1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_SEQLOCK_H
3 #define __LINUX_SEQLOCK_H
4 /*
5 * Reader/writer consistent mechanism without starving writers. This type of
6 * lock for data where the reader wants a consistent set of information
7 * and is willing to retry if the information changes. There are two types
8 * of readers:
9 * 1. Sequence readers which never block a writer but they may have to retry
10 * if a writer is in progress by detecting change in sequence number.
11 * Writers do not wait for a sequence reader.
12 * 2. Locking readers which will wait if a writer or another locking reader
13 * is in progress. A locking reader in progress will also block a writer
14 * from going forward. Unlike the regular rwlock, the read lock here is
15 * exclusive so that only one locking reader can get it.
16 *
17 * This is not as cache friendly as brlock. Also, this may not work well
18 * for data that contains pointers, because any writer could
19 * invalidate a pointer that a reader was following.
20 *
21 * Expected non-blocking reader usage:
22 * do {
23 * seq = read_seqbegin(&foo);
24 * ...
25 * } while (read_seqretry(&foo, seq));
26 *
27 *
28 * On non-SMP the spin locks disappear but the writer still needs
29 * to increment the sequence variables because an interrupt routine could
30 * change the state of the data.
31 *
32 * Based on x86_64 vsyscall gettimeofday
33 * by Keith Owens and Andrea Arcangeli
34 */
35
36 #include <linux/spinlock.h>
37 #include <linux/preempt.h>
38 #include <linux/lockdep.h>
39 #include <linux/compiler.h>
40 #include <asm/processor.h>
41
42 /*
43 * Version using sequence counter only.
44 * This can be used when code has its own mutex protecting the
45 * updating starting before the write_seqcountbeqin() and ending
46 * after the write_seqcount_end().
47 */
48 typedef struct seqcount {
49 unsigned sequence;
50 #ifdef CONFIG_DEBUG_LOCK_ALLOC
51 struct lockdep_map dep_map;
52 #endif
53 } seqcount_t;
54
__seqcount_init(seqcount_t * s,const char * name,struct lock_class_key * key)55 static inline void __seqcount_init(seqcount_t *s, const char *name,
56 struct lock_class_key *key)
57 {
58 /*
59 * Make sure we are not reinitializing a held lock:
60 */
61 lockdep_init_map(&s->dep_map, name, key, 0);
62 s->sequence = 0;
63 }
64
65 #ifdef CONFIG_DEBUG_LOCK_ALLOC
66 # define SEQCOUNT_DEP_MAP_INIT(lockname) \
67 .dep_map = { .name = #lockname } \
68
69 # define seqcount_init(s) \
70 do { \
71 static struct lock_class_key __key; \
72 __seqcount_init((s), #s, &__key); \
73 } while (0)
74
seqcount_lockdep_reader_access(const seqcount_t * s)75 static inline void seqcount_lockdep_reader_access(const seqcount_t *s)
76 {
77 seqcount_t *l = (seqcount_t *)s;
78 unsigned long flags;
79
80 local_irq_save(flags);
81 seqcount_acquire_read(&l->dep_map, 0, 0, _RET_IP_);
82 seqcount_release(&l->dep_map, 1, _RET_IP_);
83 local_irq_restore(flags);
84 }
85
86 #else
87 # define SEQCOUNT_DEP_MAP_INIT(lockname)
88 # define seqcount_init(s) __seqcount_init(s, NULL, NULL)
89 # define seqcount_lockdep_reader_access(x)
90 #endif
91
92 #define SEQCNT_ZERO(lockname) { .sequence = 0, SEQCOUNT_DEP_MAP_INIT(lockname)}
93
94
95 /**
96 * __read_seqcount_begin - begin a seq-read critical section (without barrier)
97 * @s: pointer to seqcount_t
98 * Returns: count to be passed to read_seqcount_retry
99 *
100 * __read_seqcount_begin is like read_seqcount_begin, but has no smp_rmb()
101 * barrier. Callers should ensure that smp_rmb() or equivalent ordering is
102 * provided before actually loading any of the variables that are to be
103 * protected in this critical section.
