1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * page.c - buffer/page management specific to NILFS
4  *
5  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
6  *
7  * Written by Ryusuke Konishi and Seiji Kihara.
8  */
9 
10 #include <linux/pagemap.h>
11 #include <linux/writeback.h>
12 #include <linux/swap.h>
13 #include <linux/bitops.h>
14 #include <linux/page-flags.h>
15 #include <linux/list.h>
16 #include <linux/highmem.h>
17 #include <linux/pagevec.h>
18 #include <linux/gfp.h>
19 #include "nilfs.h"
20 #include "page.h"
21 #include "mdt.h"
22 
23 
24 #define NILFS_BUFFER_INHERENT_BITS					\
25 	(BIT(BH_Uptodate) | BIT(BH_Mapped) | BIT(BH_NILFS_Node) |	\
26 	 BIT(BH_NILFS_Volatile) | BIT(BH_NILFS_Checked))
27 
28 static struct buffer_head *
__nilfs_get_page_block(struct page * page,unsigned long block,pgoff_t index,int blkbits,unsigned long b_state)29 __nilfs_get_page_block(struct page *page, unsigned long block, pgoff_t index,
30 		       int blkbits, unsigned long b_state)
31 
32 {
33 	unsigned long first_block;
34 	struct buffer_head *bh;
35 
36 	if (!page_has_buffers(page))
37 		create_empty_buffers(page, 1 << blkbits, b_state);
38 
39 	first_block = (unsigned long)index << (PAGE_SHIFT - blkbits);
40 	bh = nilfs_page_get_nth_block(page, block - first_block);
41 
42 	touch_buffer(bh);
43 	wait_on_buffer(bh);
44 	return bh;
45 }
46 
nilfs_grab_buffer(struct inode * inode,struct address_space * mapping,unsigned long blkoff,unsigned long b_state)47 struct buffer_head *nilfs_grab_buffer(struct inode *inode,
48 				      struct address_space *mapping,
49 				      unsigned long blkoff,
50 				      unsigned long b_state)
51 {
52 	int blkbits = inode->i_blkbits;
53 	pgoff_t index = blkoff >> (PAGE_SHIFT - blkbits);
54 	struct page *page;
55 	struct buffer_head *bh;
56 
57 	page = grab_cache_page(mapping, index);
58 	if (unlikely(!page))
59 		return NULL;
60 
61 	bh = __nilfs_get_page_block(page, blkoff, index, blkbits, b_state);
62 	if (unlikely(!bh)) {
63 		unlock_page(page);
64 		put_page(page);
65 		return NULL;
66 	}
67 	return bh;
68 }
69 
70 /**
71  * nilfs_forget_buffer - discard dirty state
72  * @inode: owner inode of the buffer
73  * @bh: buffer head of the buffer to be discarded
74  */
nilfs_forget_buffer(struct buffer_head * bh)75 void nilfs_forget_buffer(struct buffer_head *bh)
76 {
77 	struct page *page = bh->b_page;
78 	const unsigned long clear_bits =
79 		(BIT(BH_Uptodate) | BIT(BH_Dirty) | BIT(BH_Mapped) |
80 		 BIT(BH_Async_Write) | BIT(BH_NILFS_Volatile) |
81 		 BIT(BH_NILFS_Checked) | BIT(BH_NILFS_Redirected));
82 
83 	lock_buffer(bh);
84 	set_mask_bits(&bh->b_state, clear_bits, 0);
85 	if (nilfs_page_buffers_clean(page))
86 		__nilfs_clear_page_dirty(page);
87 
88 	bh->b_blocknr = -1;
89 	ClearPageUptodate(page);
90 	ClearPageMappedToDisk(page);
91 	unlock_buffer(bh);
92 	brelse(bh);
93 }
94 
95 /**
96  * nilfs_copy_buffer -- copy buffer data and flags
97  * @dbh: destination buffer
98  * @sbh: source buffer
99  */
nilfs_copy_buffer(struct buffer_head * dbh,struct buffer_head * sbh)100 void nilfs_copy_buffer(struct buffer_head *dbh, struct buffer_head *sbh)
101 {
102 	void *kaddr0, *kaddr1;
103 	unsigned long bits;
104 	struct page *spage = sbh->b_page, *dpage = dbh->b_page;
105 	struct buffer_head *bh;
106 
107 	kaddr0 = kmap_atomic(spage);
108 	kaddr1 = kmap_atomic(dpage);
109 	memcpy(kaddr1 + bh_offset(dbh), kaddr0 + bh_offset(sbh), sbh->b_size);
110 	kunmap_atomic(kaddr1);
111 	kunmap_atomic(kaddr0);
112 
113 	dbh->b_state = sbh->b_state & NILFS_BUFFER_INHERENT_BITS;
114 	dbh->b_blocknr = sbh->b_blocknr;
115 	dbh->b_bdev = sbh->b_bdev;
116 
117 	bh = dbh;
118 	bits = sbh->b_state & (BIT(BH_Uptodate) | BIT(BH_Mapped));
119 	while ((bh = bh->b_this_page) != dbh) {
120 		lock_buffer(bh);
121 		bits &= bh->b_state;
122 		unlock_buffer(bh);
123 	}
124 	if (bits & BIT(BH_Uptodate))
125 		SetPageUptodate(dpage);
126 	else
127 		ClearPageUptodate(dpage);
128 	if (bits & BIT(BH_Mapped))
129 		SetPageMappedToDisk(dpage);
130 	else
131 		ClearPageMappedToDisk(dpage);
132 }
133 
134 /**
135  * nilfs_page_buffers_clean - check if a page has dirty buffers or not.
