1 /* Maintain an RxRPC server socket to do AFS communications through
2  *
3  * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
4  * Written by David Howells (dhowells@redhat.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #include <linux/slab.h>
13 #include <linux/sched/signal.h>
14 
15 #include <net/sock.h>
16 #include <net/af_rxrpc.h>
17 #include "internal.h"
18 #include "afs_cm.h"
19 
20 struct workqueue_struct *afs_async_calls;
21 
22 static void afs_wake_up_call_waiter(struct sock *, struct rxrpc_call *, unsigned long);
23 static long afs_wait_for_call_to_complete(struct afs_call *, struct afs_addr_cursor *);
24 static void afs_wake_up_async_call(struct sock *, struct rxrpc_call *, unsigned long);
25 static void afs_process_async_call(struct work_struct *);
26 static void afs_rx_new_call(struct sock *, struct rxrpc_call *, unsigned long);
27 static void afs_rx_discard_new_call(struct rxrpc_call *, unsigned long);
28 static int afs_deliver_cm_op_id(struct afs_call *);
29 
30 /* asynchronous incoming call initial processing */
31 static const struct afs_call_type afs_RXCMxxxx = {
32 	.name		= "CB.xxxx",
33 	.deliver	= afs_deliver_cm_op_id,
34 };
35 
36 /*
37  * open an RxRPC socket and bind it to be a server for callback notifications
38  * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT
39  */
afs_open_socket(struct afs_net * net)40 int afs_open_socket(struct afs_net *net)
41 {
42 	struct sockaddr_rxrpc srx;
43 	struct socket *socket;
44 	unsigned int min_level;
45 	int ret;
46 
47 	_enter("");
48 
49 	ret = sock_create_kern(net->net, AF_RXRPC, SOCK_DGRAM, PF_INET6, &socket);
50 	if (ret < 0)
51 		goto error_1;
52 
53 	socket->sk->sk_allocation = GFP_NOFS;
54 
55 	/* bind the callback manager's address to make this a server socket */
56 	memset(&srx, 0, sizeof(srx));
57 	srx.srx_family			= AF_RXRPC;
58 	srx.srx_service			= CM_SERVICE;
59 	srx.transport_type		= SOCK_DGRAM;
60 	srx.transport_len		= sizeof(srx.transport.sin6);
61 	srx.transport.sin6.sin6_family	= AF_INET6;
62 	srx.transport.sin6.sin6_port	= htons(AFS_CM_PORT);
63 
64 	min_level = RXRPC_SECURITY_ENCRYPT;
65 	ret = kernel_setsockopt(socket, SOL_RXRPC, RXRPC_MIN_SECURITY_LEVEL,
66 				(void *)&min_level, sizeof(min_level));
67 	if (ret < 0)
68 		goto error_2;
69 
70 	ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
71 	if (ret == -EADDRINUSE) {
72 		srx.transport.sin6.sin6_port = 0;
73 		ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
74 	}
75 	if (ret < 0)
76 		goto error_2;
77 
78 	rxrpc_kernel_new_call_notification(socket, afs_rx_new_call,
79 					   afs_rx_discard_new_call);
80 
81 	ret = kernel_listen(socket, INT_MAX);
82 	if (ret < 0)
83 		goto error_2;
84 
85 	net->socket = socket;
86 	afs_charge_preallocation(&net->charge_preallocation_work);
87 	_leave(" = 0");
88 	return 0;
89 
90 error_2:
91 	sock_release(socket);
92 error_1:
93 	_leave(" = %d", ret);
94 	return ret;
95 }
96 
97 /*
98  * close the RxRPC socket AFS was using
99  */
afs_close_socket(struct afs_net * net)100 void afs_close_socket(struct afs_net *net)
101 {
102 	_enter("");
103 
104 	kernel_listen(net->socket, 0);
105 	flush_workqueue(afs_async_calls);
106 
107 	if (net->spare_incoming_call) {
108 		afs_put_call(net->spare_incoming_call);
109 		net->spare_incoming_call = NULL;
110 	}
111 
112 	_debug("outstanding %u", atomic_read(&net->nr_outstanding_calls));
113 	wait_var_event(&net->nr_outstanding_calls,
114 		       !atomic_read(&net->nr_outstanding_calls));
115 	_debug("no outstanding calls");
116 
117 	kernel_sock_shutdown(net->socket, SHUT_RDWR);
118 	flush_workqueue(afs_async_calls);
119 	sock_release(net->socket);
120 
121 	_debug("dework");
122 	_leave("");
123 }
124 
125 /*
126  * Allocate a call.
