1 /*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
4 *
5 * Implements an efficient asynchronous io interface.
6 *
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
8 * Copyright 2018 Christoph Hellwig.
9 *
10 * See ../COPYING for licensing terms.
11 */
12 #define pr_fmt(fmt) "%s: " fmt, __func__
13
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/errno.h>
17 #include <linux/time.h>
18 #include <linux/aio_abi.h>
19 #include <linux/export.h>
20 #include <linux/syscalls.h>
21 #include <linux/backing-dev.h>
22 #include <linux/refcount.h>
23 #include <linux/uio.h>
24
25 #include <linux/sched/signal.h>
26 #include <linux/fs.h>
27 #include <linux/file.h>
28 #include <linux/mm.h>
29 #include <linux/mman.h>
30 #include <linux/mmu_context.h>
31 #include <linux/percpu.h>
32 #include <linux/slab.h>
33 #include <linux/timer.h>
34 #include <linux/aio.h>
35 #include <linux/highmem.h>
36 #include <linux/workqueue.h>
37 #include <linux/security.h>
38 #include <linux/eventfd.h>
39 #include <linux/blkdev.h>
40 #include <linux/compat.h>
41 #include <linux/migrate.h>
42 #include <linux/ramfs.h>
43 #include <linux/percpu-refcount.h>
44 #include <linux/mount.h>
45
46 #include <asm/kmap_types.h>
47 #include <linux/uaccess.h>
48 #include <linux/nospec.h>
49
50 #include "internal.h"
51
52 #define KIOCB_KEY 0
53
54 #define AIO_RING_MAGIC 0xa10a10a1
55 #define AIO_RING_COMPAT_FEATURES 1
56 #define AIO_RING_INCOMPAT_FEATURES 0
57 struct aio_ring {
58 unsigned id; /* kernel internal index number */
59 unsigned nr; /* number of io_events */
60 unsigned head; /* Written to by userland or under ring_lock
61 * mutex by aio_read_events_ring(). */
62 unsigned tail;
63
64 unsigned magic;
65 unsigned compat_features;
66 unsigned incompat_features;
67 unsigned header_length; /* size of aio_ring */
68
69
70 struct io_event io_events[0];
71 }; /* 128 bytes + ring size */
72
73 #define AIO_RING_PAGES 8
74
75 struct kioctx_table {
76 struct rcu_head rcu;
77 unsigned nr;
78 struct kioctx __rcu *table[];
79 };
80
81 struct kioctx_cpu {
82 unsigned reqs_available;
83 };
84
85 struct ctx_rq_wait {
86 struct completion comp;
87 atomic_t count;
88 };
89
90 struct kioctx {
91 struct percpu_ref users;
92 atomic_t dead;
93
94 struct percpu_ref reqs;
95
96 unsigned long user_id;
97
98 struct __percpu kioctx_cpu *cpu;
99
100 /*
101 * For percpu reqs_available, number of slots we move to/from global
102 * counter at a time:
103 */
104 unsigned req_batch;
105 /*
106 * This is what userspace passed to io_setup(), it's not used for
107 * anything but counting against the global max_reqs quota.
108 *
109 * The real limit is nr_events - 1, which will be larger (see
110 * aio_setup_ring())
111 */
112 unsigned max_reqs;
113
114 /* Size of ringbuffer, in units of struct io_event */
115 unsigned nr_events;
116
117 unsigned long mmap_base;
118 unsigned long mmap_size;
119
120 struct page **ring_pages;
121 long nr_pages;
122
123 struct rcu_work free_rwork; /* see free_ioctx() */
124
125 /*
126 * signals when all in-flight requests are done
127 */
128 struct ctx_rq_wait *rq_wait;
129
130 struct {
131 /*
132 * This counts the number of available slots in the ringbuffer,
133 * so we avoid overflowing it: it's decremented (if positive)
134 * when allocating a kiocb and incremented when the resulting
135 * io_event is pulled off the ringbuffer.
136 *
137 * We batch accesses to it with a percpu version.
138 */
139 atomic_t reqs_available;
140 } ____cacheline_aligned_in_smp;
141
142 struct {
143 spinlock_t ctx_lock;
144 struct list_head active_reqs; /* used for cancellation */
145 } ____cacheline_aligned_in_smp;
146
147 struct {
148 struct mutex ring_lock;
149 wait_queue_head_t wait;
150 } ____cacheline_aligned_in_smp;
151
152 struct {
153 unsigned tail;
154 unsigned completed_events;
155 spinlock_t completion_lock;
156 } ____cacheline_aligned_in_smp;
157
158 struct page *internal_pages[AIO_RING_PAGES];
159 struct file *aio_ring_file;
160
161 unsigned id;
162 };
163
164 /*
165 * First field must be the file pointer in all the
166 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
167 */
168 struct fsync_iocb {
169 struct file *file;
170 struct work_struct work;
171 bool datasync;
172 struct cred *creds;
173 };
174
175 struct poll_iocb {
176 struct file *file;
177 struct wait_queue_head *head;
178 __poll_t events;
179 bool cancelled;
180 bool work_scheduled;
181 bool work_need_resched;
182 struct wait_queue_entry wait;
183 struct work_struct work;
184 };
185
186 /*
187 * NOTE! Each of the iocb union members has the file pointer
188 * as the first entry in their struct definition. So you can
189 * access the file pointer through any of the sub-structs,
190 * or directly as just 'ki_filp' in this struct.
191 */
192 struct aio_kiocb {
193 union {
194 struct file *ki_filp;
195 struct kiocb rw;
196 struct fsync_iocb fsync;
197 struct poll_iocb poll;
198 };
199
200 struct kioctx *ki_ctx;
201 kiocb_cancel_fn *ki_cancel;
202
203 struct io_event ki_res;
204
205 struct list_head ki_list; /* the aio core uses this
206 * for cancellation */
207 refcount_t ki_refcnt;
208
209 /*
210 * If the aio_resfd field of the userspace iocb is not zero,
211 * this is the underlying eventfd context to deliver events to.
212 */
213 struct eventfd_ctx *ki_eventfd;
214 };
215
216 /*------ sysctl variables----*/
217 static DEFINE_SPINLOCK(aio_nr_lock);
218 unsigned long aio_nr; /* current system wide number of aio requests */
219 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
220 /*----end sysctl variables---*/
221
222 static struct kmem_cache *kiocb_cachep;
223 static struct kmem_cache *kioctx_cachep;
224
225 static struct vfsmount *aio_mnt;
226
227 static const struct file_operations aio_ring_fops;
228 static const struct address_space_operations aio_ctx_aops;
229
aio_private_file(struct kioctx * ctx,loff_t nr_pages)230 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
231 {
232 struct file *file;
233 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
234 if (IS_ERR(inode))
235 return ERR_CAST(inode);
236
237 inode->i_mapping->a_ops = &aio_ctx_aops;
238 inode->i_mapping->private_data = ctx;
239 inode->i_size = PAGE_SIZE * nr_pages;
240
241 file = alloc_file_pseudo(inode, aio_mnt, "[aio]",
242 O_RDWR, &aio_ring_fops);
243 if (IS_ERR(file))
244 iput(inode);
245 return file;
246 }
247
aio_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)248 static struct dentry *aio_mount(struct file_system_type *fs_type,
249 int flags, const char *dev_name, void *data)
250 {
251 struct dentry *root = mount_pseudo(fs_type, "aio:", NULL, NULL,
252 AIO_RING_MAGIC);
253
254 if (!IS_ERR(root))
255 root->d_sb->s_iflags |= SB_I_NOEXEC;
256 return root;
257 }
258
259 /* aio_setup
260 * Creates the slab caches used by the aio routines, panic on
261 * failure as this is done early during the boot sequence.
262 */
aio_setup(void)263 static int __init aio_setup(void)
264 {
265 static struct file_system_type aio_fs = {
266 .name = "aio",
267 .mount = aio_mount,
268 .kill_sb = kill_anon_super,
269 };
270 aio_mnt = kern_mount(&aio_fs);
271 if (IS_ERR(aio_mnt))
272 panic("Failed to create aio fs mount.");
273
274 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
275 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
276 return 0;
277 }
278 __initcall(aio_setup);
279
put_aio_ring_file(struct kioctx * ctx)280 static void put_aio_ring_file(struct kioctx *ctx)
281 {
282 struct file *aio_ring_file = ctx->aio_ring_file;
283 struct address_space *i_mapping;
284
285 if (aio_ring_file) {
286 truncate_setsize(file_inode(aio_ring_file), 0);
287
288 /* Prevent further access to the kioctx from migratepages */
289 i_mapping = aio_ring_file->f_mapping;
290 spin_lock(&i_mapping->private_lock);
291 i_mapping->private_data = NULL;
292 ctx->aio_ring_file = NULL;
293 spin_unlock(&i_mapping->private_lock);
294
295 fput(aio_ring_file);
296 }
297 }
298
aio_free_ring(struct kioctx * ctx)299 static void aio_free_ring(struct kioctx *ctx)
300 {
301 int i;
302
303 /* Disconnect the kiotx from the ring file. This prevents future
304 * accesses to the kioctx from page migration.
