1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PTRACE_H
3 #define _LINUX_PTRACE_H
4 
5 #include <linux/compiler.h>		/* For unlikely.  */
6 #include <linux/sched.h>		/* For struct task_struct.  */
7 #include <linux/sched/signal.h>		/* For send_sig(), same_thread_group(), etc. */
8 #include <linux/err.h>			/* for IS_ERR_VALUE */
9 #include <linux/bug.h>			/* For BUG_ON.  */
10 #include <linux/pid_namespace.h>	/* For task_active_pid_ns.  */
11 #include <uapi/linux/ptrace.h>
12 
13 extern int ptrace_access_vm(struct task_struct *tsk, unsigned long addr,
14 			    void *buf, int len, unsigned int gup_flags);
15 
16 /*
17  * Ptrace flags
18  *
19  * The owner ship rules for task->ptrace which holds the ptrace
20  * flags is simple.  When a task is running it owns it's task->ptrace
21  * flags.  When the a task is stopped the ptracer owns task->ptrace.
22  */
23 
24 #define PT_SEIZED	0x00010000	/* SEIZE used, enable new behavior */
25 #define PT_PTRACED	0x00000001
26 #define PT_DTRACE	0x00000002	/* delayed trace (used on m68k, i386) */
27 
28 #define PT_OPT_FLAG_SHIFT	3
29 /* PT_TRACE_* event enable flags */
30 #define PT_EVENT_FLAG(event)	(1 << (PT_OPT_FLAG_SHIFT + (event)))
31 #define PT_TRACESYSGOOD		PT_EVENT_FLAG(0)
32 #define PT_TRACE_FORK		PT_EVENT_FLAG(PTRACE_EVENT_FORK)
33 #define PT_TRACE_VFORK		PT_EVENT_FLAG(PTRACE_EVENT_VFORK)
34 #define PT_TRACE_CLONE		PT_EVENT_FLAG(PTRACE_EVENT_CLONE)
35 #define PT_TRACE_EXEC		PT_EVENT_FLAG(PTRACE_EVENT_EXEC)
36 #define PT_TRACE_VFORK_DONE	PT_EVENT_FLAG(PTRACE_EVENT_VFORK_DONE)
37 #define PT_TRACE_EXIT		PT_EVENT_FLAG(PTRACE_EVENT_EXIT)
38 #define PT_TRACE_SECCOMP	PT_EVENT_FLAG(PTRACE_EVENT_SECCOMP)
39 
40 #define PT_EXITKILL		(PTRACE_O_EXITKILL << PT_OPT_FLAG_SHIFT)
41 #define PT_SUSPEND_SECCOMP	(PTRACE_O_SUSPEND_SECCOMP << PT_OPT_FLAG_SHIFT)
42 
43 extern long arch_ptrace(struct task_struct *child, long request,
44 			unsigned long addr, unsigned long data);
45 extern int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len);
46 extern int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len);
47 extern void ptrace_disable(struct task_struct *);
48 extern int ptrace_request(struct task_struct *child, long request,
49 			  unsigned long addr, unsigned long data);
50 extern void ptrace_notify(int exit_code);
51 extern void __ptrace_link(struct task_struct *child,
52 			  struct task_struct *new_parent,
53 			  const struct cred *ptracer_cred);
54 extern void __ptrace_unlink(struct task_struct *child);
55 extern void exit_ptrace(struct task_struct *tracer, struct list_head *dead);
56 #define PTRACE_MODE_READ	0x01
57 #define PTRACE_MODE_ATTACH	0x02
58 #define PTRACE_MODE_NOAUDIT	0x04
59 #define PTRACE_MODE_FSCREDS	0x08
60 #define PTRACE_MODE_REALCREDS	0x10
61 
62 /* shorthands for READ/ATTACH and FSCREDS/REALCREDS combinations */
63 #define PTRACE_MODE_READ_FSCREDS (PTRACE_MODE_READ | PTRACE_MODE_FSCREDS)
64 #define PTRACE_MODE_READ_REALCREDS (PTRACE_MODE_READ | PTRACE_MODE_REALCREDS)
65 #define PTRACE_MODE_ATTACH_FSCREDS (PTRACE_MODE_ATTACH | PTRACE_MODE_FSCREDS)
66 #define PTRACE_MODE_ATTACH_REALCREDS (PTRACE_MODE_ATTACH | PTRACE_MODE_REALCREDS)
67 
68 /**
69  * ptrace_may_access - check whether the caller is permitted to access
70  * a target task.
71  * @task: target task
72  * @mode: selects type of access and caller credentials
73  *
74  * Returns true on success, false on denial.
