1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2 #ifndef _BTRFS_CTREE_H_
3 #define _BTRFS_CTREE_H_
4 
5 #include <linux/btrfs.h>
6 #include <linux/types.h>
7 
8 /*
9  * This header contains the structure definitions and constants used
10  * by file system objects that can be retrieved using
11  * the BTRFS_IOC_SEARCH_TREE ioctl.  That means basically anything that
12  * is needed to describe a leaf node's key or item contents.
13  */
14 
15 /* holds pointers to all of the tree roots */
16 #define BTRFS_ROOT_TREE_OBJECTID 1ULL
17 
18 /* stores information about which extents are in use, and reference counts */
19 #define BTRFS_EXTENT_TREE_OBJECTID 2ULL
20 
21 /*
22  * chunk tree stores translations from logical -> physical block numbering
23  * the super block points to the chunk tree
24  */
25 #define BTRFS_CHUNK_TREE_OBJECTID 3ULL
26 
27 /*
28  * stores information about which areas of a given device are in use.
29  * one per device.  The tree of tree roots points to the device tree
30  */
31 #define BTRFS_DEV_TREE_OBJECTID 4ULL
32 
33 /* one per subvolume, storing files and directories */
34 #define BTRFS_FS_TREE_OBJECTID 5ULL
35 
36 /* directory objectid inside the root tree */
37 #define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL
38 
39 /* holds checksums of all the data extents */
40 #define BTRFS_CSUM_TREE_OBJECTID 7ULL
41 
42 /* holds quota configuration and tracking */
43 #define BTRFS_QUOTA_TREE_OBJECTID 8ULL
44 
45 /* for storing items that use the BTRFS_UUID_KEY* types */
46 #define BTRFS_UUID_TREE_OBJECTID 9ULL
47 
48 /* tracks free space in block groups. */
49 #define BTRFS_FREE_SPACE_TREE_OBJECTID 10ULL
50 
51 /* device stats in the device tree */
52 #define BTRFS_DEV_STATS_OBJECTID 0ULL
53 
54 /* for storing balance parameters in the root tree */
55 #define BTRFS_BALANCE_OBJECTID -4ULL
56 
57 /* orhpan objectid for tracking unlinked/truncated files */
58 #define BTRFS_ORPHAN_OBJECTID -5ULL
59 
60 /* does write ahead logging to speed up fsyncs */
61 #define BTRFS_TREE_LOG_OBJECTID -6ULL
62 #define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL
63 
64 /* for space balancing */
65 #define BTRFS_TREE_RELOC_OBJECTID -8ULL
66 #define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL
67 
68 /*
69  * extent checksums all have this objectid
70  * this allows them to share the logging tree
71  * for fsyncs
72  */
73 #define BTRFS_EXTENT_CSUM_OBJECTID -10ULL
74 
75 /* For storing free space cache */
76 #define BTRFS_FREE_SPACE_OBJECTID -11ULL
77 
78 /*
79  * The inode number assigned to the special inode for storing
80  * free ino cache
81  */
82 #define BTRFS_FREE_INO_OBJECTID -12ULL
83 
84 /* dummy objectid represents multiple objectids */
85 #define BTRFS_MULTIPLE_OBJECTIDS -255ULL
86 
87 /*
88  * All files have objectids in this range.
89  */
90 #define BTRFS_FIRST_FREE_OBJECTID 256ULL
91 #define BTRFS_LAST_FREE_OBJECTID -256ULL
92 #define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL
93 
94 
95 /*
96  * the device items go into the chunk tree.  The key is in the form
97  * [ 1 BTRFS_DEV_ITEM_KEY device_id ]
98  */
99 #define BTRFS_DEV_ITEMS_OBJECTID 1ULL
100 
101 #define BTRFS_BTREE_INODE_OBJECTID 1
102 
103 #define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2
104 
105 #define BTRFS_DEV_REPLACE_DEVID 0ULL
106 
107 /*
108  * inode items have the data typically returned from stat and store other
109  * info about object characteristics.  There is one for every file and dir in
110  * the FS
111  */
112 #define BTRFS_INODE_ITEM_KEY		1
113 #define BTRFS_INODE_REF_KEY		12
114 #define BTRFS_INODE_EXTREF_KEY		13
115 #define BTRFS_XATTR_ITEM_KEY		24
116 #define BTRFS_ORPHAN_ITEM_KEY		48
117 /* reserve 2-15 close to the inode for later flexibility */
118 
119 /*
120  * dir items are the name -> inode pointers in a directory.  There is one
121  * for every name in a directory.
