1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_SEQLOCK_H
3 #define __LINUX_SEQLOCK_H
4 /*
5  * Reader/writer consistent mechanism without starving writers. This type of
6  * lock for data where the reader wants a consistent set of information
7  * and is willing to retry if the information changes. There are two types
8  * of readers:
9  * 1. Sequence readers which never block a writer but they may have to retry
10  *    if a writer is in progress by detecting change in sequence number.
11  *    Writers do not wait for a sequence reader.
12  * 2. Locking readers which will wait if a writer or another locking reader
13  *    is in progress. A locking reader in progress will also block a writer
14  *    from going forward. Unlike the regular rwlock, the read lock here is
15  *    exclusive so that only one locking reader can get it.
16  *
17  * This is not as cache friendly as brlock. Also, this may not work well
18  * for data that contains pointers, because any writer could
19  * invalidate a pointer that a reader was following.
20  *
21  * Expected non-blocking reader usage:
22  * 	do {
23  *	    seq = read_seqbegin(&foo);
24  * 	...
25  *      } while (read_seqretry(&foo, seq));
26  *
27  *
28  * On non-SMP the spin locks disappear but the writer still needs
29  * to increment the sequence variables because an interrupt routine could
30  * change the state of the data.
31  *
32  * Based on x86_64 vsyscall gettimeofday
33  * by Keith Owens and Andrea Arcangeli
34  */
35 
36 #include <linux/spinlock.h>
37 #include <linux/preempt.h>
38 #include <linux/lockdep.h>
39 #include <linux/compiler.h>
40 #include <asm/processor.h>
41 
42 /*
43  * Version using sequence counter only.
44  * This can be used when code has its own mutex protecting the
45  * updating starting before the write_seqcountbeqin() and ending
46  * after the write_seqcount_end().
47  */
48 typedef struct seqcount {
49 	unsigned sequence;
50 #ifdef CONFIG_DEBUG_LOCK_ALLOC
51 	struct lockdep_map dep_map;
52 #endif
53 } seqcount_t;
54 
__seqcount_init(seqcount_t * s,const char * name,struct lock_class_key * key)55 static inline void __seqcount_init(seqcount_t *s, const char *name,
56 					  struct lock_class_key *key)
57 {
58 	/*
59 	 * Make sure we are not reinitializing a held lock:
60 	 */
61 	lockdep_init_map(&s->dep_map, name, key, 0);
62 	s->sequence = 0;
63 }
64 
65 #ifdef CONFIG_DEBUG_LOCK_ALLOC
66 # define SEQCOUNT_DEP_MAP_INIT(lockname) \
67 		.dep_map = { .name = #lockname } \
68 
69 # define seqcount_init(s)				\
70 	do {						\
71 		static struct lock_class_key __key;	\
72 		__seqcount_init((s), #s, &__key);	\
73 	} while (0)
74 
seqcount_lockdep_reader_access(const seqcount_t * s)75 static inline void seqcount_lockdep_reader_access(const seqcount_t *s)
76 {
77 	seqcount_t *l = (seqcount_t *)s;
78 	unsigned long flags;
79 
80 	local_irq_save(flags);
81 	seqcount_acquire_read(&l->dep_map, 0, 0, _RET_IP_);
82 	seqcount_release(&l->dep_map, 1, _RET_IP_);
83 	local_irq_restore(flags);
84 }
85 
86 #else
87 # define SEQCOUNT_DEP_MAP_INIT(lockname)
88 # define seqcount_init(s) __seqcount_init(s, NULL, NULL)
89 # define seqcount_lockdep_reader_access(x)
90 #endif
91 
92 #define SEQCNT_ZERO(lockname) { .sequence = 0, SEQCOUNT_DEP_MAP_INIT(lockname)}
93 
94 
95 /**
96  * __read_seqcount_begin - begin a seq-read critical section (without barrier)
97  * @s: pointer to seqcount_t
98  * Returns: count to be passed to read_seqcount_retry
99  *
100  * __read_seqcount_begin is like read_seqcount_begin, but has no smp_rmb()
101  * barrier. Callers should ensure that smp_rmb() or equivalent ordering is
102  * provided before actually loading any of the variables that are to be
103  * protected in this critical section.