127  */
afs_alloc_call(struct afs_net * net,const struct afs_call_type * type,gfp_t gfp)128 static struct afs_call *afs_alloc_call(struct afs_net *net,
129 				       const struct afs_call_type *type,
130 				       gfp_t gfp)
131 {
132 	struct afs_call *call;
133 	int o;
134 
135 	call = kzalloc(sizeof(*call), gfp);
136 	if (!call)
137 		return NULL;
138 
139 	call->type = type;
140 	call->net = net;
141 	call->debug_id = atomic_inc_return(&rxrpc_debug_id);
142 	atomic_set(&call->usage, 1);
143 	INIT_WORK(&call->async_work, afs_process_async_call);
144 	init_waitqueue_head(&call->waitq);
145 	spin_lock_init(&call->state_lock);
146 
147 	o = atomic_inc_return(&net->nr_outstanding_calls);
148 	trace_afs_call(call, afs_call_trace_alloc, 1, o,
149 		       __builtin_return_address(0));
150 	return call;
151 }
152 
153 /*
154  * Dispose of a reference on a call.
155  */
afs_put_call(struct afs_call * call)156 void afs_put_call(struct afs_call *call)
157 {
158 	struct afs_net *net = call->net;
159 	int n = atomic_dec_return(&call->usage);
160 	int o = atomic_read(&net->nr_outstanding_calls);
161 
162 	trace_afs_call(call, afs_call_trace_put, n, o,
163 		       __builtin_return_address(0));
164 
165 	ASSERTCMP(n, >=, 0);
166 	if (n == 0) {
167 		ASSERT(!work_pending(&call->async_work));
168 		ASSERT(call->type->name != NULL);
169 
170 		if (call->rxcall) {
171 			rxrpc_kernel_end_call(net->socket, call->rxcall);
172 			call->rxcall = NULL;
173 		}
174 		if (call->type->destructor)
175 			call->type->destructor(call);
176 
177 		afs_put_server(call->net, call->cm_server);
178 		afs_put_cb_interest(call->net, call->cbi);
179 		kfree(call->request);
180 
181 		trace_afs_call(call, afs_call_trace_free, 0, o,
182 			       __builtin_return_address(0));
183 		kfree(call);
184 
185 		o = atomic_dec_return(&net->nr_outstanding_calls);
186 		if (o == 0)
187 			wake_up_var(&net->nr_outstanding_calls);
188 	}
189 }
190 
191 /*
192  * Queue the call for actual work.  Returns 0 unconditionally for convenience.
193  */
afs_queue_call_work(struct afs_call * call)194 int afs_queue_call_work(struct afs_call *call)
195 {
196 	int u = atomic_inc_return(&call->usage);
197 
198 	trace_afs_call(call, afs_call_trace_work, u,
199 		       atomic_read(&call->net->nr_outstanding_calls),
200 		       __builtin_return_address(0));
201 
202 	INIT_WORK(&call->work, call->type->work);
203 
204 	if (!queue_work(afs_wq, &call->work))
205 		afs_put_call(call);
206 	return 0;
207 }
208 
209 /*
210  * allocate a call with flat request and reply buffers
211  */
afs_alloc_flat_call(struct afs_net * net,const struct afs_call_type * type,size_t request_size,size_t reply_max)212 struct afs_call *afs_alloc_flat_call(struct afs_net *net,
213 				     const struct afs_call_type *type,
214 				     size_t request_size, size_t reply_max)
215 {
216 	struct afs_call *call;
217 
218 	call = afs_alloc_call(net, type, GFP_NOFS);
219 	if (!call)
220 		goto nomem_call;
221 
222 	if (request_size) {
223 		call->request_size = request_size;
224 		call->request = kmalloc(request_size, GFP_NOFS);
225 		if (!call->request)
226 			goto nomem_free;
227 	}
228 
229 	if (reply_max) {
230 		call->reply_max = reply_max;
231 		call->buffer = kmalloc(reply_max, GFP_NOFS);
232 		if (!call->buffer)
233 			goto nomem_free;
234 	}
235 
236 	call->operation_ID = type->op;
237 	init_waitqueue_head(&call->waitq);
238 	return call;
239 
240 nomem_free:
241 	afs_put_call(call);
242 nomem_call:
243 	return NULL;
244 }
245 
246 /*
247  * clean up a call with flat buffer
248  */
afs_flat_call_destructor(struct afs_call * call)249 void afs_flat_call_destructor(struct afs_call *call)
250 {
251 	_enter("");
252 
253 	kfree(call->request);
254 	call->request = NULL;
255 	kfree(call->buffer);
256 	call->buffer = NULL;
257 }
258 
259 #define AFS_BVEC_MAX 8
260 
261 /*
262  * Load the given bvec with the next few pages.
