1 /*
2  * fs/f2fs/f2fs.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13 
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/cred.h>
23 #include <linux/vmalloc.h>
24 #include <linux/bio.h>
25 #include <linux/blkdev.h>
26 #include <linux/quotaops.h>
27 #include <crypto/hash.h>
28 
29 #define __FS_HAS_ENCRYPTION IS_ENABLED(CONFIG_F2FS_FS_ENCRYPTION)
30 #include <linux/fscrypt.h>
31 
32 #ifdef CONFIG_F2FS_CHECK_FS
33 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
34 #else
35 #define f2fs_bug_on(sbi, condition)					\
36 	do {								\
37 		if (unlikely(condition)) {				\
38 			WARN_ON(1);					\
39 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
40 		}							\
41 	} while (0)
42 #endif
43 
44 enum {
45 	FAULT_KMALLOC,
46 	FAULT_KVMALLOC,
47 	FAULT_PAGE_ALLOC,
48 	FAULT_PAGE_GET,
49 	FAULT_ALLOC_BIO,
50 	FAULT_ALLOC_NID,
51 	FAULT_ORPHAN,
52 	FAULT_BLOCK,
53 	FAULT_DIR_DEPTH,
54 	FAULT_EVICT_INODE,
55 	FAULT_TRUNCATE,
56 	FAULT_IO,
57 	FAULT_CHECKPOINT,
58 	FAULT_DISCARD,
59 	FAULT_MAX,
60 };
61 
62 #ifdef CONFIG_F2FS_FAULT_INJECTION
63 #define F2FS_ALL_FAULT_TYPE		((1 << FAULT_MAX) - 1)
64 
65 struct f2fs_fault_info {
66 	atomic_t inject_ops;
67 	unsigned int inject_rate;
68 	unsigned int inject_type;
69 };
70 
71 extern char *f2fs_fault_name[FAULT_MAX];
72 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
73 #endif
74 
75 /*
76  * For mount options
77  */
78 #define F2FS_MOUNT_BG_GC		0x00000001
79 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
80 #define F2FS_MOUNT_DISCARD		0x00000004
81 #define F2FS_MOUNT_NOHEAP		0x00000008
82 #define F2FS_MOUNT_XATTR_USER		0x00000010
83 #define F2FS_MOUNT_POSIX_ACL		0x00000020
84 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
85 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
86 #define F2FS_MOUNT_INLINE_DATA		0x00000100
87 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
88 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
89 #define F2FS_MOUNT_NOBARRIER		0x00000800
90 #define F2FS_MOUNT_FASTBOOT		0x00001000
91 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
92 #define F2FS_MOUNT_FORCE_FG_GC		0x00004000
93 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
94 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
95 #define F2FS_MOUNT_ADAPTIVE		0x00020000
96 #define F2FS_MOUNT_LFS			0x00040000
97 #define F2FS_MOUNT_USRQUOTA		0x00080000
98 #define F2FS_MOUNT_GRPQUOTA		0x00100000
99 #define F2FS_MOUNT_PRJQUOTA		0x00200000
100 #define F2FS_MOUNT_QUOTA		0x00400000
101 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
102 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
103 
104 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
105 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
106 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
107 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
108 
109 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
110 		typecheck(unsigned long long, b) &&			\
111 		((long long)((a) - (b)) > 0))
112 
113 typedef u32 block_t;	/*
114 			 * should not change u32, since it is the on-disk block
115 			 * address format, __le32.
116 			 */
117 typedef u32 nid_t;
118 
119 struct f2fs_mount_info {
120 	unsigned int opt;
121 	int write_io_size_bits;		/* Write IO size bits */
122 	block_t root_reserved_blocks;	/* root reserved blocks */
123 	kuid_t s_resuid;		/* reserved blocks for uid */
124 	kgid_t s_resgid;		/* reserved blocks for gid */
125 	int active_logs;		/* # of active logs */
126 	int inline_xattr_size;		/* inline xattr size */
127 #ifdef CONFIG_F2FS_FAULT_INJECTION
128 	struct f2fs_fault_info fault_info;	/* For fault injection */
129 #endif
130 #ifdef CONFIG_QUOTA
131 	/* Names of quota files with journalled quota */
132 	char *s_qf_names[MAXQUOTAS];
133 	int s_jquota_fmt;			/* Format of quota to use */
134 #endif
135 	/* For which write hints are passed down to block layer */
136 	int whint_mode;
137 	int alloc_mode;			/* segment allocation policy */
138 	int fsync_mode;			/* fsync policy */
139 	bool test_dummy_encryption;	/* test dummy encryption */
140 };
141 
142 #define F2FS_FEATURE_ENCRYPT		0x0001
143 #define F2FS_FEATURE_BLKZONED		0x0002
144 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
145 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
146 #define F2FS_FEATURE_PRJQUOTA		0x0010
147 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
148 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
149 #define F2FS_FEATURE_QUOTA_INO		0x0080
150 #define F2FS_FEATURE_INODE_CRTIME	0x0100
151 #define F2FS_FEATURE_LOST_FOUND		0x0200
152 #define F2FS_FEATURE_VERITY		0x0400	/* reserved */
153 
154 #define F2FS_HAS_FEATURE(sb, mask)					\
155 	((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
156 #define F2FS_SET_FEATURE(sb, mask)					\
157 	(F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask))
158 #define F2FS_CLEAR_FEATURE(sb, mask)					\
159 	(F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask))
160 
161 /*
162  * Default values for user and/or group using reserved blocks
163  */
164 #define	F2FS_DEF_RESUID		0
165 #define	F2FS_DEF_RESGID		0
166 
167 /*
168  * For checkpoint manager
169  */
170 enum {
171 	NAT_BITMAP,
172 	SIT_BITMAP
173 };
174 
175 #define	CP_UMOUNT	0x00000001
176 #define	CP_FASTBOOT	0x00000002
177 #define	CP_SYNC		0x00000004
178 #define	CP_RECOVERY	0x00000008
179 #define	CP_DISCARD	0x00000010
180 #define CP_TRIMMED	0x00000020
181 
182 #define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
183 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
184 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
185 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
186 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
187 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
188 #define DEF_CP_INTERVAL			60	/* 60 secs */
189 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
190 
191 struct cp_control {
192 	int reason;
193 	__u64 trim_start;
194 	__u64 trim_end;
195 	__u64 trim_minlen;
196 };
197 
198 /*
199  * indicate meta/data type
200  */
201 enum {
202 	META_CP,
203 	META_NAT,
204 	META_SIT,
205 	META_SSA,
206 	META_POR,
207 	DATA_GENERIC,
208 	META_GENERIC,
209 };
210 
211 /* for the list of ino */
212 enum {
213 	ORPHAN_INO,		/* for orphan ino list */
214 	APPEND_INO,		/* for append ino list */
215 	UPDATE_INO,		/* for update ino list */
216 	TRANS_DIR_INO,		/* for trasactions dir ino list */
217 	FLUSH_INO,		/* for multiple device flushing */
218 	MAX_INO_ENTRY,		/* max. list */
219 };
220 
221 struct ino_entry {
222 	struct list_head list;		/* list head */
223 	nid_t ino;			/* inode number */
224 	unsigned int dirty_device;	/* dirty device bitmap */
225 };
226 
227 /* for the list of inodes to be GCed */
228 struct inode_entry {
229 	struct list_head list;	/* list head */
230 	struct inode *inode;	/* vfs inode pointer */
231 };
232 
233 struct fsync_node_entry {
234 	struct list_head list;	/* list head */
235 	struct page *page;	/* warm node page pointer */
236 	unsigned int seq_id;	/* sequence id */
237 };
238 
239 /* for the bitmap indicate blocks to be discarded */
240 struct discard_entry {
241 	struct list_head list;	/* list head */
242 	block_t start_blkaddr;	/* start blockaddr of current segment */
243 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
244 };
245 
246 /* default discard granularity of inner discard thread, unit: block count */
247 #define DEFAULT_DISCARD_GRANULARITY		16
248 
249 /* max discard pend list number */
250 #define MAX_PLIST_NUM		512
251 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
252 					(MAX_PLIST_NUM - 1) : (blk_num - 1))
253 
254 enum {
255 	D_PREP,			/* initial */
256 	D_PARTIAL,		/* partially submitted */
257 	D_SUBMIT,		/* all submitted */
258 	D_DONE,			/* finished */
259 };
260 
261 struct discard_info {
262 	block_t lstart;			/* logical start address */
263 	block_t len;			/* length */
264 	block_t start;			/* actual start address in dev */
265 };
266 
267 struct discard_cmd {
268 	struct rb_node rb_node;		/* rb node located in rb-tree */
269 	union {
270 		struct {
271 			block_t lstart;	/* logical start address */
272 			block_t len;	/* length */
273 			block_t start;	/* actual start address in dev */
274 		};
275 		struct discard_info di;	/* discard info */
276 
277 	};
278 	struct list_head list;		/* command list */
279 	struct completion wait;		/* compleation */
280 	struct block_device *bdev;	/* bdev */
281 	unsigned short ref;		/* reference count */
282 	unsigned char state;		/* state */
283 	unsigned char issuing;		/* issuing discard */
284 	int error;			/* bio error */
285 	spinlock_t lock;		/* for state/bio_ref updating */
286 	unsigned short bio_ref;		/* bio reference count */
287 };
288 
289 enum {
290 	DPOLICY_BG,
291 	DPOLICY_FORCE,
292 	DPOLICY_FSTRIM,
293 	DPOLICY_UMOUNT,
294 	MAX_DPOLICY,
295 };
296 
297 struct discard_policy {
298 	int type;			/* type of discard */
299 	unsigned int min_interval;	/* used for candidates exist */
300 	unsigned int mid_interval;	/* used for device busy */
301 	unsigned int max_interval;	/* used for candidates not exist */
302 	unsigned int max_requests;	/* # of discards issued per round */
303 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
304 	bool io_aware;			/* issue discard in idle time */
305 	bool sync;			/* submit discard with REQ_SYNC flag */
306 	bool ordered;			/* issue discard by lba order */
307 	unsigned int granularity;	/* discard granularity */
308 };
309 
310 struct discard_cmd_control {
311 	struct task_struct *f2fs_issue_discard;	/* discard thread */
312 	struct list_head entry_list;		/* 4KB discard entry list */
313 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
314 	struct list_head wait_list;		/* store on-flushing entries */
315 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
316 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
317 	unsigned int discard_wake;		/* to wake up discard thread */
318 	struct mutex cmd_lock;
319 	unsigned int nr_discards;		/* # of discards in the list */
320 	unsigned int max_discards;		/* max. discards to be issued */
321 	unsigned int discard_granularity;	/* discard granularity */
322 	unsigned int undiscard_blks;		/* # of undiscard blocks */
323 	unsigned int next_pos;			/* next discard position */
324 	atomic_t issued_discard;		/* # of issued discard */
325 	atomic_t issing_discard;		/* # of issing discard */
326 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
327 	struct rb_root root;			/* root of discard rb-tree */
328 	bool rbtree_check;			/* config for consistence check */
329 };
330 
331 /* for the list of fsync inodes, used only during recovery */
332 struct fsync_inode_entry {
333 	struct list_head list;	/* list head */
334 	struct inode *inode;	/* vfs inode pointer */
335 	block_t blkaddr;	/* block address locating the last fsync */
336 	block_t last_dentry;	/* block address locating the last dentry */
337 };
338 
339 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
340 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
341 
342 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
343 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
344 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
345 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
346 
347 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
348 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
349 
update_nats_in_cursum(struct f2fs_journal * journal,int i)350 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
351 {
352 	int before = nats_in_cursum(journal);
353 
354 	journal->n_nats = cpu_to_le16(before + i);
355 	return before;
356 }
357 
update_sits_in_cursum(struct f2fs_journal * journal,int i)358 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
359 {
360 	int before = sits_in_cursum(journal);
361 
362 	journal->n_sits = cpu_to_le16(before + i);
363 	return before;
364 }
365 
__has_cursum_space(struct f2fs_journal * journal,int size,int type)366 static inline bool __has_cursum_space(struct f2fs_journal *journal,
367 							int size, int type)
368 {
369 	if (type == NAT_JOURNAL)
370 		return size <= MAX_NAT_JENTRIES(journal);
371 	return size <= MAX_SIT_JENTRIES(journal);
372 }
373 
374 /*
375  * ioctl commands
376  */
377 #define F2FS_IOC_GETFLAGS		FS_IOC_GETFLAGS
378 #define F2FS_IOC_SETFLAGS		FS_IOC_SETFLAGS
379 #define F2FS_IOC_GETVERSION		FS_IOC_GETVERSION
380 
381 #define F2FS_IOCTL_MAGIC		0xf5
382 #define F2FS_IOC_START_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 1)
383 #define F2FS_IOC_COMMIT_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 2)
384 #define F2FS_IOC_START_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 3)
385 #define F2FS_IOC_RELEASE_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 4)
386 #define F2FS_IOC_ABORT_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 5)
387 #define F2FS_IOC_GARBAGE_COLLECT	_IOW(F2FS_IOCTL_MAGIC, 6, __u32)
388 #define F2FS_IOC_WRITE_CHECKPOINT	_IO(F2FS_IOCTL_MAGIC, 7)
389 #define F2FS_IOC_DEFRAGMENT		_IOWR(F2FS_IOCTL_MAGIC, 8,	\
390 						struct f2fs_defragment)
391 #define F2FS_IOC_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
392 						struct f2fs_move_range)
393 #define F2FS_IOC_FLUSH_DEVICE		_IOW(F2FS_IOCTL_MAGIC, 10,	\
394 						struct f2fs_flush_device)
395 #define F2FS_IOC_GARBAGE_COLLECT_RANGE	_IOW(F2FS_IOCTL_MAGIC, 11,	\
396 						struct f2fs_gc_range)
397 #define F2FS_IOC_GET_FEATURES		_IOR(F2FS_IOCTL_MAGIC, 12, __u32)
398 #define F2FS_IOC_SET_PIN_FILE		_IOW(F2FS_IOCTL_MAGIC, 13, __u32)
399 #define F2FS_IOC_GET_PIN_FILE		_IOR(F2FS_IOCTL_MAGIC, 14, __u32)
400 #define F2FS_IOC_PRECACHE_EXTENTS	_IO(F2FS_IOCTL_MAGIC, 15)
401 
402 #define F2FS_IOC_SET_ENCRYPTION_POLICY	FS_IOC_SET_ENCRYPTION_POLICY
403 #define F2FS_IOC_GET_ENCRYPTION_POLICY	FS_IOC_GET_ENCRYPTION_POLICY
404 #define F2FS_IOC_GET_ENCRYPTION_PWSALT	FS_IOC_GET_ENCRYPTION_PWSALT
405 
406 /*
407  * should be same as XFS_IOC_GOINGDOWN.