104  *
105  * Use carefully, only in critical code, and comment how the barrier is
106  * provided.
107  */
__read_seqcount_begin(const seqcount_t * s)108 static inline unsigned __read_seqcount_begin(const seqcount_t *s)
109 {
110 	unsigned ret;
111 
112 repeat:
113 	ret = READ_ONCE(s->sequence);
114 	if (unlikely(ret & 1)) {
115 		cpu_relax();
116 		goto repeat;
117 	}
118 	return ret;
119 }
120 
121 /**
122  * raw_read_seqcount - Read the raw seqcount
123  * @s: pointer to seqcount_t
124  * Returns: count to be passed to read_seqcount_retry
125  *
126  * raw_read_seqcount opens a read critical section of the given
127  * seqcount without any lockdep checking and without checking or
128  * masking the LSB. Calling code is responsible for handling that.
129  */
raw_read_seqcount(const seqcount_t * s)130 static inline unsigned raw_read_seqcount(const seqcount_t *s)
131 {
132 	unsigned ret = READ_ONCE(s->sequence);
133 	smp_rmb();
134 	return ret;
135 }
136 
137 /**
138  * raw_read_seqcount_begin - start seq-read critical section w/o lockdep
139  * @s: pointer to seqcount_t
140  * Returns: count to be passed to read_seqcount_retry
141  *
142  * raw_read_seqcount_begin opens a read critical section of the given
143  * seqcount, but without any lockdep checking. Validity of the critical
144  * section is tested by checking read_seqcount_retry function.
145  */
raw_read_seqcount_begin(const seqcount_t * s)146 static inline unsigned raw_read_seqcount_begin(const seqcount_t *s)
147 {
148 	unsigned ret = __read_seqcount_begin(s);
149 	smp_rmb();
150 	return ret;
151 }
152 
153 /**
154  * read_seqcount_begin - begin a seq-read critical section
155  * @s: pointer to seqcount_t
156  * Returns: count to be passed to read_seqcount_retry
157  *
158  * read_seqcount_begin opens a read critical section of the given seqcount.
159  * Validity of the critical section is tested by checking read_seqcount_retry
160  * function.
161  */
read_seqcount_begin(const seqcount_t * s)162 static inline unsigned read_seqcount_begin(const seqcount_t *s)
163 {
164 	seqcount_lockdep_reader_access(s);
165 	return raw_read_seqcount_begin(s);
166 }
167 
168 /**
169  * raw_seqcount_begin - begin a seq-read critical section
170  * @s: pointer to seqcount_t
171  * Returns: count to be passed to read_seqcount_retry
172  *
173  * raw_seqcount_begin opens a read critical section of the given seqcount.
174  * Validity of the critical section is tested by checking read_seqcount_retry
175  * function.
176  *
177  * Unlike read_seqcount_begin(), this function will not wait for the count
178  * to stabilize. If a writer is active when we begin, we will fail the
179  * read_seqcount_retry() instead of stabilizing at the beginning of the
180  * critical section.
181  */
raw_seqcount_begin(const seqcount_t * s)182 static inline unsigned raw_seqcount_begin(const seqcount_t *s)
183 {
184 	unsigned ret = READ_ONCE(s->sequence);
185 	smp_rmb();
186 	return ret & ~1;
187 }
188 
189 /**
190  * __read_seqcount_retry - end a seq-read critical section (without barrier)
191  * @s: pointer to seqcount_t
192  * @start: count, from read_seqcount_begin
193  * Returns: 1 if retry is required, else 0
194  *
195  * __read_seqcount_retry is like read_seqcount_retry, but has no smp_rmb()
196  * barrier. Callers should ensure that smp_rmb() or equivalent ordering is
197  * provided before actually loading any of the variables that are to be
198  * protected in this critical section.
199  *
200  * Use carefully, only in critical code, and comment how the barrier is
201  * provided.
