1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/blkdev.h>
7 #include <linux/module.h>
8 #include <linux/fs.h>
9 #include <linux/pagemap.h>
10 #include <linux/highmem.h>
11 #include <linux/time.h>
12 #include <linux/init.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/writeback.h>
18 #include <linux/statfs.h>
19 #include <linux/compat.h>
20 #include <linux/parser.h>
21 #include <linux/ctype.h>
22 #include <linux/namei.h>
23 #include <linux/miscdevice.h>
24 #include <linux/magic.h>
25 #include <linux/slab.h>
26 #include <linux/cleancache.h>
27 #include <linux/ratelimit.h>
28 #include <linux/crc32c.h>
29 #include <linux/btrfs.h>
30 #include "delayed-inode.h"
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "print-tree.h"
36 #include "props.h"
37 #include "xattr.h"
38 #include "volumes.h"
39 #include "export.h"
40 #include "compression.h"
41 #include "rcu-string.h"
42 #include "dev-replace.h"
43 #include "free-space-cache.h"
44 #include "backref.h"
45 #include "tests/btrfs-tests.h"
46
47 #include "qgroup.h"
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/btrfs.h>
50
51 static const struct super_operations btrfs_super_ops;
52
53 /*
54 * Types for mounting the default subvolume and a subvolume explicitly
55 * requested by subvol=/path. That way the callchain is straightforward and we
56 * don't have to play tricks with the mount options and recursive calls to
57 * btrfs_mount.
58 *
59 * The new btrfs_root_fs_type also servers as a tag for the bdev_holder.
60 */
61 static struct file_system_type btrfs_fs_type;
62 static struct file_system_type btrfs_root_fs_type;
63
64 static int btrfs_remount(struct super_block *sb, int *flags, char *data);
65
btrfs_decode_error(int errno)66 const char *btrfs_decode_error(int errno)
67 {
68 char *errstr = "unknown";
69
70 switch (errno) {
71 case -EIO:
72 errstr = "IO failure";
73 break;
74 case -ENOMEM:
75 errstr = "Out of memory";
76 break;
77 case -EROFS:
78 errstr = "Readonly filesystem";
79 break;
80 case -EEXIST:
81 errstr = "Object already exists";
82 break;
83 case -ENOSPC:
84 errstr = "No space left";
85 break;
86 case -ENOENT:
87 errstr = "No such entry";
88 break;
89 }
90
91 return errstr;
92 }
93
94 /*
95 * __btrfs_handle_fs_error decodes expected errors from the caller and
96 * invokes the approciate error response.
97 */
98 __cold
__btrfs_handle_fs_error(struct btrfs_fs_info * fs_info,const char * function,unsigned int line,int errno,const char * fmt,...)99 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
100 unsigned int line, int errno, const char *fmt, ...)
101 {
102 struct super_block *sb = fs_info->sb;
103 #ifdef CONFIG_PRINTK
104 const char *errstr;
105 #endif
106
107 /*
108 * Special case: if the error is EROFS, and we're already
109 * under SB_RDONLY, then it is safe here.
110 */
111 if (errno == -EROFS && sb_rdonly(sb))
112 return;
113
114 #ifdef CONFIG_PRINTK
115 errstr = btrfs_decode_error(errno);
116 if (fmt) {
117 struct va_format vaf;
118 va_list args;
119
120 va_start(args, fmt);
121 vaf.fmt = fmt;
122 vaf.va = &args;
123
124 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
125 sb->s_id, function, line, errno, errstr, &vaf);
126 va_end(args);
127 } else {
128 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
129 sb->s_id, function, line, errno, errstr);
130 }
131 #endif
132
133 /*
134 * Today we only save the error info to memory. Long term we'll
135 * also send it down to the disk
136 */
137 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
138
139 /* Don't go through full error handling during mount */
140 if (!(sb->s_flags & SB_BORN))
141 return;
142
143 if (sb_rdonly(sb))
144 return;
145
146 /* btrfs handle error by forcing the filesystem readonly */
147 sb->s_flags |= SB_RDONLY;
148 btrfs_info(fs_info, "forced readonly");
149 /*
150 * Note that a running device replace operation is not canceled here
151 * although there is no way to update the progress. It would add the
152 * risk of a deadlock, therefore the canceling is omitted. The only
153 * penalty is that some I/O remains active until the procedure
154 * completes. The next time when the filesystem is mounted writeable
155 * again, the device replace operation continues.
156 */
157 }
158
159 #ifdef CONFIG_PRINTK
160 static const char * const logtypes[] = {
161 "emergency",
162 "alert",
163 "critical",
164 "error",
165 "warning",
166 "notice",
167 "info",
168 "debug",
169 };
170
171
172 /*
173 * Use one ratelimit state per log level so that a flood of less important
174 * messages doesn't cause more important ones to be dropped.
175 */
176 static struct ratelimit_state printk_limits[] = {
177 RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100),
178 RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100),
179 RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100),
180 RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100),
181 RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100),
182 RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100),
183 RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100),
184 RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100),
185 };
186
btrfs_printk(const struct btrfs_fs_info * fs_info,const char * fmt,...)187 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
188 {
189 char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0";
190 struct va_format vaf;
191 va_list args;
192 int kern_level;
193 const char *type = logtypes[4];
194 struct ratelimit_state *ratelimit = &printk_limits[4];
195
196 va_start(args, fmt);
197
198 while ((kern_level = printk_get_level(fmt)) != 0) {
199 size_t size = printk_skip_level(fmt) - fmt;
200
201 if (kern_level >= '0' && kern_level <= '7') {
202 memcpy(lvl, fmt, size);
203 lvl[size] = '\0';
204 type = logtypes[kern_level - '0'];
205 ratelimit = &printk_limits[kern_level - '0'];
206 }
207 fmt += size;
208 }
209
210 vaf.fmt = fmt;
211 vaf.va = &args;
212
213 if (__ratelimit(ratelimit))
214 printk("%sBTRFS %s (device %s): %pV\n", lvl, type,
215 fs_info ? fs_info->sb->s_id : "<unknown>", &vaf);
216
217 va_end(args);
218 }
219 #endif
220
221 /*
222 * We only mark the transaction aborted and then set the file system read-only.
223 * This will prevent new transactions from starting or trying to join this
224 * one.
225 *
226 * This means that error recovery at the call site is limited to freeing
227 * any local memory allocations and passing the error code up without
228 * further cleanup. The transaction should complete as it normally would
229 * in the call path but will return -EIO.
230 *
231 * We'll complete the cleanup in btrfs_end_transaction and
232 * btrfs_commit_transaction.
233 */
234 __cold
__btrfs_abort_transaction(struct btrfs_trans_handle * trans,const char * function,unsigned int line,int errno)235 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
236 const char *function,
237 unsigned int line, int errno)
238 {
239 struct btrfs_fs_info *fs_info = trans->fs_info;
240
241 trans->aborted = errno;
242 /* Nothing used. The other threads that have joined this
243 * transaction may be able to continue. */
244 if (!trans->dirty && list_empty(&trans->new_bgs)) {
245 const char *errstr;
246
247 errstr = btrfs_decode_error(errno);
248 btrfs_warn(fs_info,
249 "%s:%d: Aborting unused transaction(%s).",
250 function, line, errstr);
251 return;
252 }
253 WRITE_ONCE(trans->transaction->aborted, errno);
254 /* Wake up anybody who may be waiting on this transaction */
255 wake_up(&fs_info->transaction_wait);
256 wake_up(&fs_info->transaction_blocked_wait);
257 __btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
258 }
259 /*
260 * __btrfs_panic decodes unexpected, fatal errors from the caller,
261 * issues an alert, and either panics or BUGs, depending on mount options.
262 */
263 __cold
__btrfs_panic(struct btrfs_fs_info * fs_info,const char * function,unsigned int line,int errno,const char * fmt,...)264 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
265 unsigned int line, int errno, const char *fmt, ...)
