1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *	Copyright 2018 Christoph Hellwig.
9  *
10  *	See ../COPYING for licensing terms.
11  */
12 #define pr_fmt(fmt) "%s: " fmt, __func__
13 
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/errno.h>
17 #include <linux/time.h>
18 #include <linux/aio_abi.h>
19 #include <linux/export.h>
20 #include <linux/syscalls.h>
21 #include <linux/backing-dev.h>
22 #include <linux/refcount.h>
23 #include <linux/uio.h>
24 
25 #include <linux/sched/signal.h>
26 #include <linux/fs.h>
27 #include <linux/file.h>
28 #include <linux/mm.h>
29 #include <linux/mman.h>
30 #include <linux/mmu_context.h>
31 #include <linux/percpu.h>
32 #include <linux/slab.h>
33 #include <linux/timer.h>
34 #include <linux/aio.h>
35 #include <linux/highmem.h>
36 #include <linux/workqueue.h>
37 #include <linux/security.h>
38 #include <linux/eventfd.h>
39 #include <linux/blkdev.h>
40 #include <linux/compat.h>
41 #include <linux/migrate.h>
42 #include <linux/ramfs.h>
43 #include <linux/percpu-refcount.h>
44 #include <linux/mount.h>
45 
46 #include <asm/kmap_types.h>
47 #include <linux/uaccess.h>
48 #include <linux/nospec.h>
49 
50 #include "internal.h"
51 
52 #define KIOCB_KEY		0
53 
54 #define AIO_RING_MAGIC			0xa10a10a1
55 #define AIO_RING_COMPAT_FEATURES	1
56 #define AIO_RING_INCOMPAT_FEATURES	0
57 struct aio_ring {
58 	unsigned	id;	/* kernel internal index number */
59 	unsigned	nr;	/* number of io_events */
60 	unsigned	head;	/* Written to by userland or under ring_lock
61 				 * mutex by aio_read_events_ring(). */
62 	unsigned	tail;
63 
64 	unsigned	magic;
65 	unsigned	compat_features;
66 	unsigned	incompat_features;
67 	unsigned	header_length;	/* size of aio_ring */
68 
69 
70 	struct io_event		io_events[0];
71 }; /* 128 bytes + ring size */
72 
73 #define AIO_RING_PAGES	8
74 
75 struct kioctx_table {
76 	struct rcu_head		rcu;
77 	unsigned		nr;
78 	struct kioctx __rcu	*table[];
79 };
80 
81 struct kioctx_cpu {
82 	unsigned		reqs_available;
83 };
84 
85 struct ctx_rq_wait {
86 	struct completion comp;
87 	atomic_t count;
88 };
89 
90 struct kioctx {
91 	struct percpu_ref	users;
92 	atomic_t		dead;
93 
94 	struct percpu_ref	reqs;
95 
96 	unsigned long		user_id;
97 
98 	struct __percpu kioctx_cpu *cpu;
99 
100 	/*
101 	 * For percpu reqs_available, number of slots we move to/from global
102 	 * counter at a time:
103 	 */
104 	unsigned		req_batch;
105 	/*
106 	 * This is what userspace passed to io_setup(), it's not used for
107 	 * anything but counting against the global max_reqs quota.
108 	 *
109 	 * The real limit is nr_events - 1, which will be larger (see
110 	 * aio_setup_ring())
111 	 */
112 	unsigned		max_reqs;
113 
114 	/* Size of ringbuffer, in units of struct io_event */
115 	unsigned		nr_events;
116 
117 	unsigned long		mmap_base;
118 	unsigned long		mmap_size;
119 
120 	struct page		**ring_pages;
121 	long			nr_pages;
122 
123 	struct rcu_work		free_rwork;	/* see free_ioctx() */
124 
125 	/*
126 	 * signals when all in-flight requests are done
127 	 */
128 	struct ctx_rq_wait	*rq_wait;
129 
130 	struct {
131 		/*
132 		 * This counts the number of available slots in the ringbuffer,
133 		 * so we avoid overflowing it: it's decremented (if positive)
134 		 * when allocating a kiocb and incremented when the resulting
135 		 * io_event is pulled off the ringbuffer.
136 		 *
137 		 * We batch accesses to it with a percpu version.
138 		 */
139 		atomic_t	reqs_available;
140 	} ____cacheline_aligned_in_smp;
141 
142 	struct {
143 		spinlock_t	ctx_lock;
144 		struct list_head active_reqs;	/* used for cancellation */
145 	} ____cacheline_aligned_in_smp;
146 
147 	struct {
148 		struct mutex	ring_lock;
149 		wait_queue_head_t wait;
150 	} ____cacheline_aligned_in_smp;
151 
152 	struct {
153 		unsigned	tail;
154 		unsigned	completed_events;
155 		spinlock_t	completion_lock;
156 	} ____cacheline_aligned_in_smp;
157 
158 	struct page		*internal_pages[AIO_RING_PAGES];
159 	struct file		*aio_ring_file;
160 
161 	unsigned		id;
162 };
163 
164 /*
165  * First field must be the file pointer in all the
166  * iocb unions! See also 'struct kiocb' in <linux/fs.h>
167  */
168 struct fsync_iocb {
169 	struct file		*file;
170 	struct work_struct	work;
171 	bool			datasync;
172 	struct cred		*creds;
173 };
174 
175 struct poll_iocb {
176 	struct file		*file;
177 	struct wait_queue_head	*head;
178 	__poll_t		events;
179 	bool			cancelled;
180 	bool			work_scheduled;
181 	bool			work_need_resched;
182 	struct wait_queue_entry	wait;
183 	struct work_struct	work;
184 };
185 
186 /*
187  * NOTE! Each of the iocb union members has the file pointer
188  * as the first entry in their struct definition. So you can
189  * access the file pointer through any of the sub-structs,
190  * or directly as just 'ki_filp' in this struct.
191  */
192 struct aio_kiocb {
193 	union {
194 		struct file		*ki_filp;
195 		struct kiocb		rw;
196 		struct fsync_iocb	fsync;
197 		struct poll_iocb	poll;
198 	};
199 
200 	struct kioctx		*ki_ctx;
201 	kiocb_cancel_fn		*ki_cancel;
202 
203 	struct io_event		ki_res;
204 
205 	struct list_head	ki_list;	/* the aio core uses this
206 						 * for cancellation */
207 	refcount_t		ki_refcnt;
208 
209 	/*
210 	 * If the aio_resfd field of the userspace iocb is not zero,
211 	 * this is the underlying eventfd context to deliver events to.
212 	 */
213 	struct eventfd_ctx	*ki_eventfd;
214 };
215 
216 /*------ sysctl variables----*/
217 static DEFINE_SPINLOCK(aio_nr_lock);
218 unsigned long aio_nr;		/* current system wide number of aio requests */
219 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
220 /*----end sysctl variables---*/
221 
222 static struct kmem_cache	*kiocb_cachep;
223 static struct kmem_cache	*kioctx_cachep;
224 
225 static struct vfsmount *aio_mnt;
226 
227 static const struct file_operations aio_ring_fops;
228 static const struct address_space_operations aio_ctx_aops;
229 
aio_private_file(struct kioctx * ctx,loff_t nr_pages)230 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
231 {
232 	struct file *file;
233 	struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
234 	if (IS_ERR(inode))
235 		return ERR_CAST(inode);
236 
237 	inode->i_mapping->a_ops = &aio_ctx_aops;
238 	inode->i_mapping->private_data = ctx;
239 	inode->i_size = PAGE_SIZE * nr_pages;
240 
241 	file = alloc_file_pseudo(inode, aio_mnt, "[aio]",
242 				O_RDWR, &aio_ring_fops);
243 	if (IS_ERR(file))
244 		iput(inode);
245 	return file;
246 }
247 
aio_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)248 static struct dentry *aio_mount(struct file_system_type *fs_type,
249 				int flags, const char *dev_name, void *data)
250 {
251 	struct dentry *root = mount_pseudo(fs_type, "aio:", NULL, NULL,
252 					   AIO_RING_MAGIC);
253 
254 	if (!IS_ERR(root))
255 		root->d_sb->s_iflags |= SB_I_NOEXEC;
256 	return root;
257 }
258 
259 /* aio_setup
260  *	Creates the slab caches used by the aio routines, panic on
261  *	failure as this is done early during the boot sequence.
262  */
aio_setup(void)263 static int __init aio_setup(void)
264 {
265 	static struct file_system_type aio_fs = {
266 		.name		= "aio",
267 		.mount		= aio_mount,
268 		.kill_sb	= kill_anon_super,
269 	};
270 	aio_mnt = kern_mount(&aio_fs);
271 	if (IS_ERR(aio_mnt))
272 		panic("Failed to create aio fs mount.");
273 
274 	kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
275 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
276 	return 0;
277 }
278 __initcall(aio_setup);
279 
put_aio_ring_file(struct kioctx * ctx)280 static void put_aio_ring_file(struct kioctx *ctx)
281 {
282 	struct file *aio_ring_file = ctx->aio_ring_file;
283 	struct address_space *i_mapping;
284 
285 	if (aio_ring_file) {
286 		truncate_setsize(file_inode(aio_ring_file), 0);
287 
288 		/* Prevent further access to the kioctx from migratepages */
289 		i_mapping = aio_ring_file->f_mapping;
290 		spin_lock(&i_mapping->private_lock);
291 		i_mapping->private_data = NULL;
292 		ctx->aio_ring_file = NULL;
293 		spin_unlock(&i_mapping->private_lock);
294 
295 		fput(aio_ring_file);
296 	}
297 }
298 
aio_free_ring(struct kioctx * ctx)299 static void aio_free_ring(struct kioctx *ctx)
300 {
301 	int i;
302 
303 	/* Disconnect the kiotx from the ring file.  This prevents future
304 	 * accesses to the kioctx from page migration.
