1 /*
2  *	Definitions for the 'struct ptr_ring' datastructure.
3  *
4  *	Author:
5  *		Michael S. Tsirkin <mst@redhat.com>
6  *
7  *	Copyright (C) 2016 Red Hat, Inc.
8  *
9  *	This program is free software; you can redistribute it and/or modify it
10  *	under the terms of the GNU General Public License as published by the
11  *	Free Software Foundation; either version 2 of the License, or (at your
12  *	option) any later version.
13  *
14  *	This is a limited-size FIFO maintaining pointers in FIFO order, with
15  *	one CPU producing entries and another consuming entries from a FIFO.
16  *
17  *	This implementation tries to minimize cache-contention when there is a
18  *	single producer and a single consumer CPU.
19  */
20 
21 #ifndef _LINUX_PTR_RING_H
22 #define _LINUX_PTR_RING_H 1
23 
24 #ifdef __KERNEL__
25 #include <linux/spinlock.h>
26 #include <linux/cache.h>
27 #include <linux/types.h>
28 #include <linux/compiler.h>
29 #include <linux/cache.h>
30 #include <linux/slab.h>
31 #include <asm/errno.h>
32 #endif
33 
34 struct ptr_ring {
35 	int producer ____cacheline_aligned_in_smp;
36 	spinlock_t producer_lock;
37 	int consumer_head ____cacheline_aligned_in_smp; /* next valid entry */
38 	int consumer_tail; /* next entry to invalidate */
39 	spinlock_t consumer_lock;
40 	/* Shared consumer/producer data */
41 	/* Read-only by both the producer and the consumer */
42 	int size ____cacheline_aligned_in_smp; /* max entries in queue */
43 	int batch; /* number of entries to consume in a batch */
44 	void **queue;
45 };
46 
47 /* Note: callers invoking this in a loop must use a compiler barrier,
48  * for example cpu_relax().
49  *
50  * NB: this is unlike __ptr_ring_empty in that callers must hold producer_lock:
51  * see e.g. ptr_ring_full.
52  */
__ptr_ring_full(struct ptr_ring * r)53 static inline bool __ptr_ring_full(struct ptr_ring *r)
54 {
55 	return r->queue[r->producer];
56 }
57 
ptr_ring_full(struct ptr_ring * r)58 static inline bool ptr_ring_full(struct ptr_ring *r)
59 {
60 	bool ret;
61 
62 	spin_lock(&r->producer_lock);
63 	ret = __ptr_ring_full(r);
64 	spin_unlock(&r->producer_lock);
65 
66 	return ret;
67 }
68 
ptr_ring_full_irq(struct ptr_ring * r)69 static inline bool ptr_ring_full_irq(struct ptr_ring *r)
70 {
71 	bool ret;
72 
73 	spin_lock_irq(&r->producer_lock);
74 	ret = __ptr_ring_full(r);
75 	spin_unlock_irq(&r->producer_lock);
76 
77 	return ret;
78 }
79 
ptr_ring_full_any(struct ptr_ring * r)80 static inline bool ptr_ring_full_any(struct ptr_ring *r)
81 {
82 	unsigned long flags;
83 	bool ret;
84 
85 	spin_lock_irqsave(&r->producer_lock, flags);
86 	ret = __ptr_ring_full(r);
87 	spin_unlock_irqrestore(&r->producer_lock, flags);
88 
89 	return ret;
90 }
91 
ptr_ring_full_bh(struct ptr_ring * r)92 static inline bool ptr_ring_full_bh(struct ptr_ring *r)
93 {
94 	bool ret;
95 
96 	spin_lock_bh(&r->producer_lock);
97 	ret = __ptr_ring_full(r);
98 	spin_unlock_bh(&r->producer_lock);
99 
100 	return ret;
101 }
102 
103 /* Note: callers invoking this in a loop must use a compiler barrier,
104  * for example cpu_relax(). Callers must hold producer_lock.
105  * Callers are responsible for making sure pointer that is being queued
106  * points to a valid data.
107  */
__ptr_ring_produce(struct ptr_ring * r,void * ptr)108 static inline int __ptr_ring_produce(struct ptr_ring *r, void *ptr)
109 {
110 	if (unlikely(!r->size) || r->queue[r->producer])
111 		return -ENOSPC;
112 
113 	/* Make sure the pointer we are storing points to a valid data. */
114 	/* Pairs with smp_read_barrier_depends in __ptr_ring_consume. */
115 	smp_wmb();
116 
117 	WRITE_ONCE(r->queue[r->producer++], ptr);
118 	if (unlikely(r->producer >= r->size))
119 		r->producer = 0;
120 	return 0;
121 }
122 
123 /*
124  * Note: resize (below) nests producer lock within consumer lock, so if you
125  * consume in interrupt or BH context, you must disable interrupts/BH when
126  * calling this.