104 *
105 * Use carefully, only in critical code, and comment how the barrier is
106 * provided.
107 */
__read_seqcount_begin(const seqcount_t * s)108 static inline unsigned __read_seqcount_begin(const seqcount_t *s)
109 {
110 unsigned ret;
111
112 repeat:
113 ret = READ_ONCE(s->sequence);
114 if (unlikely(ret & 1)) {
115 cpu_relax();
116 goto repeat;
117 }
118 return ret;
119 }
120
121 /**
122 * raw_read_seqcount - Read the raw seqcount
123 * @s: pointer to seqcount_t
124 * Returns: count to be passed to read_seqcount_retry
125 *
126 * raw_read_seqcount opens a read critical section of the given
127 * seqcount without any lockdep checking and without checking or
128 * masking the LSB. Calling code is responsible for handling that.
129 */
raw_read_seqcount(const seqcount_t * s)130 static inline unsigned raw_read_seqcount(const seqcount_t *s)
131 {
132 unsigned ret = READ_ONCE(s->sequence);
133 smp_rmb();
134 return ret;
135 }
136
137 /**
138 * raw_read_seqcount_begin - start seq-read critical section w/o lockdep
139 * @s: pointer to seqcount_t
140 * Returns: count to be passed to read_seqcount_retry
141 *
142 * raw_read_seqcount_begin opens a read critical section of the given
143 * seqcount, but without any lockdep checking. Validity of the critical
144 * section is tested by checking read_seqcount_retry function.
145 */
raw_read_seqcount_begin(const seqcount_t * s)146 static inline unsigned raw_read_seqcount_begin(const seqcount_t *s)
147 {
148 unsigned ret = __read_seqcount_begin(s);
149 smp_rmb();
150 return ret;
151 }
152
153 /**
154 * read_seqcount_begin - begin a seq-read critical section
155 * @s: pointer to seqcount_t
156 * Returns: count to be passed to read_seqcount_retry
157 *
158 * read_seqcount_begin opens a read critical section of the given seqcount.
159 * Validity of the critical section is tested by checking read_seqcount_retry
160 * function.
161 */
read_seqcount_begin(const seqcount_t * s)162 static inline unsigned read_seqcount_begin(const seqcount_t *s)
163 {
164 seqcount_lockdep_reader_access(s);
165 return raw_read_seqcount_begin(s);
166 }
167
168 /**
169 * raw_seqcount_begin - begin a seq-read critical section
170 * @s: pointer to seqcount_t
171 * Returns: count to be passed to read_seqcount_retry
172 *
173 * raw_seqcount_begin opens a read critical section of the given seqcount.
174 * Validity of the critical section is tested by checking read_seqcount_retry
175 * function.
176 *
177 * Unlike read_seqcount_begin(), this function will not wait for the count
178 * to stabilize. If a writer is active when we begin, we will fail the
179 * read_seqcount_retry() instead of stabilizing at the beginning of the
180 * critical section.
181 */
raw_seqcount_begin(const seqcount_t * s)182 static inline unsigned raw_seqcount_begin(const seqcount_t *s)
183 {
184 unsigned ret = READ_ONCE(s->sequence);
185 smp_rmb();
186 return ret & ~1;
187 }
188
189 /**
190 * __read_seqcount_retry - end a seq-read critical section (without barrier)
191 * @s: pointer to seqcount_t
192 * @start: count, from read_seqcount_begin
193 * Returns: 1 if retry is required, else 0
194 *
195 * __read_seqcount_retry is like read_seqcount_retry, but has no smp_rmb()
196 * barrier. Callers should ensure that smp_rmb() or equivalent ordering is
197 * provided before actually loading any of the variables that are to be
198 * protected in this critical section.