305 */
306 put_aio_ring_file(ctx);
307
308 for (i = 0; i < ctx->nr_pages; i++) {
309 struct page *page;
310 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
311 page_count(ctx->ring_pages[i]));
312 page = ctx->ring_pages[i];
313 if (!page)
314 continue;
315 ctx->ring_pages[i] = NULL;
316 put_page(page);
317 }
318
319 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
320 kfree(ctx->ring_pages);
321 ctx->ring_pages = NULL;
322 }
323 }
324
aio_ring_mremap(struct vm_area_struct * vma)325 static int aio_ring_mremap(struct vm_area_struct *vma)
326 {
327 struct file *file = vma->vm_file;
328 struct mm_struct *mm = vma->vm_mm;
329 struct kioctx_table *table;
330 int i, res = -EINVAL;
331
332 spin_lock(&mm->ioctx_lock);
333 rcu_read_lock();
334 table = rcu_dereference(mm->ioctx_table);
335 if (!table)
336 goto out_unlock;
337
338 for (i = 0; i < table->nr; i++) {
339 struct kioctx *ctx;
340
341 ctx = rcu_dereference(table->table[i]);
342 if (ctx && ctx->aio_ring_file == file) {
343 if (!atomic_read(&ctx->dead)) {
344 ctx->user_id = ctx->mmap_base = vma->vm_start;
345 res = 0;
346 }
347 break;
348 }
349 }
350
351 out_unlock:
352 rcu_read_unlock();
353 spin_unlock(&mm->ioctx_lock);
354 return res;
355 }
356
357 static const struct vm_operations_struct aio_ring_vm_ops = {
358 .mremap = aio_ring_mremap,
359 #if IS_ENABLED(CONFIG_MMU)
360 .fault = filemap_fault,
361 .map_pages = filemap_map_pages,
362 .page_mkwrite = filemap_page_mkwrite,
363 #endif
364 };
365
aio_ring_mmap(struct file * file,struct vm_area_struct * vma)366 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
367 {
368 vma->vm_flags |= VM_DONTEXPAND;
369 vma->vm_ops = &aio_ring_vm_ops;
370 return 0;
371 }
372
373 static const struct file_operations aio_ring_fops = {
374 .mmap = aio_ring_mmap,
375 };
376
377 #if IS_ENABLED(CONFIG_MIGRATION)
aio_migratepage(struct address_space * mapping,struct page * new,struct page * old,enum migrate_mode mode)378 static int aio_migratepage(struct address_space *mapping, struct page *new,
379 struct page *old, enum migrate_mode mode)
380 {
381 struct kioctx *ctx;
382 unsigned long flags;
383 pgoff_t idx;
384 int rc;
385
386 /*
387 * We cannot support the _NO_COPY case here, because copy needs to
388 * happen under the ctx->completion_lock. That does not work with the
389 * migration workflow of MIGRATE_SYNC_NO_COPY.
390 */
391 if (mode == MIGRATE_SYNC_NO_COPY)
392 return -EINVAL;
393
394 rc = 0;
395
396 /* mapping->private_lock here protects against the kioctx teardown. */
397 spin_lock(&mapping->private_lock);
398 ctx = mapping->private_data;
399 if (!ctx) {
400 rc = -EINVAL;
401 goto out;
402 }
403
404 /* The ring_lock mutex. The prevents aio_read_events() from writing
405 * to the ring's head, and prevents page migration from mucking in
406 * a partially initialized kiotx.
407 */
408 if (!mutex_trylock(&ctx->ring_lock)) {
409 rc = -EAGAIN;
410 goto out;
411 }
412
413 idx = old->index;
414 if (idx < (pgoff_t)ctx->nr_pages) {
415 /* Make sure the old page hasn't already been changed */
416 if (ctx->ring_pages[idx] != old)
417 rc = -EAGAIN;
418 } else
419 rc = -EINVAL;
420
421 if (rc != 0)
422 goto out_unlock;
423
424 /* Writeback must be complete */
425 BUG_ON(PageWriteback(old));
426 get_page(new);
427
428 rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
429 if (rc != MIGRATEPAGE_SUCCESS) {
430 put_page(new);
431 goto out_unlock;
432 }
433
434 /* Take completion_lock to prevent other writes to the ring buffer
435 * while the old page is copied to the new. This prevents new
436 * events from being lost.
437 */
438 spin_lock_irqsave(&ctx->completion_lock, flags);
439 migrate_page_copy(new, old);
440 BUG_ON(ctx->ring_pages[idx] != old);
441 ctx->ring_pages[idx] = new;
442 spin_unlock_irqrestore(&ctx->completion_lock, flags);
443
444 /* The old page is no longer accessible. */
445 put_page(old);
446
447 out_unlock:
448 mutex_unlock(&ctx->ring_lock);
449 out:
450 spin_unlock(&mapping->private_lock);
451 return rc;
452 }
453 #endif
454
455 static const struct address_space_operations aio_ctx_aops = {
456 .set_page_dirty = __set_page_dirty_no_writeback,
457 #if IS_ENABLED(CONFIG_MIGRATION)
458 .migratepage = aio_migratepage,
459 #endif
460 };
461
aio_setup_ring(struct kioctx * ctx,unsigned int nr_events)462 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
463 {
464 struct aio_ring *ring;
465 struct mm_struct *mm = current->mm;
466 unsigned long size, unused;
467 int nr_pages;
468 int i;
469 struct file *file;
470
471 /* Compensate for the ring buffer's head/tail overlap entry */
472 nr_events += 2; /* 1 is required, 2 for good luck */
473
474 size = sizeof(struct aio_ring);
475 size += sizeof(struct io_event) * nr_events;
476
477 nr_pages = PFN_UP(size);
478 if (nr_pages < 0)
479 return -EINVAL;
480
481 file = aio_private_file(ctx, nr_pages);
482 if (IS_ERR(file)) {
483 ctx->aio_ring_file = NULL;
484 return -ENOMEM;
485 }
486
487 ctx->aio_ring_file = file;
488 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
489 / sizeof(struct io_event);
490
491 ctx->ring_pages = ctx->internal_pages;
492 if (nr_pages > AIO_RING_PAGES) {
493 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
494 GFP_KERNEL);
495 if (!ctx->ring_pages) {
496 put_aio_ring_file(ctx);
497 return -ENOMEM;
498 }
499 }
500
501 for (i = 0; i < nr_pages; i++) {
502 struct page *page;
503 page = find_or_create_page(file->f_mapping,
504 i, GFP_HIGHUSER | __GFP_ZERO);
505 if (!page)
506 break;
507 pr_debug("pid(%d) page[%d]->count=%d\n",
508 current->pid, i, page_count(page));
509 SetPageUptodate(page);
510 unlock_page(page);
511
512 ctx->ring_pages[i] = page;
513 }
514 ctx->nr_pages = i;
515
516 if (unlikely(i != nr_pages)) {
517 aio_free_ring(ctx);
518 return -ENOMEM;
519 }
520
521 ctx->mmap_size = nr_pages * PAGE_SIZE;
522 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
523
524 if (down_write_killable(&mm->mmap_sem)) {
525 ctx->mmap_size = 0;
526 aio_free_ring(ctx);
527 return -EINTR;
528 }
529
530 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
531 PROT_READ | PROT_WRITE,
532 MAP_SHARED, 0, &unused, NULL);
533 up_write(&mm->mmap_sem);
534 if (IS_ERR((void *)ctx->mmap_base)) {
535 ctx->mmap_size = 0;
536 aio_free_ring(ctx);
537 return -ENOMEM;
538 }
539
540 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
541
542 ctx->user_id = ctx->mmap_base;
543 ctx->nr_events = nr_events; /* trusted copy */
544
545 ring = kmap_atomic(ctx->ring_pages[0]);
546 ring->nr = nr_events; /* user copy */
547 ring->id = ~0U;
548 ring->head = ring->tail = 0;
549 ring->magic = AIO_RING_MAGIC;
550 ring->compat_features = AIO_RING_COMPAT_FEATURES;
551 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
552 ring->header_length = sizeof(struct aio_ring);
553 kunmap_atomic(ring);
554 flush_dcache_page(ctx->ring_pages[0]);
555
556 return 0;
557 }
558
559 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
560 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
561 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
562
kiocb_set_cancel_fn(struct kiocb * iocb,kiocb_cancel_fn * cancel)563 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
564 {
565 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw);
566 struct kioctx *ctx = req->ki_ctx;
567 unsigned long flags;
568
569 if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
570 return;
571
572 spin_lock_irqsave(&ctx->ctx_lock, flags);
573 list_add_tail(&req->ki_list, &ctx->active_reqs);
574 req->ki_cancel = cancel;
575 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
576 }
577 EXPORT_SYMBOL(kiocb_set_cancel_fn);
578
579 /*
580 * free_ioctx() should be RCU delayed to synchronize against the RCU
581 * protected lookup_ioctx() and also needs process context to call
582 * aio_free_ring(). Use rcu_work.
583 */
free_ioctx(struct work_struct * work)584 static void free_ioctx(struct work_struct *work)
585 {
586 struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
587 free_rwork);
588 pr_debug("freeing %p\n", ctx);
589
590 aio_free_ring(ctx);
591 free_percpu(ctx->cpu);
592 percpu_ref_exit(&ctx->reqs);
593 percpu_ref_exit(&ctx->users);
594 kmem_cache_free(kioctx_cachep, ctx);
595 }
596
free_ioctx_reqs(struct percpu_ref * ref)597 static void free_ioctx_reqs(struct percpu_ref *ref)
598 {
599 struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
600
601 /* At this point we know that there are no any in-flight requests */
602 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
603 complete(&ctx->rq_wait->comp);
604
605 /* Synchronize against RCU protected table->table[] dereferences */
606 INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
607 queue_rcu_work(system_wq, &ctx->free_rwork);
608 }
609
610 /*
611 * When this function runs, the kioctx has been removed from the "hash table"
612 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
613 * now it's safe to cancel any that need to be.