266 {
267 char *s_id = "<unknown>";
268 const char *errstr;
269 struct va_format vaf = { .fmt = fmt };
270 va_list args;
271
272 if (fs_info)
273 s_id = fs_info->sb->s_id;
274
275 va_start(args, fmt);
276 vaf.va = &args;
277
278 errstr = btrfs_decode_error(errno);
279 if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR)))
280 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
281 s_id, function, line, &vaf, errno, errstr);
282
283 btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
284 function, line, &vaf, errno, errstr);
285 va_end(args);
286 /* Caller calls BUG() */
287 }
288
btrfs_put_super(struct super_block * sb)289 static void btrfs_put_super(struct super_block *sb)
290 {
291 close_ctree(btrfs_sb(sb));
292 }
293
294 enum {
295 Opt_acl, Opt_noacl,
296 Opt_clear_cache,
297 Opt_commit_interval,
298 Opt_compress,
299 Opt_compress_force,
300 Opt_compress_force_type,
301 Opt_compress_type,
302 Opt_degraded,
303 Opt_device,
304 Opt_fatal_errors,
305 Opt_flushoncommit, Opt_noflushoncommit,
306 Opt_inode_cache, Opt_noinode_cache,
307 Opt_max_inline,
308 Opt_barrier, Opt_nobarrier,
309 Opt_datacow, Opt_nodatacow,
310 Opt_datasum, Opt_nodatasum,
311 Opt_defrag, Opt_nodefrag,
312 Opt_discard, Opt_nodiscard,
313 Opt_nologreplay,
314 Opt_norecovery,
315 Opt_ratio,
316 Opt_rescan_uuid_tree,
317 Opt_skip_balance,
318 Opt_space_cache, Opt_no_space_cache,
319 Opt_space_cache_version,
320 Opt_ssd, Opt_nossd,
321 Opt_ssd_spread, Opt_nossd_spread,
322 Opt_subvol,
323 Opt_subvol_empty,
324 Opt_subvolid,
325 Opt_thread_pool,
326 Opt_treelog, Opt_notreelog,
327 Opt_usebackuproot,
328 Opt_user_subvol_rm_allowed,
329
330 /* Deprecated options */
331 Opt_alloc_start,
332 Opt_recovery,
333 Opt_subvolrootid,
334
335 /* Debugging options */
336 Opt_check_integrity,
337 Opt_check_integrity_including_extent_data,
338 Opt_check_integrity_print_mask,
339 Opt_enospc_debug, Opt_noenospc_debug,
340 #ifdef CONFIG_BTRFS_DEBUG
341 Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
342 #endif
343 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
344 Opt_ref_verify,
345 #endif
346 Opt_err,
347 };
348
349 static const match_table_t tokens = {
350 {Opt_acl, "acl"},
351 {Opt_noacl, "noacl"},
352 {Opt_clear_cache, "clear_cache"},
353 {Opt_commit_interval, "commit=%u"},
354 {Opt_compress, "compress"},
355 {Opt_compress_type, "compress=%s"},
356 {Opt_compress_force, "compress-force"},
357 {Opt_compress_force_type, "compress-force=%s"},
358 {Opt_degraded, "degraded"},
359 {Opt_device, "device=%s"},
360 {Opt_fatal_errors, "fatal_errors=%s"},
361 {Opt_flushoncommit, "flushoncommit"},
362 {Opt_noflushoncommit, "noflushoncommit"},
363 {Opt_inode_cache, "inode_cache"},
364 {Opt_noinode_cache, "noinode_cache"},
365 {Opt_max_inline, "max_inline=%s"},
366 {Opt_barrier, "barrier"},
367 {Opt_nobarrier, "nobarrier"},
368 {Opt_datacow, "datacow"},
369 {Opt_nodatacow, "nodatacow"},
370 {Opt_datasum, "datasum"},
371 {Opt_nodatasum, "nodatasum"},
372 {Opt_defrag, "autodefrag"},
373 {Opt_nodefrag, "noautodefrag"},
374 {Opt_discard, "discard"},
375 {Opt_nodiscard, "nodiscard"},
376 {Opt_nologreplay, "nologreplay"},
377 {Opt_norecovery, "norecovery"},
378 {Opt_ratio, "metadata_ratio=%u"},
379 {Opt_rescan_uuid_tree, "rescan_uuid_tree"},
380 {Opt_skip_balance, "skip_balance"},
381 {Opt_space_cache, "space_cache"},
382 {Opt_no_space_cache, "nospace_cache"},
383 {Opt_space_cache_version, "space_cache=%s"},
384 {Opt_ssd, "ssd"},
385 {Opt_nossd, "nossd"},
386 {Opt_ssd_spread, "ssd_spread"},
387 {Opt_nossd_spread, "nossd_spread"},
388 {Opt_subvol, "subvol=%s"},
389 {Opt_subvol_empty, "subvol="},
390 {Opt_subvolid, "subvolid=%s"},
391 {Opt_thread_pool, "thread_pool=%u"},
392 {Opt_treelog, "treelog"},
393 {Opt_notreelog, "notreelog"},
394 {Opt_usebackuproot, "usebackuproot"},
395 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
396
397 /* Deprecated options */
398 {Opt_alloc_start, "alloc_start=%s"},
399 {Opt_recovery, "recovery"},
400 {Opt_subvolrootid, "subvolrootid=%d"},
401
402 /* Debugging options */
403 {Opt_check_integrity, "check_int"},
404 {Opt_check_integrity_including_extent_data, "check_int_data"},
405 {Opt_check_integrity_print_mask, "check_int_print_mask=%u"},
406 {Opt_enospc_debug, "enospc_debug"},
407 {Opt_noenospc_debug, "noenospc_debug"},
408 #ifdef CONFIG_BTRFS_DEBUG
409 {Opt_fragment_data, "fragment=data"},
410 {Opt_fragment_metadata, "fragment=metadata"},
411 {Opt_fragment_all, "fragment=all"},
412 #endif
413 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
414 {Opt_ref_verify, "ref_verify"},
415 #endif
416 {Opt_err, NULL},
417 };
418
419 /*
420 * Regular mount options parser. Everything that is needed only when
421 * reading in a new superblock is parsed here.
422 * XXX JDM: This needs to be cleaned up for remount.
423 */
btrfs_parse_options(struct btrfs_fs_info * info,char * options,unsigned long new_flags)424 int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
425 unsigned long new_flags)
426 {
427 substring_t args[MAX_OPT_ARGS];
428 char *p, *num;
429 u64 cache_gen;
430 int intarg;
431 int ret = 0;
432 char *compress_type;
433 bool compress_force = false;
434 enum btrfs_compression_type saved_compress_type;
435 int saved_compress_level;
436 bool saved_compress_force;
437 int no_compress = 0;
438
439 cache_gen = btrfs_super_cache_generation(info->super_copy);
440 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
441 btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE);
442 else if (cache_gen)
443 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
444
445 /*
446 * Even the options are empty, we still need to do extra check
447 * against new flags
448 */
449 if (!options)
450 goto check;
451
452 while ((p = strsep(&options, ",")) != NULL) {
453 int token;
454 if (!*p)
455 continue;
456
457 token = match_token(p, tokens, args);
458 switch (token) {
459 case Opt_degraded:
460 btrfs_info(info, "allowing degraded mounts");
461 btrfs_set_opt(info->mount_opt, DEGRADED);
462 break;
463 case Opt_subvol:
464 case Opt_subvol_empty:
465 case Opt_subvolid:
466 case Opt_subvolrootid:
467 case Opt_device:
468 /*
469 * These are parsed by btrfs_parse_subvol_options or
470 * btrfs_parse_device_options and can be ignored here.
471 */
472 break;
473 case Opt_nodatasum:
474 btrfs_set_and_info(info, NODATASUM,
475 "setting nodatasum");
476 break;
477 case Opt_datasum:
478 if (btrfs_test_opt(info, NODATASUM)) {
479 if (btrfs_test_opt(info, NODATACOW))
480 btrfs_info(info,
481 "setting datasum, datacow enabled");
482 else
483 btrfs_info(info, "setting datasum");
484 }
485 btrfs_clear_opt(info->mount_opt, NODATACOW);
486 btrfs_clear_opt(info->mount_opt, NODATASUM);
487 break;
488 case Opt_nodatacow:
489 if (!btrfs_test_opt(info, NODATACOW)) {
490 if (!btrfs_test_opt(info, COMPRESS) ||
491 !btrfs_test_opt(info, FORCE_COMPRESS)) {
492 btrfs_info(info,
493 "setting nodatacow, compression disabled");
494 } else {
495 btrfs_info(info, "setting nodatacow");
496 }
497 }
498 btrfs_clear_opt(info->mount_opt, COMPRESS);
499 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
500 btrfs_set_opt(info->mount_opt, NODATACOW);
501 btrfs_set_opt(info->mount_opt, NODATASUM);
502 break;
503 case Opt_datacow:
504 btrfs_clear_and_info(info, NODATACOW,
505 "setting datacow");
506 break;
507 case Opt_compress_force:
508 case Opt_compress_force_type:
509 compress_force = true;
510 /* Fallthrough */
511 case Opt_compress:
512 case Opt_compress_type:
513 saved_compress_type = btrfs_test_opt(info,
514 COMPRESS) ?
515 info->compress_type : BTRFS_COMPRESS_NONE;
516 saved_compress_force =
517 btrfs_test_opt(info, FORCE_COMPRESS);
518 saved_compress_level = info->compress_level;
519 if (token == Opt_compress ||
520 token == Opt_compress_force ||
521 strncmp(args[0].from, "zlib", 4) == 0) {
522 compress_type = "zlib";
523
524 info->compress_type = BTRFS_COMPRESS_ZLIB;
525 info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
526 /*
527 * args[0] contains uninitialized data since
528 * for these tokens we don't expect any
529 * parameter.
530 */
531 if (token != Opt_compress &&
532 token != Opt_compress_force)
533 info->compress_level =
534 btrfs_compress_str2level(args[0].from);
535 btrfs_set_opt(info->mount_opt, COMPRESS);
536 btrfs_clear_opt(info->mount_opt, NODATACOW);
537 btrfs_clear_opt(info->mount_opt, NODATASUM);
538 no_compress = 0;
539 } else if (strncmp(args[0].from, "lzo", 3) == 0) {
540 compress_type = "lzo";
541 info->compress_type = BTRFS_COMPRESS_LZO;
542 info->compress_level = 0;
543 btrfs_set_opt(info->mount_opt, COMPRESS);
544 btrfs_clear_opt(info->mount_opt, NODATACOW);
545 btrfs_clear_opt(info->mount_opt, NODATASUM);
546 btrfs_set_fs_incompat(info, COMPRESS_LZO);
547 no_compress = 0;
548 } else if (strcmp(args[0].from, "zstd") == 0) {
549 compress_type = "zstd";
550 info->compress_type = BTRFS_COMPRESS_ZSTD;
551 btrfs_set_opt(info->mount_opt, COMPRESS);
552 btrfs_clear_opt(info->mount_opt, NODATACOW);
553 btrfs_clear_opt(info->mount_opt, NODATASUM);
554 btrfs_set_fs_incompat(info, COMPRESS_ZSTD);
555 no_compress = 0;
556 } else if (strncmp(args[0].from, "no", 2) == 0) {
557 compress_type = "no";
558 info->compress_level = 0;
559 info->compress_type = 0;
560 btrfs_clear_opt(info->mount_opt, COMPRESS);
561 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
562 compress_force = false;
563 no_compress++;
564 } else {
565 ret = -EINVAL;
566 goto out;
567 }
568
569 if (compress_force) {
570 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
571 } else {
572 /*
573 * If we remount from compress-force=xxx to
574 * compress=xxx, we need clear FORCE_COMPRESS
575 * flag, otherwise, there is no way for users
576 * to disable forcible compression separately.