122  */
123 #define BTRFS_DIR_LOG_ITEM_KEY  60
124 #define BTRFS_DIR_LOG_INDEX_KEY 72
125 #define BTRFS_DIR_ITEM_KEY	84
126 #define BTRFS_DIR_INDEX_KEY	96
127 /*
128  * extent data is for file data
129  */
130 #define BTRFS_EXTENT_DATA_KEY	108
131 
132 /*
133  * extent csums are stored in a separate tree and hold csums for
134  * an entire extent on disk.
135  */
136 #define BTRFS_EXTENT_CSUM_KEY	128
137 
138 /*
139  * root items point to tree roots.  They are typically in the root
140  * tree used by the super block to find all the other trees
141  */
142 #define BTRFS_ROOT_ITEM_KEY	132
143 
144 /*
145  * root backrefs tie subvols and snapshots to the directory entries that
146  * reference them
147  */
148 #define BTRFS_ROOT_BACKREF_KEY	144
149 
150 /*
151  * root refs make a fast index for listing all of the snapshots and
152  * subvolumes referenced by a given root.  They point directly to the
153  * directory item in the root that references the subvol
154  */
155 #define BTRFS_ROOT_REF_KEY	156
156 
157 /*
158  * extent items are in the extent map tree.  These record which blocks
159  * are used, and how many references there are to each block
160  */
161 #define BTRFS_EXTENT_ITEM_KEY	168
162 
163 /*
164  * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know
165  * the length, so we save the level in key->offset instead of the length.
166  */
167 #define BTRFS_METADATA_ITEM_KEY	169
168 
169 #define BTRFS_TREE_BLOCK_REF_KEY	176
170 
171 #define BTRFS_EXTENT_DATA_REF_KEY	178
172 
173 #define BTRFS_EXTENT_REF_V0_KEY		180
174 
175 #define BTRFS_SHARED_BLOCK_REF_KEY	182
176 
177 #define BTRFS_SHARED_DATA_REF_KEY	184
178 
179 /*
180  * block groups give us hints into the extent allocation trees.  Which
181  * blocks are free etc etc
182  */
183 #define BTRFS_BLOCK_GROUP_ITEM_KEY 192
184 
185 /*
186  * Every block group is represented in the free space tree by a free space info
187  * item, which stores some accounting information. It is keyed on
188  * (block_group_start, FREE_SPACE_INFO, block_group_length).
189  */
190 #define BTRFS_FREE_SPACE_INFO_KEY 198
191 
192 /*
193  * A free space extent tracks an extent of space that is free in a block group.
194  * It is keyed on (start, FREE_SPACE_EXTENT, length).
195  */
196 #define BTRFS_FREE_SPACE_EXTENT_KEY 199
197 
198 /*
199  * When a block group becomes very fragmented, we convert it to use bitmaps
200  * instead of extents. A free space bitmap is keyed on
201  * (start, FREE_SPACE_BITMAP, length); the corresponding item is a bitmap with
202  * (length / sectorsize) bits.
203  */
204 #define BTRFS_FREE_SPACE_BITMAP_KEY 200
205 
206 #define BTRFS_DEV_EXTENT_KEY	204
207 #define BTRFS_DEV_ITEM_KEY	216
208 #define BTRFS_CHUNK_ITEM_KEY	228
209 
210 /*
211  * Records the overall state of the qgroups.
212  * There's only one instance of this key present,
213  * (0, BTRFS_QGROUP_STATUS_KEY, 0)
214  */
215 #define BTRFS_QGROUP_STATUS_KEY         240
216 /*
217  * Records the currently used space of the qgroup.
218  * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid).
219  */
220 #define BTRFS_QGROUP_INFO_KEY           242
221 /*
222  * Contains the user configured limits for the qgroup.
223  * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid).
224  */
225 #define BTRFS_QGROUP_LIMIT_KEY          244
226 /*
227  * Records the child-parent relationship of qgroups. For
228  * each relation, 2 keys are present:
229  * (childid, BTRFS_QGROUP_RELATION_KEY, parentid)
230  * (parentid, BTRFS_QGROUP_RELATION_KEY, childid)
231  */
232 #define BTRFS_QGROUP_RELATION_KEY       246
233 
234 /*
235  * Obsolete name, see BTRFS_TEMPORARY_ITEM_KEY.
236  */
237 #define BTRFS_BALANCE_ITEM_KEY	248
238 
239 /*
240  * The key type for tree items that are stored persistently, but do not need to
241  * exist for extended period of time. The items can exist in any tree.