136  * @page: page to be checked
137  *
138  * nilfs_page_buffers_clean() returns zero if the page has dirty buffers.
139  * Otherwise, it returns non-zero value.
140  */
nilfs_page_buffers_clean(struct page * page)141 int nilfs_page_buffers_clean(struct page *page)
142 {
143 	struct buffer_head *bh, *head;
144 
145 	bh = head = page_buffers(page);
146 	do {
147 		if (buffer_dirty(bh))
148 			return 0;
149 		bh = bh->b_this_page;
150 	} while (bh != head);
151 	return 1;
152 }
153 
nilfs_page_bug(struct page * page)154 void nilfs_page_bug(struct page *page)
155 {
156 	struct address_space *m;
157 	unsigned long ino;
158 
159 	if (unlikely(!page)) {
160 		printk(KERN_CRIT "NILFS_PAGE_BUG(NULL)\n");
161 		return;
162 	}
163 
164 	m = page->mapping;
165 	ino = m ? m->host->i_ino : 0;
166 
167 	printk(KERN_CRIT "NILFS_PAGE_BUG(%p): cnt=%d index#=%llu flags=0x%lx "
168 	       "mapping=%p ino=%lu\n",
169 	       page, page_ref_count(page),
170 	       (unsigned long long)page->index, page->flags, m, ino);
171 
172 	if (page_has_buffers(page)) {
173 		struct buffer_head *bh, *head;
174 		int i = 0;
175 
176 		bh = head = page_buffers(page);
177 		do {
178 			printk(KERN_CRIT
179 			       " BH[%d] %p: cnt=%d block#=%llu state=0x%lx\n",
180 			       i++, bh, atomic_read(&bh->b_count),
181 			       (unsigned long long)bh->b_blocknr, bh->b_state);
182 			bh = bh->b_this_page;
183 		} while (bh != head);
184 	}
185 }
186 
187 /**
188  * nilfs_copy_page -- copy the page with buffers
189  * @dst: destination page
190  * @src: source page
191  * @copy_dirty: flag whether to copy dirty states on the page's buffer heads.
192  *
193  * This function is for both data pages and btnode pages.  The dirty flag
194  * should be treated by caller.  The page must not be under i/o.
