1 /*
2  * fs/f2fs/data.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/mpage.h>
15 #include <linux/writeback.h>
16 #include <linux/backing-dev.h>
17 #include <linux/pagevec.h>
18 #include <linux/blkdev.h>
19 #include <linux/bio.h>
20 #include <linux/prefetch.h>
21 #include <linux/uio.h>
22 #include <linux/cleancache.h>
23 #include <linux/sched/signal.h>
24 
25 #include "f2fs.h"
26 #include "node.h"
27 #include "segment.h"
28 #include "trace.h"
29 #include <trace/events/f2fs.h>
30 
31 #define NUM_PREALLOC_POST_READ_CTXS	128
32 
33 static struct kmem_cache *bio_post_read_ctx_cache;
34 static mempool_t *bio_post_read_ctx_pool;
35 
__is_cp_guaranteed(struct page * page)36 static bool __is_cp_guaranteed(struct page *page)
37 {
38 	struct address_space *mapping = page->mapping;
39 	struct inode *inode;
40 	struct f2fs_sb_info *sbi;
41 
42 	if (!mapping)
43 		return false;
44 
45 	inode = mapping->host;
46 	sbi = F2FS_I_SB(inode);
47 
48 	if (inode->i_ino == F2FS_META_INO(sbi) ||
49 			inode->i_ino ==  F2FS_NODE_INO(sbi) ||
50 			S_ISDIR(inode->i_mode) ||
51 			(S_ISREG(inode->i_mode) &&
52 			is_inode_flag_set(inode, FI_ATOMIC_FILE)) ||
53 			is_cold_data(page))
54 		return true;
55 	return false;
56 }
57 
58 /* postprocessing steps for read bios */
59 enum bio_post_read_step {
60 	STEP_INITIAL = 0,
61 	STEP_DECRYPT,
62 };
63 
64 struct bio_post_read_ctx {
65 	struct bio *bio;
66 	struct work_struct work;
67 	unsigned int cur_step;
68 	unsigned int enabled_steps;
69 };
70 
__read_end_io(struct bio * bio)71 static void __read_end_io(struct bio *bio)
72 {
73 	struct page *page;
74 	struct bio_vec *bv;
75 	int i;
76 
77 	bio_for_each_segment_all(bv, bio, i) {
78 		page = bv->bv_page;
79 
80 		/* PG_error was set if any post_read step failed */
81 		if (bio->bi_status || PageError(page)) {
82 			ClearPageUptodate(page);
83 			/* will re-read again later */
84 			ClearPageError(page);
85 		} else {
86 			SetPageUptodate(page);
87 		}
88 		unlock_page(page);
89 	}
90 	if (bio->bi_private)
91 		mempool_free(bio->bi_private, bio_post_read_ctx_pool);
92 	bio_put(bio);
93 }
94 
95 static void bio_post_read_processing(struct bio_post_read_ctx *ctx);
96 
decrypt_work(struct work_struct * work)97 static void decrypt_work(struct work_struct *work)
98 {
99 	struct bio_post_read_ctx *ctx =
100 		container_of(work, struct bio_post_read_ctx, work);
101 
102 	fscrypt_decrypt_bio(ctx->bio);
103 
104 	bio_post_read_processing(ctx);
105 }
106 
bio_post_read_processing(struct bio_post_read_ctx * ctx)107 static void bio_post_read_processing(struct bio_post_read_ctx *ctx)
108 {
109 	switch (++ctx->cur_step) {
110 	case STEP_DECRYPT:
111 		if (ctx->enabled_steps & (1 << STEP_DECRYPT)) {
112 			INIT_WORK(&ctx->work, decrypt_work);
113 			fscrypt_enqueue_decrypt_work(&ctx->work);
114 			return;
115 		}
116 		ctx->cur_step++;
117 		/* fall-through */
118 	default:
119 		__read_end_io(ctx->bio);
120 	}
121 }
122 
f2fs_bio_post_read_required(struct bio * bio)123 static bool f2fs_bio_post_read_required(struct bio *bio)
124 {
125 	return bio->bi_private && !bio->bi_status;
126 }
127 
f2fs_read_end_io(struct bio * bio)128 static void f2fs_read_end_io(struct bio *bio)
129 {
130 	if (time_to_inject(F2FS_P_SB(bio_first_page_all(bio)), FAULT_IO)) {
131 		f2fs_show_injection_info(FAULT_IO);
132 		bio->bi_status = BLK_STS_IOERR;
133 	}
134 
135 	if (f2fs_bio_post_read_required(bio)) {
136 		struct bio_post_read_ctx *ctx = bio->bi_private;
137 
138 		ctx->cur_step = STEP_INITIAL;
139 		bio_post_read_processing(ctx);
140 		return;
141 	}
142 
143 	__read_end_io(bio);
144 }
145 
f2fs_write_end_io(struct bio * bio)146 static void f2fs_write_end_io(struct bio *bio)
147 {
148 	struct f2fs_sb_info *sbi = bio->bi_private;
149 	struct bio_vec *bvec;
150 	int i;
151 
152 	bio_for_each_segment_all(bvec, bio, i) {
153 		struct page *page = bvec->bv_page;
154 		enum count_type type = WB_DATA_TYPE(page);
155 
156 		if (IS_DUMMY_WRITTEN_PAGE(page)) {
157 			set_page_private(page, (unsigned long)NULL);
158 			ClearPagePrivate(page);
159 			unlock_page(page);
160 			mempool_free(page, sbi->write_io_dummy);
161 
162 			if (unlikely(bio->bi_status))
163 				f2fs_stop_checkpoint(sbi, true);
164 			continue;
165 		}
166 
167 		fscrypt_pullback_bio_page(&page, true);
168 
169 		if (unlikely(bio->bi_status)) {
170 			mapping_set_error(page->mapping, -EIO);
171 			if (type == F2FS_WB_CP_DATA)
172 				f2fs_stop_checkpoint(sbi, true);
173 		}
174 
175 		f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
176 					page->index != nid_of_node(page));
177 
178 		dec_page_count(sbi, type);
179 		if (f2fs_in_warm_node_list(sbi, page))
180 			f2fs_del_fsync_node_entry(sbi, page);
181 		clear_cold_data(page);
182 		end_page_writeback(page);
183 	}
184 	if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
185 				wq_has_sleeper(&sbi->cp_wait))
186 		wake_up(&sbi->cp_wait);
187 
188 	bio_put(bio);
189 }
190 
191 /*
192  * Return true, if pre_bio's bdev is same as its target device.
193  */
f2fs_target_device(struct f2fs_sb_info * sbi,block_t blk_addr,struct bio * bio)194 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
195 				block_t blk_addr, struct bio *bio)
196 {
197 	struct block_device *bdev = sbi->sb->s_bdev;
198 	int i;
199 
200 	if (f2fs_is_multi_device(sbi)) {
201 		for (i = 0; i < sbi->s_ndevs; i++) {
202 			if (FDEV(i).start_blk <= blk_addr &&
203 			    FDEV(i).end_blk >= blk_addr) {
204 				blk_addr -= FDEV(i).start_blk;
205 				bdev = FDEV(i).bdev;
206 				break;
207 			}
208 		}
209 	}
210 	if (bio) {
211 		bio_set_dev(bio, bdev);
212 		bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
213 	}
214 	return bdev;
215 }
216 
f2fs_target_device_index(struct f2fs_sb_info * sbi,block_t blkaddr)217 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
218 {
219 	int i;
220 
221 	if (!f2fs_is_multi_device(sbi))
222 		return 0;
223 
224 	for (i = 0; i < sbi->s_ndevs; i++)
225 		if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
226 			return i;
227 	return 0;
228 }
229 
__same_bdev(struct f2fs_sb_info * sbi,block_t blk_addr,struct bio * bio)230 static bool __same_bdev(struct f2fs_sb_info *sbi,
231 				block_t blk_addr, struct bio *bio)
232 {
233 	struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL);
234 	return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno;
235 }
236 
237 /*
238  * Low-level block read/write IO operations.
239  */
__bio_alloc(struct f2fs_sb_info * sbi,block_t blk_addr,struct writeback_control * wbc,int npages,bool is_read,enum page_type type,enum temp_type temp)240 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
241 				struct writeback_control *wbc,
242 				int npages, bool is_read,
243 				enum page_type type, enum temp_type temp)
244 {
245 	struct bio *bio;
246 
247 	bio = f2fs_bio_alloc(sbi, npages, true);
248 
249 	f2fs_target_device(sbi, blk_addr, bio);
250 	if (is_read) {
251 		bio->bi_end_io = f2fs_read_end_io;
252 		bio->bi_private = NULL;
253 	} else {
254 		bio->bi_end_io = f2fs_write_end_io;
255 		bio->bi_private = sbi;
256 		bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi, type, temp);
257 	}
258 	if (wbc)
259 		wbc_init_bio(wbc, bio);
260 
261 	return bio;
262 }
263 
__submit_bio(struct f2fs_sb_info * sbi,struct bio * bio,enum page_type type)264 static inline void __submit_bio(struct f2fs_sb_info *sbi,
265 				struct bio *bio, enum page_type type)
266 {
267 	if (!is_read_io(bio_op(bio))) {
268 		unsigned int start;
269 
270 		if (type != DATA && type != NODE)
271 			goto submit_io;
272 
273 		if (test_opt(sbi, LFS) && current->plug)
274 			blk_finish_plug(current->plug);
275 
276 		start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
277 		start %= F2FS_IO_SIZE(sbi);
278 
279 		if (start == 0)
280 			goto submit_io;
281 
282 		/* fill dummy pages */
283 		for (; start < F2FS_IO_SIZE(sbi); start++) {
284 			struct page *page =
285 				mempool_alloc(sbi->write_io_dummy,
286 					GFP_NOIO | __GFP_ZERO | __GFP_NOFAIL);
287 			f2fs_bug_on(sbi, !page);
288 
289 			SetPagePrivate(page);
290 			set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE);
291 			lock_page(page);
292 			if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
293 				f2fs_bug_on(sbi, 1);
294 		}
295 		/*
296 		 * In the NODE case, we lose next block address chain. So, we
297 		 * need to do checkpoint in f2fs_sync_file.