305 	 */
306 	put_aio_ring_file(ctx);
307 
308 	for (i = 0; i < ctx->nr_pages; i++) {
309 		struct page *page;
310 		pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
311 				page_count(ctx->ring_pages[i]));
312 		page = ctx->ring_pages[i];
313 		if (!page)
314 			continue;
315 		ctx->ring_pages[i] = NULL;
316 		put_page(page);
317 	}
318 
319 	if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
320 		kfree(ctx->ring_pages);
321 		ctx->ring_pages = NULL;
322 	}
323 }
324 
aio_ring_mremap(struct vm_area_struct * vma)325 static int aio_ring_mremap(struct vm_area_struct *vma)
326 {
327 	struct file *file = vma->vm_file;
328 	struct mm_struct *mm = vma->vm_mm;
329 	struct kioctx_table *table;
330 	int i, res = -EINVAL;
331 
332 	spin_lock(&mm->ioctx_lock);
333 	rcu_read_lock();
334 	table = rcu_dereference(mm->ioctx_table);
335 	if (!table)
336 		goto out_unlock;
337 
338 	for (i = 0; i < table->nr; i++) {
339 		struct kioctx *ctx;
340 
341 		ctx = rcu_dereference(table->table[i]);
342 		if (ctx && ctx->aio_ring_file == file) {
343 			if (!atomic_read(&ctx->dead)) {
344 				ctx->user_id = ctx->mmap_base = vma->vm_start;
345 				res = 0;
346 			}
347 			break;
348 		}
349 	}
350 
351 out_unlock:
352 	rcu_read_unlock();
353 	spin_unlock(&mm->ioctx_lock);
354 	return res;
355 }
356 
357 static const struct vm_operations_struct aio_ring_vm_ops = {
358 	.mremap		= aio_ring_mremap,
359 #if IS_ENABLED(CONFIG_MMU)
360 	.fault		= filemap_fault,
361 	.map_pages	= filemap_map_pages,
362 	.page_mkwrite	= filemap_page_mkwrite,
363 #endif
364 };
365 
aio_ring_mmap(struct file * file,struct vm_area_struct * vma)366 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
367 {
368 	vma->vm_flags |= VM_DONTEXPAND;
369 	vma->vm_ops = &aio_ring_vm_ops;
370 	return 0;
371 }
372 
373 static const struct file_operations aio_ring_fops = {
374 	.mmap = aio_ring_mmap,
375 };
376 
377 #if IS_ENABLED(CONFIG_MIGRATION)
aio_migratepage(struct address_space * mapping,struct page * new,struct page * old,enum migrate_mode mode)378 static int aio_migratepage(struct address_space *mapping, struct page *new,
379 			struct page *old, enum migrate_mode mode)
380 {
381 	struct kioctx *ctx;
382 	unsigned long flags;
383 	pgoff_t idx;
384 	int rc;
385 
386 	/*
387 	 * We cannot support the _NO_COPY case here, because copy needs to
388 	 * happen under the ctx->completion_lock. That does not work with the
389 	 * migration workflow of MIGRATE_SYNC_NO_COPY.
390 	 */
391 	if (mode == MIGRATE_SYNC_NO_COPY)
392 		return -EINVAL;
393 
394 	rc = 0;
395 
396 	/* mapping->private_lock here protects against the kioctx teardown.  */
397 	spin_lock(&mapping->private_lock);
398 	ctx = mapping->private_data;
399 	if (!ctx) {
400 		rc = -EINVAL;
401 		goto out;
402 	}
403 
404 	/* The ring_lock mutex.  The prevents aio_read_events() from writing
405 	 * to the ring's head, and prevents page migration from mucking in
406 	 * a partially initialized kiotx.
407 	 */
408 	if (!mutex_trylock(&ctx->ring_lock)) {
409 		rc = -EAGAIN;
410 		goto out;
411 	}
412 
413 	idx = old->index;
414 	if (idx < (pgoff_t)ctx->nr_pages) {
415 		/* Make sure the old page hasn't already been changed */
416 		if (ctx->ring_pages[idx] != old)
417 			rc = -EAGAIN;
418 	} else
419 		rc = -EINVAL;
420 
421 	if (rc != 0)
422 		goto out_unlock;
423 
424 	/* Writeback must be complete */
425 	BUG_ON(PageWriteback(old));
426 	get_page(new);
427 
428 	rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
429 	if (rc != MIGRATEPAGE_SUCCESS) {
430 		put_page(new);
431 		goto out_unlock;
432 	}
433 
434 	/* Take completion_lock to prevent other writes to the ring buffer
435 	 * while the old page is copied to the new.  This prevents new
436 	 * events from being lost.
437 	 */
438 	spin_lock_irqsave(&ctx->completion_lock, flags);
439 	migrate_page_copy(new, old);
440 	BUG_ON(ctx->ring_pages[idx] != old);
441 	ctx->ring_pages[idx] = new;
442 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
443 
444 	/* The old page is no longer accessible. */
445 	put_page(old);
446 
447 out_unlock:
448 	mutex_unlock(&ctx->ring_lock);
449 out:
450 	spin_unlock(&mapping->private_lock);
451 	return rc;
452 }
453 #endif
454 
455 static const struct address_space_operations aio_ctx_aops = {
456 	.set_page_dirty = __set_page_dirty_no_writeback,
457 #if IS_ENABLED(CONFIG_MIGRATION)
458 	.migratepage	= aio_migratepage,
459 #endif
460 };
461 
aio_setup_ring(struct kioctx * ctx,unsigned int nr_events)462 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
463 {
464 	struct aio_ring *ring;
465 	struct mm_struct *mm = current->mm;
466 	unsigned long size, unused;
467 	int nr_pages;
468 	int i;
469 	struct file *file;
470 
471 	/* Compensate for the ring buffer's head/tail overlap entry */
472 	nr_events += 2;	/* 1 is required, 2 for good luck */
473 
474 	size = sizeof(struct aio_ring);
475 	size += sizeof(struct io_event) * nr_events;
476 
477 	nr_pages = PFN_UP(size);
478 	if (nr_pages < 0)
479 		return -EINVAL;
480 
481 	file = aio_private_file(ctx, nr_pages);
482 	if (IS_ERR(file)) {
483 		ctx->aio_ring_file = NULL;
484 		return -ENOMEM;
485 	}
486 
487 	ctx->aio_ring_file = file;
488 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
489 			/ sizeof(struct io_event);
490 
491 	ctx->ring_pages = ctx->internal_pages;
492 	if (nr_pages > AIO_RING_PAGES) {
493 		ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
494 					  GFP_KERNEL);
495 		if (!ctx->ring_pages) {
496 			put_aio_ring_file(ctx);
497 			return -ENOMEM;
498 		}
499 	}
500 
501 	for (i = 0; i < nr_pages; i++) {
502 		struct page *page;
503 		page = find_or_create_page(file->f_mapping,
504 					   i, GFP_HIGHUSER | __GFP_ZERO);
505 		if (!page)
506 			break;
507 		pr_debug("pid(%d) page[%d]->count=%d\n",
508 			 current->pid, i, page_count(page));
509 		SetPageUptodate(page);
510 		unlock_page(page);
511 
512 		ctx->ring_pages[i] = page;
513 	}
514 	ctx->nr_pages = i;
515 
516 	if (unlikely(i != nr_pages)) {
517 		aio_free_ring(ctx);
518 		return -ENOMEM;
519 	}
520 
521 	ctx->mmap_size = nr_pages * PAGE_SIZE;
522 	pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
523 
524 	if (down_write_killable(&mm->mmap_sem)) {
525 		ctx->mmap_size = 0;
526 		aio_free_ring(ctx);
527 		return -EINTR;
528 	}
529 
530 	ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
531 				       PROT_READ | PROT_WRITE,
532 				       MAP_SHARED, 0, &unused, NULL);
533 	up_write(&mm->mmap_sem);
534 	if (IS_ERR((void *)ctx->mmap_base)) {
535 		ctx->mmap_size = 0;
536 		aio_free_ring(ctx);
537 		return -ENOMEM;
538 	}
539 
540 	pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
541 
542 	ctx->user_id = ctx->mmap_base;
543 	ctx->nr_events = nr_events; /* trusted copy */
544 
545 	ring = kmap_atomic(ctx->ring_pages[0]);
546 	ring->nr = nr_events;	/* user copy */
547 	ring->id = ~0U;
548 	ring->head = ring->tail = 0;
549 	ring->magic = AIO_RING_MAGIC;
550 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
551 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
552 	ring->header_length = sizeof(struct aio_ring);
553 	kunmap_atomic(ring);
554 	flush_dcache_page(ctx->ring_pages[0]);
555 
556 	return 0;
557 }
558 
559 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
560 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
561 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
562 
kiocb_set_cancel_fn(struct kiocb * iocb,kiocb_cancel_fn * cancel)563 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
564 {
565 	struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw);
566 	struct kioctx *ctx = req->ki_ctx;
567 	unsigned long flags;
568 
569 	if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
570 		return;
571 
572 	spin_lock_irqsave(&ctx->ctx_lock, flags);
573 	list_add_tail(&req->ki_list, &ctx->active_reqs);
574 	req->ki_cancel = cancel;
575 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
576 }
577 EXPORT_SYMBOL(kiocb_set_cancel_fn);
578 
579 /*
580  * free_ioctx() should be RCU delayed to synchronize against the RCU
581  * protected lookup_ioctx() and also needs process context to call
582  * aio_free_ring().  Use rcu_work.
583  */
free_ioctx(struct work_struct * work)584 static void free_ioctx(struct work_struct *work)
585 {
586 	struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
587 					  free_rwork);
588 	pr_debug("freeing %p\n", ctx);
589 
590 	aio_free_ring(ctx);
591 	free_percpu(ctx->cpu);
592 	percpu_ref_exit(&ctx->reqs);
593 	percpu_ref_exit(&ctx->users);
594 	kmem_cache_free(kioctx_cachep, ctx);
595 }
596 
free_ioctx_reqs(struct percpu_ref * ref)597 static void free_ioctx_reqs(struct percpu_ref *ref)
598 {
599 	struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
600 
601 	/* At this point we know that there are no any in-flight requests */
602 	if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
603 		complete(&ctx->rq_wait->comp);
604 
605 	/* Synchronize against RCU protected table->table[] dereferences */
606 	INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
607 	queue_rcu_work(system_wq, &ctx->free_rwork);
608 }
609 
610 /*
611  * When this function runs, the kioctx has been removed from the "hash table"
612  * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
613  * now it's safe to cancel any that need to be.
614  */
free_ioctx_users(struct percpu_ref * ref)615 static void free_ioctx_users(struct percpu_ref *ref)
616 {
617 	struct kioctx *ctx = container_of(ref, struct kioctx, users);
618 	struct aio_kiocb *req;
619 
620 	spin_lock_irq(&ctx->ctx_lock);
621 
622 	while (!list_empty(&ctx->active_reqs)) {
623 		req = list_first_entry(&ctx->active_reqs,
624 				       struct aio_kiocb, ki_list);
625 		req->ki_cancel(&req->rw);
626 		list_del_init(&req->ki_list);
627 	}
628 
629 	spin_unlock_irq(&ctx->ctx_lock);
630 
631 	percpu_ref_kill(&ctx->reqs);
632 	percpu_ref_put(&ctx->reqs);
633 }
634 
ioctx_add_table(struct kioctx * ctx,struct mm_struct * mm)635 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
636 {
637 	unsigned i, new_nr;
638 	struct kioctx_table *table, *old;
639 	struct aio_ring *ring;
640 
641 	spin_lock(&mm->ioctx_lock);
642 	table = rcu_dereference_raw(mm->ioctx_table);
643 
644 	while (1) {
645 		if (table)
646 			for (i = 0; i < table->nr; i++)
647 				if (!rcu_access_pointer(table->table[i])) {
648 					ctx->id = i;
649 					rcu_assign_pointer(table->table[i], ctx);
650 					spin_unlock(&mm->ioctx_lock);
651 
652 					/* While kioctx setup is in progress,
653 					 * we are protected from page migration
654 					 * changes ring_pages by ->ring_lock.
