1 /*
2  *  HID support for Linux
3  *
4  *  Copyright (c) 1999 Andreas Gal
5  *  Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
6  *  Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
7  *  Copyright (c) 2006-2012 Jiri Kosina
8  */
9 
10 /*
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms of the GNU General Public License as published by the Free
13  * Software Foundation; either version 2 of the License, or (at your option)
14  * any later version.
15  */
16 
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/list.h>
24 #include <linux/mm.h>
25 #include <linux/spinlock.h>
26 #include <asm/unaligned.h>
27 #include <asm/byteorder.h>
28 #include <linux/input.h>
29 #include <linux/wait.h>
30 #include <linux/vmalloc.h>
31 #include <linux/sched.h>
32 #include <linux/semaphore.h>
33 
34 #include <linux/hid.h>
35 #include <linux/hiddev.h>
36 #include <linux/hid-debug.h>
37 #include <linux/hidraw.h>
38 
39 #include "hid-ids.h"
40 
41 /*
42  * Version Information
43  */
44 
45 #define DRIVER_DESC "HID core driver"
46 
47 int hid_debug = 0;
48 module_param_named(debug, hid_debug, int, 0600);
49 MODULE_PARM_DESC(debug, "toggle HID debugging messages");
50 EXPORT_SYMBOL_GPL(hid_debug);
51 
52 static int hid_ignore_special_drivers = 0;
53 module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600);
54 MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver");
55 
56 /*
57  * Register a new report for a device.
58  */
59 
hid_register_report(struct hid_device * device,unsigned int type,unsigned int id,unsigned int application)60 struct hid_report *hid_register_report(struct hid_device *device,
61 				       unsigned int type, unsigned int id,
62 				       unsigned int application)
63 {
64 	struct hid_report_enum *report_enum = device->report_enum + type;
65 	struct hid_report *report;
66 
67 	if (id >= HID_MAX_IDS)
68 		return NULL;
69 	if (report_enum->report_id_hash[id])
70 		return report_enum->report_id_hash[id];
71 
72 	report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
73 	if (!report)
74 		return NULL;
75 
76 	if (id != 0)
77 		report_enum->numbered = 1;
78 
79 	report->id = id;
80 	report->type = type;
81 	report->size = 0;
82 	report->device = device;
83 	report->application = application;
84 	report_enum->report_id_hash[id] = report;
85 
86 	list_add_tail(&report->list, &report_enum->report_list);
87 
88 	return report;
89 }
90 EXPORT_SYMBOL_GPL(hid_register_report);
91 
92 /*
93  * Register a new field for this report.
94  */
95 
hid_register_field(struct hid_report * report,unsigned usages)96 static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages)
97 {
98 	struct hid_field *field;
99 
100 	if (report->maxfield == HID_MAX_FIELDS) {
101 		hid_err(report->device, "too many fields in report\n");
102 		return NULL;
103 	}
104 
105 	field = kzalloc((sizeof(struct hid_field) +
106 			 usages * sizeof(struct hid_usage) +
107 			 usages * sizeof(unsigned)), GFP_KERNEL);
108 	if (!field)
109 		return NULL;
110 
111 	field->index = report->maxfield++;
112 	report->field[field->index] = field;
113 	field->usage = (struct hid_usage *)(field + 1);
114 	field->value = (s32 *)(field->usage + usages);
115 	field->report = report;
116 
117 	return field;
118 }
119 
120 /*
121  * Open a collection. The type/usage is pushed on the stack.
122  */
123 
open_collection(struct hid_parser * parser,unsigned type)124 static int open_collection(struct hid_parser *parser, unsigned type)
125 {
126 	struct hid_collection *collection;
127 	unsigned usage;
128 
129 	usage = parser->local.usage[0];
130 
131 	if (parser->collection_stack_ptr == parser->collection_stack_size) {
132 		unsigned int *collection_stack;
133 		unsigned int new_size = parser->collection_stack_size +
134 					HID_COLLECTION_STACK_SIZE;
135 
136 		collection_stack = krealloc(parser->collection_stack,
137 					    new_size * sizeof(unsigned int),
138 					    GFP_KERNEL);
139 		if (!collection_stack)
140 			return -ENOMEM;
141 
142 		parser->collection_stack = collection_stack;
143 		parser->collection_stack_size = new_size;
144 	}
145 
146 	if (parser->device->maxcollection == parser->device->collection_size) {
147 		collection = kmalloc(
148 				array3_size(sizeof(struct hid_collection),
149 					    parser->device->collection_size,
150 					    2),
151 				GFP_KERNEL);
152 		if (collection == NULL) {
153 			hid_err(parser->device, "failed to reallocate collection array\n");
154 			return -ENOMEM;
155 		}
156 		memcpy(collection, parser->device->collection,
157 			sizeof(struct hid_collection) *
158 			parser->device->collection_size);
159 		memset(collection + parser->device->collection_size, 0,
160 			sizeof(struct hid_collection) *
161 			parser->device->collection_size);
162 		kfree(parser->device->collection);
163 		parser->device->collection = collection;
164 		parser->device->collection_size *= 2;
165 	}
166 
167 	parser->collection_stack[parser->collection_stack_ptr++] =
168 		parser->device->maxcollection;
169 
170 	collection = parser->device->collection +
171 		parser->device->maxcollection++;
172 	collection->type = type;
173 	collection->usage = usage;
174 	collection->level = parser->collection_stack_ptr - 1;
175 
176 	if (type == HID_COLLECTION_APPLICATION)
177 		parser->device->maxapplication++;
178 
179 	return 0;
180 }
181 
182 /*
183  * Close a collection.
184  */
185 
close_collection(struct hid_parser * parser)186 static int close_collection(struct hid_parser *parser)
187 {
188 	if (!parser->collection_stack_ptr) {
189 		hid_err(parser->device, "collection stack underflow\n");
190 		return -EINVAL;
191 	}
192 	parser->collection_stack_ptr--;
193 	return 0;
194 }
195 
196 /*
197  * Climb up the stack, search for the specified collection type
198  * and return the usage.
199  */
200 
hid_lookup_collection(struct hid_parser * parser,unsigned type)201 static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
202 {
203 	struct hid_collection *collection = parser->device->collection;
204 	int n;
205 
206 	for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
207 		unsigned index = parser->collection_stack[n];
208 		if (collection[index].type == type)
209 			return collection[index].usage;
210 	}
211 	return 0; /* we know nothing about this usage type */
212 }
213 
214 /*
215  * Concatenate usage which defines 16 bits or less with the
216  * currently defined usage page to form a 32 bit usage
217  */
218 
complete_usage(struct hid_parser * parser,unsigned int index)219 static void complete_usage(struct hid_parser *parser, unsigned int index)
220 {
221 	parser->local.usage[index] &= 0xFFFF;
222 	parser->local.usage[index] |=
223 		(parser->global.usage_page & 0xFFFF) << 16;
224 }
225 
226 /*
227  * Add a usage to the temporary parser table.
228  */
229 
hid_add_usage(struct hid_parser * parser,unsigned usage,u8 size)230 static int hid_add_usage(struct hid_parser *parser, unsigned usage, u8 size)
231 {
232 	if (parser->local.usage_index >= HID_MAX_USAGES) {
233 		hid_err(parser->device, "usage index exceeded\n");
234 		return -1;
235 	}
236 	parser->local.usage[parser->local.usage_index] = usage;
237 
238 	/*
239 	 * If Usage item only includes usage id, concatenate it with
240 	 * currently defined usage page
241 	 */
242 	if (size <= 2)
243 		complete_usage(parser, parser->local.usage_index);
244 
245 	parser->local.usage_size[parser->local.usage_index] = size;
246 	parser->local.collection_index[parser->local.usage_index] =
247 		parser->collection_stack_ptr ?
248 		parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
249 	parser->local.usage_index++;
250 	return 0;
251 }
252 
253 /*
254  * Register a new field for this report.
255  */
256 
hid_add_field(struct hid_parser * parser,unsigned report_type,unsigned flags)257 static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
258 {
259 	struct hid_report *report;
260 	struct hid_field *field;
261 	unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE;
262 	unsigned int usages;
263 	unsigned int offset;
264 	unsigned int i;
265 	unsigned int application;
266 
267 	application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
268 
269 	report = hid_register_report(parser->device, report_type,
270 				     parser->global.report_id, application);
271 	if (!report) {
272 		hid_err(parser->device, "hid_register_report failed\n");
273 		return -1;
274 	}
275 
276 	/* Handle both signed and unsigned cases properly */
277 	if ((parser->global.logical_minimum < 0 &&
278 		parser->global.logical_maximum <
279 		parser->global.logical_minimum) ||
280 		(parser->global.logical_minimum >= 0 &&
281 		(__u32)parser->global.logical_maximum <
282 		(__u32)parser->global.logical_minimum)) {
283 		dbg_hid("logical range invalid 0x%x 0x%x\n",
284 			parser->global.logical_minimum,
285 			parser->global.logical_maximum);
286 		return -1;
287 	}
288 
289 	offset = report->size;
290 	report->size += parser->global.report_size * parser->global.report_count;
291 
292 	if (parser->device->ll_driver->max_buffer_size)
293 		max_buffer_size = parser->device->ll_driver->max_buffer_size;
294 
295 	/* Total size check: Allow for possible report index byte */
296 	if (report->size > (max_buffer_size - 1) << 3) {
297 		hid_err(parser->device, "report is too long\n");
298 		return -1;
299 	}
300 
301 	if (!parser->local.usage_index) /* Ignore padding fields */
302 		return 0;
303 
304 	usages = max_t(unsigned, parser->local.usage_index,
305 				 parser->global.report_count);
306 
307 	field = hid_register_field(report, usages);
308 	if (!field)
309 		return 0;
310 
311 	field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
312 	field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
313 	field->application = application;
314 
315 	for (i = 0; i < usages; i++) {
316 		unsigned j = i;
317 		/* Duplicate the last usage we parsed if we have excess values */
318 		if (i >= parser->local.usage_index)
319 			j = parser->local.usage_index - 1;
320 		field->usage[i].hid = parser->local.usage[j];
321 		field->usage[i].collection_index =
322 			parser->local.collection_index[j];
323 		field->usage[i].usage_index = i;
324 	}
325 
326 	field->maxusage = usages;
327 	field->flags = flags;
328 	field->report_offset = offset;
329 	field->report_type = report_type;
330 	field->report_size = parser->global.report_size;
331 	field->report_count = parser->global.report_count;
332 	field->logical_minimum = parser->global.logical_minimum;
333 	field->logical_maximum = parser->global.logical_maximum;
334 	field->physical_minimum = parser->global.physical_minimum;
335 	field->physical_maximum = parser->global.physical_maximum;
336 	field->unit_exponent = parser->global.unit_exponent;
337 	field->unit = parser->global.unit;
338 
339 	return 0;
340 }
341 
342 /*
343  * Read data value from item.