127  */
ptr_ring_produce(struct ptr_ring * r,void * ptr)128 static inline int ptr_ring_produce(struct ptr_ring *r, void *ptr)
129 {
130 	int ret;
131 
132 	spin_lock(&r->producer_lock);
133 	ret = __ptr_ring_produce(r, ptr);
134 	spin_unlock(&r->producer_lock);
135 
136 	return ret;
137 }
138 
ptr_ring_produce_irq(struct ptr_ring * r,void * ptr)139 static inline int ptr_ring_produce_irq(struct ptr_ring *r, void *ptr)
140 {
141 	int ret;
142 
143 	spin_lock_irq(&r->producer_lock);
144 	ret = __ptr_ring_produce(r, ptr);
145 	spin_unlock_irq(&r->producer_lock);
146 
147 	return ret;
148 }
149 
ptr_ring_produce_any(struct ptr_ring * r,void * ptr)150 static inline int ptr_ring_produce_any(struct ptr_ring *r, void *ptr)
151 {
152 	unsigned long flags;
153 	int ret;
154 
155 	spin_lock_irqsave(&r->producer_lock, flags);
156 	ret = __ptr_ring_produce(r, ptr);
157 	spin_unlock_irqrestore(&r->producer_lock, flags);
158 
159 	return ret;
160 }
161 
ptr_ring_produce_bh(struct ptr_ring * r,void * ptr)162 static inline int ptr_ring_produce_bh(struct ptr_ring *r, void *ptr)
163 {
164 	int ret;
165 
166 	spin_lock_bh(&r->producer_lock);
167 	ret = __ptr_ring_produce(r, ptr);
168 	spin_unlock_bh(&r->producer_lock);
169 
170 	return ret;
171 }
172 
__ptr_ring_peek(struct ptr_ring * r)173 static inline void *__ptr_ring_peek(struct ptr_ring *r)
174 {
175 	if (likely(r->size))
176 		return READ_ONCE(r->queue[r->consumer_head]);
177 	return NULL;
178 }
179 
180 /*
181  * Test ring empty status without taking any locks.
182  *
183  * NB: This is only safe to call if ring is never resized.
184  *
185  * However, if some other CPU consumes ring entries at the same time, the value
186  * returned is not guaranteed to be correct.
187  *
188  * In this case - to avoid incorrectly detecting the ring
189  * as empty - the CPU consuming the ring entries is responsible
190  * for either consuming all ring entries until the ring is empty,
191  * or synchronizing with some other CPU and causing it to
192  * re-test __ptr_ring_empty and/or consume the ring enteries
193  * after the synchronization point.
194  *
195  * Note: callers invoking this in a loop must use a compiler barrier,
196  * for example cpu_relax().
197  */
__ptr_ring_empty(struct ptr_ring * r)198 static inline bool __ptr_ring_empty(struct ptr_ring *r)
199 {
200 	if (likely(r->size))
201 		return !r->queue[READ_ONCE(r->consumer_head)];
202 	return true;
203 }
204 
ptr_ring_empty(struct ptr_ring * r)205 static inline bool ptr_ring_empty(struct ptr_ring *r)
206 {
207 	bool ret;
208 
209 	spin_lock(&r->consumer_lock);
210 	ret = __ptr_ring_empty(r);
211 	spin_unlock(&r->consumer_lock);
212 
213 	return ret;
214 }
215 
ptr_ring_empty_irq(struct ptr_ring * r)216 static inline bool ptr_ring_empty_irq(struct ptr_ring *r)
217 {
218 	bool ret;
219 
220 	spin_lock_irq(&r->consumer_lock);
221 	ret = __ptr_ring_empty(r);
222 	spin_unlock_irq(&r->consumer_lock);
223 
224 	return ret;
225 }
226 
ptr_ring_empty_any(struct ptr_ring * r)227 static inline bool ptr_ring_empty_any(struct ptr_ring *r)
228 {
229 	unsigned long flags;
230 	bool ret;
231 
232 	spin_lock_irqsave(&r->consumer_lock, flags);
233 	ret = __ptr_ring_empty(r);
234 	spin_unlock_irqrestore(&r->consumer_lock, flags);
235 
236 	return ret;
237 }
238 
ptr_ring_empty_bh(struct ptr_ring * r)239 static inline bool ptr_ring_empty_bh(struct ptr_ring *r)
240 {
241 	bool ret;
242 
243 	spin_lock_bh(&r->consumer_lock);
244 	ret = __ptr_ring_empty(r);
245 	spin_unlock_bh(&r->consumer_lock);
246 
247 	return ret;
248 }
249 
250 /* Must only be called after __ptr_ring_peek returned !NULL */
__ptr_ring_discard_one(struct ptr_ring * r)251 static inline void __ptr_ring_discard_one(struct ptr_ring *r)
252 {
253 	/* Fundamentally, what we want to do is update consumer
254 	 * index and zero out the entry so producer can reuse it.