577 */
578 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
579 }
580 if (no_compress == 1) {
581 btrfs_info(info, "use no compression");
582 } else if ((info->compress_type != saved_compress_type) ||
583 (compress_force != saved_compress_force) ||
584 (info->compress_level != saved_compress_level)) {
585 btrfs_info(info, "%s %s compression, level %d",
586 (compress_force) ? "force" : "use",
587 compress_type, info->compress_level);
588 }
589 compress_force = false;
590 break;
591 case Opt_ssd:
592 btrfs_set_and_info(info, SSD,
593 "enabling ssd optimizations");
594 btrfs_clear_opt(info->mount_opt, NOSSD);
595 break;
596 case Opt_ssd_spread:
597 btrfs_set_and_info(info, SSD,
598 "enabling ssd optimizations");
599 btrfs_set_and_info(info, SSD_SPREAD,
600 "using spread ssd allocation scheme");
601 btrfs_clear_opt(info->mount_opt, NOSSD);
602 break;
603 case Opt_nossd:
604 btrfs_set_opt(info->mount_opt, NOSSD);
605 btrfs_clear_and_info(info, SSD,
606 "not using ssd optimizations");
607 /* Fallthrough */
608 case Opt_nossd_spread:
609 btrfs_clear_and_info(info, SSD_SPREAD,
610 "not using spread ssd allocation scheme");
611 break;
612 case Opt_barrier:
613 btrfs_clear_and_info(info, NOBARRIER,
614 "turning on barriers");
615 break;
616 case Opt_nobarrier:
617 btrfs_set_and_info(info, NOBARRIER,
618 "turning off barriers");
619 break;
620 case Opt_thread_pool:
621 ret = match_int(&args[0], &intarg);
622 if (ret) {
623 goto out;
624 } else if (intarg == 0) {
625 ret = -EINVAL;
626 goto out;
627 }
628 info->thread_pool_size = intarg;
629 break;
630 case Opt_max_inline:
631 num = match_strdup(&args[0]);
632 if (num) {
633 info->max_inline = memparse(num, NULL);
634 kfree(num);
635
636 if (info->max_inline) {
637 info->max_inline = min_t(u64,
638 info->max_inline,
639 info->sectorsize);
640 }
641 btrfs_info(info, "max_inline at %llu",
642 info->max_inline);
643 } else {
644 ret = -ENOMEM;
645 goto out;
646 }
647 break;
648 case Opt_alloc_start:
649 btrfs_info(info,
650 "option alloc_start is obsolete, ignored");
651 break;
652 case Opt_acl:
653 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
654 info->sb->s_flags |= SB_POSIXACL;
655 break;
656 #else
657 btrfs_err(info, "support for ACL not compiled in!");
658 ret = -EINVAL;
659 goto out;
660 #endif
661 case Opt_noacl:
662 info->sb->s_flags &= ~SB_POSIXACL;
663 break;
664 case Opt_notreelog:
665 btrfs_set_and_info(info, NOTREELOG,
666 "disabling tree log");
667 break;
668 case Opt_treelog:
669 btrfs_clear_and_info(info, NOTREELOG,
670 "enabling tree log");
671 break;
672 case Opt_norecovery:
673 case Opt_nologreplay:
674 btrfs_set_and_info(info, NOLOGREPLAY,
675 "disabling log replay at mount time");
676 break;
677 case Opt_flushoncommit:
678 btrfs_set_and_info(info, FLUSHONCOMMIT,
679 "turning on flush-on-commit");
680 break;
681 case Opt_noflushoncommit:
682 btrfs_clear_and_info(info, FLUSHONCOMMIT,
683 "turning off flush-on-commit");
684 break;
685 case Opt_ratio:
686 ret = match_int(&args[0], &intarg);
687 if (ret)
688 goto out;
689 info->metadata_ratio = intarg;
690 btrfs_info(info, "metadata ratio %u",
691 info->metadata_ratio);
692 break;
693 case Opt_discard:
694 btrfs_set_and_info(info, DISCARD,
695 "turning on discard");
696 break;
697 case Opt_nodiscard:
698 btrfs_clear_and_info(info, DISCARD,
699 "turning off discard");
700 break;
701 case Opt_space_cache:
702 case Opt_space_cache_version:
703 if (token == Opt_space_cache ||
704 strcmp(args[0].from, "v1") == 0) {
705 btrfs_clear_opt(info->mount_opt,
706 FREE_SPACE_TREE);
707 btrfs_set_and_info(info, SPACE_CACHE,
708 "enabling disk space caching");
709 } else if (strcmp(args[0].from, "v2") == 0) {
710 btrfs_clear_opt(info->mount_opt,
711 SPACE_CACHE);
712 btrfs_set_and_info(info, FREE_SPACE_TREE,
713 "enabling free space tree");
714 } else {
715 ret = -EINVAL;
716 goto out;
717 }
718 break;
719 case Opt_rescan_uuid_tree:
720 btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
721 break;
722 case Opt_no_space_cache:
723 if (btrfs_test_opt(info, SPACE_CACHE)) {
724 btrfs_clear_and_info(info, SPACE_CACHE,
725 "disabling disk space caching");
726 }
727 if (btrfs_test_opt(info, FREE_SPACE_TREE)) {
728 btrfs_clear_and_info(info, FREE_SPACE_TREE,
729 "disabling free space tree");
730 }
731 break;
732 case Opt_inode_cache:
733 btrfs_set_pending_and_info(info, INODE_MAP_CACHE,
734 "enabling inode map caching");
735 break;
736 case Opt_noinode_cache:
737 btrfs_clear_pending_and_info(info, INODE_MAP_CACHE,
738 "disabling inode map caching");
739 break;
740 case Opt_clear_cache:
741 btrfs_set_and_info(info, CLEAR_CACHE,
742 "force clearing of disk cache");
743 break;
744 case Opt_user_subvol_rm_allowed:
745 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
746 break;
747 case Opt_enospc_debug:
748 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
749 break;
750 case Opt_noenospc_debug:
751 btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
752 break;
753 case Opt_defrag:
754 btrfs_set_and_info(info, AUTO_DEFRAG,
755 "enabling auto defrag");
756 break;
757 case Opt_nodefrag:
758 btrfs_clear_and_info(info, AUTO_DEFRAG,
759 "disabling auto defrag");
760 break;
761 case Opt_recovery:
762 btrfs_warn(info,
763 "'recovery' is deprecated, use 'usebackuproot' instead");
764 /* fall through */
765 case Opt_usebackuproot:
766 btrfs_info(info,
767 "trying to use backup root at mount time");
768 btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
769 break;
770 case Opt_skip_balance:
771 btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
772 break;
773 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
774 case Opt_check_integrity_including_extent_data:
775 btrfs_info(info,
776 "enabling check integrity including extent data");
777 btrfs_set_opt(info->mount_opt,
778 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
779 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
780 break;
781 case Opt_check_integrity:
782 btrfs_info(info, "enabling check integrity");
783 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
784 break;
785 case Opt_check_integrity_print_mask:
786 ret = match_int(&args[0], &intarg);
787 if (ret)
788 goto out;
789 info->check_integrity_print_mask = intarg;
790 btrfs_info(info, "check_integrity_print_mask 0x%x",
791 info->check_integrity_print_mask);
792 break;
793 #else
794 case Opt_check_integrity_including_extent_data:
795 case Opt_check_integrity:
796 case Opt_check_integrity_print_mask:
797 btrfs_err(info,
798 "support for check_integrity* not compiled in!");
799 ret = -EINVAL;
800 goto out;
801 #endif
802 case Opt_fatal_errors:
803 if (strcmp(args[0].from, "panic") == 0)
804 btrfs_set_opt(info->mount_opt,
805 PANIC_ON_FATAL_ERROR);
806 else if (strcmp(args[0].from, "bug") == 0)
807 btrfs_clear_opt(info->mount_opt,
808 PANIC_ON_FATAL_ERROR);
809 else {
810 ret = -EINVAL;
811 goto out;
812 }
813 break;
814 case Opt_commit_interval:
815 intarg = 0;
816 ret = match_int(&args[0], &intarg);
817 if (ret)
818 goto out;
819 if (intarg == 0) {
820 btrfs_info(info,
821 "using default commit interval %us",
822 BTRFS_DEFAULT_COMMIT_INTERVAL);
823 intarg = BTRFS_DEFAULT_COMMIT_INTERVAL;
824 } else if (intarg > 300) {
825 btrfs_warn(info, "excessive commit interval %d",
826 intarg);
827 }
828 info->commit_interval = intarg;
829 break;
830 #ifdef CONFIG_BTRFS_DEBUG
831 case Opt_fragment_all:
832 btrfs_info(info, "fragmenting all space");
833 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
834 btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
835 break;
836 case Opt_fragment_metadata:
837 btrfs_info(info, "fragmenting metadata");
838 btrfs_set_opt(info->mount_opt,
839 FRAGMENT_METADATA);
840 break;
841 case Opt_fragment_data:
842 btrfs_info(info, "fragmenting data");
843 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
844 break;
845 #endif
846 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
847 case Opt_ref_verify:
848 btrfs_info(info, "doing ref verification");
849 btrfs_set_opt(info->mount_opt, REF_VERIFY);
850 break;
851 #endif
852 case Opt_err:
853 btrfs_info(info, "unrecognized mount option '%s'", p);
854 ret = -EINVAL;
855 goto out;
856 default:
857 break;
858 }
859 }
860 check:
861 /*
862 * Extra check for current option against current flag
863 */
864 if (btrfs_test_opt(info, NOLOGREPLAY) && !(new_flags & SB_RDONLY)) {
865 btrfs_err(info,
866 "nologreplay must be used with ro mount option");
867 ret = -EINVAL;
868 }
869 out:
870 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
871 !btrfs_test_opt(info, FREE_SPACE_TREE) &&
872 !btrfs_test_opt(info, CLEAR_CACHE)) {
873 btrfs_err(info, "cannot disable free space tree");
874 ret = -EINVAL;
875
876 }
877 if (!ret && btrfs_test_opt(info, SPACE_CACHE))
878 btrfs_info(info, "disk space caching is enabled");
879 if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE))
880 btrfs_info(info, "using free space tree");
881 return ret;
882 }
883
884 /*
885 * Parse mount options that are required early in the mount process.
886 *
887 * All other options will be parsed on much later in the mount process and
888 * only when we need to allocate a new super block.
889 */
btrfs_parse_device_options(const char * options,fmode_t flags,void * holder)890 static int btrfs_parse_device_options(const char *options, fmode_t flags,
891 void *holder)
892 {
893 substring_t args[MAX_OPT_ARGS];
894 char *device_name, *opts, *orig, *p;
895 struct btrfs_device *device = NULL;
896 int error = 0;
897
898 lockdep_assert_held(&uuid_mutex);
899
900 if (!options)
901 return 0;
902
903 /*
904 * strsep changes the string, duplicate it because btrfs_parse_options
905 * gets called later
906 */
907 opts = kstrdup(options, GFP_KERNEL);
908 if (!opts)
909 return -ENOMEM;
910 orig = opts;
911
912 while ((p = strsep(&opts, ",")) != NULL) {
913 int token;
914
915 if (!*p)
916 continue;
917
918 token = match_token(p, tokens, args);
919 if (token == Opt_device) {
920 device_name = match_strdup(&args[0]);
921 if (!device_name) {
922 error = -ENOMEM;
923 goto out;
924 }
925 device = btrfs_scan_one_device(device_name, flags,
926 holder);
927 kfree(device_name);
928 if (IS_ERR(device)) {
929 error = PTR_ERR(device);
930 goto out;
931 }
932 }
933 }
934
935 out:
936 kfree(orig);
937 return error;
938 }
939
940 /*
941 * Parse mount options that are related to subvolume id
942 *
943 * The value is later passed to mount_subvol()
944 */
btrfs_parse_subvol_options(const char * options,char ** subvol_name,u64 * subvol_objectid)945 static int btrfs_parse_subvol_options(const char *options, char **subvol_name,
946 u64 *subvol_objectid)
947 {
948 substring_t args[MAX_OPT_ARGS];
949 char *opts, *orig, *p;
950 int error = 0;
951 u64 subvolid;
952
953 if (!options)
954 return 0;
955
956 /*
957 * strsep changes the string, duplicate it because
958 * btrfs_parse_device_options gets called later
959 */
960 opts = kstrdup(options, GFP_KERNEL);
961 if (!opts)
962 return -ENOMEM;
963 orig = opts;
964
965 while ((p = strsep(&opts, ",")) != NULL) {
966 int token;
967 if (!*p)
968 continue;
969
970 token = match_token(p, tokens, args);
971 switch (token) {
972 case Opt_subvol:
973 kfree(*subvol_name);
974 *subvol_name = match_strdup(&args[0]);
975 if (!*subvol_name) {
976 error = -ENOMEM;
977 goto out;
978 }
979 break;
980 case Opt_subvolid:
981 error = match_u64(&args[0], &subvolid);
982 if (error)
983 goto out;
984
985 /* we want the original fs_tree */
986 if (subvolid == 0)
987 subvolid = BTRFS_FS_TREE_OBJECTID;
988
989 *subvol_objectid = subvolid;
990 break;
991 case Opt_subvolrootid:
992 pr_warn("BTRFS: 'subvolrootid' mount option is deprecated and has no effect\n");
993 break;
994 default:
995 break;
996 }
997 }
998
999 out:
1000 kfree(orig);
1001 return error;
1002 }
1003
btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info * fs_info,u64 subvol_objectid)1004 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
1005 u64 subvol_objectid)
1006 {
1007 struct btrfs_root *root = fs_info->tree_root;
1008 struct btrfs_root *fs_root;
1009 struct btrfs_root_ref *root_ref;
1010 struct btrfs_inode_ref *inode_ref;
1011 struct btrfs_key key;
1012 struct btrfs_path *path = NULL;
1013 char *name = NULL, *ptr;
1014 u64 dirid;
1015 int len;
1016 int ret;
1017
1018 path = btrfs_alloc_path();
1019 if (!path) {
1020 ret = -ENOMEM;
1021 goto err;
1022 }
1023 path->leave_spinning = 1;
1024
1025 name = kmalloc(PATH_MAX, GFP_KERNEL);
1026 if (!name) {
1027 ret = -ENOMEM;
1028 goto err;
1029 }
1030 ptr = name + PATH_MAX - 1;
1031 ptr[0] = '\0';
1032
1033 /*
1034 * Walk up the subvolume trees in the tree of tree roots by root
1035 * backrefs until we hit the top-level subvolume.