199 *
200 * Use carefully, only in critical code, and comment how the barrier is
201 * provided.
202 */
__read_seqcount_retry(const seqcount_t * s,unsigned start)203 static inline int __read_seqcount_retry(const seqcount_t *s, unsigned start)
204 {
205 return unlikely(s->sequence != start);
206 }
207
208 /**
209 * read_seqcount_retry - end a seq-read critical section
210 * @s: pointer to seqcount_t
211 * @start: count, from read_seqcount_begin
212 * Returns: 1 if retry is required, else 0
213 *
214 * read_seqcount_retry closes a read critical section of the given seqcount.
215 * If the critical section was invalid, it must be ignored (and typically
216 * retried).
217 */
read_seqcount_retry(const seqcount_t * s,unsigned start)218 static inline int read_seqcount_retry(const seqcount_t *s, unsigned start)
219 {
220 smp_rmb();
221 return __read_seqcount_retry(s, start);
222 }
223
224
225
raw_write_seqcount_begin(seqcount_t * s)226 static inline void raw_write_seqcount_begin(seqcount_t *s)
227 {
228 s->sequence++;
229 smp_wmb();
230 }
231
raw_write_seqcount_end(seqcount_t * s)232 static inline void raw_write_seqcount_end(seqcount_t *s)
233 {
234 smp_wmb();
235 s->sequence++;
236 }
237
238 /**
239 * raw_write_seqcount_barrier - do a seq write barrier
240 * @s: pointer to seqcount_t
241 *
242 * This can be used to provide an ordering guarantee instead of the
243 * usual consistency guarantee. It is one wmb cheaper, because we can
244 * collapse the two back-to-back wmb()s.
245 *
246 * Note that, writes surrounding the barrier should be declared atomic (e.g.
247 * via WRITE_ONCE): a) to ensure the writes become visible to other threads
248 * atomically, avoiding compiler optimizations; b) to document which writes are
249 * meant to propagate to the reader critical section. This is necessary because
250 * neither writes before and after the barrier are enclosed in a seq-writer
251 * critical section that would ensure readers are aware of ongoing writes.
252 *
253 * seqcount_t seq;
254 * bool X = true, Y = false;
255 *
256 * void read(void)
257 * {
258 * bool x, y;
259 *
260 * do {
261 * int s = read_seqcount_begin(&seq);
262 *
263 * x = X; y = Y;
264 *
265 * } while (read_seqcount_retry(&seq, s));
266 *
267 * BUG_ON(!x && !y);
268 * }
269 *
270 * void write(void)
271 * {
272 * WRITE_ONCE(Y, true);
273 *
274 * raw_write_seqcount_barrier(seq);
275 *
276 * WRITE_ONCE(X, false);
277 * }
278 */
raw_write_seqcount_barrier(seqcount_t * s)279 static inline void raw_write_seqcount_barrier(seqcount_t *s)
280 {
281 s->sequence++;
282 smp_wmb();
283 s->sequence++;
284 }
285
raw_read_seqcount_latch(seqcount_t * s)286 static inline int raw_read_seqcount_latch(seqcount_t *s)
287 {
288 /* Pairs with the first smp_wmb() in raw_write_seqcount_latch() */
289 int seq = READ_ONCE(s->sequence); /* ^^^ */
290 return seq;
291 }
292
293 /**
294 * raw_write_seqcount_latch - redirect readers to even/odd copy
295 * @s: pointer to seqcount_t
296 *
297 * The latch technique is a multiversion concurrency control method that allows
298 * queries during non-atomic modifications. If you can guarantee queries never
299 * interrupt the modification -- e.g. the concurrency is strictly between CPUs
300 * -- you most likely do not need this.
301 *
302 * Where the traditional RCU/lockless data structures rely on atomic
303 * modifications to ensure queries observe either the old or the new state the
304 * latch allows the same for non-atomic updates. The trade-off is doubling the
305 * cost of storage; we have to maintain two copies of the entire data
306 * structure.