242  *
243  * [subtype, BTRFS_TEMPORARY_ITEM_KEY, data]
244  *
245  * Existing items:
246  *
247  * - balance status item
248  *   (BTRFS_BALANCE_OBJECTID, BTRFS_TEMPORARY_ITEM_KEY, 0)
249  */
250 #define BTRFS_TEMPORARY_ITEM_KEY	248
251 
252 /*
253  * Obsolete name, see BTRFS_PERSISTENT_ITEM_KEY
254  */
255 #define BTRFS_DEV_STATS_KEY		249
256 
257 /*
258  * The key type for tree items that are stored persistently and usually exist
259  * for a long period, eg. filesystem lifetime. The item kinds can be status
260  * information, stats or preference values. The item can exist in any tree.
261  *
262  * [subtype, BTRFS_PERSISTENT_ITEM_KEY, data]
263  *
264  * Existing items:
265  *
266  * - device statistics, store IO stats in the device tree, one key for all
267  *   stats
268  *   (BTRFS_DEV_STATS_OBJECTID, BTRFS_DEV_STATS_KEY, 0)
269  */
270 #define BTRFS_PERSISTENT_ITEM_KEY	249
271 
272 /*
273  * Persistantly stores the device replace state in the device tree.
274  * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0).
275  */
276 #define BTRFS_DEV_REPLACE_KEY	250
277 
278 /*
279  * Stores items that allow to quickly map UUIDs to something else.
280  * These items are part of the filesystem UUID tree.
281  * The key is built like this:
282  * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits).
283  */
284 #if BTRFS_UUID_SIZE != 16
285 #error "UUID items require BTRFS_UUID_SIZE == 16!"
286 #endif
287 #define BTRFS_UUID_KEY_SUBVOL	251	/* for UUIDs assigned to subvols */
288 #define BTRFS_UUID_KEY_RECEIVED_SUBVOL	252	/* for UUIDs assigned to
289 						 * received subvols */
290 
291 /*
292  * string items are for debugging.  They just store a short string of
293  * data in the FS
294  */
295 #define BTRFS_STRING_ITEM_KEY	253
296 
297 
298 
299 /* 32 bytes in various csum fields */
300 #define BTRFS_CSUM_SIZE 32
301 
302 /* csum types */
303 #define BTRFS_CSUM_TYPE_CRC32	0
304 
305 /*
306  * flags definitions for directory entry item type
307  *
308  * Used by:
309  * struct btrfs_dir_item.type
310  */
311 #define BTRFS_FT_UNKNOWN	0
312 #define BTRFS_FT_REG_FILE	1
313 #define BTRFS_FT_DIR		2
314 #define BTRFS_FT_CHRDEV		3
315 #define BTRFS_FT_BLKDEV		4
316 #define BTRFS_FT_FIFO		5
317 #define BTRFS_FT_SOCK		6
318 #define BTRFS_FT_SYMLINK	7
319 #define BTRFS_FT_XATTR		8
320 #define BTRFS_FT_MAX		9
321 
322 /*
323  * The key defines the order in the tree, and so it also defines (optimal)
324  * block layout.
325  *
326  * objectid corresponds to the inode number.
327  *
328  * type tells us things about the object, and is a kind of stream selector.
329  * so for a given inode, keys with type of 1 might refer to the inode data,
330  * type of 2 may point to file data in the btree and type == 3 may point to
331  * extents.
332  *
333  * offset is the starting byte offset for this key in the stream.