1036 */
1037 while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
1038 key.objectid = subvol_objectid;
1039 key.type = BTRFS_ROOT_BACKREF_KEY;
1040 key.offset = (u64)-1;
1041
1042 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1043 if (ret < 0) {
1044 goto err;
1045 } else if (ret > 0) {
1046 ret = btrfs_previous_item(root, path, subvol_objectid,
1047 BTRFS_ROOT_BACKREF_KEY);
1048 if (ret < 0) {
1049 goto err;
1050 } else if (ret > 0) {
1051 ret = -ENOENT;
1052 goto err;
1053 }
1054 }
1055
1056 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1057 subvol_objectid = key.offset;
1058
1059 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1060 struct btrfs_root_ref);
1061 len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
1062 ptr -= len + 1;
1063 if (ptr < name) {
1064 ret = -ENAMETOOLONG;
1065 goto err;
1066 }
1067 read_extent_buffer(path->nodes[0], ptr + 1,
1068 (unsigned long)(root_ref + 1), len);
1069 ptr[0] = '/';
1070 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
1071 btrfs_release_path(path);
1072
1073 key.objectid = subvol_objectid;
1074 key.type = BTRFS_ROOT_ITEM_KEY;
1075 key.offset = (u64)-1;
1076 fs_root = btrfs_read_fs_root_no_name(fs_info, &key);
1077 if (IS_ERR(fs_root)) {
1078 ret = PTR_ERR(fs_root);
1079 goto err;
1080 }
1081
1082 /*
1083 * Walk up the filesystem tree by inode refs until we hit the
1084 * root directory.
1085 */
1086 while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
1087 key.objectid = dirid;
1088 key.type = BTRFS_INODE_REF_KEY;
1089 key.offset = (u64)-1;
1090
1091 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1092 if (ret < 0) {
1093 goto err;
1094 } else if (ret > 0) {
1095 ret = btrfs_previous_item(fs_root, path, dirid,
1096 BTRFS_INODE_REF_KEY);
1097 if (ret < 0) {
1098 goto err;
1099 } else if (ret > 0) {
1100 ret = -ENOENT;
1101 goto err;
1102 }
1103 }
1104
1105 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1106 dirid = key.offset;
1107
1108 inode_ref = btrfs_item_ptr(path->nodes[0],
1109 path->slots[0],
1110 struct btrfs_inode_ref);
1111 len = btrfs_inode_ref_name_len(path->nodes[0],
1112 inode_ref);
1113 ptr -= len + 1;
1114 if (ptr < name) {
1115 ret = -ENAMETOOLONG;
1116 goto err;
1117 }
1118 read_extent_buffer(path->nodes[0], ptr + 1,
1119 (unsigned long)(inode_ref + 1), len);
1120 ptr[0] = '/';
1121 btrfs_release_path(path);
1122 }
1123 }
1124
1125 btrfs_free_path(path);
1126 if (ptr == name + PATH_MAX - 1) {
1127 name[0] = '/';
1128 name[1] = '\0';
1129 } else {
1130 memmove(name, ptr, name + PATH_MAX - ptr);
1131 }
1132 return name;
1133
1134 err:
1135 btrfs_free_path(path);
1136 kfree(name);
1137 return ERR_PTR(ret);
1138 }
1139
get_default_subvol_objectid(struct btrfs_fs_info * fs_info,u64 * objectid)1140 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
1141 {
1142 struct btrfs_root *root = fs_info->tree_root;
1143 struct btrfs_dir_item *di;
1144 struct btrfs_path *path;
1145 struct btrfs_key location;
1146 u64 dir_id;
1147
1148 path = btrfs_alloc_path();
1149 if (!path)
1150 return -ENOMEM;
1151 path->leave_spinning = 1;
1152
1153 /*
1154 * Find the "default" dir item which points to the root item that we
1155 * will mount by default if we haven't been given a specific subvolume
1156 * to mount.
1157 */
1158 dir_id = btrfs_super_root_dir(fs_info->super_copy);
1159 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
1160 if (IS_ERR(di)) {
1161 btrfs_free_path(path);
1162 return PTR_ERR(di);
1163 }
1164 if (!di) {
1165 /*
1166 * Ok the default dir item isn't there. This is weird since
1167 * it's always been there, but don't freak out, just try and
1168 * mount the top-level subvolume.
1169 */
1170 btrfs_free_path(path);
1171 *objectid = BTRFS_FS_TREE_OBJECTID;
1172 return 0;
1173 }
1174
1175 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1176 btrfs_free_path(path);
1177 *objectid = location.objectid;
1178 return 0;
1179 }
1180
btrfs_fill_super(struct super_block * sb,struct btrfs_fs_devices * fs_devices,void * data)1181 static int btrfs_fill_super(struct super_block *sb,
1182 struct btrfs_fs_devices *fs_devices,
1183 void *data)
1184 {
1185 struct inode *inode;
1186 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1187 struct btrfs_key key;
1188 int err;
1189
1190 sb->s_maxbytes = MAX_LFS_FILESIZE;
1191 sb->s_magic = BTRFS_SUPER_MAGIC;
1192 sb->s_op = &btrfs_super_ops;
1193 sb->s_d_op = &btrfs_dentry_operations;
1194 sb->s_export_op = &btrfs_export_ops;
1195 sb->s_xattr = btrfs_xattr_handlers;
1196 sb->s_time_gran = 1;
1197 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
1198 sb->s_flags |= SB_POSIXACL;
1199 #endif
1200 sb->s_flags |= SB_I_VERSION;
1201 sb->s_iflags |= SB_I_CGROUPWB;
1202
1203 err = super_setup_bdi(sb);
1204 if (err) {
1205 btrfs_err(fs_info, "super_setup_bdi failed");
1206 return err;
1207 }
1208
1209 err = open_ctree(sb, fs_devices, (char *)data);
1210 if (err) {
1211 btrfs_err(fs_info, "open_ctree failed");
1212 return err;
1213 }
1214
1215 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
1216 key.type = BTRFS_INODE_ITEM_KEY;
1217 key.offset = 0;
1218 inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
1219 if (IS_ERR(inode)) {
1220 err = PTR_ERR(inode);
1221 goto fail_close;
1222 }
1223
1224 sb->s_root = d_make_root(inode);
1225 if (!sb->s_root) {
1226 err = -ENOMEM;
1227 goto fail_close;
1228 }
1229
1230 cleancache_init_fs(sb);
1231 sb->s_flags |= SB_ACTIVE;
1232 return 0;
1233
1234 fail_close:
1235 close_ctree(fs_info);
1236 return err;
1237 }
1238
btrfs_sync_fs(struct super_block * sb,int wait)1239 int btrfs_sync_fs(struct super_block *sb, int wait)
1240 {
1241 struct btrfs_trans_handle *trans;
1242 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1243 struct btrfs_root *root = fs_info->tree_root;
1244
1245 trace_btrfs_sync_fs(fs_info, wait);
1246
1247 if (!wait) {
1248 filemap_flush(fs_info->btree_inode->i_mapping);
1249 return 0;
1250 }
1251
1252 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1253
1254 trans = btrfs_attach_transaction_barrier(root);
1255 if (IS_ERR(trans)) {
1256 /* no transaction, don't bother */
1257 if (PTR_ERR(trans) == -ENOENT) {
1258 /*
1259 * Exit unless we have some pending changes
1260 * that need to go through commit
1261 */
1262 if (fs_info->pending_changes == 0)
1263 return 0;
1264 /*
1265 * A non-blocking test if the fs is frozen. We must not
1266 * start a new transaction here otherwise a deadlock
1267 * happens. The pending operations are delayed to the
1268 * next commit after thawing.