655 					 */
656 					ring = kmap_atomic(ctx->ring_pages[0]);
657 					ring->id = ctx->id;
658 					kunmap_atomic(ring);
659 					return 0;
660 				}
661 
662 		new_nr = (table ? table->nr : 1) * 4;
663 		spin_unlock(&mm->ioctx_lock);
664 
665 		table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
666 				new_nr, GFP_KERNEL);
667 		if (!table)
668 			return -ENOMEM;
669 
670 		table->nr = new_nr;
671 
672 		spin_lock(&mm->ioctx_lock);
673 		old = rcu_dereference_raw(mm->ioctx_table);
674 
675 		if (!old) {
676 			rcu_assign_pointer(mm->ioctx_table, table);
677 		} else if (table->nr > old->nr) {
678 			memcpy(table->table, old->table,
679 			       old->nr * sizeof(struct kioctx *));
680 
681 			rcu_assign_pointer(mm->ioctx_table, table);
682 			kfree_rcu(old, rcu);
683 		} else {
684 			kfree(table);
685 			table = old;
686 		}
687 	}
688 }
689 
aio_nr_sub(unsigned nr)690 static void aio_nr_sub(unsigned nr)
691 {
692 	spin_lock(&aio_nr_lock);
693 	if (WARN_ON(aio_nr - nr > aio_nr))
694 		aio_nr = 0;
695 	else
696 		aio_nr -= nr;
697 	spin_unlock(&aio_nr_lock);
698 }
699 
700 /* ioctx_alloc
701  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
702  */
ioctx_alloc(unsigned nr_events)703 static struct kioctx *ioctx_alloc(unsigned nr_events)
704 {
705 	struct mm_struct *mm = current->mm;
706 	struct kioctx *ctx;
707 	int err = -ENOMEM;
708 
709 	/*
710 	 * Store the original nr_events -- what userspace passed to io_setup(),
711 	 * for counting against the global limit -- before it changes.
712 	 */
713 	unsigned int max_reqs = nr_events;
714 
715 	/*
716 	 * We keep track of the number of available ringbuffer slots, to prevent
717 	 * overflow (reqs_available), and we also use percpu counters for this.
718 	 *
719 	 * So since up to half the slots might be on other cpu's percpu counters
720 	 * and unavailable, double nr_events so userspace sees what they
721 	 * expected: additionally, we move req_batch slots to/from percpu
722 	 * counters at a time, so make sure that isn't 0:
723 	 */
724 	nr_events = max(nr_events, num_possible_cpus() * 4);
725 	nr_events *= 2;
726 
727 	/* Prevent overflows */
728 	if (nr_events > (0x10000000U / sizeof(struct io_event))) {
729 		pr_debug("ENOMEM: nr_events too high\n");
730 		return ERR_PTR(-EINVAL);
731 	}
732 
733 	if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
734 		return ERR_PTR(-EAGAIN);
735 
736 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
737 	if (!ctx)
738 		return ERR_PTR(-ENOMEM);
739 
740 	ctx->max_reqs = max_reqs;
741 
742 	spin_lock_init(&ctx->ctx_lock);
743 	spin_lock_init(&ctx->completion_lock);
744 	mutex_init(&ctx->ring_lock);
745 	/* Protect against page migration throughout kiotx setup by keeping
746 	 * the ring_lock mutex held until setup is complete. */
747 	mutex_lock(&ctx->ring_lock);
748 	init_waitqueue_head(&ctx->wait);
749 
750 	INIT_LIST_HEAD(&ctx->active_reqs);
751 
752 	if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
753 		goto err;
754 
755 	if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
756 		goto err;
757 
758 	ctx->cpu = alloc_percpu(struct kioctx_cpu);
759 	if (!ctx->cpu)
760 		goto err;
761 
762 	err = aio_setup_ring(ctx, nr_events);
763 	if (err < 0)
764 		goto err;
765 
766 	atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
767 	ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
768 	if (ctx->req_batch < 1)
769 		ctx->req_batch = 1;
770 
771 	/* limit the number of system wide aios */
772 	spin_lock(&aio_nr_lock);
773 	if (aio_nr + ctx->max_reqs > aio_max_nr ||
774 	    aio_nr + ctx->max_reqs < aio_nr) {
775 		spin_unlock(&aio_nr_lock);
776 		err = -EAGAIN;
777 		goto err_ctx;
778 	}
779 	aio_nr += ctx->max_reqs;
780 	spin_unlock(&aio_nr_lock);
781 
782 	percpu_ref_get(&ctx->users);	/* io_setup() will drop this ref */
783 	percpu_ref_get(&ctx->reqs);	/* free_ioctx_users() will drop this */
784 
785 	err = ioctx_add_table(ctx, mm);
786 	if (err)
787 		goto err_cleanup;
788 
789 	/* Release the ring_lock mutex now that all setup is complete. */
790 	mutex_unlock(&ctx->ring_lock);
791 
792 	pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
793 		 ctx, ctx->user_id, mm, ctx->nr_events);
794 	return ctx;
795 
796 err_cleanup:
797 	aio_nr_sub(ctx->max_reqs);
798 err_ctx:
799 	atomic_set(&ctx->dead, 1);
800 	if (ctx->mmap_size)
801 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
802 	aio_free_ring(ctx);
803 err:
804 	mutex_unlock(&ctx->ring_lock);
805 	free_percpu(ctx->cpu);
806 	percpu_ref_exit(&ctx->reqs);
807 	percpu_ref_exit(&ctx->users);
808 	kmem_cache_free(kioctx_cachep, ctx);
809 	pr_debug("error allocating ioctx %d\n", err);
810 	return ERR_PTR(err);
811 }
812 
813 /* kill_ioctx
814  *	Cancels all outstanding aio requests on an aio context.  Used
815  *	when the processes owning a context have all exited to encourage
816  *	the rapid destruction of the kioctx.
817  */
kill_ioctx(struct mm_struct * mm,struct kioctx * ctx,struct ctx_rq_wait * wait)818 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
819 		      struct ctx_rq_wait *wait)
820 {
821 	struct kioctx_table *table;
822 
823 	spin_lock(&mm->ioctx_lock);
824 	if (atomic_xchg(&ctx->dead, 1)) {
825 		spin_unlock(&mm->ioctx_lock);
826 		return -EINVAL;
827 	}
828 
829 	table = rcu_dereference_raw(mm->ioctx_table);
830 	WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
831 	RCU_INIT_POINTER(table->table[ctx->id], NULL);
832 	spin_unlock(&mm->ioctx_lock);
833 
834 	/* free_ioctx_reqs() will do the necessary RCU synchronization */
835 	wake_up_all(&ctx->wait);
836 
837 	/*
838 	 * It'd be more correct to do this in free_ioctx(), after all
839 	 * the outstanding kiocbs have finished - but by then io_destroy
840 	 * has already returned, so io_setup() could potentially return
841 	 * -EAGAIN with no ioctxs actually in use (as far as userspace
842 	 *  could tell).
843 	 */
844 	aio_nr_sub(ctx->max_reqs);
845 
846 	if (ctx->mmap_size)
847 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
848 
849 	ctx->rq_wait = wait;
850 	percpu_ref_kill(&ctx->users);
851 	return 0;
852 }
853 
854 /*
855  * exit_aio: called when the last user of mm goes away.  At this point, there is
856  * no way for any new requests to be submited or any of the io_* syscalls to be
857  * called on the context.
858  *
859  * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
860  * them.
861  */
exit_aio(struct mm_struct * mm)862 void exit_aio(struct mm_struct *mm)
863 {
864 	struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
865 	struct ctx_rq_wait wait;
866 	int i, skipped;
867 
868 	if (!table)
869 		return;
870 
871 	atomic_set(&wait.count, table->nr);
872 	init_completion(&wait.comp);
873 
874 	skipped = 0;
875 	for (i = 0; i < table->nr; ++i) {
876 		struct kioctx *ctx =
877 			rcu_dereference_protected(table->table[i], true);
878 
879 		if (!ctx) {
880 			skipped++;
881 			continue;
882 		}
883 
884 		/*
885 		 * We don't need to bother with munmap() here - exit_mmap(mm)
886 		 * is coming and it'll unmap everything. And we simply can't,
887 		 * this is not necessarily our ->mm.
888 		 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
889 		 * that it needs to unmap the area, just set it to 0.
890 		 */
891 		ctx->mmap_size = 0;
892 		kill_ioctx(mm, ctx, &wait);
893 	}
894 
895 	if (!atomic_sub_and_test(skipped, &wait.count)) {
896 		/* Wait until all IO for the context are done. */
897 		wait_for_completion(&wait.comp);
898 	}
899 
900 	RCU_INIT_POINTER(mm->ioctx_table, NULL);
901 	kfree(table);
902 }
903 
put_reqs_available(struct kioctx * ctx,unsigned nr)904 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
905 {
906 	struct kioctx_cpu *kcpu;
907 	unsigned long flags;
908 
909 	local_irq_save(flags);
910 	kcpu = this_cpu_ptr(ctx->cpu);
911 	kcpu->reqs_available += nr;
912 
913 	while (kcpu->reqs_available >= ctx->req_batch * 2) {
914 		kcpu->reqs_available -= ctx->req_batch;
915 		atomic_add(ctx->req_batch, &ctx->reqs_available);
916 	}
917 
918 	local_irq_restore(flags);
919 }
920 
__get_reqs_available(struct kioctx * ctx)921 static bool __get_reqs_available(struct kioctx *ctx)
922 {
923 	struct kioctx_cpu *kcpu;
924 	bool ret = false;
925 	unsigned long flags;
926 
927 	local_irq_save(flags);
928 	kcpu = this_cpu_ptr(ctx->cpu);
929 	if (!kcpu->reqs_available) {
930 		int old, avail = atomic_read(&ctx->reqs_available);
931 
932 		do {
933 			if (avail < ctx->req_batch)
934 				goto out;
935 
936 			old = avail;
937 			avail = atomic_cmpxchg(&ctx->reqs_available,
938 					       avail, avail - ctx->req_batch);
939 		} while (avail != old);
940 
941 		kcpu->reqs_available += ctx->req_batch;
942 	}
943 
944 	ret = true;
945 	kcpu->reqs_available--;
946 out:
947 	local_irq_restore(flags);
948 	return ret;
949 }
950 
951 /* refill_reqs_available
952  *	Updates the reqs_available reference counts used for tracking the
953  *	number of free slots in the completion ring.  This can be called
954  *	from aio_complete() (to optimistically update reqs_available) or
955  *	from aio_get_req() (the we're out of events case).  It must be
956  *	called holding ctx->completion_lock.
