1 /*
2 * Generic EDAC defs
3 *
4 * Author: Dave Jiang <djiang@mvista.com>
5 *
6 * 2006-2008 (c) MontaVista Software, Inc. This file is licensed under
7 * the terms of the GNU General Public License version 2. This program
8 * is licensed "as is" without any warranty of any kind, whether express
9 * or implied.
10 *
11 */
12 #ifndef _LINUX_EDAC_H_
13 #define _LINUX_EDAC_H_
14
15 #include <linux/atomic.h>
16 #include <linux/device.h>
17 #include <linux/completion.h>
18 #include <linux/workqueue.h>
19 #include <linux/debugfs.h>
20 #include <linux/numa.h>
21
22 #define EDAC_DEVICE_NAME_LEN 31
23
24 struct device;
25
26 #define EDAC_OPSTATE_INVAL -1
27 #define EDAC_OPSTATE_POLL 0
28 #define EDAC_OPSTATE_NMI 1
29 #define EDAC_OPSTATE_INT 2
30
31 extern int edac_op_state;
32
33 struct bus_type *edac_get_sysfs_subsys(void);
34 int edac_get_report_status(void);
35 void edac_set_report_status(int new);
36
37 enum {
38 EDAC_REPORTING_ENABLED,
39 EDAC_REPORTING_DISABLED,
40 EDAC_REPORTING_FORCE
41 };
42
opstate_init(void)43 static inline void opstate_init(void)
44 {
45 switch (edac_op_state) {
46 case EDAC_OPSTATE_POLL:
47 case EDAC_OPSTATE_NMI:
48 break;
49 default:
50 edac_op_state = EDAC_OPSTATE_POLL;
51 }
52 return;
53 }
54
55 /* Max length of a DIMM label*/
56 #define EDAC_MC_LABEL_LEN 31
57
58 /* Maximum size of the location string */
59 #define LOCATION_SIZE 256
60
61 /* Defines the maximum number of labels that can be reported */
62 #define EDAC_MAX_LABELS 8
63
64 /* String used to join two or more labels */
65 #define OTHER_LABEL " or "
66
67 /**
68 * enum dev_type - describe the type of memory DRAM chips used at the stick
69 * @DEV_UNKNOWN: Can't be determined, or MC doesn't support detect it
70 * @DEV_X1: 1 bit for data
71 * @DEV_X2: 2 bits for data
72 * @DEV_X4: 4 bits for data
73 * @DEV_X8: 8 bits for data
74 * @DEV_X16: 16 bits for data
75 * @DEV_X32: 32 bits for data
76 * @DEV_X64: 64 bits for data
77 *
78 * Typical values are x4 and x8.
79 */
80 enum dev_type {
81 DEV_UNKNOWN = 0,
82 DEV_X1,
83 DEV_X2,
84 DEV_X4,
85 DEV_X8,
86 DEV_X16,
87 DEV_X32, /* Do these parts exist? */
88 DEV_X64 /* Do these parts exist? */
89 };
90
91 #define DEV_FLAG_UNKNOWN BIT(DEV_UNKNOWN)
92 #define DEV_FLAG_X1 BIT(DEV_X1)
93 #define DEV_FLAG_X2 BIT(DEV_X2)
94 #define DEV_FLAG_X4 BIT(DEV_X4)
95 #define DEV_FLAG_X8 BIT(DEV_X8)
96 #define DEV_FLAG_X16 BIT(DEV_X16)
97 #define DEV_FLAG_X32 BIT(DEV_X32)
98 #define DEV_FLAG_X64 BIT(DEV_X64)
99
100 /**
101 * enum hw_event_mc_err_type - type of the detected error
102 *
103 * @HW_EVENT_ERR_CORRECTED: Corrected Error - Indicates that an ECC
104 * corrected error was detected
105 * @HW_EVENT_ERR_UNCORRECTED: Uncorrected Error - Indicates an error that
106 * can't be corrected by ECC, but it is not
107 * fatal (maybe it is on an unused memory area,
108 * or the memory controller could recover from
109 * it for example, by re-trying the operation).