344  */
345 
item_udata(struct hid_item * item)346 static u32 item_udata(struct hid_item *item)
347 {
348 	switch (item->size) {
349 	case 1: return item->data.u8;
350 	case 2: return item->data.u16;
351 	case 4: return item->data.u32;
352 	}
353 	return 0;
354 }
355 
item_sdata(struct hid_item * item)356 static s32 item_sdata(struct hid_item *item)
357 {
358 	switch (item->size) {
359 	case 1: return item->data.s8;
360 	case 2: return item->data.s16;
361 	case 4: return item->data.s32;
362 	}
363 	return 0;
364 }
365 
366 /*
367  * Process a global item.
368  */
369 
hid_parser_global(struct hid_parser * parser,struct hid_item * item)370 static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
371 {
372 	__s32 raw_value;
373 	switch (item->tag) {
374 	case HID_GLOBAL_ITEM_TAG_PUSH:
375 
376 		if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
377 			hid_err(parser->device, "global environment stack overflow\n");
378 			return -1;
379 		}
380 
381 		memcpy(parser->global_stack + parser->global_stack_ptr++,
382 			&parser->global, sizeof(struct hid_global));
383 		return 0;
384 
385 	case HID_GLOBAL_ITEM_TAG_POP:
386 
387 		if (!parser->global_stack_ptr) {
388 			hid_err(parser->device, "global environment stack underflow\n");
389 			return -1;
390 		}
391 
392 		memcpy(&parser->global, parser->global_stack +
393 			--parser->global_stack_ptr, sizeof(struct hid_global));
394 		return 0;
395 
396 	case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
397 		parser->global.usage_page = item_udata(item);
398 		return 0;
399 
400 	case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
401 		parser->global.logical_minimum = item_sdata(item);
402 		return 0;
403 
404 	case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
405 		if (parser->global.logical_minimum < 0)
406 			parser->global.logical_maximum = item_sdata(item);
407 		else
408 			parser->global.logical_maximum = item_udata(item);
409 		return 0;
410 
411 	case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
412 		parser->global.physical_minimum = item_sdata(item);
413 		return 0;
414 
415 	case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
416 		if (parser->global.physical_minimum < 0)
417 			parser->global.physical_maximum = item_sdata(item);
418 		else
419 			parser->global.physical_maximum = item_udata(item);
420 		return 0;
421 
422 	case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
423 		/* Many devices provide unit exponent as a two's complement
424 		 * nibble due to the common misunderstanding of HID
425 		 * specification 1.11, 6.2.2.7 Global Items. Attempt to handle
426 		 * both this and the standard encoding. */
427 		raw_value = item_sdata(item);
428 		if (!(raw_value & 0xfffffff0))
429 			parser->global.unit_exponent = hid_snto32(raw_value, 4);
430 		else
431 			parser->global.unit_exponent = raw_value;
432 		return 0;
433 
434 	case HID_GLOBAL_ITEM_TAG_UNIT:
435 		parser->global.unit = item_udata(item);
436 		return 0;
437 
438 	case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
439 		parser->global.report_size = item_udata(item);
440 		if (parser->global.report_size > 128) {
441 			hid_err(parser->device, "invalid report_size %d\n",
442 					parser->global.report_size);
443 			return -1;
444 		}
445 		return 0;
446 
447 	case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
448 		parser->global.report_count = item_udata(item);
449 		if (parser->global.report_count > HID_MAX_USAGES) {
450 			hid_err(parser->device, "invalid report_count %d\n",
451 					parser->global.report_count);
452 			return -1;
453 		}
454 		return 0;
455 
456 	case HID_GLOBAL_ITEM_TAG_REPORT_ID:
457 		parser->global.report_id = item_udata(item);
458 		if (parser->global.report_id == 0 ||
459 		    parser->global.report_id >= HID_MAX_IDS) {
460 			hid_err(parser->device, "report_id %u is invalid\n",
461 				parser->global.report_id);
462 			return -1;
463 		}
464 		return 0;
465 
466 	default:
467 		hid_err(parser->device, "unknown global tag 0x%x\n", item->tag);
468 		return -1;
469 	}
470 }
471 
472 /*
473  * Process a local item.
474  */
475 
hid_parser_local(struct hid_parser * parser,struct hid_item * item)476 static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
477 {
478 	__u32 data;
479 	unsigned n;
480 	__u32 count;
481 
482 	data = item_udata(item);
483 
484 	switch (item->tag) {
485 	case HID_LOCAL_ITEM_TAG_DELIMITER:
486 
487 		if (data) {
488 			/*
489 			 * We treat items before the first delimiter
490 			 * as global to all usage sets (branch 0).
491 			 * In the moment we process only these global
492 			 * items and the first delimiter set.
493 			 */
494 			if (parser->local.delimiter_depth != 0) {
495 				hid_err(parser->device, "nested delimiters\n");
496 				return -1;
497 			}
498 			parser->local.delimiter_depth++;
499 			parser->local.delimiter_branch++;
500 		} else {
501 			if (parser->local.delimiter_depth < 1) {
502 				hid_err(parser->device, "bogus close delimiter\n");
503 				return -1;
504 			}
505 			parser->local.delimiter_depth--;
506 		}
507 		return 0;
508 
509 	case HID_LOCAL_ITEM_TAG_USAGE:
510 
511 		if (parser->local.delimiter_branch > 1) {
512 			dbg_hid("alternative usage ignored\n");
513 			return 0;
514 		}
515 
516 		return hid_add_usage(parser, data, item->size);
517 
518 	case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
519 
520 		if (parser->local.delimiter_branch > 1) {
521 			dbg_hid("alternative usage ignored\n");
522 			return 0;
523 		}
524 
525 		parser->local.usage_minimum = data;
526 		return 0;
527 
528 	case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
529 
530 		if (parser->local.delimiter_branch > 1) {
531 			dbg_hid("alternative usage ignored\n");
532 			return 0;
533 		}
534 
535 		count = data - parser->local.usage_minimum;
536 		if (count + parser->local.usage_index >= HID_MAX_USAGES) {
537 			/*
538 			 * We do not warn if the name is not set, we are
539 			 * actually pre-scanning the device.
540 			 */
541 			if (dev_name(&parser->device->dev))
542 				hid_warn(parser->device,
543 					 "ignoring exceeding usage max\n");
544 			data = HID_MAX_USAGES - parser->local.usage_index +
545 				parser->local.usage_minimum - 1;
546 			if (data <= 0) {
547 				hid_err(parser->device,
548 					"no more usage index available\n");
549 				return -1;
550 			}
551 		}
552 
553 		for (n = parser->local.usage_minimum; n <= data; n++)
554 			if (hid_add_usage(parser, n, item->size)) {
555 				dbg_hid("hid_add_usage failed\n");
556 				return -1;
557 			}
558 		return 0;
559 
560 	default:
561 
562 		dbg_hid("unknown local item tag 0x%x\n", item->tag);
563 		return 0;
564 	}
565 	return 0;
566 }
567 
568 /*
569  * Concatenate Usage Pages into Usages where relevant:
570  * As per specification, 6.2.2.8: "When the parser encounters a main item it
571  * concatenates the last declared Usage Page with a Usage to form a complete
572  * usage value."
573  */
574 
hid_concatenate_last_usage_page(struct hid_parser * parser)575 static void hid_concatenate_last_usage_page(struct hid_parser *parser)
576 {
577 	int i;
578 	unsigned int usage_page;
579 	unsigned int current_page;
580 
581 	if (!parser->local.usage_index)
582 		return;
583 
584 	usage_page = parser->global.usage_page;
585 
586 	/*
587 	 * Concatenate usage page again only if last declared Usage Page
588 	 * has not been already used in previous usages concatenation
589 	 */
590 	for (i = parser->local.usage_index - 1; i >= 0; i--) {
591 		if (parser->local.usage_size[i] > 2)
592 			/* Ignore extended usages */
593 			continue;
594 
595 		current_page = parser->local.usage[i] >> 16;
596 		if (current_page == usage_page)
597 			break;
598 
599 		complete_usage(parser, i);
600 	}
601 }
602 
603 /*
604  * Process a main item.
605  */
606 
hid_parser_main(struct hid_parser * parser,struct hid_item * item)607 static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
608 {
609 	__u32 data;
610 	int ret;
611 
612 	hid_concatenate_last_usage_page(parser);
613 
614 	data = item_udata(item);
615 
616 	switch (item->tag) {
617 	case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
618 		ret = open_collection(parser, data & 0xff);
619 		break;
620 	case HID_MAIN_ITEM_TAG_END_COLLECTION:
621 		ret = close_collection(parser);
622 		break;
623 	case HID_MAIN_ITEM_TAG_INPUT:
624 		ret = hid_add_field(parser, HID_INPUT_REPORT, data);
625 		break;
626 	case HID_MAIN_ITEM_TAG_OUTPUT:
627 		ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
628 		break;
629 	case HID_MAIN_ITEM_TAG_FEATURE:
630 		ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
631 		break;
632 	default:
633 		hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag);
634 		ret = 0;
635 	}
636 
637 	memset(&parser->local, 0, sizeof(parser->local));	/* Reset the local parser environment */
638 
639 	return ret;
640 }
641 
642 /*
643  * Process a reserved item.
644  */
645 
hid_parser_reserved(struct hid_parser * parser,struct hid_item * item)646 static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
647 {
648 	dbg_hid("reserved item type, tag 0x%x\n", item->tag);
649 	return 0;
650 }
651 
652 /*
653  * Free a report and all registered fields. The field->usage and
654  * field->value table's are allocated behind the field, so we need
655  * only to free(field) itself.
656  */
657 
hid_free_report(struct hid_report * report)658 static void hid_free_report(struct hid_report *report)
659 {
660 	unsigned n;
661 
662 	for (n = 0; n < report->maxfield; n++)
663 		kfree(report->field[n]);
664 	kfree(report);
665 }
666 
667 /*
668  * Close report. This function returns the device
669  * state to the point prior to hid_open_report().
670  */
hid_close_report(struct hid_device * device)671 static void hid_close_report(struct hid_device *device)
672 {
673 	unsigned i, j;
674 
675 	for (i = 0; i < HID_REPORT_TYPES; i++) {
676 		struct hid_report_enum *report_enum = device->report_enum + i;
677 
678 		for (j = 0; j < HID_MAX_IDS; j++) {
679 			struct hid_report *report = report_enum->report_id_hash[j];
680 			if (report)
681 				hid_free_report(report);
682 		}
683 		memset(report_enum, 0, sizeof(*report_enum));
684 		INIT_LIST_HEAD(&report_enum->report_list);
685 	}
686 
687 	kfree(device->rdesc);
688 	device->rdesc = NULL;
689 	device->rsize = 0;
690 
691 	kfree(device->collection);
692 	device->collection = NULL;
693 	device->collection_size = 0;
694 	device->maxcollection = 0;
695 	device->maxapplication = 0;
696 
697 	device->status &= ~HID_STAT_PARSED;
698 }
699 
700 /*
701  * Free a device structure, all reports, and all fields.