195  * Both src and dst page must be locked
196  */
nilfs_copy_page(struct page * dst,struct page * src,int copy_dirty)197 static void nilfs_copy_page(struct page *dst, struct page *src, int copy_dirty)
198 {
199 	struct buffer_head *dbh, *dbufs, *sbh, *sbufs;
200 	unsigned long mask = NILFS_BUFFER_INHERENT_BITS;
201 
202 	BUG_ON(PageWriteback(dst));
203 
204 	sbh = sbufs = page_buffers(src);
205 	if (!page_has_buffers(dst))
206 		create_empty_buffers(dst, sbh->b_size, 0);
207 
208 	if (copy_dirty)
209 		mask |= BIT(BH_Dirty);
210 
211 	dbh = dbufs = page_buffers(dst);
212 	do {
213 		lock_buffer(sbh);
214 		lock_buffer(dbh);
215 		dbh->b_state = sbh->b_state & mask;
216 		dbh->b_blocknr = sbh->b_blocknr;
217 		dbh->b_bdev = sbh->b_bdev;
218 		sbh = sbh->b_this_page;
219 		dbh = dbh->b_this_page;
220 	} while (dbh != dbufs);
221 
222 	copy_highpage(dst, src);
223 
224 	if (PageUptodate(src) && !PageUptodate(dst))
225 		SetPageUptodate(dst);
226 	else if (!PageUptodate(src) && PageUptodate(dst))
227 		ClearPageUptodate(dst);
228 	if (PageMappedToDisk(src) && !PageMappedToDisk(dst))
229 		SetPageMappedToDisk(dst);
230 	else if (!PageMappedToDisk(src) && PageMappedToDisk(dst))
231 		ClearPageMappedToDisk(dst);
232 
233 	do {
234 		unlock_buffer(sbh);
235 		unlock_buffer(dbh);
236 		sbh = sbh->b_this_page;
237 		dbh = dbh->b_this_page;
238 	} while (dbh != dbufs);
239 }
240 
nilfs_copy_dirty_pages(struct address_space * dmap,struct address_space * smap)241 int nilfs_copy_dirty_pages(struct address_space *dmap,
242 			   struct address_space *smap)
243 {
244 	struct pagevec pvec;
245 	unsigned int i;
246 	pgoff_t index = 0;
247 	int err = 0;
248 
249 	pagevec_init(&pvec);
250 repeat:
251 	if (!pagevec_lookup_tag(&pvec, smap, &index, PAGECACHE_TAG_DIRTY))
252 		return 0;
253 
254 	for (i = 0; i < pagevec_count(&pvec); i++) {
255 		struct page *page = pvec.pages[i], *dpage;
256 
257 		lock_page(page);
258 		if (unlikely(!PageDirty(page)))
259 			NILFS_PAGE_BUG(page, "inconsistent dirty state");
260 
261 		dpage = grab_cache_page(dmap, page->index);
262 		if (unlikely(!dpage)) {
263 			/* No empty page is added to the page cache */
264 			err = -ENOMEM;
265 			unlock_page(page);
266 			break;
267 		}
268 		if (unlikely(!page_has_buffers(page)))
269 			NILFS_PAGE_BUG(page,
270 				       "found empty page in dat page cache");
271 
272 		nilfs_copy_page(dpage, page, 1);
273 		__set_page_dirty_nobuffers(dpage);
274 
275 		unlock_page(dpage);
276 		put_page(dpage);
277 		unlock_page(page);
278 	}
279 	pagevec_release(&pvec);
280 	cond_resched();
281 
282 	if (likely(!err))
283 		goto repeat;
284 	return err;
285 }
286 
287 /**
288  * nilfs_copy_back_pages -- copy back pages to original cache from shadow cache
289  * @dmap: destination page cache
290  * @smap: source page cache
291  *
292  * No pages must no be added to the cache during this process.
293  * This must be ensured by the caller.
294  */
nilfs_copy_back_pages(struct address_space * dmap,struct address_space * smap)295 void nilfs_copy_back_pages(struct address_space *dmap,
296 			   struct address_space *smap)
297 {
298 	struct pagevec pvec;
299 	unsigned int i, n;
300 	pgoff_t index = 0;
301 	int err;
302 
303 	pagevec_init(&pvec);
304 repeat:
305 	n = pagevec_lookup(&pvec, smap, &index);
306 	if (!n)
307 		return;
308 
309 	for (i = 0; i < pagevec_count(&pvec); i++) {
310 		struct page *page = pvec.pages[i], *dpage;
311 		pgoff_t offset = page->index;
312 
313 		lock_page(page);
314 		dpage = find_lock_page(dmap, offset);
315 		if (dpage) {
316 			/* override existing page on the destination cache */
317 			WARN_ON(PageDirty(dpage));
318 			nilfs_copy_page(dpage, page, 0);
319 			unlock_page(dpage);
320 			put_page(dpage);
321 		} else {
322 			struct page *page2;
323 
324 			/* move the page to the destination cache */
325 			xa_lock_irq(&smap->i_pages);
326 			page2 = radix_tree_delete(&smap->i_pages, offset);
327 			WARN_ON(page2 != page);
328 
329 			smap->nrpages--;
330 			xa_unlock_irq(&smap->i_pages);
331 
332 			xa_lock_irq(&dmap->i_pages);
333 			err = radix_tree_insert(&dmap->i_pages, offset, page);
334 			if (unlikely(err < 0)) {