408  * Flags for going down operation used by FS_IOC_GOINGDOWN
409  */
410 #define F2FS_IOC_SHUTDOWN	_IOR('X', 125, __u32)	/* Shutdown */
411 #define F2FS_GOING_DOWN_FULLSYNC	0x0	/* going down with full sync */
412 #define F2FS_GOING_DOWN_METASYNC	0x1	/* going down with metadata */
413 #define F2FS_GOING_DOWN_NOSYNC		0x2	/* going down */
414 #define F2FS_GOING_DOWN_METAFLUSH	0x3	/* going down with meta flush */
415 
416 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
417 /*
418  * ioctl commands in 32 bit emulation
419  */
420 #define F2FS_IOC32_GETFLAGS		FS_IOC32_GETFLAGS
421 #define F2FS_IOC32_SETFLAGS		FS_IOC32_SETFLAGS
422 #define F2FS_IOC32_GETVERSION		FS_IOC32_GETVERSION
423 #endif
424 
425 #define F2FS_IOC_FSGETXATTR		FS_IOC_FSGETXATTR
426 #define F2FS_IOC_FSSETXATTR		FS_IOC_FSSETXATTR
427 
428 struct f2fs_gc_range {
429 	u32 sync;
430 	u64 start;
431 	u64 len;
432 };
433 
434 struct f2fs_defragment {
435 	u64 start;
436 	u64 len;
437 };
438 
439 struct f2fs_move_range {
440 	u32 dst_fd;		/* destination fd */
441 	u64 pos_in;		/* start position in src_fd */
442 	u64 pos_out;		/* start position in dst_fd */
443 	u64 len;		/* size to move */
444 };
445 
446 struct f2fs_flush_device {
447 	u32 dev_num;		/* device number to flush */
448 	u32 segments;		/* # of segments to flush */
449 };
450 
451 /* for inline stuff */
452 #define DEF_INLINE_RESERVED_SIZE	1
453 static inline int get_extra_isize(struct inode *inode);
454 static inline int get_inline_xattr_addrs(struct inode *inode);
455 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
456 				(CUR_ADDRS_PER_INODE(inode) -		\
457 				get_inline_xattr_addrs(inode) -	\
458 				DEF_INLINE_RESERVED_SIZE))
459 
460 /* for inline dir */
461 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
462 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
463 				BITS_PER_BYTE + 1))
464 #define INLINE_DENTRY_BITMAP_SIZE(inode)	((NR_INLINE_DENTRY(inode) + \
465 					BITS_PER_BYTE - 1) / BITS_PER_BYTE)
466 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
467 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
468 				NR_INLINE_DENTRY(inode) + \
469 				INLINE_DENTRY_BITMAP_SIZE(inode)))
470 
471 /*
472  * For INODE and NODE manager
473  */
474 /* for directory operations */
475 struct f2fs_dentry_ptr {
476 	struct inode *inode;
477 	void *bitmap;
478 	struct f2fs_dir_entry *dentry;
479 	__u8 (*filename)[F2FS_SLOT_LEN];
480 	int max;
481 	int nr_bitmap;
482 };
483 
make_dentry_ptr_block(struct inode * inode,struct f2fs_dentry_ptr * d,struct f2fs_dentry_block * t)484 static inline void make_dentry_ptr_block(struct inode *inode,
485 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
486 {
487 	d->inode = inode;
488 	d->max = NR_DENTRY_IN_BLOCK;
489 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
490 	d->bitmap = t->dentry_bitmap;
491 	d->dentry = t->dentry;
492 	d->filename = t->filename;
493 }
494 
make_dentry_ptr_inline(struct inode * inode,struct f2fs_dentry_ptr * d,void * t)495 static inline void make_dentry_ptr_inline(struct inode *inode,
496 					struct f2fs_dentry_ptr *d, void *t)
497 {
498 	int entry_cnt = NR_INLINE_DENTRY(inode);
499 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
500 	int reserved_size = INLINE_RESERVED_SIZE(inode);
501 
502 	d->inode = inode;
503 	d->max = entry_cnt;
504 	d->nr_bitmap = bitmap_size;
505 	d->bitmap = t;
506 	d->dentry = t + bitmap_size + reserved_size;
507 	d->filename = t + bitmap_size + reserved_size +
508 					SIZE_OF_DIR_ENTRY * entry_cnt;
509 }
510 
511 /*
512  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
513  * as its node offset to distinguish from index node blocks.
514  * But some bits are used to mark the node block.
515  */
516 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
517 				>> OFFSET_BIT_SHIFT)
518 enum {
519 	ALLOC_NODE,			/* allocate a new node page if needed */
520 	LOOKUP_NODE,			/* look up a node without readahead */
521 	LOOKUP_NODE_RA,			/*
522 					 * look up a node with readahead called
523 					 * by get_data_block.
524 					 */
525 };
526 
527 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO count */
528 
529 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
530 
531 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
532 
533 /* for in-memory extent cache entry */
534 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
535 
536 /* number of extent info in extent cache we try to shrink */
537 #define EXTENT_CACHE_SHRINK_NUMBER	128
538 
539 struct rb_entry {
540 	struct rb_node rb_node;		/* rb node located in rb-tree */
541 	unsigned int ofs;		/* start offset of the entry */
542 	unsigned int len;		/* length of the entry */
543 };
544 
545 struct extent_info {
546 	unsigned int fofs;		/* start offset in a file */
547 	unsigned int len;		/* length of the extent */
548 	u32 blk;			/* start block address of the extent */
549 };
550 
551 struct extent_node {
552 	struct rb_node rb_node;
553 	union {
554 		struct {
555 			unsigned int fofs;
556 			unsigned int len;
557 			u32 blk;
558 		};
559 		struct extent_info ei;	/* extent info */
560 
561 	};
562 	struct list_head list;		/* node in global extent list of sbi */
563 	struct extent_tree *et;		/* extent tree pointer */
564 };
565 
566 struct extent_tree {
567 	nid_t ino;			/* inode number */
568 	struct rb_root root;		/* root of extent info rb-tree */
569 	struct extent_node *cached_en;	/* recently accessed extent node */
570 	struct extent_info largest;	/* largested extent info */
571 	struct list_head list;		/* to be used by sbi->zombie_list */
572 	rwlock_t lock;			/* protect extent info rb-tree */
573 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
574 	bool largest_updated;		/* largest extent updated */
575 };
576 
577 /*
578  * This structure is taken from ext4_map_blocks.
579  *
580  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
581  */
582 #define F2FS_MAP_NEW		(1 << BH_New)
583 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
584 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
585 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
586 				F2FS_MAP_UNWRITTEN)
587 
588 struct f2fs_map_blocks {
589 	block_t m_pblk;
590 	block_t m_lblk;
591 	unsigned int m_len;
592 	unsigned int m_flags;
593 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
594 	pgoff_t *m_next_extent;		/* point to next possible extent */
595 	int m_seg_type;
596 };
597 
598 /* for flag in get_data_block */
599 enum {
600 	F2FS_GET_BLOCK_DEFAULT,
601 	F2FS_GET_BLOCK_FIEMAP,
602 	F2FS_GET_BLOCK_BMAP,
603 	F2FS_GET_BLOCK_DIO,
604 	F2FS_GET_BLOCK_PRE_DIO,
605 	F2FS_GET_BLOCK_PRE_AIO,
606 	F2FS_GET_BLOCK_PRECACHE,
607 };
608 
609 /*
610  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
611  */
612 #define FADVISE_COLD_BIT	0x01
613 #define FADVISE_LOST_PINO_BIT	0x02
614 #define FADVISE_ENCRYPT_BIT	0x04
615 #define FADVISE_ENC_NAME_BIT	0x08
616 #define FADVISE_KEEP_SIZE_BIT	0x10
617 #define FADVISE_HOT_BIT		0x20
618 #define FADVISE_VERITY_BIT	0x40	/* reserved */
619 
620 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
621 
622 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
623 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
624 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
625 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
626 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
627 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
628 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
629 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
630 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
631 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
632 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
633 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
634 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
635 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
636 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
637 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
638 
639 #define DEF_DIR_LEVEL		0
640 
641 enum {
642 	GC_FAILURE_PIN,
643 	GC_FAILURE_ATOMIC,
644 	MAX_GC_FAILURE
645 };
646 
647 struct f2fs_inode_info {
648 	struct inode vfs_inode;		/* serve a vfs inode */
649 	unsigned long i_flags;		/* keep an inode flags for ioctl */
650 	unsigned char i_advise;		/* use to give file attribute hints */
651 	unsigned char i_dir_level;	/* use for dentry level for large dir */
652 	unsigned int i_current_depth;	/* only for directory depth */
653 	/* for gc failure statistic */
654 	unsigned int i_gc_failures[MAX_GC_FAILURE];
655 	unsigned int i_pino;		/* parent inode number */
656 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
657 
658 	/* Use below internally in f2fs*/
659 	unsigned long flags;		/* use to pass per-file flags */
660 	struct rw_semaphore i_sem;	/* protect fi info */
661 	atomic_t dirty_pages;		/* # of dirty pages */
662 	f2fs_hash_t chash;		/* hash value of given file name */
663 	unsigned int clevel;		/* maximum level of given file name */
664 	struct task_struct *task;	/* lookup and create consistency */
665 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
666 	nid_t i_xattr_nid;		/* node id that contains xattrs */
667 	loff_t	last_disk_size;		/* lastly written file size */
668 
669 #ifdef CONFIG_QUOTA
670 	struct dquot *i_dquot[MAXQUOTAS];
671 
672 	/* quota space reservation, managed internally by quota code */
673 	qsize_t i_reserved_quota;
674 #endif
675 	struct list_head dirty_list;	/* dirty list for dirs and files */
676 	struct list_head gdirty_list;	/* linked in global dirty list */
677 	struct list_head inmem_ilist;	/* list for inmem inodes */
678 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
679 	struct task_struct *inmem_task;	/* store inmemory task */
680 	struct mutex inmem_lock;	/* lock for inmemory pages */
681 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
682 
683 	/* avoid racing between foreground op and gc */
684 	struct rw_semaphore i_gc_rwsem[2];
685 	struct rw_semaphore i_mmap_sem;
686 	struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
687 
688 	int i_extra_isize;		/* size of extra space located in i_addr */
689 	kprojid_t i_projid;		/* id for project quota */
690 	int i_inline_xattr_size;	/* inline xattr size */
691 	struct timespec64 i_crtime;	/* inode creation time */
692 	struct timespec64 i_disk_time[4];/* inode disk times */
693 };
694 
get_extent_info(struct extent_info * ext,struct f2fs_extent * i_ext)695 static inline void get_extent_info(struct extent_info *ext,
696 					struct f2fs_extent *i_ext)
697 {
698 	ext->fofs = le32_to_cpu(i_ext->fofs);
699 	ext->blk = le32_to_cpu(i_ext->blk);
700 	ext->len = le32_to_cpu(i_ext->len);
701 }
702 
set_raw_extent(struct extent_info * ext,struct f2fs_extent * i_ext)703 static inline void set_raw_extent(struct extent_info *ext,
704 					struct f2fs_extent *i_ext)
705 {
706 	i_ext->fofs = cpu_to_le32(ext->fofs);
707 	i_ext->blk = cpu_to_le32(ext->blk);
708 	i_ext->len = cpu_to_le32(ext->len);
709 }
710 
set_extent_info(struct extent_info * ei,unsigned int fofs,u32 blk,unsigned int len)711 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
712 						u32 blk, unsigned int len)
713 {
714 	ei->fofs = fofs;
715 	ei->blk = blk;
716 	ei->len = len;
717 }
718 
__is_discard_mergeable(struct discard_info * back,struct discard_info * front,unsigned int max_len)719 static inline bool __is_discard_mergeable(struct discard_info *back,
720 			struct discard_info *front, unsigned int max_len)
721 {
722 	return (back->lstart + back->len == front->lstart) &&
723 		(back->len + front->len <= max_len);
724 }
725 
__is_discard_back_mergeable(struct discard_info * cur,struct discard_info * back,unsigned int max_len)726 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
727 			struct discard_info *back, unsigned int max_len)
728 {
729 	return __is_discard_mergeable(back, cur, max_len);
730 }
731 
__is_discard_front_mergeable(struct discard_info * cur,struct discard_info * front,unsigned int max_len)732 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
733 			struct discard_info *front, unsigned int max_len)
734 {
735 	return __is_discard_mergeable(cur, front, max_len);
736 }
737 
__is_extent_mergeable(struct extent_info * back,struct extent_info * front)738 static inline bool __is_extent_mergeable(struct extent_info *back,
739 						struct extent_info *front)
740 {
741 	return (back->fofs + back->len == front->fofs &&
742 			back->blk + back->len == front->blk);
743 }
744 
__is_back_mergeable(struct extent_info * cur,struct extent_info * back)745 static inline bool __is_back_mergeable(struct extent_info *cur,
746 						struct extent_info *back)
747 {
748 	return __is_extent_mergeable(back, cur);
749 }
750 
__is_front_mergeable(struct extent_info * cur,struct extent_info * front)751 static inline bool __is_front_mergeable(struct extent_info *cur,
752 						struct extent_info *front)
753 {
754 	return __is_extent_mergeable(cur, front);
755 }
756 
757 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
__try_update_largest_extent(struct extent_tree * et,struct extent_node * en)758 static inline void __try_update_largest_extent(struct extent_tree *et,
759 						struct extent_node *en)
760 {
761 	if (en->ei.len > et->largest.len) {
762 		et->largest = en->ei;
763 		et->largest_updated = true;
764 	}
765 }
766 
767 /*
768  * For free nid management
769  */
770 enum nid_state {
771 	FREE_NID,		/* newly added to free nid list */
772 	PREALLOC_NID,		/* it is preallocated */
773 	MAX_NID_STATE,
774 };
775 
776 struct f2fs_nm_info {
777 	block_t nat_blkaddr;		/* base disk address of NAT */
778 	nid_t max_nid;			/* maximum possible node ids */
779 	nid_t available_nids;		/* # of available node ids */
780 	nid_t next_scan_nid;		/* the next nid to be scanned */
781 	unsigned int ram_thresh;	/* control the memory footprint */
782 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
783 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
784 
785 	/* NAT cache management */
786 	struct radix_tree_root nat_root;/* root of the nat entry cache */
787 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
788 	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
789 	struct list_head nat_entries;	/* cached nat entry list (clean) */
790 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
791 	unsigned int nat_cnt;		/* the # of cached nat entries */
792 	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
793 	unsigned int nat_blocks;	/* # of nat blocks */
794 
795 	/* free node ids management */
796 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
797 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
798 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
799 	spinlock_t nid_list_lock;	/* protect nid lists ops */
800 	struct mutex build_lock;	/* lock for build free nids */
801 	unsigned char **free_nid_bitmap;
802 	unsigned char *nat_block_bitmap;
803 	unsigned short *free_nid_count;	/* free nid count of NAT block */
804 
805 	/* for checkpoint */
806 	char *nat_bitmap;		/* NAT bitmap pointer */
807 
808 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
809 	unsigned char *nat_bits;	/* NAT bits blocks */
810 	unsigned char *full_nat_bits;	/* full NAT pages */
811 	unsigned char *empty_nat_bits;	/* empty NAT pages */
812 #ifdef CONFIG_F2FS_CHECK_FS
813 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
814 #endif
815 	int bitmap_size;		/* bitmap size */
816 };
817 
818 /*
819  * this structure is used as one of function parameters.
820  * all the information are dedicated to a given direct node block determined
821  * by the data offset in a file.