334  *
335  * btrfs_disk_key is in disk byte order.  struct btrfs_key is always
336  * in cpu native order.  Otherwise they are identical and their sizes
337  * should be the same (ie both packed)
338  */
339 struct btrfs_disk_key {
340 	__le64 objectid;
341 	__u8 type;
342 	__le64 offset;
343 } __attribute__ ((__packed__));
344 
345 struct btrfs_key {
346 	__u64 objectid;
347 	__u8 type;
348 	__u64 offset;
349 } __attribute__ ((__packed__));
350 
351 struct btrfs_dev_item {
352 	/* the internal btrfs device id */
353 	__le64 devid;
354 
355 	/* size of the device */
356 	__le64 total_bytes;
357 
358 	/* bytes used */
359 	__le64 bytes_used;
360 
361 	/* optimal io alignment for this device */
362 	__le32 io_align;
363 
364 	/* optimal io width for this device */
365 	__le32 io_width;
366 
367 	/* minimal io size for this device */
368 	__le32 sector_size;
369 
370 	/* type and info about this device */
371 	__le64 type;
372 
373 	/* expected generation for this device */
374 	__le64 generation;
375 
376 	/*
377 	 * starting byte of this partition on the device,
378 	 * to allow for stripe alignment in the future
379 	 */
380 	__le64 start_offset;
381 
382 	/* grouping information for allocation decisions */
383 	__le32 dev_group;
384 
385 	/* seek speed 0-100 where 100 is fastest */
386 	__u8 seek_speed;
387 
388 	/* bandwidth 0-100 where 100 is fastest */
389 	__u8 bandwidth;
390 
391 	/* btrfs generated uuid for this device */
392 	__u8 uuid[BTRFS_UUID_SIZE];
393 
394 	/* uuid of FS who owns this device */
395 	__u8 fsid[BTRFS_UUID_SIZE];
396 } __attribute__ ((__packed__));
397 
398 struct btrfs_stripe {
399 	__le64 devid;
400 	__le64 offset;
401 	__u8 dev_uuid[BTRFS_UUID_SIZE];
402 } __attribute__ ((__packed__));
403 
404 struct btrfs_chunk {
405 	/* size of this chunk in bytes */
406 	__le64 length;
407 
408 	/* objectid of the root referencing this chunk */
409 	__le64 owner;
410 
411 	__le64 stripe_len;
412 	__le64 type;
413 
414 	/* optimal io alignment for this chunk */
415 	__le32 io_align;
416 
417 	/* optimal io width for this chunk */
418 	__le32 io_width;
419 
420 	/* minimal io size for this chunk */
421 	__le32 sector_size;
422 
423 	/* 2^16 stripes is quite a lot, a second limit is the size of a single
424 	 * item in the btree
425 	 */
426 	__le16 num_stripes;
427 
428 	/* sub stripes only matter for raid10 */
429 	__le16 sub_stripes;
430 	struct btrfs_stripe stripe;
431 	/* additional stripes go here */
432 } __attribute__ ((__packed__));
433 
434 #define BTRFS_FREE_SPACE_EXTENT	1
435 #define BTRFS_FREE_SPACE_BITMAP	2
436 
437 struct btrfs_free_space_entry {
438 	__le64 offset;
439 	__le64 bytes;
440 	__u8 type;
441 } __attribute__ ((__packed__));
442 
443 struct btrfs_free_space_header {
444 	struct btrfs_disk_key location;
445 	__le64 generation;
446 	__le64 num_entries;
447 	__le64 num_bitmaps;
448 } __attribute__ ((__packed__));
449 
450 #define BTRFS_HEADER_FLAG_WRITTEN	(1ULL << 0)
451 #define BTRFS_HEADER_FLAG_RELOC		(1ULL << 1)
452 
453 /* Super block flags */
454 /* Errors detected */
455 #define BTRFS_SUPER_FLAG_ERROR		(1ULL << 2)
456 
457 #define BTRFS_SUPER_FLAG_SEEDING	(1ULL << 32)
458 #define BTRFS_SUPER_FLAG_METADUMP	(1ULL << 33)
459 #define BTRFS_SUPER_FLAG_METADUMP_V2	(1ULL << 34)
460 #define BTRFS_SUPER_FLAG_CHANGING_FSID	(1ULL << 35)
461 
462 
463 /*
464  * items in the extent btree are used to record the objectid of the
465  * owner of the block and the number of references
466  */
467 
468 struct btrfs_extent_item {
469 	__le64 refs;
470 	__le64 generation;
471 	__le64 flags;
472 } __attribute__ ((__packed__));
473 
474 struct btrfs_extent_item_v0 {
475 	__le32 refs;
476 } __attribute__ ((__packed__));
477 
478 
479 #define BTRFS_EXTENT_FLAG_DATA		(1ULL << 0)
480 #define BTRFS_EXTENT_FLAG_TREE_BLOCK	(1ULL << 1)
481 
482 /* following flags only apply to tree blocks */
483 
484 /* use full backrefs for extent pointers in the block */
485 #define BTRFS_BLOCK_FLAG_FULL_BACKREF	(1ULL << 8)
486 
487 /*