1269 */
1270 if (sb_start_write_trylock(sb))
1271 sb_end_write(sb);
1272 else
1273 return 0;
1274 trans = btrfs_start_transaction(root, 0);
1275 }
1276 if (IS_ERR(trans))
1277 return PTR_ERR(trans);
1278 }
1279 return btrfs_commit_transaction(trans);
1280 }
1281
btrfs_show_options(struct seq_file * seq,struct dentry * dentry)1282 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1283 {
1284 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1285 const char *compress_type;
1286 const char *subvol_name;
1287
1288 if (btrfs_test_opt(info, DEGRADED))
1289 seq_puts(seq, ",degraded");
1290 if (btrfs_test_opt(info, NODATASUM))
1291 seq_puts(seq, ",nodatasum");
1292 if (btrfs_test_opt(info, NODATACOW))
1293 seq_puts(seq, ",nodatacow");
1294 if (btrfs_test_opt(info, NOBARRIER))
1295 seq_puts(seq, ",nobarrier");
1296 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1297 seq_printf(seq, ",max_inline=%llu", info->max_inline);
1298 if (info->thread_pool_size != min_t(unsigned long,
1299 num_online_cpus() + 2, 8))
1300 seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1301 if (btrfs_test_opt(info, COMPRESS)) {
1302 compress_type = btrfs_compress_type2str(info->compress_type);
1303 if (btrfs_test_opt(info, FORCE_COMPRESS))
1304 seq_printf(seq, ",compress-force=%s", compress_type);
1305 else
1306 seq_printf(seq, ",compress=%s", compress_type);
1307 if (info->compress_level)
1308 seq_printf(seq, ":%d", info->compress_level);
1309 }
1310 if (btrfs_test_opt(info, NOSSD))
1311 seq_puts(seq, ",nossd");
1312 if (btrfs_test_opt(info, SSD_SPREAD))
1313 seq_puts(seq, ",ssd_spread");
1314 else if (btrfs_test_opt(info, SSD))
1315 seq_puts(seq, ",ssd");
1316 if (btrfs_test_opt(info, NOTREELOG))
1317 seq_puts(seq, ",notreelog");
1318 if (btrfs_test_opt(info, NOLOGREPLAY))
1319 seq_puts(seq, ",nologreplay");
1320 if (btrfs_test_opt(info, FLUSHONCOMMIT))
1321 seq_puts(seq, ",flushoncommit");
1322 if (btrfs_test_opt(info, DISCARD))
1323 seq_puts(seq, ",discard");
1324 if (!(info->sb->s_flags & SB_POSIXACL))
1325 seq_puts(seq, ",noacl");
1326 if (btrfs_test_opt(info, SPACE_CACHE))
1327 seq_puts(seq, ",space_cache");
1328 else if (btrfs_test_opt(info, FREE_SPACE_TREE))
1329 seq_puts(seq, ",space_cache=v2");
1330 else
1331 seq_puts(seq, ",nospace_cache");
1332 if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1333 seq_puts(seq, ",rescan_uuid_tree");
1334 if (btrfs_test_opt(info, CLEAR_CACHE))
1335 seq_puts(seq, ",clear_cache");
1336 if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1337 seq_puts(seq, ",user_subvol_rm_allowed");
1338 if (btrfs_test_opt(info, ENOSPC_DEBUG))
1339 seq_puts(seq, ",enospc_debug");
1340 if (btrfs_test_opt(info, AUTO_DEFRAG))
1341 seq_puts(seq, ",autodefrag");
1342 if (btrfs_test_opt(info, INODE_MAP_CACHE))
1343 seq_puts(seq, ",inode_cache");
1344 if (btrfs_test_opt(info, SKIP_BALANCE))
1345 seq_puts(seq, ",skip_balance");
1346 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1347 if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1348 seq_puts(seq, ",check_int_data");
1349 else if (btrfs_test_opt(info, CHECK_INTEGRITY))
1350 seq_puts(seq, ",check_int");
1351 if (info->check_integrity_print_mask)
1352 seq_printf(seq, ",check_int_print_mask=%d",
1353 info->check_integrity_print_mask);
1354 #endif
1355 if (info->metadata_ratio)
1356 seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1357 if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1358 seq_puts(seq, ",fatal_errors=panic");
1359 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1360 seq_printf(seq, ",commit=%u", info->commit_interval);
1361 #ifdef CONFIG_BTRFS_DEBUG
1362 if (btrfs_test_opt(info, FRAGMENT_DATA))
1363 seq_puts(seq, ",fragment=data");
1364 if (btrfs_test_opt(info, FRAGMENT_METADATA))
1365 seq_puts(seq, ",fragment=metadata");
1366 #endif
1367 if (btrfs_test_opt(info, REF_VERIFY))
1368 seq_puts(seq, ",ref_verify");
1369 seq_printf(seq, ",subvolid=%llu",
1370 BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1371 subvol_name = btrfs_get_subvol_name_from_objectid(info,
1372 BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1373 if (!IS_ERR(subvol_name)) {
1374 seq_puts(seq, ",subvol=");
1375 seq_escape(seq, subvol_name, " \t\n\\");
1376 kfree(subvol_name);
1377 }
1378 return 0;
1379 }
1380
btrfs_test_super(struct super_block * s,void * data)1381 static int btrfs_test_super(struct super_block *s, void *data)
1382 {
1383 struct btrfs_fs_info *p = data;
1384 struct btrfs_fs_info *fs_info = btrfs_sb(s);
1385
1386 return fs_info->fs_devices == p->fs_devices;
1387 }
1388
btrfs_set_super(struct super_block * s,void * data)1389 static int btrfs_set_super(struct super_block *s, void *data)
1390 {
1391 int err = set_anon_super(s, data);
1392 if (!err)
1393 s->s_fs_info = data;
1394 return err;
1395 }
1396
1397 /*
1398 * subvolumes are identified by ino 256
1399 */
is_subvolume_inode(struct inode * inode)1400 static inline int is_subvolume_inode(struct inode *inode)
1401 {
1402 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1403 return 1;
1404 return 0;
1405 }
1406
mount_subvol(const char * subvol_name,u64 subvol_objectid,const char * device_name,struct vfsmount * mnt)1407 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1408 const char *device_name, struct vfsmount *mnt)
1409 {
1410 struct dentry *root;
1411 int ret;
1412
1413 if (!subvol_name) {
1414 if (!subvol_objectid) {
1415 ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1416 &subvol_objectid);
1417 if (ret) {
1418 root = ERR_PTR(ret);
1419 goto out;
1420 }
1421 }
1422 subvol_name = btrfs_get_subvol_name_from_objectid(
1423 btrfs_sb(mnt->mnt_sb), subvol_objectid);
1424 if (IS_ERR(subvol_name)) {
1425 root = ERR_CAST(subvol_name);
1426 subvol_name = NULL;
1427 goto out;
1428 }
1429
1430 }
1431
1432 root = mount_subtree(mnt, subvol_name);
1433 /* mount_subtree() drops our reference on the vfsmount. */
1434 mnt = NULL;
1435
1436 if (!IS_ERR(root)) {
1437 struct super_block *s = root->d_sb;
1438 struct btrfs_fs_info *fs_info = btrfs_sb(s);
1439 struct inode *root_inode = d_inode(root);
1440 u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1441
1442 ret = 0;
1443 if (!is_subvolume_inode(root_inode)) {
1444 btrfs_err(fs_info, "'%s' is not a valid subvolume",
1445 subvol_name);
1446 ret = -EINVAL;
1447 }
1448 if (subvol_objectid && root_objectid != subvol_objectid) {
1449 /*
1450 * This will also catch a race condition where a
1451 * subvolume which was passed by ID is renamed and
1452 * another subvolume is renamed over the old location.
1453 */
1454 btrfs_err(fs_info,
1455 "subvol '%s' does not match subvolid %llu",
1456 subvol_name, subvol_objectid);
1457 ret = -EINVAL;
1458 }
1459 if (ret) {
1460 dput(root);
1461 root = ERR_PTR(ret);
1462 deactivate_locked_super(s);
1463 }
1464 }
1465
1466 out:
1467 mntput(mnt);
1468 kfree(subvol_name);
1469 return root;
1470 }
1471
parse_security_options(char * orig_opts,struct security_mnt_opts * sec_opts)1472 static int parse_security_options(char *orig_opts,
1473 struct security_mnt_opts *sec_opts)
1474 {
1475 char *secdata = NULL;
1476 int ret = 0;
1477
1478 secdata = alloc_secdata();
1479 if (!secdata)
1480 return -ENOMEM;
1481 ret = security_sb_copy_data(orig_opts, secdata);
1482 if (ret) {
1483 free_secdata(secdata);
1484 return ret;
1485 }
1486 ret = security_sb_parse_opts_str(secdata, sec_opts);
1487 free_secdata(secdata);
1488 return ret;
1489 }
1490
setup_security_options(struct btrfs_fs_info * fs_info,struct super_block * sb,struct security_mnt_opts * sec_opts)1491 static int setup_security_options(struct btrfs_fs_info *fs_info,
1492 struct super_block *sb,
1493 struct security_mnt_opts *sec_opts)
1494 {
1495 int ret = 0;
1496
1497 /*
1498 * Call security_sb_set_mnt_opts() to check whether new sec_opts
1499 * is valid.
1500 */
1501 ret = security_sb_set_mnt_opts(sb, sec_opts, 0, NULL);
1502 if (ret)
1503 return ret;
1504
1505 #ifdef CONFIG_SECURITY
1506 if (!fs_info->security_opts.num_mnt_opts) {
1507 /* first time security setup, copy sec_opts to fs_info */
1508 memcpy(&fs_info->security_opts, sec_opts, sizeof(*sec_opts));
1509 } else {
1510 /*
1511 * Since SELinux (the only one supporting security_mnt_opts)
1512 * does NOT support changing context during remount/mount of
1513 * the same sb, this must be the same or part of the same
1514 * security options, just free it.
1515 */
1516 security_free_mnt_opts(sec_opts);
1517 }
1518 #endif
1519 return ret;
1520 }
1521
1522 /*
1523 * Find a superblock for the given device / mount point.
1524 *
1525 * Note: This is based on mount_bdev from fs/super.c with a few additions
1526 * for multiple device setup. Make sure to keep it in sync.
1527 */
btrfs_mount_root(struct file_system_type * fs_type,int flags,const char * device_name,void * data)1528 static struct dentry *btrfs_mount_root(struct file_system_type *fs_type,
1529 int flags, const char *device_name, void *data)
1530 {
1531 struct block_device *bdev = NULL;
1532 struct super_block *s;
1533 struct btrfs_device *device = NULL;
1534 struct btrfs_fs_devices *fs_devices = NULL;
1535 struct btrfs_fs_info *fs_info = NULL;
1536 struct security_mnt_opts new_sec_opts;
1537 fmode_t mode = FMODE_READ;
1538 int error = 0;
1539
1540 if (!(flags & SB_RDONLY))
1541 mode |= FMODE_WRITE;
1542
1543 security_init_mnt_opts(&new_sec_opts);
1544 if (data) {
1545 error = parse_security_options(data, &new_sec_opts);
1546 if (error)
1547 return ERR_PTR(error);
1548 }
1549
1550 /*
1551 * Setup a dummy root and fs_info for test/set super. This is because
1552 * we don't actually fill this stuff out until open_ctree, but we need
1553 * it for searching for existing supers, so this lets us do that and
1554 * then open_ctree will properly initialize everything later.