957  */
refill_reqs_available(struct kioctx * ctx,unsigned head,unsigned tail)958 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
959                                   unsigned tail)
960 {
961 	unsigned events_in_ring, completed;
962 
963 	/* Clamp head since userland can write to it. */
964 	head %= ctx->nr_events;
965 	if (head <= tail)
966 		events_in_ring = tail - head;
967 	else
968 		events_in_ring = ctx->nr_events - (head - tail);
969 
970 	completed = ctx->completed_events;
971 	if (events_in_ring < completed)
972 		completed -= events_in_ring;
973 	else
974 		completed = 0;
975 
976 	if (!completed)
977 		return;
978 
979 	ctx->completed_events -= completed;
980 	put_reqs_available(ctx, completed);
981 }
982 
983 /* user_refill_reqs_available
984  *	Called to refill reqs_available when aio_get_req() encounters an
985  *	out of space in the completion ring.
986  */
user_refill_reqs_available(struct kioctx * ctx)987 static void user_refill_reqs_available(struct kioctx *ctx)
988 {
989 	spin_lock_irq(&ctx->completion_lock);
990 	if (ctx->completed_events) {
991 		struct aio_ring *ring;
992 		unsigned head;
993 
994 		/* Access of ring->head may race with aio_read_events_ring()
995 		 * here, but that's okay since whether we read the old version
996 		 * or the new version, and either will be valid.  The important
997 		 * part is that head cannot pass tail since we prevent
998 		 * aio_complete() from updating tail by holding
999 		 * ctx->completion_lock.  Even if head is invalid, the check
1000 		 * against ctx->completed_events below will make sure we do the
1001 		 * safe/right thing.
1002 		 */
1003 		ring = kmap_atomic(ctx->ring_pages[0]);
1004 		head = ring->head;
1005 		kunmap_atomic(ring);
1006 
1007 		refill_reqs_available(ctx, head, ctx->tail);
1008 	}
1009 
1010 	spin_unlock_irq(&ctx->completion_lock);
1011 }
1012 
get_reqs_available(struct kioctx * ctx)1013 static bool get_reqs_available(struct kioctx *ctx)
1014 {
1015 	if (__get_reqs_available(ctx))
1016 		return true;
1017 	user_refill_reqs_available(ctx);
1018 	return __get_reqs_available(ctx);
1019 }
1020 
1021 /* aio_get_req
1022  *	Allocate a slot for an aio request.
1023  * Returns NULL if no requests are free.
1024  *
1025  * The refcount is initialized to 2 - one for the async op completion,
1026  * one for the synchronous code that does this.
1027  */
aio_get_req(struct kioctx * ctx)1028 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1029 {
1030 	struct aio_kiocb *req;
1031 
1032 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
1033 	if (unlikely(!req))
1034 		return NULL;
1035 
1036 	percpu_ref_get(&ctx->reqs);
1037 	req->ki_ctx = ctx;
1038 	INIT_LIST_HEAD(&req->ki_list);
1039 	refcount_set(&req->ki_refcnt, 2);
1040 	req->ki_eventfd = NULL;
1041 	return req;
1042 }
1043 
lookup_ioctx(unsigned long ctx_id)1044 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1045 {
1046 	struct aio_ring __user *ring  = (void __user *)ctx_id;
1047 	struct mm_struct *mm = current->mm;
1048 	struct kioctx *ctx, *ret = NULL;
1049 	struct kioctx_table *table;
1050 	unsigned id;
1051 
1052 	if (get_user(id, &ring->id))
1053 		return NULL;
1054 
1055 	rcu_read_lock();
1056 	table = rcu_dereference(mm->ioctx_table);
1057 
1058 	if (!table || id >= table->nr)
1059 		goto out;
1060 
1061 	id = array_index_nospec(id, table->nr);
1062 	ctx = rcu_dereference(table->table[id]);
1063 	if (ctx && ctx->user_id == ctx_id) {
1064 		if (percpu_ref_tryget_live(&ctx->users))
1065 			ret = ctx;
1066 	}
1067 out:
1068 	rcu_read_unlock();
1069 	return ret;
1070 }
1071 
iocb_destroy(struct aio_kiocb * iocb)1072 static inline void iocb_destroy(struct aio_kiocb *iocb)
1073 {
1074 	if (iocb->ki_filp)
1075 		fput(iocb->ki_filp);
1076 	percpu_ref_put(&iocb->ki_ctx->reqs);
1077 	kmem_cache_free(kiocb_cachep, iocb);
1078 }
1079 
1080 /* aio_complete
1081  *	Called when the io request on the given iocb is complete.
1082  */
aio_complete(struct aio_kiocb * iocb)1083 static void aio_complete(struct aio_kiocb *iocb)
1084 {
1085 	struct kioctx	*ctx = iocb->ki_ctx;
1086 	struct aio_ring	*ring;
1087 	struct io_event	*ev_page, *event;
1088 	unsigned tail, pos, head;
1089 	unsigned long	flags;
1090 
1091 	/*
1092 	 * Add a completion event to the ring buffer. Must be done holding
1093 	 * ctx->completion_lock to prevent other code from messing with the tail
1094 	 * pointer since we might be called from irq context.
1095 	 */
1096 	spin_lock_irqsave(&ctx->completion_lock, flags);
1097 
1098 	tail = ctx->tail;
1099 	pos = tail + AIO_EVENTS_OFFSET;
1100 
1101 	if (++tail >= ctx->nr_events)
1102 		tail = 0;
1103 
1104 	ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1105 	event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1106 
1107 	*event = iocb->ki_res;
1108 
1109 	kunmap_atomic(ev_page);
1110 	flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1111 
1112 	pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb,
1113 		 (void __user *)(unsigned long)iocb->ki_res.obj,
1114 		 iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2);
1115 
1116 	/* after flagging the request as done, we
1117 	 * must never even look at it again
1118 	 */
1119 	smp_wmb();	/* make event visible before updating tail */
1120 
1121 	ctx->tail = tail;
1122 
1123 	ring = kmap_atomic(ctx->ring_pages[0]);
1124 	head = ring->head;
1125 	ring->tail = tail;
1126 	kunmap_atomic(ring);
1127 	flush_dcache_page(ctx->ring_pages[0]);
1128 
1129 	ctx->completed_events++;
1130 	if (ctx->completed_events > 1)
1131 		refill_reqs_available(ctx, head, tail);
1132 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
1133 
1134 	pr_debug("added to ring %p at [%u]\n", iocb, tail);
1135 
1136 	/*
1137 	 * Check if the user asked us to deliver the result through an
1138 	 * eventfd. The eventfd_signal() function is safe to be called
1139 	 * from IRQ context.
1140 	 */
1141 	if (iocb->ki_eventfd) {
1142 		eventfd_signal(iocb->ki_eventfd, 1);
1143 		eventfd_ctx_put(iocb->ki_eventfd);
1144 	}
1145 
1146 	/*
1147 	 * We have to order our ring_info tail store above and test
1148 	 * of the wait list below outside the wait lock.  This is
1149 	 * like in wake_up_bit() where clearing a bit has to be
1150 	 * ordered with the unlocked test.
1151 	 */
1152 	smp_mb();
1153 
1154 	if (waitqueue_active(&ctx->wait))
1155 		wake_up(&ctx->wait);
1156 }
1157 
iocb_put(struct aio_kiocb * iocb)1158 static inline void iocb_put(struct aio_kiocb *iocb)
1159 {
1160 	if (refcount_dec_and_test(&iocb->ki_refcnt)) {
1161 		aio_complete(iocb);
1162 		iocb_destroy(iocb);
1163 	}
1164 }
1165 
1166 /* aio_read_events_ring
1167  *	Pull an event off of the ioctx's event ring.  Returns the number of
1168  *	events fetched
1169  */
aio_read_events_ring(struct kioctx * ctx,struct io_event __user * event,long nr)1170 static long aio_read_events_ring(struct kioctx *ctx,
1171 				 struct io_event __user *event, long nr)
1172 {
1173 	struct aio_ring *ring;
1174 	unsigned head, tail, pos;
1175 	long ret = 0;
1176 	int copy_ret;
1177 
1178 	/*
1179 	 * The mutex can block and wake us up and that will cause
1180 	 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1181 	 * and repeat. This should be rare enough that it doesn't cause
1182 	 * peformance issues. See the comment in read_events() for more detail.
1183 	 */
1184 	sched_annotate_sleep();
1185 	mutex_lock(&ctx->ring_lock);
1186 
1187 	/* Access to ->ring_pages here is protected by ctx->ring_lock. */
1188 	ring = kmap_atomic(ctx->ring_pages[0]);
1189 	head = ring->head;
1190 	tail = ring->tail;
1191 	kunmap_atomic(ring);
1192 
1193 	/*
1194 	 * Ensure that once we've read the current tail pointer, that
1195 	 * we also see the events that were stored up to the tail.