822  */
823 struct dnode_of_data {
824 	struct inode *inode;		/* vfs inode pointer */
825 	struct page *inode_page;	/* its inode page, NULL is possible */
826 	struct page *node_page;		/* cached direct node page */
827 	nid_t nid;			/* node id of the direct node block */
828 	unsigned int ofs_in_node;	/* data offset in the node page */
829 	bool inode_page_locked;		/* inode page is locked or not */
830 	bool node_changed;		/* is node block changed */
831 	char cur_level;			/* level of hole node page */
832 	char max_level;			/* level of current page located */
833 	block_t	data_blkaddr;		/* block address of the node block */
834 };
835 
set_new_dnode(struct dnode_of_data * dn,struct inode * inode,struct page * ipage,struct page * npage,nid_t nid)836 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
837 		struct page *ipage, struct page *npage, nid_t nid)
838 {
839 	memset(dn, 0, sizeof(*dn));
840 	dn->inode = inode;
841 	dn->inode_page = ipage;
842 	dn->node_page = npage;
843 	dn->nid = nid;
844 }
845 
846 /*
847  * For SIT manager
848  *
849  * By default, there are 6 active log areas across the whole main area.
850  * When considering hot and cold data separation to reduce cleaning overhead,
851  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
852  * respectively.
853  * In the current design, you should not change the numbers intentionally.
854  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
855  * logs individually according to the underlying devices. (default: 6)
856  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
857  * data and 8 for node logs.
858  */
859 #define	NR_CURSEG_DATA_TYPE	(3)
860 #define NR_CURSEG_NODE_TYPE	(3)
861 #define NR_CURSEG_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
862 
863 enum {
864 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
865 	CURSEG_WARM_DATA,	/* data blocks */
866 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
867 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
868 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
869 	CURSEG_COLD_NODE,	/* indirect node blocks */
870 	NO_CHECK_TYPE,
871 };
872 
873 struct flush_cmd {
874 	struct completion wait;
875 	struct llist_node llnode;
876 	nid_t ino;
877 	int ret;
878 };
879 
880 struct flush_cmd_control {
881 	struct task_struct *f2fs_issue_flush;	/* flush thread */
882 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
883 	atomic_t issued_flush;			/* # of issued flushes */
884 	atomic_t issing_flush;			/* # of issing flushes */
885 	struct llist_head issue_list;		/* list for command issue */
886 	struct llist_node *dispatch_list;	/* list for command dispatch */
887 };
888 
889 struct f2fs_sm_info {
890 	struct sit_info *sit_info;		/* whole segment information */
891 	struct free_segmap_info *free_info;	/* free segment information */
892 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
893 	struct curseg_info *curseg_array;	/* active segment information */
894 
895 	struct rw_semaphore curseg_lock;	/* for preventing curseg change */
896 
897 	block_t seg0_blkaddr;		/* block address of 0'th segment */
898 	block_t main_blkaddr;		/* start block address of main area */
899 	block_t ssa_blkaddr;		/* start block address of SSA area */
900 
901 	unsigned int segment_count;	/* total # of segments */
902 	unsigned int main_segments;	/* # of segments in main area */
903 	unsigned int reserved_segments;	/* # of reserved segments */
904 	unsigned int ovp_segments;	/* # of overprovision segments */
905 
906 	/* a threshold to reclaim prefree segments */
907 	unsigned int rec_prefree_segments;
908 
909 	/* for batched trimming */
910 	unsigned int trim_sections;		/* # of sections to trim */
911 
912 	struct list_head sit_entry_set;	/* sit entry set list */
913 
914 	unsigned int ipu_policy;	/* in-place-update policy */
915 	unsigned int min_ipu_util;	/* in-place-update threshold */
916 	unsigned int min_fsync_blocks;	/* threshold for fsync */
917 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
918 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
919 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
920 
921 	/* for flush command control */
922 	struct flush_cmd_control *fcc_info;
923 
924 	/* for discard command control */
925 	struct discard_cmd_control *dcc_info;
926 };
927 
928 /*
929  * For superblock
930  */
931 /*
932  * COUNT_TYPE for monitoring
933  *
934  * f2fs monitors the number of several block types such as on-writeback,
935  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
936  */
937 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
938 enum count_type {
939 	F2FS_DIRTY_DENTS,
940 	F2FS_DIRTY_DATA,
941 	F2FS_DIRTY_QDATA,
942 	F2FS_DIRTY_NODES,
943 	F2FS_DIRTY_META,
944 	F2FS_INMEM_PAGES,
945 	F2FS_DIRTY_IMETA,
946 	F2FS_WB_CP_DATA,
947 	F2FS_WB_DATA,
948 	NR_COUNT_TYPE,
949 };
950 
951 /*
952  * The below are the page types of bios used in submit_bio().
953  * The available types are:
954  * DATA			User data pages. It operates as async mode.
955  * NODE			Node pages. It operates as async mode.
956  * META			FS metadata pages such as SIT, NAT, CP.
957  * NR_PAGE_TYPE		The number of page types.
958  * META_FLUSH		Make sure the previous pages are written
959  *			with waiting the bio's completion
960  * ...			Only can be used with META.
961  */
962 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
963 enum page_type {
964 	DATA,
965 	NODE,
966 	META,
967 	NR_PAGE_TYPE,
968 	META_FLUSH,
969 	INMEM,		/* the below types are used by tracepoints only. */
970 	INMEM_DROP,
971 	INMEM_INVALIDATE,
972 	INMEM_REVOKE,
973 	IPU,
974 	OPU,
975 };
976 
977 enum temp_type {
978 	HOT = 0,	/* must be zero for meta bio */
979 	WARM,
980 	COLD,
981 	NR_TEMP_TYPE,
982 };
983 
984 enum need_lock_type {
985 	LOCK_REQ = 0,
986 	LOCK_DONE,
987 	LOCK_RETRY,
988 };
989 
990 enum cp_reason_type {
991 	CP_NO_NEEDED,
992 	CP_NON_REGULAR,
993 	CP_HARDLINK,
994 	CP_SB_NEED_CP,
995 	CP_WRONG_PINO,
996 	CP_NO_SPC_ROLL,
997 	CP_NODE_NEED_CP,
998 	CP_FASTBOOT_MODE,
999 	CP_SPEC_LOG_NUM,
1000 	CP_RECOVER_DIR,
1001 };
1002 
1003 enum iostat_type {
1004 	APP_DIRECT_IO,			/* app direct IOs */
1005 	APP_BUFFERED_IO,		/* app buffered IOs */
1006 	APP_WRITE_IO,			/* app write IOs */
1007 	APP_MAPPED_IO,			/* app mapped IOs */
1008 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1009 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1010 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1011 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1012 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1013 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1014 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1015 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1016 	FS_DISCARD,			/* discard */
1017 	NR_IO_TYPE,
1018 };
1019 
1020 struct f2fs_io_info {
1021 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1022 	nid_t ino;		/* inode number */
1023 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1024 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1025 	int op;			/* contains REQ_OP_ */
1026 	int op_flags;		/* req_flag_bits */
1027 	block_t new_blkaddr;	/* new block address to be written */
1028 	block_t old_blkaddr;	/* old block address before Cow */
1029 	struct page *page;	/* page to be written */
1030 	struct page *encrypted_page;	/* encrypted page */
1031 	struct list_head list;		/* serialize IOs */
1032 	bool submitted;		/* indicate IO submission */
1033 	int need_lock;		/* indicate we need to lock cp_rwsem */
1034 	bool in_list;		/* indicate fio is in io_list */
1035 	bool is_meta;		/* indicate borrow meta inode mapping or not */
1036 	bool retry;		/* need to reallocate block address */
1037 	enum iostat_type io_type;	/* io type */
1038 	struct writeback_control *io_wbc; /* writeback control */
1039 	unsigned char version;		/* version of the node */
1040 };
1041 
1042 #define is_read_io(rw) ((rw) == READ)
1043 struct f2fs_bio_info {
1044 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1045 	struct bio *bio;		/* bios to merge */
1046 	sector_t last_block_in_bio;	/* last block number */
1047 	struct f2fs_io_info fio;	/* store buffered io info. */
1048 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
1049 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1050 	struct list_head io_list;	/* track fios */
1051 };
1052 
1053 #define FDEV(i)				(sbi->devs[i])
1054 #define RDEV(i)				(raw_super->devs[i])
1055 struct f2fs_dev_info {
1056 	struct block_device *bdev;
1057 	char path[MAX_PATH_LEN];
1058 	unsigned int total_segments;
1059 	block_t start_blk;
1060 	block_t end_blk;
1061 #ifdef CONFIG_BLK_DEV_ZONED
1062 	unsigned int nr_blkz;			/* Total number of zones */
1063 	u8 *blkz_type;				/* Array of zones type */
1064 #endif
1065 };
1066 
1067 enum inode_type {
1068 	DIR_INODE,			/* for dirty dir inode */
1069 	FILE_INODE,			/* for dirty regular/symlink inode */
1070 	DIRTY_META,			/* for all dirtied inode metadata */
1071 	ATOMIC_FILE,			/* for all atomic files */
1072 	NR_INODE_TYPE,
1073 };
1074 
1075 /* for inner inode cache management */
1076 struct inode_management {
1077 	struct radix_tree_root ino_root;	/* ino entry array */
1078 	spinlock_t ino_lock;			/* for ino entry lock */
1079 	struct list_head ino_list;		/* inode list head */
1080 	unsigned long ino_num;			/* number of entries */
1081 };
1082 
1083 /* For s_flag in struct f2fs_sb_info */
1084 enum {
1085 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1086 	SBI_IS_CLOSE,				/* specify unmounting */
1087 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1088 	SBI_POR_DOING,				/* recovery is doing or not */
1089 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1090 	SBI_NEED_CP,				/* need to checkpoint */
1091 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1092 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1093 };
1094 
1095 enum {
1096 	CP_TIME,
1097 	REQ_TIME,
1098 	MAX_TIME,
1099 };
1100 
1101 enum {
1102 	GC_NORMAL,
1103 	GC_IDLE_CB,
1104 	GC_IDLE_GREEDY,
1105 	GC_URGENT,
1106 };
1107 
1108 enum {
1109 	WHINT_MODE_OFF,		/* not pass down write hints */
1110 	WHINT_MODE_USER,	/* try to pass down hints given by users */
1111 	WHINT_MODE_FS,		/* pass down hints with F2FS policy */
1112 };
1113 
1114 enum {
1115 	ALLOC_MODE_DEFAULT,	/* stay default */
1116 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1117 };
1118 
1119 enum fsync_mode {
1120 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1121 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1122 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1123 };
1124 
1125 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1126 #define DUMMY_ENCRYPTION_ENABLED(sbi) \
1127 			(unlikely(F2FS_OPTION(sbi).test_dummy_encryption))
1128 #else
1129 #define DUMMY_ENCRYPTION_ENABLED(sbi) (0)
1130 #endif
1131 
1132 struct f2fs_sb_info {
1133 	struct super_block *sb;			/* pointer to VFS super block */
1134 	struct proc_dir_entry *s_proc;		/* proc entry */
1135 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1136 	struct rw_semaphore sb_lock;		/* lock for raw super block */
1137 	int valid_super_block;			/* valid super block no */
1138 	unsigned long s_flag;				/* flags for sbi */
1139 	struct mutex writepages;		/* mutex for writepages() */
1140 
1141 #ifdef CONFIG_BLK_DEV_ZONED
1142 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1143 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1144 #endif
1145 
1146 	/* for node-related operations */
1147 	struct f2fs_nm_info *nm_info;		/* node manager */
1148 	struct inode *node_inode;		/* cache node blocks */
1149 
1150 	/* for segment-related operations */
1151 	struct f2fs_sm_info *sm_info;		/* segment manager */
1152 
1153 	/* for bio operations */
1154 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1155 	struct mutex wio_mutex[NR_PAGE_TYPE - 1][NR_TEMP_TYPE];
1156 						/* bio ordering for NODE/DATA */
1157 	/* keep migration IO order for LFS mode */
1158 	struct rw_semaphore io_order_lock;
1159 	mempool_t *write_io_dummy;		/* Dummy pages */
1160 
1161 	/* for checkpoint */
1162 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1163 	int cur_cp_pack;			/* remain current cp pack */
1164 	spinlock_t cp_lock;			/* for flag in ckpt */
1165 	struct inode *meta_inode;		/* cache meta blocks */
1166 	struct mutex cp_mutex;			/* checkpoint procedure lock */
1167 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
1168 	struct rw_semaphore node_write;		/* locking node writes */
1169 	struct rw_semaphore node_change;	/* locking node change */
1170 	wait_queue_head_t cp_wait;
1171 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1172 	long interval_time[MAX_TIME];		/* to store thresholds */
1173 
1174 	struct inode_management im[MAX_INO_ENTRY];      /* manage inode cache */
1175 
1176 	spinlock_t fsync_node_lock;		/* for node entry lock */
1177 	struct list_head fsync_node_list;	/* node list head */
1178 	unsigned int fsync_seg_id;		/* sequence id */
1179 	unsigned int fsync_node_num;		/* number of node entries */
1180 
1181 	/* for orphan inode, use 0'th array */
1182 	unsigned int max_orphans;		/* max orphan inodes */
1183 
1184 	/* for inode management */
1185 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1186 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1187 
1188 	/* for extent tree cache */
1189 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1190 	struct mutex extent_tree_lock;	/* locking extent radix tree */
1191 	struct list_head extent_list;		/* lru list for shrinker */
1192 	spinlock_t extent_lock;			/* locking extent lru list */
1193 	atomic_t total_ext_tree;		/* extent tree count */
1194 	struct list_head zombie_list;		/* extent zombie tree list */
1195 	atomic_t total_zombie_tree;		/* extent zombie tree count */
1196 	atomic_t total_ext_node;		/* extent info count */
1197 
1198 	/* basic filesystem units */
1199 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1200 	unsigned int log_blocksize;		/* log2 block size */
1201 	unsigned int blocksize;			/* block size */
1202 	unsigned int root_ino_num;		/* root inode number*/
1203 	unsigned int node_ino_num;		/* node inode number*/
1204 	unsigned int meta_ino_num;		/* meta inode number*/
1205 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1206 	unsigned int blocks_per_seg;		/* blocks per segment */
1207 	unsigned int segs_per_sec;		/* segments per section */
1208 	unsigned int secs_per_zone;		/* sections per zone */
1209 	unsigned int total_sections;		/* total section count */
1210 	unsigned int total_node_count;		/* total node block count */
1211 	unsigned int total_valid_node_count;	/* valid node block count */
1212 	loff_t max_file_blocks;			/* max block index of file */
1213 	int dir_level;				/* directory level */
1214 	unsigned int trigger_ssr_threshold;	/* threshold to trigger ssr */
1215 	int readdir_ra;				/* readahead inode in readdir */
1216 
1217 	block_t user_block_count;		/* # of user blocks */
1218 	block_t total_valid_block_count;	/* # of valid blocks */
1219 	block_t discard_blks;			/* discard command candidats */
1220 	block_t last_valid_block_count;		/* for recovery */
1221 	block_t reserved_blocks;		/* configurable reserved blocks */
1222 	block_t current_reserved_blocks;	/* current reserved blocks */
1223 
1224 	unsigned int nquota_files;		/* # of quota sysfile */
1225 
1226 	u32 s_next_generation;			/* for NFS support */
1227 
1228 	/* # of pages, see count_type */
1229 	atomic_t nr_pages[NR_COUNT_TYPE];
1230 	/* # of allocated blocks */
1231 	struct percpu_counter alloc_valid_block_count;
1232 
1233 	/* writeback control */
1234 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1235 
1236 	/* valid inode count */
1237 	struct percpu_counter total_valid_inode_count;
1238 
1239 	struct f2fs_mount_info mount_opt;	/* mount options */
1240 
1241 	/* for cleaning operations */
1242 	struct mutex gc_mutex;			/* mutex for GC */
1243 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1244 	unsigned int cur_victim_sec;		/* current victim section num */
1245 	unsigned int gc_mode;			/* current GC state */
1246 	/* for skip statistic */
1247 	unsigned long long skipped_atomic_files[2];	/* FG_GC and BG_GC */
1248 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1249 
1250 	/* threshold for gc trials on pinned files */
1251 	u64 gc_pin_file_threshold;
1252 
1253 	/* maximum # of trials to find a victim segment for SSR and GC */
1254 	unsigned int max_victim_search;
1255 
1256 	/*
1257 	 * for stat information.