255 	 * Doing it naively at each consume would be as simple as:
256 	 *       consumer = r->consumer;
257 	 *       r->queue[consumer++] = NULL;
258 	 *       if (unlikely(consumer >= r->size))
259 	 *               consumer = 0;
260 	 *       r->consumer = consumer;
261 	 * but that is suboptimal when the ring is full as producer is writing
262 	 * out new entries in the same cache line.  Defer these updates until a
263 	 * batch of entries has been consumed.
264 	 */
265 	/* Note: we must keep consumer_head valid at all times for __ptr_ring_empty
266 	 * to work correctly.
267 	 */
268 	int consumer_head = r->consumer_head;
269 	int head = consumer_head++;
270 
271 	/* Once we have processed enough entries invalidate them in
272 	 * the ring all at once so producer can reuse their space in the ring.
273 	 * We also do this when we reach end of the ring - not mandatory
274 	 * but helps keep the implementation simple.
275 	 */
276 	if (unlikely(consumer_head - r->consumer_tail >= r->batch ||
277 		     consumer_head >= r->size)) {
278 		/* Zero out entries in the reverse order: this way we touch the
279 		 * cache line that producer might currently be reading the last;
280 		 * producer won't make progress and touch other cache lines
281 		 * besides the first one until we write out all entries.
282 		 */
283 		while (likely(head >= r->consumer_tail))
284 			r->queue[head--] = NULL;
285 		r->consumer_tail = consumer_head;
286 	}
287 	if (unlikely(consumer_head >= r->size)) {
288 		consumer_head = 0;
289 		r->consumer_tail = 0;
290 	}
291 	/* matching READ_ONCE in __ptr_ring_empty for lockless tests */
292 	WRITE_ONCE(r->consumer_head, consumer_head);
293 }
294 
__ptr_ring_consume(struct ptr_ring * r)295 static inline void *__ptr_ring_consume(struct ptr_ring *r)
296 {
297 	void *ptr;
298 
299 	/* The READ_ONCE in __ptr_ring_peek guarantees that anyone
300 	 * accessing data through the pointer is up to date. Pairs
301 	 * with smp_wmb in __ptr_ring_produce.
302 	 */
303 	ptr = __ptr_ring_peek(r);
304 	if (ptr)
305 		__ptr_ring_discard_one(r);
306 
307 	return ptr;
308 }
309 
__ptr_ring_consume_batched(struct ptr_ring * r,void ** array,int n)310 static inline int __ptr_ring_consume_batched(struct ptr_ring *r,
311 					     void **array, int n)
312 {
313 	void *ptr;
314 	int i;
315 
316 	for (i = 0; i < n; i++) {
317 		ptr = __ptr_ring_consume(r);
318 		if (!ptr)
319 			break;
320 		array[i] = ptr;
321 	}
322 
323 	return i;
324 }
325 
326 /*
327  * Note: resize (below) nests producer lock within consumer lock, so if you
328  * call this in interrupt or BH context, you must disable interrupts/BH when
329  * producing.