298 		 */
299 		if (type == NODE)
300 			set_sbi_flag(sbi, SBI_NEED_CP);
301 	}
302 submit_io:
303 	if (is_read_io(bio_op(bio)))
304 		trace_f2fs_submit_read_bio(sbi->sb, type, bio);
305 	else
306 		trace_f2fs_submit_write_bio(sbi->sb, type, bio);
307 	submit_bio(bio);
308 }
309 
__submit_merged_bio(struct f2fs_bio_info * io)310 static void __submit_merged_bio(struct f2fs_bio_info *io)
311 {
312 	struct f2fs_io_info *fio = &io->fio;
313 
314 	if (!io->bio)
315 		return;
316 
317 	bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
318 
319 	if (is_read_io(fio->op))
320 		trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
321 	else
322 		trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
323 
324 	__submit_bio(io->sbi, io->bio, fio->type);
325 	io->bio = NULL;
326 }
327 
__has_merged_page(struct f2fs_bio_info * io,struct inode * inode,nid_t ino,pgoff_t idx)328 static bool __has_merged_page(struct f2fs_bio_info *io,
329 				struct inode *inode, nid_t ino, pgoff_t idx)
330 {
331 	struct bio_vec *bvec;
332 	struct page *target;
333 	int i;
334 
335 	if (!io->bio)
336 		return false;
337 
338 	if (!inode && !ino)
339 		return true;
340 
341 	bio_for_each_segment_all(bvec, io->bio, i) {
342 
343 		if (bvec->bv_page->mapping)
344 			target = bvec->bv_page;
345 		else
346 			target = fscrypt_control_page(bvec->bv_page);
347 
348 		if (idx != target->index)
349 			continue;
350 
351 		if (inode && inode == target->mapping->host)
352 			return true;
353 		if (ino && ino == ino_of_node(target))
354 			return true;
355 	}
356 
357 	return false;
358 }
359 
has_merged_page(struct f2fs_sb_info * sbi,struct inode * inode,nid_t ino,pgoff_t idx,enum page_type type)360 static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode,
361 				nid_t ino, pgoff_t idx, enum page_type type)
362 {
363 	enum page_type btype = PAGE_TYPE_OF_BIO(type);
364 	enum temp_type temp;
365 	struct f2fs_bio_info *io;
366 	bool ret = false;
367 
368 	for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
369 		io = sbi->write_io[btype] + temp;
370 
371 		down_read(&io->io_rwsem);
372 		ret = __has_merged_page(io, inode, ino, idx);
373 		up_read(&io->io_rwsem);
374 
375 		/* TODO: use HOT temp only for meta pages now. */
376 		if (ret || btype == META)
377 			break;
378 	}
379 	return ret;
380 }
381 
__f2fs_submit_merged_write(struct f2fs_sb_info * sbi,enum page_type type,enum temp_type temp)382 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
383 				enum page_type type, enum temp_type temp)
384 {
385 	enum page_type btype = PAGE_TYPE_OF_BIO(type);
386 	struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
387 
388 	down_write(&io->io_rwsem);
389 
390 	/* change META to META_FLUSH in the checkpoint procedure */
391 	if (type >= META_FLUSH) {
392 		io->fio.type = META_FLUSH;
393 		io->fio.op = REQ_OP_WRITE;
394 		io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
395 		if (!test_opt(sbi, NOBARRIER))
396 			io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
397 	}
398 	__submit_merged_bio(io);
399 	up_write(&io->io_rwsem);
400 }
401 
__submit_merged_write_cond(struct f2fs_sb_info * sbi,struct inode * inode,nid_t ino,pgoff_t idx,enum page_type type,bool force)402 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
403 				struct inode *inode, nid_t ino, pgoff_t idx,
404 				enum page_type type, bool force)
405 {
406 	enum temp_type temp;
407 
408 	if (!force && !has_merged_page(sbi, inode, ino, idx, type))
409 		return;
410 
411 	for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
412 
413 		__f2fs_submit_merged_write(sbi, type, temp);
414 
415 		/* TODO: use HOT temp only for meta pages now. */
416 		if (type >= META)
417 			break;
418 	}
419 }
420 
f2fs_submit_merged_write(struct f2fs_sb_info * sbi,enum page_type type)421 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
422 {
423 	__submit_merged_write_cond(sbi, NULL, 0, 0, type, true);
424 }
425 
f2fs_submit_merged_write_cond(struct f2fs_sb_info * sbi,struct inode * inode,nid_t ino,pgoff_t idx,enum page_type type)426 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
427 				struct inode *inode, nid_t ino, pgoff_t idx,
428 				enum page_type type)
429 {
430 	__submit_merged_write_cond(sbi, inode, ino, idx, type, false);
431 }
432 
f2fs_flush_merged_writes(struct f2fs_sb_info * sbi)433 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
434 {
435 	f2fs_submit_merged_write(sbi, DATA);
436 	f2fs_submit_merged_write(sbi, NODE);
437 	f2fs_submit_merged_write(sbi, META);
438 }
439 
440 /*
441  * Fill the locked page with data located in the block address.
442  * A caller needs to unlock the page on failure.
443  */
f2fs_submit_page_bio(struct f2fs_io_info * fio)444 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
445 {
446 	struct bio *bio;
447 	struct page *page = fio->encrypted_page ?
448 			fio->encrypted_page : fio->page;
449 
450 	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
451 			__is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
452 		return -EFSCORRUPTED;
453 
454 	trace_f2fs_submit_page_bio(page, fio);
455 	f2fs_trace_ios(fio, 0);
456 
457 	/* Allocate a new bio */
458 	bio = __bio_alloc(fio->sbi, fio->new_blkaddr, fio->io_wbc,
459 				1, is_read_io(fio->op), fio->type, fio->temp);
460 
461 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
462 		bio_put(bio);
463 		return -EFAULT;
464 	}
465 
466 	if (fio->io_wbc && !is_read_io(fio->op))
467 		wbc_account_io(fio->io_wbc, fio->page, PAGE_SIZE);
468 
469 	bio_set_op_attrs(bio, fio->op, fio->op_flags);
470 
471 	if (!is_read_io(fio->op))
472 		inc_page_count(fio->sbi, WB_DATA_TYPE(fio->page));
473 
474 	__submit_bio(fio->sbi, bio, fio->type);
475 	return 0;
476 }
477 
f2fs_submit_page_write(struct f2fs_io_info * fio)478 void f2fs_submit_page_write(struct f2fs_io_info *fio)
479 {
480 	struct f2fs_sb_info *sbi = fio->sbi;
481 	enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
482 	struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
483 	struct page *bio_page;
484 
485 	f2fs_bug_on(sbi, is_read_io(fio->op));
486 
487 	down_write(&io->io_rwsem);
488 next:
489 	if (fio->in_list) {
490 		spin_lock(&io->io_lock);
491 		if (list_empty(&io->io_list)) {
492 			spin_unlock(&io->io_lock);
493 			goto out;
494 		}
495 		fio = list_first_entry(&io->io_list,
496 						struct f2fs_io_info, list);
497 		list_del(&fio->list);
498 		spin_unlock(&io->io_lock);
499 	}
500 
501 	if (__is_valid_data_blkaddr(fio->old_blkaddr))
502 		verify_block_addr(fio, fio->old_blkaddr);
503 	verify_block_addr(fio, fio->new_blkaddr);
504 
505 	bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
506 
507 	/* set submitted = true as a return value */
508 	fio->submitted = true;
509 
510 	inc_page_count(sbi, WB_DATA_TYPE(bio_page));
511 
512 	if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 ||
513 	    (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags) ||
514 			!__same_bdev(sbi, fio->new_blkaddr, io->bio)))
515 		__submit_merged_bio(io);
516 alloc_new:
517 	if (io->bio == NULL) {
518 		if ((fio->type == DATA || fio->type == NODE) &&
519 				fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
520 			dec_page_count(sbi, WB_DATA_TYPE(bio_page));
521 			fio->retry = true;
522 			goto skip;
523 		}
524 		io->bio = __bio_alloc(sbi, fio->new_blkaddr, fio->io_wbc,
525 						BIO_MAX_PAGES, false,
526 						fio->type, fio->temp);
527 		io->fio = *fio;
528 	}
529 
530 	if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
531 		__submit_merged_bio(io);
532 		goto alloc_new;
533 	}
534 
535 	if (fio->io_wbc)
536 		wbc_account_io(fio->io_wbc, fio->page, PAGE_SIZE);
537 
538 	io->last_block_in_bio = fio->new_blkaddr;
539 	f2fs_trace_ios(fio, 0);
540 
541 	trace_f2fs_submit_page_write(fio->page, fio);
542 skip:
543 	if (fio->in_list)
544 		goto next;
545 out:
546 	if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN))
547 		__submit_merged_bio(io);
548 	up_write(&io->io_rwsem);
549 }
550 
f2fs_grab_read_bio(struct inode * inode,block_t blkaddr,unsigned nr_pages,unsigned op_flag)551 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
552 					unsigned nr_pages, unsigned op_flag)
553 {
554 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
555 	struct bio *bio;
556 	struct bio_post_read_ctx *ctx;
557 	unsigned int post_read_steps = 0;
558 
559 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC))
560 		return ERR_PTR(-EFAULT);
561 
562 	bio = f2fs_bio_alloc(sbi, min_t(int, nr_pages, BIO_MAX_PAGES), false);
563 	if (!bio)
564 		return ERR_PTR(-ENOMEM);
565 	f2fs_target_device(sbi, blkaddr, bio);
566 	bio->bi_end_io = f2fs_read_end_io;
567 	bio_set_op_attrs(bio, REQ_OP_READ, op_flag);
568 
569 	if (f2fs_encrypted_file(inode))
570 		post_read_steps |= 1 << STEP_DECRYPT;
571 	if (post_read_steps) {
572 		ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
573 		if (!ctx) {
574 			bio_put(bio);
575 			return ERR_PTR(-ENOMEM);
576 		}
577 		ctx->bio = bio;
578 		ctx->enabled_steps = post_read_steps;
579 		bio->bi_private = ctx;
580 	}
581 
582 	return bio;
583 }
584 
585 /* This can handle encryption stuffs */
f2fs_submit_page_read(struct inode * inode,struct page * page,block_t blkaddr)586 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
587 							block_t blkaddr)
588 {
589 	struct bio *bio = f2fs_grab_read_bio(inode, blkaddr, 1, 0);
590 
591 	if (IS_ERR(bio))
592 		return PTR_ERR(bio);
593 
594 	/* wait for GCed page writeback via META_MAPPING */
595 	f2fs_wait_on_block_writeback(inode, blkaddr);
596 
597 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
598 		bio_put(bio);
599 		return -EFAULT;
600 	}
601 	ClearPageError(page);
602 	__submit_bio(F2FS_I_SB(inode), bio, DATA);
603 	return 0;
604 }
605 
__set_data_blkaddr(struct dnode_of_data * dn)606 static void __set_data_blkaddr(struct dnode_of_data *dn)
607 {
608 	struct f2fs_node *rn = F2FS_NODE(dn->node_page);
609 	__le32 *addr_array;
610 	int base = 0;
611 
612 	if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
613 		base = get_extra_isize(dn->inode);
614 
615 	/* Get physical address of data block */
616 	addr_array = blkaddr_in_node(rn);
617 	addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
618 }
619 
620 /*
621  * Lock ordering for the change of data block address:
622  * ->data_page
623  *  ->node_page
624  *    update block addresses in the node page
625  */
f2fs_set_data_blkaddr(struct dnode_of_data * dn)626 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
627 {
628 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
629 	__set_data_blkaddr(dn);
630 	if (set_page_dirty(dn->node_page))
631 		dn->node_changed = true;
632 }
633 
f2fs_update_data_blkaddr(struct dnode_of_data * dn,block_t blkaddr)634 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
635 {
636 	dn->data_blkaddr = blkaddr;
637 	f2fs_set_data_blkaddr(dn);
638 	f2fs_update_extent_cache(dn);
639 }
640 
641 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
f2fs_reserve_new_blocks(struct dnode_of_data * dn,blkcnt_t count)642 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
643 {
644 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
645 	int err;
646 
647 	if (!count)
648 		return 0;
649 
650 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
651 		return -EPERM;
652 	if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
653 		return err;
654 
655 	trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
656 						dn->ofs_in_node, count);
657 
658 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
659 
660 	for (; count > 0; dn->ofs_in_node++) {
661 		block_t blkaddr = datablock_addr(dn->inode,
662 					dn->node_page, dn->ofs_in_node);
663 		if (blkaddr == NULL_ADDR) {
664 			dn->data_blkaddr = NEW_ADDR;
665 			__set_data_blkaddr(dn);
666 			count--;
667 		}
668 	}
669 
670 	if (set_page_dirty(dn->node_page))
671 		dn->node_changed = true;
672 	return 0;
673 }
674 
675 /* Should keep dn->ofs_in_node unchanged */
f2fs_reserve_new_block(struct dnode_of_data * dn)676 int f2fs_reserve_new_block(struct dnode_of_data *dn)
677 {
678 	unsigned int ofs_in_node = dn->ofs_in_node;
679 	int ret;
680 
681 	ret = f2fs_reserve_new_blocks(dn, 1);
682 	dn->ofs_in_node = ofs_in_node;
683 	return ret;
684 }
685 
f2fs_reserve_block(struct dnode_of_data * dn,pgoff_t index)686 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
687 {
688 	bool need_put = dn->inode_page ? false : true;
689 	int err;
690 
691 	err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
692 	if (err)
693 		return err;
694 
695 	if (dn->data_blkaddr == NULL_ADDR)
696 		err = f2fs_reserve_new_block(dn);
697 	if (err || need_put)
698 		f2fs_put_dnode(dn);
699 	return err;
700 }
701 
f2fs_get_block(struct dnode_of_data * dn,pgoff_t index)702 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
703 {
704 	struct extent_info ei  = {0,0,0};
705 	struct inode *inode = dn->inode;
706 
707 	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
708 		dn->data_blkaddr = ei.blk + index - ei.fofs;
709 		return 0;
710 	}
711 
712 	return f2fs_reserve_block(dn, index);
713 }
714 
f2fs_get_read_data_page(struct inode * inode,pgoff_t index,int op_flags,bool for_write)715 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
716 						int op_flags, bool for_write)
717 {
718 	struct address_space *mapping = inode->i_mapping;
719 	struct dnode_of_data dn;
720 	struct page *page;
721 	struct extent_info ei = {0,0,0};
722 	int err;
723 
724 	page = f2fs_grab_cache_page(mapping, index, for_write);
725 	if (!page)
726 		return ERR_PTR(-ENOMEM);
727 
728 	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
729 		dn.data_blkaddr = ei.blk + index - ei.fofs;
730 		goto got_it;
731 	}
732 
733 	set_new_dnode(&dn, inode, NULL, NULL, 0);
734 	err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
735 	if (err)
736 		goto put_err;
737 	f2fs_put_dnode(&dn);
738 
739 	if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
740 		err = -ENOENT;
741 		goto put_err;
742 	}
743 got_it:
744 	if (PageUptodate(page)) {
745 		unlock_page(page);
746 		return page;
747 	}
748 
749 	/*
750 	 * A new dentry page is allocated but not able to be written, since its
751 	 * new inode page couldn't be allocated due to -ENOSPC.