307 *
308 * Very simply put: we first modify one copy and then the other. This ensures
309 * there is always one copy in a stable state, ready to give us an answer.
310 *
311 * The basic form is a data structure like:
312 *
313 * struct latch_struct {
314 * seqcount_t seq;
315 * struct data_struct data[2];
316 * };
317 *
318 * Where a modification, which is assumed to be externally serialized, does the
319 * following:
320 *
321 * void latch_modify(struct latch_struct *latch, ...)
322 * {
323 * smp_wmb(); <- Ensure that the last data[1] update is visible
324 * latch->seq++;
325 * smp_wmb(); <- Ensure that the seqcount update is visible
326 *
327 * modify(latch->data[0], ...);
328 *
329 * smp_wmb(); <- Ensure that the data[0] update is visible
330 * latch->seq++;
331 * smp_wmb(); <- Ensure that the seqcount update is visible
332 *
333 * modify(latch->data[1], ...);
334 * }
335 *
336 * The query will have a form like:
337 *
338 * struct entry *latch_query(struct latch_struct *latch, ...)
339 * {
340 * struct entry *entry;
341 * unsigned seq, idx;
342 *
343 * do {
344 * seq = raw_read_seqcount_latch(&latch->seq);
345 *
346 * idx = seq & 0x01;
347 * entry = data_query(latch->data[idx], ...);
348 *
349 * smp_rmb();
350 * } while (seq != latch->seq);
351 *
352 * return entry;
353 * }
354 *
355 * So during the modification, queries are first redirected to data[1]. Then we
356 * modify data[0]. When that is complete, we redirect queries back to data[0]
357 * and we can modify data[1].
358 *
359 * NOTE: The non-requirement for atomic modifications does _NOT_ include
360 * the publishing of new entries in the case where data is a dynamic
361 * data structure.
362 *
363 * An iteration might start in data[0] and get suspended long enough
364 * to miss an entire modification sequence, once it resumes it might
365 * observe the new entry.
366 *
367 * NOTE: When data is a dynamic data structure; one should use regular RCU
368 * patterns to manage the lifetimes of the objects within.
369 */
raw_write_seqcount_latch(seqcount_t * s)370 static inline void raw_write_seqcount_latch(seqcount_t *s)
371 {
372 smp_wmb(); /* prior stores before incrementing "sequence" */
373 s->sequence++;
374 smp_wmb(); /* increment "sequence" before following stores */
375 }
376
377 /*
378 * Sequence counter only version assumes that callers are using their
379 * own mutexing.
380 */
write_seqcount_begin_nested(seqcount_t * s,int subclass)381 static inline void write_seqcount_begin_nested(seqcount_t *s, int subclass)
382 {
383 raw_write_seqcount_begin(s);
384 seqcount_acquire(&s->dep_map, subclass, 0, _RET_IP_);
385 }
386
write_seqcount_begin(seqcount_t * s)387 static inline void write_seqcount_begin(seqcount_t *s)
388 {
389 write_seqcount_begin_nested(s, 0);
390 }
391
write_seqcount_end(seqcount_t * s)392 static inline void write_seqcount_end(seqcount_t *s)
393 {
394 seqcount_release(&s->dep_map, 1, _RET_IP_);
395 raw_write_seqcount_end(s);
396 }
397
398 /**
399 * write_seqcount_invalidate - invalidate in-progress read-side seq operations
400 * @s: pointer to seqcount_t
401 *
402 * After write_seqcount_invalidate, no read-side seq operations will complete
403 * successfully and see data older than this.
404 */
write_seqcount_invalidate(seqcount_t * s)405 static inline void write_seqcount_invalidate(seqcount_t *s)
406 {
407 smp_wmb();
408 s->sequence+=2;
409 }
410
411 typedef struct {
412 struct seqcount seqcount;
413 spinlock_t lock;
414 } seqlock_t;
415
416 /*
417 * These macros triggered gcc-3.x compile-time problems. We think these are
418 * OK now. Be cautious.