1258 	 * one is for the LFS mode, and the other is for the SSR mode.
1259 	 */
1260 #ifdef CONFIG_F2FS_STAT_FS
1261 	struct f2fs_stat_info *stat_info;	/* FS status information */
1262 	unsigned int segment_count[2];		/* # of allocated segments */
1263 	unsigned int block_count[2];		/* # of allocated blocks */
1264 	atomic_t inplace_count;		/* # of inplace update */
1265 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1266 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1267 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1268 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1269 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1270 	atomic_t inline_inode;			/* # of inline_data inodes */
1271 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1272 	atomic_t aw_cnt;			/* # of atomic writes */
1273 	atomic_t vw_cnt;			/* # of volatile writes */
1274 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1275 	atomic_t max_vw_cnt;			/* max # of volatile writes */
1276 	int bg_gc;				/* background gc calls */
1277 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1278 #endif
1279 	spinlock_t stat_lock;			/* lock for stat operations */
1280 
1281 	/* For app/fs IO statistics */
1282 	spinlock_t iostat_lock;
1283 	unsigned long long write_iostat[NR_IO_TYPE];
1284 	bool iostat_enable;
1285 
1286 	/* For sysfs suppport */
1287 	struct kobject s_kobj;
1288 	struct completion s_kobj_unregister;
1289 
1290 	/* For shrinker support */
1291 	struct list_head s_list;
1292 	int s_ndevs;				/* number of devices */
1293 	struct f2fs_dev_info *devs;		/* for device list */
1294 	unsigned int dirty_device;		/* for checkpoint data flush */
1295 	spinlock_t dev_lock;			/* protect dirty_device */
1296 	struct mutex umount_mutex;
1297 	unsigned int shrinker_run_no;
1298 
1299 	/* For write statistics */
1300 	u64 sectors_written_start;
1301 	u64 kbytes_written;
1302 
1303 	/* Reference to checksum algorithm driver via cryptoapi */
1304 	struct crypto_shash *s_chksum_driver;
1305 
1306 	/* Precomputed FS UUID checksum for seeding other checksums */
1307 	__u32 s_chksum_seed;
1308 };
1309 
1310 #ifdef CONFIG_F2FS_FAULT_INJECTION
1311 #define f2fs_show_injection_info(type)				\
1312 	printk("%sF2FS-fs : inject %s in %s of %pF\n",		\
1313 		KERN_INFO, f2fs_fault_name[type],		\
1314 		__func__, __builtin_return_address(0))
time_to_inject(struct f2fs_sb_info * sbi,int type)1315 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1316 {
1317 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1318 
1319 	if (!ffi->inject_rate)
1320 		return false;
1321 
1322 	if (!IS_FAULT_SET(ffi, type))
1323 		return false;
1324 
1325 	atomic_inc(&ffi->inject_ops);
1326 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1327 		atomic_set(&ffi->inject_ops, 0);
1328 		return true;
1329 	}
1330 	return false;
1331 }
1332 #else
1333 #define f2fs_show_injection_info(type) do { } while (0)
time_to_inject(struct f2fs_sb_info * sbi,int type)1334 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1335 {
1336 	return false;
1337 }
1338 #endif
1339 
1340 /*
1341  * Test if the mounted volume is a multi-device volume.
1342  *   - For a single regular disk volume, sbi->s_ndevs is 0.
1343  *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1344  *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1345  */
f2fs_is_multi_device(struct f2fs_sb_info * sbi)1346 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1347 {
1348 	return sbi->s_ndevs > 1;
1349 }
1350 
1351 /* For write statistics. Suppose sector size is 512 bytes,
1352  * and the return value is in kbytes. s is of struct f2fs_sb_info.
1353  */
1354 #define BD_PART_WRITTEN(s)						 \
1355 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[STAT_WRITE]) -   \
1356 		(s)->sectors_written_start) >> 1)
1357 
f2fs_update_time(struct f2fs_sb_info * sbi,int type)1358 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1359 {
1360 	sbi->last_time[type] = jiffies;
1361 }
1362 
f2fs_time_over(struct f2fs_sb_info * sbi,int type)1363 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1364 {
1365 	unsigned long interval = sbi->interval_time[type] * HZ;
1366 
1367 	return time_after(jiffies, sbi->last_time[type] + interval);
1368 }
1369 
is_idle(struct f2fs_sb_info * sbi)1370 static inline bool is_idle(struct f2fs_sb_info *sbi)
1371 {
1372 	struct block_device *bdev = sbi->sb->s_bdev;
1373 	struct request_queue *q = bdev_get_queue(bdev);
1374 	struct request_list *rl = &q->root_rl;
1375 
1376 	if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
1377 		return false;
1378 
1379 	return f2fs_time_over(sbi, REQ_TIME);
1380 }
1381 
1382 /*
1383  * Inline functions
1384  */
__f2fs_crc32(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1385 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1386 			      const void *address, unsigned int length)
1387 {
1388 	struct {
1389 		struct shash_desc shash;
1390 		char ctx[4];
1391 	} desc;
1392 	int err;
1393 
1394 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1395 
1396 	desc.shash.tfm = sbi->s_chksum_driver;
1397 	desc.shash.flags = 0;
1398 	*(u32 *)desc.ctx = crc;
1399 
1400 	err = crypto_shash_update(&desc.shash, address, length);
1401 	BUG_ON(err);
1402 
1403 	return *(u32 *)desc.ctx;
1404 }
1405 
f2fs_crc32(struct f2fs_sb_info * sbi,const void * address,unsigned int length)1406 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1407 			   unsigned int length)
1408 {
1409 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1410 }
1411 
f2fs_crc_valid(struct f2fs_sb_info * sbi,__u32 blk_crc,void * buf,size_t buf_size)1412 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1413 				  void *buf, size_t buf_size)
1414 {
1415 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1416 }
1417 
f2fs_chksum(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1418 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1419 			      const void *address, unsigned int length)
1420 {
1421 	return __f2fs_crc32(sbi, crc, address, length);
1422 }
1423 
F2FS_I(struct inode * inode)1424 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1425 {
1426 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1427 }
1428 
F2FS_SB(struct super_block * sb)1429 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1430 {
1431 	return sb->s_fs_info;
1432 }
1433 
F2FS_I_SB(struct inode * inode)1434 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1435 {
1436 	return F2FS_SB(inode->i_sb);
1437 }
1438 
F2FS_M_SB(struct address_space * mapping)1439 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1440 {
1441 	return F2FS_I_SB(mapping->host);
1442 }
1443 
F2FS_P_SB(struct page * page)1444 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1445 {
1446 	return F2FS_M_SB(page->mapping);
1447 }
1448 
F2FS_RAW_SUPER(struct f2fs_sb_info * sbi)1449 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1450 {
1451 	return (struct f2fs_super_block *)(sbi->raw_super);
1452 }
1453 
F2FS_CKPT(struct f2fs_sb_info * sbi)1454 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1455 {
1456 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1457 }
1458 
F2FS_NODE(struct page * page)1459 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1460 {
1461 	return (struct f2fs_node *)page_address(page);
1462 }
1463 
F2FS_INODE(struct page * page)1464 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1465 {
1466 	return &((struct f2fs_node *)page_address(page))->i;
1467 }
1468 
NM_I(struct f2fs_sb_info * sbi)1469 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1470 {
1471 	return (struct f2fs_nm_info *)(sbi->nm_info);
1472 }
1473 
SM_I(struct f2fs_sb_info * sbi)1474 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1475 {
1476 	return (struct f2fs_sm_info *)(sbi->sm_info);
1477 }
1478 
SIT_I(struct f2fs_sb_info * sbi)1479 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1480 {
1481 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1482 }
1483 
FREE_I(struct f2fs_sb_info * sbi)1484 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1485 {
1486 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1487 }
1488 
DIRTY_I(struct f2fs_sb_info * sbi)1489 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1490 {
1491 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1492 }
1493 
META_MAPPING(struct f2fs_sb_info * sbi)1494 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1495 {
1496 	return sbi->meta_inode->i_mapping;
1497 }
1498 
NODE_MAPPING(struct f2fs_sb_info * sbi)1499 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1500 {
1501 	return sbi->node_inode->i_mapping;
1502 }
1503 
is_sbi_flag_set(struct f2fs_sb_info * sbi,unsigned int type)1504 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1505 {
1506 	return test_bit(type, &sbi->s_flag);
1507 }
1508 
set_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)1509 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1510 {
1511 	set_bit(type, &sbi->s_flag);
1512 }
1513 
clear_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)1514 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1515 {
1516 	clear_bit(type, &sbi->s_flag);
1517 }
1518 
cur_cp_version(struct f2fs_checkpoint * cp)1519 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1520 {
1521 	return le64_to_cpu(cp->checkpoint_ver);
1522 }
1523 
f2fs_qf_ino(struct super_block * sb,int type)1524 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1525 {
1526 	if (type < F2FS_MAX_QUOTAS)
1527 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1528 	return 0;
1529 }
1530 
cur_cp_crc(struct f2fs_checkpoint * cp)1531 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1532 {
1533 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1534 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1535 }
1536 
__is_set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)1537 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1538 {
1539 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1540 
1541 	return ckpt_flags & f;
1542 }
1543 
is_set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)1544 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1545 {
1546 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1547 }
1548 
__set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)1549 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1550 {
1551 	unsigned int ckpt_flags;
1552 
1553 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1554 	ckpt_flags |= f;
1555 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1556 }
1557 
set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)1558 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1559 {
1560 	unsigned long flags;
1561 
1562 	spin_lock_irqsave(&sbi->cp_lock, flags);
1563 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
1564 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1565 }
1566 
__clear_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)1567 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1568 {
1569 	unsigned int ckpt_flags;
1570 
1571 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1572 	ckpt_flags &= (~f);
1573 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1574 }
1575 
clear_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)1576 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1577 {
1578 	unsigned long flags;
1579 
1580 	spin_lock_irqsave(&sbi->cp_lock, flags);
1581 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
1582 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1583 }
1584 
disable_nat_bits(struct f2fs_sb_info * sbi,bool lock)1585 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1586 {
1587 	unsigned long flags;
1588 
1589 	set_sbi_flag(sbi, SBI_NEED_FSCK);
1590 
1591 	if (lock)
1592 		spin_lock_irqsave(&sbi->cp_lock, flags);
1593 	__clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1594 	kfree(NM_I(sbi)->nat_bits);
1595 	NM_I(sbi)->nat_bits = NULL;
1596 	if (lock)
1597 		spin_unlock_irqrestore(&sbi->cp_lock, flags);
1598 }
1599 
enabled_nat_bits(struct f2fs_sb_info * sbi,struct cp_control * cpc)1600 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1601 					struct cp_control *cpc)
1602 {
1603 	bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1604 
1605 	return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1606 }
1607 
f2fs_lock_op(struct f2fs_sb_info * sbi)1608 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1609 {
1610 	down_read(&sbi->cp_rwsem);
1611 }
1612 
f2fs_trylock_op(struct f2fs_sb_info * sbi)1613 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1614 {
1615 	return down_read_trylock(&sbi->cp_rwsem);
1616 }
1617 
f2fs_unlock_op(struct f2fs_sb_info * sbi)1618 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1619 {
1620 	up_read(&sbi->cp_rwsem);
1621 }
1622 
f2fs_lock_all(struct f2fs_sb_info * sbi)1623 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1624 {
1625 	down_write(&sbi->cp_rwsem);
1626 }
1627 
f2fs_unlock_all(struct f2fs_sb_info * sbi)1628 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1629 {
1630 	up_write(&sbi->cp_rwsem);
1631 }
1632 
__get_cp_reason(struct f2fs_sb_info * sbi)1633 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1634 {
1635 	int reason = CP_SYNC;
1636 
1637 	if (test_opt(sbi, FASTBOOT))
1638 		reason = CP_FASTBOOT;
1639 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1640 		reason = CP_UMOUNT;
1641 	return reason;
1642 }
1643 
__remain_node_summaries(int reason)1644 static inline bool __remain_node_summaries(int reason)
1645 {
1646 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
1647 }
1648 
__exist_node_summaries(struct f2fs_sb_info * sbi)1649 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1650 {
1651 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1652 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1653 }
1654 
1655 /*
1656  * Check whether the inode has blocks or not
1657  */
F2FS_HAS_BLOCKS(struct inode * inode)1658 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1659 {
1660 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1661 
1662 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1663 }
1664 
f2fs_has_xattr_block(unsigned int ofs)1665 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1666 {
1667 	return ofs == XATTR_NODE_OFFSET;
1668 }
1669 
__allow_reserved_blocks(struct f2fs_sb_info * sbi,struct inode * inode,bool cap)1670 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
1671 					struct inode *inode, bool cap)
1672 {
1673 	if (!inode)
1674 		return true;
1675 	if (!test_opt(sbi, RESERVE_ROOT))
1676 		return false;
1677 	if (IS_NOQUOTA(inode))
1678 		return true;
1679 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
1680 		return true;
1681 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
1682 					in_group_p(F2FS_OPTION(sbi).s_resgid))
1683 		return true;
1684 	if (cap && capable(CAP_SYS_RESOURCE))
1685 		return true;
1686 	return false;
1687 }
1688 
1689 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
inc_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,blkcnt_t * count)1690 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1691 				 struct inode *inode, blkcnt_t *count)
1692 {
1693 	blkcnt_t diff = 0, release = 0;
1694 	block_t avail_user_block_count;
1695 	int ret;
1696 
1697 	ret = dquot_reserve_block(inode, *count);
1698 	if (ret)
1699 		return ret;
1700 
1701 	if (time_to_inject(sbi, FAULT_BLOCK)) {
1702 		f2fs_show_injection_info(FAULT_BLOCK);
1703 		release = *count;
1704 		goto release_quota;
1705 	}
1706 
1707 	/*
1708 	 * let's increase this in prior to actual block count change in order
1709 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1710 	 */
1711 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1712 
1713 	spin_lock(&sbi->stat_lock);
1714 	sbi->total_valid_block_count += (block_t)(*count);
1715 	avail_user_block_count = sbi->user_block_count -
1716 					sbi->current_reserved_blocks;
1717 
1718 	if (!__allow_reserved_blocks(sbi, inode, true))
1719 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
1720 
1721 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