752 	 * In such the case, its blkaddr can be remained as NEW_ADDR.
753 	 * see, f2fs_add_link -> f2fs_get_new_data_page ->
754 	 * f2fs_init_inode_metadata.
755 	 */
756 	if (dn.data_blkaddr == NEW_ADDR) {
757 		zero_user_segment(page, 0, PAGE_SIZE);
758 		if (!PageUptodate(page))
759 			SetPageUptodate(page);
760 		unlock_page(page);
761 		return page;
762 	}
763 
764 	err = f2fs_submit_page_read(inode, page, dn.data_blkaddr);
765 	if (err)
766 		goto put_err;
767 	return page;
768 
769 put_err:
770 	f2fs_put_page(page, 1);
771 	return ERR_PTR(err);
772 }
773 
f2fs_find_data_page(struct inode * inode,pgoff_t index)774 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
775 {
776 	struct address_space *mapping = inode->i_mapping;
777 	struct page *page;
778 
779 	page = find_get_page(mapping, index);
780 	if (page && PageUptodate(page))
781 		return page;
782 	f2fs_put_page(page, 0);
783 
784 	page = f2fs_get_read_data_page(inode, index, 0, false);
785 	if (IS_ERR(page))
786 		return page;
787 
788 	if (PageUptodate(page))
789 		return page;
790 
791 	wait_on_page_locked(page);
792 	if (unlikely(!PageUptodate(page))) {
793 		f2fs_put_page(page, 0);
794 		return ERR_PTR(-EIO);
795 	}
796 	return page;
797 }
798 
799 /*
800  * If it tries to access a hole, return an error.
801  * Because, the callers, functions in dir.c and GC, should be able to know
802  * whether this page exists or not.
803  */
f2fs_get_lock_data_page(struct inode * inode,pgoff_t index,bool for_write)804 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
805 							bool for_write)
806 {
807 	struct address_space *mapping = inode->i_mapping;
808 	struct page *page;
809 repeat:
810 	page = f2fs_get_read_data_page(inode, index, 0, for_write);
811 	if (IS_ERR(page))
812 		return page;
813 
814 	/* wait for read completion */
815 	lock_page(page);
816 	if (unlikely(page->mapping != mapping)) {
817 		f2fs_put_page(page, 1);
818 		goto repeat;
819 	}
820 	if (unlikely(!PageUptodate(page))) {
821 		f2fs_put_page(page, 1);
822 		return ERR_PTR(-EIO);
823 	}
824 	return page;
825 }
826 
827 /*
828  * Caller ensures that this data page is never allocated.
829  * A new zero-filled data page is allocated in the page cache.
830  *
831  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
832  * f2fs_unlock_op().
833  * Note that, ipage is set only by make_empty_dir, and if any error occur,
834  * ipage should be released by this function.
835  */
f2fs_get_new_data_page(struct inode * inode,struct page * ipage,pgoff_t index,bool new_i_size)836 struct page *f2fs_get_new_data_page(struct inode *inode,
837 		struct page *ipage, pgoff_t index, bool new_i_size)
838 {
839 	struct address_space *mapping = inode->i_mapping;
840 	struct page *page;
841 	struct dnode_of_data dn;
842 	int err;
843 
844 	page = f2fs_grab_cache_page(mapping, index, true);
845 	if (!page) {
846 		/*
847 		 * before exiting, we should make sure ipage will be released
848 		 * if any error occur.
849 		 */
850 		f2fs_put_page(ipage, 1);
851 		return ERR_PTR(-ENOMEM);
852 	}
853 
854 	set_new_dnode(&dn, inode, ipage, NULL, 0);
855 	err = f2fs_reserve_block(&dn, index);
856 	if (err) {
857 		f2fs_put_page(page, 1);
858 		return ERR_PTR(err);
859 	}
860 	if (!ipage)
861 		f2fs_put_dnode(&dn);
862 
863 	if (PageUptodate(page))
864 		goto got_it;
865 
866 	if (dn.data_blkaddr == NEW_ADDR) {
867 		zero_user_segment(page, 0, PAGE_SIZE);
868 		if (!PageUptodate(page))
869 			SetPageUptodate(page);
870 	} else {
871 		f2fs_put_page(page, 1);
872 
873 		/* if ipage exists, blkaddr should be NEW_ADDR */
874 		f2fs_bug_on(F2FS_I_SB(inode), ipage);
875 		page = f2fs_get_lock_data_page(inode, index, true);
876 		if (IS_ERR(page))
877 			return page;
878 	}
879 got_it:
880 	if (new_i_size && i_size_read(inode) <
881 				((loff_t)(index + 1) << PAGE_SHIFT))
882 		f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
883 	return page;
884 }
885 
__allocate_data_block(struct dnode_of_data * dn,int seg_type)886 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
887 {
888 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
889 	struct f2fs_summary sum;
890 	struct node_info ni;
891 	block_t old_blkaddr;
892 	blkcnt_t count = 1;
893 	int err;
894 
895 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
896 		return -EPERM;
897 
898 	err = f2fs_get_node_info(sbi, dn->nid, &ni);
899 	if (err)
900 		return err;
901 
902 	dn->data_blkaddr = datablock_addr(dn->inode,
903 				dn->node_page, dn->ofs_in_node);
904 	if (dn->data_blkaddr == NEW_ADDR)
905 		goto alloc;
906 
907 	if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
908 		return err;
909 
910 alloc:
911 	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
912 	old_blkaddr = dn->data_blkaddr;
913 	f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
914 					&sum, seg_type, NULL, false);
915 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
916 		invalidate_mapping_pages(META_MAPPING(sbi),
917 					old_blkaddr, old_blkaddr);
918 	f2fs_set_data_blkaddr(dn);
919 
920 	/*
921 	 * i_size will be updated by direct_IO. Otherwise, we'll get stale
922 	 * data from unwritten block via dio_read.
923 	 */
924 	return 0;
925 }
926 
f2fs_preallocate_blocks(struct kiocb * iocb,struct iov_iter * from)927 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
928 {
929 	struct inode *inode = file_inode(iocb->ki_filp);
930 	struct f2fs_map_blocks map;
931 	int flag;
932 	int err = 0;
933 	bool direct_io = iocb->ki_flags & IOCB_DIRECT;
934 
935 	/* convert inline data for Direct I/O*/
936 	if (direct_io) {
937 		err = f2fs_convert_inline_inode(inode);
938 		if (err)
939 			return err;
940 	}
941 
942 	if (is_inode_flag_set(inode, FI_NO_PREALLOC))
943 		return 0;
944 
945 	map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
946 	map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
947 	if (map.m_len > map.m_lblk)
948 		map.m_len -= map.m_lblk;
949 	else
950 		map.m_len = 0;
951 
952 	map.m_next_pgofs = NULL;
953 	map.m_next_extent = NULL;
954 	map.m_seg_type = NO_CHECK_TYPE;
955 
956 	if (direct_io) {
957 		map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint);
958 		flag = f2fs_force_buffered_io(inode, WRITE) ?
959 					F2FS_GET_BLOCK_PRE_AIO :
960 					F2FS_GET_BLOCK_PRE_DIO;
961 		goto map_blocks;
962 	}
963 	if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) {
964 		err = f2fs_convert_inline_inode(inode);
965 		if (err)
966 			return err;
967 	}
968 	if (f2fs_has_inline_data(inode))
969 		return err;
970 
971 	flag = F2FS_GET_BLOCK_PRE_AIO;
972 
973 map_blocks:
974 	err = f2fs_map_blocks(inode, &map, 1, flag);
975 	if (map.m_len > 0 && err == -ENOSPC) {
976 		if (!direct_io)
977 			set_inode_flag(inode, FI_NO_PREALLOC);
978 		err = 0;
979 	}
980 	return err;
981 }
982 
__do_map_lock(struct f2fs_sb_info * sbi,int flag,bool lock)983 static inline void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
984 {
985 	if (flag == F2FS_GET_BLOCK_PRE_AIO) {
986 		if (lock)
987 			down_read(&sbi->node_change);
988 		else
989 			up_read(&sbi->node_change);
990 	} else {
991 		if (lock)
992 			f2fs_lock_op(sbi);
993 		else
994 			f2fs_unlock_op(sbi);
995 	}
996 }
997 
998 /*
999  * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
1000  * f2fs_map_blocks structure.
1001  * If original data blocks are allocated, then give them to blockdev.