110 * @HW_EVENT_ERR_DEFERRED: Deferred Error - Indicates an uncorrectable
111 * error whose handling is not urgent. This could
112 * be due to hardware data poisoning where the
113 * system can continue operation until the poisoned
114 * data is consumed. Preemptive measures may also
115 * be taken, e.g. offlining pages, etc.
116 * @HW_EVENT_ERR_FATAL: Fatal Error - Uncorrected error that could not
117 * be recovered.
118 * @HW_EVENT_ERR_INFO: Informational - The CPER spec defines a forth
119 * type of error: informational logs.
120 */
121 enum hw_event_mc_err_type {
122 HW_EVENT_ERR_CORRECTED,
123 HW_EVENT_ERR_UNCORRECTED,
124 HW_EVENT_ERR_DEFERRED,
125 HW_EVENT_ERR_FATAL,
126 HW_EVENT_ERR_INFO,
127 };
128
mc_event_error_type(const unsigned int err_type)129 static inline char *mc_event_error_type(const unsigned int err_type)
130 {
131 switch (err_type) {
132 case HW_EVENT_ERR_CORRECTED:
133 return "Corrected";
134 case HW_EVENT_ERR_UNCORRECTED:
135 return "Uncorrected";
136 case HW_EVENT_ERR_DEFERRED:
137 return "Deferred";
138 case HW_EVENT_ERR_FATAL:
139 return "Fatal";
140 default:
141 case HW_EVENT_ERR_INFO:
142 return "Info";
143 }
144 }
145
146 /**
147 * enum mem_type - memory types. For a more detailed reference, please see
148 * http://en.wikipedia.org/wiki/DRAM
149 *
150 * @MEM_EMPTY: Empty csrow
151 * @MEM_RESERVED: Reserved csrow type
152 * @MEM_UNKNOWN: Unknown csrow type
153 * @MEM_FPM: FPM - Fast Page Mode, used on systems up to 1995.
154 * @MEM_EDO: EDO - Extended data out, used on systems up to 1998.
155 * @MEM_BEDO: BEDO - Burst Extended data out, an EDO variant.
156 * @MEM_SDR: SDR - Single data rate SDRAM
157 * http://en.wikipedia.org/wiki/Synchronous_dynamic_random-access_memory
158 * They use 3 pins for chip select: Pins 0 and 2 are
159 * for rank 0; pins 1 and 3 are for rank 1, if the memory
160 * is dual-rank.
161 * @MEM_RDR: Registered SDR SDRAM
162 * @MEM_DDR: Double data rate SDRAM
163 * http://en.wikipedia.org/wiki/DDR_SDRAM
164 * @MEM_RDDR: Registered Double data rate SDRAM
165 * This is a variant of the DDR memories.
166 * A registered memory has a buffer inside it, hiding
167 * part of the memory details to the memory controller.
168 * @MEM_RMBS: Rambus DRAM, used on a few Pentium III/IV controllers.
169 * @MEM_DDR2: DDR2 RAM, as described at JEDEC JESD79-2F.
170 * Those memories are labeled as "PC2-" instead of "PC" to
171 * differentiate from DDR.
172 * @MEM_FB_DDR2: Fully-Buffered DDR2, as described at JEDEC Std No. 205
173 * and JESD206.
174 * Those memories are accessed per DIMM slot, and not by
175 * a chip select signal.
176 * @MEM_RDDR2: Registered DDR2 RAM
177 * This is a variant of the DDR2 memories.
178 * @MEM_XDR: Rambus XDR
179 * It is an evolution of the original RAMBUS memories,
180 * created to compete with DDR2. Weren't used on any
181 * x86 arch, but cell_edac PPC memory controller uses it.
182 * @MEM_DDR3: DDR3 RAM
183 * @MEM_RDDR3: Registered DDR3 RAM
184 * This is a variant of the DDR3 memories.
185 * @MEM_LRDDR3: Load-Reduced DDR3 memory.
186 * @MEM_DDR4: Unbuffered DDR4 RAM
187 * @MEM_RDDR4: Registered DDR4 RAM
188 * This is a variant of the DDR4 memories.
189 * @MEM_LRDDR4: Load-Reduced DDR4 memory.