1722 		diff = sbi->total_valid_block_count - avail_user_block_count;
1723 		if (diff > *count)
1724 			diff = *count;
1725 		*count -= diff;
1726 		release = diff;
1727 		sbi->total_valid_block_count -= diff;
1728 		if (!*count) {
1729 			spin_unlock(&sbi->stat_lock);
1730 			goto enospc;
1731 		}
1732 	}
1733 	spin_unlock(&sbi->stat_lock);
1734 
1735 	if (unlikely(release)) {
1736 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
1737 		dquot_release_reservation_block(inode, release);
1738 	}
1739 	f2fs_i_blocks_write(inode, *count, true, true);
1740 	return 0;
1741 
1742 enospc:
1743 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
1744 release_quota:
1745 	dquot_release_reservation_block(inode, release);
1746 	return -ENOSPC;
1747 }
1748 
1749 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
dec_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,block_t count)1750 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1751 						struct inode *inode,
1752 						block_t count)
1753 {
1754 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
1755 
1756 	spin_lock(&sbi->stat_lock);
1757 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1758 	sbi->total_valid_block_count -= (block_t)count;
1759 	if (sbi->reserved_blocks &&
1760 		sbi->current_reserved_blocks < sbi->reserved_blocks)
1761 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
1762 					sbi->current_reserved_blocks + count);
1763 	spin_unlock(&sbi->stat_lock);
1764 	if (unlikely(inode->i_blocks < sectors)) {
1765 		f2fs_msg(sbi->sb, KERN_WARNING,
1766 			"Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
1767 			inode->i_ino,
1768 			(unsigned long long)inode->i_blocks,
1769 			(unsigned long long)sectors);
1770 		set_sbi_flag(sbi, SBI_NEED_FSCK);
1771 		return;
1772 	}
1773 	f2fs_i_blocks_write(inode, count, false, true);
1774 }
1775 
inc_page_count(struct f2fs_sb_info * sbi,int count_type)1776 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1777 {
1778 	atomic_inc(&sbi->nr_pages[count_type]);
1779 
1780 	if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES ||
1781 		count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA)
1782 		return;
1783 
1784 	set_sbi_flag(sbi, SBI_IS_DIRTY);
1785 }
1786 
inode_inc_dirty_pages(struct inode * inode)1787 static inline void inode_inc_dirty_pages(struct inode *inode)
1788 {
1789 	atomic_inc(&F2FS_I(inode)->dirty_pages);
1790 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1791 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1792 	if (IS_NOQUOTA(inode))
1793 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1794 }
1795 
dec_page_count(struct f2fs_sb_info * sbi,int count_type)1796 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1797 {
1798 	atomic_dec(&sbi->nr_pages[count_type]);
1799 }
1800 
inode_dec_dirty_pages(struct inode * inode)1801 static inline void inode_dec_dirty_pages(struct inode *inode)
1802 {
1803 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1804 			!S_ISLNK(inode->i_mode))
1805 		return;
1806 
1807 	atomic_dec(&F2FS_I(inode)->dirty_pages);
1808 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1809 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1810 	if (IS_NOQUOTA(inode))
1811 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1812 }
1813 
get_pages(struct f2fs_sb_info * sbi,int count_type)1814 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1815 {
1816 	return atomic_read(&sbi->nr_pages[count_type]);
1817 }
1818 
get_dirty_pages(struct inode * inode)1819 static inline int get_dirty_pages(struct inode *inode)
1820 {
1821 	return atomic_read(&F2FS_I(inode)->dirty_pages);
1822 }
1823 
get_blocktype_secs(struct f2fs_sb_info * sbi,int block_type)1824 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1825 {
1826 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1827 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1828 						sbi->log_blocks_per_seg;
1829 
1830 	return segs / sbi->segs_per_sec;
1831 }
1832 
valid_user_blocks(struct f2fs_sb_info * sbi)1833 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1834 {
1835 	return sbi->total_valid_block_count;
1836 }
1837 
discard_blocks(struct f2fs_sb_info * sbi)1838 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1839 {
1840 	return sbi->discard_blks;
1841 }
1842 
__bitmap_size(struct f2fs_sb_info * sbi,int flag)1843 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1844 {
1845 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1846 
1847 	/* return NAT or SIT bitmap */
1848 	if (flag == NAT_BITMAP)
1849 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1850 	else if (flag == SIT_BITMAP)
1851 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1852 
1853 	return 0;
1854 }
1855 
__cp_payload(struct f2fs_sb_info * sbi)1856 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1857 {
1858 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1859 }
1860 
__bitmap_ptr(struct f2fs_sb_info * sbi,int flag)1861 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1862 {
1863 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1864 	int offset;
1865 
1866 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
1867 		offset = (flag == SIT_BITMAP) ?
1868 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
1869 		return &ckpt->sit_nat_version_bitmap + offset;
1870 	}
1871 
1872 	if (__cp_payload(sbi) > 0) {
1873 		if (flag == NAT_BITMAP)
1874 			return &ckpt->sit_nat_version_bitmap;
1875 		else
1876 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
1877 	} else {
1878 		offset = (flag == NAT_BITMAP) ?
1879 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1880 		return &ckpt->sit_nat_version_bitmap + offset;
1881 	}
1882 }
1883 
__start_cp_addr(struct f2fs_sb_info * sbi)1884 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1885 {
1886 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1887 
1888 	if (sbi->cur_cp_pack == 2)
1889 		start_addr += sbi->blocks_per_seg;
1890 	return start_addr;
1891 }
1892 
__start_cp_next_addr(struct f2fs_sb_info * sbi)1893 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1894 {
1895 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1896 
1897 	if (sbi->cur_cp_pack == 1)
1898 		start_addr += sbi->blocks_per_seg;
1899 	return start_addr;
1900 }
1901 
__set_cp_next_pack(struct f2fs_sb_info * sbi)1902 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1903 {
1904 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
1905 }
1906 
__start_sum_addr(struct f2fs_sb_info * sbi)1907 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1908 {
1909 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1910 }
1911 
inc_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)1912 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
1913 					struct inode *inode, bool is_inode)
1914 {
1915 	block_t	valid_block_count;
1916 	unsigned int valid_node_count;
1917 	bool quota = inode && !is_inode;
1918 
1919 	if (quota) {
1920 		int ret = dquot_reserve_block(inode, 1);
1921 		if (ret)
1922 			return ret;
1923 	}
1924 
1925 	if (time_to_inject(sbi, FAULT_BLOCK)) {
1926 		f2fs_show_injection_info(FAULT_BLOCK);
1927 		goto enospc;
1928 	}
1929 
1930 	spin_lock(&sbi->stat_lock);
1931 
1932 	valid_block_count = sbi->total_valid_block_count +
1933 					sbi->current_reserved_blocks + 1;
1934 
1935 	if (!__allow_reserved_blocks(sbi, inode, false))
1936 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
1937 
1938 	if (unlikely(valid_block_count > sbi->user_block_count)) {
1939 		spin_unlock(&sbi->stat_lock);
1940 		goto enospc;
1941 	}
1942 
1943 	valid_node_count = sbi->total_valid_node_count + 1;
1944 	if (unlikely(valid_node_count > sbi->total_node_count)) {
1945 		spin_unlock(&sbi->stat_lock);
1946 		goto enospc;
1947 	}
1948 
1949 	sbi->total_valid_node_count++;
1950 	sbi->total_valid_block_count++;
1951 	spin_unlock(&sbi->stat_lock);
1952 
1953 	if (inode) {
1954 		if (is_inode)
1955 			f2fs_mark_inode_dirty_sync(inode, true);
1956 		else
1957 			f2fs_i_blocks_write(inode, 1, true, true);
1958 	}
1959 
1960 	percpu_counter_inc(&sbi->alloc_valid_block_count);
1961 	return 0;
1962 
1963 enospc:
1964 	if (quota)
1965 		dquot_release_reservation_block(inode, 1);
1966 	return -ENOSPC;
1967 }
1968 
dec_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)1969 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1970 					struct inode *inode, bool is_inode)
1971 {
1972 	spin_lock(&sbi->stat_lock);
1973 
1974 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1975 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1976 	f2fs_bug_on(sbi, !is_inode && !inode->i_blocks);
1977 
1978 	sbi->total_valid_node_count--;
1979 	sbi->total_valid_block_count--;
1980 	if (sbi->reserved_blocks &&
1981 		sbi->current_reserved_blocks < sbi->reserved_blocks)
1982 		sbi->current_reserved_blocks++;
1983 
1984 	spin_unlock(&sbi->stat_lock);
1985 
1986 	if (!is_inode)
1987 		f2fs_i_blocks_write(inode, 1, false, true);
1988 }
1989 
valid_node_count(struct f2fs_sb_info * sbi)1990 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1991 {
1992 	return sbi->total_valid_node_count;
1993 }
1994 
inc_valid_inode_count(struct f2fs_sb_info * sbi)1995 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1996 {
1997 	percpu_counter_inc(&sbi->total_valid_inode_count);
1998 }
1999 
dec_valid_inode_count(struct f2fs_sb_info * sbi)2000 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2001 {
2002 	percpu_counter_dec(&sbi->total_valid_inode_count);
2003 }
2004 
valid_inode_count(struct f2fs_sb_info * sbi)2005 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2006 {
2007 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2008 }
2009 
f2fs_grab_cache_page(struct address_space * mapping,pgoff_t index,bool for_write)2010 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2011 						pgoff_t index, bool for_write)
2012 {
2013 	struct page *page;
2014 
2015 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2016 		if (!for_write)
2017 			page = find_get_page_flags(mapping, index,
2018 							FGP_LOCK | FGP_ACCESSED);
2019 		else
2020 			page = find_lock_page(mapping, index);
2021 		if (page)
2022 			return page;
2023 
2024 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2025 			f2fs_show_injection_info(FAULT_PAGE_ALLOC);
2026 			return NULL;
2027 		}
2028 	}
2029 
2030 	if (!for_write)
2031 		return grab_cache_page(mapping, index);
2032 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2033 }
2034 
f2fs_pagecache_get_page(struct address_space * mapping,pgoff_t index,int fgp_flags,gfp_t gfp_mask)2035 static inline struct page *f2fs_pagecache_get_page(
2036 				struct address_space *mapping, pgoff_t index,
2037 				int fgp_flags, gfp_t gfp_mask)
2038 {
2039 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2040 		f2fs_show_injection_info(FAULT_PAGE_GET);
2041 		return NULL;
2042 	}
2043 
2044 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2045 }
2046 
f2fs_copy_page(struct page * src,struct page * dst)2047 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2048 {
2049 	char *src_kaddr = kmap(src);
2050 	char *dst_kaddr = kmap(dst);
2051 
2052 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2053 	kunmap(dst);
2054 	kunmap(src);
2055 }
2056 
f2fs_put_page(struct page * page,int unlock)2057 static inline void f2fs_put_page(struct page *page, int unlock)
2058 {
2059 	if (!page)
2060 		return;
2061 
2062 	if (unlock) {
2063 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2064 		unlock_page(page);
2065 	}
2066 	put_page(page);
2067 }
2068 
f2fs_put_dnode(struct dnode_of_data * dn)2069 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2070 {
2071 	if (dn->node_page)
2072 		f2fs_put_page(dn->node_page, 1);
2073 	if (dn->inode_page && dn->node_page != dn->inode_page)
2074 		f2fs_put_page(dn->inode_page, 0);
2075 	dn->node_page = NULL;
2076 	dn->inode_page = NULL;
2077 }
2078 
f2fs_kmem_cache_create(const char * name,size_t size)2079 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2080 					size_t size)
2081 {
2082 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2083 }
2084 
f2fs_kmem_cache_alloc(struct kmem_cache * cachep,gfp_t flags)2085 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2086 						gfp_t flags)
2087 {
2088 	void *entry;
2089 
2090 	entry = kmem_cache_alloc(cachep, flags);
2091 	if (!entry)
2092 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2093 	return entry;
2094 }
2095 
f2fs_bio_alloc(struct f2fs_sb_info * sbi,int npages,bool no_fail)2096 static inline struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi,
2097 						int npages, bool no_fail)
2098 {
2099 	struct bio *bio;
2100 
2101 	if (no_fail) {
2102 		/* No failure on bio allocation */
2103 		bio = bio_alloc(GFP_NOIO, npages);
2104 		if (!bio)
2105 			bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
2106 		return bio;
2107 	}
2108 	if (time_to_inject(sbi, FAULT_ALLOC_BIO)) {
2109 		f2fs_show_injection_info(FAULT_ALLOC_BIO);
2110 		return NULL;
2111 	}
2112 
2113 	return bio_alloc(GFP_KERNEL, npages);
2114 }
2115 
f2fs_radix_tree_insert(struct radix_tree_root * root,unsigned long index,void * item)2116 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2117 				unsigned long index, void *item)
2118 {
2119 	while (radix_tree_insert(root, index, item))
2120 		cond_resched();
2121 }
2122 
2123 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2124 
IS_INODE(struct page * page)2125 static inline bool IS_INODE(struct page *page)
2126 {
2127 	struct f2fs_node *p = F2FS_NODE(page);
2128 
2129 	return RAW_IS_INODE(p);
2130 }
2131 
offset_in_addr(struct f2fs_inode * i)2132 static inline int offset_in_addr(struct f2fs_inode *i)
2133 {
2134 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2135 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2136 }
2137 
blkaddr_in_node(struct f2fs_node * node)2138 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2139 {
2140 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2141 }
2142 
2143 static inline int f2fs_has_extra_attr(struct inode *inode);
datablock_addr(struct inode * inode,struct page * node_page,unsigned int offset)2144 static inline block_t datablock_addr(struct inode *inode,
2145 			struct page *node_page, unsigned int offset)
2146 {
2147 	struct f2fs_node *raw_node;
2148 	__le32 *addr_array;
2149 	int base = 0;
2150 	bool is_inode = IS_INODE(node_page);
2151 
2152 	raw_node = F2FS_NODE(node_page);
2153 
2154 	/* from GC path only */
2155 	if (is_inode) {
2156 		if (!inode)
2157 			base = offset_in_addr(&raw_node->i);
2158 		else if (f2fs_has_extra_attr(inode))
2159 			base = get_extra_isize(inode);
2160 	}
2161 
2162 	addr_array = blkaddr_in_node(raw_node);
2163 	return le32_to_cpu(addr_array[base + offset]);
2164 }
2165 
f2fs_test_bit(unsigned int nr,char * addr)2166 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2167 {
2168 	int mask;
2169 
2170 	addr += (nr >> 3);
2171 	mask = 1 << (7 - (nr & 0x07));
2172 	return mask & *addr;
2173 }
2174 
f2fs_set_bit(unsigned int nr,char * addr)2175 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2176 {
2177 	int mask;
2178 
2179 	addr += (nr >> 3);
2180 	mask = 1 << (7 - (nr & 0x07));
2181 	*addr |= mask;
2182 }
2183 
f2fs_clear_bit(unsigned int nr,char * addr)2184 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2185 {
2186 	int mask;
2187 
2188 	addr += (nr >> 3);
2189 	mask = 1 << (7 - (nr & 0x07));
2190 	*addr &= ~mask;
2191 }
2192 
f2fs_test_and_set_bit(unsigned int nr,char * addr)2193 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2194 {
2195 	int mask;
2196 	int ret;
2197 
2198 	addr += (nr >> 3);
2199 	mask = 1 << (7 - (nr & 0x07));
2200 	ret = mask & *addr;
2201 	*addr |= mask;
2202 	return ret;
2203 }
2204 
f2fs_test_and_clear_bit(unsigned int nr,char * addr)2205 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2206 {
2207 	int mask;
2208 	int ret;
2209 
2210 	addr += (nr >> 3);
2211 	mask = 1 << (7 - (nr & 0x07));
2212 	ret = mask & *addr;
2213 	*addr &= ~mask;
2214 	return ret;
2215 }
2216 
f2fs_change_bit(unsigned int nr,char * addr)2217 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2218 {
2219 	int mask;
2220 