1002  * Otherwise,
1003  *     a. preallocate requested block addresses
1004  *     b. do not use extent cache for better performance
1005  *     c. give the block addresses to blockdev
1006  */
f2fs_map_blocks(struct inode * inode,struct f2fs_map_blocks * map,int create,int flag)1007 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1008 						int create, int flag)
1009 {
1010 	unsigned int maxblocks = map->m_len;
1011 	struct dnode_of_data dn;
1012 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1013 	int mode = create ? ALLOC_NODE : LOOKUP_NODE;
1014 	pgoff_t pgofs, end_offset, end;
1015 	int err = 0, ofs = 1;
1016 	unsigned int ofs_in_node, last_ofs_in_node;
1017 	blkcnt_t prealloc;
1018 	struct extent_info ei = {0,0,0};
1019 	block_t blkaddr;
1020 	unsigned int start_pgofs;
1021 
1022 	if (!maxblocks)
1023 		return 0;
1024 
1025 	map->m_len = 0;
1026 	map->m_flags = 0;
1027 
1028 	/* it only supports block size == page size */
1029 	pgofs =	(pgoff_t)map->m_lblk;
1030 	end = pgofs + maxblocks;
1031 
1032 	if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1033 		map->m_pblk = ei.blk + pgofs - ei.fofs;
1034 		map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1035 		map->m_flags = F2FS_MAP_MAPPED;
1036 		if (map->m_next_extent)
1037 			*map->m_next_extent = pgofs + map->m_len;
1038 		goto out;
1039 	}
1040 
1041 next_dnode:
1042 	if (create)
1043 		__do_map_lock(sbi, flag, true);
1044 
1045 	/* When reading holes, we need its node page */
1046 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1047 	err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1048 	if (err) {
1049 		if (flag == F2FS_GET_BLOCK_BMAP)
1050 			map->m_pblk = 0;
1051 		if (err == -ENOENT) {
1052 			err = 0;
1053 			if (map->m_next_pgofs)
1054 				*map->m_next_pgofs =
1055 					f2fs_get_next_page_offset(&dn, pgofs);
1056 			if (map->m_next_extent)
1057 				*map->m_next_extent =
1058 					f2fs_get_next_page_offset(&dn, pgofs);
1059 		}
1060 		goto unlock_out;
1061 	}
1062 
1063 	start_pgofs = pgofs;
1064 	prealloc = 0;
1065 	last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1066 	end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1067 
1068 next_block:
1069 	blkaddr = datablock_addr(dn.inode, dn.node_page, dn.ofs_in_node);
1070 
1071 	if (__is_valid_data_blkaddr(blkaddr) &&
1072 		!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
1073 		err = -EFSCORRUPTED;
1074 		goto sync_out;
1075 	}
1076 
1077 	if (!is_valid_data_blkaddr(sbi, blkaddr)) {
1078 		if (create) {
1079 			if (unlikely(f2fs_cp_error(sbi))) {
1080 				err = -EIO;
1081 				goto sync_out;
1082 			}
1083 			if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1084 				if (blkaddr == NULL_ADDR) {
1085 					prealloc++;
1086 					last_ofs_in_node = dn.ofs_in_node;
1087 				}
1088 			} else {
1089 				WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
1090 					flag != F2FS_GET_BLOCK_DIO);
1091 				err = __allocate_data_block(&dn,
1092 							map->m_seg_type);
1093 				if (!err)
1094 					set_inode_flag(inode, FI_APPEND_WRITE);
1095 			}
1096 			if (err)
1097 				goto sync_out;
1098 			map->m_flags |= F2FS_MAP_NEW;
1099 			blkaddr = dn.data_blkaddr;
1100 		} else {
1101 			if (flag == F2FS_GET_BLOCK_BMAP) {
1102 				map->m_pblk = 0;
1103 				goto sync_out;
1104 			}
1105 			if (flag == F2FS_GET_BLOCK_PRECACHE)
1106 				goto sync_out;
1107 			if (flag == F2FS_GET_BLOCK_FIEMAP &&
1108 						blkaddr == NULL_ADDR) {
1109 				if (map->m_next_pgofs)
1110 					*map->m_next_pgofs = pgofs + 1;
1111 				goto sync_out;
1112 			}
1113 			if (flag != F2FS_GET_BLOCK_FIEMAP) {
1114 				/* for defragment case */
1115 				if (map->m_next_pgofs)
1116 					*map->m_next_pgofs = pgofs + 1;
1117 				goto sync_out;
1118 			}
1119 		}
1120 	}
1121 
1122 	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1123 		goto skip;
1124 
1125 	if (map->m_len == 0) {
1126 		/* preallocated unwritten block should be mapped for fiemap. */
1127 		if (blkaddr == NEW_ADDR)
1128 			map->m_flags |= F2FS_MAP_UNWRITTEN;
1129 		map->m_flags |= F2FS_MAP_MAPPED;
1130 
1131 		map->m_pblk = blkaddr;
1132 		map->m_len = 1;
1133 	} else if ((map->m_pblk != NEW_ADDR &&
1134 			blkaddr == (map->m_pblk + ofs)) ||
1135 			(map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1136 			flag == F2FS_GET_BLOCK_PRE_DIO) {
1137 		ofs++;
1138 		map->m_len++;
1139 	} else {
1140 		goto sync_out;
1141 	}
1142 
1143 skip:
1144 	dn.ofs_in_node++;
1145 	pgofs++;
1146 
1147 	/* preallocate blocks in batch for one dnode page */
1148 	if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1149 			(pgofs == end || dn.ofs_in_node == end_offset)) {
1150 
1151 		dn.ofs_in_node = ofs_in_node;
1152 		err = f2fs_reserve_new_blocks(&dn, prealloc);
1153 		if (err)
1154 			goto sync_out;
1155 
1156 		map->m_len += dn.ofs_in_node - ofs_in_node;
1157 		if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1158 			err = -ENOSPC;
1159 			goto sync_out;
1160 		}
1161 		dn.ofs_in_node = end_offset;
1162 	}
1163 
1164 	if (pgofs >= end)
1165 		goto sync_out;
1166 	else if (dn.ofs_in_node < end_offset)
1167 		goto next_block;
1168 
1169 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1170 		if (map->m_flags & F2FS_MAP_MAPPED) {
1171 			unsigned int ofs = start_pgofs - map->m_lblk;
1172 
1173 			f2fs_update_extent_cache_range(&dn,
1174 				start_pgofs, map->m_pblk + ofs,
1175 				map->m_len - ofs);
1176 		}
1177 	}
1178 
1179 	f2fs_put_dnode(&dn);
1180 
1181 	if (create) {
1182 		__do_map_lock(sbi, flag, false);
1183 		f2fs_balance_fs(sbi, dn.node_changed);
1184 	}
1185 	goto next_dnode;
1186 
1187 sync_out:
1188 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1189 		if (map->m_flags & F2FS_MAP_MAPPED) {
1190 			unsigned int ofs = start_pgofs - map->m_lblk;
1191 
1192 			f2fs_update_extent_cache_range(&dn,
1193 				start_pgofs, map->m_pblk + ofs,
1194 				map->m_len - ofs);
1195 		}
1196 		if (map->m_next_extent)
1197 			*map->m_next_extent = pgofs + 1;
1198 	}
1199 	f2fs_put_dnode(&dn);
1200 unlock_out:
1201 	if (create) {
1202 		__do_map_lock(sbi, flag, false);
1203 		f2fs_balance_fs(sbi, dn.node_changed);
1204 	}
1205 out:
1206 	trace_f2fs_map_blocks(inode, map, err);
1207 	return err;
1208 }
1209 
f2fs_overwrite_io(struct inode * inode,loff_t pos,size_t len)1210 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1211 {
1212 	struct f2fs_map_blocks map;
1213 	block_t last_lblk;
1214 	int err;
1215 
1216 	if (pos + len > i_size_read(inode))
1217 		return false;
1218 
1219 	map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1220 	map.m_next_pgofs = NULL;
1221 	map.m_next_extent = NULL;
1222 	map.m_seg_type = NO_CHECK_TYPE;
1223 	last_lblk = F2FS_BLK_ALIGN(pos + len);
1224 
1225 	while (map.m_lblk < last_lblk) {
1226 		map.m_len = last_lblk - map.m_lblk;
1227 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1228 		if (err || map.m_len == 0)
1229 			return false;
1230 		map.m_lblk += map.m_len;
1231 	}
1232 	return true;
1233 }
1234 
__get_data_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create,int flag,pgoff_t * next_pgofs,int seg_type)1235 static int __get_data_block(struct inode *inode, sector_t iblock,
1236 			struct buffer_head *bh, int create, int flag,
1237 			pgoff_t *next_pgofs, int seg_type)
1238 {
1239 	struct f2fs_map_blocks map;
1240 	int err;
1241 
1242 	map.m_lblk = iblock;
1243 	map.m_len = bh->b_size >> inode->i_blkbits;
1244 	map.m_next_pgofs = next_pgofs;
1245 	map.m_next_extent = NULL;
1246 	map.m_seg_type = seg_type;
1247 
1248 	err = f2fs_map_blocks(inode, &map, create, flag);
1249 	if (!err) {
1250 		map_bh(bh, inode->i_sb, map.m_pblk);
1251 		bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1252 		bh->b_size = (u64)map.m_len << inode->i_blkbits;
1253 	}
1254 	return err;
1255 }
1256 
get_data_block(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create,int flag,pgoff_t * next_pgofs)1257 static int get_data_block(struct inode *inode, sector_t iblock,
1258 			struct buffer_head *bh_result, int create, int flag,
1259 			pgoff_t *next_pgofs)
1260 {
1261 	return __get_data_block(inode, iblock, bh_result, create,
1262 							flag, next_pgofs,
1263 							NO_CHECK_TYPE);
1264 }
1265 
get_data_block_dio(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)1266 static int get_data_block_dio(struct inode *inode, sector_t iblock,
1267 			struct buffer_head *bh_result, int create)
1268 {
1269 	return __get_data_block(inode, iblock, bh_result, create,
1270 						F2FS_GET_BLOCK_DIO, NULL,
1271 						f2fs_rw_hint_to_seg_type(
1272 							inode->i_write_hint));
1273 }
1274 
get_data_block_bmap(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)1275 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
1276 			struct buffer_head *bh_result, int create)
1277 {
1278 	/* Block number less than F2FS MAX BLOCKS */
1279 	if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
1280 		return -EFBIG;
1281 
1282 	return __get_data_block(inode, iblock, bh_result, create,
1283 						F2FS_GET_BLOCK_BMAP, NULL,
1284 						NO_CHECK_TYPE);
1285 }
1286 
logical_to_blk(struct inode * inode,loff_t offset)1287 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
1288 {
1289 	return (offset >> inode->i_blkbits);
1290 }
1291 
blk_to_logical(struct inode * inode,sector_t blk)1292 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
1293 {
1294 	return (blk << inode->i_blkbits);
1295 }
1296 
f2fs_xattr_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo)1297 static int f2fs_xattr_fiemap(struct inode *inode,
1298 				struct fiemap_extent_info *fieinfo)
1299 {
1300 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1301 	struct page *page;
1302 	struct node_info ni;
1303 	__u64 phys = 0, len;
1304 	__u32 flags;
1305 	nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1306 	int err = 0;
1307 
1308 	if (f2fs_has_inline_xattr(inode)) {
1309 		int offset;
1310 
1311 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1312 						inode->i_ino, false);
1313 		if (!page)
1314 			return -ENOMEM;
1315 
1316 		err = f2fs_get_node_info(sbi, inode->i_ino, &ni);
1317 		if (err) {
1318 			f2fs_put_page(page, 1);
1319 			return err;
1320 		}
1321 
1322 		phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1323 		offset = offsetof(struct f2fs_inode, i_addr) +
1324 					sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1325 					get_inline_xattr_addrs(inode));
1326 
1327 		phys += offset;
1328 		len = inline_xattr_size(inode);
1329 
1330 		f2fs_put_page(page, 1);
1331 
1332 		flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1333 
1334 		if (!xnid)
1335 			flags |= FIEMAP_EXTENT_LAST;
1336 
1337 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1338 		if (err || err == 1)
1339 			return err;
1340 	}
1341 
1342 	if (xnid) {
1343 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1344 		if (!page)
1345 			return -ENOMEM;
1346 
1347 		err = f2fs_get_node_info(sbi, xnid, &ni);
1348 		if (err) {
1349 			f2fs_put_page(page, 1);
1350 			return err;
1351 		}
1352 
1353 		phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1354 		len = inode->i_sb->s_blocksize;
1355 
1356 		f2fs_put_page(page, 1);
1357 
1358 		flags = FIEMAP_EXTENT_LAST;
1359 	}
1360 
1361 	if (phys)
1362 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1363 
1364 	return (err < 0 ? err : 0);
1365 }
1366 
f2fs_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,u64 start,u64 len)1367 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1368 		u64 start, u64 len)
1369 {
1370 	struct buffer_head map_bh;
1371 	sector_t start_blk, last_blk;
1372 	pgoff_t next_pgofs;
1373 	u64 logical = 0, phys = 0, size = 0;
1374 	u32 flags = 0;
1375 	int ret = 0;
1376 
1377 	if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1378 		ret = f2fs_precache_extents(inode);
1379 		if (ret)
1380 			return ret;
1381 	}
1382 
1383 	ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC | FIEMAP_FLAG_XATTR);
1384 	if (ret)
1385 		return ret;
1386 
1387 	inode_lock(inode);
1388 
1389 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1390 		ret = f2fs_xattr_fiemap(inode, fieinfo);
1391 		goto out;
1392 	}
1393 
1394 	if (f2fs_has_inline_data(inode)) {
1395 		ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1396 		if (ret != -EAGAIN)
1397 			goto out;
1398 	}
1399 
1400 	if (logical_to_blk(inode, len) == 0)
1401 		len = blk_to_logical(inode, 1);
1402 
1403 	start_blk = logical_to_blk(inode, start);
1404 	last_blk = logical_to_blk(inode, start + len - 1);
1405 
1406 next:
1407 	memset(&map_bh, 0, sizeof(struct buffer_head));
1408 	map_bh.b_size = len;
1409 
1410 	ret = get_data_block(inode, start_blk, &map_bh, 0,
1411 					F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
1412 	if (ret)
1413 		goto out;
1414 
1415 	/* HOLE */
1416 	if (!buffer_mapped(&map_bh)) {
1417 		start_blk = next_pgofs;
1418 
1419 		if (blk_to_logical(inode, start_blk) < blk_to_logical(inode,
1420 					F2FS_I_SB(inode)->max_file_blocks))
1421 			goto prep_next;
1422 
1423 		flags |= FIEMAP_EXTENT_LAST;
1424 	}
1425 
1426 	if (size) {
1427 		if (f2fs_encrypted_inode(inode))
1428 			flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1429 
1430 		ret = fiemap_fill_next_extent(fieinfo, logical,
1431 				phys, size, flags);
1432 	}
1433 
1434 	if (start_blk > last_blk || ret)
1435 		goto out;
1436 
1437 	logical = blk_to_logical(inode, start_blk);
1438 	phys = blk_to_logical(inode, map_bh.b_blocknr);
1439 	size = map_bh.b_size;
1440 	flags = 0;
1441 	if (buffer_unwritten(&map_bh))
1442 		flags = FIEMAP_EXTENT_UNWRITTEN;
1443 
1444 	start_blk += logical_to_blk(inode, size);
1445 
1446 prep_next:
1447 	cond_resched();
1448 	if (fatal_signal_pending(current))
1449 		ret = -EINTR;
1450 	else
1451 		goto next;
1452 out:
1453 	if (ret == 1)
1454 		ret = 0;
1455 
1456 	inode_unlock(inode);
1457 	return ret;
1458 }
1459 
1460 /*
1461  * This function was originally taken from fs/mpage.c, and customized for f2fs.