419 */
420 #define __SEQLOCK_UNLOCKED(lockname) \
421 { \
422 .seqcount = SEQCNT_ZERO(lockname), \
423 .lock = __SPIN_LOCK_UNLOCKED(lockname) \
424 }
425
426 #define seqlock_init(x) \
427 do { \
428 seqcount_init(&(x)->seqcount); \
429 spin_lock_init(&(x)->lock); \
430 } while (0)
431
432 #define DEFINE_SEQLOCK(x) \
433 seqlock_t x = __SEQLOCK_UNLOCKED(x)
434
435 /*
436 * Read side functions for starting and finalizing a read side section.
437 */
read_seqbegin(const seqlock_t * sl)438 static inline unsigned read_seqbegin(const seqlock_t *sl)
439 {
440 return read_seqcount_begin(&sl->seqcount);
441 }
442
read_seqretry(const seqlock_t * sl,unsigned start)443 static inline unsigned read_seqretry(const seqlock_t *sl, unsigned start)
444 {
445 return read_seqcount_retry(&sl->seqcount, start);
446 }
447
448 /*
449 * Lock out other writers and update the count.
450 * Acts like a normal spin_lock/unlock.
451 * Don't need preempt_disable() because that is in the spin_lock already.
452 */
write_seqlock(seqlock_t * sl)453 static inline void write_seqlock(seqlock_t *sl)
454 {
455 spin_lock(&sl->lock);
456 write_seqcount_begin(&sl->seqcount);
457 }
458
write_sequnlock(seqlock_t * sl)459 static inline void write_sequnlock(seqlock_t *sl)
460 {
461 write_seqcount_end(&sl->seqcount);
462 spin_unlock(&sl->lock);
463 }
464
write_seqlock_bh(seqlock_t * sl)465 static inline void write_seqlock_bh(seqlock_t *sl)
466 {
467 spin_lock_bh(&sl->lock);
468 write_seqcount_begin(&sl->seqcount);
469 }
470
write_sequnlock_bh(seqlock_t * sl)471 static inline void write_sequnlock_bh(seqlock_t *sl)
472 {
473 write_seqcount_end(&sl->seqcount);
474 spin_unlock_bh(&sl->lock);
475 }
476
write_seqlock_irq(seqlock_t * sl)477 static inline void write_seqlock_irq(seqlock_t *sl)
478 {
479 spin_lock_irq(&sl->lock);
480 write_seqcount_begin(&sl->seqcount);
481 }
482
write_sequnlock_irq(seqlock_t * sl)483 static inline void write_sequnlock_irq(seqlock_t *sl)
484 {
485 write_seqcount_end(&sl->seqcount);
486 spin_unlock_irq(&sl->lock);
487 }
488
__write_seqlock_irqsave(seqlock_t * sl)489 static inline unsigned long __write_seqlock_irqsave(seqlock_t *sl)
490 {
491 unsigned long flags;
492
493 spin_lock_irqsave(&sl->lock, flags);
494 write_seqcount_begin(&sl->seqcount);
495 return flags;
496 }
497
498 #define write_seqlock_irqsave(lock, flags) \
499 do { flags = __write_seqlock_irqsave(lock); } while (0)
500
501 static inline void
write_sequnlock_irqrestore(seqlock_t * sl,unsigned long flags)502 write_sequnlock_irqrestore(seqlock_t *sl, unsigned long flags)
503 {
504 write_seqcount_end(&sl->seqcount);
505 spin_unlock_irqrestore(&sl->lock, flags);
506 }
507
508 /*
509 * A locking reader exclusively locks out other writers and locking readers,
510 * but doesn't update the sequence number. Acts like a normal spin_lock/unlock.
511 * Don't need preempt_disable() because that is in the spin_lock already.