202  */
__read_seqcount_retry(const seqcount_t * s,unsigned start)203 static inline int __read_seqcount_retry(const seqcount_t *s, unsigned start)
204 {
205 	return unlikely(s->sequence != start);
206 }
207 
208 /**
209  * read_seqcount_retry - end a seq-read critical section
210  * @s: pointer to seqcount_t
211  * @start: count, from read_seqcount_begin
212  * Returns: 1 if retry is required, else 0
213  *
214  * read_seqcount_retry closes a read critical section of the given seqcount.
215  * If the critical section was invalid, it must be ignored (and typically
216  * retried).
217  */
read_seqcount_retry(const seqcount_t * s,unsigned start)218 static inline int read_seqcount_retry(const seqcount_t *s, unsigned start)
219 {
220 	smp_rmb();
221 	return __read_seqcount_retry(s, start);
222 }
223 
224 
225 
raw_write_seqcount_begin(seqcount_t * s)226 static inline void raw_write_seqcount_begin(seqcount_t *s)
227 {
228 	s->sequence++;
229 	smp_wmb();
230 }
231 
raw_write_seqcount_end(seqcount_t * s)232 static inline void raw_write_seqcount_end(seqcount_t *s)
233 {
234 	smp_wmb();
235 	s->sequence++;
236 }
237 
238 /**
239  * raw_write_seqcount_barrier - do a seq write barrier
240  * @s: pointer to seqcount_t
241  *
242  * This can be used to provide an ordering guarantee instead of the
243  * usual consistency guarantee. It is one wmb cheaper, because we can
244  * collapse the two back-to-back wmb()s.
245  *
246  * Note that, writes surrounding the barrier should be declared atomic (e.g.
247  * via WRITE_ONCE): a) to ensure the writes become visible to other threads
248  * atomically, avoiding compiler optimizations; b) to document which writes are
249  * meant to propagate to the reader critical section. This is necessary because
250  * neither writes before and after the barrier are enclosed in a seq-writer
251  * critical section that would ensure readers are aware of ongoing writes.
252  *
253  *      seqcount_t seq;
254  *      bool X = true, Y = false;
255  *
256  *      void read(void)
257  *      {
258  *              bool x, y;
259  *
260  *              do {
261  *                      int s = read_seqcount_begin(&seq);
262  *
263  *                      x = X; y = Y;
264  *
265  *              } while (read_seqcount_retry(&seq, s));
266  *
267  *              BUG_ON(!x && !y);
268  *      }
269  *
270  *      void write(void)
271  *      {
272  *              WRITE_ONCE(Y, true);
273  *
274  *              raw_write_seqcount_barrier(seq);
275  *
276  *              WRITE_ONCE(X, false);
277  *      }
278  */
raw_write_seqcount_barrier(seqcount_t * s)279 static inline void raw_write_seqcount_barrier(seqcount_t *s)
280 {
281 	s->sequence++;
282 	smp_wmb();
283 	s->sequence++;
284 }
285 
raw_read_seqcount_latch(seqcount_t * s)286 static inline int raw_read_seqcount_latch(seqcount_t *s)
287 {
288 	/* Pairs with the first smp_wmb() in raw_write_seqcount_latch() */
289 	int seq = READ_ONCE(s->sequence); /* ^^^ */
290 	return seq;
291 }
292 
293 /**
294  * raw_write_seqcount_latch - redirect readers to even/odd copy
295  * @s: pointer to seqcount_t
296  *
297  * The latch technique is a multiversion concurrency control method that allows
298  * queries during non-atomic modifications. If you can guarantee queries never
299  * interrupt the modification -- e.g. the concurrency is strictly between CPUs
300  * -- you most likely do not need this.
301  *
302  * Where the traditional RCU/lockless data structures rely on atomic
303  * modifications to ensure queries observe either the old or the new state the
304  * latch allows the same for non-atomic updates. The trade-off is doubling the
305  * cost of storage; we have to maintain two copies of the entire data
306  * structure.