335 				WARN_ON(err == -EEXIST);
336 				page->mapping = NULL;
337 				put_page(page); /* for cache */
338 			} else {
339 				page->mapping = dmap;
340 				dmap->nrpages++;
341 				if (PageDirty(page))
342 					radix_tree_tag_set(&dmap->i_pages,
343 							   offset,
344 							   PAGECACHE_TAG_DIRTY);
345 			}
346 			xa_unlock_irq(&dmap->i_pages);
347 		}
348 		unlock_page(page);
349 	}
350 	pagevec_release(&pvec);
351 	cond_resched();
352 
353 	goto repeat;
354 }
355 
356 /**
357  * nilfs_clear_dirty_pages - discard dirty pages in address space
358  * @mapping: address space with dirty pages for discarding
359  * @silent: suppress [true] or print [false] warning messages
360  */
nilfs_clear_dirty_pages(struct address_space * mapping,bool silent)361 void nilfs_clear_dirty_pages(struct address_space *mapping, bool silent)
362 {
363 	struct pagevec pvec;
364 	unsigned int i;
365 	pgoff_t index = 0;
366 
367 	pagevec_init(&pvec);
368 
369 	while (pagevec_lookup_tag(&pvec, mapping, &index,
370 					PAGECACHE_TAG_DIRTY)) {
371 		for (i = 0; i < pagevec_count(&pvec); i++) {
372 			struct page *page = pvec.pages[i];
373 
374 			lock_page(page);
375 
376 			/*
377 			 * This page may have been removed from the address
378 			 * space by truncation or invalidation when the lock
379 			 * was acquired.  Skip processing in that case.
380 			 */
381 			if (likely(page->mapping == mapping))
382 				nilfs_clear_dirty_page(page, silent);
383 
384 			unlock_page(page);
385 		}
386 		pagevec_release(&pvec);
387 		cond_resched();
388 	}
389 }
390 
391 /**
392  * nilfs_clear_dirty_page - discard dirty page
393  * @page: dirty page that will be discarded
394  * @silent: suppress [true] or print [false] warning messages
395  */
nilfs_clear_dirty_page(struct page * page,bool silent)396 void nilfs_clear_dirty_page(struct page *page, bool silent)
397 {
398 	struct inode *inode = page->mapping->host;
399 	struct super_block *sb = inode->i_sb;
400 
401 	BUG_ON(!PageLocked(page));
402 
403 	if (!silent)
404 		nilfs_msg(sb, KERN_WARNING,
405 			  "discard dirty page: offset=%lld, ino=%lu",
406 			  page_offset(page), inode->i_ino);
407 
408 	ClearPageUptodate(page);
409 	ClearPageMappedToDisk(page);
410 
411 	if (page_has_buffers(page)) {
412 		struct buffer_head *bh, *head;
413 		const unsigned long clear_bits =
414 			(BIT(BH_Uptodate) | BIT(BH_Dirty) | BIT(BH_Mapped) |
415 			 BIT(BH_Async_Write) | BIT(BH_NILFS_Volatile) |
416 			 BIT(BH_NILFS_Checked) | BIT(BH_NILFS_Redirected));
417 
418 		bh = head = page_buffers(page);
419 		do {
420 			lock_buffer(bh);
421 			if (!silent)
422 				nilfs_msg(sb, KERN_WARNING,
423 					  "discard dirty block: blocknr=%llu, size=%zu",
424 					  (u64)bh->b_blocknr, bh->b_size);
425 
426 			set_mask_bits(&bh->b_state, clear_bits, 0);
427 			unlock_buffer(bh);
428 		} while (bh = bh->b_this_page, bh != head);
429 	}
430 
431 	__nilfs_clear_page_dirty(page);
432 }
433 
nilfs_page_count_clean_buffers(struct page * page,unsigned int from,unsigned int to)434 unsigned int nilfs_page_count_clean_buffers(struct page *page,
435 					    unsigned int from, unsigned int to)
436 {
437 	unsigned int block_start, block_end;
438 	struct buffer_head *bh, *head;
439 	unsigned int nc = 0;
440 
441 	for (bh = head = page_buffers(page), block_start = 0;
442 	     bh != head || !block_start;
443 	     block_start = block_end, bh = bh->b_this_page) {
444 		block_end = block_start + bh->b_size;
445 		if (block_end > from && block_start < to && !buffer_dirty(bh))
446 			nc++;
447 	}
448 	return nc;
449 }
450 
nilfs_mapping_init(struct address_space * mapping,struct inode * inode)451 void nilfs_mapping_init(struct address_space *mapping, struct inode *inode)
452 {
453 	mapping->host = inode;
454 	mapping->flags = 0;
455 	mapping_set_gfp_mask(mapping, GFP_NOFS);
456 	mapping->private_data = NULL;
457 	mapping->a_ops = &empty_aops;
458 }
459 
460 /*
461  * NILFS2 needs clear_page_dirty() in the following two cases:
462  *
463  * 1) For B-tree node pages and data pages of DAT file, NILFS2 clears dirty
464  *    flag of pages when it copies back pages from shadow cache to the
465  *    original cache.
