc_bytes;
113 
114 	/*
115 	 * Total number of bytes pending delalloc that fall within a file
116 	 * range that is either a hole or beyond EOF (and no prealloc extent
117 	 * exists in the range). This is always <= delalloc_bytes.
118 	 */
119 	u64 new_delalloc_bytes;
120 
121 	/*
122 	 * total number of bytes pending defrag, used by stat to check whether
123 	 * it needs COW.
124 	 */
125 	u64 defrag_bytes;
126 
127 	/*
128 	 * the size of the file stored in the metadata on disk.  data=ordered
129 	 * means the in-memory i_size might be larger than the size on disk
130 	 * because not all the blocks are written yet.
131 	 */
132 	u64 disk_i_size;
133 
134 	/*
135 	 * if this is a directory then index_cnt is the counter for the index
136 	 * number for new files that are created
137 	 */
138 	u64 index_cnt;
139 
140 	/* Cache the directory index number to speed the dir/file remove */
141 	u64 dir_index;
142 
143 	/* the fsync log has some corner cases that mean we have to check
144 	 * directories to see if any unlinks have been done before
145 	 * the directory was logged.  See tree-log.c for all the
146 	 * details
147 	 */
148 	u64 last_unlink_trans;
149 
150 	/*
151 	 * Track the transaction id of the last transaction used to create a
152 	 * hard link for the inode. This is used by the log tree (fsync).
153 	 */
154 	u64 last_link_trans;
155 
156 	/*
157 	 * Number of bytes outstanding that are going to need csums.  This is
158 	 * used in ENOSPC accounting.
159 	 */
160 	u64 csum_bytes;
161 
162 	/* flags field from the on disk inode */
163 	u32 flags;
164 
165 	/*
166 	 * Counters to keep track of the number of extent item's we may use due
167 	 * to delalloc and such.  outstanding_extents is the number of extent
168 	 * items we think we'll end up using, and reserved_extents is the number
169 	 * of extent items we've reserved metadata for.
170 	 */
171 	unsigned outstanding_extents;
172 
173 	struct btrfs_block_rsv block_rsv;
174 
175 	/*
176 	 * Cached values of inode properties
177 	 */
178 	unsigned prop_compress;		/* per-file compression algorithm */
179 	/*
180 	 * Force compression on the file using the defrag ioctl, could be
181 	 * different from prop_compress and takes precedence if set
182 	 */
183 	unsigned defrag_compress;
184 
185 	struct btrfs_delayed_node *delayed_node;
186 
187 	/* File creation time. */
188 	struct timespec64 i_otime;
189 
190 	/* Hook into fs_info->delayed_iputs */
191 	struct list_head delayed_iput;
192 
193 	/*
194 	 * To avoid races between lockless (i_mutex not held) direct IO writes
195 	 * and concurrent fsync requests. Direct IO writes must acquire read
196 	 * access on this semaphore for creating an extent map and its
197 	 * corresponding ordered extent. The fast fsync path must acquire write
198 	 * access on this semaphore before it collects ordered extents and
199 	 * extent maps.
200 	 */
201 	struct rw_semaphore dio_sem;
202 
203 	struct inode vfs_inode;
204 };
205 
206 extern unsigned char btrfs_filetype_table[];
207 
BTRFS_I(const struct inode * inode)208 static inline struct btrfs_inode *BTRFS_I(const struct inode *inode)
209 {
210 	return container_of(inode, struct btrfs_inode, vfs_inode);
211 }
212 
btrfs_inode_hash(u64 objectid,const struct btrfs_root * root)213 static inline unsigned long btrfs_inode_hash(u64 objectid,
214 					     const struct btrfs_root *root)
215 {
216 	u64 h = objectid ^ (root->objectid * GOLDEN_RATIO_PRIME);
217 
218 #if BITS_PER_LONG == 32
219 	h = (h >> 32) ^ (h & 0xffffffff);
220 #endif
221 
222 	return (unsigned long)h;
223 }
224 
btrfs_insert_inode_hash(struct inode * inode)225 static inline void btrfs_insert_inode_hash(struct inode *inode)
226 {
227 	unsigned long h = btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root);
228 
229 	__insert_inode_hash(inode, h);
230 }
231 
btrfs_ino(const struct btrfs_inode * inode)232 static inline u64 btrfs_ino(const struct btrfs_inode *inode)
233 {
234 	u64 ino = inode->location.objectid;
235 
236 	/*
237 	 * !ino: btree_inode
238 	 * type == BTRFS_ROOT_ITEM_KEY: subvol dir
239 	 */
240 	if (!ino || inode->location.type == BTRFS_ROOT_ITEM_KEY)
241 		ino = inode->vfs_inode.i_ino;
242 	return ino;