1555 */
1556 fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
1557 if (!fs_info) {
1558 error = -ENOMEM;
1559 goto error_sec_opts;
1560 }
1561
1562 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1563 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1564 security_init_mnt_opts(&fs_info->security_opts);
1565 if (!fs_info->super_copy || !fs_info->super_for_commit) {
1566 error = -ENOMEM;
1567 goto error_fs_info;
1568 }
1569
1570 mutex_lock(&uuid_mutex);
1571 error = btrfs_parse_device_options(data, mode, fs_type);
1572 if (error) {
1573 mutex_unlock(&uuid_mutex);
1574 goto error_fs_info;
1575 }
1576
1577 device = btrfs_scan_one_device(device_name, mode, fs_type);
1578 if (IS_ERR(device)) {
1579 mutex_unlock(&uuid_mutex);
1580 error = PTR_ERR(device);
1581 goto error_fs_info;
1582 }
1583
1584 fs_devices = device->fs_devices;
1585 fs_info->fs_devices = fs_devices;
1586
1587 error = btrfs_open_devices(fs_devices, mode, fs_type);
1588 mutex_unlock(&uuid_mutex);
1589 if (error)
1590 goto error_fs_info;
1591
1592 if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1593 error = -EACCES;
1594 goto error_close_devices;
1595 }
1596
1597 bdev = fs_devices->latest_bdev;
1598 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC,
1599 fs_info);
1600 if (IS_ERR(s)) {
1601 error = PTR_ERR(s);
1602 goto error_close_devices;
1603 }
1604
1605 if (s->s_root) {
1606 btrfs_close_devices(fs_devices);
1607 free_fs_info(fs_info);
1608 if ((flags ^ s->s_flags) & SB_RDONLY)
1609 error = -EBUSY;
1610 } else {
1611 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1612 btrfs_sb(s)->bdev_holder = fs_type;
1613 error = btrfs_fill_super(s, fs_devices, data);
1614 }
1615 if (error) {
1616 deactivate_locked_super(s);
1617 goto error_sec_opts;
1618 }
1619
1620 fs_info = btrfs_sb(s);
1621 error = setup_security_options(fs_info, s, &new_sec_opts);
1622 if (error) {
1623 deactivate_locked_super(s);
1624 goto error_sec_opts;
1625 }
1626
1627 return dget(s->s_root);
1628
1629 error_close_devices:
1630 btrfs_close_devices(fs_devices);
1631 error_fs_info:
1632 free_fs_info(fs_info);
1633 error_sec_opts:
1634 security_free_mnt_opts(&new_sec_opts);
1635 return ERR_PTR(error);
1636 }
1637
1638 /*
1639 * Mount function which is called by VFS layer.
1640 *
1641 * In order to allow mounting a subvolume directly, btrfs uses mount_subtree()
1642 * which needs vfsmount* of device's root (/). This means device's root has to
1643 * be mounted internally in any case.
1644 *
1645 * Operation flow:
1646 * 1. Parse subvol id related options for later use in mount_subvol().
1647 *
1648 * 2. Mount device's root (/) by calling vfs_kern_mount().
1649 *
1650 * NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the
1651 * first place. In order to avoid calling btrfs_mount() again, we use
1652 * different file_system_type which is not registered to VFS by
1653 * register_filesystem() (btrfs_root_fs_type). As a result,
1654 * btrfs_mount_root() is called. The return value will be used by
1655 * mount_subtree() in mount_subvol().
1656 *
1657 * 3. Call mount_subvol() to get the dentry of subvolume. Since there is
1658 * "btrfs subvolume set-default", mount_subvol() is called always.
1659 */
btrfs_mount(struct file_system_type * fs_type,int flags,const char * device_name,void * data)1660 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1661 const char *device_name, void *data)
1662 {
1663 struct vfsmount *mnt_root;
1664 struct dentry *root;
1665 fmode_t mode = FMODE_READ;
1666 char *subvol_name = NULL;
1667 u64 subvol_objectid = 0;
1668 int error = 0;
1669
1670 if (!(flags & SB_RDONLY))
1671 mode |= FMODE_WRITE;
1672
1673 error = btrfs_parse_subvol_options(data, &subvol_name,
1674 &subvol_objectid);
1675 if (error) {
1676 kfree(subvol_name);
1677 return ERR_PTR(error);
1678 }
1679
1680 /* mount device's root (/) */
1681 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data);
1682 if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) {
1683 if (flags & SB_RDONLY) {
1684 mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1685 flags & ~SB_RDONLY, device_name, data);
1686 } else {
1687 mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1688 flags | SB_RDONLY, device_name, data);
1689 if (IS_ERR(mnt_root)) {
1690 root = ERR_CAST(mnt_root);
1691 kfree(subvol_name);
1692 goto out;
1693 }
1694
1695 down_write(&mnt_root->mnt_sb->s_umount);
1696 error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL);
1697 up_write(&mnt_root->mnt_sb->s_umount);
1698 if (error < 0) {
1699 root = ERR_PTR(error);
1700 mntput(mnt_root);
1701 kfree(subvol_name);
1702 goto out;
1703 }
1704 }
1705 }
1706 if (IS_ERR(mnt_root)) {
1707 root = ERR_CAST(mnt_root);
1708 kfree(subvol_name);
1709 goto out;
1710 }
1711
1712 /* mount_subvol() will free subvol_name and mnt_root */
1713 root = mount_subvol(subvol_name, subvol_objectid, device_name, mnt_root);
1714
1715 out:
1716 return root;
1717 }
1718
btrfs_resize_thread_pool(struct btrfs_fs_info * fs_info,u32 new_pool_size,u32 old_pool_size)1719 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1720 u32 new_pool_size, u32 old_pool_size)
1721 {
1722 if (new_pool_size == old_pool_size)
1723 return;
1724
1725 fs_info->thread_pool_size = new_pool_size;
1726
1727 btrfs_info(fs_info, "resize thread pool %d -> %d",
1728 old_pool_size, new_pool_size);
1729
1730 btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1731 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1732 btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size);
1733 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1734 btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1735 btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1736 btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1737 new_pool_size);
1738 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1739 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1740 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1741 btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1742 btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1743 new_pool_size);
1744 }
1745
btrfs_remount_prepare(struct btrfs_fs_info * fs_info)1746 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1747 {
1748 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1749 }
1750
btrfs_remount_begin(struct btrfs_fs_info * fs_info,unsigned long old_opts,int flags)1751 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1752 unsigned long old_opts, int flags)
1753 {
1754 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1755 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1756 (flags & SB_RDONLY))) {
1757 /* wait for any defraggers to finish */
1758 wait_event(fs_info->transaction_wait,
1759 (atomic_read(&fs_info->defrag_running) == 0));
1760 if (flags & SB_RDONLY)
1761 sync_filesystem(fs_info->sb);
1762 }
1763 }
1764
btrfs_remount_cleanup(struct btrfs_fs_info * fs_info,unsigned long old_opts)1765 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1766 unsigned long old_opts)
1767 {
1768 /*
1769 * We need to cleanup all defragable inodes if the autodefragment is
1770 * close or the filesystem is read only.
1771 */
1772 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1773 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1774 btrfs_cleanup_defrag_inodes(fs_info);
1775 }
1776
1777 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1778 }
1779
btrfs_remount(struct super_block * sb,int * flags,char * data)1780 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1781 {
1782 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1783 struct btrfs_root *root = fs_info->tree_root;
1784 unsigned old_flags = sb->s_flags;
1785 unsigned long old_opts = fs_info->mount_opt;
1786 unsigned long old_compress_type = fs_info->compress_type;
1787 u64 old_max_inline = fs_info->max_inline;
1788 u32 old_thread_pool_size = fs_info->thread_pool_size;
1789 u32 old_metadata_ratio = fs_info->metadata_ratio;
1790 int ret;
1791
1792 sync_filesystem(sb);
1793 btrfs_remount_prepare(fs_info);
1794
1795 if (data) {
1796 struct security_mnt_opts new_sec_opts;
1797
1798 security_init_mnt_opts(&new_sec_opts);
1799 ret = parse_security_options(data, &new_sec_opts);
1800 if (ret)
1801 goto restore;
1802 ret = setup_security_options(fs_info, sb,
1803 &new_sec_opts);
1804 if (ret) {
1805 security_free_mnt_opts(&new_sec_opts);
1806 goto restore;
1807 }
1808 }
1809
1810 ret = btrfs_parse_options(fs_info, data, *flags);
1811 if (ret)
1812 goto restore;
1813
1814 btrfs_remount_begin(fs_info, old_opts, *flags);
1815 btrfs_resize_thread_pool(fs_info,
1816 fs_info->thread_pool_size, old_thread_pool_size);
1817
1818 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1819 goto out;
1820
1821 if (*flags & SB_RDONLY) {
1822 /*
1823 * this also happens on 'umount -rf' or on shutdown, when
1824 * the filesystem is busy.
1825 */
1826 cancel_work_sync(&fs_info->async_reclaim_work);
1827
1828 /* wait for the uuid_scan task to finish */
1829 down(&fs_info->uuid_tree_rescan_sem);
1830 /* avoid complains from lockdep et al. */
1831 up(&fs_info->uuid_tree_rescan_sem);
1832
1833 sb->s_flags |= SB_RDONLY;
1834
1835 /*
1836 * Setting SB_RDONLY will put the cleaner thread to
1837 * sleep at the next loop if it's already active.
1838 * If it's already asleep, we'll leave unused block
1839 * groups on disk until we're mounted read-write again
1840 * unless we clean them up here.
1841 */
1842 btrfs_delete_unused_bgs(fs_info);
1843
1844 btrfs_dev_replace_suspend_for_unmount(fs_info);
1845 btrfs_scrub_cancel(fs_info);
1846 btrfs_pause_balance(fs_info);
1847
1848 /*
1849 * Pause the qgroup rescan worker if it is running. We don't want
1850 * it to be still running after we are in RO mode, as after that,
1851 * by the time we unmount, it might have left a transaction open,
1852 * so we would leak the transaction and/or crash.