330  */
ptr_ring_consume(struct ptr_ring * r)331 static inline void *ptr_ring_consume(struct ptr_ring *r)
332 {
333 	void *ptr;
334 
335 	spin_lock(&r->consumer_lock);
336 	ptr = __ptr_ring_consume(r);
337 	spin_unlock(&r->consumer_lock);
338 
339 	return ptr;
340 }
341 
ptr_ring_consume_irq(struct ptr_ring * r)342 static inline void *ptr_ring_consume_irq(struct ptr_ring *r)
343 {
344 	void *ptr;
345 
346 	spin_lock_irq(&r->consumer_lock);
347 	ptr = __ptr_ring_consume(r);
348 	spin_unlock_irq(&r->consumer_lock);
349 
350 	return ptr;
351 }
352 
ptr_ring_consume_any(struct ptr_ring * r)353 static inline void *ptr_ring_consume_any(struct ptr_ring *r)
354 {
355 	unsigned long flags;
356 	void *ptr;
357 
358 	spin_lock_irqsave(&r->consumer_lock, flags);
359 	ptr = __ptr_ring_consume(r);
360 	spin_unlock_irqrestore(&r->consumer_lock, flags);
361 
362 	return ptr;
363 }
364 
ptr_ring_consume_bh(struct ptr_ring * r)365 static inline void *ptr_ring_consume_bh(struct ptr_ring *r)
366 {
367 	void *ptr;
368 
369 	spin_lock_bh(&r->consumer_lock);
370 	ptr = __ptr_ring_consume(r);
371 	spin_unlock_bh(&r->consumer_lock);
372 
373 	return ptr;
374 }
375 
ptr_ring_consume_batched(struct ptr_ring * r,void ** array,int n)376 static inline int ptr_ring_consume_batched(struct ptr_ring *r,
377 					   void **array, int n)
378 {
379 	int ret;
380 
381 	spin_lock(&r->consumer_lock);
382 	ret = __ptr_ring_consume_batched(r, array, n);
383 	spin_unlock(&r->consumer_lock);
384 
385 	return ret;
386 }
387 
ptr_ring_consume_batched_irq(struct ptr_ring * r,void ** array,int n)388 static inline int ptr_ring_consume_batched_irq(struct ptr_ring *r,
389 					       void **array, int n)
390 {
391 	int ret;
392 
393 	spin_lock_irq(&r->consumer_lock);
394 	ret = __ptr_ring_consume_batched(r, array, n);
395 	spin_unlock_irq(&r->consumer_lock);
396 
397 	return ret;
398 }
399 
ptr_ring_consume_batched_any(struct ptr_ring * r,void ** array,int n)400 static inline int ptr_ring_consume_batched_any(struct ptr_ring *r,
401 					       void **array, int n)
402 {
403 	unsigned long flags;
404 	int ret;
405 
406 	spin_lock_irqsave(&r->consumer_lock, flags);
407 	ret = __ptr_ring_consume_batched(r, array, n);
408 	spin_unlock_irqrestore(&r->consumer_lock, flags);
409 
410 	return ret;
411 }
412 
ptr_ring_consume_batched_bh(struct ptr_ring * r,void ** array,int n)413 static inline int ptr_ring_consume_batched_bh(struct ptr_ring *r,
414 					      void **array, int n)
415 {
416 	int ret;
417 
418 	spin_lock_bh(&r->consumer_lock);
419 	ret = __ptr_ring_consume_batched(r, array, n);
420 	spin_unlock_bh(&r->consumer_lock);
421 
422 	return ret;
423 }
424 
425 /* Cast to structure type and call a function without discarding from FIFO.
426  * Function must return a value.
427  * Callers must take consumer_lock.
428  */
429 #define __PTR_RING_PEEK_CALL(r, f) ((f)(__ptr_ring_peek(r)))
430 
431 #define PTR_RING_PEEK_CALL(r, f) ({ \
432 	typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \
433 	\
434 	spin_lock(&(r)->consumer_lock); \
435 	__PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \
436 	spin_unlock(&(r)->consumer_lock); \
437 	__PTR_RING_PEEK_CALL_v; \
438 })
439 
440 #define PTR_RING_PEEK_CALL_IRQ(r, f) ({ \
441 	typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \
442 	\
443 	spin_lock_irq(&(r)->consumer_lock); \
444 	__PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \
445 	spin_unlock_irq(&(r)->consumer_lock); \
446 	__PTR_RING_PEEK_CALL_v; \
447 })
448 
449 #define PTR_RING_PEEK_CALL_BH(r, f) ({ \
450 	typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \
451 	\
452 	spin_lock_bh(&(r)->consumer_lock); \
453 	__PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \
454 	spin_unlock_bh(&(r)->consumer_lock); \
455 	__PTR_RING_PEEK_CALL_v; \
456 })
457 
458 #define PTR_RING_PEEK_CALL_ANY(r, f) ({ \
459 	typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \
460 	unsigned long __PTR_RING_PEEK_CALL_f;\
461 	\
462 	spin_lock_irqsave(&(r)->consumer_lock, __PTR_RING_PEEK_CALL_f); \
463 	__PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \
464 	spin_unlock_irqrestore(&(r)->consumer_lock, __PTR_RING_PEEK_CALL_f); \
465 	__PTR_RING_PEEK_CALL_v; \
466 })
467 
468 /* Not all gfp_t flags (besides GFP_KERNEL) are allowed. See
469  * documentation for vmalloc for which of them are legal.