614 */
free_ioctx_users(struct percpu_ref * ref)615 static void free_ioctx_users(struct percpu_ref *ref)
616 {
617 struct kioctx *ctx = container_of(ref, struct kioctx, users);
618 struct aio_kiocb *req;
619
620 spin_lock_irq(&ctx->ctx_lock);
621
622 while (!list_empty(&ctx->active_reqs)) {
623 req = list_first_entry(&ctx->active_reqs,
624 struct aio_kiocb, ki_list);
625 req->ki_cancel(&req->rw);
626 list_del_init(&req->ki_list);
627 }
628
629 spin_unlock_irq(&ctx->ctx_lock);
630
631 percpu_ref_kill(&ctx->reqs);
632 percpu_ref_put(&ctx->reqs);
633 }
634
ioctx_add_table(struct kioctx * ctx,struct mm_struct * mm)635 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
636 {
637 unsigned i, new_nr;
638 struct kioctx_table *table, *old;
639 struct aio_ring *ring;
640
641 spin_lock(&mm->ioctx_lock);
642 table = rcu_dereference_raw(mm->ioctx_table);
643
644 while (1) {
645 if (table)
646 for (i = 0; i < table->nr; i++)
647 if (!rcu_access_pointer(table->table[i])) {
648 ctx->id = i;
649 rcu_assign_pointer(table->table[i], ctx);
650 spin_unlock(&mm->ioctx_lock);
651
652 /* While kioctx setup is in progress,
653 * we are protected from page migration
654 * changes ring_pages by ->ring_lock.
655 */
656 ring = kmap_atomic(ctx->ring_pages[0]);
657 ring->id = ctx->id;
658 kunmap_atomic(ring);
659 return 0;
660 }
661
662 new_nr = (table ? table->nr : 1) * 4;
663 spin_unlock(&mm->ioctx_lock);
664
665 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
666 new_nr, GFP_KERNEL);
667 if (!table)
668 return -ENOMEM;
669
670 table->nr = new_nr;
671
672 spin_lock(&mm->ioctx_lock);
673 old = rcu_dereference_raw(mm->ioctx_table);
674
675 if (!old) {
676 rcu_assign_pointer(mm->ioctx_table, table);
677 } else if (table->nr > old->nr) {
678 memcpy(table->table, old->table,
679 old->nr * sizeof(struct kioctx *));
680
681 rcu_assign_pointer(mm->ioctx_table, table);
682 kfree_rcu(old, rcu);
683 } else {
684 kfree(table);
685 table = old;
686 }
687 }
688 }
689
aio_nr_sub(unsigned nr)690 static void aio_nr_sub(unsigned nr)
691 {
692 spin_lock(&aio_nr_lock);
693 if (WARN_ON(aio_nr - nr > aio_nr))
694 aio_nr = 0;
695 else
696 aio_nr -= nr;
697 spin_unlock(&aio_nr_lock);
698 }
699
700 /* ioctx_alloc
701 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
702 */
ioctx_alloc(unsigned nr_events)703 static struct kioctx *ioctx_alloc(unsigned nr_events)
704 {
705 struct mm_struct *mm = current->mm;
706 struct kioctx *ctx;
707 int err = -ENOMEM;
708
709 /*
710 * Store the original nr_events -- what userspace passed to io_setup(),
711 * for counting against the global limit -- before it changes.
712 */
713 unsigned int max_reqs = nr_events;
714
715 /*
716 * We keep track of the number of available ringbuffer slots, to prevent
717 * overflow (reqs_available), and we also use percpu counters for this.
718 *
719 * So since up to half the slots might be on other cpu's percpu counters
720 * and unavailable, double nr_events so userspace sees what they
721 * expected: additionally, we move req_batch slots to/from percpu
722 * counters at a time, so make sure that isn't 0:
723 */
724 nr_events = max(nr_events, num_possible_cpus() * 4);
725 nr_events *= 2;
726
727 /* Prevent overflows */
728 if (nr_events > (0x10000000U / sizeof(struct io_event))) {
729 pr_debug("ENOMEM: nr_events too high\n");
730 return ERR_PTR(-EINVAL);
731 }
732
733 if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
734 return ERR_PTR(-EAGAIN);
735
736 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
737 if (!ctx)
738 return ERR_PTR(-ENOMEM);
739
740 ctx->max_reqs = max_reqs;
741
742 spin_lock_init(&ctx->ctx_lock);
743 spin_lock_init(&ctx->completion_lock);
744 mutex_init(&ctx->ring_lock);
745 /* Protect against page migration throughout kiotx setup by keeping
746 * the ring_lock mutex held until setup is complete. */
747 mutex_lock(&ctx->ring_lock);
748 init_waitqueue_head(&ctx->wait);
749
750 INIT_LIST_HEAD(&ctx->active_reqs);
751
752 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
753 goto err;
754
755 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
756 goto err;
757
758 ctx->cpu = alloc_percpu(struct kioctx_cpu);
759 if (!ctx->cpu)
760 goto err;
761
762 err = aio_setup_ring(ctx, nr_events);
763 if (err < 0)
764 goto err;
765
766 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
767 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
768 if (ctx->req_batch < 1)
769 ctx->req_batch = 1;
770
771 /* limit the number of system wide aios */
772 spin_lock(&aio_nr_lock);
773 if (aio_nr + ctx->max_reqs > aio_max_nr ||
774 aio_nr + ctx->max_reqs < aio_nr) {
775 spin_unlock(&aio_nr_lock);
776 err = -EAGAIN;
777 goto err_ctx;
778 }
779 aio_nr += ctx->max_reqs;
780 spin_unlock(&aio_nr_lock);
781
782 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
783 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
784
785 err = ioctx_add_table(ctx, mm);
786 if (err)
787 goto err_cleanup;
788
789 /* Release the ring_lock mutex now that all setup is complete. */
790 mutex_unlock(&ctx->ring_lock);
791
792 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
793 ctx, ctx->user_id, mm, ctx->nr_events);
794 return ctx;
795
796 err_cleanup:
797 aio_nr_sub(ctx->max_reqs);
798 err_ctx:
799 atomic_set(&ctx->dead, 1);
800 if (ctx->mmap_size)
801 vm_munmap(ctx->mmap_base, ctx->mmap_size);
802 aio_free_ring(ctx);
803 err:
804 mutex_unlock(&ctx->ring_lock);
805 free_percpu(ctx->cpu);
806 percpu_ref_exit(&ctx->reqs);
807 percpu_ref_exit(&ctx->users);
808 kmem_cache_free(kioctx_cachep, ctx);
809 pr_debug("error allocating ioctx %d\n", err);
810 return ERR_PTR(err);
811 }
812
813 /* kill_ioctx
814 * Cancels all outstanding aio requests on an aio context. Used
815 * when the processes owning a context have all exited to encourage
816 * the rapid destruction of the kioctx.
817 */
kill_ioctx(struct mm_struct * mm,struct kioctx * ctx,struct ctx_rq_wait * wait)818 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
819 struct ctx_rq_wait *wait)
820 {
821 struct kioctx_table *table;
822
823 spin_lock(&mm->ioctx_lock);
824 if (atomic_xchg(&ctx->dead, 1)) {
825 spin_unlock(&mm->ioctx_lock);
826 return -EINVAL;
827 }
828
829 table = rcu_dereference_raw(mm->ioctx_table);
830 WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
831 RCU_INIT_POINTER(table->table[ctx->id], NULL);
832 spin_unlock(&mm->ioctx_lock);
833
834 /* free_ioctx_reqs() will do the necessary RCU synchronization */
835 wake_up_all(&ctx->wait);
836
837 /*
838 * It'd be more correct to do this in free_ioctx(), after all
839 * the outstanding kiocbs have finished - but by then io_destroy
840 * has already returned, so io_setup() could potentially return
841 * -EAGAIN with no ioctxs actually in use (as far as userspace
842 * could tell).
843 */
844 aio_nr_sub(ctx->max_reqs);
845
846 if (ctx->mmap_size)
847 vm_munmap(ctx->mmap_base, ctx->mmap_size);
848
849 ctx->rq_wait = wait;
850 percpu_ref_kill(&ctx->users);
851 return 0;
852 }
853
854 /*
855 * exit_aio: called when the last user of mm goes away. At this point, there is
856 * no way for any new requests to be submited or any of the io_* syscalls to be
857 * called on the context.
858 *
859 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
860 * them.
861 */
exit_aio(struct mm_struct * mm)862 void exit_aio(struct mm_struct *mm)
863 {
864 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
865 struct ctx_rq_wait wait;
866 int i, skipped;
867
868 if (!table)
869 return;
870
871 atomic_set(&wait.count, table->nr);
872 init_completion(&wait.comp);
873
874 skipped = 0;
875 for (i = 0; i < table->nr; ++i) {
876 struct kioctx *ctx =
877 rcu_dereference_protected(table->table[i], true);
878
879 if (!ctx) {
880 skipped++;
881 continue;
882 }
883
884 /*
885 * We don't need to bother with munmap() here - exit_mmap(mm)
886 * is coming and it'll unmap everything. And we simply can't,
887 * this is not necessarily our ->mm.
888 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
889 * that it needs to unmap the area, just set it to 0.
890 */
891 ctx->mmap_size = 0;
892 kill_ioctx(mm, ctx, &wait);
893 }
894
895 if (!atomic_sub_and_test(skipped, &wait.count)) {
896 /* Wait until all IO for the context are done. */
897 wait_for_completion(&wait.comp);
898 }
899
900 RCU_INIT_POINTER(mm->ioctx_table, NULL);
901 kfree(table);
902 }
903
put_reqs_available(struct kioctx * ctx,unsigned nr)904 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
905 {
906 struct kioctx_cpu *kcpu;
907 unsigned long flags;
908
909 local_irq_save(flags);
910 kcpu = this_cpu_ptr(ctx->cpu);
911 kcpu->reqs_available += nr;
912
913 while (kcpu->reqs_available >= ctx->req_batch * 2) {
914 kcpu->reqs_available -= ctx->req_batch;
915 atomic_add(ctx->req_batch, &ctx->reqs_available);
916 }
917
918 local_irq_restore(flags);
919 }
920
__get_reqs_available(struct kioctx * ctx)921 static bool __get_reqs_available(struct kioctx *ctx)
922 {
923 struct kioctx_cpu *kcpu;
924 bool ret = false;
925 unsigned long flags;
926
927 local_irq_save(flags);
928 kcpu = this_cpu_ptr(ctx->cpu);
929 if (!kcpu->reqs_available) {
930 int old, avail = atomic_read(&ctx->reqs_available);
931
932 do {
933 if (avail < ctx->req_batch)
934 goto out;
935
936 old = avail;
937 avail = atomic_cmpxchg(&ctx->reqs_available,
938 avail, avail - ctx->req_batch);
939 } while (avail != old);
940
941 kcpu->reqs_available += ctx->req_batch;
942 }
943
944 ret = true;
945 kcpu->reqs_available--;
946 out:
947 local_irq_restore(flags);
948 return ret;
949 }
950
951 /* refill_reqs_available
952 * Updates the reqs_available reference counts used for tracking the
953 * number of free slots in the completion ring. This can be called
954 * from aio_complete() (to optimistically update reqs_available) or
955 * from aio_get_req() (the we're out of events case). It must be
956 * called holding ctx->completion_lock.