263  */
afs_load_bvec(struct afs_call * call,struct msghdr * msg,struct bio_vec * bv,pgoff_t first,pgoff_t last,unsigned offset)264 static void afs_load_bvec(struct afs_call *call, struct msghdr *msg,
265 			  struct bio_vec *bv, pgoff_t first, pgoff_t last,
266 			  unsigned offset)
267 {
268 	struct page *pages[AFS_BVEC_MAX];
269 	unsigned int nr, n, i, to, bytes = 0;
270 
271 	nr = min_t(pgoff_t, last - first + 1, AFS_BVEC_MAX);
272 	n = find_get_pages_contig(call->mapping, first, nr, pages);
273 	ASSERTCMP(n, ==, nr);
274 
275 	msg->msg_flags |= MSG_MORE;
276 	for (i = 0; i < nr; i++) {
277 		to = PAGE_SIZE;
278 		if (first + i >= last) {
279 			to = call->last_to;
280 			msg->msg_flags &= ~MSG_MORE;
281 		}
282 		bv[i].bv_page = pages[i];
283 		bv[i].bv_len = to - offset;
284 		bv[i].bv_offset = offset;
285 		bytes += to - offset;
286 		offset = 0;
287 	}
288 
289 	iov_iter_bvec(&msg->msg_iter, WRITE | ITER_BVEC, bv, nr, bytes);
290 }
291 
292 /*
293  * Advance the AFS call state when the RxRPC call ends the transmit phase.
294  */
afs_notify_end_request_tx(struct sock * sock,struct rxrpc_call * rxcall,unsigned long call_user_ID)295 static void afs_notify_end_request_tx(struct sock *sock,
296 				      struct rxrpc_call *rxcall,
297 				      unsigned long call_user_ID)
298 {
299 	struct afs_call *call = (struct afs_call *)call_user_ID;
300 
301 	afs_set_call_state(call, AFS_CALL_CL_REQUESTING, AFS_CALL_CL_AWAIT_REPLY);
302 }
303 
304 /*
305  * attach the data from a bunch of pages on an inode to a call
306  */
afs_send_pages(struct afs_call * call,struct msghdr * msg)307 static int afs_send_pages(struct afs_call *call, struct msghdr *msg)
308 {
309 	struct bio_vec bv[AFS_BVEC_MAX];
310 	unsigned int bytes, nr, loop, offset;
311 	pgoff_t first = call->first, last = call->last;
312 	int ret;
313 
314 	offset = call->first_offset;
315 	call->first_offset = 0;
316 
317 	do {
318 		afs_load_bvec(call, msg, bv, first, last, offset);
319 		trace_afs_send_pages(call, msg, first, last, offset);
320 
321 		offset = 0;
322 		bytes = msg->msg_iter.count;
323 		nr = msg->msg_iter.nr_segs;
324 
325 		ret = rxrpc_kernel_send_data(call->net->socket, call->rxcall, msg,
326 					     bytes, afs_notify_end_request_tx);
327 		for (loop = 0; loop < nr; loop++)
328 			put_page(bv[loop].bv_page);
329 		if (ret < 0)
330 			break;
331 
332 		first += nr;
333 	} while (first <= last);
334 
335 	trace_afs_sent_pages(call, call->first, last, first, ret);
336 	return ret;
337 }
338 
339 /*
340  * initiate a call
341  */
afs_make_call(struct afs_addr_cursor * ac,struct afs_call * call,gfp_t gfp,bool async)342 long afs_make_call(struct afs_addr_cursor *ac, struct afs_call *call,
343 		   gfp_t gfp, bool async)
344 {
345 	struct sockaddr_rxrpc *srx = ac->addr;
346 	struct rxrpc_call *rxcall;
347 	struct msghdr msg;
348 	struct kvec iov[1];
349 	s64 tx_total_len;
350 	int ret;
351 
352 	_enter(",{%pISp},", &srx->transport);
353 
354 	ASSERT(call->type != NULL);
355 	ASSERT(call->type->name != NULL);
356 
357 	_debug("____MAKE %p{%s,%x} [%d]____",
358 	       call, call->type->name, key_serial(call->key),
359 	       atomic_read(&call->net->nr_outstanding_calls));
360 
361 	call->async = async;
362 
363 	/* Work out the length we're going to transmit.  This is awkward for
364 	 * calls such as FS.StoreData where there's an extra injection of data
365 	 * after the initial fixed part.
