1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * linux/cgroup-defs.h - basic definitions for cgroup
4 *
5 * This file provides basic type and interface. Include this file directly
6 * only if necessary to avoid cyclic dependencies.
7 */
8 #ifndef _LINUX_CGROUP_DEFS_H
9 #define _LINUX_CGROUP_DEFS_H
10
11 #include <linux/limits.h>
12 #include <linux/list.h>
13 #include <linux/idr.h>
14 #include <linux/wait.h>
15 #include <linux/mutex.h>
16 #include <linux/rcupdate.h>
17 #include <linux/refcount.h>
18 #include <linux/percpu-refcount.h>
19 #include <linux/percpu-rwsem.h>
20 #include <linux/u64_stats_sync.h>
21 #include <linux/workqueue.h>
22 #include <linux/bpf-cgroup.h>
23
24 #ifdef CONFIG_CGROUPS
25
26 struct cgroup;
27 struct cgroup_root;
28 struct cgroup_subsys;
29 struct cgroup_taskset;
30 struct kernfs_node;
31 struct kernfs_ops;
32 struct kernfs_open_file;
33 struct seq_file;
34
35 #define MAX_CGROUP_TYPE_NAMELEN 32
36 #define MAX_CGROUP_ROOT_NAMELEN 64
37 #define MAX_CFTYPE_NAME 64
38
39 /* define the enumeration of all cgroup subsystems */
40 #define SUBSYS(_x) _x ## _cgrp_id,
41 enum cgroup_subsys_id {
42 #include <linux/cgroup_subsys.h>
43 CGROUP_SUBSYS_COUNT,
44 };
45 #undef SUBSYS
46
47 /* bits in struct cgroup_subsys_state flags field */
48 enum {
49 CSS_NO_REF = (1 << 0), /* no reference counting for this css */
50 CSS_ONLINE = (1 << 1), /* between ->css_online() and ->css_offline() */
51 CSS_RELEASED = (1 << 2), /* refcnt reached zero, released */
52 CSS_VISIBLE = (1 << 3), /* css is visible to userland */
53 CSS_DYING = (1 << 4), /* css is dying */
54 };
55
56 /* bits in struct cgroup flags field */
57 enum {
58 /* Control Group requires release notifications to userspace */
59 CGRP_NOTIFY_ON_RELEASE,
60 /*
61 * Clone the parent's configuration when creating a new child
62 * cpuset cgroup. For historical reasons, this option can be
63 * specified at mount time and thus is implemented here.
64 */
65 CGRP_CPUSET_CLONE_CHILDREN,
66 };
67
68 /* cgroup_root->flags */
69 enum {
70 CGRP_ROOT_NOPREFIX = (1 << 1), /* mounted subsystems have no named prefix */
71 CGRP_ROOT_XATTR = (1 << 2), /* supports extended attributes */
72
73 /*
74 * Consider namespaces as delegation boundaries. If this flag is
75 * set, controller specific interface files in a namespace root
76 * aren't writeable from inside the namespace.
77 */
78 CGRP_ROOT_NS_DELEGATE = (1 << 3),
79
80 /*
81 * Enable cpuset controller in v1 cgroup to use v2 behavior.
82 */
83 CGRP_ROOT_CPUSET_V2_MODE = (1 << 4),
84 };
85
86 /* cftype->flags */
87 enum {
88 CFTYPE_ONLY_ON_ROOT = (1 << 0), /* only create on root cgrp */
89 CFTYPE_NOT_ON_ROOT = (1 << 1), /* don't create on root cgrp */
90 CFTYPE_NS_DELEGATABLE = (1 << 2), /* writeable beyond delegation boundaries */
91
92 CFTYPE_NO_PREFIX = (1 << 3), /* (DON'T USE FOR NEW FILES) no subsys prefix */
93 CFTYPE_WORLD_WRITABLE = (1 << 4), /* (DON'T USE FOR NEW FILES) S_IWUGO */
94
95 /* internal flags, do not use outside cgroup core proper */
96 __CFTYPE_ONLY_ON_DFL = (1 << 16), /* only on default hierarchy */
97 __CFTYPE_NOT_ON_DFL = (1 << 17), /* not on default hierarchy */
98 };
99
100 /*
101 * cgroup_file is the handle for a file instance created in a cgroup which
102 * is used, for example, to generate file changed notifications. This can
103 * be obtained by setting cftype->file_offset.