702  */
703 
hid_device_release(struct device * dev)704 static void hid_device_release(struct device *dev)
705 {
706 	struct hid_device *hid = to_hid_device(dev);
707 
708 	hid_close_report(hid);
709 	kfree(hid->dev_rdesc);
710 	kfree(hid);
711 }
712 
713 /*
714  * Fetch a report description item from the data stream. We support long
715  * items, though they are not used yet.
716  */
717 
fetch_item(__u8 * start,__u8 * end,struct hid_item * item)718 static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
719 {
720 	u8 b;
721 
722 	if ((end - start) <= 0)
723 		return NULL;
724 
725 	b = *start++;
726 
727 	item->type = (b >> 2) & 3;
728 	item->tag  = (b >> 4) & 15;
729 
730 	if (item->tag == HID_ITEM_TAG_LONG) {
731 
732 		item->format = HID_ITEM_FORMAT_LONG;
733 
734 		if ((end - start) < 2)
735 			return NULL;
736 
737 		item->size = *start++;
738 		item->tag  = *start++;
739 
740 		if ((end - start) < item->size)
741 			return NULL;
742 
743 		item->data.longdata = start;
744 		start += item->size;
745 		return start;
746 	}
747 
748 	item->format = HID_ITEM_FORMAT_SHORT;
749 	item->size = b & 3;
750 
751 	switch (item->size) {
752 	case 0:
753 		return start;
754 
755 	case 1:
756 		if ((end - start) < 1)
757 			return NULL;
758 		item->data.u8 = *start++;
759 		return start;
760 
761 	case 2:
762 		if ((end - start) < 2)
763 			return NULL;
764 		item->data.u16 = get_unaligned_le16(start);
765 		start = (__u8 *)((__le16 *)start + 1);
766 		return start;
767 
768 	case 3:
769 		item->size++;
770 		if ((end - start) < 4)
771 			return NULL;
772 		item->data.u32 = get_unaligned_le32(start);
773 		start = (__u8 *)((__le32 *)start + 1);
774 		return start;
775 	}
776 
777 	return NULL;
778 }
779 
hid_scan_input_usage(struct hid_parser * parser,u32 usage)780 static void hid_scan_input_usage(struct hid_parser *parser, u32 usage)
781 {
782 	struct hid_device *hid = parser->device;
783 
784 	if (usage == HID_DG_CONTACTID)
785 		hid->group = HID_GROUP_MULTITOUCH;
786 }
787 
hid_scan_feature_usage(struct hid_parser * parser,u32 usage)788 static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage)
789 {
790 	if (usage == 0xff0000c5 && parser->global.report_count == 256 &&
791 	    parser->global.report_size == 8)
792 		parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
793 
794 	if (usage == 0xff0000c6 && parser->global.report_count == 1 &&
795 	    parser->global.report_size == 8)
796 		parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
797 }
798 
hid_scan_collection(struct hid_parser * parser,unsigned type)799 static void hid_scan_collection(struct hid_parser *parser, unsigned type)
800 {
801 	struct hid_device *hid = parser->device;
802 	int i;
803 
804 	if (((parser->global.usage_page << 16) == HID_UP_SENSOR) &&
805 	    type == HID_COLLECTION_PHYSICAL)
806 		hid->group = HID_GROUP_SENSOR_HUB;
807 
808 	if (hid->vendor == USB_VENDOR_ID_MICROSOFT &&
809 	    hid->product == USB_DEVICE_ID_MS_POWER_COVER &&
810 	    hid->group == HID_GROUP_MULTITOUCH)
811 		hid->group = HID_GROUP_GENERIC;
812 
813 	if ((parser->global.usage_page << 16) == HID_UP_GENDESK)
814 		for (i = 0; i < parser->local.usage_index; i++)
815 			if (parser->local.usage[i] == HID_GD_POINTER)
816 				parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER;
817 
818 	if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR)
819 		parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC;
820 }
821 
hid_scan_main(struct hid_parser * parser,struct hid_item * item)822 static int hid_scan_main(struct hid_parser *parser, struct hid_item *item)
823 {
824 	__u32 data;
825 	int i;
826 
827 	hid_concatenate_last_usage_page(parser);
828 
829 	data = item_udata(item);
830 
831 	switch (item->tag) {
832 	case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
833 		hid_scan_collection(parser, data & 0xff);
834 		break;
835 	case HID_MAIN_ITEM_TAG_END_COLLECTION:
836 		break;
837 	case HID_MAIN_ITEM_TAG_INPUT:
838 		/* ignore constant inputs, they will be ignored by hid-input */
839 		if (data & HID_MAIN_ITEM_CONSTANT)
840 			break;
841 		for (i = 0; i < parser->local.usage_index; i++)
842 			hid_scan_input_usage(parser, parser->local.usage[i]);
843 		break;
844 	case HID_MAIN_ITEM_TAG_OUTPUT:
845 		break;
846 	case HID_MAIN_ITEM_TAG_FEATURE:
847 		for (i = 0; i < parser->local.usage_index; i++)
848 			hid_scan_feature_usage(parser, parser->local.usage[i]);
849 		break;
850 	}
851 
852 	/* Reset the local parser environment */
853 	memset(&parser->local, 0, sizeof(parser->local));
854 
855 	return 0;
856 }
857 
858 /*
859  * Scan a report descriptor before the device is added to the bus.
860  * Sets device groups and other properties that determine what driver
861  * to load.
862  */
hid_scan_report(struct hid_device * hid)863 static int hid_scan_report(struct hid_device *hid)
864 {
865 	struct hid_parser *parser;
866 	struct hid_item item;
867 	__u8 *start = hid->dev_rdesc;
868 	__u8 *end = start + hid->dev_rsize;
869 	static int (*dispatch_type[])(struct hid_parser *parser,
870 				      struct hid_item *item) = {
871 		hid_scan_main,
872 		hid_parser_global,
873 		hid_parser_local,
874 		hid_parser_reserved
875 	};
876 
877 	parser = vzalloc(sizeof(struct hid_parser));
878 	if (!parser)
879 		return -ENOMEM;
880 
881 	parser->device = hid;
882 	hid->group = HID_GROUP_GENERIC;
883 
884 	/*
885 	 * The parsing is simpler than the one in hid_open_report() as we should
886 	 * be robust against hid errors. Those errors will be raised by
887 	 * hid_open_report() anyway.
888 	 */
889 	while ((start = fetch_item(start, end, &item)) != NULL)
890 		dispatch_type[item.type](parser, &item);
891 
892 	/*
893 	 * Handle special flags set during scanning.
894 	 */
895 	if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) &&
896 	    (hid->group == HID_GROUP_MULTITOUCH))
897 		hid->group = HID_GROUP_MULTITOUCH_WIN_8;
898 
899 	/*
900 	 * Vendor specific handlings
901 	 */
902 	switch (hid->vendor) {
903 	case USB_VENDOR_ID_WACOM:
904 		hid->group = HID_GROUP_WACOM;
905 		break;
906 	case USB_VENDOR_ID_SYNAPTICS:
907 		if (hid->group == HID_GROUP_GENERIC)
908 			if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC)
909 			    && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER))
910 				/*
911 				 * hid-rmi should take care of them,
912 				 * not hid-generic
913 				 */
914 				hid->group = HID_GROUP_RMI;
915 		break;
916 	}
917 
918 	kfree(parser->collection_stack);
919 	vfree(parser);
920 	return 0;
921 }
922 
923 /**
924  * hid_parse_report - parse device report
925  *
926  * @device: hid device
927  * @start: report start
928  * @size: report size
929  *
930  * Allocate the device report as read by the bus driver. This function should
931  * only be called from parse() in ll drivers.
932  */
hid_parse_report(struct hid_device * hid,__u8 * start,unsigned size)933 int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size)
934 {
935 	hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL);
936 	if (!hid->dev_rdesc)
937 		return -ENOMEM;
938 	hid->dev_rsize = size;
939 	return 0;
940 }
941 EXPORT_SYMBOL_GPL(hid_parse_report);
942 
943 static const char * const hid_report_names[] = {
944 	"HID_INPUT_REPORT",
945 	"HID_OUTPUT_REPORT",
946 	"HID_FEATURE_REPORT",
947 };
948 /**
949  * hid_validate_values - validate existing device report's value indexes
950  *
951  * @device: hid device
952  * @type: which report type to examine
953  * @id: which report ID to examine (0 for first)
954  * @field_index: which report field to examine
955  * @report_counts: expected number of values
956  *
957  * Validate the number of values in a given field of a given report, after
958  * parsing.
959  */
hid_validate_values(struct hid_device * hid,unsigned int type,unsigned int id,unsigned int field_index,unsigned int report_counts)960 struct hid_report *hid_validate_values(struct hid_device *hid,
961 				       unsigned int type, unsigned int id,
962 				       unsigned int field_index,
963 				       unsigned int report_counts)
964 {
965 	struct hid_report *report;
966 
967 	if (type > HID_FEATURE_REPORT) {
968 		hid_err(hid, "invalid HID report type %u\n", type);
969 		return NULL;
970 	}
971 
972 	if (id >= HID_MAX_IDS) {
973 		hid_err(hid, "invalid HID report id %u\n", id);
974 		return NULL;
975 	}
976 
977 	/*
978 	 * Explicitly not using hid_get_report() here since it depends on
979 	 * ->numbered being checked, which may not always be the case when
980 	 * drivers go to access report values.
981 	 */
982 	if (id == 0) {
983 		/*
984 		 * Validating on id 0 means we should examine the first
985 		 * report in the list.
986 		 */
987 		report = list_first_entry_or_null(
988 				&hid->report_enum[type].report_list,
989 				struct hid_report, list);
990 	} else {
991 		report = hid->report_enum[type].report_id_hash[id];
992 	}
993 	if (!report) {
994 		hid_err(hid, "missing %s %u\n", hid_report_names[type], id);
995 		return NULL;
996 	}
997 	if (report->maxfield <= field_index) {
998 		hid_err(hid, "not enough fields in %s %u\n",
999 			hid_report_names[type], id);
1000 		return NULL;
1001 	}
1002 	if (report->field[field_index]->report_count < report_counts) {
1003 		hid_err(hid, "not enough values in %s %u field %u\n",
1004 			hid_report_names[type], id, field_index);
1005 		return NULL;
1006 	}
1007 	return report;
1008 }
1009 EXPORT_SYMBOL_GPL(hid_validate_values);
1010 
1011 /**
1012  * hid_open_report - open a driver-specific device report
1013  *
1014  * @device: hid device
1015  *
1016  * Parse a report description into a hid_device structure. Reports are
1017  * enumerated, fields are attached to these reports.
