1 /*
2 * super.c
3 *
4 * PURPOSE
5 * Super block routines for the OSTA-UDF(tm) filesystem.
6 *
7 * DESCRIPTION
8 * OSTA-UDF(tm) = Optical Storage Technology Association
9 * Universal Disk Format.
10 *
11 * This code is based on version 2.00 of the UDF specification,
12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13 * http://www.osta.org/
14 * http://www.ecma.ch/
15 * http://www.iso.org/
16 *
17 * COPYRIGHT
18 * This file is distributed under the terms of the GNU General Public
19 * License (GPL). Copies of the GPL can be obtained from:
20 * ftp://prep.ai.mit.edu/pub/gnu/GPL
21 * Each contributing author retains all rights to their own work.
22 *
23 * (C) 1998 Dave Boynton
24 * (C) 1998-2004 Ben Fennema
25 * (C) 2000 Stelias Computing Inc
26 *
27 * HISTORY
28 *
29 * 09/24/98 dgb changed to allow compiling outside of kernel, and
30 * added some debugging.
31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34
32 * 10/16/98 attempting some multi-session support
33 * 10/17/98 added freespace count for "df"
34 * 11/11/98 gr added novrs option
35 * 11/26/98 dgb added fileset,anchor mount options
36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced
37 * vol descs. rewrote option handling based on isofs
38 * 12/20/98 find the free space bitmap (if it exists)
39 */
40
41 #include "udfdecl.h"
42
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60 #include <linux/iversion.h>
61
62 #include "udf_sb.h"
63 #include "udf_i.h"
64
65 #include <linux/init.h>
66 #include <linux/uaccess.h>
67
68 enum {
69 VDS_POS_PRIMARY_VOL_DESC,
70 VDS_POS_UNALLOC_SPACE_DESC,
71 VDS_POS_LOGICAL_VOL_DESC,
72 VDS_POS_IMP_USE_VOL_DESC,
73 VDS_POS_LENGTH
74 };
75
76 #define VSD_FIRST_SECTOR_OFFSET 32768
77 #define VSD_MAX_SECTOR_OFFSET 0x800000
78
79 /*
80 * Maximum number of Terminating Descriptor / Logical Volume Integrity
81 * Descriptor redirections. The chosen numbers are arbitrary - just that we
82 * hopefully don't limit any real use of rewritten inode on write-once media
83 * but avoid looping for too long on corrupted media.
84 */
85 #define UDF_MAX_TD_NESTING 64
86 #define UDF_MAX_LVID_NESTING 1000
87
88 enum { UDF_MAX_LINKS = 0xffff };
89
90 /* These are the "meat" - everything else is stuffing */
91 static int udf_fill_super(struct super_block *, void *, int);
92 static void udf_put_super(struct super_block *);
93 static int udf_sync_fs(struct super_block *, int);
94 static int udf_remount_fs(struct super_block *, int *, char *);
95 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
96 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
97 struct kernel_lb_addr *);
98 static void udf_load_fileset(struct super_block *, struct buffer_head *,
99 struct kernel_lb_addr *);
100 static void udf_open_lvid(struct super_block *);
101 static void udf_close_lvid(struct super_block *);
102 static unsigned int udf_count_free(struct super_block *);
103 static int udf_statfs(struct dentry *, struct kstatfs *);
104 static int udf_show_options(struct seq_file *, struct dentry *);
105
udf_sb_lvidiu(struct super_block * sb)106 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
107 {
108 struct logicalVolIntegrityDesc *lvid;
109 unsigned int partnum;
110 unsigned int offset;
111
112 if (!UDF_SB(sb)->s_lvid_bh)
113 return NULL;
114 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
115 partnum = le32_to_cpu(lvid->numOfPartitions);
116 /* The offset is to skip freeSpaceTable and sizeTable arrays */
117 offset = partnum * 2 * sizeof(uint32_t);
118 return (struct logicalVolIntegrityDescImpUse *)
119 (((uint8_t *)(lvid + 1)) + offset);
120 }
121
122 /* UDF filesystem type */
udf_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)123 static struct dentry *udf_mount(struct file_system_type *fs_type,
124 int flags, const char *dev_name, void *data)
125 {
126 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
127 }
128
129 static struct file_system_type udf_fstype = {
130 .owner = THIS_MODULE,
131 .name = "udf",
132 .mount = udf_mount,
133 .kill_sb = kill_block_super,
134 .fs_flags = FS_REQUIRES_DEV,
135 };
136 MODULE_ALIAS_FS("udf");
137
138 static struct kmem_cache *udf_inode_cachep;
139
udf_alloc_inode(struct super_block * sb)140 static struct inode *udf_alloc_inode(struct super_block *sb)
141 {
142 struct udf_inode_info *ei;
143 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
144 if (!ei)
145 return NULL;
146
147 ei->i_unique = 0;
148 ei->i_lenExtents = 0;
149 ei->i_lenStreams = 0;
150 ei->i_next_alloc_block = 0;
151 ei->i_next_alloc_goal = 0;
152 ei->i_strat4096 = 0;
153 ei->i_streamdir = 0;
154 ei->i_hidden = 0;
155 init_rwsem(&ei->i_data_sem);
156 ei->cached_extent.lstart = -1;
157 spin_lock_init(&ei->i_extent_cache_lock);
158 inode_set_iversion(&ei->vfs_inode, 1);
159
160 return &ei->vfs_inode;
161 }
162
udf_i_callback(struct rcu_head * head)163 static void udf_i_callback(struct rcu_head *head)
164 {
165 struct inode *inode = container_of(head, struct inode, i_rcu);
166 kmem_cache_free(udf_inode_cachep, UDF_I(inode));
167 }
168
udf_destroy_inode(struct inode * inode)169 static void udf_destroy_inode(struct inode *inode)
170 {
171 call_rcu(&inode->i_rcu, udf_i_callback);
172 }
173
init_once(void * foo)174 static void init_once(void *foo)
175 {
176 struct udf_inode_info *ei = (struct udf_inode_info *)foo;
177
178 ei->i_data = NULL;
179 inode_init_once(&ei->vfs_inode);
180 }
181
init_inodecache(void)182 static int __init init_inodecache(void)
183 {
184 udf_inode_cachep = kmem_cache_create("udf_inode_cache",
185 sizeof(struct udf_inode_info),
186 0, (SLAB_RECLAIM_ACCOUNT |
187 SLAB_MEM_SPREAD |
188 SLAB_ACCOUNT),
189 init_once);
190 if (!udf_inode_cachep)
191 return -ENOMEM;
192 return 0;
193 }
194
destroy_inodecache(void)195 static void destroy_inodecache(void)
196 {
197 /*
198 * Make sure all delayed rcu free inodes are flushed before we
199 * destroy cache.
200 */
201 rcu_barrier();
202 kmem_cache_destroy(udf_inode_cachep);
203 }
204
205 /* Superblock operations */
206 static const struct super_operations udf_sb_ops = {
207 .alloc_inode = udf_alloc_inode,
208 .destroy_inode = udf_destroy_inode,
209 .write_inode = udf_write_inode,
210 .evict_inode = udf_evict_inode,
211 .put_super = udf_put_super,
212 .sync_fs = udf_sync_fs,
213 .statfs = udf_statfs,
214 .remount_fs = udf_remount_fs,
215 .show_options = udf_show_options,
216 };
217
218 struct udf_options {
219 unsigned char novrs;
220 unsigned int blocksize;
221 unsigned int session;
222 unsigned int lastblock;
223 unsigned int anchor;
224 unsigned int flags;
225 umode_t umask;
226 kgid_t gid;
227 kuid_t uid;
228 umode_t fmode;
229 umode_t dmode;
230 struct nls_table *nls_map;
231 };
232
init_udf_fs(void)233 static int __init init_udf_fs(void)
234 {
235 int err;
236
237 err = init_inodecache();
238 if (err)
239 goto out1;
240 err = register_filesystem(&udf_fstype);
241 if (err)
242 goto out;
243
244 return 0;
245
246 out:
247 destroy_inodecache();
248
249 out1:
250 return err;
251 }
252
exit_udf_fs(void)253 static void __exit exit_udf_fs(void)
254 {
255 unregister_filesystem(&udf_fstype);
256 destroy_inodecache();
257 }
258
udf_sb_alloc_partition_maps(struct super_block * sb,u32 count)259 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
260 {
261 struct udf_sb_info *sbi = UDF_SB(sb);
262
263 sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
264 if (!sbi->s_partmaps) {
265 sbi->s_partitions = 0;
266 return -ENOMEM;
267 }
268
269 sbi->s_partitions = count;
270 return 0;
271 }
272
udf_sb_free_bitmap(struct udf_bitmap * bitmap)273 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
274 {
275 int i;
276 int nr_groups = bitmap->s_nr_groups;
277
278 for (i = 0; i < nr_groups; i++)
279 if (bitmap->s_block_bitmap[i])
280 brelse(bitmap->s_block_bitmap[i]);
281
282 kvfree(bitmap);
283 }
284
udf_free_partition(struct udf_part_map * map)285 static void udf_free_partition(struct udf_part_map *map)
286 {
287 int i;
288 struct udf_meta_data *mdata;
289
290 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
291 iput(map->s_uspace.s_table);
292 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
293 iput(map->s_fspace.s_table);
294 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
295 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
296 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
297 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
298 if (map->s_partition_type == UDF_SPARABLE_MAP15)
299 for (i = 0; i < 4; i++)
300 brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
301 else if (map->s_partition_type == UDF_METADATA_MAP25) {
302 mdata = &map->s_type_specific.s_metadata;
303 iput(mdata->s_metadata_fe);
304 mdata->s_metadata_fe = NULL;
305
306 iput(mdata->s_mirror_fe);
307 mdata->s_mirror_fe = NULL;
308
309 iput(mdata->s_bitmap_fe);
310 mdata->s_bitmap_fe = NULL;
311 }
312 }
313
udf_sb_free_partitions(struct super_block * sb)314 static void udf_sb_free_partitions(struct super_block *sb)
315 {
316 struct udf_sb_info *sbi = UDF_SB(sb);
317 int i;
318
319 if (!sbi->s_partmaps)
320 return;
321 for (i = 0; i < sbi->s_partitions; i++)
322 udf_free_partition(&sbi->s_partmaps[i]);
323 kfree(sbi->s_partmaps);
324 sbi->s_partmaps = NULL;
325 }
326
udf_show_options(struct seq_file * seq,struct dentry * root)327 static int udf_show_options(struct seq_file *seq, struct dentry *root)
328 {
329 struct super_block *sb = root->d_sb;
330 struct udf_sb_info *sbi = UDF_SB(sb);
331
332 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
333 seq_puts(seq, ",nostrict");
334 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
335 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
336 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
337 seq_puts(seq, ",unhide");
338 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
339 seq_puts(seq, ",undelete");
340 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
341 seq_puts(seq, ",noadinicb");
342 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
343 seq_puts(seq, ",shortad");
344 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
345 seq_puts(seq, ",uid=forget");
346 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
347 seq_puts(seq, ",gid=forget");
348 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
349 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
350 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
351 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
352 if (sbi->s_umask != 0)
353 seq_printf(seq, ",umask=%ho", sbi->s_umask);
354 if (sbi->s_fmode != UDF_INVALID_MODE)
355 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
356 if (sbi->s_dmode != UDF_INVALID_MODE)
357 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
358 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
359 seq_printf(seq, ",session=%d", sbi->s_session);
360 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
361 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
362 if (sbi->s_anchor != 0)
363 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
364 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
365 seq_puts(seq, ",utf8");
366 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
367 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
368
369 return 0;
370 }
371
372 /*
373 * udf_parse_options
374 *
375 * PURPOSE
376 * Parse mount options.