307  *
308  * Very simply put: we first modify one copy and then the other. This ensures
309  * there is always one copy in a stable state, ready to give us an answer.
310  *
311  * The basic form is a data structure like:
312  *
313  * struct latch_struct {
314  *	seqcount_t		seq;
315  *	struct data_struct	data[2];
316  * };
317  *
318  * Where a modification, which is assumed to be externally serialized, does the
319  * following:
320  *
321  * void latch_modify(struct latch_struct *latch, ...)
322  * {
323  *	smp_wmb();	<- Ensure that the last data[1] update is visible
324  *	latch->seq++;
325  *	smp_wmb();	<- Ensure that the seqcount update is visible
326  *
327  *	modify(latch->data[0], ...);
328  *
329  *	smp_wmb();	<- Ensure that the data[0] update is visible
330  *	latch->seq++;
331  *	smp_wmb();	<- Ensure that the seqcount update is visible
332  *
333  *	modify(latch->data[1], ...);
334  * }
335  *
336  * The query will have a form like:
337  *
338  * struct entry *latch_query(struct latch_struct *latch, ...)
339  * {
340  *	struct entry *entry;
341  *	unsigned seq, idx;
342  *
343  *	do {
344  *		seq = raw_read_seqcount_latch(&latch->seq);
345  *
346  *		idx = seq & 0x01;
347  *		entry = data_query(latch->data[idx], ...);
348  *
349  *		smp_rmb();
350  *	} while (seq != latch->seq);
351  *
352  *	return entry;
353  * }
354  *
355  * So during the modification, queries are first redirected to data[1]. Then we
356  * modify data[0]. When that is complete, we redirect queries back to data[0]
357  * and we can modify data[1].
358  *
359  * NOTE: The non-requirement for atomic modifications does _NOT_ include
360  *       the publishing of new entries in the case where data is a dynamic
361  *       data structure.
362  *
363  *       An iteration might start in data[0] and get suspended long enough
364  *       to miss an entire modification sequence, once it resumes it might
365  *       observe the new entry.
366  *
367  * NOTE: When data is a dynamic data structure; one should use regular RCU
368  *       patterns to manage the lifetimes of the objects within.
369  */
raw_write_seqcount_latch(seqcount_t * s)370 static inline void raw_write_seqcount_latch(seqcount_t *s)
371 {
372        smp_wmb();      /* prior stores before incrementing "sequence" */
373        s->sequence++;
374        smp_wmb();      /* increment "sequence" before following stores */
375 }
376 
377 /*
378  * Sequence counter only version assumes that callers are using their
379  * own mutexing.
380  */
write_seqcount_begin_nested(seqcount_t * s,int subclass)381 static inline void write_seqcount_begin_nested(seqcount_t *s, int subclass)
382 {
383 	raw_write_seqcount_begin(s);
384 	seqcount_acquire(&s->dep_map, subclass, 0, _RET_IP_);
385 }
386 
write_seqcount_begin(seqcount_t * s)387 static inline void write_seqcount_begin(seqcount_t *s)
388 {
389 	write_seqcount_begin_nested(s, 0);
390 }
391 
write_seqcount_end(seqcount_t * s)392 static inline void write_seqcount_end(seqcount_t *s)
393 {
394 	seqcount_release(&s->dep_map, 1, _RET_IP_);
395 	raw_write_seqcount_end(s);
396 }
397 
398 /**
399  * write_seqcount_invalidate - invalidate in-progress read-side seq operations
400  * @s: pointer to seqcount_t
401  *
402  * After write_seqcount_invalidate, no read-side seq operations will complete
403  * successfully and see data older than this.
404  */
write_seqcount_invalidate(seqcount_t * s)405 static inline void write_seqcount_invalidate(seqcount_t *s)
406 {
407 	smp_wmb();
408 	s->sequence+=2;
409 }
410 
411 typedef struct {
412 	struct seqcount seqcount;
413 	spinlock_t lock;
414 } seqlock_t;
415 
416 /*
417  * These macros triggered gcc-3.x compile-time problems.  We think these are
418  * OK now.  Be cautious.