75  *
76  * One of the flags PTRACE_MODE_FSCREDS and PTRACE_MODE_REALCREDS must
77  * be set in @mode to specify whether the access was requested through
78  * a filesystem syscall (should use effective capabilities and fsuid
79  * of the caller) or through an explicit syscall such as
80  * process_vm_writev or ptrace (and should use the real credentials).
81  */
82 extern bool ptrace_may_access(struct task_struct *task, unsigned int mode);
83 
ptrace_reparented(struct task_struct * child)84 static inline int ptrace_reparented(struct task_struct *child)
85 {
86 	return !same_thread_group(child->real_parent, child->parent);
87 }
88 
ptrace_unlink(struct task_struct * child)89 static inline void ptrace_unlink(struct task_struct *child)
90 {
91 	if (unlikely(child->ptrace))
92 		__ptrace_unlink(child);
93 }
94 
95 int generic_ptrace_peekdata(struct task_struct *tsk, unsigned long addr,
96 			    unsigned long data);
97 int generic_ptrace_pokedata(struct task_struct *tsk, unsigned long addr,
98 			    unsigned long data);
99 
100 /**
101  * ptrace_parent - return the task that is tracing the given task
102  * @task: task to consider
103  *
104  * Returns %NULL if no one is tracing @task, or the &struct task_struct
105  * pointer to its tracer.
106  *
107  * Must called under rcu_read_lock().  The pointer returned might be kept
108  * live only by RCU.  During exec, this may be called with task_lock() held
109  * on @task, still held from when check_unsafe_exec() was called.
110  */
ptrace_parent(struct task_struct * task)111 static inline struct task_struct *ptrace_parent(struct task_struct *task)
112 {
113 	if (unlikely(task->ptrace))
114 		return rcu_dereference(task->parent);
115 	return NULL;
116 }
117 
118 /**
119  * ptrace_event_enabled - test whether a ptrace event is enabled
120  * @task: ptracee of interest
121  * @event: %PTRACE_EVENT_* to test
122  *
123  * Test whether @event is enabled for ptracee @task.
124  *
125  * Returns %true if @event is enabled, %false otherwise.
126  */
ptrace_event_enabled(struct task_struct * task,int event)127 static inline bool ptrace_event_enabled(struct task_struct *task, int event)
128 {
129 	return task->ptrace & PT_EVENT_FLAG(event);
130 }
131 
132 /**
133  * ptrace_event - possibly stop for a ptrace event notification
134  * @event:	%PTRACE_EVENT_* value to report
135  * @message:	value for %PTRACE_GETEVENTMSG to return
136  *
137  * Check whether @event is enabled and, if so, report @event and @message
138  * to the ptrace parent.
139  *
140  * Called without locks.
141  */
ptrace_event(int event,unsigned long message)142 static inline void ptrace_event(int event, unsigned long message)
143 {
144 	if (unlikely(ptrace_event_enabled(current, event))) {
145 		current->ptrace_message = message;
146 		ptrace_notify((event << 8) | SIGTRAP);
147 	} else if (event == PTRACE_EVENT_EXEC) {
148 		/* legacy EXEC report via SIGTRAP */
149 		if ((current->ptrace & (PT_PTRACED|PT_SEIZED)) == PT_PTRACED)
150 			send_sig(SIGTRAP, current, 0);
151 	}
152 }
153 
154 /**
155  * ptrace_event_pid - possibly stop for a ptrace event notification
156  * @event:	%PTRACE_EVENT_* value to report
157  * @pid:	process identifier for %PTRACE_GETEVENTMSG to return
158  *
159  * Check whether @event is enabled and, if so, report @event and @pid
160  * to the ptrace parent.  @pid is reported as the pid_t seen from the
161  * the ptrace parent's pid namespace.
162  *
163  * Called without locks.
164  */
ptrace_event_pid(int event,struct pid * pid)165 static inline void ptrace_event_pid(int event, struct pid *pid)
166 {
167 	/*
168 	 * FIXME: There's a potential race if a ptracer in a different pid
169 	 * namespace than parent attaches between computing message below and
170 	 * when we acquire tasklist_lock in ptrace_stop().  If this happens,
171 	 * the ptracer will get a bogus pid from PTRACE_GETEVENTMSG.
172 	 */
173 	unsigned long message = 0;
174 	struct pid_namespace *ns;
175 
176 	rcu_read_lock();
177 	ns = task_active_pid_ns(rcu_dereference(current->parent));
178 	if (ns)
179 		message = pid_nr_ns(pid, ns);
180 	rcu_read_unlock();
181 
182 	ptrace_event(event, message);
183 }
184 
185 /**
186  * ptrace_init_task - initialize ptrace state for a new child
187  * @child:		new child task
188  * @ptrace:		true if child should be ptrace'd by parent's tracer
189  *
190  * This is called immediately after adding @child to its parent's children
191  * list.  @ptrace is false in the normal case, and true to ptrace @child.