104 */
105 struct cgroup_file {
106 /* do not access any fields from outside cgroup core */
107 struct kernfs_node *kn;
108 unsigned long notified_at;
109 struct timer_list notify_timer;
110 };
111
112 /*
113 * Per-subsystem/per-cgroup state maintained by the system. This is the
114 * fundamental structural building block that controllers deal with.
115 *
116 * Fields marked with "PI:" are public and immutable and may be accessed
117 * directly without synchronization.
118 */
119 struct cgroup_subsys_state {
120 /* PI: the cgroup that this css is attached to */
121 struct cgroup *cgroup;
122
123 /* PI: the cgroup subsystem that this css is attached to */
124 struct cgroup_subsys *ss;
125
126 /* reference count - access via css_[try]get() and css_put() */
127 struct percpu_ref refcnt;
128
129 /* siblings list anchored at the parent's ->children */
130 struct list_head sibling;
131 struct list_head children;
132
133 /* flush target list anchored at cgrp->rstat_css_list */
134 struct list_head rstat_css_node;
135
136 /*
137 * PI: Subsys-unique ID. 0 is unused and root is always 1. The
138 * matching css can be looked up using css_from_id().
139 */
140 int id;
141
142 unsigned int flags;
143
144 /*
145 * Monotonically increasing unique serial number which defines a
146 * uniform order among all csses. It's guaranteed that all
147 * ->children lists are in the ascending order of ->serial_nr and
148 * used to allow interrupting and resuming iterations.
149 */
150 u64 serial_nr;
151
152 /*
153 * Incremented by online self and children. Used to guarantee that
154 * parents are not offlined before their children.
155 */
156 atomic_t online_cnt;
157
158 /* percpu_ref killing and RCU release */
159 struct work_struct destroy_work;
160 struct rcu_work destroy_rwork;
161
162 /*
163 * PI: the parent css. Placed here for cache proximity to following
164 * fields of the containing structure.
165 */
166 struct cgroup_subsys_state *parent;
167 };
168
169 /*
170 * A css_set is a structure holding pointers to a set of
171 * cgroup_subsys_state objects. This saves space in the task struct
172 * object and speeds up fork()/exit(), since a single inc/dec and a
173 * list_add()/del() can bump the reference count on the entire cgroup
174 * set for a task.
175 */
176 struct css_set {
177 /*
178 * Set of subsystem states, one for each subsystem. This array is
179 * immutable after creation apart from the init_css_set during
180 * subsystem registration (at boot time).
181 */
182 struct cgroup_subsys_state *subsys[CGROUP_SUBSYS_COUNT];
183
184 /* reference count */
185 refcount_t refcount;
186
187 /*
188 * For a domain cgroup, the following points to self. If threaded,
189 * to the matching cset of the nearest domain ancestor. The
190 * dom_cset provides access to the domain cgroup and its csses to
191 * which domain level resource consumptions should be charged.
192 */
193 struct css_set *dom_cset;
194
195 /* the default cgroup associated with this css_set */
196 struct cgroup *dfl_cgrp;
197
198 /* internal task count, protected by css_set_lock */
199 int nr_tasks;
200
201 /*
202 * Lists running through all tasks using this cgroup group.
203 * mg_tasks lists tasks which belong to this cset but are in the
204 * process of being migrated out or in. Protected by
205 * css_set_rwsem, but, during migration, once tasks are moved to
206 * mg_tasks, it can be read safely while holding cgroup_mutex.