2221 	addr += (nr >> 3);
2222 	mask = 1 << (7 - (nr & 0x07));
2223 	*addr ^= mask;
2224 }
2225 
2226 /*
2227  * Inode flags
2228  */
2229 #define F2FS_SECRM_FL			0x00000001 /* Secure deletion */
2230 #define F2FS_UNRM_FL			0x00000002 /* Undelete */
2231 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2232 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2233 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2234 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2235 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2236 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2237 /* Reserved for compression usage... */
2238 #define F2FS_DIRTY_FL			0x00000100
2239 #define F2FS_COMPRBLK_FL		0x00000200 /* One or more compressed clusters */
2240 #define F2FS_NOCOMPR_FL			0x00000400 /* Don't compress */
2241 #define F2FS_ENCRYPT_FL			0x00000800 /* encrypted file */
2242 /* End compression flags --- maybe not all used */
2243 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2244 #define F2FS_IMAGIC_FL			0x00002000 /* AFS directory */
2245 #define F2FS_JOURNAL_DATA_FL		0x00004000 /* file data should be journaled */
2246 #define F2FS_NOTAIL_FL			0x00008000 /* file tail should not be merged */
2247 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2248 #define F2FS_TOPDIR_FL			0x00020000 /* Top of directory hierarchies*/
2249 #define F2FS_HUGE_FILE_FL               0x00040000 /* Set to each huge file */
2250 #define F2FS_EXTENTS_FL			0x00080000 /* Inode uses extents */
2251 #define F2FS_EA_INODE_FL	        0x00200000 /* Inode used for large EA */
2252 #define F2FS_EOFBLOCKS_FL		0x00400000 /* Blocks allocated beyond EOF */
2253 #define F2FS_INLINE_DATA_FL		0x10000000 /* Inode has inline data. */
2254 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2255 #define F2FS_RESERVED_FL		0x80000000 /* reserved for ext4 lib */
2256 
2257 #define F2FS_FL_USER_VISIBLE		0x304BDFFF /* User visible flags */
2258 #define F2FS_FL_USER_MODIFIABLE		0x204BC0FF /* User modifiable flags */
2259 
2260 /* Flags we can manipulate with through F2FS_IOC_FSSETXATTR */
2261 #define F2FS_FL_XFLAG_VISIBLE		(F2FS_SYNC_FL | \
2262 					 F2FS_IMMUTABLE_FL | \
2263 					 F2FS_APPEND_FL | \
2264 					 F2FS_NODUMP_FL | \
2265 					 F2FS_NOATIME_FL | \
2266 					 F2FS_PROJINHERIT_FL)
2267 
2268 /* Flags that should be inherited by new inodes from their parent. */
2269 #define F2FS_FL_INHERITED (F2FS_SECRM_FL | F2FS_UNRM_FL | F2FS_COMPR_FL |\
2270 			   F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL |\
2271 			   F2FS_NOCOMPR_FL | F2FS_JOURNAL_DATA_FL |\
2272 			   F2FS_NOTAIL_FL | F2FS_DIRSYNC_FL |\
2273 			   F2FS_PROJINHERIT_FL)
2274 
2275 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2276 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_TOPDIR_FL))
2277 
2278 /* Flags that are appropriate for non-directories/regular files. */
2279 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2280 
f2fs_mask_flags(umode_t mode,__u32 flags)2281 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2282 {
2283 	if (S_ISDIR(mode))
2284 		return flags;
2285 	else if (S_ISREG(mode))
2286 		return flags & F2FS_REG_FLMASK;
2287 	else
2288 		return flags & F2FS_OTHER_FLMASK;
2289 }
2290 
2291 /* used for f2fs_inode_info->flags */
2292 enum {
2293 	FI_NEW_INODE,		/* indicate newly allocated inode */
2294 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
2295 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
2296 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
2297 	FI_INC_LINK,		/* need to increment i_nlink */
2298 	FI_ACL_MODE,		/* indicate acl mode */
2299 	FI_NO_ALLOC,		/* should not allocate any blocks */
2300 	FI_FREE_NID,		/* free allocated nide */
2301 	FI_NO_EXTENT,		/* not to use the extent cache */
2302 	FI_INLINE_XATTR,	/* used for inline xattr */
2303 	FI_INLINE_DATA,		/* used for inline data*/
2304 	FI_INLINE_DENTRY,	/* used for inline dentry */
2305 	FI_APPEND_WRITE,	/* inode has appended data */
2306 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
2307 	FI_NEED_IPU,		/* used for ipu per file */
2308 	FI_ATOMIC_FILE,		/* indicate atomic file */
2309 	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
2310 	FI_VOLATILE_FILE,	/* indicate volatile file */
2311 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
2312 	FI_DROP_CACHE,		/* drop dirty page cache */
2313 	FI_DATA_EXIST,		/* indicate data exists */
2314 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
2315 	FI_DO_DEFRAG,		/* indicate defragment is running */
2316 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
2317 	FI_NO_PREALLOC,		/* indicate skipped preallocated blocks */
2318 	FI_HOT_DATA,		/* indicate file is hot */
2319 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
2320 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
2321 	FI_PIN_FILE,		/* indicate file should not be gced */
2322 	FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
2323 };
2324 
__mark_inode_dirty_flag(struct inode * inode,int flag,bool set)2325 static inline void __mark_inode_dirty_flag(struct inode *inode,
2326 						int flag, bool set)
2327 {
2328 	switch (flag) {
2329 	case FI_INLINE_XATTR:
2330 	case FI_INLINE_DATA:
2331 	case FI_INLINE_DENTRY:
2332 	case FI_NEW_INODE:
2333 		if (set)
2334 			return;
2335 	case FI_DATA_EXIST:
2336 	case FI_INLINE_DOTS:
2337 	case FI_PIN_FILE:
2338 		f2fs_mark_inode_dirty_sync(inode, true);
2339 	}
2340 }
2341 
set_inode_flag(struct inode * inode,int flag)2342 static inline void set_inode_flag(struct inode *inode, int flag)
2343 {
2344 	if (!test_bit(flag, &F2FS_I(inode)->flags))
2345 		set_bit(flag, &F2FS_I(inode)->flags);
2346 	__mark_inode_dirty_flag(inode, flag, true);
2347 }
2348 
is_inode_flag_set(struct inode * inode,int flag)2349 static inline int is_inode_flag_set(struct inode *inode, int flag)
2350 {
2351 	return test_bit(flag, &F2FS_I(inode)->flags);
2352 }
2353 
clear_inode_flag(struct inode * inode,int flag)2354 static inline void clear_inode_flag(struct inode *inode, int flag)
2355 {
2356 	if (test_bit(flag, &F2FS_I(inode)->flags))
2357 		clear_bit(flag, &F2FS_I(inode)->flags);
2358 	__mark_inode_dirty_flag(inode, flag, false);
2359 }
2360 
set_acl_inode(struct inode * inode,umode_t mode)2361 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2362 {
2363 	F2FS_I(inode)->i_acl_mode = mode;
2364 	set_inode_flag(inode, FI_ACL_MODE);
2365 	f2fs_mark_inode_dirty_sync(inode, false);
2366 }
2367 
f2fs_i_links_write(struct inode * inode,bool inc)2368 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2369 {
2370 	if (inc)
2371 		inc_nlink(inode);
2372 	else
2373 		drop_nlink(inode);
2374 	f2fs_mark_inode_dirty_sync(inode, true);
2375 }
2376 
f2fs_i_blocks_write(struct inode * inode,block_t diff,bool add,bool claim)2377 static inline void f2fs_i_blocks_write(struct inode *inode,
2378 					block_t diff, bool add, bool claim)
2379 {
2380 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2381 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2382 
2383 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
2384 	if (add) {
2385 		if (claim)
2386 			dquot_claim_block(inode, diff);
2387 		else
2388 			dquot_alloc_block_nofail(inode, diff);
2389 	} else {
2390 		dquot_free_block(inode, diff);
2391 	}
2392 
2393 	f2fs_mark_inode_dirty_sync(inode, true);
2394 	if (clean || recover)
2395 		set_inode_flag(inode, FI_AUTO_RECOVER);
2396 }
2397 
f2fs_i_size_write(struct inode * inode,loff_t i_size)2398 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2399 {
2400 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2401 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2402 
2403 	if (i_size_read(inode) == i_size)
2404 		return;
2405 
2406 	i_size_write(inode, i_size);
2407 	f2fs_mark_inode_dirty_sync(inode, true);
2408 	if (clean || recover)
2409 		set_inode_flag(inode, FI_AUTO_RECOVER);
2410 }
2411 
f2fs_i_depth_write(struct inode * inode,unsigned int depth)2412 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2413 {
2414 	F2FS_I(inode)->i_current_depth = depth;
2415 	f2fs_mark_inode_dirty_sync(inode, true);
2416 }
2417 
f2fs_i_gc_failures_write(struct inode * inode,unsigned int count)2418 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2419 					unsigned int count)
2420 {
2421 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2422 	f2fs_mark_inode_dirty_sync(inode, true);
2423 }
2424 
f2fs_i_xnid_write(struct inode * inode,nid_t xnid)2425 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2426 {
2427 	F2FS_I(inode)->i_xattr_nid = xnid;
2428 	f2fs_mark_inode_dirty_sync(inode, true);
2429 }
2430 
f2fs_i_pino_write(struct inode * inode,nid_t pino)2431 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2432 {
2433 	F2FS_I(inode)->i_pino = pino;
2434 	f2fs_mark_inode_dirty_sync(inode, true);
2435 }
2436 
get_inline_info(struct inode * inode,struct f2fs_inode * ri)2437 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2438 {
2439 	struct f2fs_inode_info *fi = F2FS_I(inode);
2440 
2441 	if (ri->i_inline & F2FS_INLINE_XATTR)
2442 		set_bit(FI_INLINE_XATTR, &fi->flags);
2443 	if (ri->i_inline & F2FS_INLINE_DATA)
2444 		set_bit(FI_INLINE_DATA, &fi->flags);
2445 	if (ri->i_inline & F2FS_INLINE_DENTRY)
2446 		set_bit(FI_INLINE_DENTRY, &fi->flags);
2447 	if (ri->i_inline & F2FS_DATA_EXIST)
2448 		set_bit(FI_DATA_EXIST, &fi->flags);
2449 	if (ri->i_inline & F2FS_INLINE_DOTS)
2450 		set_bit(FI_INLINE_DOTS, &fi->flags);
2451 	if (ri->i_inline & F2FS_EXTRA_ATTR)
2452 		set_bit(FI_EXTRA_ATTR, &fi->flags);
2453 	if (ri->i_inline & F2FS_PIN_FILE)
2454 		set_bit(FI_PIN_FILE, &fi->flags);
2455 }
2456 
set_raw_inline(struct inode * inode,struct f2fs_inode * ri)2457 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2458 {
2459 	ri->i_inline = 0;
2460 
2461 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2462 		ri->i_inline |= F2FS_INLINE_XATTR;
2463 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
2464 		ri->i_inline |= F2FS_INLINE_DATA;
2465 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2466 		ri->i_inline |= F2FS_INLINE_DENTRY;
2467 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
2468 		ri->i_inline |= F2FS_DATA_EXIST;
2469 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2470 		ri->i_inline |= F2FS_INLINE_DOTS;
2471 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2472 		ri->i_inline |= F2FS_EXTRA_ATTR;
2473 	if (is_inode_flag_set(inode, FI_PIN_FILE))
2474 		ri->i_inline |= F2FS_PIN_FILE;
2475 }
2476 
f2fs_has_extra_attr(struct inode * inode)2477 static inline int f2fs_has_extra_attr(struct inode *inode)
2478 {
2479 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2480 }
2481 
f2fs_has_inline_xattr(struct inode * inode)2482 static inline int f2fs_has_inline_xattr(struct inode *inode)
2483 {
2484 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
2485 }
2486 
addrs_per_inode(struct inode * inode)2487 static inline unsigned int addrs_per_inode(struct inode *inode)
2488 {
2489 	return CUR_ADDRS_PER_INODE(inode) - get_inline_xattr_addrs(inode);
2490 }
2491 
inline_xattr_addr(struct inode * inode,struct page * page)2492 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2493 {
2494 	struct f2fs_inode *ri = F2FS_INODE(page);
2495 
2496 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2497 					get_inline_xattr_addrs(inode)]);
2498 }
2499 
inline_xattr_size(struct inode * inode)2500 static inline int inline_xattr_size(struct inode *inode)
2501 {
2502 	if (f2fs_has_inline_xattr(inode))
2503 		return get_inline_xattr_addrs(inode) * sizeof(__le32);
2504 	return 0;
2505 }
2506 
f2fs_has_inline_data(struct inode * inode)2507 static inline int f2fs_has_inline_data(struct inode *inode)
2508 {
2509 	return is_inode_flag_set(inode, FI_INLINE_DATA);
2510 }
2511 
f2fs_exist_data(struct inode * inode)2512 static inline int f2fs_exist_data(struct inode *inode)
2513 {
2514 	return is_inode_flag_set(inode, FI_DATA_EXIST);
2515 }
2516 
f2fs_has_inline_dots(struct inode * inode)2517 static inline int f2fs_has_inline_dots(struct inode *inode)
2518 {
2519 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
2520 }
2521 
f2fs_is_pinned_file(struct inode * inode)2522 static inline bool f2fs_is_pinned_file(struct inode *inode)
2523 {
2524 	return is_inode_flag_set(inode, FI_PIN_FILE);
2525 }
2526 
f2fs_is_atomic_file(struct inode * inode)2527 static inline bool f2fs_is_atomic_file(struct inode *inode)
2528 {
2529 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2530 }
2531 
f2fs_is_commit_atomic_write(struct inode * inode)2532 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2533 {
2534 	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2535 }
2536 
f2fs_is_volatile_file(struct inode * inode)2537 static inline bool f2fs_is_volatile_file(struct inode *inode)
2538 {
2539 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2540 }
2541 
f2fs_is_first_block_written(struct inode * inode)2542 static inline bool f2fs_is_first_block_written(struct inode *inode)
2543 {
2544 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2545 }
2546 
f2fs_is_drop_cache(struct inode * inode)2547 static inline bool f2fs_is_drop_cache(struct inode *inode)
2548 {
2549 	return is_inode_flag_set(inode, FI_DROP_CACHE);
2550 }
2551 
inline_data_addr(struct inode * inode,struct page * page)2552 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2553 {
2554 	struct f2fs_inode *ri = F2FS_INODE(page);
2555 	int extra_size = get_extra_isize(inode);
2556 
2557 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2558 }
2559 
f2fs_has_inline_dentry(struct inode * inode)2560 static inline int f2fs_has_inline_dentry(struct inode *inode)
2561 {
2562 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2563 }
2564 
is_file(struct inode * inode,int type)2565 static inline int is_file(struct inode *inode, int type)
2566 {
2567 	return F2FS_I(inode)->i_advise & type;
2568 }
2569 
set_file(struct inode * inode,int type)2570 static inline void set_file(struct inode *inode, int type)
2571 {
2572 	F2FS_I(inode)->i_advise |= type;
2573 	f2fs_mark_inode_dirty_sync(inode, true);
2574 }
2575 
clear_file(struct inode * inode,int type)2576 static inline void clear_file(struct inode *inode, int type)
2577 {
2578 	F2FS_I(inode)->i_advise &= ~type;
2579 	f2fs_mark_inode_dirty_sync(inode, true);
2580 }
2581 
f2fs_is_time_consistent(struct inode * inode)2582 static inline bool f2fs_is_time_consistent(struct inode *inode)
2583 {
2584 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
2585 		return false;
2586 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
2587 		return false;
2588 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
2589 		return false;
2590 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
2591 						&F2FS_I(inode)->i_crtime))
2592 		return false;
2593 	return true;
2594 }
2595 
f2fs_skip_inode_update(struct inode * inode,int dsync)2596 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2597 {
2598 	bool ret;
2599 
2600 	if (dsync) {
2601 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2602 
2603 		spin_lock(&sbi->inode_lock[DIRTY_META]);
2604 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
2605 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
2606 		return ret;
2607 	}
2608 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2609 			file_keep_isize(inode) ||
2610 			i_size_read(inode) & ~PAGE_MASK)
2611 		return false;
2612 
2613 	if (!f2fs_is_time_consistent(inode))
2614 		return false;
2615 
2616 	down_read(&F2FS_I(inode)->i_sem);
2617 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2618 	up_read(&F2FS_I(inode)->i_sem);
2619 
2620 	return ret;
2621 }
2622 
f2fs_readonly(struct super_block * sb)2623 static inline bool f2fs_readonly(struct super_block *sb)
2624 {
2625 	return sb_rdonly(sb);
2626 }
2627 
f2fs_cp_error(struct f2fs_sb_info * sbi)2628 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2629 {
2630 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2631 }
2632 
is_dot_dotdot(const struct qstr * str)2633 static inline bool is_dot_dotdot(const struct qstr *str)
2634 {
2635 	if (str->len == 1 && str->name[0] == '.')