488  * this flag is only used internally by scrub and may be changed at any time
489  * it is only declared here to avoid collisions
490  */
491 #define BTRFS_EXTENT_FLAG_SUPER		(1ULL << 48)
492 
493 struct btrfs_tree_block_info {
494 	struct btrfs_disk_key key;
495 	__u8 level;
496 } __attribute__ ((__packed__));
497 
498 struct btrfs_extent_data_ref {
499 	__le64 root;
500 	__le64 objectid;
501 	__le64 offset;
502 	__le32 count;
503 } __attribute__ ((__packed__));
504 
505 struct btrfs_shared_data_ref {
506 	__le32 count;
507 } __attribute__ ((__packed__));
508 
509 struct btrfs_extent_inline_ref {
510 	__u8 type;
511 	__le64 offset;
512 } __attribute__ ((__packed__));
513 
514 /* old style backrefs item */
515 struct btrfs_extent_ref_v0 {
516 	__le64 root;
517 	__le64 generation;
518 	__le64 objectid;
519 	__le32 count;
520 } __attribute__ ((__packed__));
521 
522 
523 /* dev extents record free space on individual devices.  The owner
524  * field points back to the chunk allocation mapping tree that allocated
525  * the extent.  The chunk tree uuid field is a way to double check the owner
526  */
527 struct btrfs_dev_extent {
528 	__le64 chunk_tree;
529 	__le64 chunk_objectid;
530 	__le64 chunk_offset;
531 	__le64 length;
532 	__u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
533 } __attribute__ ((__packed__));
534 
535 struct btrfs_inode_ref {
536 	__le64 index;
537 	__le16 name_len;
538 	/* name goes here */
539 } __attribute__ ((__packed__));
540 
541 struct btrfs_inode_extref {
542 	__le64 parent_objectid;
543 	__le64 index;
544 	__le16 name_len;
545 	__u8   name[0];
546 	/* name goes here */
547 } __attribute__ ((__packed__));
548 
549 struct btrfs_timespec {
550 	__le64 sec;
551 	__le32 nsec;
552 } __attribute__ ((__packed__));
553 
554 struct btrfs_inode_item {
555 	/* nfs style generation number */
556 	__le64 generation;
557 	/* transid that last touched this inode */
558 	__le64 transid;
559 	__le64 size;
560 	__le64 nbytes;
561 	__le64 block_group;
562 	__le32 nlink;
563 	__le32 uid;
564 	__le32 gid;
565 	__le32 mode;
566 	__le64 rdev;
567 	__le64 flags;
568 
569 	/* modification sequence number for NFS */
570 	__le64 sequence;
571 
572 	/*
573 	 * a little future expansion, for more than this we can
574 	 * just grow the inode item and version it
575 	 */
576 	__le64 reserved[4];
577 	struct btrfs_timespec atime;
578 	struct btrfs_timespec ctime;
579 	struct btrfs_timespec mtime;
580 	struct btrfs_timespec otime;
581 } __attribute__ ((__packed__));
582 
583 struct btrfs_dir_log_item {
584 	__le64 end;
585 } __attribute__ ((__packed__));
586 
587 struct btrfs_dir_item {
588 	struct btrfs_disk_key location;
589 	__le64 transid;
590 	__le16 data_len;
591 	__le16 name_len;
592 	__u8 type;
593 } __attribute__ ((__packed__));
594 
595 #define BTRFS_ROOT_SUBVOL_RDONLY	(1ULL << 0)
596 
597 /*
598  * Internal in-memory flag that a subvolume has been marked for deletion but
599  * still visible as a directory
600  */
601 #define BTRFS_ROOT_SUBVOL_DEAD		(1ULL << 48)
602 
603 struct btrfs_root_item {
604 	struct btrfs_inode_item inode;
605 	__le64 generation;
606 	__le64 root_dirid;
607 	__le64 bytenr;
608 	__le64 byte_limit;
609 	__le64 bytes_used;
610 	__le64 last_snapshot;
611 	__le64 flags;
612 	__le32 refs;
613 	struct btrfs_disk_key drop_progress;
614 	__u8 drop_level;
615 	__u8 level;
616 
617 	/*
618 	 * The following fields appear after subvol_uuids+subvol_times
619 	 * were introduced.
620 	 */
621 
622 	/*
623 	 * This generation number is used to test if the new fields are valid
624 	 * and up to date while reading the root item. Every time the root item
625 	 * is written out, the "generation" field is copied into this field. If
626 	 * anyone ever mounted the fs with an older kernel, we will have
627 	 * mismatching generation values here and thus must invalidate the
628 	 * new fields. See btrfs_update_root and btrfs_find_last_root for
629 	 * details.
630 	 * the offset of generation_v2 is also used as the start for the memset
631 	 * when invalidating the fields.