1018  * 0 returned on success, otherwise nonzero error value.
1019  *
1020  * This function (or the equivalent hid_parse() macro) should only be
1021  * called from probe() in drivers, before starting the device.
1022  */
hid_open_report(struct hid_device * device)1023 int hid_open_report(struct hid_device *device)
1024 {
1025 	struct hid_parser *parser;
1026 	struct hid_item item;
1027 	unsigned int size;
1028 	__u8 *start;
1029 	__u8 *buf;
1030 	__u8 *end;
1031 	__u8 *next;
1032 	int ret;
1033 	static int (*dispatch_type[])(struct hid_parser *parser,
1034 				      struct hid_item *item) = {
1035 		hid_parser_main,
1036 		hid_parser_global,
1037 		hid_parser_local,
1038 		hid_parser_reserved
1039 	};
1040 
1041 	if (WARN_ON(device->status & HID_STAT_PARSED))
1042 		return -EBUSY;
1043 
1044 	start = device->dev_rdesc;
1045 	if (WARN_ON(!start))
1046 		return -ENODEV;
1047 	size = device->dev_rsize;
1048 
1049 	buf = kmemdup(start, size, GFP_KERNEL);
1050 	if (buf == NULL)
1051 		return -ENOMEM;
1052 
1053 	if (device->driver->report_fixup)
1054 		start = device->driver->report_fixup(device, buf, &size);
1055 	else
1056 		start = buf;
1057 
1058 	start = kmemdup(start, size, GFP_KERNEL);
1059 	kfree(buf);
1060 	if (start == NULL)
1061 		return -ENOMEM;
1062 
1063 	device->rdesc = start;
1064 	device->rsize = size;
1065 
1066 	parser = vzalloc(sizeof(struct hid_parser));
1067 	if (!parser) {
1068 		ret = -ENOMEM;
1069 		goto alloc_err;
1070 	}
1071 
1072 	parser->device = device;
1073 
1074 	end = start + size;
1075 
1076 	device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
1077 				     sizeof(struct hid_collection), GFP_KERNEL);
1078 	if (!device->collection) {
1079 		ret = -ENOMEM;
1080 		goto err;
1081 	}
1082 	device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
1083 
1084 	ret = -EINVAL;
1085 	while ((next = fetch_item(start, end, &item)) != NULL) {
1086 		start = next;
1087 
1088 		if (item.format != HID_ITEM_FORMAT_SHORT) {
1089 			hid_err(device, "unexpected long global item\n");
1090 			goto err;
1091 		}
1092 
1093 		if (dispatch_type[item.type](parser, &item)) {
1094 			hid_err(device, "item %u %u %u %u parsing failed\n",
1095 				item.format, (unsigned)item.size,
1096 				(unsigned)item.type, (unsigned)item.tag);
1097 			goto err;
1098 		}
1099 
1100 		if (start == end) {
1101 			if (parser->collection_stack_ptr) {
1102 				hid_err(device, "unbalanced collection at end of report description\n");
1103 				goto err;
1104 			}
1105 			if (parser->local.delimiter_depth) {
1106 				hid_err(device, "unbalanced delimiter at end of report description\n");
1107 				goto err;
1108 			}
1109 			kfree(parser->collection_stack);
1110 			vfree(parser);
1111 			device->status |= HID_STAT_PARSED;
1112 			return 0;
1113 		}
1114 	}
1115 
1116 	hid_err(device, "item fetching failed at offset %u/%u\n",
1117 		size - (unsigned int)(end - start), size);
1118 err:
1119 	kfree(parser->collection_stack);
1120 alloc_err:
1121 	vfree(parser);
1122 	hid_close_report(device);
1123 	return ret;
1124 }
1125 EXPORT_SYMBOL_GPL(hid_open_report);
1126 
1127 /*
1128  * Convert a signed n-bit integer to signed 32-bit integer. Common
1129  * cases are done through the compiler, the screwed things has to be
1130  * done by hand.
1131  */
1132 
snto32(__u32 value,unsigned n)1133 static s32 snto32(__u32 value, unsigned n)
1134 {
1135 	if (!value || !n)
1136 		return 0;
1137 
1138 	if (n > 32)
1139 		n = 32;
1140 
1141 	switch (n) {
1142 	case 8:  return ((__s8)value);
1143 	case 16: return ((__s16)value);
1144 	case 32: return ((__s32)value);
1145 	}
1146 	return value & (1 << (n - 1)) ? value | (~0U << n) : value;
1147 }
1148 
hid_snto32(__u32 value,unsigned n)1149 s32 hid_snto32(__u32 value, unsigned n)
1150 {
1151 	return snto32(value, n);
1152 }
1153 EXPORT_SYMBOL_GPL(hid_snto32);
1154 
1155 /*
1156  * Convert a signed 32-bit integer to a signed n-bit integer.
1157  */
1158 
s32ton(__s32 value,unsigned n)1159 static u32 s32ton(__s32 value, unsigned n)
1160 {
1161 	s32 a = value >> (n - 1);
1162 	if (a && a != -1)
1163 		return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
1164 	return value & ((1 << n) - 1);
1165 }
1166 
1167 /*
1168  * Extract/implement a data field from/to a little endian report (bit array).
1169  *
1170  * Code sort-of follows HID spec:
1171  *     http://www.usb.org/developers/hidpage/HID1_11.pdf
1172  *
1173  * While the USB HID spec allows unlimited length bit fields in "report
1174  * descriptors", most devices never use more than 16 bits.
1175  * One model of UPS is claimed to report "LINEV" as a 32-bit field.
1176  * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
1177  */
1178 
__extract(u8 * report,unsigned offset,int n)1179 static u32 __extract(u8 *report, unsigned offset, int n)
1180 {
1181 	unsigned int idx = offset / 8;
1182 	unsigned int bit_nr = 0;
1183 	unsigned int bit_shift = offset % 8;
1184 	int bits_to_copy = 8 - bit_shift;
1185 	u32 value = 0;
1186 	u32 mask = n < 32 ? (1U << n) - 1 : ~0U;
1187 
1188 	while (n > 0) {
1189 		value |= ((u32)report[idx] >> bit_shift) << bit_nr;
1190 		n -= bits_to_copy;
1191 		bit_nr += bits_to_copy;
1192 		bits_to_copy = 8;
1193 		bit_shift = 0;
1194 		idx++;
1195 	}
1196 
1197 	return value & mask;
1198 }
1199 
hid_field_extract(const struct hid_device * hid,u8 * report,unsigned offset,unsigned n)1200 u32 hid_field_extract(const struct hid_device *hid, u8 *report,
1201 			unsigned offset, unsigned n)
1202 {
1203 	if (n > 32) {
1204 		hid_warn(hid, "hid_field_extract() called with n (%d) > 32! (%s)\n",
1205 			 n, current->comm);
1206 		n = 32;
1207 	}
1208 
1209 	return __extract(report, offset, n);
1210 }
1211 EXPORT_SYMBOL_GPL(hid_field_extract);
1212 
1213 /*
1214  * "implement" : set bits in a little endian bit stream.
1215  * Same concepts as "extract" (see comments above).
1216  * The data mangled in the bit stream remains in little endian
1217  * order the whole time. It make more sense to talk about
1218  * endianness of register values by considering a register
1219  * a "cached" copy of the little endian bit stream.
1220  */
1221 
__implement(u8 * report,unsigned offset,int n,u32 value)1222 static void __implement(u8 *report, unsigned offset, int n, u32 value)
1223 {
1224 	unsigned int idx = offset / 8;
1225 	unsigned int bit_shift = offset % 8;
1226 	int bits_to_set = 8 - bit_shift;
1227 
1228 	while (n - bits_to_set >= 0) {
1229 		report[idx] &= ~(0xff << bit_shift);
1230 		report[idx] |= value << bit_shift;
1231 		value >>= bits_to_set;
1232 		n -= bits_to_set;
1233 		bits_to_set = 8;
1234 		bit_shift = 0;
1235 		idx++;
1236 	}
1237 
1238 	/* last nibble */
1239 	if (n) {
1240 		u8 bit_mask = ((1U << n) - 1);
1241 		report[idx] &= ~(bit_mask << bit_shift);
1242 		report[idx] |= value << bit_shift;
1243 	}
1244 }
1245 
implement(const struct hid_device * hid,u8 * report,unsigned offset,unsigned n,u32 value)1246 static void implement(const struct hid_device *hid, u8 *report,
1247 		      unsigned offset, unsigned n, u32 value)
1248 {
1249 	if (unlikely(n > 32)) {
1250 		hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
1251 			 __func__, n, current->comm);
1252 		n = 32;
1253 	} else if (n < 32) {
1254 		u32 m = (1U << n) - 1;
1255 
1256 		if (unlikely(value > m)) {
1257 			hid_warn(hid,
1258 				 "%s() called with too large value %d (n: %d)! (%s)\n",
1259 				 __func__, value, n, current->comm);
1260 			WARN_ON(1);
1261 			value &= m;
1262 		}
1263 	}
1264 
1265 	__implement(report, offset, n, value);
1266 }
1267 
1268 /*
1269  * Search an array for a value.