377 *
378 * DESCRIPTION
379 * The following mount options are supported:
380 *
381 * gid= Set the default group.
382 * umask= Set the default umask.
383 * mode= Set the default file permissions.
384 * dmode= Set the default directory permissions.
385 * uid= Set the default user.
386 * bs= Set the block size.
387 * unhide Show otherwise hidden files.
388 * undelete Show deleted files in lists.
389 * adinicb Embed data in the inode (default)
390 * noadinicb Don't embed data in the inode
391 * shortad Use short ad's
392 * longad Use long ad's (default)
393 * nostrict Unset strict conformance
394 * iocharset= Set the NLS character set
395 *
396 * The remaining are for debugging and disaster recovery:
397 *
398 * novrs Skip volume sequence recognition
399 *
400 * The following expect a offset from 0.
401 *
402 * session= Set the CDROM session (default= last session)
403 * anchor= Override standard anchor location. (default= 256)
404 * volume= Override the VolumeDesc location. (unused)
405 * partition= Override the PartitionDesc location. (unused)
406 * lastblock= Set the last block of the filesystem/
407 *
408 * The following expect a offset from the partition root.
409 *
410 * fileset= Override the fileset block location. (unused)
411 * rootdir= Override the root directory location. (unused)
412 * WARNING: overriding the rootdir to a non-directory may
413 * yield highly unpredictable results.
414 *
415 * PRE-CONDITIONS
416 * options Pointer to mount options string.
417 * uopts Pointer to mount options variable.
418 *
419 * POST-CONDITIONS
420 * <return> 1 Mount options parsed okay.
421 * <return> 0 Error parsing mount options.
422 *
423 * HISTORY
424 * July 1, 1997 - Andrew E. Mileski
425 * Written, tested, and released.
426 */
427
428 enum {
429 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
430 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
431 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
432 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
433 Opt_rootdir, Opt_utf8, Opt_iocharset,
434 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
435 Opt_fmode, Opt_dmode
436 };
437
438 static const match_table_t tokens = {
439 {Opt_novrs, "novrs"},
440 {Opt_nostrict, "nostrict"},
441 {Opt_bs, "bs=%u"},
442 {Opt_unhide, "unhide"},
443 {Opt_undelete, "undelete"},
444 {Opt_noadinicb, "noadinicb"},
445 {Opt_adinicb, "adinicb"},
446 {Opt_shortad, "shortad"},
447 {Opt_longad, "longad"},
448 {Opt_uforget, "uid=forget"},
449 {Opt_uignore, "uid=ignore"},
450 {Opt_gforget, "gid=forget"},
451 {Opt_gignore, "gid=ignore"},
452 {Opt_gid, "gid=%u"},
453 {Opt_uid, "uid=%u"},
454 {Opt_umask, "umask=%o"},
455 {Opt_session, "session=%u"},
456 {Opt_lastblock, "lastblock=%u"},
457 {Opt_anchor, "anchor=%u"},
458 {Opt_volume, "volume=%u"},
459 {Opt_partition, "partition=%u"},
460 {Opt_fileset, "fileset=%u"},
461 {Opt_rootdir, "rootdir=%u"},
462 {Opt_utf8, "utf8"},
463 {Opt_iocharset, "iocharset=%s"},
464 {Opt_fmode, "mode=%o"},
465 {Opt_dmode, "dmode=%o"},
466 {Opt_err, NULL}
467 };
468
udf_parse_options(char * options,struct udf_options * uopt,bool remount)469 static int udf_parse_options(char *options, struct udf_options *uopt,
470 bool remount)
471 {
472 char *p;
473 int option;
474
475 uopt->novrs = 0;
476 uopt->session = 0xFFFFFFFF;
477 uopt->lastblock = 0;
478 uopt->anchor = 0;
479
480 if (!options)
481 return 1;
482
483 while ((p = strsep(&options, ",")) != NULL) {
484 substring_t args[MAX_OPT_ARGS];
485 int token;
486 unsigned n;
487 if (!*p)
488 continue;
489
490 token = match_token(p, tokens, args);
491 switch (token) {
492 case Opt_novrs:
493 uopt->novrs = 1;
494 break;
495 case Opt_bs:
496 if (match_int(&args[0], &option))
497 return 0;
498 n = option;
499 if (n != 512 && n != 1024 && n != 2048 && n != 4096)
500 return 0;
501 uopt->blocksize = n;
502 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
503 break;
504 case Opt_unhide:
505 uopt->flags |= (1 << UDF_FLAG_UNHIDE);
506 break;
507 case Opt_undelete:
508 uopt->flags |= (1 << UDF_FLAG_UNDELETE);
509 break;
510 case Opt_noadinicb:
511 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
512 break;
513 case Opt_adinicb:
514 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
515 break;
516 case Opt_shortad:
517 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
518 break;
519 case Opt_longad:
520 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
521 break;
522 case Opt_gid:
523 if (match_int(args, &option))
524 return 0;
525 uopt->gid = make_kgid(current_user_ns(), option);
526 if (!gid_valid(uopt->gid))
527 return 0;
528 uopt->flags |= (1 << UDF_FLAG_GID_SET);
529 break;
530 case Opt_uid:
531 if (match_int(args, &option))
532 return 0;
533 uopt->uid = make_kuid(current_user_ns(), option);
534 if (!uid_valid(uopt->uid))
535 return 0;
536 uopt->flags |= (1 << UDF_FLAG_UID_SET);
537 break;
538 case Opt_umask:
539 if (match_octal(args, &option))
540 return 0;
541 uopt->umask = option;
542 break;
543 case Opt_nostrict:
544 uopt->flags &= ~(1 << UDF_FLAG_STRICT);
545 break;
546 case Opt_session:
547 if (match_int(args, &option))
548 return 0;
549 uopt->session = option;
550 if (!remount)
551 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
552 break;
553 case Opt_lastblock:
554 if (match_int(args, &option))
555 return 0;
556 uopt->lastblock = option;
557 if (!remount)
558 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
559 break;
560 case Opt_anchor:
561 if (match_int(args, &option))
562 return 0;
563 uopt->anchor = option;
564 break;
565 case Opt_volume:
566 case Opt_partition:
567 case Opt_fileset:
568 case Opt_rootdir:
569 /* Ignored (never implemented properly) */
570 break;
571 case Opt_utf8:
572 uopt->flags |= (1 << UDF_FLAG_UTF8);
573 break;
574 case Opt_iocharset:
575 if (!remount) {
576 if (uopt->nls_map)
577 unload_nls(uopt->nls_map);
578 /*
579 * load_nls() failure is handled later in
580 * udf_fill_super() after all options are
581 * parsed.
582 */
583 uopt->nls_map = load_nls(args[0].from);
584 uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
585 }
586 break;
587 case Opt_uforget:
588 uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
589 break;
590 case Opt_uignore:
591 case Opt_gignore:
592 /* These options are superseeded by uid=<number> */
593 break;
594 case Opt_gforget:
595 uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
596 break;
597 case Opt_fmode:
598 if (match_octal(args, &option))
599 return 0;
600 uopt->fmode = option & 0777;
601 break;
602 case Opt_dmode:
603 if (match_octal(args, &option))
604 return 0;
605 uopt->dmode = option & 0777;
606 break;
607 default:
608 pr_err("bad mount option \"%s\" or missing value\n", p);
609 return 0;
610 }
611 }
612 return 1;
613 }
614
udf_remount_fs(struct super_block * sb,int * flags,char * options)615 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
616 {
617 struct udf_options uopt;
618 struct udf_sb_info *sbi = UDF_SB(sb);
619 int error = 0;
620
621 if (!(*flags & SB_RDONLY) && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
622 return -EACCES;
623
624 sync_filesystem(sb);
625
626 uopt.flags = sbi->s_flags;
627 uopt.uid = sbi->s_uid;
628 uopt.gid = sbi->s_gid;
629 uopt.umask = sbi->s_umask;
630 uopt.fmode = sbi->s_fmode;
631 uopt.dmode = sbi->s_dmode;
632 uopt.nls_map = NULL;
633
634 if (!udf_parse_options(options, &uopt, true))
635 return -EINVAL;
636
637 write_lock(&sbi->s_cred_lock);
638 sbi->s_flags = uopt.flags;
639 sbi->s_uid = uopt.uid;
640 sbi->s_gid = uopt.gid;
641 sbi->s_umask = uopt.umask;
642 sbi->s_fmode = uopt.fmode;
643 sbi->s_dmode = uopt.dmode;
644 write_unlock(&sbi->s_cred_lock);
645
646 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
647 goto out_unlock;
648
649 if (*flags & SB_RDONLY)
650 udf_close_lvid(sb);
651 else
652 udf_open_lvid(sb);
653
654 out_unlock:
655 return error;
656 }
657
658 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
659 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
udf_check_vsd(struct super_block * sb)660 static loff_t udf_check_vsd(struct super_block *sb)
661 {
662 struct volStructDesc *vsd = NULL;
663 loff_t sector = VSD_FIRST_SECTOR_OFFSET;
664 int sectorsize;
665 struct buffer_head *bh = NULL;
666 int nsr02 = 0;
667 int nsr03 = 0;
668 struct udf_sb_info *sbi;
669
670 sbi = UDF_SB(sb);
671 if (sb->s_blocksize < sizeof(struct volStructDesc))
672 sectorsize = sizeof(struct volStructDesc);
673 else
674 sectorsize = sb->s_blocksize;
675
676 sector += (((loff_t)sbi->s_session) << sb->s_blocksize_bits);
677
678 udf_debug("Starting at sector %u (%lu byte sectors)\n",
679 (unsigned int)(sector >> sb->s_blocksize_bits),
680 sb->s_blocksize);
681 /* Process the sequence (if applicable). The hard limit on the sector
682 * offset is arbitrary, hopefully large enough so that all valid UDF
683 * filesystems will be recognised. There is no mention of an upper
684 * bound to the size of the volume recognition area in the standard.