632 	 */
633 	__le64 generation_v2;
634 	__u8 uuid[BTRFS_UUID_SIZE];
635 	__u8 parent_uuid[BTRFS_UUID_SIZE];
636 	__u8 received_uuid[BTRFS_UUID_SIZE];
637 	__le64 ctransid; /* updated when an inode changes */
638 	__le64 otransid; /* trans when created */
639 	__le64 stransid; /* trans when sent. non-zero for received subvol */
640 	__le64 rtransid; /* trans when received. non-zero for received subvol */
641 	struct btrfs_timespec ctime;
642 	struct btrfs_timespec otime;
643 	struct btrfs_timespec stime;
644 	struct btrfs_timespec rtime;
645 	__le64 reserved[8]; /* for future */
646 } __attribute__ ((__packed__));
647 
648 /*
649  * this is used for both forward and backward root refs
650  */
651 struct btrfs_root_ref {
652 	__le64 dirid;
653 	__le64 sequence;
654 	__le16 name_len;
655 } __attribute__ ((__packed__));
656 
657 struct btrfs_disk_balance_args {
658 	/*
659 	 * profiles to operate on, single is denoted by
660 	 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
661 	 */
662 	__le64 profiles;
663 
664 	/*
665 	 * usage filter
666 	 * BTRFS_BALANCE_ARGS_USAGE with a single value means '0..N'
667 	 * BTRFS_BALANCE_ARGS_USAGE_RANGE - range syntax, min..max
668 	 */
669 	union {
670 		__le64 usage;
671 		struct {
672 			__le32 usage_min;
673 			__le32 usage_max;
674 		};
675 	};
676 
677 	/* devid filter */
678 	__le64 devid;
679 
680 	/* devid subset filter [pstart..pend) */
681 	__le64 pstart;
682 	__le64 pend;
683 
684 	/* btrfs virtual address space subset filter [vstart..vend) */
685 	__le64 vstart;
686 	__le64 vend;
687 
688 	/*
689 	 * profile to convert to, single is denoted by
690 	 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
691 	 */
692 	__le64 target;
693 
694 	/* BTRFS_BALANCE_ARGS_* */
695 	__le64 flags;
696 
697 	/*
698 	 * BTRFS_BALANCE_ARGS_LIMIT with value 'limit'
699 	 * BTRFS_BALANCE_ARGS_LIMIT_RANGE - the extend version can use minimum
700 	 * and maximum
701 	 */
702 	union {
703 		__le64 limit;
704 		struct {
705 			__le32 limit_min;
706 			__le32 limit_max;
707 		};
708 	};
709 
710 	/*
711 	 * Process chunks that cross stripes_min..stripes_max devices,
712 	 * BTRFS_BALANCE_ARGS_STRIPES_RANGE
713 	 */
714 	__le32 stripes_min;
715 	__le32 stripes_max;
716 
717 	__le64 unused[6];
718 } __attribute__ ((__packed__));
719 
720 /*
721  * store balance parameters to disk so that balance can be properly
722  * resumed after crash or unmount
723  */
724 struct btrfs_balance_item {
725 	/* BTRFS_BALANCE_* */
726 	__le64 flags;
727 
728 	struct btrfs_disk_balance_args data;
729 	struct btrfs_disk_balance_args meta;
730 	struct btrfs_disk_balance_args sys;
731 
732 	__le64 unused[4];
733 } __attribute__ ((__packed__));
734 
735 #define BTRFS_FILE_EXTENT_INLINE 0
736 #define BTRFS_FILE_EXTENT_REG 1
737 #define BTRFS_FILE_EXTENT_PREALLOC 2
738 #define BTRFS_FILE_EXTENT_TYPES	2
739 
740 struct btrfs_file_extent_item {
741 	/*
742 	 * transaction id that created this extent
743 	 */
744 	__le64 generation;
745 	/*
746 	 * max number of bytes to hold this extent in ram
747 	 * when we split a compressed extent we can't know how big
748 	 * each of the resulting pieces will be.  So, this is
749 	 * an upper limit on the size of the extent in ram instead of
750 	 * an exact limit.
751 	 */
752 	__le64 ram_bytes;
753 
754 	/*
755 	 * 32 bits for the various ways we might encode the data,
756 	 * including compression and encryption.  If any of these
757 	 * are set to something a given disk format doesn't understand
758 	 * it is treated like an incompat flag for reading and writing,
759 	 * but not for stat.