243 }
244 
btrfs_i_size_write(struct btrfs_inode * inode,u64 size)245 static inline void btrfs_i_size_write(struct btrfs_inode *inode, u64 size)
246 {
247 	i_size_write(&inode->vfs_inode, size);
248 	inode->disk_i_size = size;
249 }
250 
btrfs_is_free_space_inode(struct btrfs_inode * inode)251 static inline bool btrfs_is_free_space_inode(struct btrfs_inode *inode)
252 {
253 	struct btrfs_root *root = inode->root;
254 
255 	if (root == root->fs_info->tree_root &&
256 	    btrfs_ino(inode) != BTRFS_BTREE_INODE_OBJECTID)
257 		return true;
258 	if (inode->location.objectid == BTRFS_FREE_INO_OBJECTID)
259 		return true;
260 	return false;
261 }
262 
btrfs_mod_outstanding_extents(struct btrfs_inode * inode,int mod)263 static inline void btrfs_mod_outstanding_extents(struct btrfs_inode *inode,
264 						 int mod)
265 {
266 	lockdep_assert_held(&inode->lock);
267 	inode->outstanding_extents += mod;
268 	if (btrfs_is_free_space_inode(inode))
269 		return;
270 	trace_btrfs_inode_mod_outstanding_extents(inode->root, btrfs_ino(inode),
271 						  mod);
272 }
273 
btrfs_inode_in_log(struct btrfs_inode * inode,u64 generation)274 static inline int btrfs_inode_in_log(struct btrfs_inode *inode, u64 generation)
275 {
276 	int ret = 0;
277 
278 	spin_lock(&inode->lock);
279 	if (inode->logged_trans == generation &&
280 	    inode->last_sub_trans <= inode->last_log_commit &&
281 	    inode->last_sub_trans <= inode->root->last_log_commit) {
282 		/*
283 		 * After a ranged fsync we might have left some extent maps
284 		 * (that fall outside the fsync's range). So return false
285 		 * here if the list isn't empty, to make sure btrfs_log_inode()
286 		 * will be called and process those extent maps.
287 		 */
288 		smp_mb();
289 		if (list_empty(&inode->extent_tree.modified_extents))
290 			ret = 1;
291 	}
292 	spin_unlock(&inode->lock);
293 	return ret;
294 }
295 
296 #define BTRFS_DIO_ORIG_BIO_SUBMITTED	0x1
297 
298 struct btrfs_dio_private {
299 	struct inode *inode;
300 	unsigned long flags;
301 	u64 logical_offset;
302 	u64 disk_bytenr;
303 	u64 bytes;
304 	void *private;
305 
306 	/* number of bios pending for this dio */
307 	atomic_t pending_bios;
308 
309 	/* IO errors */
310 	int errors;
311 
312 	/* orig_bio is our btrfs_io_bio */
313 	struct bio *orig_bio;
314 
315 	/* dio_bio came from fs/direct-io.c */
316 	struct bio *dio_bio;
317 
318 	/*
319 	 * The original bio may be split to several sub-bios, this is
320 	 * done during endio of sub-bios
321 	 */
322 	blk_status_t (*subio_endio)(struct inode *, struct btrfs_io_bio *,
323 			blk_status_t);
324 };
325 
326 /*
327  * Disable DIO read nolock optimization, so new dio readers will be forced
328  * to grab i_mutex. It is used to avoid the endless truncate due to
329  * nonlocked dio read.
330  */
btrfs_inode_block_unlocked_dio(struct btrfs_inode * inode)331 static inline void btrfs_inode_block_unlocked_dio(struct btrfs_inode *inode)
332 {
333 	set_bit(BTRFS_INODE_READDIO_NEED_LOCK, &inode->runtime_flags);
334 	smp_mb();
335 }
336 
btrfs_inode_resume_unlocked_dio(struct btrfs_inode * inode)337 static inline void btrfs_inode_resume_unlocked_dio(struct btrfs_inode *inode)
338 {
339 	smp_mb__before_atomic();
340 	clear_bit(BTRFS_INODE_READDIO_NEED_LOCK, &inode->runtime_flags);
341 }
342 
btrfs_print_data_csum_error(struct btrfs_inode * inode,u64 logical_start,u32 csum,u32 csum_expected,int mirror_num)343 static inline void btrfs_print_data_csum_error(struct btrfs_inode *inode,
344 		u64 logical_start, u32 csum, u32 csum_expected, int mirror_num)
345 {
346 	struct btrfs_root *root = inode->root;
347 
348 	/* Output minus objectid, which is more meaningful */
349 	if (root->objectid >= BTRFS_LAST_FREE_OBJECTID)
350 		btrfs_warn_rl(root->fs_info,
351 	"csum failed root %lld ino %lld off %llu csum 0x%08x expected csum 0x%08x mirror %d",
352 			root->objectid, btrfs_ino(inode),
353 			logical_start, csum, csum_expected, mirror_num);
354 	else
355 		btrfs_warn_rl(root->fs_info,
356 	"csum failed root %llu ino %llu off %llu csum 0x%08x expected csum 0x%08x mirror %d",
357 			root->objectid, btrfs_ino(inode),
358 			logical_start, csum, csum_expected, mirror_num);
359 }
360 
361 #endif
362