957 */
refill_reqs_available(struct kioctx * ctx,unsigned head,unsigned tail)958 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
959 unsigned tail)
960 {
961 unsigned events_in_ring, completed;
962
963 /* Clamp head since userland can write to it. */
964 head %= ctx->nr_events;
965 if (head <= tail)
966 events_in_ring = tail - head;
967 else
968 events_in_ring = ctx->nr_events - (head - tail);
969
970 completed = ctx->completed_events;
971 if (events_in_ring < completed)
972 completed -= events_in_ring;
973 else
974 completed = 0;
975
976 if (!completed)
977 return;
978
979 ctx->completed_events -= completed;
980 put_reqs_available(ctx, completed);
981 }
982
983 /* user_refill_reqs_available
984 * Called to refill reqs_available when aio_get_req() encounters an
985 * out of space in the completion ring.
986 */
user_refill_reqs_available(struct kioctx * ctx)987 static void user_refill_reqs_available(struct kioctx *ctx)
988 {
989 spin_lock_irq(&ctx->completion_lock);
990 if (ctx->completed_events) {
991 struct aio_ring *ring;
992 unsigned head;
993
994 /* Access of ring->head may race with aio_read_events_ring()
995 * here, but that's okay since whether we read the old version
996 * or the new version, and either will be valid. The important
997 * part is that head cannot pass tail since we prevent
998 * aio_complete() from updating tail by holding
999 * ctx->completion_lock. Even if head is invalid, the check
1000 * against ctx->completed_events below will make sure we do the
1001 * safe/right thing.
1002 */
1003 ring = kmap_atomic(ctx->ring_pages[0]);
1004 head = ring->head;
1005 kunmap_atomic(ring);
1006
1007 refill_reqs_available(ctx, head, ctx->tail);
1008 }
1009
1010 spin_unlock_irq(&ctx->completion_lock);
1011 }
1012
get_reqs_available(struct kioctx * ctx)1013 static bool get_reqs_available(struct kioctx *ctx)
1014 {
1015 if (__get_reqs_available(ctx))
1016 return true;
1017 user_refill_reqs_available(ctx);
1018 return __get_reqs_available(ctx);
1019 }
1020
1021 /* aio_get_req
1022 * Allocate a slot for an aio request.
1023 * Returns NULL if no requests are free.
1024 *
1025 * The refcount is initialized to 2 - one for the async op completion,
1026 * one for the synchronous code that does this.
1027 */
aio_get_req(struct kioctx * ctx)1028 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1029 {
1030 struct aio_kiocb *req;
1031
1032 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
1033 if (unlikely(!req))
1034 return NULL;
1035
1036 percpu_ref_get(&ctx->reqs);
1037 req->ki_ctx = ctx;
1038 INIT_LIST_HEAD(&req->ki_list);
1039 refcount_set(&req->ki_refcnt, 2);
1040 req->ki_eventfd = NULL;
1041 return req;
1042 }
1043
lookup_ioctx(unsigned long ctx_id)1044 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1045 {
1046 struct aio_ring __user *ring = (void __user *)ctx_id;
1047 struct mm_struct *mm = current->mm;
1048 struct kioctx *ctx, *ret = NULL;
1049 struct kioctx_table *table;
1050 unsigned id;
1051
1052 if (get_user(id, &ring->id))
1053 return NULL;
1054
1055 rcu_read_lock();
1056 table = rcu_dereference(mm->ioctx_table);
1057
1058 if (!table || id >= table->nr)
1059 goto out;
1060
1061 id = array_index_nospec(id, table->nr);
1062 ctx = rcu_dereference(table->table[id]);
1063 if (ctx && ctx->user_id == ctx_id) {
1064 if (percpu_ref_tryget_live(&ctx->users))
1065 ret = ctx;
1066 }
1067 out:
1068 rcu_read_unlock();
1069 return ret;
1070 }
1071
iocb_destroy(struct aio_kiocb * iocb)1072 static inline void iocb_destroy(struct aio_kiocb *iocb)
1073 {
1074 if (iocb->ki_filp)
1075 fput(iocb->ki_filp);
1076 percpu_ref_put(&iocb->ki_ctx->reqs);
1077 kmem_cache_free(kiocb_cachep, iocb);
1078 }
1079
1080 /* aio_complete
1081 * Called when the io request on the given iocb is complete.
1082 */
aio_complete(struct aio_kiocb * iocb)1083 static void aio_complete(struct aio_kiocb *iocb)
1084 {
1085 struct kioctx *ctx = iocb->ki_ctx;
1086 struct aio_ring *ring;
1087 struct io_event *ev_page, *event;
1088 unsigned tail, pos, head;
1089 unsigned long flags;
1090
1091 /*
1092 * Add a completion event to the ring buffer. Must be done holding
1093 * ctx->completion_lock to prevent other code from messing with the tail
1094 * pointer since we might be called from irq context.
1095 */
1096 spin_lock_irqsave(&ctx->completion_lock, flags);
1097
1098 tail = ctx->tail;
1099 pos = tail + AIO_EVENTS_OFFSET;
1100
1101 if (++tail >= ctx->nr_events)
1102 tail = 0;
1103
1104 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1105 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1106
1107 *event = iocb->ki_res;
1108
1109 kunmap_atomic(ev_page);
1110 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1111
1112 pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb,
1113 (void __user *)(unsigned long)iocb->ki_res.obj,
1114 iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2);
1115
1116 /* after flagging the request as done, we
1117 * must never even look at it again
1118 */
1119 smp_wmb(); /* make event visible before updating tail */
1120
1121 ctx->tail = tail;
1122
1123 ring = kmap_atomic(ctx->ring_pages[0]);
1124 head = ring->head;
1125 ring->tail = tail;
1126 kunmap_atomic(ring);
1127 flush_dcache_page(ctx->ring_pages[0]);
1128
1129 ctx->completed_events++;
1130 if (ctx->completed_events > 1)
1131 refill_reqs_available(ctx, head, tail);
1132 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1133
1134 pr_debug("added to ring %p at [%u]\n", iocb, tail);
1135
1136 /*
1137 * Check if the user asked us to deliver the result through an
1138 * eventfd. The eventfd_signal() function is safe to be called
1139 * from IRQ context.
1140 */
1141 if (iocb->ki_eventfd) {
1142 eventfd_signal(iocb->ki_eventfd, 1);
1143 eventfd_ctx_put(iocb->ki_eventfd);
1144 }
1145
1146 /*
1147 * We have to order our ring_info tail store above and test
1148 * of the wait list below outside the wait lock. This is
1149 * like in wake_up_bit() where clearing a bit has to be
1150 * ordered with the unlocked test.
1151 */
1152 smp_mb();
1153
1154 if (waitqueue_active(&ctx->wait))
1155 wake_up(&ctx->wait);
1156 }
1157
iocb_put(struct aio_kiocb * iocb)1158 static inline void iocb_put(struct aio_kiocb *iocb)
1159 {
1160 if (refcount_dec_and_test(&iocb->ki_refcnt)) {
1161 aio_complete(iocb);
1162 iocb_destroy(iocb);
1163 }
1164 }
1165
1166 /* aio_read_events_ring
1167 * Pull an event off of the ioctx's event ring. Returns the number of
1168 * events fetched
1169 */
aio_read_events_ring(struct kioctx * ctx,struct io_event __user * event,long nr)1170 static long aio_read_events_ring(struct kioctx *ctx,
1171 struct io_event __user *event, long nr)
1172 {
1173 struct aio_ring *ring;
1174 unsigned head, tail, pos;
1175 long ret = 0;
1176 int copy_ret;
1177
1178 /*
1179 * The mutex can block and wake us up and that will cause
1180 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1181 * and repeat. This should be rare enough that it doesn't cause
1182 * peformance issues. See the comment in read_events() for more detail.
1183 */
1184 sched_annotate_sleep();
1185 mutex_lock(&ctx->ring_lock);
1186
1187 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
1188 ring = kmap_atomic(ctx->ring_pages[0]);
1189 head = ring->head;
1190 tail = ring->tail;
1191 kunmap_atomic(ring);
1192
1193 /*
1194 * Ensure that once we've read the current tail pointer, that
1195 * we also see the events that were stored up to the tail.