207 */
208 struct list_head tasks;
209 struct list_head mg_tasks;
210 struct list_head dying_tasks;
211
212 /* all css_task_iters currently walking this cset */
213 struct list_head task_iters;
214
215 /*
216 * On the default hierarhcy, ->subsys[ssid] may point to a css
217 * attached to an ancestor instead of the cgroup this css_set is
218 * associated with. The following node is anchored at
219 * ->subsys[ssid]->cgroup->e_csets[ssid] and provides a way to
220 * iterate through all css's attached to a given cgroup.
221 */
222 struct list_head e_cset_node[CGROUP_SUBSYS_COUNT];
223
224 /* all threaded csets whose ->dom_cset points to this cset */
225 struct list_head threaded_csets;
226 struct list_head threaded_csets_node;
227
228 /*
229 * List running through all cgroup groups in the same hash
230 * slot. Protected by css_set_lock
231 */
232 struct hlist_node hlist;
233
234 /*
235 * List of cgrp_cset_links pointing at cgroups referenced from this
236 * css_set. Protected by css_set_lock.
237 */
238 struct list_head cgrp_links;
239
240 /*
241 * List of csets participating in the on-going migration either as
242 * source or destination. Protected by cgroup_mutex.
243 */
244 struct list_head mg_src_preload_node;
245 struct list_head mg_dst_preload_node;
246 struct list_head mg_node;
247
248 /*
249 * If this cset is acting as the source of migration the following
250 * two fields are set. mg_src_cgrp and mg_dst_cgrp are
251 * respectively the source and destination cgroups of the on-going
252 * migration. mg_dst_cset is the destination cset the target tasks
253 * on this cset should be migrated to. Protected by cgroup_mutex.
254 */
255 struct cgroup *mg_src_cgrp;
256 struct cgroup *mg_dst_cgrp;
257 struct css_set *mg_dst_cset;
258
259 /* dead and being drained, ignore for migration */
260 bool dead;
261
262 /* For RCU-protected deletion */
263 struct rcu_head rcu_head;
264 };
265
266 struct cgroup_base_stat {
267 struct task_cputime cputime;
268 };
269
270 /*
271 * rstat - cgroup scalable recursive statistics. Accounting is done
272 * per-cpu in cgroup_rstat_cpu which is then lazily propagated up the
273 * hierarchy on reads.
274 *
275 * When a stat gets updated, the cgroup_rstat_cpu and its ancestors are
276 * linked into the updated tree. On the following read, propagation only
277 * considers and consumes the updated tree. This makes reading O(the
278 * number of descendants which have been active since last read) instead of
279 * O(the total number of descendants).
280 *
281 * This is important because there can be a lot of (draining) cgroups which
282 * aren't active and stat may be read frequently. The combination can
283 * become very expensive. By propagating selectively, increasing reading
284 * frequency decreases the cost of each read.
285 *
286 * This struct hosts both the fields which implement the above -
287 * updated_children and updated_next - and the fields which track basic
288 * resource statistics on top of it - bsync, bstat and last_bstat.
289 */
290 struct cgroup_rstat_cpu {
291 /*
292 * ->bsync protects ->bstat. These are the only fields which get
293 * updated in the hot path.
294 */
295 struct u64_stats_sync bsync;
296 struct cgroup_base_stat bstat;
297
298 /*
299 * Snapshots at the last reading. These are used to calculate the
300 * deltas to propagate to the global counters.
301 */
302 struct cgroup_base_stat last_bstat;
303
304 /*
305 * Child cgroups with stat updates on this cpu since the last read
306 * are linked on the parent's ->updated_children through
307 * ->updated_next.
308 *
309 * In addition to being more compact, singly-linked list pointing
310 * to the cgroup makes it unnecessary for each per-cpu struct to
311 * point back to the associated cgroup.
312 *
313 * Protected by per-cpu cgroup_rstat_cpu_lock.
314 */
315 struct cgroup *updated_children; /* terminated by self cgroup */
316 struct cgroup *updated_next; /* NULL iff not on the list */
317 };
318
319 struct cgroup {
320 /* self css with NULL ->ss, points back to this cgroup */
321 struct cgroup_subsys_state self;
322
323 unsigned long flags; /* "unsigned long" so bitops work */
324
325 /*
326 * idr allocated in-hierarchy ID.