2636 		return true;
2637 
2638 	if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
2639 		return true;
2640 
2641 	return false;
2642 }
2643 
f2fs_may_extent_tree(struct inode * inode)2644 static inline bool f2fs_may_extent_tree(struct inode *inode)
2645 {
2646 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2647 
2648 	if (!test_opt(sbi, EXTENT_CACHE) ||
2649 			is_inode_flag_set(inode, FI_NO_EXTENT))
2650 		return false;
2651 
2652 	/*
2653 	 * for recovered files during mount do not create extents
2654 	 * if shrinker is not registered.
2655 	 */
2656 	if (list_empty(&sbi->s_list))
2657 		return false;
2658 
2659 	return S_ISREG(inode->i_mode);
2660 }
2661 
f2fs_kmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)2662 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2663 					size_t size, gfp_t flags)
2664 {
2665 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
2666 		f2fs_show_injection_info(FAULT_KMALLOC);
2667 		return NULL;
2668 	}
2669 
2670 	return kmalloc(size, flags);
2671 }
2672 
f2fs_kzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)2673 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
2674 					size_t size, gfp_t flags)
2675 {
2676 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
2677 }
2678 
f2fs_kvmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)2679 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
2680 					size_t size, gfp_t flags)
2681 {
2682 	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
2683 		f2fs_show_injection_info(FAULT_KVMALLOC);
2684 		return NULL;
2685 	}
2686 
2687 	return kvmalloc(size, flags);
2688 }
2689 
f2fs_kvzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)2690 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
2691 					size_t size, gfp_t flags)
2692 {
2693 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
2694 }
2695 
get_extra_isize(struct inode * inode)2696 static inline int get_extra_isize(struct inode *inode)
2697 {
2698 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
2699 }
2700 
get_inline_xattr_addrs(struct inode * inode)2701 static inline int get_inline_xattr_addrs(struct inode *inode)
2702 {
2703 	return F2FS_I(inode)->i_inline_xattr_size;
2704 }
2705 
2706 #define f2fs_get_inode_mode(i) \
2707 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2708 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2709 
2710 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
2711 	(offsetof(struct f2fs_inode, i_extra_end) -	\
2712 	offsetof(struct f2fs_inode, i_extra_isize))	\
2713 
2714 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
2715 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
2716 		((offsetof(typeof(*f2fs_inode), field) +	\
2717 		sizeof((f2fs_inode)->field))			\
2718 		<= (F2FS_OLD_ATTRIBUTE_SIZE + extra_isize))	\
2719 
f2fs_reset_iostat(struct f2fs_sb_info * sbi)2720 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
2721 {
2722 	int i;
2723 
2724 	spin_lock(&sbi->iostat_lock);
2725 	for (i = 0; i < NR_IO_TYPE; i++)
2726 		sbi->write_iostat[i] = 0;
2727 	spin_unlock(&sbi->iostat_lock);
2728 }
2729 
f2fs_update_iostat(struct f2fs_sb_info * sbi,enum iostat_type type,unsigned long long io_bytes)2730 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
2731 			enum iostat_type type, unsigned long long io_bytes)
2732 {
2733 	if (!sbi->iostat_enable)
2734 		return;
2735 	spin_lock(&sbi->iostat_lock);
2736 	sbi->write_iostat[type] += io_bytes;
2737 
2738 	if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
2739 		sbi->write_iostat[APP_BUFFERED_IO] =
2740 			sbi->write_iostat[APP_WRITE_IO] -
2741 			sbi->write_iostat[APP_DIRECT_IO];
2742 	spin_unlock(&sbi->iostat_lock);
2743 }
2744 
2745 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO(fio->type) == META &&	\
2746 				(!is_read_io(fio->op) || fio->is_meta))
2747 
2748 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
2749 					block_t blkaddr, int type);
verify_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)2750 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
2751 					block_t blkaddr, int type)
2752 {
2753 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
2754 		f2fs_msg(sbi->sb, KERN_ERR,
2755 			"invalid blkaddr: %u, type: %d, run fsck to fix.",
2756 			blkaddr, type);
2757 		f2fs_bug_on(sbi, 1);
2758 	}
2759 }
2760 
__is_valid_data_blkaddr(block_t blkaddr)2761 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
2762 {
2763 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
2764 		return false;
2765 	return true;
2766 }
2767 
is_valid_data_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr)2768 static inline bool is_valid_data_blkaddr(struct f2fs_sb_info *sbi,
2769 						block_t blkaddr)
2770 {
2771 	if (!__is_valid_data_blkaddr(blkaddr))
2772 		return false;
2773 	verify_blkaddr(sbi, blkaddr, DATA_GENERIC);
2774 	return true;
2775 }
2776 
2777 /*
2778  * file.c
2779  */
2780 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2781 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
2782 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
2783 int f2fs_truncate(struct inode *inode);
2784 int f2fs_getattr(const struct path *path, struct kstat *stat,
2785 			u32 request_mask, unsigned int flags);
2786 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
2787 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
2788 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
2789 int f2fs_precache_extents(struct inode *inode);
2790 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2791 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2792 int f2fs_pin_file_control(struct inode *inode, bool inc);
2793 
2794 /*
2795  * inode.c
2796  */
2797 void f2fs_set_inode_flags(struct inode *inode);
2798 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
2799 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
2800 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
2801 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
2802 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
2803 void f2fs_update_inode(struct inode *inode, struct page *node_page);
2804 void f2fs_update_inode_page(struct inode *inode);
2805 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
2806 void f2fs_evict_inode(struct inode *inode);
2807 void f2fs_handle_failed_inode(struct inode *inode);
2808 
2809 /*
2810  * namei.c
2811  */
2812 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
2813 							bool hot, bool set);
2814 struct dentry *f2fs_get_parent(struct dentry *child);
2815 
2816 /*
2817  * dir.c
2818  */
2819 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
2820 struct f2fs_dir_entry *f2fs_find_target_dentry(struct fscrypt_name *fname,
2821 			f2fs_hash_t namehash, int *max_slots,
2822 			struct f2fs_dentry_ptr *d);
2823 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
2824 			unsigned int start_pos, struct fscrypt_str *fstr);
2825 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
2826 			struct f2fs_dentry_ptr *d);
2827 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
2828 			const struct qstr *new_name,
2829 			const struct qstr *orig_name, struct page *dpage);
2830 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
2831 			unsigned int current_depth);
2832 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
2833 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
2834 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2835 			struct fscrypt_name *fname, struct page **res_page);
2836 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
2837 			const struct qstr *child, struct page **res_page);
2838 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
2839 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
2840 			struct page **page);
2841 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
2842 			struct page *page, struct inode *inode);
2843 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
2844 			const struct qstr *name, f2fs_hash_t name_hash,
2845 			unsigned int bit_pos);
2846 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
2847 			const struct qstr *orig_name,
2848 			struct inode *inode, nid_t ino, umode_t mode);
2849 int f2fs_add_dentry(struct inode *dir, struct fscrypt_name *fname,
2850 			struct inode *inode, nid_t ino, umode_t mode);
2851 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
2852 			struct inode *inode, nid_t ino, umode_t mode);
2853 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
2854 			struct inode *dir, struct inode *inode);
2855 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
2856 bool f2fs_empty_dir(struct inode *dir);
2857 
f2fs_add_link(struct dentry * dentry,struct inode * inode)2858 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
2859 {
2860 	if (fscrypt_is_nokey_name(dentry))
2861 		return -ENOKEY;
2862 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
2863 				inode, inode->i_ino, inode->i_mode);
2864 }
2865 
2866 /*
2867  * super.c
2868  */
2869 int f2fs_inode_dirtied(struct inode *inode, bool sync);
2870 void f2fs_inode_synced(struct inode *inode);
2871 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
2872 void f2fs_quota_off_umount(struct super_block *sb);
2873 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
2874 int f2fs_sync_fs(struct super_block *sb, int sync);
2875 extern __printf(3, 4)
2876 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2877 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
2878 
2879 /*
2880  * hash.c
2881  */
2882 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info,
2883 				struct fscrypt_name *fname);
2884 
2885 /*
2886  * node.c
2887  */
2888 struct dnode_of_data;
2889 struct node_info;
2890 
2891 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
2892 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
2893 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
2894 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
2895 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
2896 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
2897 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
2898 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
2899 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
2900 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
2901 						struct node_info *ni);
2902 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
2903 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
2904 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
2905 int f2fs_truncate_xattr_node(struct inode *inode);
2906 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2907 					unsigned int seq_id);
2908 int f2fs_remove_inode_page(struct inode *inode);
2909 struct page *f2fs_new_inode_page(struct inode *inode);
2910 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
2911 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
2912 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
2913 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
2914 void f2fs_move_node_page(struct page *node_page, int gc_type);
2915 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
2916 			struct writeback_control *wbc, bool atomic,
2917 			unsigned int *seq_id);
2918 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
2919 			struct writeback_control *wbc,
2920 			bool do_balance, enum iostat_type io_type);
2921 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
2922 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
2923 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
2924 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
2925 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
2926 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
2927 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
2928 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
2929 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2930 			unsigned int segno, struct f2fs_summary_block *sum);
2931 void f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2932 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
2933 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
2934 int __init f2fs_create_node_manager_caches(void);
2935 void f2fs_destroy_node_manager_caches(void);
2936 
2937 /*
2938  * segment.c
2939  */
2940 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
2941 void f2fs_register_inmem_page(struct inode *inode, struct page *page);
2942 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
2943 void f2fs_drop_inmem_pages(struct inode *inode);
2944 void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
2945 int f2fs_commit_inmem_pages(struct inode *inode);
2946 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
2947 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
2948 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
2949 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
2950 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
2951 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
2952 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
2953 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
2954 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
2955 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
2956 bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi);
2957 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
2958 					struct cp_control *cpc);
2959 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
2960 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
2961 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
2962 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
2963 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2964 					struct cp_control *cpc);
2965 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
2966 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
2967 					block_t blk_addr);
2968 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
2969 						enum iostat_type io_type);
2970 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
2971 void f2fs_outplace_write_data(struct dnode_of_data *dn,
2972 			struct f2fs_io_info *fio);
2973 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
2974 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
2975 			block_t old_blkaddr, block_t new_blkaddr,
2976 			bool recover_curseg, bool recover_newaddr);
2977 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
2978 			block_t old_addr, block_t new_addr,
2979 			unsigned char version, bool recover_curseg,
2980 			bool recover_newaddr);
2981 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2982 			block_t old_blkaddr, block_t *new_blkaddr,
2983 			struct f2fs_summary *sum, int type,
2984 			struct f2fs_io_info *fio, bool add_list);
2985 void f2fs_wait_on_page_writeback(struct page *page,
2986 			enum page_type type, bool ordered);
2987 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
2988 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2989 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2990 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
2991 			unsigned int val, int alloc);
2992 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2993 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
2994 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
2995 int __init f2fs_create_segment_manager_caches(void);
2996 void f2fs_destroy_segment_manager_caches(void);
2997 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
2998 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
2999 			enum page_type type, enum temp_type temp);
3000 
3001 /*
3002  * checkpoint.c
3003  */
3004 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3005 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3006 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3007 struct page *f2fs_get_meta_page_nofail(struct f2fs_sb_info *sbi, pgoff_t index);
3008 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3009 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3010 					block_t blkaddr, int type);
3011 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3012 			int type, bool sync);
3013 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
3014 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3015 			long nr_to_write, enum iostat_type io_type);
3016 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3017 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3018 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3019 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3020 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3021 					unsigned int devidx, int type);
3022 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3023 					unsigned int devidx, int type);
3024 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3025 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3026 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3027 void f2fs_add_orphan_inode(struct inode *inode);
3028 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3029 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3030 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3031 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3032 void f2fs_remove_dirty_inode(struct inode *inode);
3033 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3034 void f2fs_wait_on_all_pages_writeback(struct f2fs_sb_info *sbi);
3035 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3036 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3037 int __init f2fs_create_checkpoint_caches(void);
3038 void f2fs_destroy_checkpoint_caches(void);
3039 
3040 /*
3041  * data.c
3042  */
3043 int f2fs_init_post_read_processing(void);
3044 void f2fs_destroy_post_read_processing(void);
3045 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3046 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3047 				struct inode *inode, nid_t ino, pgoff_t idx,
3048 				enum page_type type);
3049 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3050 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3051 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3052 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3053 			block_t blk_addr, struct bio *bio);
3054 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3055 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3056 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3057 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3058 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3059 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3060 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