192  *
193  * Called with current's siglock and write_lock_irq(&tasklist_lock) held.
194  */
ptrace_init_task(struct task_struct * child,bool ptrace)195 static inline void ptrace_init_task(struct task_struct *child, bool ptrace)
196 {
197 	INIT_LIST_HEAD(&child->ptrace_entry);
198 	INIT_LIST_HEAD(&child->ptraced);
199 	child->jobctl = 0;
200 	child->ptrace = 0;
201 	child->parent = child->real_parent;
202 
203 	if (unlikely(ptrace) && current->ptrace) {
204 		child->ptrace = current->ptrace;
205 		__ptrace_link(child, current->parent, current->ptracer_cred);
206 
207 		if (child->ptrace & PT_SEIZED)
208 			task_set_jobctl_pending(child, JOBCTL_TRAP_STOP);
209 		else
210 			sigaddset(&child->pending.signal, SIGSTOP);
211 	}
212 	else
213 		child->ptracer_cred = NULL;
214 }
215 
216 /**
217  * ptrace_release_task - final ptrace-related cleanup of a zombie being reaped
218  * @task:	task in %EXIT_DEAD state
219  *
220  * Called with write_lock(&tasklist_lock) held.
221  */
ptrace_release_task(struct task_struct * task)222 static inline void ptrace_release_task(struct task_struct *task)
223 {
224 	BUG_ON(!list_empty(&task->ptraced));
225 	ptrace_unlink(task);
226 	BUG_ON(!list_empty(&task->ptrace_entry));
227 }
228 
229 #ifndef force_successful_syscall_return
230 /*
231  * System call handlers that, upon successful completion, need to return a
232  * negative value should call force_successful_syscall_return() right before
233  * returning.  On architectures where the syscall convention provides for a
234  * separate error flag (e.g., alpha, ia64, ppc{,64}, sparc{,64}, possibly
235  * others), this macro can be used to ensure that the error flag will not get
236  * set.  On architectures which do not support a separate error flag, the macro
237  * is a no-op and the spurious error condition needs to be filtered out by some
238  * other means (e.g., in user-level, by passing an extra argument to the
239  * syscall handler, or something along those lines).
240  */
241 #define force_successful_syscall_return() do { } while (0)
242 #endif
243 
244 #ifndef is_syscall_success
245 /*
246  * On most systems we can tell if a syscall is a success based on if the retval
247  * is an error value.  On some systems like ia64 and powerpc they have different
248  * indicators of success/failure and must define their own.
249  */
250 #define is_syscall_success(regs) (!IS_ERR_VALUE((unsigned long)(regs_return_value(regs))))
251 #endif
252 
253 /*
254  * <asm/ptrace.h> should define the following things inside #ifdef __KERNEL__.
255  *
256  * These do-nothing inlines are used when the arch does not
257  * implement single-step.  The kerneldoc comments are here
258  * to document the interface for all arch definitions.
259  */
260 
261 #ifndef arch_has_single_step
262 /**
263  * arch_has_single_step - does this CPU support user-mode single-step?
264  *
265  * If this is defined, then there must be function declarations or
266  * inlines for user_enable_single_step() and user_disable_single_step().
267  * arch_has_single_step() should evaluate to nonzero iff the machine
268  * supports instruction single-step for user mode.
269  * It can be a constant or it can test a CPU feature bit.
270  */
271 #define arch_has_single_step()		(0)
272 
273 /**
274  * user_enable_single_step - single-step in user-mode task
275  * @task: either current or a task stopped in %TASK_TRACED
276  *
277  * This can only be called when arch_has_single_step() has returned nonzero.
278  * Set @task so that when it returns to user mode, it will trap after the
279  * next single instruction executes.  If arch_has_block_step() is defined,
280  * this must clear the effects of user_enable_block_step() too.
281  */
user_enable_single_step(struct task_struct * task)282 static inline void user_enable_single_step(struct task_struct *task)
283 {
284 	BUG();			/* This can never be called.  */
285 }
286 
287 /**
288  * user_disable_single_step - cancel user-mode single-step
289  * @task: either current or a task stopped in %TASK_TRACED
290  *
291  * Clear @task of the effects of user_enable_single_step() and
292  * user_enable_block_step().  This can be called whether or not either
293  * of those was ever called on @task, and even if arch_has_single_step()
294  * returned zero.