419  */
420 #define __SEQLOCK_UNLOCKED(lockname)			\
421 	{						\
422 		.seqcount = SEQCNT_ZERO(lockname),	\
423 		.lock =	__SPIN_LOCK_UNLOCKED(lockname)	\
424 	}
425 
426 #define seqlock_init(x)					\
427 	do {						\
428 		seqcount_init(&(x)->seqcount);		\
429 		spin_lock_init(&(x)->lock);		\
430 	} while (0)
431 
432 #define DEFINE_SEQLOCK(x) \
433 		seqlock_t x = __SEQLOCK_UNLOCKED(x)
434 
435 /*
436  * Read side functions for starting and finalizing a read side section.
437  */
read_seqbegin(const seqlock_t * sl)438 static inline unsigned read_seqbegin(const seqlock_t *sl)
439 {
440 	return read_seqcount_begin(&sl->seqcount);
441 }
442 
read_seqretry(const seqlock_t * sl,unsigned start)443 static inline unsigned read_seqretry(const seqlock_t *sl, unsigned start)
444 {
445 	return read_seqcount_retry(&sl->seqcount, start);
446 }
447 
448 /*
449  * Lock out other writers and update the count.
450  * Acts like a normal spin_lock/unlock.
451  * Don't need preempt_disable() because that is in the spin_lock already.
452  */
write_seqlock(seqlock_t * sl)453 static inline void write_seqlock(seqlock_t *sl)
454 {
455 	spin_lock(&sl->lock);
456 	write_seqcount_begin(&sl->seqcount);
457 }
458 
write_sequnlock(seqlock_t * sl)459 static inline void write_sequnlock(seqlock_t *sl)
460 {
461 	write_seqcount_end(&sl->seqcount);
462 	spin_unlock(&sl->lock);
463 }
464 
write_seqlock_bh(seqlock_t * sl)465 static inline void write_seqlock_bh(seqlock_t *sl)
466 {
467 	spin_lock_bh(&sl->lock);
468 	write_seqcount_begin(&sl->seqcount);
469 }
470 
write_sequnlock_bh(seqlock_t * sl)471 static inline void write_sequnlock_bh(seqlock_t *sl)
472 {
473 	write_seqcount_end(&sl->seqcount);
474 	spin_unlock_bh(&sl->lock);
475 }
476 
write_seqlock_irq(seqlock_t * sl)477 static inline void write_seqlock_irq(seqlock_t *sl)
478 {
479 	spin_lock_irq(&sl->lock);
480 	write_seqcount_begin(&sl->seqcount);
481 }
482 
write_sequnlock_irq(seqlock_t * sl)483 static inline void write_sequnlock_irq(seqlock_t *sl)
484 {
485 	write_seqcount_end(&sl->seqcount);
486 	spin_unlock_irq(&sl->lock);
487 }
488 
__write_seqlock_irqsave(seqlock_t * sl)489 static inline unsigned long __write_seqlock_irqsave(seqlock_t *sl)
490 {
491 	unsigned long flags;
492 
493 	spin_lock_irqsave(&sl->lock, flags);
494 	write_seqcount_begin(&sl->seqcount);
495 	return flags;
496 }
497 
498 #define write_seqlock_irqsave(lock, flags)				\
499 	do { flags = __write_seqlock_irqsave(lock); } while (0)
500 
501 static inline void
write_sequnlock_irqrestore(seqlock_t * sl,unsigned long flags)502 write_sequnlock_irqrestore(seqlock_t *sl, unsigned long flags)
503 {
504 	write_seqcount_end(&sl->seqcount);
505 	spin_unlock_irqrestore(&sl->lock, flags);
506 }
507 
508 /*
509  * A locking reader exclusively locks out other writers and locking readers,
510  * but doesn't update the sequence number. Acts like a normal spin_lock/unlock.
511  * Don't need preempt_disable() because that is in the spin_lock already.