1196 	 */
1197 	smp_rmb();
1198 
1199 	pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1200 
1201 	if (head == tail)
1202 		goto out;
1203 
1204 	head %= ctx->nr_events;
1205 	tail %= ctx->nr_events;
1206 
1207 	while (ret < nr) {
1208 		long avail;
1209 		struct io_event *ev;
1210 		struct page *page;
1211 
1212 		avail = (head <= tail ?  tail : ctx->nr_events) - head;
1213 		if (head == tail)
1214 			break;
1215 
1216 		pos = head + AIO_EVENTS_OFFSET;
1217 		page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1218 		pos %= AIO_EVENTS_PER_PAGE;
1219 
1220 		avail = min(avail, nr - ret);
1221 		avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1222 
1223 		ev = kmap(page);
1224 		copy_ret = copy_to_user(event + ret, ev + pos,
1225 					sizeof(*ev) * avail);
1226 		kunmap(page);
1227 
1228 		if (unlikely(copy_ret)) {
1229 			ret = -EFAULT;
1230 			goto out;
1231 		}
1232 
1233 		ret += avail;
1234 		head += avail;
1235 		head %= ctx->nr_events;
1236 	}
1237 
1238 	ring = kmap_atomic(ctx->ring_pages[0]);
1239 	ring->head = head;
1240 	kunmap_atomic(ring);
1241 	flush_dcache_page(ctx->ring_pages[0]);
1242 
1243 	pr_debug("%li  h%u t%u\n", ret, head, tail);
1244 out:
1245 	mutex_unlock(&ctx->ring_lock);
1246 
1247 	return ret;
1248 }
1249 
aio_read_events(struct kioctx * ctx,long min_nr,long nr,struct io_event __user * event,long * i)1250 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1251 			    struct io_event __user *event, long *i)
1252 {
1253 	long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1254 
1255 	if (ret > 0)
1256 		*i += ret;
1257 
1258 	if (unlikely(atomic_read(&ctx->dead)))
1259 		ret = -EINVAL;
1260 
1261 	if (!*i)
1262 		*i = ret;
1263 
1264 	return ret < 0 || *i >= min_nr;
1265 }
1266 
read_events(struct kioctx * ctx,long min_nr,long nr,struct io_event __user * event,ktime_t until)1267 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1268 			struct io_event __user *event,
1269 			ktime_t until)
1270 {
1271 	long ret = 0;
1272 
1273 	/*
1274 	 * Note that aio_read_events() is being called as the conditional - i.e.
1275 	 * we're calling it after prepare_to_wait() has set task state to
1276 	 * TASK_INTERRUPTIBLE.
1277 	 *
1278 	 * But aio_read_events() can block, and if it blocks it's going to flip
1279 	 * the task state back to TASK_RUNNING.
1280 	 *
1281 	 * This should be ok, provided it doesn't flip the state back to
1282 	 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1283 	 * will only happen if the mutex_lock() call blocks, and we then find
1284 	 * the ringbuffer empty. So in practice we should be ok, but it's
1285 	 * something to be aware of when touching this code.
1286 	 */
1287 	if (until == 0)
1288 		aio_read_events(ctx, min_nr, nr, event, &ret);
1289 	else
1290 		wait_event_interruptible_hrtimeout(ctx->wait,
1291 				aio_read_events(ctx, min_nr, nr, event, &ret),
1292 				until);
1293 	return ret;
1294 }
1295 
1296 /* sys_io_setup:
1297  *	Create an aio_context capable of receiving at least nr_events.
1298  *	ctxp must not point to an aio_context that already exists, and
1299  *	must be initialized to 0 prior to the call.  On successful
1300  *	creation of the aio_context, *ctxp is filled in with the resulting
1301  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1302  *	if the specified nr_events exceeds internal limits.  May fail
1303  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1304  *	of available events.  May fail with -ENOMEM if insufficient kernel
1305  *	resources are available.  May fail with -EFAULT if an invalid
1306  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1307  *	implemented.
1308  */
SYSCALL_DEFINE2(io_setup,unsigned,nr_events,aio_context_t __user *,ctxp)1309 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1310 {
1311 	struct kioctx *ioctx = NULL;
1312 	unsigned long ctx;
1313 	long ret;
1314 
1315 	ret = get_user(ctx, ctxp);
1316 	if (unlikely(ret))
1317 		goto out;
1318 
1319 	ret = -EINVAL;
1320 	if (unlikely(ctx || nr_events == 0)) {
1321 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1322 		         ctx, nr_events);
1323 		goto out;
1324 	}
1325 
1326 	ioctx = ioctx_alloc(nr_events);
1327 	ret = PTR_ERR(ioctx);
1328 	if (!IS_ERR(ioctx)) {
1329 		ret = put_user(ioctx->user_id, ctxp);
1330 		if (ret)
1331 			kill_ioctx(current->mm, ioctx, NULL);
1332 		percpu_ref_put(&ioctx->users);
1333 	}
1334 
1335 out:
1336 	return ret;
1337 }
1338 
1339 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(io_setup,unsigned,nr_events,u32 __user *,ctx32p)1340 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1341 {
1342 	struct kioctx *ioctx = NULL;
1343 	unsigned long ctx;
1344 	long ret;
1345 
1346 	ret = get_user(ctx, ctx32p);
1347 	if (unlikely(ret))
1348 		goto out;
1349 
1350 	ret = -EINVAL;
1351 	if (unlikely(ctx || nr_events == 0)) {
1352 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1353 		         ctx, nr_events);
1354 		goto out;
1355 	}
1356 
1357 	ioctx = ioctx_alloc(nr_events);
1358 	ret = PTR_ERR(ioctx);
1359 	if (!IS_ERR(ioctx)) {
1360 		/* truncating is ok because it's a user address */
1361 		ret = put_user((u32)ioctx->user_id, ctx32p);
1362 		if (ret)
1363 			kill_ioctx(current->mm, ioctx, NULL);
1364 		percpu_ref_put(&ioctx->users);
1365 	}
1366 
1367 out:
1368 	return ret;
1369 }
1370 #endif
1371 
1372 /* sys_io_destroy:
1373  *	Destroy the aio_context specified.  May cancel any outstanding
1374  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1375  *	implemented.  May fail with -EINVAL if the context pointed to
1376  *	is invalid.
1377  */
SYSCALL_DEFINE1(io_destroy,aio_context_t,ctx)1378 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1379 {
1380 	struct kioctx *ioctx = lookup_ioctx(ctx);
1381 	if (likely(NULL != ioctx)) {
1382 		struct ctx_rq_wait wait;
1383 		int ret;
1384 
1385 		init_completion(&wait.comp);
1386 		atomic_set(&wait.count, 1);
1387 
1388 		/* Pass requests_done to kill_ioctx() where it can be set
1389 		 * in a thread-safe way. If we try to set it here then we have
1390 		 * a race condition if two io_destroy() called simultaneously.
1391 		 */
1392 		ret = kill_ioctx(current->mm, ioctx, &wait);
1393 		percpu_ref_put(&ioctx->users);
1394 
1395 		/* Wait until all IO for the context are done. Otherwise kernel
1396 		 * keep using user-space buffers even if user thinks the context
1397 		 * is destroyed.
1398 		 */
1399 		if (!ret)
1400 			wait_for_completion(&wait.comp);
1401 
1402 		return ret;
1403 	}
1404 	pr_debug("EINVAL: invalid context id\n");
1405 	return -EINVAL;
1406 }
1407 
aio_remove_iocb(struct aio_kiocb * iocb)1408 static void aio_remove_iocb(struct aio_kiocb *iocb)
1409 {
1410 	struct kioctx *ctx = iocb->ki_ctx;
1411 	unsigned long flags;
1412 
1413 	spin_lock_irqsave(&ctx->ctx_lock, flags);
1414 	list_del(&iocb->ki_list);
1415 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1416 }
1417 
aio_complete_rw(struct kiocb * kiocb,long res,long res2)1418 static void aio_complete_rw(struct kiocb *kiocb, long res, long res2)
1419 {
1420 	struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1421 
1422 	if (!list_empty_careful(&iocb->ki_list))
1423 		aio_remove_iocb(iocb);
1424 
1425 	if (kiocb->ki_flags & IOCB_WRITE) {
1426 		struct inode *inode = file_inode(kiocb->ki_filp);
1427 
1428 		/*
1429 		 * Tell lockdep we inherited freeze protection from submission
1430 		 * thread.
1431 		 */
1432 		if (S_ISREG(inode->i_mode))
1433 			__sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
1434 		file_end_write(kiocb->ki_filp);
1435 	}
1436 
1437 	iocb->ki_res.res = res;
1438 	iocb->ki_res.res2 = res2;
1439 	iocb_put(iocb);
1440 }
1441 
aio_prep_rw(struct kiocb * req,const struct iocb * iocb)1442 static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb)
1443 {
1444 	int ret;
1445 
1446 	req->ki_complete = aio_complete_rw;
1447 	req->private = NULL;
1448 	req->ki_pos = iocb->aio_offset;
1449 	req->ki_flags = iocb_flags(req->ki_filp);
1450 	if (iocb->aio_flags & IOCB_FLAG_RESFD)
1451 		req->ki_flags |= IOCB_EVENTFD;
1452 	req->ki_hint = ki_hint_validate(file_write_hint(req->ki_filp));
1453 	if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1454 		/*
1455 		 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1456 		 * aio_reqprio is interpreted as an I/O scheduling
1457 		 * class and priority.
1458 		 */
1459 		ret = ioprio_check_cap(iocb->aio_reqprio);
1460 		if (ret) {
1461 			pr_debug("aio ioprio check cap error: %d\n", ret);
1462 			return ret;
1463 		}
1464 
1465 		req->ki_ioprio = iocb->aio_reqprio;
1466 	} else
1467 		req->ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1468 
1469 	ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1470 	if (unlikely(ret))
1471 		return ret;
1472 
1473 	req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */
1474 	return 0;
1475 }
1476 
aio_setup_rw(int rw,const struct iocb * iocb,struct iovec ** iovec,bool vectored,bool compat,struct iov_iter * iter)1477 static int aio_setup_rw(int rw, const struct iocb *iocb, struct iovec **iovec,
1478 		bool vectored, bool compat, struct iov_iter *iter)
1479 {
1480 	void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1481 	size_t len = iocb->aio_nbytes;
1482 
1483 	if (!vectored) {
1484 		ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1485 		*iovec = NULL;
1486 		return ret;
1487 	}
1488 #ifdef CONFIG_COMPAT
1489 	if (compat)
1490 		return compat_import_iovec(rw, buf, len, UIO_FASTIOV, iovec,
1491 				iter);
1492 #endif
1493 	return import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter);
1494 }
1495 
aio_rw_done(struct kiocb * req,ssize_t ret)1496 static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
1497 {
1498 	switch (ret) {
1499 	case -EIOCBQUEUED:
1500 		break;
1501 	case -ERESTARTSYS:
1502 	case -ERESTARTNOINTR:
1503 	case -ERESTARTNOHAND:
1504 	case -ERESTART_RESTARTBLOCK:
1505 		/*
1506 		 * There's no easy way to restart the syscall since other AIO's
1507 		 * may be already running. Just fail this IO with EINTR.