1462  * Major change was from block_size == page_size in f2fs by default.
1463  *
1464  * Note that the aops->readpages() function is ONLY used for read-ahead. If
1465  * this function ever deviates from doing just read-ahead, it should either
1466  * use ->readpage() or do the necessary surgery to decouple ->readpages()
1467  * from read-ahead.
1468  */
f2fs_mpage_readpages(struct address_space * mapping,struct list_head * pages,struct page * page,unsigned nr_pages,bool is_readahead)1469 static int f2fs_mpage_readpages(struct address_space *mapping,
1470 			struct list_head *pages, struct page *page,
1471 			unsigned nr_pages, bool is_readahead)
1472 {
1473 	struct bio *bio = NULL;
1474 	sector_t last_block_in_bio = 0;
1475 	struct inode *inode = mapping->host;
1476 	const unsigned blkbits = inode->i_blkbits;
1477 	const unsigned blocksize = 1 << blkbits;
1478 	sector_t block_in_file;
1479 	sector_t last_block;
1480 	sector_t last_block_in_file;
1481 	sector_t block_nr;
1482 	struct f2fs_map_blocks map;
1483 
1484 	map.m_pblk = 0;
1485 	map.m_lblk = 0;
1486 	map.m_len = 0;
1487 	map.m_flags = 0;
1488 	map.m_next_pgofs = NULL;
1489 	map.m_next_extent = NULL;
1490 	map.m_seg_type = NO_CHECK_TYPE;
1491 
1492 	for (; nr_pages; nr_pages--) {
1493 		if (pages) {
1494 			page = list_last_entry(pages, struct page, lru);
1495 
1496 			prefetchw(&page->flags);
1497 			list_del(&page->lru);
1498 			if (add_to_page_cache_lru(page, mapping,
1499 						  page->index,
1500 						  readahead_gfp_mask(mapping)))
1501 				goto next_page;
1502 		}
1503 
1504 		block_in_file = (sector_t)page->index;
1505 		last_block = block_in_file + nr_pages;
1506 		last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
1507 								blkbits;
1508 		if (last_block > last_block_in_file)
1509 			last_block = last_block_in_file;
1510 
1511 		/*
1512 		 * Map blocks using the previous result first.
1513 		 */
1514 		if ((map.m_flags & F2FS_MAP_MAPPED) &&
1515 				block_in_file > map.m_lblk &&
1516 				block_in_file < (map.m_lblk + map.m_len))
1517 			goto got_it;
1518 
1519 		/*
1520 		 * Then do more f2fs_map_blocks() calls until we are
1521 		 * done with this page.
1522 		 */
1523 		map.m_flags = 0;
1524 
1525 		if (block_in_file < last_block) {
1526 			map.m_lblk = block_in_file;
1527 			map.m_len = last_block - block_in_file;
1528 
1529 			if (f2fs_map_blocks(inode, &map, 0,
1530 						F2FS_GET_BLOCK_DEFAULT))
1531 				goto set_error_page;
1532 		}
1533 got_it:
1534 		if ((map.m_flags & F2FS_MAP_MAPPED)) {
1535 			block_nr = map.m_pblk + block_in_file - map.m_lblk;
1536 			SetPageMappedToDisk(page);
1537 
1538 			if (!PageUptodate(page) && !cleancache_get_page(page)) {
1539 				SetPageUptodate(page);
1540 				goto confused;
1541 			}
1542 
1543 			if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
1544 								DATA_GENERIC))
1545 				goto set_error_page;
1546 		} else {
1547 			zero_user_segment(page, 0, PAGE_SIZE);
1548 			if (!PageUptodate(page))
1549 				SetPageUptodate(page);
1550 			unlock_page(page);
1551 			goto next_page;
1552 		}
1553 
1554 		/*
1555 		 * This page will go to BIO.  Do we need to send this
1556 		 * BIO off first?
1557 		 */
1558 		if (bio && (last_block_in_bio != block_nr - 1 ||
1559 			!__same_bdev(F2FS_I_SB(inode), block_nr, bio))) {
1560 submit_and_realloc:
1561 			__submit_bio(F2FS_I_SB(inode), bio, DATA);
1562 			bio = NULL;
1563 		}
1564 		if (bio == NULL) {
1565 			bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
1566 					is_readahead ? REQ_RAHEAD : 0);
1567 			if (IS_ERR(bio)) {
1568 				bio = NULL;
1569 				goto set_error_page;
1570 			}
1571 		}
1572 
1573 		/*
1574 		 * If the page is under writeback, we need to wait for
1575 		 * its completion to see the correct decrypted data.
1576 		 */
1577 		f2fs_wait_on_block_writeback(inode, block_nr);
1578 
1579 		if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1580 			goto submit_and_realloc;
1581 
1582 		ClearPageError(page);
1583 		last_block_in_bio = block_nr;
1584 		goto next_page;
1585 set_error_page:
1586 		SetPageError(page);
1587 		zero_user_segment(page, 0, PAGE_SIZE);
1588 		unlock_page(page);
1589 		goto next_page;
1590 confused:
1591 		if (bio) {
1592 			__submit_bio(F2FS_I_SB(inode), bio, DATA);
1593 			bio = NULL;
1594 		}
1595 		unlock_page(page);
1596 next_page:
1597 		if (pages)
1598 			put_page(page);
1599 	}
1600 	BUG_ON(pages && !list_empty(pages));
1601 	if (bio)
1602 		__submit_bio(F2FS_I_SB(inode), bio, DATA);
1603 	return 0;
1604 }
1605 
f2fs_read_data_page(struct file * file,struct page * page)1606 static int f2fs_read_data_page(struct file *file, struct page *page)
1607 {
1608 	struct inode *inode = page->mapping->host;
1609 	int ret = -EAGAIN;
1610 
1611 	trace_f2fs_readpage(page, DATA);
1612 
1613 	/* If the file has inline data, try to read it directly */
1614 	if (f2fs_has_inline_data(inode))
1615 		ret = f2fs_read_inline_data(inode, page);
1616 	if (ret == -EAGAIN)
1617 		ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1, false);
1618 	return ret;
1619 }
1620 
f2fs_read_data_pages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)1621 static int f2fs_read_data_pages(struct file *file,
1622 			struct address_space *mapping,
1623 			struct list_head *pages, unsigned nr_pages)
1624 {
1625 	struct inode *inode = mapping->host;
1626 	struct page *page = list_last_entry(pages, struct page, lru);
1627 
1628 	trace_f2fs_readpages(inode, page, nr_pages);
1629 
1630 	/* If the file has inline data, skip readpages */
1631 	if (f2fs_has_inline_data(inode))
1632 		return 0;
1633 
1634 	return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages, true);
1635 }
1636 
encrypt_one_page(struct f2fs_io_info * fio)1637 static int encrypt_one_page(struct f2fs_io_info *fio)
1638 {
1639 	struct inode *inode = fio->page->mapping->host;
1640 	struct page *mpage;
1641 	gfp_t gfp_flags = GFP_NOFS;
1642 
1643 	if (!f2fs_encrypted_file(inode))
1644 		return 0;
1645 
1646 	/* wait for GCed page writeback via META_MAPPING */
1647 	f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
1648 
1649 retry_encrypt:
1650 	fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page,
1651 			PAGE_SIZE, 0, fio->page->index, gfp_flags);
1652 	if (IS_ERR(fio->encrypted_page)) {
1653 		/* flush pending IOs and wait for a while in the ENOMEM case */
1654 		if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
1655 			f2fs_flush_merged_writes(fio->sbi);
1656 			congestion_wait(BLK_RW_ASYNC, HZ/50);
1657 			gfp_flags |= __GFP_NOFAIL;
1658 			goto retry_encrypt;
1659 		}
1660 		return PTR_ERR(fio->encrypted_page);
1661 	}
1662 
1663 	mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
1664 	if (mpage) {
1665 		if (PageUptodate(mpage))
1666 			memcpy(page_address(mpage),
1667 				page_address(fio->encrypted_page), PAGE_SIZE);
1668 		f2fs_put_page(mpage, 1);
1669 	}
1670 	return 0;
1671 }
1672 
check_inplace_update_policy(struct inode * inode,struct f2fs_io_info * fio)1673 static inline bool check_inplace_update_policy(struct inode *inode,
1674 				struct f2fs_io_info *fio)
1675 {
1676 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1677 	unsigned int policy = SM_I(sbi)->ipu_policy;
1678 
1679 	if (policy & (0x1 << F2FS_IPU_FORCE))
1680 		return true;
1681 	if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
1682 		return true;
1683 	if (policy & (0x1 << F2FS_IPU_UTIL) &&
1684 			utilization(sbi) > SM_I(sbi)->min_ipu_util)
1685 		return true;
1686 	if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
1687 			utilization(sbi) > SM_I(sbi)->min_ipu_util)
1688 		return true;
1689 
1690 	/*
1691 	 * IPU for rewrite async pages
1692 	 */
1693 	if (policy & (0x1 << F2FS_IPU_ASYNC) &&
1694 			fio && fio->op == REQ_OP_WRITE &&
1695 			!(fio->op_flags & REQ_SYNC) &&
1696 			!f2fs_encrypted_inode(inode))
1697 		return true;
1698 
1699 	/* this is only set during fdatasync */
1700 	if (policy & (0x1 << F2FS_IPU_FSYNC) &&
1701 			is_inode_flag_set(inode, FI_NEED_IPU))
1702 		return true;
1703 
1704 	return false;
1705 }
1706 
f2fs_should_update_inplace(struct inode * inode,struct f2fs_io_info * fio)1707 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
1708 {
1709 	if (f2fs_is_pinned_file(inode))
1710 		return true;
1711 
1712 	/* if this is cold file, we should overwrite to avoid fragmentation */
1713 	if (file_is_cold(inode))
1714 		return true;
1715 
1716 	return check_inplace_update_policy(inode, fio);
1717 }
1718 
f2fs_should_update_outplace(struct inode * inode,struct f2fs_io_info * fio)1719 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
1720 {
1721 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1722 
1723 	if (test_opt(sbi, LFS))
1724 		return true;
1725 	if (S_ISDIR(inode->i_mode))
1726 		return true;
1727 	if (f2fs_is_atomic_file(inode))
1728 		return true;
1729 	if (fio) {
1730 		if (is_cold_data(fio->page))
1731 			return true;
1732 		if (IS_ATOMIC_WRITTEN_PAGE(fio->page))
1733 			return true;
1734 	}
1735 	return false;
1736 }
1737 
need_inplace_update(struct f2fs_io_info * fio)1738 static inline bool need_inplace_update(struct f2fs_io_info *fio)
1739 {
1740 	struct inode *inode = fio->page->mapping->host;
1741 
1742 	if (f2fs_should_update_outplace(inode, fio))
1743 		return false;
1744 
1745 	return f2fs_should_update_inplace(inode, fio);
1746 }
1747 
f2fs_do_write_data_page(struct f2fs_io_info * fio)1748 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
1749 {
1750 	struct page *page = fio->page;
1751 	struct inode *inode = page->mapping->host;
1752 	struct dnode_of_data dn;
1753 	struct extent_info ei = {0,0,0};
1754 	struct node_info ni;
1755 	bool ipu_force = false;
1756 	int err = 0;
1757 
1758 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1759 	if (need_inplace_update(fio) &&
1760 			f2fs_lookup_extent_cache(inode, page->index, &ei)) {
1761 		fio->old_blkaddr = ei.blk + page->index - ei.fofs;
1762 
1763 		if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
1764 							DATA_GENERIC))
1765 			return -EFSCORRUPTED;
1766 
1767 		ipu_force = true;
1768 		fio->need_lock = LOCK_DONE;
1769 		goto got_it;
1770 	}
1771 
1772 	/* Deadlock due to between page->lock and f2fs_lock_op */
1773 	if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
1774 		return -EAGAIN;
1775 
1776 	err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
1777 	if (err)
1778 		goto out;
1779 
1780 	fio->old_blkaddr = dn.data_blkaddr;
1781 
1782 	/* This page is already truncated */
1783 	if (fio->old_blkaddr == NULL_ADDR) {
1784 		ClearPageUptodate(page);
1785 		clear_cold_data(page);
1786 		goto out_writepage;
1787 	}
1788 got_it:
1789 	if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
1790 		!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
1791 							DATA_GENERIC)) {
1792 		err = -EFSCORRUPTED;
1793 		goto out_writepage;
1794 	}
1795 	/*
1796 	 * If current allocation needs SSR,
1797 	 * it had better in-place writes for updated data.