190 * @MEM_NVDIMM: Non-volatile RAM
191 */
192 enum mem_type {
193 MEM_EMPTY = 0,
194 MEM_RESERVED,
195 MEM_UNKNOWN,
196 MEM_FPM,
197 MEM_EDO,
198 MEM_BEDO,
199 MEM_SDR,
200 MEM_RDR,
201 MEM_DDR,
202 MEM_RDDR,
203 MEM_RMBS,
204 MEM_DDR2,
205 MEM_FB_DDR2,
206 MEM_RDDR2,
207 MEM_XDR,
208 MEM_DDR3,
209 MEM_RDDR3,
210 MEM_LRDDR3,
211 MEM_DDR4,
212 MEM_RDDR4,
213 MEM_LRDDR4,
214 MEM_NVDIMM,
215 };
216
217 #define MEM_FLAG_EMPTY BIT(MEM_EMPTY)
218 #define MEM_FLAG_RESERVED BIT(MEM_RESERVED)
219 #define MEM_FLAG_UNKNOWN BIT(MEM_UNKNOWN)
220 #define MEM_FLAG_FPM BIT(MEM_FPM)
221 #define MEM_FLAG_EDO BIT(MEM_EDO)
222 #define MEM_FLAG_BEDO BIT(MEM_BEDO)
223 #define MEM_FLAG_SDR BIT(MEM_SDR)
224 #define MEM_FLAG_RDR BIT(MEM_RDR)
225 #define MEM_FLAG_DDR BIT(MEM_DDR)
226 #define MEM_FLAG_RDDR BIT(MEM_RDDR)
227 #define MEM_FLAG_RMBS BIT(MEM_RMBS)
228 #define MEM_FLAG_DDR2 BIT(MEM_DDR2)
229 #define MEM_FLAG_FB_DDR2 BIT(MEM_FB_DDR2)
230 #define MEM_FLAG_RDDR2 BIT(MEM_RDDR2)
231 #define MEM_FLAG_XDR BIT(MEM_XDR)
232 #define MEM_FLAG_DDR3 BIT(MEM_DDR3)
233 #define MEM_FLAG_RDDR3 BIT(MEM_RDDR3)
234 #define MEM_FLAG_DDR4 BIT(MEM_DDR4)
235 #define MEM_FLAG_RDDR4 BIT(MEM_RDDR4)
236 #define MEM_FLAG_LRDDR4 BIT(MEM_LRDDR4)
237 #define MEM_FLAG_NVDIMM BIT(MEM_NVDIMM)
238
239 /**
240 * enum edac-type - Error Detection and Correction capabilities and mode
241 * @EDAC_UNKNOWN: Unknown if ECC is available
242 * @EDAC_NONE: Doesn't support ECC
243 * @EDAC_RESERVED: Reserved ECC type
244 * @EDAC_PARITY: Detects parity errors
245 * @EDAC_EC: Error Checking - no correction
246 * @EDAC_SECDED: Single bit error correction, Double detection
247 * @EDAC_S2ECD2ED: Chipkill x2 devices - do these exist?