327 *
328 * ID 0 is not used, the ID of the root cgroup is always 1, and a
329 * new cgroup will be assigned with a smallest available ID.
330 *
331 * Allocating/Removing ID must be protected by cgroup_mutex.
332 */
333 int id;
334
335 /*
336 * The depth this cgroup is at. The root is at depth zero and each
337 * step down the hierarchy increments the level. This along with
338 * ancestor_ids[] can determine whether a given cgroup is a
339 * descendant of another without traversing the hierarchy.
340 */
341 int level;
342
343 /* Maximum allowed descent tree depth */
344 int max_depth;
345
346 /*
347 * Keep track of total numbers of visible and dying descent cgroups.
348 * Dying cgroups are cgroups which were deleted by a user,
349 * but are still existing because someone else is holding a reference.
350 * max_descendants is a maximum allowed number of descent cgroups.
351 *
352 * nr_descendants and nr_dying_descendants are protected
353 * by cgroup_mutex and css_set_lock. It's fine to read them holding
354 * any of cgroup_mutex and css_set_lock; for writing both locks
355 * should be held.
356 */
357 int nr_descendants;
358 int nr_dying_descendants;
359 int max_descendants;
360
361 /*
362 * Each non-empty css_set associated with this cgroup contributes
363 * one to nr_populated_csets. The counter is zero iff this cgroup
364 * doesn't have any tasks.
365 *
366 * All children which have non-zero nr_populated_csets and/or
367 * nr_populated_children of their own contribute one to either
368 * nr_populated_domain_children or nr_populated_threaded_children
369 * depending on their type. Each counter is zero iff all cgroups
370 * of the type in the subtree proper don't have any tasks.
371 */
372 int nr_populated_csets;
373 int nr_populated_domain_children;
374 int nr_populated_threaded_children;
375
376 int nr_threaded_children; /* # of live threaded child cgroups */
377
378 struct kernfs_node *kn; /* cgroup kernfs entry */
379 struct cgroup_file procs_file; /* handle for "cgroup.procs" */
380 struct cgroup_file events_file; /* handle for "cgroup.events" */
381
382 /*
383 * The bitmask of subsystems enabled on the child cgroups.
384 * ->subtree_control is the one configured through
385 * "cgroup.subtree_control" while ->child_ss_mask is the effective
386 * one which may have more subsystems enabled. Controller knobs
387 * are made available iff it's enabled in ->subtree_control.
388 */
389 u16 subtree_control;
390 u16 subtree_ss_mask;
391 u16 old_subtree_control;
392 u16 old_subtree_ss_mask;
393
394 /* Private pointers for each registered subsystem */
395 struct cgroup_subsys_state __rcu *subsys[CGROUP_SUBSYS_COUNT];
396
397 struct cgroup_root *root;
398
399 /*
400 * List of cgrp_cset_links pointing at css_sets with tasks in this
401 * cgroup. Protected by css_set_lock.
402 */
403 struct list_head cset_links;
404
405 /*
406 * On the default hierarchy, a css_set for a cgroup with some
407 * susbsys disabled will point to css's which are associated with
408 * the closest ancestor which has the subsys enabled. The
409 * following lists all css_sets which point to this cgroup's css
410 * for the given subsystem.
411 */
412 struct list_head e_csets[CGROUP_SUBSYS_COUNT];
413
414 /*
415 * If !threaded, self. If threaded, it points to the nearest
416 * domain ancestor. Inside a threaded subtree, cgroups are exempt
417 * from process granularity and no-internal-task constraint.
418 * Domain level resource consumptions which aren't tied to a
419 * specific task are charged to the dom_cgrp.