1508 		 */
1509 		ret = -EINTR;
1510 		/*FALLTHRU*/
1511 	default:
1512 		req->ki_complete(req, ret, 0);
1513 	}
1514 }
1515 
aio_read(struct kiocb * req,const struct iocb * iocb,bool vectored,bool compat)1516 static ssize_t aio_read(struct kiocb *req, const struct iocb *iocb,
1517 			bool vectored, bool compat)
1518 {
1519 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1520 	struct iov_iter iter;
1521 	struct file *file;
1522 	ssize_t ret;
1523 
1524 	ret = aio_prep_rw(req, iocb);
1525 	if (ret)
1526 		return ret;
1527 	file = req->ki_filp;
1528 	if (unlikely(!(file->f_mode & FMODE_READ)))
1529 		return -EBADF;
1530 	ret = -EINVAL;
1531 	if (unlikely(!file->f_op->read_iter))
1532 		return -EINVAL;
1533 
1534 	ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
1535 	if (ret)
1536 		return ret;
1537 	ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1538 	if (!ret)
1539 		aio_rw_done(req, call_read_iter(file, req, &iter));
1540 	kfree(iovec);
1541 	return ret;
1542 }
1543 
aio_write(struct kiocb * req,const struct iocb * iocb,bool vectored,bool compat)1544 static ssize_t aio_write(struct kiocb *req, const struct iocb *iocb,
1545 			 bool vectored, bool compat)
1546 {
1547 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1548 	struct iov_iter iter;
1549 	struct file *file;
1550 	ssize_t ret;
1551 
1552 	ret = aio_prep_rw(req, iocb);
1553 	if (ret)
1554 		return ret;
1555 	file = req->ki_filp;
1556 
1557 	if (unlikely(!(file->f_mode & FMODE_WRITE)))
1558 		return -EBADF;
1559 	if (unlikely(!file->f_op->write_iter))
1560 		return -EINVAL;
1561 
1562 	ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
1563 	if (ret)
1564 		return ret;
1565 	ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1566 	if (!ret) {
1567 		/*
1568 		 * Open-code file_start_write here to grab freeze protection,
1569 		 * which will be released by another thread in
1570 		 * aio_complete_rw().  Fool lockdep by telling it the lock got
1571 		 * released so that it doesn't complain about the held lock when
1572 		 * we return to userspace.
1573 		 */
1574 		if (S_ISREG(file_inode(file)->i_mode)) {
1575 			__sb_start_write(file_inode(file)->i_sb, SB_FREEZE_WRITE, true);
1576 			__sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1577 		}
1578 		req->ki_flags |= IOCB_WRITE;
1579 		aio_rw_done(req, call_write_iter(file, req, &iter));
1580 	}
1581 	kfree(iovec);
1582 	return ret;
1583 }
1584 
aio_fsync_work(struct work_struct * work)1585 static void aio_fsync_work(struct work_struct *work)
1586 {
1587 	struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work);
1588 	const struct cred *old_cred = override_creds(iocb->fsync.creds);
1589 
1590 	iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync);
1591 	revert_creds(old_cred);
1592 	put_cred(iocb->fsync.creds);
1593 	iocb_put(iocb);
1594 }
1595 
aio_fsync(struct fsync_iocb * req,const struct iocb * iocb,bool datasync)1596 static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb,
1597 		     bool datasync)
1598 {
1599 	if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1600 			iocb->aio_rw_flags))
1601 		return -EINVAL;
1602 
1603 	if (unlikely(!req->file->f_op->fsync))
1604 		return -EINVAL;
1605 
1606 	req->creds = prepare_creds();
1607 	if (!req->creds)
1608 		return -ENOMEM;
1609 
1610 	req->datasync = datasync;
1611 	INIT_WORK(&req->work, aio_fsync_work);
1612 	schedule_work(&req->work);
1613 	return 0;
1614 }
1615 
aio_poll_put_work(struct work_struct * work)1616 static void aio_poll_put_work(struct work_struct *work)
1617 {
1618 	struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1619 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1620 
1621 	iocb_put(iocb);
1622 }
1623 
1624 /*
1625  * Safely lock the waitqueue which the request is on, synchronizing with the
1626  * case where the ->poll() provider decides to free its waitqueue early.
1627  *
1628  * Returns true on success, meaning that req->head->lock was locked, req->wait
1629  * is on req->head, and an RCU read lock was taken.  Returns false if the
1630  * request was already removed from its waitqueue (which might no longer exist).
1631  */
poll_iocb_lock_wq(struct poll_iocb * req)1632 static bool poll_iocb_lock_wq(struct poll_iocb *req)
1633 {
1634 	wait_queue_head_t *head;
1635 
1636 	/*
1637 	 * While we hold the waitqueue lock and the waitqueue is nonempty,
1638 	 * wake_up_pollfree() will wait for us.  However, taking the waitqueue
1639 	 * lock in the first place can race with the waitqueue being freed.
1640 	 *
1641 	 * We solve this as eventpoll does: by taking advantage of the fact that
1642 	 * all users of wake_up_pollfree() will RCU-delay the actual free.  If
1643 	 * we enter rcu_read_lock() and see that the pointer to the queue is
1644 	 * non-NULL, we can then lock it without the memory being freed out from
1645 	 * under us, then check whether the request is still on the queue.
1646 	 *
1647 	 * Keep holding rcu_read_lock() as long as we hold the queue lock, in
1648 	 * case the caller deletes the entry from the queue, leaving it empty.
1649 	 * In that case, only RCU prevents the queue memory from being freed.
1650 	 */
1651 	rcu_read_lock();
1652 	head = smp_load_acquire(&req->head);
1653 	if (head) {
1654 		spin_lock(&head->lock);
1655 		if (!list_empty(&req->wait.entry))
1656 			return true;
1657 		spin_unlock(&head->lock);
1658 	}
1659 	rcu_read_unlock();
1660 	return false;
1661 }
1662 
poll_iocb_unlock_wq(struct poll_iocb * req)1663 static void poll_iocb_unlock_wq(struct poll_iocb *req)
1664 {
1665 	spin_unlock(&req->head->lock);
1666 	rcu_read_unlock();
1667 }
1668 
aio_poll_complete_work(struct work_struct * work)1669 static void aio_poll_complete_work(struct work_struct *work)
1670 {
1671 	struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1672 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1673 	struct poll_table_struct pt = { ._key = req->events };
1674 	struct kioctx *ctx = iocb->ki_ctx;
1675 	__poll_t mask = 0;
1676 
1677 	if (!READ_ONCE(req->cancelled))
1678 		mask = vfs_poll(req->file, &pt) & req->events;
1679 
1680 	/*
1681 	 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1682 	 * calling ->ki_cancel.  We need the ctx_lock roundtrip here to
1683 	 * synchronize with them.  In the cancellation case the list_del_init
1684 	 * itself is not actually needed, but harmless so we keep it in to
1685 	 * avoid further branches in the fast path.
1686 	 */
1687 	spin_lock_irq(&ctx->ctx_lock);
1688 	if (poll_iocb_lock_wq(req)) {
1689 		if (!mask && !READ_ONCE(req->cancelled)) {
1690 			/*
1691 			 * The request isn't actually ready to be completed yet.
1692 			 * Reschedule completion if another wakeup came in.
1693 			 */
1694 			if (req->work_need_resched) {
1695 				schedule_work(&req->work);
1696 				req->work_need_resched = false;
1697 			} else {
1698 				req->work_scheduled = false;
1699 			}
1700 			poll_iocb_unlock_wq(req);
1701 			spin_unlock_irq(&ctx->ctx_lock);
1702 			return;
1703 		}
1704 		list_del_init(&req->wait.entry);
1705 		poll_iocb_unlock_wq(req);
1706 	} /* else, POLLFREE has freed the waitqueue, so we must complete */
1707 	list_del_init(&iocb->ki_list);
1708 	iocb->ki_res.res = mangle_poll(mask);
1709 	spin_unlock_irq(&ctx->ctx_lock);
1710 
1711 	iocb_put(iocb);
1712 }
1713 
1714 /* assumes we are called with irqs disabled */
aio_poll_cancel(struct kiocb * iocb)1715 static int aio_poll_cancel(struct kiocb *iocb)
1716 {
1717 	struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1718 	struct poll_iocb *req = &aiocb->poll;
1719 
1720 	if (poll_iocb_lock_wq(req)) {
1721 		WRITE_ONCE(req->cancelled, true);
1722 		if (!req->work_scheduled) {
1723 			schedule_work(&aiocb->poll.work);
1724 			req->work_scheduled = true;
1725 		}
1726 		poll_iocb_unlock_wq(req);
1727 	} /* else, the request was force-cancelled by POLLFREE already */
1728 
1729 	return 0;
1730 }
1731 
aio_poll_wake(struct wait_queue_entry * wait,unsigned mode,int sync,void * key)1732 static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1733 		void *key)
1734 {
1735 	struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
1736 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1737 	__poll_t mask = key_to_poll(key);
1738 	unsigned long flags;
1739 
1740 	/* for instances that support it check for an event match first: */
1741 	if (mask && !(mask & req->events))
1742 		return 0;
1743 
1744 	/*
1745 	 * Complete the request inline if possible.  This requires that three
1746 	 * conditions be met:
1747 	 *   1. An event mask must have been passed.  If a plain wakeup was done
1748 	 *	instead, then mask == 0 and we have to call vfs_poll() to get
1749 	 *	the events, so inline completion isn't possible.
1750 	 *   2. The completion work must not have already been scheduled.
1751 	 *   3. ctx_lock must not be busy.  We have to use trylock because we
1752 	 *	already hold the waitqueue lock, so this inverts the normal
1753 	 *	locking order.  Use irqsave/irqrestore because not all
1754 	 *	filesystems (e.g. fuse) call this function with IRQs disabled,
1755 	 *	yet IRQs have to be disabled before ctx_lock is obtained.
1756 	 */
1757 	if (mask && !req->work_scheduled &&
1758 	    spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) {
1759 		struct kioctx *ctx = iocb->ki_ctx;
1760 
1761 		list_del_init(&req->wait.entry);
1762 		list_del(&iocb->ki_list);
1763 		iocb->ki_res.res = mangle_poll(mask);
1764 		if (iocb->ki_eventfd && eventfd_signal_count()) {
1765 			iocb = NULL;
1766 			INIT_WORK(&req->work, aio_poll_put_work);
1767 			schedule_work(&req->work);
1768 		}
1769 		spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1770 		if (iocb)
1771 			iocb_put(iocb);
1772 	} else {
1773 		/*
1774 		 * Schedule the completion work if needed.  If it was already
1775 		 * scheduled, record that another wakeup came in.
1776 		 *
1777 		 * Don't remove the request from the waitqueue here, as it might
1778 		 * not actually be complete yet (we won't know until vfs_poll()
1779 		 * is called), and we must not miss any wakeups.  POLLFREE is an
1780 		 * exception to this; see below.