470  */
__ptr_ring_init_queue_alloc(unsigned int size,gfp_t gfp)471 static inline void **__ptr_ring_init_queue_alloc(unsigned int size, gfp_t gfp)
472 {
473 	if (size > KMALLOC_MAX_SIZE / sizeof(void *))
474 		return NULL;
475 	return kvmalloc_array(size, sizeof(void *), gfp | __GFP_ZERO);
476 }
477 
__ptr_ring_set_size(struct ptr_ring * r,int size)478 static inline void __ptr_ring_set_size(struct ptr_ring *r, int size)
479 {
480 	r->size = size;
481 	r->batch = SMP_CACHE_BYTES * 2 / sizeof(*(r->queue));
482 	/* We need to set batch at least to 1 to make logic
483 	 * in __ptr_ring_discard_one work correctly.
484 	 * Batching too much (because ring is small) would cause a lot of
485 	 * burstiness. Needs tuning, for now disable batching.
486 	 */
487 	if (r->batch > r->size / 2 || !r->batch)
488 		r->batch = 1;
489 }
490 
ptr_ring_init(struct ptr_ring * r,int size,gfp_t gfp)491 static inline int ptr_ring_init(struct ptr_ring *r, int size, gfp_t gfp)
492 {
493 	r->queue = __ptr_ring_init_queue_alloc(size, gfp);
494 	if (!r->queue)
495 		return -ENOMEM;
496 
497 	__ptr_ring_set_size(r, size);
498 	r->producer = r->consumer_head = r->consumer_tail = 0;
499 	spin_lock_init(&r->producer_lock);
500 	spin_lock_init(&r->consumer_lock);
501 
502 	return 0;
503 }
504 
505 /*
506  * Return entries into ring. Destroy entries that don't fit.
507  *
508  * Note: this is expected to be a rare slow path operation.
509  *
510  * Note: producer lock is nested within consumer lock, so if you
511  * resize you must make sure all uses nest correctly.
512  * In particular if you consume ring in interrupt or BH context, you must
513  * disable interrupts/BH when doing so.
514  */
ptr_ring_unconsume(struct ptr_ring * r,void ** batch,int n,void (* destroy)(void *))515 static inline void ptr_ring_unconsume(struct ptr_ring *r, void **batch, int n,
516 				      void (*destroy)(void *))
517 {
518 	unsigned long flags;
519 	int head;
520 
521 	spin_lock_irqsave(&r->consumer_lock, flags);
522 	spin_lock(&r->producer_lock);
523 
524 	if (!r->size)
525 		goto done;
526 
527 	/*
528 	 * Clean out buffered entries (for simplicity). This way following code
529 	 * can test entries for NULL and if not assume they are valid.
530 	 */
531 	head = r->consumer_head - 1;
532 	while (likely(head >= r->consumer_tail))
533 		r->queue[head--] = NULL;
534 	r->consumer_tail = r->consumer_head;
535 
536 	/*
537 	 * Go over entries in batch, start moving head back and copy entries.
538 	 * Stop when we run into previously unconsumed entries.