685 * The limit will prevent the code to read all the sectors of a
686 * specially crafted image (like a bluray disc full of CD001 sectors),
687 * potentially causing minutes or even hours of uninterruptible I/O
688 * activity. This actually happened with uninitialised SSD partitions
689 * (all 0xFF) before the check for the limit and all valid IDs were
690 * added */
691 for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
692 sector += sectorsize) {
693 /* Read a block */
694 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
695 if (!bh)
696 break;
697
698 /* Look for ISO descriptors */
699 vsd = (struct volStructDesc *)(bh->b_data +
700 (sector & (sb->s_blocksize - 1)));
701
702 if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
703 VSD_STD_ID_LEN)) {
704 switch (vsd->structType) {
705 case 0:
706 udf_debug("ISO9660 Boot Record found\n");
707 break;
708 case 1:
709 udf_debug("ISO9660 Primary Volume Descriptor found\n");
710 break;
711 case 2:
712 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
713 break;
714 case 3:
715 udf_debug("ISO9660 Volume Partition Descriptor found\n");
716 break;
717 case 255:
718 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
719 break;
720 default:
721 udf_debug("ISO9660 VRS (%u) found\n",
722 vsd->structType);
723 break;
724 }
725 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
726 VSD_STD_ID_LEN))
727 ; /* nothing */
728 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
729 VSD_STD_ID_LEN)) {
730 brelse(bh);
731 break;
732 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
733 VSD_STD_ID_LEN))
734 nsr02 = sector;
735 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
736 VSD_STD_ID_LEN))
737 nsr03 = sector;
738 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
739 VSD_STD_ID_LEN))
740 ; /* nothing */
741 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
742 VSD_STD_ID_LEN))
743 ; /* nothing */
744 else {
745 /* invalid id : end of volume recognition area */
746 brelse(bh);
747 break;
748 }
749 brelse(bh);
750 }
751
752 if (nsr03)
753 return nsr03;
754 else if (nsr02)
755 return nsr02;
756 else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
757 VSD_FIRST_SECTOR_OFFSET)
758 return -1;
759 else
760 return 0;
761 }
762
udf_find_fileset(struct super_block * sb,struct kernel_lb_addr * fileset,struct kernel_lb_addr * root)763 static int udf_find_fileset(struct super_block *sb,
764 struct kernel_lb_addr *fileset,
765 struct kernel_lb_addr *root)
766 {
767 struct buffer_head *bh = NULL;
768 uint16_t ident;
769
770 if (fileset->logicalBlockNum != 0xFFFFFFFF ||
771 fileset->partitionReferenceNum != 0xFFFF) {
772 bh = udf_read_ptagged(sb, fileset, 0, &ident);
773
774 if (!bh) {
775 return 1;
776 } else if (ident != TAG_IDENT_FSD) {
777 brelse(bh);
778 return 1;
779 }
780
781 udf_debug("Fileset at block=%u, partition=%u\n",
782 fileset->logicalBlockNum,
783 fileset->partitionReferenceNum);
784
785 UDF_SB(sb)->s_partition = fileset->partitionReferenceNum;
786 udf_load_fileset(sb, bh, root);
787 brelse(bh);
788 return 0;
789 }
790 return 1;
791 }
792
793 /*
794 * Load primary Volume Descriptor Sequence
795 *
796 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
797 * should be tried.
798 */
udf_load_pvoldesc(struct super_block * sb,sector_t block)799 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
800 {
801 struct primaryVolDesc *pvoldesc;
802 uint8_t *outstr;
803 struct buffer_head *bh;
804 uint16_t ident;
805 int ret = -ENOMEM;
806 #ifdef UDFFS_DEBUG
807 struct timestamp *ts;
808 #endif
809
810 outstr = kmalloc(128, GFP_NOFS);
811 if (!outstr)
812 return -ENOMEM;
813
814 bh = udf_read_tagged(sb, block, block, &ident);
815 if (!bh) {
816 ret = -EAGAIN;
817 goto out2;
818 }
819
820 if (ident != TAG_IDENT_PVD) {
821 ret = -EIO;
822 goto out_bh;
823 }
824
825 pvoldesc = (struct primaryVolDesc *)bh->b_data;
826
827 udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
828 pvoldesc->recordingDateAndTime);
829 #ifdef UDFFS_DEBUG
830 ts = &pvoldesc->recordingDateAndTime;
831 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
832 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
833 ts->minute, le16_to_cpu(ts->typeAndTimezone));
834 #endif
835
836
837 ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32);
838 if (ret < 0) {
839 strcpy(UDF_SB(sb)->s_volume_ident, "InvalidName");
840 pr_warn("incorrect volume identification, setting to "
841 "'InvalidName'\n");
842 } else {
843 strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
844 }
845 udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
846
847 ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128);
848 if (ret < 0) {
849 ret = 0;
850 goto out_bh;
851 }
852 outstr[ret] = 0;
853 udf_debug("volSetIdent[] = '%s'\n", outstr);
854
855 ret = 0;
856 out_bh:
857 brelse(bh);
858 out2:
859 kfree(outstr);
860 return ret;
861 }
862
udf_find_metadata_inode_efe(struct super_block * sb,u32 meta_file_loc,u32 partition_ref)863 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
864 u32 meta_file_loc, u32 partition_ref)
865 {
866 struct kernel_lb_addr addr;
867 struct inode *metadata_fe;
868
869 addr.logicalBlockNum = meta_file_loc;
870 addr.partitionReferenceNum = partition_ref;
871
872 metadata_fe = udf_iget_special(sb, &addr);
873
874 if (IS_ERR(metadata_fe)) {
875 udf_warn(sb, "metadata inode efe not found\n");
876 return metadata_fe;
877 }
878 if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
879 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
880 iput(metadata_fe);
881 return ERR_PTR(-EIO);
882 }
883
884 return metadata_fe;
885 }
886
udf_load_metadata_files(struct super_block * sb,int partition,int type1_index)887 static int udf_load_metadata_files(struct super_block *sb, int partition,
888 int type1_index)
889 {
890 struct udf_sb_info *sbi = UDF_SB(sb);
891 struct udf_part_map *map;
892 struct udf_meta_data *mdata;
893 struct kernel_lb_addr addr;
894 struct inode *fe;
895
896 map = &sbi->s_partmaps[partition];
897 mdata = &map->s_type_specific.s_metadata;
898 mdata->s_phys_partition_ref = type1_index;
899
900 /* metadata address */
901 udf_debug("Metadata file location: block = %u part = %u\n",
902 mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
903
904 fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
905 mdata->s_phys_partition_ref);
906 if (IS_ERR(fe)) {
907 /* mirror file entry */
908 udf_debug("Mirror metadata file location: block = %u part = %u\n",
909 mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
910
911 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
912 mdata->s_phys_partition_ref);
913
914 if (IS_ERR(fe)) {
915 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
916 return PTR_ERR(fe);
917 }
918 mdata->s_mirror_fe = fe;
919 } else
920 mdata->s_metadata_fe = fe;
921
922
923 /*
924 * bitmap file entry
925 * Note:
926 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
927 */
928 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
929 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
930 addr.partitionReferenceNum = mdata->s_phys_partition_ref;
931
932 udf_debug("Bitmap file location: block = %u part = %u\n",
933 addr.logicalBlockNum, addr.partitionReferenceNum);
934
935 fe = udf_iget_special(sb, &addr);
936 if (IS_ERR(fe)) {
937 if (sb_rdonly(sb))
938 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
939 else {
940 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
941 return PTR_ERR(fe);
942 }
943 } else
944 mdata->s_bitmap_fe = fe;
945 }
946
947 udf_debug("udf_load_metadata_files Ok\n");
948 return 0;
949 }
950
udf_load_fileset(struct super_block * sb,struct buffer_head * bh,struct kernel_lb_addr * root)951 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
952 struct kernel_lb_addr *root)
953 {
954 struct fileSetDesc *fset;
955
956 fset = (struct fileSetDesc *)bh->b_data;
957
958 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
959
960 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
961
962 udf_debug("Rootdir at block=%u, partition=%u\n",
963 root->logicalBlockNum, root->partitionReferenceNum);
964 }
965
udf_compute_nr_groups(struct super_block * sb,u32 partition)966 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
967 {
968 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
969 return DIV_ROUND_UP(map->s_partition_len +
970 (sizeof(struct spaceBitmapDesc) << 3),
971 sb->s_blocksize * 8);
972 }
973
udf_sb_alloc_bitmap(struct super_block * sb,u32 index)974 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
975 {
976 struct udf_bitmap *bitmap;
977 int nr_groups;
978 int size;
979
980 nr_groups = udf_compute_nr_groups(sb, index);
981 size = sizeof(struct udf_bitmap) +
982 (sizeof(struct buffer_head *) * nr_groups);
983
984 if (size <= PAGE_SIZE)
985 bitmap = kzalloc(size, GFP_KERNEL);
986 else
987 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
988
989 if (!bitmap)
990 return NULL;
991
992 bitmap->s_nr_groups = nr_groups;
993 return bitmap;
994 }
995
check_partition_desc(struct super_block * sb,struct partitionDesc * p,struct udf_part_map * map)996 static int check_partition_desc(struct super_block *sb,
997 struct partitionDesc *p,
998 struct udf_part_map *map)
999 {
1000 bool umap, utable, fmap, ftable;
1001 struct partitionHeaderDesc *phd;
1002
1003 switch (le32_to_cpu(p->accessType)) {
1004 case PD_ACCESS_TYPE_READ_ONLY:
1005 case PD_ACCESS_TYPE_WRITE_ONCE:
1006 case PD_ACCESS_TYPE_NONE:
1007 goto force_ro;
1008 }
1009
1010 /* No Partition Header Descriptor? */
1011 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1012 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1013 goto force_ro;
1014
1015 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1016 utable = phd->unallocSpaceTable.extLength;
1017 umap = phd->unallocSpaceBitmap.extLength;
1018 ftable = phd->freedSpaceTable.extLength;
1019 fmap = phd->freedSpaceBitmap.extLength;
1020
1021 /* No allocation info? */
1022 if (!utable && !umap && !ftable && !fmap)
1023 goto force_ro;
1024
1025 /* We don't support blocks that require erasing before overwrite */
1026 if (ftable || fmap)
1027 goto force_ro;
1028 /* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */
1029 if (utable && umap)
1030 goto force_ro;
1031
1032 if (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1033 map->s_partition_type == UDF_VIRTUAL_MAP20)
1034 goto force_ro;
1035
1036 return 0;
1037 force_ro:
1038 if (!sb_rdonly(sb))
1039 return -EACCES;
1040 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1041 return 0;
1042 }
1043
udf_fill_partdesc_info(struct super_block * sb,struct partitionDesc * p,int p_index)1044 static int udf_fill_partdesc_info(struct super_block *sb,
1045 struct partitionDesc *p, int p_index)
1046 {
1047 struct udf_part_map *map;
1048 struct udf_sb_info *sbi = UDF_SB(sb);
1049 struct partitionHeaderDesc *phd;
1050 int err;
1051
1052 map = &sbi->s_partmaps[p_index];
1053
1054 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1055 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1056
1057 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1058 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1059 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1060 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1061 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1062 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1063 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1064 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1065
1066 udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1067 p_index, map->s_partition_type,
1068 map->s_partition_root, map->s_partition_len);
1069
1070 err = check_partition_desc(sb, p, map);
1071 if (err)
1072 return err;
1073
1074 /*
1075 * Skip loading allocation info it we cannot ever write to the fs.