512  */
read_seqlock_excl(seqlock_t * sl)513 static inline void read_seqlock_excl(seqlock_t *sl)
514 {
515 	spin_lock(&sl->lock);
516 }
517 
read_sequnlock_excl(seqlock_t * sl)518 static inline void read_sequnlock_excl(seqlock_t *sl)
519 {
520 	spin_unlock(&sl->lock);
521 }
522 
523 /**
524  * read_seqbegin_or_lock - begin a sequence number check or locking block
525  * @lock: sequence lock
526  * @seq : sequence number to be checked
527  *
528  * First try it once optimistically without taking the lock. If that fails,
529  * take the lock. The sequence number is also used as a marker for deciding
530  * whether to be a reader (even) or writer (odd).
531  * N.B. seq must be initialized to an even number to begin with.
532  */
read_seqbegin_or_lock(seqlock_t * lock,int * seq)533 static inline void read_seqbegin_or_lock(seqlock_t *lock, int *seq)
534 {
535 	if (!(*seq & 1))	/* Even */
536 		*seq = read_seqbegin(lock);
537 	else			/* Odd */
538 		read_seqlock_excl(lock);
539 }
540 
need_seqretry(seqlock_t * lock,int seq)541 static inline int need_seqretry(seqlock_t *lock, int seq)
542 {
543 	return !(seq & 1) && read_seqretry(lock, seq);
544 }
545 
done_seqretry(seqlock_t * lock,int seq)546 static inline void done_seqretry(seqlock_t *lock, int seq)
547 {
548 	if (seq & 1)
549 		read_sequnlock_excl(lock);
550 }
551 
read_seqlock_excl_bh(seqlock_t * sl)552 static inline void read_seqlock_excl_bh(seqlock_t *sl)
553 {
554 	spin_lock_bh(&sl->lock);
555 }
556 
read_sequnlock_excl_bh(seqlock_t * sl)557 static inline void read_sequnlock_excl_bh(seqlock_t *sl)
558 {
559 	spin_unlock_bh(&sl->lock);
560 }
561 
read_seqlock_excl_irq(seqlock_t * sl)562 static inline void read_seqlock_excl_irq(seqlock_t *sl)
563 {
564 	spin_lock_irq(&sl->lock);
565 }
566 
read_sequnlock_excl_irq(seqlock_t * sl)567 static inline void read_sequnlock_excl_irq(seqlock_t *sl)
568 {
569 	spin_unlock_irq(&sl->lock);
570 }
571 
__read_seqlock_excl_irqsave(seqlock_t * sl)572 static inline unsigned long __read_seqlock_excl_irqsave(seqlock_t *sl)
573 {
574 	unsigned long flags;
575 
576 	spin_lock_irqsave(&sl->lock, flags);
577 	return flags;
578 }
579 
580 #define read_seqlock_excl_irqsave(lock, flags)				\
581 	do { flags = __read_seqlock_excl_irqsave(lock); } while (0)
582 
583 static inline void
read_sequnlock_excl_irqrestore(seqlock_t * sl,unsigned long flags)584 read_sequnlock_excl_irqrestore(seqlock_t *sl, unsigned long flags)
585 {
586 	spin_unlock_irqrestore(&sl->lock, flags);
587 }
588 
589 static inline unsigned long
read_seqbegin_or_lock_irqsave(seqlock_t * lock,int * seq)590 read_seqbegin_or_lock_irqsave(seqlock_t *lock, int *seq)
591 {
592 	unsigned long flags = 0;
593 
594 	if (!(*seq & 1))	/* Even */
595 		*seq = read_seqbegin(lock);
596 	else			/* Odd */
597 		read_seqlock_excl_irqsave(lock, flags);
598 
599 	return flags;
600 }
601 
602 static inline void
done_seqretry_irqrestore(seqlock_t * lock,int seq,unsigned long flags)603 done_seqretry_irqrestore(seqlock_t *lock, int seq, unsigned long flags)
604 {
605 	if (seq & 1)
606 		read_sequnlock_excl_irqrestore(lock, flags);
607 }
608 #endif /* __LINUX_SEQLOCK_H */
609