1781 		 */
1782 		if (req->work_scheduled) {
1783 			req->work_need_resched = true;
1784 		} else {
1785 			schedule_work(&req->work);
1786 			req->work_scheduled = true;
1787 		}
1788 
1789 		/*
1790 		 * If the waitqueue is being freed early but we can't complete
1791 		 * the request inline, we have to tear down the request as best
1792 		 * we can.  That means immediately removing the request from its
1793 		 * waitqueue and preventing all further accesses to the
1794 		 * waitqueue via the request.  We also need to schedule the
1795 		 * completion work (done above).  Also mark the request as
1796 		 * cancelled, to potentially skip an unneeded call to ->poll().
1797 		 */
1798 		if (mask & POLLFREE) {
1799 			WRITE_ONCE(req->cancelled, true);
1800 			list_del_init(&req->wait.entry);
1801 
1802 			/*
1803 			 * Careful: this *must* be the last step, since as soon
1804 			 * as req->head is NULL'ed out, the request can be
1805 			 * completed and freed, since aio_poll_complete_work()
1806 			 * will no longer need to take the waitqueue lock.
1807 			 */
1808 			smp_store_release(&req->head, NULL);
1809 		}
1810 	}
1811 	return 1;
1812 }
1813 
1814 struct aio_poll_table {
1815 	struct poll_table_struct	pt;
1816 	struct aio_kiocb		*iocb;
1817 	bool				queued;
1818 	int				error;
1819 };
1820 
1821 static void
aio_poll_queue_proc(struct file * file,struct wait_queue_head * head,struct poll_table_struct * p)1822 aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1823 		struct poll_table_struct *p)
1824 {
1825 	struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
1826 
1827 	/* multiple wait queues per file are not supported */
1828 	if (unlikely(pt->queued)) {
1829 		pt->error = -EINVAL;
1830 		return;
1831 	}
1832 
1833 	pt->queued = true;
1834 	pt->error = 0;
1835 	pt->iocb->poll.head = head;
1836 	add_wait_queue(head, &pt->iocb->poll.wait);
1837 }
1838 
aio_poll(struct aio_kiocb * aiocb,const struct iocb * iocb)1839 static ssize_t aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb)
1840 {
1841 	struct kioctx *ctx = aiocb->ki_ctx;
1842 	struct poll_iocb *req = &aiocb->poll;
1843 	struct aio_poll_table apt;
1844 	bool cancel = false;
1845 	__poll_t mask;
1846 
1847 	/* reject any unknown events outside the normal event mask. */
1848 	if ((u16)iocb->aio_buf != iocb->aio_buf)
1849 		return -EINVAL;
1850 	/* reject fields that are not defined for poll */
1851 	if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1852 		return -EINVAL;
1853 
1854 	INIT_WORK(&req->work, aio_poll_complete_work);
1855 	req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
1856 
1857 	req->head = NULL;
1858 	req->cancelled = false;
1859 	req->work_scheduled = false;
1860 	req->work_need_resched = false;
1861 
1862 	apt.pt._qproc = aio_poll_queue_proc;
1863 	apt.pt._key = req->events;
1864 	apt.iocb = aiocb;
1865 	apt.queued = false;
1866 	apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1867 
1868 	/* initialized the list so that we can do list_empty checks */
1869 	INIT_LIST_HEAD(&req->wait.entry);
1870 	init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1871 
1872 	mask = vfs_poll(req->file, &apt.pt) & req->events;
1873 	spin_lock_irq(&ctx->ctx_lock);
1874 	if (likely(apt.queued)) {
1875 		bool on_queue = poll_iocb_lock_wq(req);
1876 
1877 		if (!on_queue || req->work_scheduled) {
1878 			/*
1879 			 * aio_poll_wake() already either scheduled the async
1880 			 * completion work, or completed the request inline.
1881 			 */
1882 			if (apt.error) /* unsupported case: multiple queues */
1883 				cancel = true;
1884 			apt.error = 0;
1885 			mask = 0;
1886 		}
1887 		if (mask || apt.error) {
1888 			/* Steal to complete synchronously. */
1889 			list_del_init(&req->wait.entry);
1890 		} else if (cancel) {
1891 			/* Cancel if possible (may be too late though). */
1892 			WRITE_ONCE(req->cancelled, true);
1893 		} else if (on_queue) {
1894 			/*
1895 			 * Actually waiting for an event, so add the request to
1896 			 * active_reqs so that it can be cancelled if needed.
1897 			 */
1898 			list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1899 			aiocb->ki_cancel = aio_poll_cancel;
1900 		}
1901 		if (on_queue)
1902 			poll_iocb_unlock_wq(req);
1903 	}
1904 	if (mask) { /* no async, we'd stolen it */
1905 		aiocb->ki_res.res = mangle_poll(mask);
1906 		apt.error = 0;
1907 	}
1908 	spin_unlock_irq(&ctx->ctx_lock);
1909 	if (mask)
1910 		iocb_put(aiocb);
1911 	return apt.error;
1912 }
1913 
__io_submit_one(struct kioctx * ctx,const struct iocb * iocb,struct iocb __user * user_iocb,bool compat)1914 static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb,
1915 			   struct iocb __user *user_iocb, bool compat)
1916 {
1917 	struct aio_kiocb *req;
1918 	ssize_t ret;
1919 
1920 	/* enforce forwards compatibility on users */
1921 	if (unlikely(iocb->aio_reserved2)) {
1922 		pr_debug("EINVAL: reserve field set\n");
1923 		return -EINVAL;
1924 	}
1925 
1926 	/* prevent overflows */
1927 	if (unlikely(
1928 	    (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1929 	    (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1930 	    ((ssize_t)iocb->aio_nbytes < 0)
1931 	   )) {
1932 		pr_debug("EINVAL: overflow check\n");
1933 		return -EINVAL;
1934 	}
1935 
1936 	if (!get_reqs_available(ctx))
1937 		return -EAGAIN;
1938 
1939 	ret = -EAGAIN;
1940 	req = aio_get_req(ctx);
1941 	if (unlikely(!req))
1942 		goto out_put_reqs_available;
1943 
1944 	req->ki_filp = fget(iocb->aio_fildes);
1945 	ret = -EBADF;
1946 	if (unlikely(!req->ki_filp))
1947 		goto out_put_req;
1948 
1949 	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1950 		/*
1951 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1952 		 * instance of the file* now. The file descriptor must be
1953 		 * an eventfd() fd, and will be signaled for each completed
1954 		 * event using the eventfd_signal() function.
1955 		 */
1956 		req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1957 		if (IS_ERR(req->ki_eventfd)) {
1958 			ret = PTR_ERR(req->ki_eventfd);
1959 			req->ki_eventfd = NULL;
1960 			goto out_put_req;
1961 		}
1962 	}
1963 
1964 	ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1965 	if (unlikely(ret)) {
1966 		pr_debug("EFAULT: aio_key\n");
1967 		goto out_put_req;
1968 	}
1969 
1970 	req->ki_res.obj = (u64)(unsigned long)user_iocb;
1971 	req->ki_res.data = iocb->aio_data;
1972 	req->ki_res.res = 0;
1973 	req->ki_res.res2 = 0;
1974 
1975 	switch (iocb->aio_lio_opcode) {
1976 	case IOCB_CMD_PREAD:
1977 		ret = aio_read(&req->rw, iocb, false, compat);
1978 		break;
1979 	case IOCB_CMD_PWRITE:
1980 		ret = aio_write(&req->rw, iocb, false, compat);
1981 		break;
1982 	case IOCB_CMD_PREADV:
1983 		ret = aio_read(&req->rw, iocb, true, compat);
1984 		break;
1985 	case IOCB_CMD_PWRITEV:
1986 		ret = aio_write(&req->rw, iocb, true, compat);
1987 		break;
1988 	case IOCB_CMD_FSYNC:
1989 		ret = aio_fsync(&req->fsync, iocb, false);
1990 		break;
1991 	case IOCB_CMD_FDSYNC:
1992 		ret = aio_fsync(&req->fsync, iocb, true);
1993 		break;
1994 	case IOCB_CMD_POLL:
1995 		ret = aio_poll(req, iocb);
1996 		break;
1997 	default:
1998 		pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
1999 		ret = -EINVAL;
2000 		break;
2001 	}
2002 
2003 	/* Done with the synchronous reference */
2004 	iocb_put(req);
2005 
2006 	/*
2007 	 * If ret is 0, we'd either done aio_complete() ourselves or have
2008 	 * arranged for that to be done asynchronously.  Anything non-zero
2009 	 * means that we need to destroy req ourselves.
2010 	 */
2011 	if (!ret)
2012 		return 0;
2013 
2014 out_put_req:
2015 	if (req->ki_eventfd)
2016 		eventfd_ctx_put(req->ki_eventfd);
2017 	iocb_destroy(req);
2018 out_put_reqs_available:
2019 	put_reqs_available(ctx, 1);
2020 	return ret;
2021 }
2022 
io_submit_one(struct kioctx * ctx,struct iocb __user * user_iocb,bool compat)2023 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
2024 			 bool compat)
2025 {
2026 	struct iocb iocb;
2027 
2028 	if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
2029 		return -EFAULT;
2030 
2031 	return __io_submit_one(ctx, &iocb, user_iocb, compat);
2032 }
2033 
2034 /* sys_io_submit:
2035  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
2036  *	the number of iocbs queued.  May return -EINVAL if the aio_context
2037  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
2038  *	*iocbpp[0] is not properly initialized, if the operation specified
2039  *	is invalid for the file descriptor in the iocb.  May fail with
2040  *	-EFAULT if any of the data structures point to invalid data.  May
2041  *	fail with -EBADF if the file descriptor specified in the first
2042  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
2043  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
2044  *	fail with -ENOSYS if not implemented.