1076 * This is a correctness thing as we may have decided to force ro mount
1077 * to avoid allocation info we don't support.
1078 */
1079 if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
1080 return 0;
1081
1082 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1083 if (phd->unallocSpaceTable.extLength) {
1084 struct kernel_lb_addr loc = {
1085 .logicalBlockNum = le32_to_cpu(
1086 phd->unallocSpaceTable.extPosition),
1087 .partitionReferenceNum = p_index,
1088 };
1089 struct inode *inode;
1090
1091 inode = udf_iget_special(sb, &loc);
1092 if (IS_ERR(inode)) {
1093 udf_debug("cannot load unallocSpaceTable (part %d)\n",
1094 p_index);
1095 return PTR_ERR(inode);
1096 }
1097 map->s_uspace.s_table = inode;
1098 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1099 udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1100 p_index, map->s_uspace.s_table->i_ino);
1101 }
1102
1103 if (phd->unallocSpaceBitmap.extLength) {
1104 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1105 if (!bitmap)
1106 return -ENOMEM;
1107 map->s_uspace.s_bitmap = bitmap;
1108 bitmap->s_extPosition = le32_to_cpu(
1109 phd->unallocSpaceBitmap.extPosition);
1110 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1111 udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1112 p_index, bitmap->s_extPosition);
1113 }
1114
1115 if (phd->freedSpaceTable.extLength) {
1116 struct kernel_lb_addr loc = {
1117 .logicalBlockNum = le32_to_cpu(
1118 phd->freedSpaceTable.extPosition),
1119 .partitionReferenceNum = p_index,
1120 };
1121 struct inode *inode;
1122
1123 inode = udf_iget_special(sb, &loc);
1124 if (IS_ERR(inode)) {
1125 udf_debug("cannot load freedSpaceTable (part %d)\n",
1126 p_index);
1127 return PTR_ERR(inode);
1128 }
1129 map->s_fspace.s_table = inode;
1130 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1131 udf_debug("freedSpaceTable (part %d) @ %lu\n",
1132 p_index, map->s_fspace.s_table->i_ino);
1133 }
1134
1135 if (phd->freedSpaceBitmap.extLength) {
1136 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1137 if (!bitmap)
1138 return -ENOMEM;
1139 map->s_fspace.s_bitmap = bitmap;
1140 bitmap->s_extPosition = le32_to_cpu(
1141 phd->freedSpaceBitmap.extPosition);
1142 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1143 udf_debug("freedSpaceBitmap (part %d) @ %u\n",
1144 p_index, bitmap->s_extPosition);
1145 }
1146 return 0;
1147 }
1148
udf_find_vat_block(struct super_block * sb,int p_index,int type1_index,sector_t start_block)1149 static void udf_find_vat_block(struct super_block *sb, int p_index,
1150 int type1_index, sector_t start_block)
1151 {
1152 struct udf_sb_info *sbi = UDF_SB(sb);
1153 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1154 sector_t vat_block;
1155 struct kernel_lb_addr ino;
1156 struct inode *inode;
1157
1158 /*
1159 * VAT file entry is in the last recorded block. Some broken disks have
1160 * it a few blocks before so try a bit harder...
1161 */
1162 ino.partitionReferenceNum = type1_index;
1163 for (vat_block = start_block;
1164 vat_block >= map->s_partition_root &&
1165 vat_block >= start_block - 3; vat_block--) {
1166 ino.logicalBlockNum = vat_block - map->s_partition_root;
1167 inode = udf_iget_special(sb, &ino);
1168 if (!IS_ERR(inode)) {
1169 sbi->s_vat_inode = inode;
1170 break;
1171 }
1172 }
1173 }
1174
udf_load_vat(struct super_block * sb,int p_index,int type1_index)1175 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1176 {
1177 struct udf_sb_info *sbi = UDF_SB(sb);
1178 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1179 struct buffer_head *bh = NULL;
1180 struct udf_inode_info *vati;
1181 uint32_t pos;
1182 struct virtualAllocationTable20 *vat20;
1183 sector_t blocks = i_size_read(sb->s_bdev->bd_inode) >>
1184 sb->s_blocksize_bits;
1185
1186 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1187 if (!sbi->s_vat_inode &&
1188 sbi->s_last_block != blocks - 1) {
1189 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1190 (unsigned long)sbi->s_last_block,
1191 (unsigned long)blocks - 1);
1192 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1193 }
1194 if (!sbi->s_vat_inode)
1195 return -EIO;
1196
1197 if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1198 map->s_type_specific.s_virtual.s_start_offset = 0;
1199 map->s_type_specific.s_virtual.s_num_entries =
1200 (sbi->s_vat_inode->i_size - 36) >> 2;
1201 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1202 vati = UDF_I(sbi->s_vat_inode);
1203 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1204 pos = udf_block_map(sbi->s_vat_inode, 0);
1205 bh = sb_bread(sb, pos);
1206 if (!bh)
1207 return -EIO;
1208 vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1209 } else {
1210 vat20 = (struct virtualAllocationTable20 *)
1211 vati->i_data;
1212 }
1213
1214 map->s_type_specific.s_virtual.s_start_offset =
1215 le16_to_cpu(vat20->lengthHeader);
1216 map->s_type_specific.s_virtual.s_num_entries =
1217 (sbi->s_vat_inode->i_size -
1218 map->s_type_specific.s_virtual.
1219 s_start_offset) >> 2;
1220 brelse(bh);
1221 }
1222 return 0;
1223 }
1224
1225 /*
1226 * Load partition descriptor block
1227 *
1228 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1229 * sequence.
1230 */
udf_load_partdesc(struct super_block * sb,sector_t block)1231 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1232 {
1233 struct buffer_head *bh;
1234 struct partitionDesc *p;
1235 struct udf_part_map *map;
1236 struct udf_sb_info *sbi = UDF_SB(sb);
1237 int i, type1_idx;
1238 uint16_t partitionNumber;
1239 uint16_t ident;
1240 int ret;
1241
1242 bh = udf_read_tagged(sb, block, block, &ident);
1243 if (!bh)
1244 return -EAGAIN;
1245 if (ident != TAG_IDENT_PD) {
1246 ret = 0;
1247 goto out_bh;
1248 }
1249
1250 p = (struct partitionDesc *)bh->b_data;
1251 partitionNumber = le16_to_cpu(p->partitionNumber);
1252
1253 /* First scan for TYPE1 and SPARABLE partitions */
1254 for (i = 0; i < sbi->s_partitions; i++) {
1255 map = &sbi->s_partmaps[i];
1256 udf_debug("Searching map: (%u == %u)\n",
1257 map->s_partition_num, partitionNumber);
1258 if (map->s_partition_num == partitionNumber &&
1259 (map->s_partition_type == UDF_TYPE1_MAP15 ||
1260 map->s_partition_type == UDF_SPARABLE_MAP15))
1261 break;
1262 }
1263
1264 if (i >= sbi->s_partitions) {
1265 udf_debug("Partition (%u) not found in partition map\n",
1266 partitionNumber);
1267 ret = 0;
1268 goto out_bh;
1269 }
1270
1271 ret = udf_fill_partdesc_info(sb, p, i);
1272 if (ret < 0)
1273 goto out_bh;
1274
1275 /*
1276 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1277 * PHYSICAL partitions are already set up
1278 */
1279 type1_idx = i;
1280 #ifdef UDFFS_DEBUG
1281 map = NULL; /* supress 'maybe used uninitialized' warning */
1282 #endif
1283 for (i = 0; i < sbi->s_partitions; i++) {
1284 map = &sbi->s_partmaps[i];
1285
1286 if (map->s_partition_num == partitionNumber &&
1287 (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1288 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1289 map->s_partition_type == UDF_METADATA_MAP25))
1290 break;
1291 }
1292
1293 if (i >= sbi->s_partitions) {
1294 ret = 0;
1295 goto out_bh;
1296 }
1297
1298 ret = udf_fill_partdesc_info(sb, p, i);
1299 if (ret < 0)
1300 goto out_bh;
1301
1302 if (map->s_partition_type == UDF_METADATA_MAP25) {
1303 ret = udf_load_metadata_files(sb, i, type1_idx);
1304 if (ret < 0) {
1305 udf_err(sb, "error loading MetaData partition map %d\n",
1306 i);
1307 goto out_bh;
1308 }
1309 } else {
1310 /*
1311 * If we have a partition with virtual map, we don't handle
1312 * writing to it (we overwrite blocks instead of relocating
1313 * them).