512 */
read_seqlock_excl(seqlock_t * sl)513 static inline void read_seqlock_excl(seqlock_t *sl)
514 {
515 spin_lock(&sl->lock);
516 }
517
read_sequnlock_excl(seqlock_t * sl)518 static inline void read_sequnlock_excl(seqlock_t *sl)
519 {
520 spin_unlock(&sl->lock);
521 }
522
523 /**
524 * read_seqbegin_or_lock - begin a sequence number check or locking block
525 * @lock: sequence lock
526 * @seq : sequence number to be checked
527 *
528 * First try it once optimistically without taking the lock. If that fails,
529 * take the lock. The sequence number is also used as a marker for deciding
530 * whether to be a reader (even) or writer (odd).
531 * N.B. seq must be initialized to an even number to begin with.
532 */
read_seqbegin_or_lock(seqlock_t * lock,int * seq)533 static inline void read_seqbegin_or_lock(seqlock_t *lock, int *seq)
534 {
535 if (!(*seq & 1)) /* Even */
536 *seq = read_seqbegin(lock);
537 else /* Odd */
538 read_seqlock_excl(lock);
539 }
540
need_seqretry(seqlock_t * lock,int seq)541 static inline int need_seqretry(seqlock_t *lock, int seq)
542 {
543 return !(seq & 1) && read_seqretry(lock, seq);
544 }
545
done_seqretry(seqlock_t * lock,int seq)546 static inline void done_seqretry(seqlock_t *lock, int seq)
547 {
548 if (seq & 1)
549 read_sequnlock_excl(lock);
550 }
551
read_seqlock_excl_bh(seqlock_t * sl)552 static inline void read_seqlock_excl_bh(seqlock_t *sl)
553 {
554 spin_lock_bh(&sl->lock);
555 }
556
read_sequnlock_excl_bh(seqlock_t * sl)557 static inline void read_sequnlock_excl_bh(seqlock_t *sl)
558 {
559 spin_unlock_bh(&sl->lock);
560 }
561
read_seqlock_excl_irq(seqlock_t * sl)562 static inline void read_seqlock_excl_irq(seqlock_t *sl)
563 {
564 spin_lock_irq(&sl->lock);
565 }
566
read_sequnlock_excl_irq(seqlock_t * sl)567 static inline void read_sequnlock_excl_irq(seqlock_t *sl)
568 {
569 spin_unlock_irq(&sl->lock);
570 }
571
__read_seqlock_excl_irqsave(seqlock_t * sl)572 static inline unsigned long __read_seqlock_excl_irqsave(seqlock_t *sl)
573 {
574 unsigned long flags;
575
576 spin_lock_irqsave(&sl->lock, flags);
577 return flags;
578 }
579
580 #define read_seqlock_excl_irqsave(lock, flags) \
581 do { flags = __read_seqlock_excl_irqsave(lock); } while (0)
582
583 static inline void
read_sequnlock_excl_irqrestore(seqlock_t * sl,unsigned long flags)584 read_sequnlock_excl_irqrestore(seqlock_t *sl, unsigned long flags)
585 {
586 spin_unlock_irqrestore(&sl->lock, flags);
587 }
588
589 static inline unsigned long
read_seqbegin_or_lock_irqsave(seqlock_t * lock,int * seq)590 read_seqbegin_or_lock_irqsave(seqlock_t *lock, int *seq)
591 {
592 unsigned long flags = 0;
593
594 if (!(*seq & 1)) /* Even */
595 *seq = read_seqbegin(lock);
596 else /* Odd */
597 read_seqlock_excl_irqsave(lock, flags);
598
599 return flags;
600 }
601
602 static inline void
done_seqretry_irqrestore(seqlock_t * lock,int seq,unsigned long flags)603 done_seqretry_irqrestore(seqlock_t *lock, int seq, unsigned long flags)
604 {
605 if (seq & 1)
606 read_sequnlock_excl_irqrestore(lock, flags);
607 }
608 #endif /* __LINUX_SEQLOCK_H */
609