248 * @EDAC_S4ECD4ED: Chipkill x4 devices
249 * @EDAC_S8ECD8ED: Chipkill x8 devices
250 * @EDAC_S16ECD16ED: Chipkill x16 devices
251 */
252 enum edac_type {
253 EDAC_UNKNOWN = 0,
254 EDAC_NONE,
255 EDAC_RESERVED,
256 EDAC_PARITY,
257 EDAC_EC,
258 EDAC_SECDED,
259 EDAC_S2ECD2ED,
260 EDAC_S4ECD4ED,
261 EDAC_S8ECD8ED,
262 EDAC_S16ECD16ED,
263 };
264
265 #define EDAC_FLAG_UNKNOWN BIT(EDAC_UNKNOWN)
266 #define EDAC_FLAG_NONE BIT(EDAC_NONE)
267 #define EDAC_FLAG_PARITY BIT(EDAC_PARITY)
268 #define EDAC_FLAG_EC BIT(EDAC_EC)
269 #define EDAC_FLAG_SECDED BIT(EDAC_SECDED)
270 #define EDAC_FLAG_S2ECD2ED BIT(EDAC_S2ECD2ED)
271 #define EDAC_FLAG_S4ECD4ED BIT(EDAC_S4ECD4ED)
272 #define EDAC_FLAG_S8ECD8ED BIT(EDAC_S8ECD8ED)
273 #define EDAC_FLAG_S16ECD16ED BIT(EDAC_S16ECD16ED)
274
275 /**
276 * enum scrub_type - scrubbing capabilities
277 * @SCRUB_UNKNOWN: Unknown if scrubber is available
278 * @SCRUB_NONE: No scrubber
279 * @SCRUB_SW_PROG: SW progressive (sequential) scrubbing
280 * @SCRUB_SW_SRC: Software scrub only errors
281 * @SCRUB_SW_PROG_SRC: Progressive software scrub from an error
282 * @SCRUB_SW_TUNABLE: Software scrub frequency is tunable
283 * @SCRUB_HW_PROG: HW progressive (sequential) scrubbing
284 * @SCRUB_HW_SRC: Hardware scrub only errors
285 * @SCRUB_HW_PROG_SRC: Progressive hardware scrub from an error
286 * @SCRUB_HW_TUNABLE: Hardware scrub frequency is tunable
287 */
288 enum scrub_type {
289 SCRUB_UNKNOWN = 0,
290 SCRUB_NONE,
291 SCRUB_SW_PROG,
292 SCRUB_SW_SRC,
293 SCRUB_SW_PROG_SRC,
294 SCRUB_SW_TUNABLE,
295 SCRUB_HW_PROG,
296 SCRUB_HW_SRC,
297 SCRUB_HW_PROG_SRC,
298 SCRUB_HW_TUNABLE
299 };
300
301 #define SCRUB_FLAG_SW_PROG BIT(SCRUB_SW_PROG)
302 #define SCRUB_FLAG_SW_SRC BIT(SCRUB_SW_SRC)
303 #define SCRUB_FLAG_SW_PROG_SRC BIT(SCRUB_SW_PROG_SRC)
304 #define SCRUB_FLAG_SW_TUN BIT(SCRUB_SW_SCRUB_TUNABLE)
305 #define SCRUB_FLAG_HW_PROG BIT(SCRUB_HW_PROG)
306 #define SCRUB_FLAG_HW_SRC BIT(SCRUB_HW_SRC)
307 #define SCRUB_FLAG_HW_PROG_SRC BIT(SCRUB_HW_PROG_SRC)
308 #define SCRUB_FLAG_HW_TUN BIT(SCRUB_HW_TUNABLE)
309
310 /* FIXME - should have notify capabilities: NMI, LOG, PROC, etc */
311
312 /* EDAC internal operation states */
313 #define OP_ALLOC 0x100
314 #define OP_RUNNING_POLL 0x201
315 #define OP_RUNNING_INTERRUPT 0x202
316 #define OP_RUNNING_POLL_INTR 0x203
317 #define OP_OFFLINE 0x300
318
319 /**
320 * enum edac_mc_layer - memory controller hierarchy layer
321 *
322 * @EDAC_MC_LAYER_BRANCH: memory layer is named "branch"
323 * @EDAC_MC_LAYER_CHANNEL: memory layer is named "channel"
324 * @EDAC_MC_LAYER_SLOT: memory layer is named "slot"
325 * @EDAC_MC_LAYER_CHIP_SELECT: memory layer is named "chip select"
326 * @EDAC_MC_LAYER_ALL_MEM: memory layout is unknown. All memory is mapped
327 * as a single memory area. This is used when
328 * retrieving errors from a firmware driven driver.
329 *
330 * This enum is used by the drivers to tell edac_mc_sysfs what name should
331 * be used when describing a memory stick location.