420 */
421 struct cgroup *dom_cgrp;
422 struct cgroup *old_dom_cgrp; /* used while enabling threaded */
423
424 /* per-cpu recursive resource statistics */
425 struct cgroup_rstat_cpu __percpu *rstat_cpu;
426 struct list_head rstat_css_list;
427
428 /* cgroup basic resource statistics */
429 struct cgroup_base_stat pending_bstat; /* pending from children */
430 struct cgroup_base_stat bstat;
431 struct prev_cputime prev_cputime; /* for printing out cputime */
432
433 /*
434 * list of pidlists, up to two for each namespace (one for procs, one
435 * for tasks); created on demand.
436 */
437 struct list_head pidlists;
438 struct mutex pidlist_mutex;
439
440 /* used to wait for offlining of csses */
441 wait_queue_head_t offline_waitq;
442
443 /* used to schedule release agent */
444 struct work_struct release_agent_work;
445
446 /* used to store eBPF programs */
447 struct cgroup_bpf bpf;
448
449 /* If there is block congestion on this cgroup. */
450 atomic_t congestion_count;
451
452 /* ids of the ancestors at each level including self */
453 int ancestor_ids[];
454 };
455
456 /*
457 * A cgroup_root represents the root of a cgroup hierarchy, and may be
458 * associated with a kernfs_root to form an active hierarchy. This is
459 * internal to cgroup core. Don't access directly from controllers.
460 */
461 struct cgroup_root {
462 struct kernfs_root *kf_root;
463
464 /* The bitmask of subsystems attached to this hierarchy */
465 unsigned int subsys_mask;
466
467 /* Unique id for this hierarchy. */
468 int hierarchy_id;
469
470 /* The root cgroup. Root is destroyed on its release. */
471 struct cgroup cgrp;
472
473 /* for cgrp->ancestor_ids[0] */
474 int cgrp_ancestor_id_storage;
475
476 /* Number of cgroups in the hierarchy, used only for /proc/cgroups */
477 atomic_t nr_cgrps;
478
479 /* A list running through the active hierarchies */
480 struct list_head root_list;
481
482 /* Hierarchy-specific flags */
483 unsigned int flags;
484
485 /* IDs for cgroups in this hierarchy */
486 struct idr cgroup_idr;
487
488 /* The path to use for release notifications. */
489 char release_agent_path[PATH_MAX];
490
491 /* The name for this hierarchy - may be empty */
492 char name[MAX_CGROUP_ROOT_NAMELEN];
493 };
494
495 /*
496 * struct cftype: handler definitions for cgroup control files
497 *
498 * When reading/writing to a file:
499 * - the cgroup to use is file->f_path.dentry->d_parent->d_fsdata
500 * - the 'cftype' of the file is file->f_path.dentry->d_fsdata
501 */
502 struct cftype {
503 /*
504 * By convention, the name should begin with the name of the
505 * subsystem, followed by a period. Zero length string indicates
506 * end of cftype array.
507 */
508 char name[MAX_CFTYPE_NAME];
509 unsigned long private;
510
511 /*
512 * The maximum length of string, excluding trailing nul, that can
513 * be passed to write. If < PAGE_SIZE-1, PAGE_SIZE-1 is assumed.
514 */
515 size_t max_write_len;
516
517 /* CFTYPE_* flags */
518 unsigned int flags;
519
520 /*
521 * If non-zero, should contain the offset from the start of css to
522 * a struct cgroup_file field. cgroup will record the handle of
523 * the created file into it. The recorded handle can be used as
524 * long as the containing css remains accessible.
525 */
526 unsigned int file_offset;
527
528 /*
529 * Fields used for internal bookkeeping. Initialized automatically
530 * during registration.