1853 */
1854 btrfs_qgroup_wait_for_completion(fs_info, false);
1855
1856 ret = btrfs_commit_super(fs_info);
1857 if (ret)
1858 goto restore;
1859 } else {
1860 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1861 btrfs_err(fs_info,
1862 "Remounting read-write after error is not allowed");
1863 ret = -EINVAL;
1864 goto restore;
1865 }
1866 if (fs_info->fs_devices->rw_devices == 0) {
1867 ret = -EACCES;
1868 goto restore;
1869 }
1870
1871 if (!btrfs_check_rw_degradable(fs_info, NULL)) {
1872 btrfs_warn(fs_info,
1873 "too many missing devices, writeable remount is not allowed");
1874 ret = -EACCES;
1875 goto restore;
1876 }
1877
1878 if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1879 btrfs_warn(fs_info,
1880 "mount required to replay tree-log, cannot remount read-write");
1881 ret = -EINVAL;
1882 goto restore;
1883 }
1884
1885 ret = btrfs_cleanup_fs_roots(fs_info);
1886 if (ret)
1887 goto restore;
1888
1889 /* recover relocation */
1890 mutex_lock(&fs_info->cleaner_mutex);
1891 ret = btrfs_recover_relocation(root);
1892 mutex_unlock(&fs_info->cleaner_mutex);
1893 if (ret)
1894 goto restore;
1895
1896 ret = btrfs_resume_balance_async(fs_info);
1897 if (ret)
1898 goto restore;
1899
1900 ret = btrfs_resume_dev_replace_async(fs_info);
1901 if (ret) {
1902 btrfs_warn(fs_info, "failed to resume dev_replace");
1903 goto restore;
1904 }
1905
1906 btrfs_qgroup_rescan_resume(fs_info);
1907
1908 if (!fs_info->uuid_root) {
1909 btrfs_info(fs_info, "creating UUID tree");
1910 ret = btrfs_create_uuid_tree(fs_info);
1911 if (ret) {
1912 btrfs_warn(fs_info,
1913 "failed to create the UUID tree %d",
1914 ret);
1915 goto restore;
1916 }
1917 }
1918 sb->s_flags &= ~SB_RDONLY;
1919
1920 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1921 }
1922 out:
1923 wake_up_process(fs_info->transaction_kthread);
1924 btrfs_remount_cleanup(fs_info, old_opts);
1925 return 0;
1926
1927 restore:
1928 /* We've hit an error - don't reset SB_RDONLY */
1929 if (sb_rdonly(sb))
1930 old_flags |= SB_RDONLY;
1931 sb->s_flags = old_flags;
1932 fs_info->mount_opt = old_opts;
1933 fs_info->compress_type = old_compress_type;
1934 fs_info->max_inline = old_max_inline;
1935 btrfs_resize_thread_pool(fs_info,
1936 old_thread_pool_size, fs_info->thread_pool_size);
1937 fs_info->metadata_ratio = old_metadata_ratio;
1938 btrfs_remount_cleanup(fs_info, old_opts);
1939 return ret;
1940 }
1941
1942 /* Used to sort the devices by max_avail(descending sort) */
btrfs_cmp_device_free_bytes(const void * dev_info1,const void * dev_info2)1943 static inline int btrfs_cmp_device_free_bytes(const void *dev_info1,
1944 const void *dev_info2)
1945 {
1946 if (((struct btrfs_device_info *)dev_info1)->max_avail >
1947 ((struct btrfs_device_info *)dev_info2)->max_avail)
1948 return -1;
1949 else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1950 ((struct btrfs_device_info *)dev_info2)->max_avail)
1951 return 1;
1952 else
1953 return 0;
1954 }
1955
1956 /*
1957 * sort the devices by max_avail, in which max free extent size of each device
1958 * is stored.(Descending Sort)
1959 */
btrfs_descending_sort_devices(struct btrfs_device_info * devices,size_t nr_devices)1960 static inline void btrfs_descending_sort_devices(
1961 struct btrfs_device_info *devices,
1962 size_t nr_devices)
1963 {
1964 sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1965 btrfs_cmp_device_free_bytes, NULL);
1966 }
1967
1968 /*
1969 * The helper to calc the free space on the devices that can be used to store
1970 * file data.
1971 */
btrfs_calc_avail_data_space(struct btrfs_fs_info * fs_info,u64 * free_bytes)1972 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1973 u64 *free_bytes)
1974 {
1975 struct btrfs_device_info *devices_info;
1976 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1977 struct btrfs_device *device;
1978 u64 skip_space;
1979 u64 type;
1980 u64 avail_space;
1981 u64 min_stripe_size;
1982 int min_stripes = 1, num_stripes = 1;
1983 int i = 0, nr_devices;
1984
1985 /*
1986 * We aren't under the device list lock, so this is racy-ish, but good
1987 * enough for our purposes.
1988 */
1989 nr_devices = fs_info->fs_devices->open_devices;
1990 if (!nr_devices) {
1991 smp_mb();
1992 nr_devices = fs_info->fs_devices->open_devices;
1993 ASSERT(nr_devices);
1994 if (!nr_devices) {
1995 *free_bytes = 0;
1996 return 0;
1997 }
1998 }
1999
2000 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
2001 GFP_KERNEL);
2002 if (!devices_info)
2003 return -ENOMEM;
2004
2005 /* calc min stripe number for data space allocation */
2006 type = btrfs_data_alloc_profile(fs_info);
2007 if (type & BTRFS_BLOCK_GROUP_RAID0) {
2008 min_stripes = 2;
2009 num_stripes = nr_devices;
2010 } else if (type & BTRFS_BLOCK_GROUP_RAID1) {
2011 min_stripes = 2;
2012 num_stripes = 2;
2013 } else if (type & BTRFS_BLOCK_GROUP_RAID10) {
2014 min_stripes = 4;
2015 num_stripes = 4;
2016 }
2017
2018 if (type & BTRFS_BLOCK_GROUP_DUP)
2019 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
2020 else
2021 min_stripe_size = BTRFS_STRIPE_LEN;
2022
2023 rcu_read_lock();
2024 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2025 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2026 &device->dev_state) ||
2027 !device->bdev ||
2028 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2029 continue;
2030
2031 if (i >= nr_devices)
2032 break;
2033
2034 avail_space = device->total_bytes - device->bytes_used;
2035
2036 /* align with stripe_len */
2037 avail_space = div_u64(avail_space, BTRFS_STRIPE_LEN);
2038 avail_space *= BTRFS_STRIPE_LEN;
2039
2040 /*
2041 * In order to avoid overwriting the superblock on the drive,
2042 * btrfs starts at an offset of at least 1MB when doing chunk
2043 * allocation.
2044 */
2045 skip_space = SZ_1M;
2046
2047 /*
2048 * we can use the free space in [0, skip_space - 1], subtract
2049 * it from the total.
2050 */
2051 if (avail_space && avail_space >= skip_space)
2052 avail_space -= skip_space;
2053 else
2054 avail_space = 0;
2055
2056 if (avail_space < min_stripe_size)
2057 continue;
2058
2059 devices_info[i].dev = device;
2060 devices_info[i].max_avail = avail_space;
2061
2062 i++;
2063 }
2064 rcu_read_unlock();
2065
2066 nr_devices = i;
2067
2068 btrfs_descending_sort_devices(devices_info, nr_devices);
2069
2070 i = nr_devices - 1;
2071 avail_space = 0;
2072 while (nr_devices >= min_stripes) {
2073 if (num_stripes > nr_devices)
2074 num_stripes = nr_devices;
2075
2076 if (devices_info[i].max_avail >= min_stripe_size) {
2077 int j;
2078 u64 alloc_size;
2079
2080 avail_space += devices_info[i].max_avail * num_stripes;
2081 alloc_size = devices_info[i].max_avail;
2082 for (j = i + 1 - num_stripes; j <= i; j++)
2083 devices_info[j].max_avail -= alloc_size;
2084 }
2085 i--;
2086 nr_devices--;
2087 }
2088
2089 kfree(devices_info);
2090 *free_bytes = avail_space;
2091 return 0;
2092 }
2093
2094 /*
2095 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2096 *
2097 * If there's a redundant raid level at DATA block groups, use the respective
2098 * multiplier to scale the sizes.
2099 *
2100 * Unused device space usage is based on simulating the chunk allocator
2101 * algorithm that respects the device sizes and order of allocations. This is
2102 * a close approximation of the actual use but there are other factors that may
2103 * change the result (like a new metadata chunk).
2104 *
2105 * If metadata is exhausted, f_bavail will be 0.
2106 */
btrfs_statfs(struct dentry * dentry,struct kstatfs * buf)2107 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
2108 {
2109 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
2110 struct btrfs_super_block *disk_super = fs_info->super_copy;
2111 struct list_head *head = &fs_info->space_info;
2112 struct btrfs_space_info *found;
2113 u64 total_used = 0;
2114 u64 total_free_data = 0;
2115 u64 total_free_meta = 0;
2116 int bits = dentry->d_sb->s_blocksize_bits;
2117 __be32 *fsid = (__be32 *)fs_info->fsid;
2118 unsigned factor = 1;
2119 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
2120 int ret;
2121 u64 thresh = 0;
2122 int mixed = 0;
2123
2124 rcu_read_lock();
2125 list_for_each_entry_rcu(found, head, list) {
2126 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
2127 int i;
2128
2129 total_free_data += found->disk_total - found->disk_used;
2130 total_free_data -=
2131 btrfs_account_ro_block_groups_free_space(found);
2132
2133 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2134 if (!list_empty(&found->block_groups[i]))
2135 factor = btrfs_bg_type_to_factor(
2136 btrfs_raid_array[i].bg_flag);
2137 }
2138 }
2139
2140 /*
2141 * Metadata in mixed block goup profiles are accounted in data
2142 */
2143 if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
2144 if (found->flags & BTRFS_BLOCK_GROUP_DATA)
2145 mixed = 1;
2146 else
2147 total_free_meta += found->disk_total -
2148 found->disk_used;
2149 }
2150
2151 total_used += found->disk_used;
2152 }
2153
2154 rcu_read_unlock();
2155
2156 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2157 buf->f_blocks >>= bits;
2158 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2159
2160 /* Account global block reserve as used, it's in logical size already */
2161 spin_lock(&block_rsv->lock);
2162 /* Mixed block groups accounting is not byte-accurate, avoid overflow */
2163 if (buf->f_bfree >= block_rsv->size >> bits)
2164 buf->f_bfree -= block_rsv->size >> bits;
2165 else
2166 buf->f_bfree = 0;
2167 spin_unlock(&block_rsv->lock);
2168
2169 buf->f_bavail = div_u64(total_free_data, factor);
2170 ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
2171 if (ret)
2172 return ret;
2173 buf->f_bavail += div_u64(total_free_data, factor);
2174 buf->f_bavail = buf->f_bavail >> bits;
2175
2176 /*
2177 * We calculate the remaining metadata space minus global reserve. If
2178 * this is (supposedly) smaller than zero, there's no space. But this
2179 * does not hold in practice, the exhausted state happens where's still
2180 * some positive delta. So we apply some guesswork and compare the
2181 * delta to a 4M threshold. (Practically observed delta was ~2M.)
2182 *
2183 * We probably cannot calculate the exact threshold value because this
2184 * depends on the internal reservations requested by various
2185 * operations, so some operations that consume a few metadata will
2186 * succeed even if the Avail is zero. But this is better than the other
2187 * way around.
2188 */
2189 thresh = SZ_4M;
2190
2191 /*
2192 * We only want to claim there's no available space if we can no longer
2193 * allocate chunks for our metadata profile and our global reserve will
2194 * not fit in the free metadata space. If we aren't ->full then we
2195 * still can allocate chunks and thus are fine using the currently
2196 * calculated f_bavail.