1314 */
1315 if (!sb_rdonly(sb)) {
1316 ret = -EACCES;
1317 goto out_bh;
1318 }
1319 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1320 ret = udf_load_vat(sb, i, type1_idx);
1321 if (ret < 0)
1322 goto out_bh;
1323 }
1324 ret = 0;
1325 out_bh:
1326 /* In case loading failed, we handle cleanup in udf_fill_super */
1327 brelse(bh);
1328 return ret;
1329 }
1330
udf_load_sparable_map(struct super_block * sb,struct udf_part_map * map,struct sparablePartitionMap * spm)1331 static int udf_load_sparable_map(struct super_block *sb,
1332 struct udf_part_map *map,
1333 struct sparablePartitionMap *spm)
1334 {
1335 uint32_t loc;
1336 uint16_t ident;
1337 struct sparingTable *st;
1338 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1339 int i;
1340 struct buffer_head *bh;
1341
1342 map->s_partition_type = UDF_SPARABLE_MAP15;
1343 sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1344 if (!is_power_of_2(sdata->s_packet_len)) {
1345 udf_err(sb, "error loading logical volume descriptor: "
1346 "Invalid packet length %u\n",
1347 (unsigned)sdata->s_packet_len);
1348 return -EIO;
1349 }
1350 if (spm->numSparingTables > 4) {
1351 udf_err(sb, "error loading logical volume descriptor: "
1352 "Too many sparing tables (%d)\n",
1353 (int)spm->numSparingTables);
1354 return -EIO;
1355 }
1356 if (le32_to_cpu(spm->sizeSparingTable) > sb->s_blocksize) {
1357 udf_err(sb, "error loading logical volume descriptor: "
1358 "Too big sparing table size (%u)\n",
1359 le32_to_cpu(spm->sizeSparingTable));
1360 return -EIO;
1361 }
1362
1363 for (i = 0; i < spm->numSparingTables; i++) {
1364 loc = le32_to_cpu(spm->locSparingTable[i]);
1365 bh = udf_read_tagged(sb, loc, loc, &ident);
1366 if (!bh)
1367 continue;
1368
1369 st = (struct sparingTable *)bh->b_data;
1370 if (ident != 0 ||
1371 strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1372 strlen(UDF_ID_SPARING)) ||
1373 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1374 sb->s_blocksize) {
1375 brelse(bh);
1376 continue;
1377 }
1378
1379 sdata->s_spar_map[i] = bh;
1380 }
1381 map->s_partition_func = udf_get_pblock_spar15;
1382 return 0;
1383 }
1384
udf_load_logicalvol(struct super_block * sb,sector_t block,struct kernel_lb_addr * fileset)1385 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1386 struct kernel_lb_addr *fileset)
1387 {
1388 struct logicalVolDesc *lvd;
1389 int i, offset;
1390 uint8_t type;
1391 struct udf_sb_info *sbi = UDF_SB(sb);
1392 struct genericPartitionMap *gpm;
1393 uint16_t ident;
1394 struct buffer_head *bh;
1395 unsigned int table_len;
1396 int ret;
1397
1398 bh = udf_read_tagged(sb, block, block, &ident);
1399 if (!bh)
1400 return -EAGAIN;
1401 BUG_ON(ident != TAG_IDENT_LVD);
1402 lvd = (struct logicalVolDesc *)bh->b_data;
1403 table_len = le32_to_cpu(lvd->mapTableLength);
1404 if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1405 udf_err(sb, "error loading logical volume descriptor: "
1406 "Partition table too long (%u > %lu)\n", table_len,
1407 sb->s_blocksize - sizeof(*lvd));
1408 ret = -EIO;
1409 goto out_bh;
1410 }
1411
1412 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1413 if (ret)
1414 goto out_bh;
1415
1416 for (i = 0, offset = 0;
1417 i < sbi->s_partitions && offset < table_len;
1418 i++, offset += gpm->partitionMapLength) {
1419 struct udf_part_map *map = &sbi->s_partmaps[i];
1420 gpm = (struct genericPartitionMap *)
1421 &(lvd->partitionMaps[offset]);
1422 type = gpm->partitionMapType;
1423 if (type == 1) {
1424 struct genericPartitionMap1 *gpm1 =
1425 (struct genericPartitionMap1 *)gpm;
1426 map->s_partition_type = UDF_TYPE1_MAP15;
1427 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1428 map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1429 map->s_partition_func = NULL;
1430 } else if (type == 2) {
1431 struct udfPartitionMap2 *upm2 =
1432 (struct udfPartitionMap2 *)gpm;
1433 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1434 strlen(UDF_ID_VIRTUAL))) {
1435 u16 suf =
1436 le16_to_cpu(((__le16 *)upm2->partIdent.
1437 identSuffix)[0]);
1438 if (suf < 0x0200) {
1439 map->s_partition_type =
1440 UDF_VIRTUAL_MAP15;
1441 map->s_partition_func =
1442 udf_get_pblock_virt15;
1443 } else {
1444 map->s_partition_type =
1445 UDF_VIRTUAL_MAP20;
1446 map->s_partition_func =
1447 udf_get_pblock_virt20;
1448 }
1449 } else if (!strncmp(upm2->partIdent.ident,
1450 UDF_ID_SPARABLE,
1451 strlen(UDF_ID_SPARABLE))) {
1452 ret = udf_load_sparable_map(sb, map,
1453 (struct sparablePartitionMap *)gpm);
1454 if (ret < 0)
1455 goto out_bh;
1456 } else if (!strncmp(upm2->partIdent.ident,
1457 UDF_ID_METADATA,
1458 strlen(UDF_ID_METADATA))) {
1459 struct udf_meta_data *mdata =
1460 &map->s_type_specific.s_metadata;
1461 struct metadataPartitionMap *mdm =
1462 (struct metadataPartitionMap *)
1463 &(lvd->partitionMaps[offset]);
1464 udf_debug("Parsing Logical vol part %d type %u id=%s\n",
1465 i, type, UDF_ID_METADATA);
1466
1467 map->s_partition_type = UDF_METADATA_MAP25;
1468 map->s_partition_func = udf_get_pblock_meta25;
1469
1470 mdata->s_meta_file_loc =
1471 le32_to_cpu(mdm->metadataFileLoc);
1472 mdata->s_mirror_file_loc =
1473 le32_to_cpu(mdm->metadataMirrorFileLoc);
1474 mdata->s_bitmap_file_loc =
1475 le32_to_cpu(mdm->metadataBitmapFileLoc);
1476 mdata->s_alloc_unit_size =
1477 le32_to_cpu(mdm->allocUnitSize);
1478 mdata->s_align_unit_size =
1479 le16_to_cpu(mdm->alignUnitSize);
1480 if (mdm->flags & 0x01)
1481 mdata->s_flags |= MF_DUPLICATE_MD;
1482
1483 udf_debug("Metadata Ident suffix=0x%x\n",
1484 le16_to_cpu(*(__le16 *)
1485 mdm->partIdent.identSuffix));
1486 udf_debug("Metadata part num=%u\n",
1487 le16_to_cpu(mdm->partitionNum));
1488 udf_debug("Metadata part alloc unit size=%u\n",
1489 le32_to_cpu(mdm->allocUnitSize));
1490 udf_debug("Metadata file loc=%u\n",
1491 le32_to_cpu(mdm->metadataFileLoc));
1492 udf_debug("Mirror file loc=%u\n",
1493 le32_to_cpu(mdm->metadataMirrorFileLoc));
1494 udf_debug("Bitmap file loc=%u\n",
1495 le32_to_cpu(mdm->metadataBitmapFileLoc));
1496 udf_debug("Flags: %d %u\n",
1497 mdata->s_flags, mdm->flags);
1498 } else {
1499 udf_debug("Unknown ident: %s\n",
1500 upm2->partIdent.ident);
1501 continue;
1502 }
1503 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1504 map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1505 }
1506 udf_debug("Partition (%d:%u) type %u on volume %u\n",
1507 i, map->s_partition_num, type, map->s_volumeseqnum);
1508 }
1509
1510 if (fileset) {
1511 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1512
1513 *fileset = lelb_to_cpu(la->extLocation);
1514 udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1515 fileset->logicalBlockNum,
1516 fileset->partitionReferenceNum);
1517 }
1518 if (lvd->integritySeqExt.extLength)
1519 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1520 ret = 0;
1521 out_bh:
1522 brelse(bh);
1523 return ret;
1524 }
1525
1526 /*
1527 * Find the prevailing Logical Volume Integrity Descriptor.
1528 */
udf_load_logicalvolint(struct super_block * sb,struct kernel_extent_ad loc)1529 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1530 {
1531 struct buffer_head *bh, *final_bh;
1532 uint16_t ident;
1533 struct udf_sb_info *sbi = UDF_SB(sb);
1534 struct logicalVolIntegrityDesc *lvid;
1535 int indirections = 0;
1536 u32 parts, impuselen;
1537
1538 while (++indirections <= UDF_MAX_LVID_NESTING) {
1539 final_bh = NULL;
1540 while (loc.extLength > 0 &&
1541 (bh = udf_read_tagged(sb, loc.extLocation,
1542 loc.extLocation, &ident))) {
1543 if (ident != TAG_IDENT_LVID) {
1544 brelse(bh);
1545 break;
1546 }
1547
1548 brelse(final_bh);
1549 final_bh = bh;
1550
1551 loc.extLength -= sb->s_blocksize;
1552 loc.extLocation++;
1553 }
1554
1555 if (!final_bh)
1556 return;
1557
1558 brelse(sbi->s_lvid_bh);
1559 sbi->s_lvid_bh = final_bh;
1560
1561 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1562 if (lvid->nextIntegrityExt.extLength == 0)
1563 goto check;
1564
1565 loc = leea_to_cpu(lvid->nextIntegrityExt);
1566 }
1567
1568 udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1569 UDF_MAX_LVID_NESTING);
1570 out_err:
1571 brelse(sbi->s_lvid_bh);
1572 sbi->s_lvid_bh = NULL;
1573 return;
1574 check:
1575 parts = le32_to_cpu(lvid->numOfPartitions);
1576 impuselen = le32_to_cpu(lvid->lengthOfImpUse);
1577 if (parts >= sb->s_blocksize || impuselen >= sb->s_blocksize ||
1578 sizeof(struct logicalVolIntegrityDesc) + impuselen +
1579 2 * parts * sizeof(u32) > sb->s_blocksize) {
1580 udf_warn(sb, "Corrupted LVID (parts=%u, impuselen=%u), "
1581 "ignoring.\n", parts, impuselen);
1582 goto out_err;
1583 }
1584 }
1585
1586 /*
1587 * Step for reallocation of table of partition descriptor sequence numbers.
1588 * Must be power of 2.