531 */
532 struct cgroup_subsys *ss; /* NULL for cgroup core files */
533 struct list_head node; /* anchored at ss->cfts */
534 struct kernfs_ops *kf_ops;
535
536 int (*open)(struct kernfs_open_file *of);
537 void (*release)(struct kernfs_open_file *of);
538
539 /*
540 * read_u64() is a shortcut for the common case of returning a
541 * single integer. Use it in place of read()
542 */
543 u64 (*read_u64)(struct cgroup_subsys_state *css, struct cftype *cft);
544 /*
545 * read_s64() is a signed version of read_u64()
546 */
547 s64 (*read_s64)(struct cgroup_subsys_state *css, struct cftype *cft);
548
549 /* generic seq_file read interface */
550 int (*seq_show)(struct seq_file *sf, void *v);
551
552 /* optional ops, implement all or none */
553 void *(*seq_start)(struct seq_file *sf, loff_t *ppos);
554 void *(*seq_next)(struct seq_file *sf, void *v, loff_t *ppos);
555 void (*seq_stop)(struct seq_file *sf, void *v);
556
557 /*
558 * write_u64() is a shortcut for the common case of accepting
559 * a single integer (as parsed by simple_strtoull) from
560 * userspace. Use in place of write(); return 0 or error.
561 */
562 int (*write_u64)(struct cgroup_subsys_state *css, struct cftype *cft,
563 u64 val);
564 /*
565 * write_s64() is a signed version of write_u64()
566 */
567 int (*write_s64)(struct cgroup_subsys_state *css, struct cftype *cft,
568 s64 val);
569
570 /*
571 * write() is the generic write callback which maps directly to
572 * kernfs write operation and overrides all other operations.
573 * Maximum write size is determined by ->max_write_len. Use
574 * of_css/cft() to access the associated css and cft.
575 */
576 ssize_t (*write)(struct kernfs_open_file *of,
577 char *buf, size_t nbytes, loff_t off);
578
579 #ifdef CONFIG_DEBUG_LOCK_ALLOC
580 struct lock_class_key lockdep_key;
581 #endif
582 };
583
584 /*
585 * Control Group subsystem type.
586 * See Documentation/cgroup-v1/cgroups.txt for details
587 */
588 struct cgroup_subsys {
589 struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state *parent_css);
590 int (*css_online)(struct cgroup_subsys_state *css);
591 void (*css_offline)(struct cgroup_subsys_state *css);
592 void (*css_released)(struct cgroup_subsys_state *css);
593 void (*css_free)(struct cgroup_subsys_state *css);
594 void (*css_reset)(struct cgroup_subsys_state *css);
595 void (*css_rstat_flush)(struct cgroup_subsys_state *css, int cpu);
596 int (*css_extra_stat_show)(struct seq_file *seq,
597 struct cgroup_subsys_state *css);
598
599 int (*can_attach)(struct cgroup_taskset *tset);
600 void (*cancel_attach)(struct cgroup_taskset *tset);
601 void (*attach)(struct cgroup_taskset *tset);
602 void (*post_attach)(void);
603 int (*can_fork)(struct task_struct *task);
604 void (*cancel_fork)(struct task_struct *task);
605 void (*fork)(struct task_struct *task);
606 void (*exit)(struct task_struct *task);
607 void (*release)(struct task_struct *task);
608 void (*bind)(struct cgroup_subsys_state *root_css);
609
610 bool early_init:1;
611
612 /*
613 * If %true, the controller, on the default hierarchy, doesn't show
614 * up in "cgroup.controllers" or "cgroup.subtree_control", is
615 * implicitly enabled on all cgroups on the default hierarchy, and
616 * bypasses the "no internal process" constraint. This is for
617 * utility type controllers which is transparent to userland.
618 *
619 * An implicit controller can be stolen from the default hierarchy
620 * anytime and thus must be okay with offline csses from previous
621 * hierarchies coexisting with csses for the current one.
622 */
623 bool implicit_on_dfl:1;
624
625 /*
626 * If %true, the controller, supports threaded mode on the default
627 * hierarchy. In a threaded subtree, both process granularity and
628 * no-internal-process constraint are ignored and a threaded
629 * controllers should be able to handle that.
630 *
631 * Note that as an implicit controller is automatically enabled on
632 * all cgroups on the default hierarchy, it should also be
633 * threaded. implicit && !threaded is not supported.
634 */
635 bool threaded:1;
636
637 /*
638 * If %false, this subsystem is properly hierarchical -
639 * configuration, resource accounting and restriction on a parent
640 * cgroup cover those of its children. If %true, hierarchy support
641 * is broken in some ways - some subsystems ignore hierarchy
642 * completely while others are only implemented half-way.