332 */
333 enum edac_mc_layer_type {
334 EDAC_MC_LAYER_BRANCH,
335 EDAC_MC_LAYER_CHANNEL,
336 EDAC_MC_LAYER_SLOT,
337 EDAC_MC_LAYER_CHIP_SELECT,
338 EDAC_MC_LAYER_ALL_MEM,
339 };
340
341 /**
342 * struct edac_mc_layer - describes the memory controller hierarchy
343 * @type: layer type
344 * @size: number of components per layer. For example,
345 * if the channel layer has two channels, size = 2
346 * @is_virt_csrow: This layer is part of the "csrow" when old API
347 * compatibility mode is enabled. Otherwise, it is
348 * a channel
349 */
350 struct edac_mc_layer {
351 enum edac_mc_layer_type type;
352 unsigned size;
353 bool is_virt_csrow;
354 };
355
356 /*
357 * Maximum number of layers used by the memory controller to uniquely
358 * identify a single memory stick.
359 * NOTE: Changing this constant requires not only to change the constant
360 * below, but also to change the existing code at the core, as there are
361 * some code there that are optimized for 3 layers.
362 */
363 #define EDAC_MAX_LAYERS 3
364
365 /**
366 * EDAC_DIMM_OFF - Macro responsible to get a pointer offset inside a pointer
367 * array for the element given by [layer0,layer1,layer2]
368 * position
369 *
370 * @layers: a struct edac_mc_layer array, describing how many elements
371 * were allocated for each layer
372 * @nlayers: Number of layers at the @layers array
373 * @layer0: layer0 position
374 * @layer1: layer1 position. Unused if n_layers < 2
375 * @layer2: layer2 position. Unused if n_layers < 3
376 *
377 * For 1 layer, this macro returns "var[layer0] - var";
378 *
379 * For 2 layers, this macro is similar to allocate a bi-dimensional array
380 * and to return "var[layer0][layer1] - var";
381 *
382 * For 3 layers, this macro is similar to allocate a tri-dimensional array
383 * and to return "var[layer0][layer1][layer2] - var".
384 *
385 * A loop could be used here to make it more generic, but, as we only have
386 * 3 layers, this is a little faster.
387 *
388 * By design, layers can never be 0 or more than 3. If that ever happens,
389 * a NULL is returned, causing an OOPS during the memory allocation routine,
390 * with would point to the developer that he's doing something wrong.
391 */
392 #define EDAC_DIMM_OFF(layers, nlayers, layer0, layer1, layer2) ({ \
393 int __i; \
394 if ((nlayers) == 1) \
395 __i = layer0; \
396 else if ((nlayers) == 2) \
397 __i = (layer1) + ((layers[1]).size * (layer0)); \
398 else if ((nlayers) == 3) \
399 __i = (layer2) + ((layers[2]).size * ((layer1) + \
400 ((layers[1]).size * (layer0)))); \
401 else \
402 __i = -EINVAL; \
403 __i; \
404 })
405
406 /**
407 * EDAC_DIMM_PTR - Macro responsible to get a pointer inside a pointer array
408 * for the element given by [layer0,layer1,layer2] position
409 *
410 * @layers: a struct edac_mc_layer array, describing how many elements
411 * were allocated for each layer
412 * @var: name of the var where we want to get the pointer
413 * (like mci->dimms)
414 * @nlayers: Number of layers at the @layers array
415 * @layer0: layer0 position
416 * @layer1: layer1 position. Unused if n_layers < 2
417 * @layer2: layer2 position. Unused if n_layers < 3
418 *
419 * For 1 layer, this macro returns "var[layer0]";
420 *
421 * For 2 layers, this macro is similar to allocate a bi-dimensional array
422 * and to return "var[layer0][layer1]";
423 *
424 * For 3 layers, this macro is similar to allocate a tri-dimensional array
425 * and to return "var[layer0][layer1][layer2]";
426 */
427 #define EDAC_DIMM_PTR(layers, var, nlayers, layer0, layer1, layer2) ({ \
428 typeof(*var) __p; \
429 int ___i = EDAC_DIMM_OFF(layers, nlayers, layer0, layer1, layer2); \
430 if (___i < 0) \
431 __p = NULL; \
432 else \
433 __p = (var)[___i]; \
434 __p; \
435 })
436
437 struct dimm_info {
438 struct device dev;
439
440 char label[EDAC_MC_LABEL_LEN + 1]; /* DIMM label on motherboard */
441
442 /* Memory location data */
443 unsigned location[EDAC_MAX_LAYERS];
444
445 struct mem_ctl_info *mci; /* the parent */
446
447 u32 grain; /* granularity of reported error in bytes */
448 enum dev_type dtype; /* memory device type */
449 enum mem_type mtype; /* memory dimm type */
450 enum edac_type edac_mode; /* EDAC mode for this dimm */
451
452 u32 nr_pages; /* number of pages on this dimm */
453
454 unsigned csrow, cschannel; /* Points to the old API data */
455 };
456
457 /**
458 * struct rank_info - contains the information for one DIMM rank
459 *
460 * @chan_idx: channel number where the rank is (typically, 0 or 1)
461 * @ce_count: number of correctable errors for this rank
462 * @csrow: A pointer to the chip select row structure (the parent
463 * structure). The location of the rank is given by
464 * the (csrow->csrow_idx, chan_idx) vector.