366 	 */
367 	tx_total_len = call->request_size;
368 	if (call->send_pages) {
369 		if (call->last == call->first) {
370 			tx_total_len += call->last_to - call->first_offset;
371 		} else {
372 			/* It looks mathematically like you should be able to
373 			 * combine the following lines with the ones above, but
374 			 * unsigned arithmetic is fun when it wraps...
375 			 */
376 			tx_total_len += PAGE_SIZE - call->first_offset;
377 			tx_total_len += call->last_to;
378 			tx_total_len += (call->last - call->first - 1) * PAGE_SIZE;
379 		}
380 	}
381 
382 	/* create a call */
383 	rxcall = rxrpc_kernel_begin_call(call->net->socket, srx, call->key,
384 					 (unsigned long)call,
385 					 tx_total_len, gfp,
386 					 (async ?
387 					  afs_wake_up_async_call :
388 					  afs_wake_up_call_waiter),
389 					 call->upgrade,
390 					 call->debug_id);
391 	if (IS_ERR(rxcall)) {
392 		ret = PTR_ERR(rxcall);
393 		goto error_kill_call;
394 	}
395 
396 	call->rxcall = rxcall;
397 
398 	/* send the request */
399 	iov[0].iov_base	= call->request;
400 	iov[0].iov_len	= call->request_size;
401 
402 	msg.msg_name		= NULL;
403 	msg.msg_namelen		= 0;
404 	iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, iov, 1,
405 		      call->request_size);
406 	msg.msg_control		= NULL;
407 	msg.msg_controllen	= 0;
408 	msg.msg_flags		= MSG_WAITALL | (call->send_pages ? MSG_MORE : 0);
409 
410 	ret = rxrpc_kernel_send_data(call->net->socket, rxcall,
411 				     &msg, call->request_size,
412 				     afs_notify_end_request_tx);
413 	if (ret < 0)
414 		goto error_do_abort;
415 
416 	if (call->send_pages) {
417 		ret = afs_send_pages(call, &msg);
418 		if (ret < 0)
419 			goto error_do_abort;
420 	}
421 
422 	/* at this point, an async call may no longer exist as it may have
423 	 * already completed */
424 	if (call->async)
425 		return -EINPROGRESS;
426 
427 	return afs_wait_for_call_to_complete(call, ac);
428 
429 error_do_abort:
430 	call->state = AFS_CALL_COMPLETE;
431 	if (ret != -ECONNABORTED) {
432 		rxrpc_kernel_abort_call(call->net->socket, rxcall,
433 					RX_USER_ABORT, ret, "KSD");
434 	} else {
435 		iov_iter_kvec(&msg.msg_iter, READ | ITER_KVEC, NULL, 0, 0);
436 		rxrpc_kernel_recv_data(call->net->socket, rxcall,
437 				       &msg.msg_iter, false,
438 				       &call->abort_code, &call->service_id);
439 		ac->abort_code = call->abort_code;
440 		ac->responded = true;
441 	}
442 	call->error = ret;
443 	trace_afs_call_done(call);
444 error_kill_call:
445 	afs_put_call(call);
446 	ac->error = ret;
447 	_leave(" = %d", ret);
448 	return ret;
449 }
450 
451 /*
452  * deliver messages to a call
453  */
afs_deliver_to_call(struct afs_call * call)454 static void afs_deliver_to_call(struct afs_call *call)
455 {
456 	enum afs_call_state state;
457 	u32 abort_code, remote_abort = 0;
458 	int ret;
459 
460 	_enter("%s", call->type->name);
461 
462 	while (state = READ_ONCE(call->state),
463 	       state == AFS_CALL_CL_AWAIT_REPLY ||
464 	       state == AFS_CALL_SV_AWAIT_OP_ID ||
465 	       state == AFS_CALL_SV_AWAIT_REQUEST ||
466 	       state == AFS_CALL_SV_AWAIT_ACK
467 	       ) {
468 		if (state == AFS_CALL_SV_AWAIT_ACK) {
469 			struct iov_iter iter;
470 
471 			iov_iter_kvec(&iter, READ | ITER_KVEC, NULL, 0, 0);
472 			ret = rxrpc_kernel_recv_data(call->net->socket,
473 						     call->rxcall, &iter, false,
474 						     &remote_abort,
475 						     &call->service_id);
476 			trace_afs_recv_data(call, 0, 0, false, ret);
477 