2197 */
2198 if (!mixed && block_rsv->space_info->full &&
2199 (total_free_meta < thresh || total_free_meta - thresh < block_rsv->size))
2200 buf->f_bavail = 0;
2201
2202 buf->f_type = BTRFS_SUPER_MAGIC;
2203 buf->f_bsize = dentry->d_sb->s_blocksize;
2204 buf->f_namelen = BTRFS_NAME_LEN;
2205
2206 /* We treat it as constant endianness (it doesn't matter _which_)
2207 because we want the fsid to come out the same whether mounted
2208 on a big-endian or little-endian host */
2209 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2210 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2211 /* Mask in the root object ID too, to disambiguate subvols */
2212 buf->f_fsid.val[0] ^= BTRFS_I(d_inode(dentry))->root->objectid >> 32;
2213 buf->f_fsid.val[1] ^= BTRFS_I(d_inode(dentry))->root->objectid;
2214
2215 return 0;
2216 }
2217
btrfs_kill_super(struct super_block * sb)2218 static void btrfs_kill_super(struct super_block *sb)
2219 {
2220 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2221 kill_anon_super(sb);
2222 free_fs_info(fs_info);
2223 }
2224
2225 static struct file_system_type btrfs_fs_type = {
2226 .owner = THIS_MODULE,
2227 .name = "btrfs",
2228 .mount = btrfs_mount,
2229 .kill_sb = btrfs_kill_super,
2230 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2231 };
2232
2233 static struct file_system_type btrfs_root_fs_type = {
2234 .owner = THIS_MODULE,
2235 .name = "btrfs",
2236 .mount = btrfs_mount_root,
2237 .kill_sb = btrfs_kill_super,
2238 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2239 };
2240
2241 MODULE_ALIAS_FS("btrfs");
2242
btrfs_control_open(struct inode * inode,struct file * file)2243 static int btrfs_control_open(struct inode *inode, struct file *file)
2244 {
2245 /*
2246 * The control file's private_data is used to hold the
2247 * transaction when it is started and is used to keep
2248 * track of whether a transaction is already in progress.
2249 */
2250 file->private_data = NULL;
2251 return 0;
2252 }
2253
2254 /*
2255 * used by btrfsctl to scan devices when no FS is mounted
2256 */
btrfs_control_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2257 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2258 unsigned long arg)
2259 {
2260 struct btrfs_ioctl_vol_args *vol;
2261 struct btrfs_device *device = NULL;
2262 int ret = -ENOTTY;
2263
2264 if (!capable(CAP_SYS_ADMIN))
2265 return -EPERM;
2266
2267 vol = memdup_user((void __user *)arg, sizeof(*vol));
2268 if (IS_ERR(vol))
2269 return PTR_ERR(vol);
2270 vol->name[BTRFS_PATH_NAME_MAX] = '\0';
2271
2272 switch (cmd) {
2273 case BTRFS_IOC_SCAN_DEV:
2274 mutex_lock(&uuid_mutex);
2275 device = btrfs_scan_one_device(vol->name, FMODE_READ,
2276 &btrfs_root_fs_type);
2277 ret = PTR_ERR_OR_ZERO(device);
2278 mutex_unlock(&uuid_mutex);
2279 break;
2280 case BTRFS_IOC_DEVICES_READY:
2281 mutex_lock(&uuid_mutex);
2282 device = btrfs_scan_one_device(vol->name, FMODE_READ,
2283 &btrfs_root_fs_type);
2284 if (IS_ERR(device)) {
2285 mutex_unlock(&uuid_mutex);
2286 ret = PTR_ERR(device);
2287 break;
2288 }
2289 ret = !(device->fs_devices->num_devices ==
2290 device->fs_devices->total_devices);
2291 mutex_unlock(&uuid_mutex);
2292 break;
2293 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2294 ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2295 break;
2296 }
2297
2298 kfree(vol);
2299 return ret;
2300 }
2301
btrfs_freeze(struct super_block * sb)2302 static int btrfs_freeze(struct super_block *sb)
2303 {
2304 struct btrfs_trans_handle *trans;
2305 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2306 struct btrfs_root *root = fs_info->tree_root;
2307
2308 set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2309 /*
2310 * We don't need a barrier here, we'll wait for any transaction that
2311 * could be in progress on other threads (and do delayed iputs that
2312 * we want to avoid on a frozen filesystem), or do the commit
2313 * ourselves.
2314 */
2315 trans = btrfs_attach_transaction_barrier(root);
2316 if (IS_ERR(trans)) {
2317 /* no transaction, don't bother */
2318 if (PTR_ERR(trans) == -ENOENT)
2319 return 0;
2320 return PTR_ERR(trans);
2321 }
2322 return btrfs_commit_transaction(trans);
2323 }
2324
btrfs_unfreeze(struct super_block * sb)2325 static int btrfs_unfreeze(struct super_block *sb)
2326 {
2327 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2328
2329 clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2330 return 0;
2331 }
2332
btrfs_show_devname(struct seq_file * m,struct dentry * root)2333 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2334 {
2335 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2336 struct btrfs_device *dev, *first_dev = NULL;
2337
2338 /*
2339 * Lightweight locking of the devices. We should not need
2340 * device_list_mutex here as we only read the device data and the list
2341 * is protected by RCU. Even if a device is deleted during the list
2342 * traversals, we'll get valid data, the freeing callback will wait at
2343 * least until until the rcu_read_unlock.
2344 */
2345 rcu_read_lock();
2346 list_for_each_entry_rcu(dev, &fs_info->fs_devices->devices, dev_list) {
2347 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
2348 continue;
2349 if (!dev->name)
2350 continue;
2351 if (!first_dev || dev->devid < first_dev->devid)
2352 first_dev = dev;
2353 }
2354
2355 if (first_dev)
2356 seq_escape(m, rcu_str_deref(first_dev->name), " \t\n\\");
2357 else
2358 WARN_ON(1);
2359 rcu_read_unlock();
2360 return 0;
2361 }
2362
2363 static const struct super_operations btrfs_super_ops = {
2364 .drop_inode = btrfs_drop_inode,
2365 .evict_inode = btrfs_evict_inode,
2366 .put_super = btrfs_put_super,
2367 .sync_fs = btrfs_sync_fs,
2368 .show_options = btrfs_show_options,
2369 .show_devname = btrfs_show_devname,
2370 .alloc_inode = btrfs_alloc_inode,
2371 .destroy_inode = btrfs_destroy_inode,
2372 .statfs = btrfs_statfs,
2373 .remount_fs = btrfs_remount,
2374 .freeze_fs = btrfs_freeze,
2375 .unfreeze_fs = btrfs_unfreeze,
2376 };
2377
2378 static const struct file_operations btrfs_ctl_fops = {
2379 .open = btrfs_control_open,
2380 .unlocked_ioctl = btrfs_control_ioctl,
2381 .compat_ioctl = btrfs_control_ioctl,
2382 .owner = THIS_MODULE,
2383 .llseek = noop_llseek,
2384 };
2385
2386 static struct miscdevice btrfs_misc = {
2387 .minor = BTRFS_MINOR,
2388 .name = "btrfs-control",
2389 .fops = &btrfs_ctl_fops
2390 };
2391
2392 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2393 MODULE_ALIAS("devname:btrfs-control");
2394
btrfs_interface_init(void)2395 static int __init btrfs_interface_init(void)
2396 {
2397 return misc_register(&btrfs_misc);
2398 }
2399
btrfs_interface_exit(void)2400 static __cold void btrfs_interface_exit(void)
2401 {
2402 misc_deregister(&btrfs_misc);
2403 }
2404
btrfs_print_mod_info(void)2405 static void __init btrfs_print_mod_info(void)
2406 {
2407 static const char options[] = ""
2408 #ifdef CONFIG_BTRFS_DEBUG
2409 ", debug=on"
2410 #endif
2411 #ifdef CONFIG_BTRFS_ASSERT
2412 ", assert=on"
2413 #endif
2414 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2415 ", integrity-checker=on"
2416 #endif
2417 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
2418 ", ref-verify=on"
2419 #endif
2420 ;
2421 pr_info("Btrfs loaded, crc32c=%s%s\n", crc32c_impl(), options);
2422 }
2423
init_btrfs_fs(void)2424 static int __init init_btrfs_fs(void)
2425 {
2426 int err;
2427
2428 btrfs_props_init();
2429
2430 err = btrfs_init_sysfs();
2431 if (err)
2432 return err;
2433
2434 btrfs_init_compress();
2435
2436 err = btrfs_init_cachep();
2437 if (err)
2438 goto free_compress;
2439
2440 err = extent_io_init();
2441 if (err)
2442 goto free_cachep;
2443
2444 err = extent_map_init();
2445 if (err)
2446 goto free_extent_io;
2447
2448 err = ordered_data_init();
2449 if (err)
2450 goto free_extent_map;
2451
2452 err = btrfs_delayed_inode_init();
2453 if (err)
2454 goto free_ordered_data;
2455
2456 err = btrfs_auto_defrag_init();
2457 if (err)
2458 goto free_delayed_inode;
2459
2460 err = btrfs_delayed_ref_init();
2461 if (err)
2462 goto free_auto_defrag;
2463
2464 err = btrfs_prelim_ref_init();
2465 if (err)
2466 goto free_delayed_ref;
2467
2468 err = btrfs_end_io_wq_init();
2469 if (err)
2470 goto free_prelim_ref;
2471
2472 err = btrfs_interface_init();
2473 if (err)
2474 goto free_end_io_wq;
2475
2476 btrfs_init_lockdep();
2477
2478 btrfs_print_mod_info();
2479
2480 err = btrfs_run_sanity_tests();
2481 if (err)
2482 goto unregister_ioctl;
2483
2484 err = register_filesystem(&btrfs_fs_type);
2485 if (err)
2486 goto unregister_ioctl;
2487
2488 return 0;
2489
2490 unregister_ioctl:
2491 btrfs_interface_exit();
2492 free_end_io_wq:
2493 btrfs_end_io_wq_exit();
2494 free_prelim_ref:
2495 btrfs_prelim_ref_exit();
2496 free_delayed_ref:
2497 btrfs_delayed_ref_exit();
2498 free_auto_defrag:
2499 btrfs_auto_defrag_exit();
2500 free_delayed_inode:
2501 btrfs_delayed_inode_exit();
2502 free_ordered_data:
2503 ordered_data_exit();
2504 free_extent_map:
2505 extent_map_exit();
2506 free_extent_io:
2507 extent_io_exit();
2508 free_cachep:
2509 btrfs_destroy_cachep();
2510 free_compress:
2511 btrfs_exit_compress();
2512 btrfs_exit_sysfs();
2513
2514 return err;
2515 }
2516
exit_btrfs_fs(void)2517 static void __exit exit_btrfs_fs(void)
2518 {
2519 btrfs_destroy_cachep();
2520 btrfs_delayed_ref_exit();
2521 btrfs_auto_defrag_exit();
2522 btrfs_delayed_inode_exit();
2523 btrfs_prelim_ref_exit();
2524 ordered_data_exit();
2525 extent_map_exit();
2526 extent_io_exit();
2527 btrfs_interface_exit();
2528 btrfs_end_io_wq_exit();
2529 unregister_filesystem(&btrfs_fs_type);
2530 btrfs_exit_sysfs();
2531 btrfs_cleanup_fs_uuids();
2532 btrfs_exit_compress();
2533 }
2534
2535 late_initcall(init_btrfs_fs);
2536 module_exit(exit_btrfs_fs)
2537
2538 MODULE_LICENSE("GPL");
2539