2045  */
SYSCALL_DEFINE3(io_submit,aio_context_t,ctx_id,long,nr,struct iocb __user * __user *,iocbpp)2046 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
2047 		struct iocb __user * __user *, iocbpp)
2048 {
2049 	struct kioctx *ctx;
2050 	long ret = 0;
2051 	int i = 0;
2052 	struct blk_plug plug;
2053 
2054 	if (unlikely(nr < 0))
2055 		return -EINVAL;
2056 
2057 	ctx = lookup_ioctx(ctx_id);
2058 	if (unlikely(!ctx)) {
2059 		pr_debug("EINVAL: invalid context id\n");
2060 		return -EINVAL;
2061 	}
2062 
2063 	if (nr > ctx->nr_events)
2064 		nr = ctx->nr_events;
2065 
2066 	blk_start_plug(&plug);
2067 	for (i = 0; i < nr; i++) {
2068 		struct iocb __user *user_iocb;
2069 
2070 		if (unlikely(get_user(user_iocb, iocbpp + i))) {
2071 			ret = -EFAULT;
2072 			break;
2073 		}
2074 
2075 		ret = io_submit_one(ctx, user_iocb, false);
2076 		if (ret)
2077 			break;
2078 	}
2079 	blk_finish_plug(&plug);
2080 
2081 	percpu_ref_put(&ctx->users);
2082 	return i ? i : ret;
2083 }
2084 
2085 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(io_submit,compat_aio_context_t,ctx_id,int,nr,compat_uptr_t __user *,iocbpp)2086 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
2087 		       int, nr, compat_uptr_t __user *, iocbpp)
2088 {
2089 	struct kioctx *ctx;
2090 	long ret = 0;
2091 	int i = 0;
2092 	struct blk_plug plug;
2093 
2094 	if (unlikely(nr < 0))
2095 		return -EINVAL;
2096 
2097 	ctx = lookup_ioctx(ctx_id);
2098 	if (unlikely(!ctx)) {
2099 		pr_debug("EINVAL: invalid context id\n");
2100 		return -EINVAL;
2101 	}
2102 
2103 	if (nr > ctx->nr_events)
2104 		nr = ctx->nr_events;
2105 
2106 	blk_start_plug(&plug);
2107 	for (i = 0; i < nr; i++) {
2108 		compat_uptr_t user_iocb;
2109 
2110 		if (unlikely(get_user(user_iocb, iocbpp + i))) {
2111 			ret = -EFAULT;
2112 			break;
2113 		}
2114 
2115 		ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
2116 		if (ret)
2117 			break;
2118 	}
2119 	blk_finish_plug(&plug);
2120 
2121 	percpu_ref_put(&ctx->users);
2122 	return i ? i : ret;
2123 }
2124 #endif
2125 
2126 /* sys_io_cancel:
2127  *	Attempts to cancel an iocb previously passed to io_submit.  If
2128  *	the operation is successfully cancelled, the resulting event is
2129  *	copied into the memory pointed to by result without being placed
2130  *	into the completion queue and 0 is returned.  May fail with
2131  *	-EFAULT if any of the data structures pointed to are invalid.
2132  *	May fail with -EINVAL if aio_context specified by ctx_id is
2133  *	invalid.  May fail with -EAGAIN if the iocb specified was not
2134  *	cancelled.  Will fail with -ENOSYS if not implemented.
2135  */
SYSCALL_DEFINE3(io_cancel,aio_context_t,ctx_id,struct iocb __user *,iocb,struct io_event __user *,result)2136 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
2137 		struct io_event __user *, result)
2138 {
2139 	struct kioctx *ctx;
2140 	struct aio_kiocb *kiocb;
2141 	int ret = -EINVAL;
2142 	u32 key;
2143 	u64 obj = (u64)(unsigned long)iocb;
2144 
2145 	if (unlikely(get_user(key, &iocb->aio_key)))
2146 		return -EFAULT;
2147 	if (unlikely(key != KIOCB_KEY))
2148 		return -EINVAL;
2149 
2150 	ctx = lookup_ioctx(ctx_id);
2151 	if (unlikely(!ctx))
2152 		return -EINVAL;
2153 
2154 	spin_lock_irq(&ctx->ctx_lock);
2155 	/* TODO: use a hash or array, this sucks. */
2156 	list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
2157 		if (kiocb->ki_res.obj == obj) {
2158 			ret = kiocb->ki_cancel(&kiocb->rw);
2159 			list_del_init(&kiocb->ki_list);
2160 			break;
2161 		}
2162 	}
2163 	spin_unlock_irq(&ctx->ctx_lock);
2164 
2165 	if (!ret) {
2166 		/*
2167 		 * The result argument is no longer used - the io_event is
2168 		 * always delivered via the ring buffer. -EINPROGRESS indicates
2169 		 * cancellation is progress:
2170 		 */
2171 		ret = -EINPROGRESS;
2172 	}
2173 
2174 	percpu_ref_put(&ctx->users);
2175 
2176 	return ret;
2177 }
2178 
do_io_getevents(aio_context_t ctx_id,long min_nr,long nr,struct io_event __user * events,struct timespec64 * ts)2179 static long do_io_getevents(aio_context_t ctx_id,
2180 		long min_nr,
2181 		long nr,
2182 		struct io_event __user *events,
2183 		struct timespec64 *ts)
2184 {
2185 	ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
2186 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
2187 	long ret = -EINVAL;
2188 
2189 	if (likely(ioctx)) {
2190 		if (likely(min_nr <= nr && min_nr >= 0))
2191 			ret = read_events(ioctx, min_nr, nr, events, until);
2192 		percpu_ref_put(&ioctx->users);
2193 	}
2194 
2195 	return ret;
2196 }
2197 
2198 /* io_getevents:
2199  *	Attempts to read at least min_nr events and up to nr events from
2200  *	the completion queue for the aio_context specified by ctx_id. If
2201  *	it succeeds, the number of read events is returned. May fail with
2202  *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2203  *	out of range, if timeout is out of range.  May fail with -EFAULT
2204  *	if any of the memory specified is invalid.  May return 0 or
2205  *	< min_nr if the timeout specified by timeout has elapsed
2206  *	before sufficient events are available, where timeout == NULL
2207  *	specifies an infinite timeout. Note that the timeout pointed to by
2208  *	timeout is relative.  Will fail with -ENOSYS if not implemented.
2209  */
SYSCALL_DEFINE5(io_getevents,aio_context_t,ctx_id,long,min_nr,long,nr,struct io_event __user *,events,struct timespec __user *,timeout)2210 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2211 		long, min_nr,
2212 		long, nr,
2213 		struct io_event __user *, events,
2214 		struct timespec __user *, timeout)
2215 {
2216 	struct timespec64	ts;
2217 	int			ret;
2218 
2219 	if (timeout && unlikely(get_timespec64(&ts, timeout)))
2220 		return -EFAULT;
2221 
2222 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2223 	if (!ret && signal_pending(current))
2224 		ret = -EINTR;
2225 	return ret;
2226 }
2227 
2228 struct __aio_sigset {
2229 	const sigset_t __user	*sigmask;
2230 	size_t		sigsetsize;
2231 };
2232 
SYSCALL_DEFINE6(io_pgetevents,aio_context_t,ctx_id,long,min_nr,long,nr,struct io_event __user *,events,struct timespec __user *,timeout,const struct __aio_sigset __user *,usig)2233 SYSCALL_DEFINE6(io_pgetevents,
2234 		aio_context_t, ctx_id,
2235 		long, min_nr,
2236 		long, nr,
2237 		struct io_event __user *, events,
2238 		struct timespec __user *, timeout,
2239 		const struct __aio_sigset __user *, usig)
2240 {
2241 	struct __aio_sigset	ksig = { NULL, };
2242 	sigset_t		ksigmask, sigsaved;
2243 	struct timespec64	ts;
2244 	int ret;
2245 
2246 	if (timeout && unlikely(get_timespec64(&ts, timeout)))
2247 		return -EFAULT;
2248 
2249 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2250 		return -EFAULT;
2251 
2252 	if (ksig.sigmask) {
2253 		if (ksig.sigsetsize != sizeof(sigset_t))
2254 			return -EINVAL;
2255 		if (copy_from_user(&ksigmask, ksig.sigmask, sizeof(ksigmask)))
2256 			return -EFAULT;
2257 		sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2258 		sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
2259 	}
2260 
2261 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2262 	if (signal_pending(current)) {
2263 		if (ksig.sigmask) {
2264 			current->saved_sigmask = sigsaved;
2265 			set_restore_sigmask();
2266 		}
2267 
2268 		if (!ret)
2269 			ret = -ERESTARTNOHAND;
2270 	} else {
2271 		if (ksig.sigmask)
2272 			sigprocmask(SIG_SETMASK, &sigsaved, NULL);
2273 	}
2274 
2275 	return ret;
2276 }
2277 
2278 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE5(io_getevents,compat_aio_context_t,ctx_id,compat_long_t,min_nr,compat_long_t,nr,struct io_event __user *,events,struct compat_timespec __user *,timeout)2279 COMPAT_SYSCALL_DEFINE5(io_getevents, compat_aio_context_t, ctx_id,
2280 		       compat_long_t, min_nr,
2281 		       compat_long_t, nr,
2282 		       struct io_event __user *, events,
2283 		       struct compat_timespec __user *, timeout)
2284 {
2285 	struct timespec64 t;
2286 	int ret;
2287 
2288 	if (timeout && compat_get_timespec64(&t, timeout))
2289 		return -EFAULT;
2290 
2291 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2292 	if (!ret && signal_pending(current))
2293 		ret = -EINTR;
2294 	return ret;
2295 }
2296 
2297 
2298 struct __compat_aio_sigset {
2299 	compat_sigset_t __user	*sigmask;
2300 	compat_size_t		sigsetsize;
2301 };
2302 
COMPAT_SYSCALL_DEFINE6(io_pgetevents,compat_aio_context_t,ctx_id,compat_long_t,min_nr,compat_long_t,nr,struct io_event __user *,events,struct compat_timespec __user *,timeout,const struct __compat_aio_sigset __user *,usig)2303 COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2304 		compat_aio_context_t, ctx_id,
2305 		compat_long_t, min_nr,
2306 		compat_long_t, nr,
2307 		struct io_event __user *, events,
2308 		struct compat_timespec __user *, timeout,
2309 		const struct __compat_aio_sigset __user *, usig)
2310 {
2311 	struct __compat_aio_sigset ksig = { NULL, };
2312 	sigset_t ksigmask, sigsaved;
2313 	struct timespec64 t;
2314 	int ret;
2315 
2316 	if (timeout && compat_get_timespec64(&t, timeout))
2317 		return -EFAULT;
2318 
2319 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2320 		return -EFAULT;
2321 
2322 	if (ksig.sigmask) {
2323 		if (ksig.sigsetsize != sizeof(compat_sigset_t))
2324 			return -EINVAL;
2325 		if (get_compat_sigset(&ksigmask, ksig.sigmask))
2326 			return -EFAULT;
2327 		sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2328 		sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
2329 	}
2330 
2331 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2332 	if (signal_pending(current)) {
2333 		if (ksig.sigmask) {
2334 			current->saved_sigmask = sigsaved;
2335 			set_restore_sigmask();
2336 		}
2337 		if (!ret)
2338 			ret = -ERESTARTNOHAND;
2339 	} else {
2340 		if (ksig.sigmask)
2341 			sigprocmask(SIG_SETMASK, &sigsaved, NULL);
2342 	}
2343 
2344 	return ret;
2345 }
2346 #endif
2347