478 			if (ret == -EINPROGRESS || ret == -EAGAIN)
479 				return;
480 			if (ret < 0 || ret == 1) {
481 				if (ret == 1)
482 					ret = 0;
483 				goto call_complete;
484 			}
485 			return;
486 		}
487 
488 		ret = call->type->deliver(call);
489 		state = READ_ONCE(call->state);
490 		switch (ret) {
491 		case 0:
492 			if (state == AFS_CALL_CL_PROC_REPLY) {
493 				if (call->cbi)
494 					set_bit(AFS_SERVER_FL_MAY_HAVE_CB,
495 						&call->cbi->server->flags);
496 				goto call_complete;
497 			}
498 			ASSERTCMP(state, >, AFS_CALL_CL_PROC_REPLY);
499 			goto done;
500 		case -EINPROGRESS:
501 		case -EAGAIN:
502 			goto out;
503 		case -ECONNABORTED:
504 			ASSERTCMP(state, ==, AFS_CALL_COMPLETE);
505 			goto done;
506 		case -ENOTSUPP:
507 			abort_code = RXGEN_OPCODE;
508 			rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
509 						abort_code, ret, "KIV");
510 			goto local_abort;
511 		case -EIO:
512 			pr_err("kAFS: Call %u in bad state %u\n",
513 			       call->debug_id, state);
514 			/* Fall through */
515 		case -ENODATA:
516 		case -EBADMSG:
517 		case -EMSGSIZE:
518 		default:
519 			abort_code = RXGEN_CC_UNMARSHAL;
520 			if (state != AFS_CALL_CL_AWAIT_REPLY)
521 				abort_code = RXGEN_SS_UNMARSHAL;
522 			rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
523 						abort_code, -EBADMSG, "KUM");
524 			goto local_abort;
525 		}
526 	}
527 
528 done:
529 	if (state == AFS_CALL_COMPLETE && call->incoming)
530 		afs_put_call(call);
531 out:
532 	_leave("");
533 	return;
534 
535 local_abort:
536 	abort_code = 0;
537 call_complete:
538 	afs_set_call_complete(call, ret, remote_abort);
539 	state = AFS_CALL_COMPLETE;
540 	goto done;
541 }
542 
543 /*
544  * wait synchronously for a call to complete
545  */
afs_wait_for_call_to_complete(struct afs_call * call,struct afs_addr_cursor * ac)546 static long afs_wait_for_call_to_complete(struct afs_call *call,
547 					  struct afs_addr_cursor *ac)
548 {
549 	signed long rtt2, timeout;
550 	long ret;
551 	u64 rtt;
552 	u32 life, last_life;
553 
554 	DECLARE_WAITQUEUE(myself, current);
555 
556 	_enter("");
557 
558 	rtt = rxrpc_kernel_get_rtt(call->net->socket, call->rxcall);
559 	rtt2 = nsecs_to_jiffies64(rtt) * 2;
560 	if (rtt2 < 2)
561 		rtt2 = 2;
562 
563 	timeout = rtt2;
564 	last_life = rxrpc_kernel_check_life(call->net->socket, call->rxcall);
565 
566 	add_wait_queue(&call->waitq, &myself);
567 	for (;;) {
568 		set_current_state(TASK_UNINTERRUPTIBLE);
569 
570 		/* deliver any messages that are in the queue */
571 		if (!afs_check_call_state(call, AFS_CALL_COMPLETE) &&
572 		    call->need_attention) {
573 			call->need_attention = false;
574 			__set_current_state(TASK_RUNNING);
575 			afs_deliver_to_call(call);
576 			timeout = rtt2;
577 			continue;
578 		}
579 
580 		if (afs_check_call_state(call, AFS_CALL_COMPLETE))
581 			break;
582 
583 		life = rxrpc_kernel_check_life(call->net->socket, call->rxcall);
584 		if (timeout == 0 &&
585 		    life == last_life && signal_pending(current))
586 				break;
587 
588 		if (life != last_life) {
589 			timeout = rtt2;
590 			last_life = life;
591 		}
592 
593 		timeout = schedule_timeout(timeout);
594 	}
595 
596 	remove_wait_queue(&call->waitq, &myself);
597 	__set_current_state(TASK_RUNNING);
598 
599 	/* Kill off the call if it's still live. */
600 	if (!afs_check_call_state(call, AFS_CALL_COMPLETE)) {
601 		_debug("call interrupted");
602 		if (rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
603 					    RX_USER_ABORT, -EINTR, "KWI"))