1270  */
1271 
search(__s32 * array,__s32 value,unsigned n)1272 static int search(__s32 *array, __s32 value, unsigned n)
1273 {
1274 	while (n--) {
1275 		if (*array++ == value)
1276 			return 0;
1277 	}
1278 	return -1;
1279 }
1280 
1281 /**
1282  * hid_match_report - check if driver's raw_event should be called
1283  *
1284  * @hid: hid device
1285  * @report_type: type to match against
1286  *
1287  * compare hid->driver->report_table->report_type to report->type
1288  */
hid_match_report(struct hid_device * hid,struct hid_report * report)1289 static int hid_match_report(struct hid_device *hid, struct hid_report *report)
1290 {
1291 	const struct hid_report_id *id = hid->driver->report_table;
1292 
1293 	if (!id) /* NULL means all */
1294 		return 1;
1295 
1296 	for (; id->report_type != HID_TERMINATOR; id++)
1297 		if (id->report_type == HID_ANY_ID ||
1298 				id->report_type == report->type)
1299 			return 1;
1300 	return 0;
1301 }
1302 
1303 /**
1304  * hid_match_usage - check if driver's event should be called
1305  *
1306  * @hid: hid device
1307  * @usage: usage to match against
1308  *
1309  * compare hid->driver->usage_table->usage_{type,code} to
1310  * usage->usage_{type,code}
1311  */
hid_match_usage(struct hid_device * hid,struct hid_usage * usage)1312 static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
1313 {
1314 	const struct hid_usage_id *id = hid->driver->usage_table;
1315 
1316 	if (!id) /* NULL means all */
1317 		return 1;
1318 
1319 	for (; id->usage_type != HID_ANY_ID - 1; id++)
1320 		if ((id->usage_hid == HID_ANY_ID ||
1321 				id->usage_hid == usage->hid) &&
1322 				(id->usage_type == HID_ANY_ID ||
1323 				id->usage_type == usage->type) &&
1324 				(id->usage_code == HID_ANY_ID ||
1325 				 id->usage_code == usage->code))
1326 			return 1;
1327 	return 0;
1328 }
1329 
hid_process_event(struct hid_device * hid,struct hid_field * field,struct hid_usage * usage,__s32 value,int interrupt)1330 static void hid_process_event(struct hid_device *hid, struct hid_field *field,
1331 		struct hid_usage *usage, __s32 value, int interrupt)
1332 {
1333 	struct hid_driver *hdrv = hid->driver;
1334 	int ret;
1335 
1336 	if (!list_empty(&hid->debug_list))
1337 		hid_dump_input(hid, usage, value);
1338 
1339 	if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
1340 		ret = hdrv->event(hid, field, usage, value);
1341 		if (ret != 0) {
1342 			if (ret < 0)
1343 				hid_err(hid, "%s's event failed with %d\n",
1344 						hdrv->name, ret);
1345 			return;
1346 		}
1347 	}
1348 
1349 	if (hid->claimed & HID_CLAIMED_INPUT)
1350 		hidinput_hid_event(hid, field, usage, value);
1351 	if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
1352 		hid->hiddev_hid_event(hid, field, usage, value);
1353 }
1354 
1355 /*
1356  * Analyse a received field, and fetch the data from it. The field
1357  * content is stored for next report processing (we do differential
1358  * reporting to the layer).
1359  */
1360 
hid_input_field(struct hid_device * hid,struct hid_field * field,__u8 * data,int interrupt)1361 static void hid_input_field(struct hid_device *hid, struct hid_field *field,
1362 			    __u8 *data, int interrupt)
1363 {
1364 	unsigned n;
1365 	unsigned count = field->report_count;
1366 	unsigned offset = field->report_offset;
1367 	unsigned size = field->report_size;
1368 	__s32 min = field->logical_minimum;
1369 	__s32 max = field->logical_maximum;
1370 	__s32 *value;
1371 
1372 	value = kmalloc_array(count, sizeof(__s32), GFP_ATOMIC);
1373 	if (!value)
1374 		return;
1375 
1376 	for (n = 0; n < count; n++) {
1377 
1378 		value[n] = min < 0 ?
1379 			snto32(hid_field_extract(hid, data, offset + n * size,
1380 			       size), size) :
1381 			hid_field_extract(hid, data, offset + n * size, size);
1382 
1383 		/* Ignore report if ErrorRollOver */
1384 		if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
1385 		    value[n] >= min && value[n] <= max &&
1386 		    value[n] - min < field->maxusage &&
1387 		    field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1)
1388 			goto exit;
1389 	}
1390 
1391 	for (n = 0; n < count; n++) {
1392 
1393 		if (HID_MAIN_ITEM_VARIABLE & field->flags) {
1394 			hid_process_event(hid, field, &field->usage[n], value[n], interrupt);
1395 			continue;
1396 		}
1397 
1398 		if (field->value[n] >= min && field->value[n] <= max
1399 			&& field->value[n] - min < field->maxusage
1400 			&& field->usage[field->value[n] - min].hid
1401 			&& search(value, field->value[n], count))
1402 				hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, interrupt);
1403 
1404 		if (value[n] >= min && value[n] <= max
1405 			&& value[n] - min < field->maxusage
1406 			&& field->usage[value[n] - min].hid
1407 			&& search(field->value, value[n], count))
1408 				hid_process_event(hid, field, &field->usage[value[n] - min], 1, interrupt);
1409 	}
1410 
1411 	memcpy(field->value, value, count * sizeof(__s32));
1412 exit:
1413 	kfree(value);
1414 }
1415 
1416 /*
1417  * Output the field into the report.
1418  */
1419 
hid_output_field(const struct hid_device * hid,struct hid_field * field,__u8 * data)1420 static void hid_output_field(const struct hid_device *hid,
1421 			     struct hid_field *field, __u8 *data)
1422 {
1423 	unsigned count = field->report_count;
1424 	unsigned offset = field->report_offset;
1425 	unsigned size = field->report_size;
1426 	unsigned n;
1427 
1428 	for (n = 0; n < count; n++) {
1429 		if (field->logical_minimum < 0)	/* signed values */
1430 			implement(hid, data, offset + n * size, size,
1431 				  s32ton(field->value[n], size));
1432 		else				/* unsigned values */
1433 			implement(hid, data, offset + n * size, size,
1434 				  field->value[n]);
1435 	}
1436 }
1437 
1438 /*
1439  * Compute the size of a report.
1440  */
hid_compute_report_size(struct hid_report * report)1441 static size_t hid_compute_report_size(struct hid_report *report)
1442 {
1443 	if (report->size)
1444 		return ((report->size - 1) >> 3) + 1;
1445 
1446 	return 0;
1447 }
1448 
1449 /*
1450  * Create a report. 'data' has to be allocated using
1451  * hid_alloc_report_buf() so that it has proper size.
1452  */
1453 
hid_output_report(struct hid_report * report,__u8 * data)1454 void hid_output_report(struct hid_report *report, __u8 *data)
1455 {
1456 	unsigned n;
1457 
1458 	if (report->id > 0)
1459 		*data++ = report->id;
1460 
1461 	memset(data, 0, hid_compute_report_size(report));
1462 	for (n = 0; n < report->maxfield; n++)
1463 		hid_output_field(report->device, report->field[n], data);
1464 }
1465 EXPORT_SYMBOL_GPL(hid_output_report);
1466 
1467 /*
1468  * Allocator for buffer that is going to be passed to hid_output_report()
1469  */
hid_alloc_report_buf(struct hid_report * report,gfp_t flags)1470 u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags)
1471 {
1472 	/*
1473 	 * 7 extra bytes are necessary to achieve proper functionality
1474 	 * of implement() working on 8 byte chunks
1475 	 */
1476 
1477 	u32 len = hid_report_len(report) + 7;
1478 
1479 	return kmalloc(len, flags);
1480 }
1481 EXPORT_SYMBOL_GPL(hid_alloc_report_buf);
1482 
1483 /*
1484  * Set a field value. The report this field belongs to has to be
1485  * created and transferred to the device, to set this value in the
1486  * device.
1487  */
1488 
hid_set_field(struct hid_field * field,unsigned offset,__s32 value)1489 int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
1490 {
1491 	unsigned size;
1492 
1493 	if (!field)
1494 		return -1;
1495 
1496 	size = field->report_size;
1497 
1498 	hid_dump_input(field->report->device, field->usage + offset, value);
1499 
1500 	if (offset >= field->report_count) {
1501 		hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n",
1502 				offset, field->report_count);
1503 		return -1;
1504 	}
1505 	if (field->logical_minimum < 0) {
1506 		if (value != snto32(s32ton(value, size), size)) {
1507 			hid_err(field->report->device, "value %d is out of range\n", value);
1508 			return -1;
1509 		}
1510 	}
1511 	field->value[offset] = value;
1512 	return 0;
1513 }
1514 EXPORT_SYMBOL_GPL(hid_set_field);
1515 
hid_get_report(struct hid_report_enum * report_enum,const u8 * data)1516 static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1517 		const u8 *data)
1518 {
1519 	struct hid_report *report;
1520 	unsigned int n = 0;	/* Normally report number is 0 */
1521 
1522 	/* Device uses numbered reports, data[0] is report number */
1523 	if (report_enum->numbered)
1524 		n = *data;
1525 
1526 	report = report_enum->report_id_hash[n];
1527 	if (report == NULL)
1528 		dbg_hid("undefined report_id %u received\n", n);
1529 
1530 	return report;
1531 }
1532 
1533 /*
1534  * Implement a generic .request() callback, using .raw_request()
1535  * DO NOT USE in hid drivers directly, but through hid_hw_request instead.
1536  */
__hid_request(struct hid_device * hid,struct hid_report * report,int reqtype)1537 void __hid_request(struct hid_device *hid, struct hid_report *report,
1538 		int reqtype)
1539 {
1540 	char *buf;
1541 	int ret;
1542 	u32 len;
1543 
1544 	buf = hid_alloc_report_buf(report, GFP_KERNEL);
1545 	if (!buf)
1546 		return;
1547 
1548 	len = hid_report_len(report);
1549 
1550 	if (reqtype == HID_REQ_SET_REPORT)
1551 		hid_output_report(report, buf);
1552 
1553 	ret = hid->ll_driver->raw_request(hid, report->id, buf, len,
1554 					  report->type, reqtype);
1555 	if (ret < 0) {
1556 		dbg_hid("unable to complete request: %d\n", ret);
1557 		goto out;
1558 	}
1559 
1560 	if (reqtype == HID_REQ_GET_REPORT)
1561 		hid_input_report(hid, report->type, buf, ret, 0);
1562 
1563 out:
1564 	kfree(buf);
1565 }
1566 EXPORT_SYMBOL_GPL(__hid_request);
1567 
hid_report_raw_event(struct hid_device * hid,int type,u8 * data,u32 size,int interrupt)1568 int hid_report_raw_event(struct hid_device *hid, int type, u8 *data, u32 size,
1569 		int interrupt)
1570 {
1571 	struct hid_report_enum *report_enum = hid->report_enum + type;
1572 	struct hid_report *report;
1573 	struct hid_driver *hdrv;
1574 	int max_buffer_size = HID_MAX_BUFFER_SIZE;
1575 	unsigned int a;
1576 	u32 rsize, csize = size;
1577 	u8 *cdata = data;
1578 	int ret = 0;
1579 
1580 	report = hid_get_report(report_enum, data);
1581 	if (!report)
1582 		goto out;
1583 
1584 	if (report_enum->numbered) {
1585 		cdata++;
1586 		csize--;
1587 	}
1588 
1589 	rsize = hid_compute_report_size(report);
1590 
1591 	if (hid->ll_driver->max_buffer_size)
1592 		max_buffer_size = hid->ll_driver->max_buffer_size;
1593 
1594 	if (report_enum->numbered && rsize >= max_buffer_size)
1595 		rsize = max_buffer_size - 1;
1596 	else if (rsize > max_buffer_size)
1597 		rsize = max_buffer_size;
1598 
1599 	if (csize < rsize) {
1600 		dbg_hid("report %d is too short, (%d < %d)\n", report->id,
1601 				csize, rsize);
1602 		memset(cdata + csize, 0, rsize - csize);
1603 	}
1604 
1605 	if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
1606 		hid->hiddev_report_event(hid, report);
1607 	if (hid->claimed & HID_CLAIMED_HIDRAW) {
1608 		ret = hidraw_report_event(hid, data, size);
1609 		if (ret)
1610 			goto out;
1611 	}
1612 
1613 	if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) {
1614 		for (a = 0; a < report->maxfield; a++)
1615 			hid_input_field(hid, report->field[a], cdata, interrupt);
1616 		hdrv = hid->driver;
1617 		if (hdrv && hdrv->report)
1618 			hdrv->report(hid, report);
1619 	}
1620 
1621 	if (hid->claimed & HID_CLAIMED_INPUT)
1622 		hidinput_report_event(hid, report);
1623 out:
1624 	return ret;
1625 }
1626 EXPORT_SYMBOL_GPL(hid_report_raw_event);
1627 
1628 /**
1629  * hid_input_report - report data from lower layer (usb, bt...)