1589 */
1590 #define PART_DESC_ALLOC_STEP 32
1591
1592 struct part_desc_seq_scan_data {
1593 struct udf_vds_record rec;
1594 u32 partnum;
1595 };
1596
1597 struct desc_seq_scan_data {
1598 struct udf_vds_record vds[VDS_POS_LENGTH];
1599 unsigned int size_part_descs;
1600 unsigned int num_part_descs;
1601 struct part_desc_seq_scan_data *part_descs_loc;
1602 };
1603
handle_partition_descriptor(struct buffer_head * bh,struct desc_seq_scan_data * data)1604 static struct udf_vds_record *handle_partition_descriptor(
1605 struct buffer_head *bh,
1606 struct desc_seq_scan_data *data)
1607 {
1608 struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1609 int partnum;
1610 int i;
1611
1612 partnum = le16_to_cpu(desc->partitionNumber);
1613 for (i = 0; i < data->num_part_descs; i++)
1614 if (partnum == data->part_descs_loc[i].partnum)
1615 return &(data->part_descs_loc[i].rec);
1616 if (data->num_part_descs >= data->size_part_descs) {
1617 struct part_desc_seq_scan_data *new_loc;
1618 unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1619
1620 new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL);
1621 if (!new_loc)
1622 return ERR_PTR(-ENOMEM);
1623 memcpy(new_loc, data->part_descs_loc,
1624 data->size_part_descs * sizeof(*new_loc));
1625 kfree(data->part_descs_loc);
1626 data->part_descs_loc = new_loc;
1627 data->size_part_descs = new_size;
1628 }
1629 return &(data->part_descs_loc[data->num_part_descs++].rec);
1630 }
1631
1632
get_volume_descriptor_record(uint16_t ident,struct buffer_head * bh,struct desc_seq_scan_data * data)1633 static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1634 struct buffer_head *bh, struct desc_seq_scan_data *data)
1635 {
1636 switch (ident) {
1637 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1638 return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1639 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1640 return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1641 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1642 return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1643 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1644 return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1645 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1646 return handle_partition_descriptor(bh, data);
1647 }
1648 return NULL;
1649 }
1650
1651 /*
1652 * Process a main/reserve volume descriptor sequence.
1653 * @block First block of first extent of the sequence.
1654 * @lastblock Lastblock of first extent of the sequence.
1655 * @fileset There we store extent containing root fileset
1656 *
1657 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1658 * sequence
1659 */
udf_process_sequence(struct super_block * sb,sector_t block,sector_t lastblock,struct kernel_lb_addr * fileset)1660 static noinline int udf_process_sequence(
1661 struct super_block *sb,
1662 sector_t block, sector_t lastblock,
1663 struct kernel_lb_addr *fileset)
1664 {
1665 struct buffer_head *bh = NULL;
1666 struct udf_vds_record *curr;
1667 struct generic_desc *gd;
1668 struct volDescPtr *vdp;
1669 bool done = false;
1670 uint32_t vdsn;
1671 uint16_t ident;
1672 int ret;
1673 unsigned int indirections = 0;
1674 struct desc_seq_scan_data data;
1675 unsigned int i;
1676
1677 memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1678 data.size_part_descs = PART_DESC_ALLOC_STEP;
1679 data.num_part_descs = 0;
1680 data.part_descs_loc = kcalloc(data.size_part_descs,
1681 sizeof(*data.part_descs_loc),
1682 GFP_KERNEL);
1683 if (!data.part_descs_loc)
1684 return -ENOMEM;
1685
1686 /*
1687 * Read the main descriptor sequence and find which descriptors
1688 * are in it.
1689 */
1690 for (; (!done && block <= lastblock); block++) {
1691 bh = udf_read_tagged(sb, block, block, &ident);
1692 if (!bh)
1693 break;
1694
1695 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1696 gd = (struct generic_desc *)bh->b_data;
1697 vdsn = le32_to_cpu(gd->volDescSeqNum);
1698 switch (ident) {
1699 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1700 if (++indirections > UDF_MAX_TD_NESTING) {
1701 udf_err(sb, "too many Volume Descriptor "
1702 "Pointers (max %u supported)\n",
1703 UDF_MAX_TD_NESTING);
1704 brelse(bh);
1705 ret = -EIO;
1706 goto out;
1707 }
1708
1709 vdp = (struct volDescPtr *)bh->b_data;
1710 block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1711 lastblock = le32_to_cpu(
1712 vdp->nextVolDescSeqExt.extLength) >>
1713 sb->s_blocksize_bits;
1714 lastblock += block - 1;
1715 /* For loop is going to increment 'block' again */
1716 block--;
1717 break;
1718 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1719 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1720 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1721 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1722 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1723 curr = get_volume_descriptor_record(ident, bh, &data);
1724 if (IS_ERR(curr)) {
1725 brelse(bh);
1726 ret = PTR_ERR(curr);
1727 goto out;
1728 }
1729 /* Descriptor we don't care about? */
1730 if (!curr)
1731 break;
1732 if (vdsn >= curr->volDescSeqNum) {
1733 curr->volDescSeqNum = vdsn;
1734 curr->block = block;
1735 }
1736 break;
1737 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1738 done = true;
1739 break;
1740 }
1741 brelse(bh);
1742 }
1743 /*
1744 * Now read interesting descriptors again and process them
1745 * in a suitable order
1746 */
1747 if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1748 udf_err(sb, "Primary Volume Descriptor not found!\n");
1749 ret = -EAGAIN;
1750 goto out;
1751 }
1752 ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1753 if (ret < 0)
1754 goto out;
1755
1756 if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1757 ret = udf_load_logicalvol(sb,
1758 data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1759 fileset);
1760 if (ret < 0)
1761 goto out;
1762 }
1763
1764 /* Now handle prevailing Partition Descriptors */
1765 for (i = 0; i < data.num_part_descs; i++) {
1766 ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block);
1767 if (ret < 0)
1768 goto out;
1769 }
1770 ret = 0;
1771 out:
1772 kfree(data.part_descs_loc);
1773 return ret;
1774 }
1775
1776 /*
1777 * Load Volume Descriptor Sequence described by anchor in bh
1778 *
1779 * Returns <0 on error, 0 on success
1780 */
udf_load_sequence(struct super_block * sb,struct buffer_head * bh,struct kernel_lb_addr * fileset)1781 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1782 struct kernel_lb_addr *fileset)
1783 {
1784 struct anchorVolDescPtr *anchor;
1785 sector_t main_s, main_e, reserve_s, reserve_e;
1786 int ret;
1787
1788 anchor = (struct anchorVolDescPtr *)bh->b_data;
1789
1790 /* Locate the main sequence */
1791 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1792 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1793 main_e = main_e >> sb->s_blocksize_bits;
1794 main_e += main_s - 1;
1795
1796 /* Locate the reserve sequence */
1797 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1798 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1799 reserve_e = reserve_e >> sb->s_blocksize_bits;
1800 reserve_e += reserve_s - 1;
1801
1802 /* Process the main & reserve sequences */
1803 /* responsible for finding the PartitionDesc(s) */
1804 ret = udf_process_sequence(sb, main_s, main_e, fileset);
1805 if (ret != -EAGAIN)
1806 return ret;
1807 udf_sb_free_partitions(sb);
1808 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1809 if (ret < 0) {
1810 udf_sb_free_partitions(sb);
1811 /* No sequence was OK, return -EIO */
1812 if (ret == -EAGAIN)
1813 ret = -EIO;
1814 }
1815 return ret;
1816 }
1817
1818 /*
1819 * Check whether there is an anchor block in the given block and
1820 * load Volume Descriptor Sequence if so.
1821 *
1822 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1823 * block
1824 */
udf_check_anchor_block(struct super_block * sb,sector_t block,struct kernel_lb_addr * fileset)1825 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1826 struct kernel_lb_addr *fileset)
1827 {
1828 struct buffer_head *bh;
1829 uint16_t ident;
1830 int ret;
1831
1832 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1833 udf_fixed_to_variable(block) >=
1834 i_size_read(sb->s_bdev->bd_inode) >> sb->s_blocksize_bits)
1835 return -EAGAIN;
1836
1837 bh = udf_read_tagged(sb, block, block, &ident);
1838 if (!bh)
1839 return -EAGAIN;
1840 if (ident != TAG_IDENT_AVDP) {
1841 brelse(bh);
1842 return -EAGAIN;
1843 }
1844 ret = udf_load_sequence(sb, bh, fileset);
1845 brelse(bh);
1846 return ret;
1847 }
1848
1849 /*
1850 * Search for an anchor volume descriptor pointer.
1851 *
1852 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1853 * of anchors.
1854 */
udf_scan_anchors(struct super_block * sb,sector_t * lastblock,struct kernel_lb_addr * fileset)1855 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1856 struct kernel_lb_addr *fileset)
1857 {
1858 sector_t last[6];
1859 int i;
1860 struct udf_sb_info *sbi = UDF_SB(sb);
1861 int last_count = 0;
1862 int ret;
1863
1864 /* First try user provided anchor */
1865 if (sbi->s_anchor) {
1866 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1867 if (ret != -EAGAIN)
1868 return ret;
1869 }
1870 /*
1871 * according to spec, anchor is in either:
1872 * block 256
1873 * lastblock-256
1874 * lastblock
1875 * however, if the disc isn't closed, it could be 512.
1876 */
1877 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1878 if (ret != -EAGAIN)
1879 return ret;
1880 /*
1881 * The trouble is which block is the last one. Drives often misreport
1882 * this so we try various possibilities.
1883 */
1884 last[last_count++] = *lastblock;
1885 if (*lastblock >= 1)
1886 last[last_count++] = *lastblock - 1;
1887 last[last_count++] = *lastblock + 1;
1888 if (*lastblock >= 2)
1889 last[last_count++] = *lastblock - 2;
1890 if (*lastblock >= 150)
1891 last[last_count++] = *lastblock - 150;
1892 if (*lastblock >= 152)
1893 last[last_count++] = *lastblock - 152;
1894
1895 for (i = 0; i < last_count; i++) {
1896 if (last[i] >= i_size_read(sb->s_bdev->bd_inode) >>
1897 sb->s_blocksize_bits)
1898 continue;
1899 ret = udf_check_anchor_block(sb, last[i], fileset);
1900 if (ret != -EAGAIN) {
1901 if (!ret)
1902 *lastblock = last[i];
1903 return ret;
1904 }
1905 if (last[i] < 256)
1906 continue;
1907 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1908 if (ret != -EAGAIN) {
1909 if (!ret)
1910 *lastblock = last[i];
1911 return ret;
1912 }
1913 }
1914
1915 /* Finally try block 512 in case media is open */
1916 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1917 }
1918
1919 /*
1920 * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1921 * area specified by it. The function expects sbi->s_lastblock to be the last
1922 * block on the media.
1923 *
1924 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1925 * was not found.