1798 	 */
1799 	if (ipu_force || (is_valid_data_blkaddr(fio->sbi, fio->old_blkaddr) &&
1800 					need_inplace_update(fio))) {
1801 		err = encrypt_one_page(fio);
1802 		if (err)
1803 			goto out_writepage;
1804 
1805 		set_page_writeback(page);
1806 		ClearPageError(page);
1807 		f2fs_put_dnode(&dn);
1808 		if (fio->need_lock == LOCK_REQ)
1809 			f2fs_unlock_op(fio->sbi);
1810 		err = f2fs_inplace_write_data(fio);
1811 		trace_f2fs_do_write_data_page(fio->page, IPU);
1812 		set_inode_flag(inode, FI_UPDATE_WRITE);
1813 		return err;
1814 	}
1815 
1816 	if (fio->need_lock == LOCK_RETRY) {
1817 		if (!f2fs_trylock_op(fio->sbi)) {
1818 			err = -EAGAIN;
1819 			goto out_writepage;
1820 		}
1821 		fio->need_lock = LOCK_REQ;
1822 	}
1823 
1824 	err = f2fs_get_node_info(fio->sbi, dn.nid, &ni);
1825 	if (err)
1826 		goto out_writepage;
1827 
1828 	fio->version = ni.version;
1829 
1830 	err = encrypt_one_page(fio);
1831 	if (err)
1832 		goto out_writepage;
1833 
1834 	set_page_writeback(page);
1835 	ClearPageError(page);
1836 
1837 	/* LFS mode write path */
1838 	f2fs_outplace_write_data(&dn, fio);
1839 	trace_f2fs_do_write_data_page(page, OPU);
1840 	set_inode_flag(inode, FI_APPEND_WRITE);
1841 	if (page->index == 0)
1842 		set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1843 out_writepage:
1844 	f2fs_put_dnode(&dn);
1845 out:
1846 	if (fio->need_lock == LOCK_REQ)
1847 		f2fs_unlock_op(fio->sbi);
1848 	return err;
1849 }
1850 
__write_data_page(struct page * page,bool * submitted,struct writeback_control * wbc,enum iostat_type io_type)1851 static int __write_data_page(struct page *page, bool *submitted,
1852 				struct writeback_control *wbc,
1853 				enum iostat_type io_type)
1854 {
1855 	struct inode *inode = page->mapping->host;
1856 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1857 	loff_t i_size = i_size_read(inode);
1858 	const pgoff_t end_index = ((unsigned long long) i_size)
1859 							>> PAGE_SHIFT;
1860 	loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
1861 	unsigned offset = 0;
1862 	bool need_balance_fs = false;
1863 	int err = 0;
1864 	struct f2fs_io_info fio = {
1865 		.sbi = sbi,
1866 		.ino = inode->i_ino,
1867 		.type = DATA,
1868 		.op = REQ_OP_WRITE,
1869 		.op_flags = wbc_to_write_flags(wbc),
1870 		.old_blkaddr = NULL_ADDR,
1871 		.page = page,
1872 		.encrypted_page = NULL,
1873 		.submitted = false,
1874 		.need_lock = LOCK_RETRY,
1875 		.io_type = io_type,
1876 		.io_wbc = wbc,
1877 	};
1878 
1879 	trace_f2fs_writepage(page, DATA);
1880 
1881 	/* we should bypass data pages to proceed the kworkder jobs */
1882 	if (unlikely(f2fs_cp_error(sbi))) {
1883 		mapping_set_error(page->mapping, -EIO);
1884 		/*
1885 		 * don't drop any dirty dentry pages for keeping lastest
1886 		 * directory structure.
1887 		 */
1888 		if (S_ISDIR(inode->i_mode) &&
1889 				!is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1890 			goto redirty_out;
1891 		goto out;
1892 	}
1893 
1894 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1895 		goto redirty_out;
1896 
1897 	if (page->index < end_index)
1898 		goto write;
1899 
1900 	/*
1901 	 * If the offset is out-of-range of file size,
1902 	 * this page does not have to be written to disk.
1903 	 */
1904 	offset = i_size & (PAGE_SIZE - 1);
1905 	if ((page->index >= end_index + 1) || !offset)
1906 		goto out;
1907 
1908 	zero_user_segment(page, offset, PAGE_SIZE);
1909 write:
1910 	if (f2fs_is_drop_cache(inode))
1911 		goto out;
1912 	/* we should not write 0'th page having journal header */
1913 	if (f2fs_is_volatile_file(inode) && (!page->index ||
1914 			(!wbc->for_reclaim &&
1915 			f2fs_available_free_memory(sbi, BASE_CHECK))))
1916 		goto redirty_out;
1917 
1918 	/* Dentry blocks are controlled by checkpoint */
1919 	if (S_ISDIR(inode->i_mode)) {
1920 		fio.need_lock = LOCK_DONE;
1921 		err = f2fs_do_write_data_page(&fio);
1922 		goto done;
1923 	}
1924 
1925 	if (!wbc->for_reclaim)
1926 		need_balance_fs = true;
1927 	else if (has_not_enough_free_secs(sbi, 0, 0))
1928 		goto redirty_out;
1929 	else
1930 		set_inode_flag(inode, FI_HOT_DATA);
1931 
1932 	err = -EAGAIN;
1933 	if (f2fs_has_inline_data(inode)) {
1934 		err = f2fs_write_inline_data(inode, page);
1935 		if (!err)
1936 			goto out;
1937 	}
1938 
1939 	if (err == -EAGAIN) {
1940 		err = f2fs_do_write_data_page(&fio);
1941 		if (err == -EAGAIN) {
1942 			fio.need_lock = LOCK_REQ;
1943 			err = f2fs_do_write_data_page(&fio);
1944 		}
1945 	}
1946 
1947 	if (err) {
1948 		file_set_keep_isize(inode);
1949 	} else {
1950 		down_write(&F2FS_I(inode)->i_sem);
1951 		if (F2FS_I(inode)->last_disk_size < psize)
1952 			F2FS_I(inode)->last_disk_size = psize;
1953 		up_write(&F2FS_I(inode)->i_sem);
1954 	}
1955 
1956 done:
1957 	if (err && err != -ENOENT)
1958 		goto redirty_out;
1959 
1960 out:
1961 	inode_dec_dirty_pages(inode);
1962 	if (err) {
1963 		ClearPageUptodate(page);
1964 		clear_cold_data(page);
1965 	}
1966 
1967 	if (wbc->for_reclaim) {
1968 		f2fs_submit_merged_write_cond(sbi, inode, 0, page->index, DATA);
1969 		clear_inode_flag(inode, FI_HOT_DATA);
1970 		f2fs_remove_dirty_inode(inode);
1971 		submitted = NULL;
1972 	}
1973 
1974 	unlock_page(page);
1975 	if (!S_ISDIR(inode->i_mode))
1976 		f2fs_balance_fs(sbi, need_balance_fs);
1977 
1978 	if (unlikely(f2fs_cp_error(sbi))) {
1979 		f2fs_submit_merged_write(sbi, DATA);
1980 		submitted = NULL;
1981 	}
1982 
1983 	if (submitted)
1984 		*submitted = fio.submitted;
1985 
1986 	return 0;
1987 
1988 redirty_out:
1989 	redirty_page_for_writepage(wbc, page);
1990 	/*
1991 	 * pageout() in MM traslates EAGAIN, so calls handle_write_error()
1992 	 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
1993 	 * file_write_and_wait_range() will see EIO error, which is critical
1994 	 * to return value of fsync() followed by atomic_write failure to user.
1995 	 */
1996 	if (!err || wbc->for_reclaim)
1997 		return AOP_WRITEPAGE_ACTIVATE;
1998 	unlock_page(page);
1999 	return err;
2000 }
2001 
f2fs_write_data_page(struct page * page,struct writeback_control * wbc)2002 static int f2fs_write_data_page(struct page *page,
2003 					struct writeback_control *wbc)
2004 {
2005 	return __write_data_page(page, NULL, wbc, FS_DATA_IO);
2006 }
2007 
2008 /*
2009  * This function was copied from write_cche_pages from mm/page-writeback.c.
2010  * The major change is making write step of cold data page separately from
2011  * warm/hot data page.
2012  */
f2fs_write_cache_pages(struct address_space * mapping,struct writeback_control * wbc,enum iostat_type io_type)2013 static int f2fs_write_cache_pages(struct address_space *mapping,
2014 					struct writeback_control *wbc,
2015 					enum iostat_type io_type)
2016 {
2017 	int ret = 0;
2018 	int done = 0;
2019 	struct pagevec pvec;
2020 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2021 	int nr_pages;
2022 	pgoff_t uninitialized_var(writeback_index);
2023 	pgoff_t index;
2024 	pgoff_t end;		/* Inclusive */
2025 	pgoff_t done_index;
2026 	pgoff_t last_idx = ULONG_MAX;
2027 	int cycled;
2028 	int range_whole = 0;
2029 	int tag;
2030 
2031 	pagevec_init(&pvec);
2032 
2033 	if (get_dirty_pages(mapping->host) <=
2034 				SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2035 		set_inode_flag(mapping->host, FI_HOT_DATA);
2036 	else
2037 		clear_inode_flag(mapping->host, FI_HOT_DATA);
2038 
2039 	if (wbc->range_cyclic) {
2040 		writeback_index = mapping->writeback_index; /* prev offset */
2041 		index = writeback_index;
2042 		if (index == 0)
2043 			cycled = 1;
2044 		else
2045 			cycled = 0;
2046 		end = -1;
2047 	} else {
2048 		index = wbc->range_start >> PAGE_SHIFT;
2049 		end = wbc->range_end >> PAGE_SHIFT;
2050 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2051 			range_whole = 1;
2052 		cycled = 1; /* ignore range_cyclic tests */
2053 	}
2054 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2055 		tag = PAGECACHE_TAG_TOWRITE;
2056 	else
2057 		tag = PAGECACHE_TAG_DIRTY;
2058 retry:
2059 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2060 		tag_pages_for_writeback(mapping, index, end);
2061 	done_index = index;
2062 	while (!done && (index <= end)) {
2063 		int i;
2064 
2065 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2066 				tag);
2067 		if (nr_pages == 0)
2068 			break;
2069 
2070 		for (i = 0; i < nr_pages; i++) {
2071 			struct page *page = pvec.pages[i];
2072 			bool submitted = false;
2073 
2074 			/* give a priority to WB_SYNC threads */
2075 			if (atomic_read(&sbi->wb_sync_req[DATA]) &&
2076 					wbc->sync_mode == WB_SYNC_NONE) {
2077 				done = 1;
2078 				break;
2079 			}
2080 
2081 			done_index = page->index;
2082 retry_write:
2083 			lock_page(page);
2084 
2085 			if (unlikely(page->mapping != mapping)) {
2086 continue_unlock:
2087 				unlock_page(page);
2088 				continue;
2089 			}
2090 
2091 			if (!PageDirty(page)) {
2092 				/* someone wrote it for us */
2093 				goto continue_unlock;
2094 			}
2095 
2096 			if (PageWriteback(page)) {
2097 				if (wbc->sync_mode != WB_SYNC_NONE)
2098 					f2fs_wait_on_page_writeback(page,
2099 								DATA, true);
2100 				else
2101 					goto continue_unlock;
2102 			}
2103 
2104 			BUG_ON(PageWriteback(page));
2105 			if (!clear_page_dirty_for_io(page))
2106 				goto continue_unlock;
2107 
2108 			ret = __write_data_page(page, &submitted, wbc, io_type);
2109 			if (unlikely(ret)) {
2110 				/*
2111 				 * keep nr_to_write, since vfs uses this to
2112 				 * get # of written pages.