760 	 */
761 	__u8 compression;
762 	__u8 encryption;
763 	__le16 other_encoding; /* spare for later use */
764 
765 	/* are we inline data or a real extent? */
766 	__u8 type;
767 
768 	/*
769 	 * disk space consumed by the extent, checksum blocks are included
770 	 * in these numbers
771 	 *
772 	 * At this offset in the structure, the inline extent data start.
773 	 */
774 	__le64 disk_bytenr;
775 	__le64 disk_num_bytes;
776 	/*
777 	 * the logical offset in file blocks (no csums)
778 	 * this extent record is for.  This allows a file extent to point
779 	 * into the middle of an existing extent on disk, sharing it
780 	 * between two snapshots (useful if some bytes in the middle of the
781 	 * extent have changed
782 	 */
783 	__le64 offset;
784 	/*
785 	 * the logical number of file blocks (no csums included).  This
786 	 * always reflects the size uncompressed and without encoding.
787 	 */
788 	__le64 num_bytes;
789 
790 } __attribute__ ((__packed__));
791 
792 struct btrfs_csum_item {
793 	__u8 csum;
794 } __attribute__ ((__packed__));
795 
796 struct btrfs_dev_stats_item {
797 	/*
798 	 * grow this item struct at the end for future enhancements and keep
799 	 * the existing values unchanged
800 	 */
801 	__le64 values[BTRFS_DEV_STAT_VALUES_MAX];
802 } __attribute__ ((__packed__));
803 
804 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS	0
805 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID	1
806 #define BTRFS_DEV_REPLACE_ITEM_STATE_NEVER_STARTED	0
807 #define BTRFS_DEV_REPLACE_ITEM_STATE_STARTED		1
808 #define BTRFS_DEV_REPLACE_ITEM_STATE_SUSPENDED		2
809 #define BTRFS_DEV_REPLACE_ITEM_STATE_FINISHED		3
810 #define BTRFS_DEV_REPLACE_ITEM_STATE_CANCELED		4
811 
812 struct btrfs_dev_replace_item {
813 	/*
814 	 * grow this item struct at the end for future enhancements and keep
815 	 * the existing values unchanged
816 	 */
817 	__le64 src_devid;
818 	__le64 cursor_left;
819 	__le64 cursor_right;
820 	__le64 cont_reading_from_srcdev_mode;
821 
822 	__le64 replace_state;
823 	__le64 time_started;
824 	__le64 time_stopped;
825 	__le64 num_write_errors;
826 	__le64 num_uncorrectable_read_errors;
827 } __attribute__ ((__packed__));
828 
829 /* different types of block groups (and chunks) */
830 #define BTRFS_BLOCK_GROUP_DATA		(1ULL << 0)
831 #define BTRFS_BLOCK_GROUP_SYSTEM	(1ULL << 1)
832 #define BTRFS_BLOCK_GROUP_METADATA	(1ULL << 2)
833 #define BTRFS_BLOCK_GROUP_RAID0		(1ULL << 3)
834 #define BTRFS_BLOCK_GROUP_RAID1		(1ULL << 4)
835 #define BTRFS_BLOCK_GROUP_DUP		(1ULL << 5)
836 #define BTRFS_BLOCK_GROUP_RAID10	(1ULL << 6)
837 #define BTRFS_BLOCK_GROUP_RAID5         (1ULL << 7)
838 #define BTRFS_BLOCK_GROUP_RAID6         (1ULL << 8)
839 #define BTRFS_BLOCK_GROUP_RESERVED	(BTRFS_AVAIL_ALLOC_BIT_SINGLE | \
840 					 BTRFS_SPACE_INFO_GLOBAL_RSV)
841 
842 enum btrfs_raid_types {
843 	BTRFS_RAID_RAID10,
844 	BTRFS_RAID_RAID1,
845 	BTRFS_RAID_DUP,
846 	BTRFS_RAID_RAID0,
847 	BTRFS_RAID_SINGLE,
848 	BTRFS_RAID_RAID5,
849 	BTRFS_RAID_RAID6,
850 	BTRFS_NR_RAID_TYPES
851 };
852 
853 #define BTRFS_BLOCK_GROUP_TYPE_MASK	(BTRFS_BLOCK_GROUP_DATA |    \
854 					 BTRFS_BLOCK_GROUP_SYSTEM |  \
855 					 BTRFS_BLOCK_GROUP_METADATA)
856 
857 #define BTRFS_BLOCK_GROUP_PROFILE_MASK	(BTRFS_BLOCK_GROUP_RAID0 |   \
858 					 BTRFS_BLOCK_GROUP_RAID1 |   \
859 					 BTRFS_BLOCK_GROUP_RAID5 |   \
860 					 BTRFS_BLOCK_GROUP_RAID6 |   \
861 					 BTRFS_BLOCK_GROUP_DUP |     \
862 					 BTRFS_BLOCK_GROUP_RAID10)
863 #define BTRFS_BLOCK_GROUP_RAID56_MASK	(BTRFS_BLOCK_GROUP_RAID5 |   \
864 					 BTRFS_BLOCK_GROUP_RAID6)
865 
866 /*
867  * We need a bit for restriper to be able to tell when chunks of type
868  * SINGLE are available.  This "extended" profile format is used in
869  * fs_info->avail_*_alloc_bits (in-memory) and balance item fields
870  * (on-disk).  The corresponding on-disk bit in chunk.type is reserved
871  * to avoid remappings between two formats in future.