1926 */
udf_find_anchor(struct super_block * sb,struct kernel_lb_addr * fileset)1927 static int udf_find_anchor(struct super_block *sb,
1928 struct kernel_lb_addr *fileset)
1929 {
1930 struct udf_sb_info *sbi = UDF_SB(sb);
1931 sector_t lastblock = sbi->s_last_block;
1932 int ret;
1933
1934 ret = udf_scan_anchors(sb, &lastblock, fileset);
1935 if (ret != -EAGAIN)
1936 goto out;
1937
1938 /* No anchor found? Try VARCONV conversion of block numbers */
1939 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1940 lastblock = udf_variable_to_fixed(sbi->s_last_block);
1941 /* Firstly, we try to not convert number of the last block */
1942 ret = udf_scan_anchors(sb, &lastblock, fileset);
1943 if (ret != -EAGAIN)
1944 goto out;
1945
1946 lastblock = sbi->s_last_block;
1947 /* Secondly, we try with converted number of the last block */
1948 ret = udf_scan_anchors(sb, &lastblock, fileset);
1949 if (ret < 0) {
1950 /* VARCONV didn't help. Clear it. */
1951 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1952 }
1953 out:
1954 if (ret == 0)
1955 sbi->s_last_block = lastblock;
1956 return ret;
1957 }
1958
1959 /*
1960 * Check Volume Structure Descriptor, find Anchor block and load Volume
1961 * Descriptor Sequence.
1962 *
1963 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1964 * block was not found.
1965 */
udf_load_vrs(struct super_block * sb,struct udf_options * uopt,int silent,struct kernel_lb_addr * fileset)1966 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1967 int silent, struct kernel_lb_addr *fileset)
1968 {
1969 struct udf_sb_info *sbi = UDF_SB(sb);
1970 loff_t nsr_off;
1971 int ret;
1972
1973 if (!sb_set_blocksize(sb, uopt->blocksize)) {
1974 if (!silent)
1975 udf_warn(sb, "Bad block size\n");
1976 return -EINVAL;
1977 }
1978 sbi->s_last_block = uopt->lastblock;
1979 if (!uopt->novrs) {
1980 /* Check that it is NSR02 compliant */
1981 nsr_off = udf_check_vsd(sb);
1982 if (!nsr_off) {
1983 if (!silent)
1984 udf_warn(sb, "No VRS found\n");
1985 return -EINVAL;
1986 }
1987 if (nsr_off == -1)
1988 udf_debug("Failed to read sector at offset %d. "
1989 "Assuming open disc. Skipping validity "
1990 "check\n", VSD_FIRST_SECTOR_OFFSET);
1991 if (!sbi->s_last_block)
1992 sbi->s_last_block = udf_get_last_block(sb);
1993 } else {
1994 udf_debug("Validity check skipped because of novrs option\n");
1995 }
1996
1997 /* Look for anchor block and load Volume Descriptor Sequence */
1998 sbi->s_anchor = uopt->anchor;
1999 ret = udf_find_anchor(sb, fileset);
2000 if (ret < 0) {
2001 if (!silent && ret == -EAGAIN)
2002 udf_warn(sb, "No anchor found\n");
2003 return ret;
2004 }
2005 return 0;
2006 }
2007
udf_open_lvid(struct super_block * sb)2008 static void udf_open_lvid(struct super_block *sb)
2009 {
2010 struct udf_sb_info *sbi = UDF_SB(sb);
2011 struct buffer_head *bh = sbi->s_lvid_bh;
2012 struct logicalVolIntegrityDesc *lvid;
2013 struct logicalVolIntegrityDescImpUse *lvidiu;
2014 struct timespec64 ts;
2015
2016 if (!bh)
2017 return;
2018 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2019 lvidiu = udf_sb_lvidiu(sb);
2020 if (!lvidiu)
2021 return;
2022
2023 mutex_lock(&sbi->s_alloc_mutex);
2024 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2025 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2026 ktime_get_real_ts64(&ts);
2027 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2028 if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
2029 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2030 else
2031 UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
2032
2033 lvid->descTag.descCRC = cpu_to_le16(
2034 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2035 le16_to_cpu(lvid->descTag.descCRCLength)));
2036
2037 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2038 mark_buffer_dirty(bh);
2039 sbi->s_lvid_dirty = 0;
2040 mutex_unlock(&sbi->s_alloc_mutex);
2041 /* Make opening of filesystem visible on the media immediately */
2042 sync_dirty_buffer(bh);
2043 }
2044
udf_close_lvid(struct super_block * sb)2045 static void udf_close_lvid(struct super_block *sb)
2046 {
2047 struct udf_sb_info *sbi = UDF_SB(sb);
2048 struct buffer_head *bh = sbi->s_lvid_bh;
2049 struct logicalVolIntegrityDesc *lvid;
2050 struct logicalVolIntegrityDescImpUse *lvidiu;
2051 struct timespec64 ts;
2052
2053 if (!bh)
2054 return;
2055 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2056 lvidiu = udf_sb_lvidiu(sb);
2057 if (!lvidiu)
2058 return;
2059
2060 mutex_lock(&sbi->s_alloc_mutex);
2061 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2062 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2063 ktime_get_real_ts64(&ts);
2064 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2065 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2066 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2067 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2068 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2069 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2070 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2071 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
2072 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2073
2074 lvid->descTag.descCRC = cpu_to_le16(
2075 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2076 le16_to_cpu(lvid->descTag.descCRCLength)));
2077
2078 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2079 /*
2080 * We set buffer uptodate unconditionally here to avoid spurious
2081 * warnings from mark_buffer_dirty() when previous EIO has marked
2082 * the buffer as !uptodate
2083 */
2084 set_buffer_uptodate(bh);
2085 mark_buffer_dirty(bh);
2086 sbi->s_lvid_dirty = 0;
2087 mutex_unlock(&sbi->s_alloc_mutex);
2088 /* Make closing of filesystem visible on the media immediately */
2089 sync_dirty_buffer(bh);
2090 }
2091
lvid_get_unique_id(struct super_block * sb)2092 u64 lvid_get_unique_id(struct super_block *sb)
2093 {
2094 struct buffer_head *bh;
2095 struct udf_sb_info *sbi = UDF_SB(sb);
2096 struct logicalVolIntegrityDesc *lvid;
2097 struct logicalVolHeaderDesc *lvhd;
2098 u64 uniqueID;
2099 u64 ret;
2100
2101 bh = sbi->s_lvid_bh;
2102 if (!bh)
2103 return 0;
2104
2105 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2106 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2107
2108 mutex_lock(&sbi->s_alloc_mutex);
2109 ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2110 if (!(++uniqueID & 0xFFFFFFFF))
2111 uniqueID += 16;
2112 lvhd->uniqueID = cpu_to_le64(uniqueID);
2113 mutex_unlock(&sbi->s_alloc_mutex);
2114 mark_buffer_dirty(bh);
2115
2116 return ret;
2117 }
2118
udf_fill_super(struct super_block * sb,void * options,int silent)2119 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2120 {
2121 int ret = -EINVAL;
2122 struct inode *inode = NULL;
2123 struct udf_options uopt;
2124 struct kernel_lb_addr rootdir, fileset;
2125 struct udf_sb_info *sbi;
2126 bool lvid_open = false;
2127
2128 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2129 /* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2130 uopt.uid = make_kuid(current_user_ns(), overflowuid);
2131 uopt.gid = make_kgid(current_user_ns(), overflowgid);
2132 uopt.umask = 0;
2133 uopt.fmode = UDF_INVALID_MODE;
2134 uopt.dmode = UDF_INVALID_MODE;
2135 uopt.nls_map = NULL;
2136
2137 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2138 if (!sbi)
2139 return -ENOMEM;
2140
2141 sb->s_fs_info = sbi;
2142
2143 mutex_init(&sbi->s_alloc_mutex);
2144
2145 if (!udf_parse_options((char *)options, &uopt, false))
2146 goto parse_options_failure;
2147
2148 if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2149 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2150 udf_err(sb, "utf8 cannot be combined with iocharset\n");
2151 goto parse_options_failure;
2152 }
2153 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2154 uopt.nls_map = load_nls_default();
2155 if (!uopt.nls_map)
2156 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2157 else
2158 udf_debug("Using default NLS map\n");
2159 }
2160 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2161 uopt.flags |= (1 << UDF_FLAG_UTF8);
2162
2163 fileset.logicalBlockNum = 0xFFFFFFFF;
2164 fileset.partitionReferenceNum = 0xFFFF;
2165
2166 sbi->s_flags = uopt.flags;
2167 sbi->s_uid = uopt.uid;
2168 sbi->s_gid = uopt.gid;
2169 sbi->s_umask = uopt.umask;
2170 sbi->s_fmode = uopt.fmode;
2171 sbi->s_dmode = uopt.dmode;
2172 sbi->s_nls_map = uopt.nls_map;
2173 rwlock_init(&sbi->s_cred_lock);
2174
2175 if (uopt.session == 0xFFFFFFFF)
2176 sbi->s_session = udf_get_last_session(sb);
2177 else
2178 sbi->s_session = uopt.session;
2179
2180 udf_debug("Multi-session=%d\n", sbi->s_session);
2181
2182 /* Fill in the rest of the superblock */
2183 sb->s_op = &udf_sb_ops;
2184 sb->s_export_op = &udf_export_ops;
2185
2186 sb->s_magic = UDF_SUPER_MAGIC;
2187 sb->s_time_gran = 1000;
2188
2189 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2190 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2191 } else {
2192 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2193 while (uopt.blocksize <= 4096) {
2194 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2195 if (ret < 0) {
2196 if (!silent && ret != -EACCES) {
2197 pr_notice("Scanning with blocksize %u failed\n",
2198 uopt.blocksize);
2199 }
2200 brelse(sbi->s_lvid_bh);
2201 sbi->s_lvid_bh = NULL;
2202 /*
2203 * EACCES is special - we want to propagate to
2204 * upper layers that we cannot handle RW mount.