295  */
user_disable_single_step(struct task_struct * task)296 static inline void user_disable_single_step(struct task_struct *task)
297 {
298 }
299 #else
300 extern void user_enable_single_step(struct task_struct *);
301 extern void user_disable_single_step(struct task_struct *);
302 #endif	/* arch_has_single_step */
303 
304 #ifndef arch_has_block_step
305 /**
306  * arch_has_block_step - does this CPU support user-mode block-step?
307  *
308  * If this is defined, then there must be a function declaration or inline
309  * for user_enable_block_step(), and arch_has_single_step() must be defined
310  * too.  arch_has_block_step() should evaluate to nonzero iff the machine
311  * supports step-until-branch for user mode.  It can be a constant or it
312  * can test a CPU feature bit.
313  */
314 #define arch_has_block_step()		(0)
315 
316 /**
317  * user_enable_block_step - step until branch in user-mode task
318  * @task: either current or a task stopped in %TASK_TRACED
319  *
320  * This can only be called when arch_has_block_step() has returned nonzero,
321  * and will never be called when single-instruction stepping is being used.
322  * Set @task so that when it returns to user mode, it will trap after the
323  * next branch or trap taken.
324  */
user_enable_block_step(struct task_struct * task)325 static inline void user_enable_block_step(struct task_struct *task)
326 {
327 	BUG();			/* This can never be called.  */
328 }
329 #else
330 extern void user_enable_block_step(struct task_struct *);
331 #endif	/* arch_has_block_step */
332 
333 #ifdef ARCH_HAS_USER_SINGLE_STEP_INFO
334 extern void user_single_step_siginfo(struct task_struct *tsk,
335 				struct pt_regs *regs, siginfo_t *info);
336 #else
user_single_step_siginfo(struct task_struct * tsk,struct pt_regs * regs,siginfo_t * info)337 static inline void user_single_step_siginfo(struct task_struct *tsk,
338 				struct pt_regs *regs, siginfo_t *info)
339 {
340 	info->si_signo = SIGTRAP;
341 }
342 #endif
343 
344 #ifndef arch_ptrace_stop_needed
345 /**
346  * arch_ptrace_stop_needed - Decide whether arch_ptrace_stop() should be called
347  * @code:	current->exit_code value ptrace will stop with
348  * @info:	siginfo_t pointer (or %NULL) for signal ptrace will stop with
349  *
350  * This is called with the siglock held, to decide whether or not it's
351  * necessary to release the siglock and call arch_ptrace_stop() with the
352  * same @code and @info arguments.  It can be defined to a constant if
353  * arch_ptrace_stop() is never required, or always is.  On machines where
354  * this makes sense, it should be defined to a quick test to optimize out
355  * calling arch_ptrace_stop() when it would be superfluous.  For example,
356  * if the thread has not been back to user mode since the last stop, the
357  * thread state might indicate that nothing needs to be done.
358  *
359  * This is guaranteed to be invoked once before a task stops for ptrace and
360  * may include arch-specific operations necessary prior to a ptrace stop.
361  */
362 #define arch_ptrace_stop_needed(code, info)	(0)
363 #endif
364 
365 #ifndef arch_ptrace_stop
366 /**
367  * arch_ptrace_stop - Do machine-specific work before stopping for ptrace
368  * @code:	current->exit_code value ptrace will stop with
369  * @info:	siginfo_t pointer (or %NULL) for signal ptrace will stop with
370  *
371  * This is called with no locks held when arch_ptrace_stop_needed() has
372  * just returned nonzero.  It is allowed to block, e.g. for user memory
373  * access.  The arch can have machine-specific work to be done before
374  * ptrace stops.  On ia64, register backing store gets written back to user
375  * memory here.  Since this can be costly (requires dropping the siglock),
376  * we only do it when the arch requires it for this particular stop, as
377  * indicated by arch_ptrace_stop_needed().
378  */
379 #define arch_ptrace_stop(code, info)		do { } while (0)
380 #endif
381 
382 #ifndef current_pt_regs
383 #define current_pt_regs() task_pt_regs(current)
384 #endif
385 
386 /*
387  * unlike current_pt_regs(), this one is equal to task_pt_regs(current)
388  * on *all* architectures; the only reason to have a per-arch definition
389  * is optimisation.
390  */
391 #ifndef signal_pt_regs
392 #define signal_pt_regs() task_pt_regs(current)
393 #endif
394 
395 #ifndef current_user_stack_pointer
396 #define current_user_stack_pointer() user_stack_pointer(current_pt_regs())
397 #endif
398 
399 extern int task_current_syscall(struct task_struct *target, long *callno,
400 				unsigned long args[6], unsigned int maxargs,
401 				unsigned long *sp, unsigned long *pc);
402 
403 #endif
404