1630  *
1631  * @hid: hid device
1632  * @type: HID report type (HID_*_REPORT)
1633  * @data: report contents
1634  * @size: size of data parameter
1635  * @interrupt: distinguish between interrupt and control transfers
1636  *
1637  * This is data entry for lower layers.
1638  */
hid_input_report(struct hid_device * hid,int type,u8 * data,u32 size,int interrupt)1639 int hid_input_report(struct hid_device *hid, int type, u8 *data, u32 size, int interrupt)
1640 {
1641 	struct hid_report_enum *report_enum;
1642 	struct hid_driver *hdrv;
1643 	struct hid_report *report;
1644 	int ret = 0;
1645 
1646 	if (!hid)
1647 		return -ENODEV;
1648 
1649 	if (down_trylock(&hid->driver_input_lock))
1650 		return -EBUSY;
1651 
1652 	if (!hid->driver) {
1653 		ret = -ENODEV;
1654 		goto unlock;
1655 	}
1656 	report_enum = hid->report_enum + type;
1657 	hdrv = hid->driver;
1658 
1659 	if (!size) {
1660 		dbg_hid("empty report\n");
1661 		ret = -1;
1662 		goto unlock;
1663 	}
1664 
1665 	/* Avoid unnecessary overhead if debugfs is disabled */
1666 	if (!list_empty(&hid->debug_list))
1667 		hid_dump_report(hid, type, data, size);
1668 
1669 	report = hid_get_report(report_enum, data);
1670 
1671 	if (!report) {
1672 		ret = -1;
1673 		goto unlock;
1674 	}
1675 
1676 	if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
1677 		ret = hdrv->raw_event(hid, report, data, size);
1678 		if (ret < 0)
1679 			goto unlock;
1680 	}
1681 
1682 	ret = hid_report_raw_event(hid, type, data, size, interrupt);
1683 
1684 unlock:
1685 	up(&hid->driver_input_lock);
1686 	return ret;
1687 }
1688 EXPORT_SYMBOL_GPL(hid_input_report);
1689 
hid_match_one_id(const struct hid_device * hdev,const struct hid_device_id * id)1690 bool hid_match_one_id(const struct hid_device *hdev,
1691 		      const struct hid_device_id *id)
1692 {
1693 	return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) &&
1694 		(id->group == HID_GROUP_ANY || id->group == hdev->group) &&
1695 		(id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
1696 		(id->product == HID_ANY_ID || id->product == hdev->product);
1697 }
1698 
hid_match_id(const struct hid_device * hdev,const struct hid_device_id * id)1699 const struct hid_device_id *hid_match_id(const struct hid_device *hdev,
1700 		const struct hid_device_id *id)
1701 {
1702 	for (; id->bus; id++)
1703 		if (hid_match_one_id(hdev, id))
1704 			return id;
1705 
1706 	return NULL;
1707 }
1708 
1709 static const struct hid_device_id hid_hiddev_list[] = {
1710 	{ HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
1711 	{ HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
1712 	{ }
1713 };
1714 
hid_hiddev(struct hid_device * hdev)1715 static bool hid_hiddev(struct hid_device *hdev)
1716 {
1717 	return !!hid_match_id(hdev, hid_hiddev_list);
1718 }
1719 
1720 
1721 static ssize_t
read_report_descriptor(struct file * filp,struct kobject * kobj,struct bin_attribute * attr,char * buf,loff_t off,size_t count)1722 read_report_descriptor(struct file *filp, struct kobject *kobj,
1723 		struct bin_attribute *attr,
1724 		char *buf, loff_t off, size_t count)
1725 {
1726 	struct device *dev = kobj_to_dev(kobj);
1727 	struct hid_device *hdev = to_hid_device(dev);
1728 
1729 	if (off >= hdev->rsize)
1730 		return 0;
1731 
1732 	if (off + count > hdev->rsize)
1733 		count = hdev->rsize - off;
1734 
1735 	memcpy(buf, hdev->rdesc + off, count);
1736 
1737 	return count;
1738 }
1739 
1740 static ssize_t
show_country(struct device * dev,struct device_attribute * attr,char * buf)1741 show_country(struct device *dev, struct device_attribute *attr,
1742 		char *buf)
1743 {
1744 	struct hid_device *hdev = to_hid_device(dev);
1745 
1746 	return sprintf(buf, "%02x\n", hdev->country & 0xff);
1747 }
1748 
1749 static struct bin_attribute dev_bin_attr_report_desc = {
1750 	.attr = { .name = "report_descriptor", .mode = 0444 },
1751 	.read = read_report_descriptor,
1752 	.size = HID_MAX_DESCRIPTOR_SIZE,
1753 };
1754 
1755 static const struct device_attribute dev_attr_country = {
1756 	.attr = { .name = "country", .mode = 0444 },
1757 	.show = show_country,
1758 };
1759 
hid_connect(struct hid_device * hdev,unsigned int connect_mask)1760 int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
1761 {
1762 	static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
1763 		"Joystick", "Gamepad", "Keyboard", "Keypad",
1764 		"Multi-Axis Controller"
1765 	};
1766 	const char *type, *bus;
1767 	char buf[64] = "";
1768 	unsigned int i;
1769 	int len;
1770 	int ret;
1771 
1772 	if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
1773 		connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
1774 	if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
1775 		connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
1776 	if (hdev->bus != BUS_USB)
1777 		connect_mask &= ~HID_CONNECT_HIDDEV;
1778 	if (hid_hiddev(hdev))
1779 		connect_mask |= HID_CONNECT_HIDDEV_FORCE;
1780 
1781 	if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
1782 				connect_mask & HID_CONNECT_HIDINPUT_FORCE))
1783 		hdev->claimed |= HID_CLAIMED_INPUT;
1784 
1785 	if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
1786 			!hdev->hiddev_connect(hdev,
1787 				connect_mask & HID_CONNECT_HIDDEV_FORCE))
1788 		hdev->claimed |= HID_CLAIMED_HIDDEV;
1789 	if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
1790 		hdev->claimed |= HID_CLAIMED_HIDRAW;
1791 
1792 	if (connect_mask & HID_CONNECT_DRIVER)
1793 		hdev->claimed |= HID_CLAIMED_DRIVER;
1794 
1795 	/* Drivers with the ->raw_event callback set are not required to connect
1796 	 * to any other listener. */
1797 	if (!hdev->claimed && !hdev->driver->raw_event) {
1798 		hid_err(hdev, "device has no listeners, quitting\n");
1799 		return -ENODEV;
1800 	}
1801 
1802 	if ((hdev->claimed & HID_CLAIMED_INPUT) &&
1803 			(connect_mask & HID_CONNECT_FF) && hdev->ff_init)
1804 		hdev->ff_init(hdev);
1805 
1806 	len = 0;
1807 	if (hdev->claimed & HID_CLAIMED_INPUT)
1808 		len += sprintf(buf + len, "input");
1809 	if (hdev->claimed & HID_CLAIMED_HIDDEV)
1810 		len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
1811 				((struct hiddev *)hdev->hiddev)->minor);
1812 	if (hdev->claimed & HID_CLAIMED_HIDRAW)
1813 		len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
1814 				((struct hidraw *)hdev->hidraw)->minor);
1815 
1816 	type = "Device";
1817 	for (i = 0; i < hdev->maxcollection; i++) {
1818 		struct hid_collection *col = &hdev->collection[i];
1819 		if (col->type == HID_COLLECTION_APPLICATION &&
1820 		   (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
1821 		   (col->usage & 0xffff) < ARRAY_SIZE(types)) {
1822 			type = types[col->usage & 0xffff];
1823 			break;
1824 		}
1825 	}
1826 
1827 	switch (hdev->bus) {
1828 	case BUS_USB:
1829 		bus = "USB";
1830 		break;
1831 	case BUS_BLUETOOTH:
1832 		bus = "BLUETOOTH";
1833 		break;
1834 	case BUS_I2C:
1835 		bus = "I2C";
1836 		break;
1837 	case BUS_VIRTUAL:
1838 		bus = "VIRTUAL";
1839 		break;
1840 	default:
1841 		bus = "<UNKNOWN>";
1842 	}
1843 
1844 	ret = device_create_file(&hdev->dev, &dev_attr_country);
1845 	if (ret)
1846 		hid_warn(hdev,
1847 			 "can't create sysfs country code attribute err: %d\n", ret);
1848 
1849 	hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
1850 		 buf, bus, hdev->version >> 8, hdev->version & 0xff,
1851 		 type, hdev->name, hdev->phys);
1852 
1853 	return 0;
1854 }
1855 EXPORT_SYMBOL_GPL(hid_connect);
1856 
hid_disconnect(struct hid_device * hdev)1857 void hid_disconnect(struct hid_device *hdev)
1858 {
1859 	device_remove_file(&hdev->dev, &dev_attr_country);
1860 	if (hdev->claimed & HID_CLAIMED_INPUT)
1861 		hidinput_disconnect(hdev);
1862 	if (hdev->claimed & HID_CLAIMED_HIDDEV)
1863 		hdev->hiddev_disconnect(hdev);
1864 	if (hdev->claimed & HID_CLAIMED_HIDRAW)
1865 		hidraw_disconnect(hdev);
1866 	hdev->claimed = 0;
1867 }
1868 EXPORT_SYMBOL_GPL(hid_disconnect);
1869 
1870 /**
1871  * hid_hw_start - start underlying HW
1872  * @hdev: hid device
1873  * @connect_mask: which outputs to connect, see HID_CONNECT_*
1874  *
1875  * Call this in probe function *after* hid_parse. This will setup HW
1876  * buffers and start the device (if not defeirred to device open).