2205 */
2206 if (ret == -EACCES)
2207 break;
2208 } else
2209 break;
2210
2211 uopt.blocksize <<= 1;
2212 }
2213 }
2214 if (ret < 0) {
2215 if (ret == -EAGAIN) {
2216 udf_warn(sb, "No partition found (1)\n");
2217 ret = -EINVAL;
2218 }
2219 goto error_out;
2220 }
2221
2222 udf_debug("Lastblock=%u\n", sbi->s_last_block);
2223
2224 if (sbi->s_lvid_bh) {
2225 struct logicalVolIntegrityDescImpUse *lvidiu =
2226 udf_sb_lvidiu(sb);
2227 uint16_t minUDFReadRev;
2228 uint16_t minUDFWriteRev;
2229
2230 if (!lvidiu) {
2231 ret = -EINVAL;
2232 goto error_out;
2233 }
2234 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2235 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2236 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2237 udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2238 minUDFReadRev,
2239 UDF_MAX_READ_VERSION);
2240 ret = -EINVAL;
2241 goto error_out;
2242 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) {
2243 if (!sb_rdonly(sb)) {
2244 ret = -EACCES;
2245 goto error_out;
2246 }
2247 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2248 }
2249
2250 sbi->s_udfrev = minUDFWriteRev;
2251
2252 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2253 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2254 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2255 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2256 }
2257
2258 if (!sbi->s_partitions) {
2259 udf_warn(sb, "No partition found (2)\n");
2260 ret = -EINVAL;
2261 goto error_out;
2262 }
2263
2264 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2265 UDF_PART_FLAG_READ_ONLY) {
2266 if (!sb_rdonly(sb)) {
2267 ret = -EACCES;
2268 goto error_out;
2269 }
2270 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2271 }
2272
2273 if (udf_find_fileset(sb, &fileset, &rootdir)) {
2274 udf_warn(sb, "No fileset found\n");
2275 ret = -EINVAL;
2276 goto error_out;
2277 }
2278
2279 if (!silent) {
2280 struct timestamp ts;
2281 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2282 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2283 sbi->s_volume_ident,
2284 le16_to_cpu(ts.year), ts.month, ts.day,
2285 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2286 }
2287 if (!sb_rdonly(sb)) {
2288 udf_open_lvid(sb);
2289 lvid_open = true;
2290 }
2291
2292 /* Assign the root inode */
2293 /* assign inodes by physical block number */
2294 /* perhaps it's not extensible enough, but for now ... */
2295 inode = udf_iget(sb, &rootdir);
2296 if (IS_ERR(inode)) {
2297 udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2298 rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2299 ret = PTR_ERR(inode);
2300 goto error_out;
2301 }
2302
2303 /* Allocate a dentry for the root inode */
2304 sb->s_root = d_make_root(inode);
2305 if (!sb->s_root) {
2306 udf_err(sb, "Couldn't allocate root dentry\n");
2307 ret = -ENOMEM;
2308 goto error_out;
2309 }
2310 sb->s_maxbytes = MAX_LFS_FILESIZE;
2311 sb->s_max_links = UDF_MAX_LINKS;
2312 return 0;
2313
2314 error_out:
2315 iput(sbi->s_vat_inode);
2316 parse_options_failure:
2317 if (uopt.nls_map)
2318 unload_nls(uopt.nls_map);
2319 if (lvid_open)
2320 udf_close_lvid(sb);
2321 brelse(sbi->s_lvid_bh);
2322 udf_sb_free_partitions(sb);
2323 kfree(sbi);
2324 sb->s_fs_info = NULL;
2325
2326 return ret;
2327 }
2328
_udf_err(struct super_block * sb,const char * function,const char * fmt,...)2329 void _udf_err(struct super_block *sb, const char *function,
2330 const char *fmt, ...)
2331 {
2332 struct va_format vaf;
2333 va_list args;
2334
2335 va_start(args, fmt);
2336
2337 vaf.fmt = fmt;
2338 vaf.va = &args;
2339
2340 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2341
2342 va_end(args);
2343 }
2344
_udf_warn(struct super_block * sb,const char * function,const char * fmt,...)2345 void _udf_warn(struct super_block *sb, const char *function,
2346 const char *fmt, ...)
2347 {
2348 struct va_format vaf;
2349 va_list args;
2350
2351 va_start(args, fmt);
2352
2353 vaf.fmt = fmt;
2354 vaf.va = &args;
2355
2356 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2357
2358 va_end(args);
2359 }
2360
udf_put_super(struct super_block * sb)2361 static void udf_put_super(struct super_block *sb)
2362 {
2363 struct udf_sb_info *sbi;
2364
2365 sbi = UDF_SB(sb);
2366
2367 iput(sbi->s_vat_inode);
2368 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2369 unload_nls(sbi->s_nls_map);
2370 if (!sb_rdonly(sb))
2371 udf_close_lvid(sb);
2372 brelse(sbi->s_lvid_bh);
2373 udf_sb_free_partitions(sb);
2374 mutex_destroy(&sbi->s_alloc_mutex);
2375 kfree(sb->s_fs_info);
2376 sb->s_fs_info = NULL;
2377 }
2378
udf_sync_fs(struct super_block * sb,int wait)2379 static int udf_sync_fs(struct super_block *sb, int wait)
2380 {
2381 struct udf_sb_info *sbi = UDF_SB(sb);
2382
2383 mutex_lock(&sbi->s_alloc_mutex);
2384 if (sbi->s_lvid_dirty) {
2385 /*
2386 * Blockdevice will be synced later so we don't have to submit
2387 * the buffer for IO
2388 */
2389 mark_buffer_dirty(sbi->s_lvid_bh);
2390 sbi->s_lvid_dirty = 0;
2391 }
2392 mutex_unlock(&sbi->s_alloc_mutex);
2393
2394 return 0;
2395 }
2396
udf_statfs(struct dentry * dentry,struct kstatfs * buf)2397 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2398 {
2399 struct super_block *sb = dentry->d_sb;
2400 struct udf_sb_info *sbi = UDF_SB(sb);
2401 struct logicalVolIntegrityDescImpUse *lvidiu;
2402 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2403
2404 lvidiu = udf_sb_lvidiu(sb);
2405 buf->f_type = UDF_SUPER_MAGIC;
2406 buf->f_bsize = sb->s_blocksize;
2407 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2408 buf->f_bfree = udf_count_free(sb);
2409 buf->f_bavail = buf->f_bfree;
2410 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2411 le32_to_cpu(lvidiu->numDirs)) : 0)
2412 + buf->f_bfree;
2413 buf->f_ffree = buf->f_bfree;
2414 buf->f_namelen = UDF_NAME_LEN;
2415 buf->f_fsid.val[0] = (u32)id;
2416 buf->f_fsid.val[1] = (u32)(id >> 32);
2417
2418 return 0;
2419 }
2420
udf_count_free_bitmap(struct super_block * sb,struct udf_bitmap * bitmap)2421 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2422 struct udf_bitmap *bitmap)
2423 {
2424 struct buffer_head *bh = NULL;
2425 unsigned int accum = 0;
2426 int index;
2427 udf_pblk_t block = 0, newblock;
2428 struct kernel_lb_addr loc;
2429 uint32_t bytes;
2430 uint8_t *ptr;
2431 uint16_t ident;
2432 struct spaceBitmapDesc *bm;
2433
2434 loc.logicalBlockNum = bitmap->s_extPosition;
2435 loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2436 bh = udf_read_ptagged(sb, &loc, 0, &ident);
2437
2438 if (!bh) {
2439 udf_err(sb, "udf_count_free failed\n");
2440 goto out;
2441 } else if (ident != TAG_IDENT_SBD) {
2442 brelse(bh);
2443 udf_err(sb, "udf_count_free failed\n");
2444 goto out;
2445 }
2446
2447 bm = (struct spaceBitmapDesc *)bh->b_data;
2448 bytes = le32_to_cpu(bm->numOfBytes);
2449 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2450 ptr = (uint8_t *)bh->b_data;
2451
2452 while (bytes > 0) {
2453 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2454 accum += bitmap_weight((const unsigned long *)(ptr + index),
2455 cur_bytes * 8);
2456 bytes -= cur_bytes;
2457 if (bytes) {
2458 brelse(bh);
2459 newblock = udf_get_lb_pblock(sb, &loc, ++block);
2460 bh = udf_tread(sb, newblock);
2461 if (!bh) {
2462 udf_debug("read failed\n");
2463 goto out;
2464 }
2465 index = 0;
2466 ptr = (uint8_t *)bh->b_data;
2467 }
2468 }
2469 brelse(bh);
2470 out:
2471 return accum;
2472 }
2473
udf_count_free_table(struct super_block * sb,struct inode * table)2474 static unsigned int udf_count_free_table(struct super_block *sb,
2475 struct inode *table)
2476 {
2477 unsigned int accum = 0;
2478 uint32_t elen;
2479 struct kernel_lb_addr eloc;
2480 int8_t etype;
2481 struct extent_position epos;
2482
2483 mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2484 epos.block = UDF_I(table)->i_location;
2485 epos.offset = sizeof(struct unallocSpaceEntry);
2486 epos.bh = NULL;
2487
2488 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2489 accum += (elen >> table->i_sb->s_blocksize_bits);
2490
2491 brelse(epos.bh);
2492 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2493
2494 return accum;
2495 }
2496
udf_count_free(struct super_block * sb)2497 static unsigned int udf_count_free(struct super_block *sb)
2498 {
2499 unsigned int accum = 0;
2500 struct udf_sb_info *sbi = UDF_SB(sb);
2501 struct udf_part_map *map;
2502 unsigned int part = sbi->s_partition;
2503 int ptype = sbi->s_partmaps[part].s_partition_type;
2504
2505 if (ptype == UDF_METADATA_MAP25) {
2506 part = sbi->s_partmaps[part].s_type_specific.s_metadata.
2507 s_phys_partition_ref;
2508 } else if (ptype == UDF_VIRTUAL_MAP15 || ptype == UDF_VIRTUAL_MAP20) {
2509 /*
2510 * Filesystems with VAT are append-only and we cannot write to
2511 * them. Let's just report 0 here.
2512 */
2513 return 0;
2514 }
2515
2516 if (sbi->s_lvid_bh) {
2517 struct logicalVolIntegrityDesc *lvid =
2518 (struct logicalVolIntegrityDesc *)
2519 sbi->s_lvid_bh->b_data;
2520 if (le32_to_cpu(lvid->numOfPartitions) > part) {
2521 accum = le32_to_cpu(
2522 lvid->freeSpaceTable[part]);
2523 if (accum == 0xFFFFFFFF)
2524 accum = 0;
2525 }
2526 }
2527
2528 if (accum)
2529 return accum;
2530
2531 map = &sbi->s_partmaps[part];
2532 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2533 accum += udf_count_free_bitmap(sb,
2534 map->s_uspace.s_bitmap);
2535 }
2536 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2537 accum += udf_count_free_bitmap(sb,
2538 map->s_fspace.s_bitmap);
2539 }
2540 if (accum)
2541 return accum;
2542
2543 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2544 accum += udf_count_free_table(sb,
2545 map->s_uspace.s_table);
2546 }
2547 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2548 accum += udf_count_free_table(sb,
2549 map->s_fspace.s_table);
2550 }
2551
2552 return accum;
2553 }
2554
2555 MODULE_AUTHOR("Ben Fennema");
2556 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2557 MODULE_LICENSE("GPL");
2558 module_init(init_udf_fs)
2559 module_exit(exit_udf_fs)
2560