604 			afs_set_call_complete(call, -EINTR, 0);
605 	}
606 
607 	spin_lock_bh(&call->state_lock);
608 	ac->abort_code = call->abort_code;
609 	ac->error = call->error;
610 	spin_unlock_bh(&call->state_lock);
611 
612 	ret = ac->error;
613 	switch (ret) {
614 	case 0:
615 		if (call->ret_reply0) {
616 			ret = (long)call->reply[0];
617 			call->reply[0] = NULL;
618 		}
619 		/* Fall through */
620 	case -ECONNABORTED:
621 		ac->responded = true;
622 		break;
623 	}
624 
625 	_debug("call complete");
626 	afs_put_call(call);
627 	_leave(" = %p", (void *)ret);
628 	return ret;
629 }
630 
631 /*
632  * wake up a waiting call
633  */
afs_wake_up_call_waiter(struct sock * sk,struct rxrpc_call * rxcall,unsigned long call_user_ID)634 static void afs_wake_up_call_waiter(struct sock *sk, struct rxrpc_call *rxcall,
635 				    unsigned long call_user_ID)
636 {
637 	struct afs_call *call = (struct afs_call *)call_user_ID;
638 
639 	call->need_attention = true;
640 	wake_up(&call->waitq);
641 }
642 
643 /*
644  * wake up an asynchronous call
645  */
afs_wake_up_async_call(struct sock * sk,struct rxrpc_call * rxcall,unsigned long call_user_ID)646 static void afs_wake_up_async_call(struct sock *sk, struct rxrpc_call *rxcall,
647 				   unsigned long call_user_ID)
648 {
649 	struct afs_call *call = (struct afs_call *)call_user_ID;
650 	int u;
651 
652 	trace_afs_notify_call(rxcall, call);
653 	call->need_attention = true;
654 
655 	u = atomic_fetch_add_unless(&call->usage, 1, 0);
656 	if (u != 0) {
657 		trace_afs_call(call, afs_call_trace_wake, u + 1,
658 			       atomic_read(&call->net->nr_outstanding_calls),
659 			       __builtin_return_address(0));
660 
661 		if (!queue_work(afs_async_calls, &call->async_work))
662 			afs_put_call(call);
663 	}
664 }
665 
666 /*
667  * Delete an asynchronous call.  The work item carries a ref to the call struct
668  * that we need to release.
669  */
afs_delete_async_call(struct work_struct * work)670 static void afs_delete_async_call(struct work_struct *work)
671 {
672 	struct afs_call *call = container_of(work, struct afs_call, async_work);
673 
674 	_enter("");
675 
676 	afs_put_call(call);
677 
678 	_leave("");
679 }
680 
681 /*
682  * Perform I/O processing on an asynchronous call.  The work item carries a ref
683  * to the call struct that we either need to release or to pass on.
684  */
afs_process_async_call(struct work_struct * work)685 static void afs_process_async_call(struct work_struct *work)
686 {
687 	struct afs_call *call = container_of(work, struct afs_call, async_work);
688 
689 	_enter("");
690 
691 	if (call->state < AFS_CALL_COMPLETE && call->need_attention) {
692 		call->need_attention = false;
693 		afs_deliver_to_call(call);
694 	}
695 
696 	if (call->state == AFS_CALL_COMPLETE) {
697 		/* We have two refs to release - one from the alloc and one
698 		 * queued with the work item - and we can't just deallocate the
699 		 * call because the work item may be queued again.
700 		 */
701 		call->async_work.func = afs_delete_async_call;
702 		if (!queue_work(afs_async_calls, &call->async_work))
703 			afs_put_call(call);
704 	}
705 
706 	afs_put_call(call);
707 	_leave("");
708 }
709 
afs_rx_attach(struct rxrpc_call * rxcall,unsigned long user_call_ID)710 static void afs_rx_attach(struct rxrpc_call *rxcall, unsigned long user_call_ID)
711 {
712 	struct afs_call *call = (struct afs_call *)user_call_ID;
713 
714 	call->rxcall = rxcall;
715 }
716 
717 /*
718  * Charge the incoming call preallocation.