1877  * hid_hw_stop must be called if this was successful.
1878  */
hid_hw_start(struct hid_device * hdev,unsigned int connect_mask)1879 int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask)
1880 {
1881 	int error;
1882 
1883 	error = hdev->ll_driver->start(hdev);
1884 	if (error)
1885 		return error;
1886 
1887 	if (connect_mask) {
1888 		error = hid_connect(hdev, connect_mask);
1889 		if (error) {
1890 			hdev->ll_driver->stop(hdev);
1891 			return error;
1892 		}
1893 	}
1894 
1895 	return 0;
1896 }
1897 EXPORT_SYMBOL_GPL(hid_hw_start);
1898 
1899 /**
1900  * hid_hw_stop - stop underlying HW
1901  * @hdev: hid device
1902  *
1903  * This is usually called from remove function or from probe when something
1904  * failed and hid_hw_start was called already.
1905  */
hid_hw_stop(struct hid_device * hdev)1906 void hid_hw_stop(struct hid_device *hdev)
1907 {
1908 	hid_disconnect(hdev);
1909 	hdev->ll_driver->stop(hdev);
1910 }
1911 EXPORT_SYMBOL_GPL(hid_hw_stop);
1912 
1913 /**
1914  * hid_hw_open - signal underlying HW to start delivering events
1915  * @hdev: hid device
1916  *
1917  * Tell underlying HW to start delivering events from the device.
1918  * This function should be called sometime after successful call
1919  * to hid_hw_start().
1920  */
hid_hw_open(struct hid_device * hdev)1921 int hid_hw_open(struct hid_device *hdev)
1922 {
1923 	int ret;
1924 
1925 	ret = mutex_lock_killable(&hdev->ll_open_lock);
1926 	if (ret)
1927 		return ret;
1928 
1929 	if (!hdev->ll_open_count++) {
1930 		ret = hdev->ll_driver->open(hdev);
1931 		if (ret)
1932 			hdev->ll_open_count--;
1933 	}
1934 
1935 	mutex_unlock(&hdev->ll_open_lock);
1936 	return ret;
1937 }
1938 EXPORT_SYMBOL_GPL(hid_hw_open);
1939 
1940 /**
1941  * hid_hw_close - signal underlaying HW to stop delivering events
1942  *
1943  * @hdev: hid device
1944  *
1945  * This function indicates that we are not interested in the events
1946  * from this device anymore. Delivery of events may or may not stop,
1947  * depending on the number of users still outstanding.
1948  */
hid_hw_close(struct hid_device * hdev)1949 void hid_hw_close(struct hid_device *hdev)
1950 {
1951 	mutex_lock(&hdev->ll_open_lock);
1952 	if (!--hdev->ll_open_count)
1953 		hdev->ll_driver->close(hdev);
1954 	mutex_unlock(&hdev->ll_open_lock);
1955 }
1956 EXPORT_SYMBOL_GPL(hid_hw_close);
1957 
1958 struct hid_dynid {
1959 	struct list_head list;
1960 	struct hid_device_id id;
1961 };
1962 
1963 /**
1964  * store_new_id - add a new HID device ID to this driver and re-probe devices
1965  * @driver: target device driver
1966  * @buf: buffer for scanning device ID data
1967  * @count: input size
1968  *
1969  * Adds a new dynamic hid device ID to this driver,
1970  * and causes the driver to probe for all devices again.
1971  */
new_id_store(struct device_driver * drv,const char * buf,size_t count)1972 static ssize_t new_id_store(struct device_driver *drv, const char *buf,
1973 		size_t count)
1974 {
1975 	struct hid_driver *hdrv = to_hid_driver(drv);
1976 	struct hid_dynid *dynid;
1977 	__u32 bus, vendor, product;
1978 	unsigned long driver_data = 0;
1979 	int ret;
1980 
1981 	ret = sscanf(buf, "%x %x %x %lx",
1982 			&bus, &vendor, &product, &driver_data);
1983 	if (ret < 3)
1984 		return -EINVAL;
1985 
1986 	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
1987 	if (!dynid)
1988 		return -ENOMEM;
1989 
1990 	dynid->id.bus = bus;
1991 	dynid->id.group = HID_GROUP_ANY;
1992 	dynid->id.vendor = vendor;
1993 	dynid->id.product = product;
1994 	dynid->id.driver_data = driver_data;
1995 
1996 	spin_lock(&hdrv->dyn_lock);
1997 	list_add_tail(&dynid->list, &hdrv->dyn_list);
1998 	spin_unlock(&hdrv->dyn_lock);
1999 
2000 	ret = driver_attach(&hdrv->driver);
2001 
2002 	return ret ? : count;
2003 }
2004 static DRIVER_ATTR_WO(new_id);
2005 
2006 static struct attribute *hid_drv_attrs[] = {
2007 	&driver_attr_new_id.attr,
2008 	NULL,
2009 };
2010 ATTRIBUTE_GROUPS(hid_drv);
2011 
hid_free_dynids(struct hid_driver * hdrv)2012 static void hid_free_dynids(struct hid_driver *hdrv)
2013 {
2014 	struct hid_dynid *dynid, *n;
2015 
2016 	spin_lock(&hdrv->dyn_lock);
2017 	list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
2018 		list_del(&dynid->list);
2019 		kfree(dynid);
2020 	}
2021 	spin_unlock(&hdrv->dyn_lock);
2022 }
2023 
hid_match_device(struct hid_device * hdev,struct hid_driver * hdrv)2024 const struct hid_device_id *hid_match_device(struct hid_device *hdev,
2025 					     struct hid_driver *hdrv)
2026 {
2027 	struct hid_dynid *dynid;
2028 
2029 	spin_lock(&hdrv->dyn_lock);
2030 	list_for_each_entry(dynid, &hdrv->dyn_list, list) {
2031 		if (hid_match_one_id(hdev, &dynid->id)) {
2032 			spin_unlock(&hdrv->dyn_lock);
2033 			return &dynid->id;
2034 		}
2035 	}
2036 	spin_unlock(&hdrv->dyn_lock);
2037 
2038 	return hid_match_id(hdev, hdrv->id_table);
2039 }
2040 EXPORT_SYMBOL_GPL(hid_match_device);
2041 
hid_bus_match(struct device * dev,struct device_driver * drv)2042 static int hid_bus_match(struct device *dev, struct device_driver *drv)
2043 {
2044 	struct hid_driver *hdrv = to_hid_driver(drv);
2045 	struct hid_device *hdev = to_hid_device(dev);
2046 
2047 	return hid_match_device(hdev, hdrv) != NULL;
2048 }
2049 
2050 /**
2051  * hid_compare_device_paths - check if both devices share the same path
2052  * @hdev_a: hid device
2053  * @hdev_b: hid device
2054  * @separator: char to use as separator
2055  *
2056  * Check if two devices share the same path up to the last occurrence of
2057  * the separator char. Both paths must exist (i.e., zero-length paths
2058  * don't match).
2059  */
hid_compare_device_paths(struct hid_device * hdev_a,struct hid_device * hdev_b,char separator)2060 bool hid_compare_device_paths(struct hid_device *hdev_a,
2061 			      struct hid_device *hdev_b, char separator)
2062 {
2063 	int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys;
2064 	int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys;
2065 
2066 	if (n1 != n2 || n1 <= 0 || n2 <= 0)
2067 		return false;
2068 
2069 	return !strncmp(hdev_a->phys, hdev_b->phys, n1);
2070 }
2071 EXPORT_SYMBOL_GPL(hid_compare_device_paths);
2072 
hid_device_probe(struct device * dev)2073 static int hid_device_probe(struct device *dev)
2074 {
2075 	struct hid_driver *hdrv = to_hid_driver(dev->driver);
2076 	struct hid_device *hdev = to_hid_device(dev);
2077 	const struct hid_device_id *id;
2078 	int ret = 0;
2079 
2080 	if (down_interruptible(&hdev->driver_input_lock)) {
2081 		ret = -EINTR;
2082 		goto end;
2083 	}
2084 	hdev->io_started = false;
2085 
2086 	clear_bit(ffs(HID_STAT_REPROBED), &hdev->status);
2087 
2088 	if (!hdev->driver) {
2089 		id = hid_match_device(hdev, hdrv);
2090 		if (id == NULL) {
2091 			ret = -ENODEV;
2092 			goto unlock;
2093 		}
2094 
2095 		if (hdrv->match) {
2096 			if (!hdrv->match(hdev, hid_ignore_special_drivers)) {
2097 				ret = -ENODEV;
2098 				goto unlock;
2099 			}
2100 		} else {
2101 			/*
2102 			 * hid-generic implements .match(), so if
2103 			 * hid_ignore_special_drivers is set, we can safely
2104 			 * return.