465 * @dimm: A pointer to the DIMM structure, where the DIMM label
466 * information is stored.
467 *
468 * FIXME: Currently, the EDAC core model will assume one DIMM per rank.
469 * This is a bad assumption, but it makes this patch easier. Later
470 * patches in this series will fix this issue.
471 */
472 struct rank_info {
473 int chan_idx;
474 struct csrow_info *csrow;
475 struct dimm_info *dimm;
476
477 u32 ce_count; /* Correctable Errors for this csrow */
478 };
479
480 struct csrow_info {
481 struct device dev;
482
483 /* Used only by edac_mc_find_csrow_by_page() */
484 unsigned long first_page; /* first page number in csrow */
485 unsigned long last_page; /* last page number in csrow */
486 unsigned long page_mask; /* used for interleaving -
487 * 0UL for non intlv */
488
489 int csrow_idx; /* the chip-select row */
490
491 u32 ue_count; /* Uncorrectable Errors for this csrow */
492 u32 ce_count; /* Correctable Errors for this csrow */
493
494 struct mem_ctl_info *mci; /* the parent */
495
496 /* channel information for this csrow */
497 u32 nr_channels;
498 struct rank_info **channels;
499 };
500
501 /*
502 * struct errcount_attribute - used to store the several error counts
503 */
504 struct errcount_attribute_data {
505 int n_layers;
506 int pos[EDAC_MAX_LAYERS];
507 int layer0, layer1, layer2;
508 };
509
510 /**
511 * struct edac_raw_error_desc - Raw error report structure
512 * @grain: minimum granularity for an error report, in bytes
513 * @error_count: number of errors of the same type
514 * @top_layer: top layer of the error (layer[0])
515 * @mid_layer: middle layer of the error (layer[1])
516 * @low_layer: low layer of the error (layer[2])
517 * @page_frame_number: page where the error happened
518 * @offset_in_page: page offset
519 * @syndrome: syndrome of the error (or 0 if unknown or if
520 * the syndrome is not applicable)
521 * @msg: error message
522 * @location: location of the error
523 * @label: label of the affected DIMM(s)
524 * @other_detail: other driver-specific detail about the error
525 * @enable_per_layer_report: if false, the error affects all layers
526 * (typically, a memory controller error)
527 */
528 struct edac_raw_error_desc {
529 /*
530 * NOTE: everything before grain won't be cleaned by
531 * edac_raw_error_desc_clean()
532 */
533 char location[LOCATION_SIZE];
534 char label[(EDAC_MC_LABEL_LEN + 1 + sizeof(OTHER_LABEL)) * EDAC_MAX_LABELS];
535 long grain;
536
537 /* the vars below and grain will be cleaned on every new error report */
538 u16 error_count;
539 int top_layer;
540 int mid_layer;
541 int low_layer;
542 unsigned long page_frame_number;
543 unsigned long offset_in_page;
544 unsigned long syndrome;
545 const char *msg;
546 const char *other_detail;
547 bool enable_per_layer_report;
548 };
549
550 /* MEMORY controller information structure
551 */
552 struct mem_ctl_info {
553 struct device dev;
554 struct bus_type *bus;
555
556 struct list_head link; /* for global list of mem_ctl_info structs */
557
558 struct module *owner; /* Module owner of this control struct */
559
560 unsigned long mtype_cap; /* memory types supported by mc */
561 unsigned long edac_ctl_cap; /* Mem controller EDAC capabilities */
562 unsigned long edac_cap; /* configuration capabilities - this is
563 * closely related to edac_ctl_cap. The
564 * difference is that the controller may be
565 * capable of s4ecd4ed which would be listed
566 * in edac_ctl_cap, but if channels aren't
567 * capable of s4ecd4ed then the edac_cap would
568 * not have that capability.