1196 */
1197 smp_rmb();
1198
1199 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1200
1201 if (head == tail)
1202 goto out;
1203
1204 head %= ctx->nr_events;
1205 tail %= ctx->nr_events;
1206
1207 while (ret < nr) {
1208 long avail;
1209 struct io_event *ev;
1210 struct page *page;
1211
1212 avail = (head <= tail ? tail : ctx->nr_events) - head;
1213 if (head == tail)
1214 break;
1215
1216 pos = head + AIO_EVENTS_OFFSET;
1217 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1218 pos %= AIO_EVENTS_PER_PAGE;
1219
1220 avail = min(avail, nr - ret);
1221 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1222
1223 ev = kmap(page);
1224 copy_ret = copy_to_user(event + ret, ev + pos,
1225 sizeof(*ev) * avail);
1226 kunmap(page);
1227
1228 if (unlikely(copy_ret)) {
1229 ret = -EFAULT;
1230 goto out;
1231 }
1232
1233 ret += avail;
1234 head += avail;
1235 head %= ctx->nr_events;
1236 }
1237
1238 ring = kmap_atomic(ctx->ring_pages[0]);
1239 ring->head = head;
1240 kunmap_atomic(ring);
1241 flush_dcache_page(ctx->ring_pages[0]);
1242
1243 pr_debug("%li h%u t%u\n", ret, head, tail);
1244 out:
1245 mutex_unlock(&ctx->ring_lock);
1246
1247 return ret;
1248 }
1249
aio_read_events(struct kioctx * ctx,long min_nr,long nr,struct io_event __user * event,long * i)1250 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1251 struct io_event __user *event, long *i)
1252 {
1253 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1254
1255 if (ret > 0)
1256 *i += ret;
1257
1258 if (unlikely(atomic_read(&ctx->dead)))
1259 ret = -EINVAL;
1260
1261 if (!*i)
1262 *i = ret;
1263
1264 return ret < 0 || *i >= min_nr;
1265 }
1266
read_events(struct kioctx * ctx,long min_nr,long nr,struct io_event __user * event,ktime_t until)1267 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1268 struct io_event __user *event,
1269 ktime_t until)
1270 {
1271 long ret = 0;
1272
1273 /*
1274 * Note that aio_read_events() is being called as the conditional - i.e.
1275 * we're calling it after prepare_to_wait() has set task state to
1276 * TASK_INTERRUPTIBLE.
1277 *
1278 * But aio_read_events() can block, and if it blocks it's going to flip
1279 * the task state back to TASK_RUNNING.
1280 *
1281 * This should be ok, provided it doesn't flip the state back to
1282 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1283 * will only happen if the mutex_lock() call blocks, and we then find
1284 * the ringbuffer empty. So in practice we should be ok, but it's
1285 * something to be aware of when touching this code.
1286 */
1287 if (until == 0)
1288 aio_read_events(ctx, min_nr, nr, event, &ret);
1289 else
1290 wait_event_interruptible_hrtimeout(ctx->wait,
1291 aio_read_events(ctx, min_nr, nr, event, &ret),
1292 until);
1293 return ret;
1294 }
1295
1296 /* sys_io_setup:
1297 * Create an aio_context capable of receiving at least nr_events.
1298 * ctxp must not point to an aio_context that already exists, and
1299 * must be initialized to 0 prior to the call. On successful
1300 * creation of the aio_context, *ctxp is filled in with the resulting
1301 * handle. May fail with -EINVAL if *ctxp is not initialized,
1302 * if the specified nr_events exceeds internal limits. May fail
1303 * with -EAGAIN if the specified nr_events exceeds the user's limit
1304 * of available events. May fail with -ENOMEM if insufficient kernel
1305 * resources are available. May fail with -EFAULT if an invalid
1306 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1307 * implemented.
1308 */
SYSCALL_DEFINE2(io_setup,unsigned,nr_events,aio_context_t __user *,ctxp)1309 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1310 {
1311 struct kioctx *ioctx = NULL;
1312 unsigned long ctx;
1313 long ret;
1314
1315 ret = get_user(ctx, ctxp);
1316 if (unlikely(ret))
1317 goto out;
1318
1319 ret = -EINVAL;
1320 if (unlikely(ctx || nr_events == 0)) {
1321 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1322 ctx, nr_events);
1323 goto out;
1324 }
1325
1326 ioctx = ioctx_alloc(nr_events);
1327 ret = PTR_ERR(ioctx);
1328 if (!IS_ERR(ioctx)) {
1329 ret = put_user(ioctx->user_id, ctxp);
1330 if (ret)
1331 kill_ioctx(current->mm, ioctx, NULL);
1332 percpu_ref_put(&ioctx->users);
1333 }
1334
1335 out:
1336 return ret;
1337 }
1338
1339 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(io_setup,unsigned,nr_events,u32 __user *,ctx32p)1340 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1341 {
1342 struct kioctx *ioctx = NULL;
1343 unsigned long ctx;
1344 long ret;
1345
1346 ret = get_user(ctx, ctx32p);
1347 if (unlikely(ret))
1348 goto out;
1349
1350 ret = -EINVAL;
1351 if (unlikely(ctx || nr_events == 0)) {
1352 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1353 ctx, nr_events);
1354 goto out;
1355 }
1356
1357 ioctx = ioctx_alloc(nr_events);
1358 ret = PTR_ERR(ioctx);
1359 if (!IS_ERR(ioctx)) {
1360 /* truncating is ok because it's a user address */
1361 ret = put_user((u32)ioctx->user_id, ctx32p);
1362 if (ret)
1363 kill_ioctx(current->mm, ioctx, NULL);
1364 percpu_ref_put(&ioctx->users);
1365 }
1366
1367 out:
1368 return ret;
1369 }
1370 #endif
1371
1372 /* sys_io_destroy:
1373 * Destroy the aio_context specified. May cancel any outstanding
1374 * AIOs and block on completion. Will fail with -ENOSYS if not
1375 * implemented. May fail with -EINVAL if the context pointed to
1376 * is invalid.
1377 */
SYSCALL_DEFINE1(io_destroy,aio_context_t,ctx)1378 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1379 {
1380 struct kioctx *ioctx = lookup_ioctx(ctx);
1381 if (likely(NULL != ioctx)) {
1382 struct ctx_rq_wait wait;
1383 int ret;
1384
1385 init_completion(&wait.comp);
1386 atomic_set(&wait.count, 1);
1387
1388 /* Pass requests_done to kill_ioctx() where it can be set
1389 * in a thread-safe way. If we try to set it here then we have
1390 * a race condition if two io_destroy() called simultaneously.
1391 */
1392 ret = kill_ioctx(current->mm, ioctx, &wait);
1393 percpu_ref_put(&ioctx->users);
1394
1395 /* Wait until all IO for the context are done. Otherwise kernel
1396 * keep using user-space buffers even if user thinks the context
1397 * is destroyed.
1398 */
1399 if (!ret)
1400 wait_for_completion(&wait.comp);
1401
1402 return ret;
1403 }
1404 pr_debug("EINVAL: invalid context id\n");
1405 return -EINVAL;
1406 }
1407
aio_remove_iocb(struct aio_kiocb * iocb)1408 static void aio_remove_iocb(struct aio_kiocb *iocb)
1409 {
1410 struct kioctx *ctx = iocb->ki_ctx;
1411 unsigned long flags;
1412
1413 spin_lock_irqsave(&ctx->ctx_lock, flags);
1414 list_del(&iocb->ki_list);
1415 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1416 }
1417
aio_complete_rw(struct kiocb * kiocb,long res,long res2)1418 static void aio_complete_rw(struct kiocb *kiocb, long res, long res2)
1419 {
1420 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1421
1422 if (!list_empty_careful(&iocb->ki_list))
1423 aio_remove_iocb(iocb);
1424
1425 if (kiocb->ki_flags & IOCB_WRITE) {
1426 struct inode *inode = file_inode(kiocb->ki_filp);
1427
1428 /*
1429 * Tell lockdep we inherited freeze protection from submission
1430 * thread.
1431 */
1432 if (S_ISREG(inode->i_mode))
1433 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
1434 file_end_write(kiocb->ki_filp);
1435 }
1436
1437 iocb->ki_res.res = res;
1438 iocb->ki_res.res2 = res2;
1439 iocb_put(iocb);
1440 }
1441
aio_prep_rw(struct kiocb * req,const struct iocb * iocb)1442 static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb)
1443 {
1444 int ret;
1445
1446 req->ki_complete = aio_complete_rw;
1447 req->private = NULL;
1448 req->ki_pos = iocb->aio_offset;
1449 req->ki_flags = iocb_flags(req->ki_filp);
1450 if (iocb->aio_flags & IOCB_FLAG_RESFD)
1451 req->ki_flags |= IOCB_EVENTFD;
1452 req->ki_hint = ki_hint_validate(file_write_hint(req->ki_filp));
1453 if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1454 /*
1455 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1456 * aio_reqprio is interpreted as an I/O scheduling
1457 * class and priority.
1458 */
1459 ret = ioprio_check_cap(iocb->aio_reqprio);
1460 if (ret) {
1461 pr_debug("aio ioprio check cap error: %d\n", ret);
1462 return ret;
1463 }
1464
1465 req->ki_ioprio = iocb->aio_reqprio;
1466 } else
1467 req->ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1468
1469 ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1470 if (unlikely(ret))
1471 return ret;
1472
1473 req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */
1474 return 0;
1475 }
1476
aio_setup_rw(int rw,const struct iocb * iocb,struct iovec ** iovec,bool vectored,bool compat,struct iov_iter * iter)1477 static int aio_setup_rw(int rw, const struct iocb *iocb, struct iovec **iovec,
1478 bool vectored, bool compat, struct iov_iter *iter)
1479 {
1480 void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1481 size_t len = iocb->aio_nbytes;
1482
1483 if (!vectored) {
1484 ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1485 *iovec = NULL;
1486 return ret;
1487 }
1488 #ifdef CONFIG_COMPAT
1489 if (compat)
1490 return compat_import_iovec(rw, buf, len, UIO_FASTIOV, iovec,
1491 iter);
1492 #endif
1493 return import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter);
1494 }
1495
aio_rw_done(struct kiocb * req,ssize_t ret)1496 static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
1497 {
1498 switch (ret) {
1499 case -EIOCBQUEUED:
1500 break;
1501 case -ERESTARTSYS:
1502 case -ERESTARTNOINTR:
1503 case -ERESTARTNOHAND:
1504 case -ERESTART_RESTARTBLOCK:
1505 /*
1506 * There's no easy way to restart the syscall since other AIO's
1507 * may be already running. Just fail this IO with EINTR.