2105 			 */
2106 			if (hid_ignore_special_drivers) {
2107 				ret = -ENODEV;
2108 				goto unlock;
2109 			}
2110 		}
2111 
2112 		/* reset the quirks that has been previously set */
2113 		hdev->quirks = hid_lookup_quirk(hdev);
2114 		hdev->driver = hdrv;
2115 		if (hdrv->probe) {
2116 			ret = hdrv->probe(hdev, id);
2117 		} else { /* default probe */
2118 			ret = hid_open_report(hdev);
2119 			if (!ret)
2120 				ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
2121 		}
2122 		if (ret) {
2123 			hid_close_report(hdev);
2124 			hdev->driver = NULL;
2125 		}
2126 	}
2127 unlock:
2128 	if (!hdev->io_started)
2129 		up(&hdev->driver_input_lock);
2130 end:
2131 	return ret;
2132 }
2133 
hid_device_remove(struct device * dev)2134 static int hid_device_remove(struct device *dev)
2135 {
2136 	struct hid_device *hdev = to_hid_device(dev);
2137 	struct hid_driver *hdrv;
2138 
2139 	down(&hdev->driver_input_lock);
2140 	hdev->io_started = false;
2141 
2142 	hdrv = hdev->driver;
2143 	if (hdrv) {
2144 		if (hdrv->remove)
2145 			hdrv->remove(hdev);
2146 		else /* default remove */
2147 			hid_hw_stop(hdev);
2148 		hid_close_report(hdev);
2149 		hdev->driver = NULL;
2150 	}
2151 
2152 	if (!hdev->io_started)
2153 		up(&hdev->driver_input_lock);
2154 
2155 	return 0;
2156 }
2157 
modalias_show(struct device * dev,struct device_attribute * a,char * buf)2158 static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
2159 			     char *buf)
2160 {
2161 	struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2162 
2163 	return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n",
2164 			 hdev->bus, hdev->group, hdev->vendor, hdev->product);
2165 }
2166 static DEVICE_ATTR_RO(modalias);
2167 
2168 static struct attribute *hid_dev_attrs[] = {
2169 	&dev_attr_modalias.attr,
2170 	NULL,
2171 };
2172 static struct bin_attribute *hid_dev_bin_attrs[] = {
2173 	&dev_bin_attr_report_desc,
2174 	NULL
2175 };
2176 static const struct attribute_group hid_dev_group = {
2177 	.attrs = hid_dev_attrs,
2178 	.bin_attrs = hid_dev_bin_attrs,
2179 };
2180 __ATTRIBUTE_GROUPS(hid_dev);
2181 
hid_uevent(struct device * dev,struct kobj_uevent_env * env)2182 static int hid_uevent(struct device *dev, struct kobj_uevent_env *env)
2183 {
2184 	struct hid_device *hdev = to_hid_device(dev);
2185 
2186 	if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
2187 			hdev->bus, hdev->vendor, hdev->product))
2188 		return -ENOMEM;
2189 
2190 	if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
2191 		return -ENOMEM;
2192 
2193 	if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
2194 		return -ENOMEM;
2195 
2196 	if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
2197 		return -ENOMEM;
2198 
2199 	if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
2200 			   hdev->bus, hdev->group, hdev->vendor, hdev->product))
2201 		return -ENOMEM;
2202 
2203 	return 0;
2204 }
2205 
2206 struct bus_type hid_bus_type = {
2207 	.name		= "hid",
2208 	.dev_groups	= hid_dev_groups,
2209 	.drv_groups	= hid_drv_groups,
2210 	.match		= hid_bus_match,
2211 	.probe		= hid_device_probe,
2212 	.remove		= hid_device_remove,
2213 	.uevent		= hid_uevent,
2214 };
2215 EXPORT_SYMBOL(hid_bus_type);
2216 
hid_add_device(struct hid_device * hdev)2217 int hid_add_device(struct hid_device *hdev)
2218 {
2219 	static atomic_t id = ATOMIC_INIT(0);
2220 	int ret;
2221 
2222 	if (WARN_ON(hdev->status & HID_STAT_ADDED))
2223 		return -EBUSY;
2224 
2225 	hdev->quirks = hid_lookup_quirk(hdev);
2226 
2227 	/* we need to kill them here, otherwise they will stay allocated to
2228 	 * wait for coming driver */
2229 	if (hid_ignore(hdev))
2230 		return -ENODEV;
2231 
2232 	/*
2233 	 * Check for the mandatory transport channel.
2234 	 */
2235 	 if (!hdev->ll_driver->raw_request) {
2236 		hid_err(hdev, "transport driver missing .raw_request()\n");
2237 		return -EINVAL;
2238 	 }
2239 
2240 	/*
2241 	 * Read the device report descriptor once and use as template
2242 	 * for the driver-specific modifications.
2243 	 */
2244 	ret = hdev->ll_driver->parse(hdev);
2245 	if (ret)
2246 		return ret;
2247 	if (!hdev->dev_rdesc)
2248 		return -ENODEV;
2249 
2250 	/*
2251 	 * Scan generic devices for group information
2252 	 */
2253 	if (hid_ignore_special_drivers) {
2254 		hdev->group = HID_GROUP_GENERIC;
2255 	} else if (!hdev->group &&
2256 		   !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) {
2257 		ret = hid_scan_report(hdev);
2258 		if (ret)
2259 			hid_warn(hdev, "bad device descriptor (%d)\n", ret);
2260 	}
2261 
2262 	/* XXX hack, any other cleaner solution after the driver core
2263 	 * is converted to allow more than 20 bytes as the device name? */
2264 	dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
2265 		     hdev->vendor, hdev->product, atomic_inc_return(&id));
2266 
2267 	hid_debug_register(hdev, dev_name(&hdev->dev));
2268 	ret = device_add(&hdev->dev);
2269 	if (!ret)
2270 		hdev->status |= HID_STAT_ADDED;
2271 	else
2272 		hid_debug_unregister(hdev);
2273 
2274 	return ret;
2275 }
2276 EXPORT_SYMBOL_GPL(hid_add_device);
2277 
2278 /**
2279  * hid_allocate_device - allocate new hid device descriptor
2280  *
2281  * Allocate and initialize hid device, so that hid_destroy_device might be
2282  * used to free it.
2283  *
2284  * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
2285  * error value.
2286  */
hid_allocate_device(void)2287 struct hid_device *hid_allocate_device(void)
2288 {
2289 	struct hid_device *hdev;
2290 	int ret = -ENOMEM;
2291 
2292 	hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2293 	if (hdev == NULL)
2294 		return ERR_PTR(ret);
2295 
2296 	device_initialize(&hdev->dev);
2297 	hdev->dev.release = hid_device_release;
2298 	hdev->dev.bus = &hid_bus_type;
2299 	device_enable_async_suspend(&hdev->dev);
2300 
2301 	hid_close_report(hdev);
2302 
2303 	init_waitqueue_head(&hdev->debug_wait);
2304 	INIT_LIST_HEAD(&hdev->debug_list);
2305 	spin_lock_init(&hdev->debug_list_lock);
2306 	sema_init(&hdev->driver_input_lock, 1);
2307 	mutex_init(&hdev->ll_open_lock);
2308 
2309 	return hdev;
2310 }
2311 EXPORT_SYMBOL_GPL(hid_allocate_device);
2312 
hid_remove_device(struct hid_device * hdev)2313 static void hid_remove_device(struct hid_device *hdev)
2314 {
2315 	if (hdev->status & HID_STAT_ADDED) {
2316 		device_del(&hdev->dev);
2317 		hid_debug_unregister(hdev);
2318 		hdev->status &= ~HID_STAT_ADDED;
2319 	}
2320 	kfree(hdev->dev_rdesc);
2321 	hdev->dev_rdesc = NULL;
2322 	hdev->dev_rsize = 0;
2323 }
2324 
2325 /**
2326  * hid_destroy_device - free previously allocated device
2327  *
2328  * @hdev: hid device
2329  *
2330  * If you allocate hid_device through hid_allocate_device, you should ever
2331  * free by this function.
2332  */
hid_destroy_device(struct hid_device * hdev)2333 void hid_destroy_device(struct hid_device *hdev)
2334 {
2335 	hid_remove_device(hdev);
2336 	put_device(&hdev->dev);
2337 }
2338 EXPORT_SYMBOL_GPL(hid_destroy_device);
2339 
2340 
__hid_bus_reprobe_drivers(struct device * dev,void * data)2341 static int __hid_bus_reprobe_drivers(struct device *dev, void *data)
2342 {
2343 	struct hid_driver *hdrv = data;
2344 	struct hid_device *hdev = to_hid_device(dev);
2345 
2346 	if (hdev->driver == hdrv &&
2347 	    !hdrv->match(hdev, hid_ignore_special_drivers) &&
2348 	    !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status))
2349 		return device_reprobe(dev);
2350 
2351 	return 0;
2352 }
2353 
__hid_bus_driver_added(struct device_driver * drv,void * data)2354 static int __hid_bus_driver_added(struct device_driver *drv, void *data)
2355 {
2356 	struct hid_driver *hdrv = to_hid_driver(drv);
2357 
2358 	if (hdrv->match) {
2359 		bus_for_each_dev(&hid_bus_type, NULL, hdrv,
2360 				 __hid_bus_reprobe_drivers);
2361 	}
2362 
2363 	return 0;
2364 }
2365 
__bus_removed_driver(struct device_driver * drv,void * data)2366 static int __bus_removed_driver(struct device_driver *drv, void *data)
2367 {
2368 	return bus_rescan_devices(&hid_bus_type);
2369 }
2370 
__hid_register_driver(struct hid_driver * hdrv,struct module * owner,const char * mod_name)2371 int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
2372 		const char *mod_name)
2373 {
2374 	int ret;
2375 
2376 	hdrv->driver.name = hdrv->name;
2377 	hdrv->driver.bus = &hid_bus_type;
2378 	hdrv->driver.owner = owner;
2379 	hdrv->driver.mod_name = mod_name;
2380 
2381 	INIT_LIST_HEAD(&hdrv->dyn_list);
2382 	spin_lock_init(&hdrv->dyn_lock);
2383 
2384 	ret = driver_register(&hdrv->driver);
2385 
2386 	if (ret == 0)
2387 		bus_for_each_drv(&hid_bus_type, NULL, NULL,
2388 				 __hid_bus_driver_added);
2389 
2390 	return ret;
2391 }
2392 EXPORT_SYMBOL_GPL(__hid_register_driver);
2393 
hid_unregister_driver(struct hid_driver * hdrv)2394 void hid_unregister_driver(struct hid_driver *hdrv)
2395 {
2396 	driver_unregister(&hdrv->driver);
2397 	hid_free_dynids(hdrv);
2398 
2399 	bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver);
2400 }
2401 EXPORT_SYMBOL_GPL(hid_unregister_driver);
2402 
hid_check_keys_pressed(struct hid_device * hid)2403 int hid_check_keys_pressed(struct hid_device *hid)
2404 {
2405 	struct hid_input *hidinput;
2406 	int i;
2407 
2408 	if (!(hid->claimed & HID_CLAIMED_INPUT))
2409 		return 0;
2410 
2411 	list_for_each_entry(hidinput, &hid->inputs, list) {
2412 		for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
2413 			if (hidinput->input->key[i])
2414 				return 1;
2415 	}
2416 
2417 	return 0;
2418 }
2419 
2420 EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
2421 
hid_init(void)2422 static int __init hid_init(void)
2423 {
2424 	int ret;
2425 
2426 	if (hid_debug)
2427 		pr_warn("hid_debug is now used solely for parser and driver debugging.\n"
2428 			"debugfs is now used for inspecting the device (report descriptor, reports)\n");
2429 
2430 	ret = bus_register(&hid_bus_type);
2431 	if (ret) {
2432 		pr_err("can't register hid bus\n");
2433 		goto err;
2434 	}
2435 
2436 	ret = hidraw_init();
2437 	if (ret)
2438 		goto err_bus;
2439 
2440 	hid_debug_init();
2441 
2442 	return 0;
2443 err_bus:
2444 	bus_unregister(&hid_bus_type);
2445 err:
2446 	return ret;
2447 }
2448 
hid_exit(void)2449 static void __exit hid_exit(void)
2450 {
2451 	hid_debug_exit();
2452 	hidraw_exit();
2453 	bus_unregister(&hid_bus_type);
2454 	hid_quirks_exit(HID_BUS_ANY);
2455 }
2456 
2457 module_init(hid_init);
2458 module_exit(hid_exit);
2459 
2460 MODULE_AUTHOR("Andreas Gal");
2461 MODULE_AUTHOR("Vojtech Pavlik");
2462 MODULE_AUTHOR("Jiri Kosina");
2463 MODULE_LICENSE("GPL");
2464