466  *
467  * 2) Some B-tree operations like insertion or deletion may dispose buffers
468  *    in dirty state, and this needs to cancel the dirty state of their pages.
469  */
__nilfs_clear_page_dirty(struct page * page)470 int __nilfs_clear_page_dirty(struct page *page)
471 {
472 	struct address_space *mapping = page->mapping;
473 
474 	if (mapping) {
475 		xa_lock_irq(&mapping->i_pages);
476 		if (test_bit(PG_dirty, &page->flags)) {
477 			radix_tree_tag_clear(&mapping->i_pages,
478 					     page_index(page),
479 					     PAGECACHE_TAG_DIRTY);
480 			xa_unlock_irq(&mapping->i_pages);
481 			return clear_page_dirty_for_io(page);
482 		}
483 		xa_unlock_irq(&mapping->i_pages);
484 		return 0;
485 	}
486 	return TestClearPageDirty(page);
487 }
488 
489 /**
490  * nilfs_find_uncommitted_extent - find extent of uncommitted data
491  * @inode: inode
492  * @start_blk: start block offset (in)
493  * @blkoff: start offset of the found extent (out)
494  *
495  * This function searches an extent of buffers marked "delayed" which
496  * starts from a block offset equal to or larger than @start_blk.  If
497  * such an extent was found, this will store the start offset in
498  * @blkoff and return its length in blocks.  Otherwise, zero is
499  * returned.
500  */
nilfs_find_uncommitted_extent(struct inode * inode,sector_t start_blk,sector_t * blkoff)501 unsigned long nilfs_find_uncommitted_extent(struct inode *inode,
502 					    sector_t start_blk,
503 					    sector_t *blkoff)
504 {
505 	unsigned int i;
506 	pgoff_t index;
507 	unsigned int nblocks_in_page;
508 	unsigned long length = 0;
509 	sector_t b;
510 	struct pagevec pvec;
511 	struct page *page;
512 
513 	if (inode->i_mapping->nrpages == 0)
514 		return 0;
515 
516 	index = start_blk >> (PAGE_SHIFT - inode->i_blkbits);
517 	nblocks_in_page = 1U << (PAGE_SHIFT - inode->i_blkbits);
518 
519 	pagevec_init(&pvec);
520 
521 repeat:
522 	pvec.nr = find_get_pages_contig(inode->i_mapping, index, PAGEVEC_SIZE,
523 					pvec.pages);
524 	if (pvec.nr == 0)
525 		return length;
526 
527 	if (length > 0 && pvec.pages[0]->index > index)
528 		goto out;
529 
530 	b = pvec.pages[0]->index << (PAGE_SHIFT - inode->i_blkbits);
531 	i = 0;
532 	do {
533 		page = pvec.pages[i];
534 
535 		lock_page(page);
536 		if (page_has_buffers(page)) {
537 			struct buffer_head *bh, *head;
538 
539 			bh = head = page_buffers(page);
540 			do {
541 				if (b < start_blk)
542 					continue;
543 				if (buffer_delay(bh)) {
544 					if (length == 0)
545 						*blkoff = b;
546 					length++;
547 				} else if (length > 0) {
548 					goto out_locked;
549 				}
550 			} while (++b, bh = bh->b_this_page, bh != head);
551 		} else {
552 			if (length > 0)
553 				goto out_locked;
554 
555 			b += nblocks_in_page;
556 		}
557 		unlock_page(page);
558 
559 	} while (++i < pagevec_count(&pvec));
560 
561 	index = page->index + 1;
562 	pagevec_release(&pvec);
563 	cond_resched();
564 	goto repeat;
565 
566 out_locked:
567 	unlock_page(page);
568 out:
569 	pagevec_release(&pvec);
570 	return length;
571 }
572