539 	 */
540 	while (n) {
541 		head = r->consumer_head - 1;
542 		if (head < 0)
543 			head = r->size - 1;
544 		if (r->queue[head]) {
545 			/* This batch entry will have to be destroyed. */
546 			goto done;
547 		}
548 		r->queue[head] = batch[--n];
549 		r->consumer_tail = head;
550 		/* matching READ_ONCE in __ptr_ring_empty for lockless tests */
551 		WRITE_ONCE(r->consumer_head, head);
552 	}
553 
554 done:
555 	/* Destroy all entries left in the batch. */
556 	while (n)
557 		destroy(batch[--n]);
558 	spin_unlock(&r->producer_lock);
559 	spin_unlock_irqrestore(&r->consumer_lock, flags);
560 }
561 
__ptr_ring_swap_queue(struct ptr_ring * r,void ** queue,int size,gfp_t gfp,void (* destroy)(void *))562 static inline void **__ptr_ring_swap_queue(struct ptr_ring *r, void **queue,
563 					   int size, gfp_t gfp,
564 					   void (*destroy)(void *))
565 {
566 	int producer = 0;
567 	void **old;
568 	void *ptr;
569 
570 	while ((ptr = __ptr_ring_consume(r)))
571 		if (producer < size)
572 			queue[producer++] = ptr;
573 		else if (destroy)
574 			destroy(ptr);
575 
576 	if (producer >= size)
577 		producer = 0;
578 	__ptr_ring_set_size(r, size);
579 	r->producer = producer;
580 	r->consumer_head = 0;
581 	r->consumer_tail = 0;
582 	old = r->queue;
583 	r->queue = queue;
584 
585 	return old;
586 }
587 
588 /*
589  * Note: producer lock is nested within consumer lock, so if you
590  * resize you must make sure all uses nest correctly.
591  * In particular if you consume ring in interrupt or BH context, you must
592  * disable interrupts/BH when doing so.
593  */
ptr_ring_resize(struct ptr_ring * r,int size,gfp_t gfp,void (* destroy)(void *))594 static inline int ptr_ring_resize(struct ptr_ring *r, int size, gfp_t gfp,
595 				  void (*destroy)(void *))
596 {
597 	unsigned long flags;
598 	void **queue = __ptr_ring_init_queue_alloc(size, gfp);
599 	void **old;
600 
601 	if (!queue)
602 		return -ENOMEM;
603 
604 	spin_lock_irqsave(&(r)->consumer_lock, flags);
605 	spin_lock(&(r)->producer_lock);
606 
607 	old = __ptr_ring_swap_queue(r, queue, size, gfp, destroy);
608 
609 	spin_unlock(&(r)->producer_lock);
610 	spin_unlock_irqrestore(&(r)->consumer_lock, flags);
611 
612 	kvfree(old);
613 
614 	return 0;
615 }
616 
617 /*
618  * Note: producer lock is nested within consumer lock, so if you
619  * resize you must make sure all uses nest correctly.
620  * In particular if you consume ring in interrupt or BH context, you must
621  * disable interrupts/BH when doing so.
622  */
ptr_ring_resize_multiple(struct ptr_ring ** rings,unsigned int nrings,int size,gfp_t gfp,void (* destroy)(void *))623 static inline int ptr_ring_resize_multiple(struct ptr_ring **rings,
624 					   unsigned int nrings,
625 					   int size,
626 					   gfp_t gfp, void (*destroy)(void *))
627 {
628 	unsigned long flags;
629 	void ***queues;
630 	int i;
631 
632 	queues = kmalloc_array(nrings, sizeof(*queues), gfp);
633 	if (!queues)
634 		goto noqueues;
635 
636 	for (i = 0; i < nrings; ++i) {
637 		queues[i] = __ptr_ring_init_queue_alloc(size, gfp);
638 		if (!queues[i])
639 			goto nomem;
640 	}
641 
642 	for (i = 0; i < nrings; ++i) {
643 		spin_lock_irqsave(&(rings[i])->consumer_lock, flags);
644 		spin_lock(&(rings[i])->producer_lock);
645 		queues[i] = __ptr_ring_swap_queue(rings[i], queues[i],
646 						  size, gfp, destroy);
647 		spin_unlock(&(rings[i])->producer_lock);
648 		spin_unlock_irqrestore(&(rings[i])->consumer_lock, flags);
649 	}
650 
651 	for (i = 0; i < nrings; ++i)
652 		kvfree(queues[i]);
653 
654 	kfree(queues);
655 
656 	return 0;
657 
658 nomem:
659 	while (--i >= 0)
660 		kvfree(queues[i]);
661 
662 	kfree(queues);
663 
664 noqueues:
665 	return -ENOMEM;
666 }
667 
ptr_ring_cleanup(struct ptr_ring * r,void (* destroy)(void *))668 static inline void ptr_ring_cleanup(struct ptr_ring *r, void (*destroy)(void *))
669 {
670 	void *ptr;
671 
672 	if (destroy)
673 		while ((ptr = ptr_ring_consume(r)))
674 			destroy(ptr);
675 	kvfree(r->queue);
676 }
677 
678 #endif /* _LINUX_PTR_RING_H  */
679