643 *
644 * It's now disallowed to create nested cgroups if the subsystem is
645 * broken and cgroup core will emit a warning message on such
646 * cases. Eventually, all subsystems will be made properly
647 * hierarchical and this will go away.
648 */
649 bool broken_hierarchy:1;
650 bool warned_broken_hierarchy:1;
651
652 /* the following two fields are initialized automtically during boot */
653 int id;
654 const char *name;
655
656 /* optional, initialized automatically during boot if not set */
657 const char *legacy_name;
658
659 /* link to parent, protected by cgroup_lock() */
660 struct cgroup_root *root;
661
662 /* idr for css->id */
663 struct idr css_idr;
664
665 /*
666 * List of cftypes. Each entry is the first entry of an array
667 * terminated by zero length name.
668 */
669 struct list_head cfts;
670
671 /*
672 * Base cftypes which are automatically registered. The two can
673 * point to the same array.
674 */
675 struct cftype *dfl_cftypes; /* for the default hierarchy */
676 struct cftype *legacy_cftypes; /* for the legacy hierarchies */
677
678 /*
679 * A subsystem may depend on other subsystems. When such subsystem
680 * is enabled on a cgroup, the depended-upon subsystems are enabled
681 * together if available. Subsystems enabled due to dependency are
682 * not visible to userland until explicitly enabled. The following
683 * specifies the mask of subsystems that this one depends on.
684 */
685 unsigned int depends_on;
686 };
687
688 extern struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
689
690 /**
691 * cgroup_threadgroup_change_begin - threadgroup exclusion for cgroups
692 * @tsk: target task
693 *
694 * Allows cgroup operations to synchronize against threadgroup changes
695 * using a percpu_rw_semaphore.
696 */
cgroup_threadgroup_change_begin(struct task_struct * tsk)697 static inline void cgroup_threadgroup_change_begin(struct task_struct *tsk)
698 {
699 percpu_down_read(&cgroup_threadgroup_rwsem);
700 }
701
702 /**
703 * cgroup_threadgroup_change_end - threadgroup exclusion for cgroups
704 * @tsk: target task
705 *
706 * Counterpart of cgroup_threadcgroup_change_begin().
707 */
cgroup_threadgroup_change_end(struct task_struct * tsk)708 static inline void cgroup_threadgroup_change_end(struct task_struct *tsk)
709 {
710 percpu_up_read(&cgroup_threadgroup_rwsem);
711 }
712
713 #else /* CONFIG_CGROUPS */
714
715 #define CGROUP_SUBSYS_COUNT 0
716
cgroup_threadgroup_change_begin(struct task_struct * tsk)717 static inline void cgroup_threadgroup_change_begin(struct task_struct *tsk)
718 {
719 might_sleep();
720 }
721
cgroup_threadgroup_change_end(struct task_struct * tsk)722 static inline void cgroup_threadgroup_change_end(struct task_struct *tsk) {}
723
724 #endif /* CONFIG_CGROUPS */
725
726 #ifdef CONFIG_SOCK_CGROUP_DATA
727
728 /*
729 * sock_cgroup_data is embedded at sock->sk_cgrp_data and contains
730 * per-socket cgroup information except for memcg association.
731 *
732 * On legacy hierarchies, net_prio and net_cls controllers directly set
733 * attributes on each sock which can then be tested by the network layer.
734 * On the default hierarchy, each sock is associated with the cgroup it was
735 * created in and the networking layer can match the cgroup directly.
736 *
737 * To avoid carrying all three cgroup related fields separately in sock,
738 * sock_cgroup_data overloads (prioidx, classid) and the cgroup pointer.
739 * On boot, sock_cgroup_data records the cgroup that the sock was created
740 * in so that cgroup2 matches can be made; however, once either net_prio or
741 * net_cls starts being used, the area is overriden to carry prioidx and/or
742 * classid. The two modes are distinguished by whether the lowest bit is
743 * set. Clear bit indicates cgroup pointer while set bit prioidx and
744 * classid.