719  */
afs_charge_preallocation(struct work_struct * work)720 void afs_charge_preallocation(struct work_struct *work)
721 {
722 	struct afs_net *net =
723 		container_of(work, struct afs_net, charge_preallocation_work);
724 	struct afs_call *call = net->spare_incoming_call;
725 
726 	for (;;) {
727 		if (!call) {
728 			call = afs_alloc_call(net, &afs_RXCMxxxx, GFP_KERNEL);
729 			if (!call)
730 				break;
731 
732 			call->async = true;
733 			call->state = AFS_CALL_SV_AWAIT_OP_ID;
734 			init_waitqueue_head(&call->waitq);
735 		}
736 
737 		if (rxrpc_kernel_charge_accept(net->socket,
738 					       afs_wake_up_async_call,
739 					       afs_rx_attach,
740 					       (unsigned long)call,
741 					       GFP_KERNEL,
742 					       call->debug_id) < 0)
743 			break;
744 		call = NULL;
745 	}
746 	net->spare_incoming_call = call;
747 }
748 
749 /*
750  * Discard a preallocated call when a socket is shut down.
751  */
afs_rx_discard_new_call(struct rxrpc_call * rxcall,unsigned long user_call_ID)752 static void afs_rx_discard_new_call(struct rxrpc_call *rxcall,
753 				    unsigned long user_call_ID)
754 {
755 	struct afs_call *call = (struct afs_call *)user_call_ID;
756 
757 	call->rxcall = NULL;
758 	afs_put_call(call);
759 }
760 
761 /*
762  * Notification of an incoming call.
763  */
afs_rx_new_call(struct sock * sk,struct rxrpc_call * rxcall,unsigned long user_call_ID)764 static void afs_rx_new_call(struct sock *sk, struct rxrpc_call *rxcall,
765 			    unsigned long user_call_ID)
766 {
767 	struct afs_net *net = afs_sock2net(sk);
768 
769 	queue_work(afs_wq, &net->charge_preallocation_work);
770 }
771 
772 /*
773  * Grab the operation ID from an incoming cache manager call.  The socket
774  * buffer is discarded on error or if we don't yet have sufficient data.
775  */
afs_deliver_cm_op_id(struct afs_call * call)776 static int afs_deliver_cm_op_id(struct afs_call *call)
777 {
778 	int ret;
779 
780 	_enter("{%zu}", call->offset);
781 
782 	ASSERTCMP(call->offset, <, 4);
783 
784 	/* the operation ID forms the first four bytes of the request data */
785 	ret = afs_extract_data(call, &call->tmp, 4, true);
786 	if (ret < 0)
787 		return ret;
788 
789 	call->operation_ID = ntohl(call->tmp);
790 	afs_set_call_state(call, AFS_CALL_SV_AWAIT_OP_ID, AFS_CALL_SV_AWAIT_REQUEST);
791 	call->offset = 0;
792 
793 	/* ask the cache manager to route the call (it'll change the call type
794 	 * if successful) */
795 	if (!afs_cm_incoming_call(call))
796 		return -ENOTSUPP;
797 
798 	trace_afs_cb_call(call);
799 
800 	/* pass responsibility for the remainer of this message off to the
801 	 * cache manager op */
802 	return call->type->deliver(call);
803 }
804 
805 /*
806  * Advance the AFS call state when an RxRPC service call ends the transmit
807  * phase.