2113 				 */
2114 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
2115 					unlock_page(page);
2116 					ret = 0;
2117 					continue;
2118 				} else if (ret == -EAGAIN) {
2119 					ret = 0;
2120 					if (wbc->sync_mode == WB_SYNC_ALL) {
2121 						cond_resched();
2122 						congestion_wait(BLK_RW_ASYNC,
2123 									HZ/50);
2124 						goto retry_write;
2125 					}
2126 					continue;
2127 				}
2128 				done_index = page->index + 1;
2129 				done = 1;
2130 				break;
2131 			} else if (submitted) {
2132 				last_idx = page->index;
2133 			}
2134 
2135 			if (--wbc->nr_to_write <= 0 &&
2136 					wbc->sync_mode == WB_SYNC_NONE) {
2137 				done = 1;
2138 				break;
2139 			}
2140 		}
2141 		pagevec_release(&pvec);
2142 		cond_resched();
2143 	}
2144 
2145 	if (!cycled && !done) {
2146 		cycled = 1;
2147 		index = 0;
2148 		end = writeback_index - 1;
2149 		goto retry;
2150 	}
2151 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2152 		mapping->writeback_index = done_index;
2153 
2154 	if (last_idx != ULONG_MAX)
2155 		f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
2156 						0, last_idx, DATA);
2157 
2158 	return ret;
2159 }
2160 
__should_serialize_io(struct inode * inode,struct writeback_control * wbc)2161 static inline bool __should_serialize_io(struct inode *inode,
2162 					struct writeback_control *wbc)
2163 {
2164 	if (!S_ISREG(inode->i_mode))
2165 		return false;
2166 	if (wbc->sync_mode != WB_SYNC_ALL)
2167 		return true;
2168 	if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
2169 		return true;
2170 	return false;
2171 }
2172 
__f2fs_write_data_pages(struct address_space * mapping,struct writeback_control * wbc,enum iostat_type io_type)2173 static int __f2fs_write_data_pages(struct address_space *mapping,
2174 						struct writeback_control *wbc,
2175 						enum iostat_type io_type)
2176 {
2177 	struct inode *inode = mapping->host;
2178 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2179 	struct blk_plug plug;
2180 	int ret;
2181 	bool locked = false;
2182 
2183 	/* deal with chardevs and other special file */
2184 	if (!mapping->a_ops->writepage)
2185 		return 0;
2186 
2187 	/* skip writing if there is no dirty page in this inode */
2188 	if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
2189 		return 0;
2190 
2191 	/* during POR, we don't need to trigger writepage at all. */
2192 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2193 		goto skip_write;
2194 
2195 	if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
2196 			get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
2197 			f2fs_available_free_memory(sbi, DIRTY_DENTS))
2198 		goto skip_write;
2199 
2200 	/* skip writing during file defragment */
2201 	if (is_inode_flag_set(inode, FI_DO_DEFRAG))
2202 		goto skip_write;
2203 
2204 	trace_f2fs_writepages(mapping->host, wbc, DATA);
2205 
2206 	/* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
2207 	if (wbc->sync_mode == WB_SYNC_ALL)
2208 		atomic_inc(&sbi->wb_sync_req[DATA]);
2209 	else if (atomic_read(&sbi->wb_sync_req[DATA]))
2210 		goto skip_write;
2211 
2212 	if (__should_serialize_io(inode, wbc)) {
2213 		mutex_lock(&sbi->writepages);
2214 		locked = true;
2215 	}
2216 
2217 	blk_start_plug(&plug);
2218 	ret = f2fs_write_cache_pages(mapping, wbc, io_type);
2219 	blk_finish_plug(&plug);
2220 
2221 	if (locked)
2222 		mutex_unlock(&sbi->writepages);
2223 
2224 	if (wbc->sync_mode == WB_SYNC_ALL)
2225 		atomic_dec(&sbi->wb_sync_req[DATA]);
2226 	/*
2227 	 * if some pages were truncated, we cannot guarantee its mapping->host
2228 	 * to detect pending bios.
2229 	 */
2230 
2231 	f2fs_remove_dirty_inode(inode);
2232 	return ret;
2233 
2234 skip_write:
2235 	wbc->pages_skipped += get_dirty_pages(inode);
2236 	trace_f2fs_writepages(mapping->host, wbc, DATA);
2237 	return 0;
2238 }
2239 
f2fs_write_data_pages(struct address_space * mapping,struct writeback_control * wbc)2240 static int f2fs_write_data_pages(struct address_space *mapping,
2241 			    struct writeback_control *wbc)
2242 {
2243 	struct inode *inode = mapping->host;
2244 
2245 	return __f2fs_write_data_pages(mapping, wbc,
2246 			F2FS_I(inode)->cp_task == current ?
2247 			FS_CP_DATA_IO : FS_DATA_IO);
2248 }
2249 
f2fs_write_failed(struct address_space * mapping,loff_t to)2250 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
2251 {
2252 	struct inode *inode = mapping->host;
2253 	loff_t i_size = i_size_read(inode);
2254 
2255 	if (to > i_size) {
2256 		down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2257 		down_write(&F2FS_I(inode)->i_mmap_sem);
2258 
2259 		truncate_pagecache(inode, i_size);
2260 		f2fs_truncate_blocks(inode, i_size, true);
2261 
2262 		up_write(&F2FS_I(inode)->i_mmap_sem);
2263 		up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2264 	}
2265 }
2266 
prepare_write_begin(struct f2fs_sb_info * sbi,struct page * page,loff_t pos,unsigned len,block_t * blk_addr,bool * node_changed)2267 static int prepare_write_begin(struct f2fs_sb_info *sbi,
2268 			struct page *page, loff_t pos, unsigned len,
2269 			block_t *blk_addr, bool *node_changed)
2270 {
2271 	struct inode *inode = page->mapping->host;
2272 	pgoff_t index = page->index;
2273 	struct dnode_of_data dn;
2274 	struct page *ipage;
2275 	bool locked = false;
2276 	struct extent_info ei = {0,0,0};
2277 	int err = 0;
2278 	int flag;
2279 
2280 	/*
2281 	 * we already allocated all the blocks, so we don't need to get
2282 	 * the block addresses when there is no need to fill the page.
2283 	 */
2284 	if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
2285 			!is_inode_flag_set(inode, FI_NO_PREALLOC))
2286 		return 0;
2287 
2288 	/* f2fs_lock_op avoids race between write CP and convert_inline_page */
2289 	if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
2290 		flag = F2FS_GET_BLOCK_DEFAULT;
2291 	else
2292 		flag = F2FS_GET_BLOCK_PRE_AIO;
2293 
2294 	if (f2fs_has_inline_data(inode) ||
2295 			(pos & PAGE_MASK) >= i_size_read(inode)) {
2296 		__do_map_lock(sbi, flag, true);
2297 		locked = true;
2298 	}
2299 restart:
2300 	/* check inline_data */
2301 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
2302 	if (IS_ERR(ipage)) {
2303 		err = PTR_ERR(ipage);
2304 		goto unlock_out;
2305 	}
2306 
2307 	set_new_dnode(&dn, inode, ipage, ipage, 0);
2308 
2309 	if (f2fs_has_inline_data(inode)) {
2310 		if (pos + len <= MAX_INLINE_DATA(inode)) {
2311 			f2fs_do_read_inline_data(page, ipage);
2312 			set_inode_flag(inode, FI_DATA_EXIST);
2313 			if (inode->i_nlink)
2314 				set_inline_node(ipage);
2315 		} else {
2316 			err = f2fs_convert_inline_page(&dn, page);
2317 			if (err)
2318 				goto out;
2319 			if (dn.data_blkaddr == NULL_ADDR)
2320 				err = f2fs_get_block(&dn, index);
2321 		}
2322 	} else if (locked) {
2323 		err = f2fs_get_block(&dn, index);
2324 	} else {
2325 		if (f2fs_lookup_extent_cache(inode, index, &ei)) {
2326 			dn.data_blkaddr = ei.blk + index - ei.fofs;
2327 		} else {
2328 			/* hole case */
2329 			err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
2330 			if (err || dn.data_blkaddr == NULL_ADDR) {
2331 				f2fs_put_dnode(&dn);
2332 				__do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
2333 								true);
2334 				WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
2335 				locked = true;
2336 				goto restart;
2337 			}
2338 		}
2339 	}
2340 
2341 	/* convert_inline_page can make node_changed */
2342 	*blk_addr = dn.data_blkaddr;
2343 	*node_changed = dn.node_changed;
2344 out:
2345 	f2fs_put_dnode(&dn);
2346 unlock_out:
2347 	if (locked)
2348 		__do_map_lock(sbi, flag, false);
2349 	return err;
2350 }
2351 
f2fs_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)2352 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
2353 		loff_t pos, unsigned len, unsigned flags,
2354 		struct page **pagep, void **fsdata)
2355 {
2356 	struct inode *inode = mapping->host;
2357 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2358 	struct page *page = NULL;
2359 	pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
2360 	bool need_balance = false, drop_atomic = false;
2361 	block_t blkaddr = NULL_ADDR;
2362 	int err = 0;
2363 
2364 	trace_f2fs_write_begin(inode, pos, len, flags);
2365 
2366 	if ((f2fs_is_atomic_file(inode) &&
2367 			!f2fs_available_free_memory(sbi, INMEM_PAGES)) ||
2368 			is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
2369 		err = -ENOMEM;
2370 		drop_atomic = true;
2371 		goto fail;
2372 	}
2373 
2374 	/*
2375 	 * We should check this at this moment to avoid deadlock on inode page
2376 	 * and #0 page. The locking rule for inline_data conversion should be:
2377 	 * lock_page(page #0) -> lock_page(inode_page)
2378 	 */
2379 	if (index != 0) {
2380 		err = f2fs_convert_inline_inode(inode);
2381 		if (err)
2382 			goto fail;
2383 	}
2384 repeat:
2385 	/*
2386 	 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
2387 	 * wait_for_stable_page. Will wait that below with our IO control.
2388 	 */
2389 	page = f2fs_pagecache_get_page(mapping, index,
2390 				FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
2391 	if (!page) {
2392 		err = -ENOMEM;
2393 		goto fail;
2394 	}
2395 
2396 	*pagep = page;
2397 
2398 	err = prepare_write_begin(sbi, page, pos, len,
2399 					&blkaddr, &need_balance);
2400 	if (err)
2401 		goto fail;
2402 
2403 	if (need_balance && has_not_enough_free_secs(sbi, 0, 0)) {
2404 		unlock_page(page);
2405 		f2fs_balance_fs(sbi, true);
2406 		lock_page(page);
2407 		if (page->mapping != mapping) {
2408 			/* The page got truncated from under us */
2409 			f2fs_put_page(page, 1);
2410 			goto repeat;
2411 		}
2412 	}
2413 
2414 	f2fs_wait_on_page_writeback(page, DATA, false);
2415 
2416 	if (len == PAGE_SIZE || PageUptodate(page))
2417 		return 0;
2418 
2419 	if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode)) {
2420 		zero_user_segment(page, len, PAGE_SIZE);
2421 		return 0;
2422 	}
2423 
2424 	if (blkaddr == NEW_ADDR) {
2425 		zero_user_segment(page, 0, PAGE_SIZE);
2426 		SetPageUptodate(page);
2427 	} else {
2428 		err = f2fs_submit_page_read(inode, page, blkaddr);
2429 		if (err)
2430 			goto fail;
2431 
2432 		lock_page(page);
2433 		if (unlikely(page->mapping != mapping)) {
2434 			f2fs_put_page(page, 1);
2435 			goto repeat;
2436 		}
2437 		if (unlikely(!PageUptodate(page))) {
2438 			err = -EIO;
2439 			goto fail;
2440 		}
2441 	}
2442 	return 0;
2443 
2444 fail:
2445 	f2fs_put_page(page, 1);
2446 	f2fs_write_failed(mapping, pos + len);
2447 	if (drop_atomic)
2448 		f2fs_drop_inmem_pages_all(sbi, false);
2449 	return err;
2450 }
2451 
f2fs_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2452 static int f2fs_write_end(struct file *file,
2453 			struct address_space *mapping,
2454 			loff_t pos, unsigned len, unsigned copied,
2455 			struct page *page, void *fsdata)
2456 {
2457 	struct inode *inode = page->mapping->host;
2458 
2459 	trace_f2fs_write_end(inode, pos, len, copied);
2460 
2461 	/*
2462 	 * This should be come from len == PAGE_SIZE, and we expect copied
2463 	 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
2464 	 * let generic_perform_write() try to copy data again through copied=0.