745 *
746 * While userland may start using net_prio or net_cls at any time, once
747 * either is used, cgroup2 matching no longer works. There is no reason to
748 * mix the two and this is in line with how legacy and v2 compatibility is
749 * handled. On mode switch, cgroup references which are already being
750 * pointed to by socks may be leaked. While this can be remedied by adding
751 * synchronization around sock_cgroup_data, given that the number of leaked
752 * cgroups is bound and highly unlikely to be high, this seems to be the
753 * better trade-off.
754 */
755 struct sock_cgroup_data {
756 union {
757 #ifdef __LITTLE_ENDIAN
758 struct {
759 u8 is_data : 1;
760 u8 no_refcnt : 1;
761 u8 unused : 6;
762 u8 padding;
763 u16 prioidx;
764 u32 classid;
765 } __packed;
766 #else
767 struct {
768 u32 classid;
769 u16 prioidx;
770 u8 padding;
771 u8 unused : 6;
772 u8 no_refcnt : 1;
773 u8 is_data : 1;
774 } __packed;
775 #endif
776 u64 val;
777 };
778 };
779
780 /*
781 * There's a theoretical window where the following accessors race with
782 * updaters and return part of the previous pointer as the prioidx or
783 * classid. Such races are short-lived and the result isn't critical.
784 */
sock_cgroup_prioidx(const struct sock_cgroup_data * skcd)785 static inline u16 sock_cgroup_prioidx(const struct sock_cgroup_data *skcd)
786 {
787 /* fallback to 1 which is always the ID of the root cgroup */
788 return (skcd->is_data & 1) ? skcd->prioidx : 1;
789 }
790
sock_cgroup_classid(const struct sock_cgroup_data * skcd)791 static inline u32 sock_cgroup_classid(const struct sock_cgroup_data *skcd)
792 {
793 /* fallback to 0 which is the unconfigured default classid */
794 return (skcd->is_data & 1) ? skcd->classid : 0;
795 }
796
797 /*
798 * If invoked concurrently, the updaters may clobber each other. The
799 * caller is responsible for synchronization.
800 */
sock_cgroup_set_prioidx(struct sock_cgroup_data * skcd,u16 prioidx)801 static inline void sock_cgroup_set_prioidx(struct sock_cgroup_data *skcd,
802 u16 prioidx)
803 {
804 struct sock_cgroup_data skcd_buf = {{ .val = READ_ONCE(skcd->val) }};
805
806 if (sock_cgroup_prioidx(&skcd_buf) == prioidx)
807 return;
808
809 if (!(skcd_buf.is_data & 1)) {
810 skcd_buf.val = 0;
811 skcd_buf.is_data = 1;
812 }
813
814 skcd_buf.prioidx = prioidx;
815 WRITE_ONCE(skcd->val, skcd_buf.val); /* see sock_cgroup_ptr() */
816 }
817
sock_cgroup_set_classid(struct sock_cgroup_data * skcd,u32 classid)818 static inline void sock_cgroup_set_classid(struct sock_cgroup_data *skcd,
819 u32 classid)
820 {
821 struct sock_cgroup_data skcd_buf = {{ .val = READ_ONCE(skcd->val) }};
822
823 if (sock_cgroup_classid(&skcd_buf) == classid)
824 return;
825
826 if (!(skcd_buf.is_data & 1)) {
827 skcd_buf.val = 0;
828 skcd_buf.is_data = 1;
829 }
830
831 skcd_buf.classid = classid;
832 WRITE_ONCE(skcd->val, skcd_buf.val); /* see sock_cgroup_ptr() */
833 }
834
835 #else /* CONFIG_SOCK_CGROUP_DATA */
836
837 struct sock_cgroup_data {
838 };
839
840 #endif /* CONFIG_SOCK_CGROUP_DATA */
841
842 #endif /* _LINUX_CGROUP_DEFS_H */
843