808  */
afs_notify_end_reply_tx(struct sock * sock,struct rxrpc_call * rxcall,unsigned long call_user_ID)809 static void afs_notify_end_reply_tx(struct sock *sock,
810 				    struct rxrpc_call *rxcall,
811 				    unsigned long call_user_ID)
812 {
813 	struct afs_call *call = (struct afs_call *)call_user_ID;
814 
815 	afs_set_call_state(call, AFS_CALL_SV_REPLYING, AFS_CALL_SV_AWAIT_ACK);
816 }
817 
818 /*
819  * send an empty reply
820  */
afs_send_empty_reply(struct afs_call * call)821 void afs_send_empty_reply(struct afs_call *call)
822 {
823 	struct afs_net *net = call->net;
824 	struct msghdr msg;
825 
826 	_enter("");
827 
828 	rxrpc_kernel_set_tx_length(net->socket, call->rxcall, 0);
829 
830 	msg.msg_name		= NULL;
831 	msg.msg_namelen		= 0;
832 	iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, NULL, 0, 0);
833 	msg.msg_control		= NULL;
834 	msg.msg_controllen	= 0;
835 	msg.msg_flags		= 0;
836 
837 	switch (rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, 0,
838 				       afs_notify_end_reply_tx)) {
839 	case 0:
840 		_leave(" [replied]");
841 		return;
842 
843 	case -ENOMEM:
844 		_debug("oom");
845 		rxrpc_kernel_abort_call(net->socket, call->rxcall,
846 					RX_USER_ABORT, -ENOMEM, "KOO");
847 	default:
848 		_leave(" [error]");
849 		return;
850 	}
851 }
852 
853 /*
854  * send a simple reply
855  */
afs_send_simple_reply(struct afs_call * call,const void * buf,size_t len)856 void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len)
857 {
858 	struct afs_net *net = call->net;
859 	struct msghdr msg;
860 	struct kvec iov[1];
861 	int n;
862 
863 	_enter("");
864 
865 	rxrpc_kernel_set_tx_length(net->socket, call->rxcall, len);
866 
867 	iov[0].iov_base		= (void *) buf;
868 	iov[0].iov_len		= len;
869 	msg.msg_name		= NULL;
870 	msg.msg_namelen		= 0;
871 	iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, iov, 1, len);
872 	msg.msg_control		= NULL;
873 	msg.msg_controllen	= 0;
874 	msg.msg_flags		= 0;
875 
876 	n = rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, len,
877 				   afs_notify_end_reply_tx);
878 	if (n >= 0) {
879 		/* Success */
880 		_leave(" [replied]");
881 		return;
882 	}
883 
884 	if (n == -ENOMEM) {
885 		_debug("oom");
886 		rxrpc_kernel_abort_call(net->socket, call->rxcall,
887 					RX_USER_ABORT, -ENOMEM, "KOO");
888 	}
889 	_leave(" [error]");
890 }
891 
892 /*
893  * Extract a piece of data from the received data socket buffers.
894  */
afs_extract_data(struct afs_call * call,void * buf,size_t count,bool want_more)895 int afs_extract_data(struct afs_call *call, void *buf, size_t count,
896 		     bool want_more)
897 {
898 	struct afs_net *net = call->net;
899 	struct iov_iter iter;
900 	struct kvec iov;
901 	enum afs_call_state state;
902 	u32 remote_abort = 0;
903 	int ret;
904 
905 	_enter("{%s,%zu},,%zu,%d",
906 	       call->type->name, call->offset, count, want_more);
907 
908 	ASSERTCMP(call->offset, <=, count);
909 
910 	iov.iov_base = buf + call->offset;
911 	iov.iov_len = count - call->offset;
912 	iov_iter_kvec(&iter, ITER_KVEC | READ, &iov, 1, count - call->offset);
913 
914 	ret = rxrpc_kernel_recv_data(net->socket, call->rxcall, &iter,
915 				     want_more, &remote_abort,
916 				     &call->service_id);
917 	call->offset += (count - call->offset) - iov_iter_count(&iter);
918 	trace_afs_recv_data(call, count, call->offset, want_more, ret);
919 	if (ret == 0 || ret == -EAGAIN)
920 		return ret;
921 
922 	state = READ_ONCE(call->state);
923 	if (ret == 1) {
924 		switch (state) {
925 		case AFS_CALL_CL_AWAIT_REPLY:
926 			afs_set_call_state(call, state, AFS_CALL_CL_PROC_REPLY);
927 			break;
928 		case AFS_CALL_SV_AWAIT_REQUEST:
929 			afs_set_call_state(call, state, AFS_CALL_SV_REPLYING);
930 			break;
931 		case AFS_CALL_COMPLETE:
932 			kdebug("prem complete %d", call->error);
933 			return -EIO;
934 		default:
935 			break;
936 		}
937 		return 0;
938 	}
939 
940 	afs_set_call_complete(call, ret, remote_abort);
941 	return ret;
942 }
943 
944 /*
945  * Log protocol error production.
946  */
afs_protocol_error(struct afs_call * call,int error)947 noinline int afs_protocol_error(struct afs_call *call, int error)
948 {
949 	trace_afs_protocol_error(call, error, __builtin_return_address(0));
950 	return error;
951 }
952