872  */
873 #define BTRFS_AVAIL_ALLOC_BIT_SINGLE	(1ULL << 48)
874 
875 /*
876  * A fake block group type that is used to communicate global block reserve
877  * size to userspace via the SPACE_INFO ioctl.
878  */
879 #define BTRFS_SPACE_INFO_GLOBAL_RSV	(1ULL << 49)
880 
881 #define BTRFS_EXTENDED_PROFILE_MASK	(BTRFS_BLOCK_GROUP_PROFILE_MASK | \
882 					 BTRFS_AVAIL_ALLOC_BIT_SINGLE)
883 
chunk_to_extended(__u64 flags)884 static inline __u64 chunk_to_extended(__u64 flags)
885 {
886 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0)
887 		flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE;
888 
889 	return flags;
890 }
extended_to_chunk(__u64 flags)891 static inline __u64 extended_to_chunk(__u64 flags)
892 {
893 	return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
894 }
895 
896 struct btrfs_block_group_item {
897 	__le64 used;
898 	__le64 chunk_objectid;
899 	__le64 flags;
900 } __attribute__ ((__packed__));
901 
902 struct btrfs_free_space_info {
903 	__le32 extent_count;
904 	__le32 flags;
905 } __attribute__ ((__packed__));
906 
907 #define BTRFS_FREE_SPACE_USING_BITMAPS (1ULL << 0)
908 
909 #define BTRFS_QGROUP_LEVEL_SHIFT		48
btrfs_qgroup_level(__u64 qgroupid)910 static inline __u64 btrfs_qgroup_level(__u64 qgroupid)
911 {
912 	return qgroupid >> BTRFS_QGROUP_LEVEL_SHIFT;
913 }
914 
915 /*
916  * is subvolume quota turned on?
917  */
918 #define BTRFS_QGROUP_STATUS_FLAG_ON		(1ULL << 0)
919 /*
920  * RESCAN is set during the initialization phase
921  */
922 #define BTRFS_QGROUP_STATUS_FLAG_RESCAN		(1ULL << 1)
923 /*
924  * Some qgroup entries are known to be out of date,
925  * either because the configuration has changed in a way that
926  * makes a rescan necessary, or because the fs has been mounted
927  * with a non-qgroup-aware version.
928  * Turning qouta off and on again makes it inconsistent, too.
929  */
930 #define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT	(1ULL << 2)
931 
932 #define BTRFS_QGROUP_STATUS_VERSION        1
933 
934 struct btrfs_qgroup_status_item {
935 	__le64 version;
936 	/*
937 	 * the generation is updated during every commit. As older
938 	 * versions of btrfs are not aware of qgroups, it will be
939 	 * possible to detect inconsistencies by checking the
940 	 * generation on mount time
941 	 */
942 	__le64 generation;
943 
944 	/* flag definitions see above */
945 	__le64 flags;
946 
947 	/*
948 	 * only used during scanning to record the progress
949 	 * of the scan. It contains a logical address
950 	 */
951 	__le64 rescan;
952 } __attribute__ ((__packed__));
953 
954 struct btrfs_qgroup_info_item {
955 	__le64 generation;
956 	__le64 rfer;
957 	__le64 rfer_cmpr;
958 	__le64 excl;
959 	__le64 excl_cmpr;
960 } __attribute__ ((__packed__));
961 
962 struct btrfs_qgroup_limit_item {
963 	/*
964 	 * only updated when any of the other values change
965 	 */
966 	__le64 flags;
967 	__le64 max_rfer;
968 	__le64 max_excl;
969 	__le64 rsv_rfer;
970 	__le64 rsv_excl;
971 } __attribute__ ((__packed__));
972 
973 #endif /* _BTRFS_CTREE_H_ */
974