2465 	 */
2466 	if (!PageUptodate(page)) {
2467 		if (unlikely(copied != len))
2468 			copied = 0;
2469 		else
2470 			SetPageUptodate(page);
2471 	}
2472 	if (!copied)
2473 		goto unlock_out;
2474 
2475 	set_page_dirty(page);
2476 
2477 	if (pos + copied > i_size_read(inode))
2478 		f2fs_i_size_write(inode, pos + copied);
2479 unlock_out:
2480 	f2fs_put_page(page, 1);
2481 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2482 	return copied;
2483 }
2484 
check_direct_IO(struct inode * inode,struct iov_iter * iter,loff_t offset)2485 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
2486 			   loff_t offset)
2487 {
2488 	unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
2489 	unsigned blkbits = i_blkbits;
2490 	unsigned blocksize_mask = (1 << blkbits) - 1;
2491 	unsigned long align = offset | iov_iter_alignment(iter);
2492 	struct block_device *bdev = inode->i_sb->s_bdev;
2493 
2494 	if (iov_iter_rw(iter) == READ && offset >= i_size_read(inode))
2495 		return 1;
2496 
2497 	if (align & blocksize_mask) {
2498 		if (bdev)
2499 			blkbits = blksize_bits(bdev_logical_block_size(bdev));
2500 		blocksize_mask = (1 << blkbits) - 1;
2501 		if (align & blocksize_mask)
2502 			return -EINVAL;
2503 		return 1;
2504 	}
2505 	return 0;
2506 }
2507 
f2fs_direct_IO(struct kiocb * iocb,struct iov_iter * iter)2508 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2509 {
2510 	struct address_space *mapping = iocb->ki_filp->f_mapping;
2511 	struct inode *inode = mapping->host;
2512 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2513 	size_t count = iov_iter_count(iter);
2514 	loff_t offset = iocb->ki_pos;
2515 	int rw = iov_iter_rw(iter);
2516 	int err;
2517 	enum rw_hint hint = iocb->ki_hint;
2518 	int whint_mode = F2FS_OPTION(sbi).whint_mode;
2519 
2520 	err = check_direct_IO(inode, iter, offset);
2521 	if (err)
2522 		return err < 0 ? err : 0;
2523 
2524 	if (f2fs_force_buffered_io(inode, rw))
2525 		return 0;
2526 
2527 	trace_f2fs_direct_IO_enter(inode, offset, count, rw);
2528 
2529 	if (rw == WRITE && whint_mode == WHINT_MODE_OFF)
2530 		iocb->ki_hint = WRITE_LIFE_NOT_SET;
2531 
2532 	if (!down_read_trylock(&F2FS_I(inode)->i_gc_rwsem[rw])) {
2533 		if (iocb->ki_flags & IOCB_NOWAIT) {
2534 			iocb->ki_hint = hint;
2535 			err = -EAGAIN;
2536 			goto out;
2537 		}
2538 		down_read(&F2FS_I(inode)->i_gc_rwsem[rw]);
2539 	}
2540 
2541 	err = blockdev_direct_IO(iocb, inode, iter, get_data_block_dio);
2542 	up_read(&F2FS_I(inode)->i_gc_rwsem[rw]);
2543 
2544 	if (rw == WRITE) {
2545 		if (whint_mode == WHINT_MODE_OFF)
2546 			iocb->ki_hint = hint;
2547 		if (err > 0) {
2548 			f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
2549 									err);
2550 			set_inode_flag(inode, FI_UPDATE_WRITE);
2551 		} else if (err < 0) {
2552 			f2fs_write_failed(mapping, offset + count);
2553 		}
2554 	}
2555 
2556 out:
2557 	trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
2558 
2559 	return err;
2560 }
2561 
f2fs_invalidate_page(struct page * page,unsigned int offset,unsigned int length)2562 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2563 							unsigned int length)
2564 {
2565 	struct inode *inode = page->mapping->host;
2566 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2567 
2568 	if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
2569 		(offset % PAGE_SIZE || length != PAGE_SIZE))
2570 		return;
2571 
2572 	if (PageDirty(page)) {
2573 		if (inode->i_ino == F2FS_META_INO(sbi)) {
2574 			dec_page_count(sbi, F2FS_DIRTY_META);
2575 		} else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
2576 			dec_page_count(sbi, F2FS_DIRTY_NODES);
2577 		} else {
2578 			inode_dec_dirty_pages(inode);
2579 			f2fs_remove_dirty_inode(inode);
2580 		}
2581 	}
2582 
2583 	clear_cold_data(page);
2584 
2585 	/* This is atomic written page, keep Private */
2586 	if (IS_ATOMIC_WRITTEN_PAGE(page))
2587 		return f2fs_drop_inmem_page(inode, page);
2588 
2589 	set_page_private(page, 0);
2590 	ClearPagePrivate(page);
2591 }
2592 
f2fs_release_page(struct page * page,gfp_t wait)2593 int f2fs_release_page(struct page *page, gfp_t wait)
2594 {
2595 	/* If this is dirty page, keep PagePrivate */
2596 	if (PageDirty(page))
2597 		return 0;
2598 
2599 	/* This is atomic written page, keep Private */
2600 	if (IS_ATOMIC_WRITTEN_PAGE(page))
2601 		return 0;
2602 
2603 	clear_cold_data(page);
2604 	set_page_private(page, 0);
2605 	ClearPagePrivate(page);
2606 	return 1;
2607 }
2608 
f2fs_set_data_page_dirty(struct page * page)2609 static int f2fs_set_data_page_dirty(struct page *page)
2610 {
2611 	struct address_space *mapping = page->mapping;
2612 	struct inode *inode = mapping->host;
2613 
2614 	trace_f2fs_set_page_dirty(page, DATA);
2615 
2616 	if (!PageUptodate(page))
2617 		SetPageUptodate(page);
2618 
2619 	if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
2620 		if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
2621 			f2fs_register_inmem_page(inode, page);
2622 			return 1;
2623 		}
2624 		/*
2625 		 * Previously, this page has been registered, we just
2626 		 * return here.
2627 		 */
2628 		return 0;
2629 	}
2630 
2631 	if (!PageDirty(page)) {
2632 		__set_page_dirty_nobuffers(page);
2633 		f2fs_update_dirty_page(inode, page);
2634 		return 1;
2635 	}
2636 	return 0;
2637 }
2638 
f2fs_bmap(struct address_space * mapping,sector_t block)2639 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
2640 {
2641 	struct inode *inode = mapping->host;
2642 
2643 	if (f2fs_has_inline_data(inode))
2644 		return 0;
2645 
2646 	/* make sure allocating whole blocks */
2647 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2648 		filemap_write_and_wait(mapping);
2649 
2650 	return generic_block_bmap(mapping, block, get_data_block_bmap);
2651 }
2652 
2653 #ifdef CONFIG_MIGRATION
2654 #include <linux/migrate.h>
2655 
f2fs_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)2656 int f2fs_migrate_page(struct address_space *mapping,
2657 		struct page *newpage, struct page *page, enum migrate_mode mode)
2658 {
2659 	int rc, extra_count;
2660 	struct f2fs_inode_info *fi = F2FS_I(mapping->host);
2661 	bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
2662 
2663 	BUG_ON(PageWriteback(page));
2664 
2665 	/* migrating an atomic written page is safe with the inmem_lock hold */
2666 	if (atomic_written) {
2667 		if (mode != MIGRATE_SYNC)
2668 			return -EBUSY;
2669 		if (!mutex_trylock(&fi->inmem_lock))
2670 			return -EAGAIN;
2671 	}
2672 
2673 	/*
2674 	 * A reference is expected if PagePrivate set when move mapping,
2675 	 * however F2FS breaks this for maintaining dirty page counts when
2676 	 * truncating pages. So here adjusting the 'extra_count' make it work.
2677 	 */
2678 	extra_count = (atomic_written ? 1 : 0) - page_has_private(page);
2679 	rc = migrate_page_move_mapping(mapping, newpage,
2680 				page, NULL, mode, extra_count);
2681 	if (rc != MIGRATEPAGE_SUCCESS) {
2682 		if (atomic_written)
2683 			mutex_unlock(&fi->inmem_lock);
2684 		return rc;
2685 	}
2686 
2687 	if (atomic_written) {
2688 		struct inmem_pages *cur;
2689 		list_for_each_entry(cur, &fi->inmem_pages, list)
2690 			if (cur->page == page) {
2691 				cur->page = newpage;
2692 				break;
2693 			}
2694 		mutex_unlock(&fi->inmem_lock);
2695 		put_page(page);
2696 		get_page(newpage);
2697 	}
2698 
2699 	if (PagePrivate(page))
2700 		SetPagePrivate(newpage);
2701 	set_page_private(newpage, page_private(page));
2702 
2703 	if (mode != MIGRATE_SYNC_NO_COPY)
2704 		migrate_page_copy(newpage, page);
2705 	else
2706 		migrate_page_states(newpage, page);
2707 
2708 	return MIGRATEPAGE_SUCCESS;
2709 }
2710 #endif
2711 
2712 const struct address_space_operations f2fs_dblock_aops = {
2713 	.readpage	= f2fs_read_data_page,
2714 	.readpages	= f2fs_read_data_pages,
2715 	.writepage	= f2fs_write_data_page,
2716 	.writepages	= f2fs_write_data_pages,
2717 	.write_begin	= f2fs_write_begin,
2718 	.write_end	= f2fs_write_end,
2719 	.set_page_dirty	= f2fs_set_data_page_dirty,
2720 	.invalidatepage	= f2fs_invalidate_page,
2721 	.releasepage	= f2fs_release_page,
2722 	.direct_IO	= f2fs_direct_IO,
2723 	.bmap		= f2fs_bmap,
2724 #ifdef CONFIG_MIGRATION
2725 	.migratepage    = f2fs_migrate_page,
2726 #endif
2727 };
2728 
f2fs_clear_radix_tree_dirty_tag(struct page * page)2729 void f2fs_clear_radix_tree_dirty_tag(struct page *page)
2730 {
2731 	struct address_space *mapping = page_mapping(page);
2732 	unsigned long flags;
2733 
2734 	xa_lock_irqsave(&mapping->i_pages, flags);
2735 	radix_tree_tag_clear(&mapping->i_pages, page_index(page),
2736 						PAGECACHE_TAG_DIRTY);
2737 	xa_unlock_irqrestore(&mapping->i_pages, flags);
2738 }
2739 
f2fs_init_post_read_processing(void)2740 int __init f2fs_init_post_read_processing(void)
2741 {
2742 	bio_post_read_ctx_cache = KMEM_CACHE(bio_post_read_ctx, 0);
2743 	if (!bio_post_read_ctx_cache)
2744 		goto fail;
2745 	bio_post_read_ctx_pool =
2746 		mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
2747 					 bio_post_read_ctx_cache);
2748 	if (!bio_post_read_ctx_pool)
2749 		goto fail_free_cache;
2750 	return 0;
2751 
2752 fail_free_cache:
2753 	kmem_cache_destroy(bio_post_read_ctx_cache);
2754 fail:
2755 	return -ENOMEM;
2756 }
2757 
f2fs_destroy_post_read_processing(void)2758 void __exit f2fs_destroy_post_read_processing(void)
2759 {
2760 	mempool_destroy(bio_post_read_ctx_pool);
2761 	kmem_cache_destroy(bio_post_read_ctx_cache);
2762 }
2763