569 */
570 unsigned long scrub_cap; /* chipset scrub capabilities */
571 enum scrub_type scrub_mode; /* current scrub mode */
572
573 /* Translates sdram memory scrub rate given in bytes/sec to the
574 internal representation and configures whatever else needs
575 to be configured.
576 */
577 int (*set_sdram_scrub_rate) (struct mem_ctl_info * mci, u32 bw);
578
579 /* Get the current sdram memory scrub rate from the internal
580 representation and converts it to the closest matching
581 bandwidth in bytes/sec.
582 */
583 int (*get_sdram_scrub_rate) (struct mem_ctl_info * mci);
584
585
586 /* pointer to edac checking routine */
587 void (*edac_check) (struct mem_ctl_info * mci);
588
589 /*
590 * Remaps memory pages: controller pages to physical pages.
591 * For most MC's, this will be NULL.
592 */
593 /* FIXME - why not send the phys page to begin with? */
594 unsigned long (*ctl_page_to_phys) (struct mem_ctl_info * mci,
595 unsigned long page);
596 int mc_idx;
597 struct csrow_info **csrows;
598 unsigned nr_csrows, num_cschannel;
599
600 /*
601 * Memory Controller hierarchy
602 *
603 * There are basically two types of memory controller: the ones that
604 * sees memory sticks ("dimms"), and the ones that sees memory ranks.
605 * All old memory controllers enumerate memories per rank, but most
606 * of the recent drivers enumerate memories per DIMM, instead.
607 * When the memory controller is per rank, csbased is true.
608 */
609 unsigned n_layers;
610 struct edac_mc_layer *layers;
611 bool csbased;
612
613 /*
614 * DIMM info. Will eventually remove the entire csrows_info some day
615 */
616 unsigned tot_dimms;
617 struct dimm_info **dimms;
618
619 /*
620 * FIXME - what about controllers on other busses? - IDs must be
621 * unique. dev pointer should be sufficiently unique, but
622 * BUS:SLOT.FUNC numbers may not be unique.
623 */
624 struct device *pdev;
625 const char *mod_name;
626 const char *ctl_name;
627 const char *dev_name;
628 void *pvt_info;
629 unsigned long start_time; /* mci load start time (in jiffies) */
630
631 /*
632 * drivers shouldn't access those fields directly, as the core
633 * already handles that.
634 */
635 u32 ce_noinfo_count, ue_noinfo_count;
636 u32 ue_mc, ce_mc;
637 u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
638
639 struct completion complete;
640
641 /* Additional top controller level attributes, but specified
642 * by the low level driver.
643 *
644 * Set by the low level driver to provide attributes at the
645 * controller level.
646 * An array of structures, NULL terminated
647 *
648 * If attributes are desired, then set to array of attributes
649 * If no attributes are desired, leave NULL
650 */
651 const struct mcidev_sysfs_attribute *mc_driver_sysfs_attributes;
652
653 /* work struct for this MC */
654 struct delayed_work work;
655
656 /*
657 * Used to report an error - by being at the global struct
658 * makes the memory allocated by the EDAC core
659 */
660 struct edac_raw_error_desc error_desc;
661
662 /* the internal state of this controller instance */
663 int op_state;
664
665 struct dentry *debugfs;
666 u8 fake_inject_layer[EDAC_MAX_LAYERS];
667 bool fake_inject_ue;
668 u16 fake_inject_count;
669 };
670
671 /*
672 * Maximum number of memory controllers in the coherent fabric.
673 */
674 #define EDAC_MAX_MCS 2 * MAX_NUMNODES
675
676 #endif
677