3061 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3062 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3063 			int op_flags, bool for_write);
3064 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3065 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3066 			bool for_write);
3067 struct page *f2fs_get_new_data_page(struct inode *inode,
3068 			struct page *ipage, pgoff_t index, bool new_i_size);
3069 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3070 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3071 			int create, int flag);
3072 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3073 			u64 start, u64 len);
3074 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3075 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3076 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3077 			unsigned int length);
3078 int f2fs_release_page(struct page *page, gfp_t wait);
3079 #ifdef CONFIG_MIGRATION
3080 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3081 			struct page *page, enum migrate_mode mode);
3082 #endif
3083 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3084 void f2fs_clear_radix_tree_dirty_tag(struct page *page);
3085 
3086 /*
3087  * gc.c
3088  */
3089 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3090 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3091 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3092 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
3093 			unsigned int segno);
3094 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3095 
3096 /*
3097  * recovery.c
3098  */
3099 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3100 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3101 
3102 /*
3103  * debug.c
3104  */
3105 #ifdef CONFIG_F2FS_STAT_FS
3106 struct f2fs_stat_info {
3107 	struct list_head stat_list;
3108 	struct f2fs_sb_info *sbi;
3109 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3110 	int main_area_segs, main_area_sections, main_area_zones;
3111 	unsigned long long hit_largest, hit_cached, hit_rbtree;
3112 	unsigned long long hit_total, total_ext;
3113 	int ext_tree, zombie_tree, ext_node;
3114 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3115 	int ndirty_data, ndirty_qdata;
3116 	int inmem_pages;
3117 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3118 	int nats, dirty_nats, sits, dirty_sits;
3119 	int free_nids, avail_nids, alloc_nids;
3120 	int total_count, utilization;
3121 	int bg_gc, nr_wb_cp_data, nr_wb_data;
3122 	int nr_flushing, nr_flushed, flush_list_empty;
3123 	int nr_discarding, nr_discarded;
3124 	int nr_discard_cmd;
3125 	unsigned int undiscard_blks;
3126 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3127 	int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3128 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3129 	unsigned int bimodal, avg_vblocks;
3130 	int util_free, util_valid, util_invalid;
3131 	int rsvd_segs, overp_segs;
3132 	int dirty_count, node_pages, meta_pages;
3133 	int prefree_count, call_count, cp_count, bg_cp_count;
3134 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
3135 	int bg_node_segs, bg_data_segs;
3136 	int tot_blks, data_blks, node_blks;
3137 	int bg_data_blks, bg_node_blks;
3138 	unsigned long long skipped_atomic_files[2];
3139 	int curseg[NR_CURSEG_TYPE];
3140 	int cursec[NR_CURSEG_TYPE];
3141 	int curzone[NR_CURSEG_TYPE];
3142 
3143 	unsigned int segment_count[2];
3144 	unsigned int block_count[2];
3145 	unsigned int inplace_count;
3146 	unsigned long long base_mem, cache_mem, page_mem;
3147 };
3148 
F2FS_STAT(struct f2fs_sb_info * sbi)3149 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3150 {
3151 	return (struct f2fs_stat_info *)sbi->stat_info;
3152 }
3153 
3154 #define stat_inc_cp_count(si)		((si)->cp_count++)
3155 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
3156 #define stat_inc_call_count(si)		((si)->call_count++)
3157 #define stat_inc_bggc_count(sbi)	((sbi)->bg_gc++)
3158 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3159 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3160 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
3161 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
3162 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3163 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
3164 #define stat_inc_inline_xattr(inode)					\
3165 	do {								\
3166 		if (f2fs_has_inline_xattr(inode))			\
3167 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3168 	} while (0)
3169 #define stat_dec_inline_xattr(inode)					\
3170 	do {								\
3171 		if (f2fs_has_inline_xattr(inode))			\
3172 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3173 	} while (0)
3174 #define stat_inc_inline_inode(inode)					\
3175 	do {								\
3176 		if (f2fs_has_inline_data(inode))			\
3177 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3178 	} while (0)
3179 #define stat_dec_inline_inode(inode)					\
3180 	do {								\
3181 		if (f2fs_has_inline_data(inode))			\
3182 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3183 	} while (0)
3184 #define stat_inc_inline_dir(inode)					\
3185 	do {								\
3186 		if (f2fs_has_inline_dentry(inode))			\
3187 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3188 	} while (0)
3189 #define stat_dec_inline_dir(inode)					\
3190 	do {								\
3191 		if (f2fs_has_inline_dentry(inode))			\
3192 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3193 	} while (0)
3194 #define stat_inc_seg_type(sbi, curseg)					\
3195 		((sbi)->segment_count[(curseg)->alloc_type]++)
3196 #define stat_inc_block_count(sbi, curseg)				\
3197 		((sbi)->block_count[(curseg)->alloc_type]++)
3198 #define stat_inc_inplace_blocks(sbi)					\
3199 		(atomic_inc(&(sbi)->inplace_count))
3200 #define stat_inc_atomic_write(inode)					\
3201 		(atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
3202 #define stat_dec_atomic_write(inode)					\
3203 		(atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
3204 #define stat_update_max_atomic_write(inode)				\
3205 	do {								\
3206 		int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt);	\
3207 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
3208 		if (cur > max)						\
3209 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
3210 	} while (0)
3211 #define stat_inc_volatile_write(inode)					\
3212 		(atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3213 #define stat_dec_volatile_write(inode)					\
3214 		(atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3215 #define stat_update_max_volatile_write(inode)				\
3216 	do {								\
3217 		int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);	\
3218 		int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);	\
3219 		if (cur > max)						\
3220 			atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur);	\
3221 	} while (0)
3222 #define stat_inc_seg_count(sbi, type, gc_type)				\
3223 	do {								\
3224 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3225 		si->tot_segs++;						\
3226 		if ((type) == SUM_TYPE_DATA) {				\
3227 			si->data_segs++;				\
3228 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
3229 		} else {						\
3230 			si->node_segs++;				\
3231 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
3232 		}							\
3233 	} while (0)
3234 
3235 #define stat_inc_tot_blk_count(si, blks)				\
3236 	((si)->tot_blks += (blks))
3237 
3238 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
3239 	do {								\
3240 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3241 		stat_inc_tot_blk_count(si, blks);			\
3242 		si->data_blks += (blks);				\
3243 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3244 	} while (0)
3245 
3246 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
3247 	do {								\
3248 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3249 		stat_inc_tot_blk_count(si, blks);			\
3250 		si->node_blks += (blks);				\
3251 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3252 	} while (0)
3253 
3254 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3255 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3256 int __init f2fs_create_root_stats(void);
3257 void f2fs_destroy_root_stats(void);
3258 #else
3259 #define stat_inc_cp_count(si)				do { } while (0)
3260 #define stat_inc_bg_cp_count(si)			do { } while (0)
3261 #define stat_inc_call_count(si)				do { } while (0)
3262 #define stat_inc_bggc_count(si)				do { } while (0)
3263 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
3264 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
3265 #define stat_inc_total_hit(sb)				do { } while (0)
3266 #define stat_inc_rbtree_node_hit(sb)			do { } while (0)
3267 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
3268 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
3269 #define stat_inc_inline_xattr(inode)			do { } while (0)
3270 #define stat_dec_inline_xattr(inode)			do { } while (0)
3271 #define stat_inc_inline_inode(inode)			do { } while (0)
3272 #define stat_dec_inline_inode(inode)			do { } while (0)
3273 #define stat_inc_inline_dir(inode)			do { } while (0)
3274 #define stat_dec_inline_dir(inode)			do { } while (0)
3275 #define stat_inc_atomic_write(inode)			do { } while (0)
3276 #define stat_dec_atomic_write(inode)			do { } while (0)
3277 #define stat_update_max_atomic_write(inode)		do { } while (0)
3278 #define stat_inc_volatile_write(inode)			do { } while (0)
3279 #define stat_dec_volatile_write(inode)			do { } while (0)
3280 #define stat_update_max_volatile_write(inode)		do { } while (0)
3281 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
3282 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
3283 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
3284 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
3285 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
3286 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
3287 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
3288 
f2fs_build_stats(struct f2fs_sb_info * sbi)3289 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_stats(struct f2fs_sb_info * sbi)3290 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
f2fs_create_root_stats(void)3291 static inline int __init f2fs_create_root_stats(void) { return 0; }
f2fs_destroy_root_stats(void)3292 static inline void f2fs_destroy_root_stats(void) { }
3293 #endif
3294 
3295 extern const struct file_operations f2fs_dir_operations;
3296 extern const struct file_operations f2fs_file_operations;
3297 extern const struct inode_operations f2fs_file_inode_operations;
3298 extern const struct address_space_operations f2fs_dblock_aops;
3299 extern const struct address_space_operations f2fs_node_aops;
3300 extern const struct address_space_operations f2fs_meta_aops;
3301 extern const struct inode_operations f2fs_dir_inode_operations;
3302 extern const struct inode_operations f2fs_symlink_inode_operations;
3303 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3304 extern const struct inode_operations f2fs_special_inode_operations;
3305 extern struct kmem_cache *f2fs_inode_entry_slab;
3306 
3307 /*
3308  * inline.c
3309  */
3310 bool f2fs_may_inline_data(struct inode *inode);
3311 bool f2fs_may_inline_dentry(struct inode *inode);
3312 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3313 void f2fs_truncate_inline_inode(struct inode *inode,
3314 						struct page *ipage, u64 from);
3315 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3316 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3317 int f2fs_convert_inline_inode(struct inode *inode);
3318 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3319 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3320 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3321 			struct fscrypt_name *fname, struct page **res_page);
3322 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3323 			struct page *ipage);
3324 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
3325 			const struct qstr *orig_name,
3326 			struct inode *inode, nid_t ino, umode_t mode);
3327 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3328 				struct page *page, struct inode *dir,
3329 				struct inode *inode);
3330 bool f2fs_empty_inline_dir(struct inode *dir);
3331 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3332 			struct fscrypt_str *fstr);
3333 int f2fs_inline_data_fiemap(struct inode *inode,
3334 			struct fiemap_extent_info *fieinfo,
3335 			__u64 start, __u64 len);
3336 
3337 /*
3338  * shrinker.c
3339  */
3340 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3341 			struct shrink_control *sc);
3342 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3343 			struct shrink_control *sc);
3344 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3345 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3346 
3347 /*
3348  * extent_cache.c
3349  */
3350 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root *root,
3351 				struct rb_entry *cached_re, unsigned int ofs);
3352 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3353 				struct rb_root *root, struct rb_node **parent,
3354 				unsigned int ofs);
3355 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root *root,
3356 		struct rb_entry *cached_re, unsigned int ofs,
3357 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
3358 		struct rb_node ***insert_p, struct rb_node **insert_parent,
3359 		bool force);
3360 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3361 						struct rb_root *root);
3362 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3363 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
3364 void f2fs_drop_extent_tree(struct inode *inode);
3365 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3366 void f2fs_destroy_extent_tree(struct inode *inode);
3367 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3368 			struct extent_info *ei);
3369 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3370 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3371 			pgoff_t fofs, block_t blkaddr, unsigned int len);
3372 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
3373 int __init f2fs_create_extent_cache(void);
3374 void f2fs_destroy_extent_cache(void);
3375 
3376 /*
3377  * sysfs.c
3378  */
3379 int __init f2fs_init_sysfs(void);
3380 void f2fs_exit_sysfs(void);
3381 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3382 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3383 
3384 /*
3385  * crypto support
3386  */
f2fs_encrypted_inode(struct inode * inode)3387 static inline bool f2fs_encrypted_inode(struct inode *inode)
3388 {
3389 	return file_is_encrypt(inode);
3390 }
3391 
f2fs_encrypted_file(struct inode * inode)3392 static inline bool f2fs_encrypted_file(struct inode *inode)
3393 {
3394 	return f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode);
3395 }
3396 
f2fs_set_encrypted_inode(struct inode * inode)3397 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3398 {
3399 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3400 	file_set_encrypt(inode);
3401 	f2fs_set_inode_flags(inode);
3402 #endif
3403 }
3404 
3405 /*
3406  * Returns true if the reads of the inode's data need to undergo some
3407  * postprocessing step, like decryption or authenticity verification.
3408  */
f2fs_post_read_required(struct inode * inode)3409 static inline bool f2fs_post_read_required(struct inode *inode)
3410 {
3411 	return f2fs_encrypted_file(inode);
3412 }
3413 
3414 #define F2FS_FEATURE_FUNCS(name, flagname) \
3415 static inline int f2fs_sb_has_##name(struct super_block *sb) \
3416 { \
3417 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_##flagname); \
3418 }
3419 
3420 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
3421 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
3422 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
3423 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
3424 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
3425 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
3426 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
3427 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
3428 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
3429 
3430 #ifdef CONFIG_BLK_DEV_ZONED
get_blkz_type(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkaddr)3431 static inline int get_blkz_type(struct f2fs_sb_info *sbi,
3432 			struct block_device *bdev, block_t blkaddr)
3433 {
3434 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
3435 	int i;
3436 
3437 	for (i = 0; i < sbi->s_ndevs; i++)
3438 		if (FDEV(i).bdev == bdev)
3439 			return FDEV(i).blkz_type[zno];
3440 	return -EINVAL;
3441 }
3442 #endif
3443 
f2fs_hw_should_discard(struct f2fs_sb_info * sbi)3444 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
3445 {
3446 	return f2fs_sb_has_blkzoned(sbi->sb);
3447 }
3448 
f2fs_hw_support_discard(struct f2fs_sb_info * sbi)3449 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
3450 {
3451 	return blk_queue_discard(bdev_get_queue(sbi->sb->s_bdev));
3452 }
3453 
f2fs_realtime_discard_enable(struct f2fs_sb_info * sbi)3454 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
3455 {
3456 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
3457 					f2fs_hw_should_discard(sbi);
3458 }
3459 
set_opt_mode(struct f2fs_sb_info * sbi,unsigned int mt)3460 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
3461 {
3462 	clear_opt(sbi, ADAPTIVE);
3463 	clear_opt(sbi, LFS);
3464 
3465 	switch (mt) {
3466 	case F2FS_MOUNT_ADAPTIVE:
3467 		set_opt(sbi, ADAPTIVE);
3468 		break;
3469 	case F2FS_MOUNT_LFS:
3470 		set_opt(sbi, LFS);
3471 		break;
3472 	}
3473 }
3474 
f2fs_may_encrypt(struct inode * inode)3475 static inline bool f2fs_may_encrypt(struct inode *inode)
3476 {
3477 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3478 	umode_t mode = inode->i_mode;
3479 
3480 	return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
3481 #else
3482 	return false;
3483 #endif
3484 }
3485 
f2fs_force_buffered_io(struct inode * inode,int rw)3486 static inline bool f2fs_force_buffered_io(struct inode *inode, int rw)
3487 {
3488 	return (f2fs_post_read_required(inode) ||
3489 			(rw == WRITE && test_opt(F2FS_I_SB(inode), LFS)) ||
3490 			f2fs_is_multi_device(F2FS_I_SB(inode)));
3491 }
3492 
3493 #ifdef CONFIG_F2FS_FAULT_INJECTION
3494 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
3495 							unsigned int type);
3496 #else
3497 #define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
3498 #endif
3499 
3500 #endif
3501 
3502 #define EFSBADCRC	EBADMSG		/* Bad CRC detected */
3503 #define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
3504 
3505