1508 */
1509 ret = -EINTR;
1510 /*FALLTHRU*/
1511 default:
1512 req->ki_complete(req, ret, 0);
1513 }
1514 }
1515
aio_read(struct kiocb * req,const struct iocb * iocb,bool vectored,bool compat)1516 static ssize_t aio_read(struct kiocb *req, const struct iocb *iocb,
1517 bool vectored, bool compat)
1518 {
1519 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1520 struct iov_iter iter;
1521 struct file *file;
1522 ssize_t ret;
1523
1524 ret = aio_prep_rw(req, iocb);
1525 if (ret)
1526 return ret;
1527 file = req->ki_filp;
1528 if (unlikely(!(file->f_mode & FMODE_READ)))
1529 return -EBADF;
1530 ret = -EINVAL;
1531 if (unlikely(!file->f_op->read_iter))
1532 return -EINVAL;
1533
1534 ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
1535 if (ret)
1536 return ret;
1537 ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1538 if (!ret)
1539 aio_rw_done(req, call_read_iter(file, req, &iter));
1540 kfree(iovec);
1541 return ret;
1542 }
1543
aio_write(struct kiocb * req,const struct iocb * iocb,bool vectored,bool compat)1544 static ssize_t aio_write(struct kiocb *req, const struct iocb *iocb,
1545 bool vectored, bool compat)
1546 {
1547 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1548 struct iov_iter iter;
1549 struct file *file;
1550 ssize_t ret;
1551
1552 ret = aio_prep_rw(req, iocb);
1553 if (ret)
1554 return ret;
1555 file = req->ki_filp;
1556
1557 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1558 return -EBADF;
1559 if (unlikely(!file->f_op->write_iter))
1560 return -EINVAL;
1561
1562 ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
1563 if (ret)
1564 return ret;
1565 ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1566 if (!ret) {
1567 /*
1568 * Open-code file_start_write here to grab freeze protection,
1569 * which will be released by another thread in
1570 * aio_complete_rw(). Fool lockdep by telling it the lock got
1571 * released so that it doesn't complain about the held lock when
1572 * we return to userspace.
1573 */
1574 if (S_ISREG(file_inode(file)->i_mode)) {
1575 __sb_start_write(file_inode(file)->i_sb, SB_FREEZE_WRITE, true);
1576 __sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1577 }
1578 req->ki_flags |= IOCB_WRITE;
1579 aio_rw_done(req, call_write_iter(file, req, &iter));
1580 }
1581 kfree(iovec);
1582 return ret;
1583 }
1584
aio_fsync_work(struct work_struct * work)1585 static void aio_fsync_work(struct work_struct *work)
1586 {
1587 struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work);
1588 const struct cred *old_cred = override_creds(iocb->fsync.creds);
1589
1590 iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync);
1591 revert_creds(old_cred);
1592 put_cred(iocb->fsync.creds);
1593 iocb_put(iocb);
1594 }
1595
aio_fsync(struct fsync_iocb * req,const struct iocb * iocb,bool datasync)1596 static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb,
1597 bool datasync)
1598 {
1599 if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1600 iocb->aio_rw_flags))
1601 return -EINVAL;
1602
1603 if (unlikely(!req->file->f_op->fsync))
1604 return -EINVAL;
1605
1606 req->creds = prepare_creds();
1607 if (!req->creds)
1608 return -ENOMEM;
1609
1610 req->datasync = datasync;
1611 INIT_WORK(&req->work, aio_fsync_work);
1612 schedule_work(&req->work);
1613 return 0;
1614 }
1615
aio_poll_put_work(struct work_struct * work)1616 static void aio_poll_put_work(struct work_struct *work)
1617 {
1618 struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1619 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1620
1621 iocb_put(iocb);
1622 }
1623
1624 /*
1625 * Safely lock the waitqueue which the request is on, synchronizing with the
1626 * case where the ->poll() provider decides to free its waitqueue early.
1627 *
1628 * Returns true on success, meaning that req->head->lock was locked, req->wait
1629 * is on req->head, and an RCU read lock was taken. Returns false if the
1630 * request was already removed from its waitqueue (which might no longer exist).
1631 */
poll_iocb_lock_wq(struct poll_iocb * req)1632 static bool poll_iocb_lock_wq(struct poll_iocb *req)
1633 {
1634 wait_queue_head_t *head;
1635
1636 /*
1637 * While we hold the waitqueue lock and the waitqueue is nonempty,
1638 * wake_up_pollfree() will wait for us. However, taking the waitqueue
1639 * lock in the first place can race with the waitqueue being freed.
1640 *
1641 * We solve this as eventpoll does: by taking advantage of the fact that
1642 * all users of wake_up_pollfree() will RCU-delay the actual free. If
1643 * we enter rcu_read_lock() and see that the pointer to the queue is
1644 * non-NULL, we can then lock it without the memory being freed out from
1645 * under us, then check whether the request is still on the queue.
1646 *
1647 * Keep holding rcu_read_lock() as long as we hold the queue lock, in
1648 * case the caller deletes the entry from the queue, leaving it empty.
1649 * In that case, only RCU prevents the queue memory from being freed.
1650 */
1651 rcu_read_lock();
1652 head = smp_load_acquire(&req->head);
1653 if (head) {
1654 spin_lock(&head->lock);
1655 if (!list_empty(&req->wait.entry))
1656 return true;
1657 spin_unlock(&head->lock);
1658 }
1659 rcu_read_unlock();
1660 return false;
1661 }
1662
poll_iocb_unlock_wq(struct poll_iocb * req)1663 static void poll_iocb_unlock_wq(struct poll_iocb *req)
1664 {
1665 spin_unlock(&req->head->lock);
1666 rcu_read_unlock();
1667 }
1668
aio_poll_complete_work(struct work_struct * work)1669 static void aio_poll_complete_work(struct work_struct *work)
1670 {
1671 struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1672 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1673 struct poll_table_struct pt = { ._key = req->events };
1674 struct kioctx *ctx = iocb->ki_ctx;
1675 __poll_t mask = 0;
1676
1677 if (!READ_ONCE(req->cancelled))
1678 mask = vfs_poll(req->file, &pt) & req->events;
1679
1680 /*
1681 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1682 * calling ->ki_cancel. We need the ctx_lock roundtrip here to
1683 * synchronize with them. In the cancellation case the list_del_init
1684 * itself is not actually needed, but harmless so we keep it in to
1685 * avoid further branches in the fast path.
1686 */
1687 spin_lock_irq(&ctx->ctx_lock);
1688 if (poll_iocb_lock_wq(req)) {
1689 if (!mask && !READ_ONCE(req->cancelled)) {
1690 /*
1691 * The request isn't actually ready to be completed yet.
1692 * Reschedule completion if another wakeup came in.
1693 */
1694 if (req->work_need_resched) {
1695 schedule_work(&req->work);
1696 req->work_need_resched = false;
1697 } else {
1698 req->work_scheduled = false;
1699 }
1700 poll_iocb_unlock_wq(req);
1701 spin_unlock_irq(&ctx->ctx_lock);
1702 return;
1703 }
1704 list_del_init(&req->wait.entry);
1705 poll_iocb_unlock_wq(req);
1706 } /* else, POLLFREE has freed the waitqueue, so we must complete */
1707 list_del_init(&iocb->ki_list);
1708 iocb->ki_res.res = mangle_poll(mask);
1709 spin_unlock_irq(&ctx->ctx_lock);
1710
1711 iocb_put(iocb);
1712 }
1713
1714 /* assumes we are called with irqs disabled */
aio_poll_cancel(struct kiocb * iocb)1715 static int aio_poll_cancel(struct kiocb *iocb)
1716 {
1717 struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1718 struct poll_iocb *req = &aiocb->poll;
1719
1720 if (poll_iocb_lock_wq(req)) {
1721 WRITE_ONCE(req->cancelled, true);
1722 if (!req->work_scheduled) {
1723 schedule_work(&aiocb->poll.work);
1724 req->work_scheduled = true;
1725 }
1726 poll_iocb_unlock_wq(req);
1727 } /* else, the request was force-cancelled by POLLFREE already */
1728
1729 return 0;
1730 }
1731
aio_poll_wake(struct wait_queue_entry * wait,unsigned mode,int sync,void * key)1732 static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1733 void *key)
1734 {
1735 struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
1736 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1737 __poll_t mask = key_to_poll(key);
1738 unsigned long flags;
1739
1740 /* for instances that support it check for an event match first: */
1741 if (mask && !(mask & req->events))
1742 return 0;
1743
1744 /*
1745 * Complete the request inline if possible. This requires that three
1746 * conditions be met:
1747 * 1. An event mask must have been passed. If a plain wakeup was done
1748 * instead, then mask == 0 and we have to call vfs_poll() to get
1749 * the events, so inline completion isn't possible.
1750 * 2. The completion work must not have already been scheduled.
1751 * 3. ctx_lock must not be busy. We have to use trylock because we
1752 * already hold the waitqueue lock, so this inverts the normal
1753 * locking order. Use irqsave/irqrestore because not all
1754 * filesystems (e.g. fuse) call this function with IRQs disabled,
1755 * yet IRQs have to be disabled before ctx_lock is obtained.
1756 */
1757 if (mask && !req->work_scheduled &&
1758 spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) {
1759 struct kioctx *ctx = iocb->ki_ctx;
1760
1761 list_del_init(&req->wait.entry);
1762 list_del(&iocb->ki_list);
1763 iocb->ki_res.res = mangle_poll(mask);
1764 if (iocb->ki_eventfd && eventfd_signal_count()) {
1765 iocb = NULL;
1766 INIT_WORK(&req->work, aio_poll_put_work);
1767 schedule_work(&req->work);
1768 }
1769 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1770 if (iocb)
1771 iocb_put(iocb);
1772 } else {
1773 /*
1774 * Schedule the completion work if needed. If it was already
1775 * scheduled, record that another wakeup came in.
1776 *
1777 * Don't remove the request from the waitqueue here, as it might
1778 * not actually be complete yet (we won't know until vfs_poll()
1779 * is called), and we must not miss any wakeups. POLLFREE is an
1780 * exception to this; see below.
1781 */
1782 if (req->work_scheduled) {
1783 req->work_need_resched = true;
1784 } else {
1785 schedule_work(&req->work);
1786 req->work_scheduled = true;
1787 }
1788
1789 /*
1790 * If the waitqueue is being freed early but we can't complete
1791 * the request inline, we have to tear down the request as best
1792 * we can. That means immediately removing the request from its
1793 * waitqueue and preventing all further accesses to the
1794 * waitqueue via the request. We also need to schedule the
1795 * completion work (done above). Also mark the request as
1796 * cancelled, to potentially skip an unneeded call to ->poll().
1797 */
1798 if (mask & POLLFREE) {
1799 WRITE_ONCE(req->cancelled, true);
1800 list_del_init(&req->wait.entry);
1801
1802 /*
1803 * Careful: this *must* be the last step, since as soon
1804 * as req->head is NULL'ed out, the request can be
1805 * completed and freed, since aio_poll_complete_work()
1806 * will no longer need to take the waitqueue lock.
1807 */
1808 smp_store_release(&req->head, NULL);
1809 }
1810 }
1811 return 1;
1812 }
1813
1814 struct aio_poll_table {
1815 struct poll_table_struct pt;
1816 struct aio_kiocb *iocb;
1817 bool queued;
1818 int error;
1819 };
1820
1821 static void
aio_poll_queue_proc(struct file * file,struct wait_queue_head * head,struct poll_table_struct * p)1822 aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1823 struct poll_table_struct *p)
1824 {
1825 struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
1826
1827 /* multiple wait queues per file are not supported */
1828 if (unlikely(pt->queued)) {
1829 pt->error = -EINVAL;
1830 return;
1831 }
1832
1833 pt->queued = true;
1834 pt->error = 0;
1835 pt->iocb->poll.head = head;
1836 add_wait_queue(head, &pt->iocb->poll.wait);
1837 }
1838
aio_poll(struct aio_kiocb * aiocb,const struct iocb * iocb)1839 static ssize_t aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb)
1840 {
1841 struct kioctx *ctx = aiocb->ki_ctx;
1842 struct poll_iocb *req = &aiocb->poll;
1843 struct aio_poll_table apt;
1844 bool cancel = false;
1845 __poll_t mask;
1846
1847 /* reject any unknown events outside the normal event mask. */
1848 if ((u16)iocb->aio_buf != iocb->aio_buf)
1849 return -EINVAL;
1850 /* reject fields that are not defined for poll */
1851 if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1852 return -EINVAL;
1853
1854 INIT_WORK(&req->work, aio_poll_complete_work);
1855 req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
1856
1857 req->head = NULL;
1858 req->cancelled = false;
1859 req->work_scheduled = false;
1860 req->work_need_resched = false;
1861
1862 apt.pt._qproc = aio_poll_queue_proc;
1863 apt.pt._key = req->events;
1864 apt.iocb = aiocb;
1865 apt.queued = false;
1866 apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1867
1868 /* initialized the list so that we can do list_empty checks */
1869 INIT_LIST_HEAD(&req->wait.entry);
1870 init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1871
1872 mask = vfs_poll(req->file, &apt.pt) & req->events;
1873 spin_lock_irq(&ctx->ctx_lock);
1874 if (likely(apt.queued)) {
1875 bool on_queue = poll_iocb_lock_wq(req);
1876
1877 if (!on_queue || req->work_scheduled) {
1878 /*
1879 * aio_poll_wake() already either scheduled the async
1880 * completion work, or completed the request inline.
1881 */
1882 if (apt.error) /* unsupported case: multiple queues */
1883 cancel = true;
1884 apt.error = 0;
1885 mask = 0;
1886 }
1887 if (mask || apt.error) {
1888 /* Steal to complete synchronously. */
1889 list_del_init(&req->wait.entry);
1890 } else if (cancel) {
1891 /* Cancel if possible (may be too late though). */
1892 WRITE_ONCE(req->cancelled, true);
1893 } else if (on_queue) {
1894 /*
1895 * Actually waiting for an event, so add the request to
1896 * active_reqs so that it can be cancelled if needed.
1897 */
1898 list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1899 aiocb->ki_cancel = aio_poll_cancel;
1900 }
1901 if (on_queue)
1902 poll_iocb_unlock_wq(req);
1903 }
1904 if (mask) { /* no async, we'd stolen it */
1905 aiocb->ki_res.res = mangle_poll(mask);
1906 apt.error = 0;
1907 }
1908 spin_unlock_irq(&ctx->ctx_lock);
1909 if (mask)
1910 iocb_put(aiocb);
1911 return apt.error;
1912 }
1913
__io_submit_one(struct kioctx * ctx,const struct iocb * iocb,struct iocb __user * user_iocb,bool compat)1914 static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb,
1915 struct iocb __user *user_iocb, bool compat)
1916 {
1917 struct aio_kiocb *req;
1918 ssize_t ret;
1919
1920 /* enforce forwards compatibility on users */
1921 if (unlikely(iocb->aio_reserved2)) {
1922 pr_debug("EINVAL: reserve field set\n");
1923 return -EINVAL;
1924 }
1925
1926 /* prevent overflows */
1927 if (unlikely(
1928 (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1929 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1930 ((ssize_t)iocb->aio_nbytes < 0)
1931 )) {
1932 pr_debug("EINVAL: overflow check\n");
1933 return -EINVAL;
1934 }
1935
1936 if (!get_reqs_available(ctx))
1937 return -EAGAIN;
1938
1939 ret = -EAGAIN;
1940 req = aio_get_req(ctx);
1941 if (unlikely(!req))
1942 goto out_put_reqs_available;
1943
1944 req->ki_filp = fget(iocb->aio_fildes);
1945 ret = -EBADF;
1946 if (unlikely(!req->ki_filp))
1947 goto out_put_req;
1948
1949 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1950 /*
1951 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1952 * instance of the file* now. The file descriptor must be
1953 * an eventfd() fd, and will be signaled for each completed
1954 * event using the eventfd_signal() function.
1955 */
1956 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1957 if (IS_ERR(req->ki_eventfd)) {
1958 ret = PTR_ERR(req->ki_eventfd);
1959 req->ki_eventfd = NULL;
1960 goto out_put_req;
1961 }
1962 }
1963
1964 ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1965 if (unlikely(ret)) {
1966 pr_debug("EFAULT: aio_key\n");
1967 goto out_put_req;
1968 }
1969
1970 req->ki_res.obj = (u64)(unsigned long)user_iocb;
1971 req->ki_res.data = iocb->aio_data;
1972 req->ki_res.res = 0;
1973 req->ki_res.res2 = 0;
1974
1975 switch (iocb->aio_lio_opcode) {
1976 case IOCB_CMD_PREAD:
1977 ret = aio_read(&req->rw, iocb, false, compat);
1978 break;
1979 case IOCB_CMD_PWRITE:
1980 ret = aio_write(&req->rw, iocb, false, compat);
1981 break;
1982 case IOCB_CMD_PREADV:
1983 ret = aio_read(&req->rw, iocb, true, compat);
1984 break;
1985 case IOCB_CMD_PWRITEV:
1986 ret = aio_write(&req->rw, iocb, true, compat);
1987 break;
1988 case IOCB_CMD_FSYNC:
1989 ret = aio_fsync(&req->fsync, iocb, false);
1990 break;
1991 case IOCB_CMD_FDSYNC:
1992 ret = aio_fsync(&req->fsync, iocb, true);
1993 break;
1994 case IOCB_CMD_POLL:
1995 ret = aio_poll(req, iocb);
1996 break;
1997 default:
1998 pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
1999 ret = -EINVAL;
2000 break;
2001 }
2002
2003 /* Done with the synchronous reference */
2004 iocb_put(req);
2005
2006 /*
2007 * If ret is 0, we'd either done aio_complete() ourselves or have
2008 * arranged for that to be done asynchronously. Anything non-zero
2009 * means that we need to destroy req ourselves.
2010 */
2011 if (!ret)
2012 return 0;
2013
2014 out_put_req:
2015 if (req->ki_eventfd)
2016 eventfd_ctx_put(req->ki_eventfd);
2017 iocb_destroy(req);
2018 out_put_reqs_available:
2019 put_reqs_available(ctx, 1);
2020 return ret;
2021 }
2022
io_submit_one(struct kioctx * ctx,struct iocb __user * user_iocb,bool compat)2023 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
2024 bool compat)
2025 {
2026 struct iocb iocb;
2027
2028 if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
2029 return -EFAULT;
2030
2031 return __io_submit_one(ctx, &iocb, user_iocb, compat);
2032 }
2033
2034 /* sys_io_submit:
2035 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
2036 * the number of iocbs queued. May return -EINVAL if the aio_context
2037 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
2038 * *iocbpp[0] is not properly initialized, if the operation specified
2039 * is invalid for the file descriptor in the iocb. May fail with
2040 * -EFAULT if any of the data structures point to invalid data. May
2041 * fail with -EBADF if the file descriptor specified in the first
2042 * iocb is invalid. May fail with -EAGAIN if insufficient resources
2043 * are available to queue any iocbs. Will return 0 if nr is 0. Will
2044 * fail with -ENOSYS if not implemented.
2045 */
SYSCALL_DEFINE3(io_submit,aio_context_t,ctx_id,long,nr,struct iocb __user * __user *,iocbpp)2046 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
2047 struct iocb __user * __user *, iocbpp)
2048 {
2049 struct kioctx *ctx;
2050 long ret = 0;
2051 int i = 0;
2052 struct blk_plug plug;
2053
2054 if (unlikely(nr < 0))
2055 return -EINVAL;
2056
2057 ctx = lookup_ioctx(ctx_id);
2058 if (unlikely(!ctx)) {
2059 pr_debug("EINVAL: invalid context id\n");
2060 return -EINVAL;
2061 }
2062
2063 if (nr > ctx->nr_events)
2064 nr = ctx->nr_events;
2065
2066 blk_start_plug(&plug);
2067 for (i = 0; i < nr; i++) {
2068 struct iocb __user *user_iocb;
2069
2070 if (unlikely(get_user(user_iocb, iocbpp + i))) {
2071 ret = -EFAULT;
2072 break;
2073 }
2074
2075 ret = io_submit_one(ctx, user_iocb, false);
2076 if (ret)
2077 break;
2078 }
2079 blk_finish_plug(&plug);
2080
2081 percpu_ref_put(&ctx->users);
2082 return i ? i : ret;
2083 }
2084
2085 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(io_submit,compat_aio_context_t,ctx_id,int,nr,compat_uptr_t __user *,iocbpp)2086 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
2087 int, nr, compat_uptr_t __user *, iocbpp)
2088 {
2089 struct kioctx *ctx;
2090 long ret = 0;
2091 int i = 0;
2092 struct blk_plug plug;
2093
2094 if (unlikely(nr < 0))
2095 return -EINVAL;
2096
2097 ctx = lookup_ioctx(ctx_id);
2098 if (unlikely(!ctx)) {
2099 pr_debug("EINVAL: invalid context id\n");
2100 return -EINVAL;
2101 }
2102
2103 if (nr > ctx->nr_events)
2104 nr = ctx->nr_events;
2105
2106 blk_start_plug(&plug);
2107 for (i = 0; i < nr; i++) {
2108 compat_uptr_t user_iocb;
2109
2110 if (unlikely(get_user(user_iocb, iocbpp + i))) {
2111 ret = -EFAULT;
2112 break;
2113 }
2114
2115 ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
2116 if (ret)
2117 break;
2118 }
2119 blk_finish_plug(&plug);
2120
2121 percpu_ref_put(&ctx->users);
2122 return i ? i : ret;
2123 }
2124 #endif
2125
2126 /* sys_io_cancel:
2127 * Attempts to cancel an iocb previously passed to io_submit. If
2128 * the operation is successfully cancelled, the resulting event is
2129 * copied into the memory pointed to by result without being placed
2130 * into the completion queue and 0 is returned. May fail with
2131 * -EFAULT if any of the data structures pointed to are invalid.
2132 * May fail with -EINVAL if aio_context specified by ctx_id is
2133 * invalid. May fail with -EAGAIN if the iocb specified was not
2134 * cancelled. Will fail with -ENOSYS if not implemented.
2135 */
SYSCALL_DEFINE3(io_cancel,aio_context_t,ctx_id,struct iocb __user *,iocb,struct io_event __user *,result)2136 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
2137 struct io_event __user *, result)
2138 {
2139 struct kioctx *ctx;
2140 struct aio_kiocb *kiocb;
2141 int ret = -EINVAL;
2142 u32 key;
2143 u64 obj = (u64)(unsigned long)iocb;
2144
2145 if (unlikely(get_user(key, &iocb->aio_key)))
2146 return -EFAULT;
2147 if (unlikely(key != KIOCB_KEY))
2148 return -EINVAL;
2149
2150 ctx = lookup_ioctx(ctx_id);
2151 if (unlikely(!ctx))
2152 return -EINVAL;
2153
2154 spin_lock_irq(&ctx->ctx_lock);
2155 /* TODO: use a hash or array, this sucks. */
2156 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
2157 if (kiocb->ki_res.obj == obj) {
2158 ret = kiocb->ki_cancel(&kiocb->rw);
2159 list_del_init(&kiocb->ki_list);
2160 break;
2161 }
2162 }
2163 spin_unlock_irq(&ctx->ctx_lock);
2164
2165 if (!ret) {
2166 /*
2167 * The result argument is no longer used - the io_event is
2168 * always delivered via the ring buffer. -EINPROGRESS indicates
2169 * cancellation is progress:
2170 */
2171 ret = -EINPROGRESS;
2172 }
2173
2174 percpu_ref_put(&ctx->users);
2175
2176 return ret;
2177 }
2178
do_io_getevents(aio_context_t ctx_id,long min_nr,long nr,struct io_event __user * events,struct timespec64 * ts)2179 static long do_io_getevents(aio_context_t ctx_id,
2180 long min_nr,
2181 long nr,
2182 struct io_event __user *events,
2183 struct timespec64 *ts)
2184 {
2185 ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
2186 struct kioctx *ioctx = lookup_ioctx(ctx_id);
2187 long ret = -EINVAL;
2188
2189 if (likely(ioctx)) {
2190 if (likely(min_nr <= nr && min_nr >= 0))
2191 ret = read_events(ioctx, min_nr, nr, events, until);
2192 percpu_ref_put(&ioctx->users);
2193 }
2194
2195 return ret;
2196 }
2197
2198 /* io_getevents:
2199 * Attempts to read at least min_nr events and up to nr events from
2200 * the completion queue for the aio_context specified by ctx_id. If
2201 * it succeeds, the number of read events is returned. May fail with
2202 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2203 * out of range, if timeout is out of range. May fail with -EFAULT
2204 * if any of the memory specified is invalid. May return 0 or
2205 * < min_nr if the timeout specified by timeout has elapsed
2206 * before sufficient events are available, where timeout == NULL
2207 * specifies an infinite timeout. Note that the timeout pointed to by
2208 * timeout is relative. Will fail with -ENOSYS if not implemented.
2209 */
SYSCALL_DEFINE5(io_getevents,aio_context_t,ctx_id,long,min_nr,long,nr,struct io_event __user *,events,struct timespec __user *,timeout)2210 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2211 long, min_nr,
2212 long, nr,
2213 struct io_event __user *, events,
2214 struct timespec __user *, timeout)
2215 {
2216 struct timespec64 ts;
2217 int ret;
2218
2219 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2220 return -EFAULT;
2221
2222 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2223 if (!ret && signal_pending(current))
2224 ret = -EINTR;
2225 return ret;
2226 }
2227
2228 struct __aio_sigset {
2229 const sigset_t __user *sigmask;
2230 size_t sigsetsize;
2231 };
2232
SYSCALL_DEFINE6(io_pgetevents,aio_context_t,ctx_id,long,min_nr,long,nr,struct io_event __user *,events,struct timespec __user *,timeout,const struct __aio_sigset __user *,usig)2233 SYSCALL_DEFINE6(io_pgetevents,
2234 aio_context_t, ctx_id,
2235 long, min_nr,
2236 long, nr,
2237 struct io_event __user *, events,
2238 struct timespec __user *, timeout,
2239 const struct __aio_sigset __user *, usig)
2240 {
2241 struct __aio_sigset ksig = { NULL, };
2242 sigset_t ksigmask, sigsaved;
2243 struct timespec64 ts;
2244 int ret;
2245
2246 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2247 return -EFAULT;
2248
2249 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2250 return -EFAULT;
2251
2252 if (ksig.sigmask) {
2253 if (ksig.sigsetsize != sizeof(sigset_t))
2254 return -EINVAL;
2255 if (copy_from_user(&ksigmask, ksig.sigmask, sizeof(ksigmask)))
2256 return -EFAULT;
2257 sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2258 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
2259 }
2260
2261 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2262 if (signal_pending(current)) {
2263 if (ksig.sigmask) {
2264 current->saved_sigmask = sigsaved;
2265 set_restore_sigmask();
2266 }
2267
2268 if (!ret)
2269 ret = -ERESTARTNOHAND;
2270 } else {
2271 if (ksig.sigmask)
2272 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
2273 }
2274
2275 return ret;
2276 }
2277
2278 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE5(io_getevents,compat_aio_context_t,ctx_id,compat_long_t,min_nr,compat_long_t,nr,struct io_event __user *,events,struct compat_timespec __user *,timeout)2279 COMPAT_SYSCALL_DEFINE5(io_getevents, compat_aio_context_t, ctx_id,
2280 compat_long_t, min_nr,
2281 compat_long_t, nr,
2282 struct io_event __user *, events,
2283 struct compat_timespec __user *, timeout)
2284 {
2285 struct timespec64 t;
2286 int ret;
2287
2288 if (timeout && compat_get_timespec64(&t, timeout))
2289 return -EFAULT;
2290
2291 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2292 if (!ret && signal_pending(current))
2293 ret = -EINTR;
2294 return ret;
2295 }
2296
2297
2298 struct __compat_aio_sigset {
2299 compat_sigset_t __user *sigmask;
2300 compat_size_t sigsetsize;
2301 };
2302
COMPAT_SYSCALL_DEFINE6(io_pgetevents,compat_aio_context_t,ctx_id,compat_long_t,min_nr,compat_long_t,nr,struct io_event __user *,events,struct compat_timespec __user *,timeout,const struct __compat_aio_sigset __user *,usig)2303 COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2304 compat_aio_context_t, ctx_id,
2305 compat_long_t, min_nr,
2306 compat_long_t, nr,
2307 struct io_event __user *, events,
2308 struct compat_timespec __user *, timeout,
2309 const struct __compat_aio_sigset __user *, usig)
2310 {
2311 struct __compat_aio_sigset ksig = { NULL, };
2312 sigset_t ksigmask, sigsaved;
2313 struct timespec64 t;
2314 int ret;
2315
2316 if (timeout && compat_get_timespec64(&t, timeout))
2317 return -EFAULT;
2318
2319 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2320 return -EFAULT;
2321
2322 if (ksig.sigmask) {
2323 if (ksig.sigsetsize != sizeof(compat_sigset_t))
2324 return -EINVAL;
2325 if (get_compat_sigset(&ksigmask, ksig.sigmask))
2326 return -EFAULT;
2327 sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2328 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
2329 }
2330
2331 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2332 if (signal_pending(current)) {
2333 if (ksig.sigmask) {
2334 current->saved_sigmask = sigsaved;
2335 set_restore_sigmask();
2336 }
2337 if (!ret)
2338 ret = -ERESTARTNOHAND;
2339 } else {
2340 if (ksig.sigmask)
2341 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
2342 }
2343
2344 return ret;
2345 }
2346 #endif
2347