1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * PCI Message Signaled Interrupt (MSI)
4 *
5 * Copyright (C) 2003-2004 Intel
6 * Copyright (C) Tom Long Nguyen (tom.l.nguyen@intel.com)
7 * Copyright (C) 2016 Christoph Hellwig.
8 */
9
10 #include <linux/err.h>
11 #include <linux/mm.h>
12 #include <linux/irq.h>
13 #include <linux/interrupt.h>
14 #include <linux/export.h>
15 #include <linux/ioport.h>
16 #include <linux/pci.h>
17 #include <linux/proc_fs.h>
18 #include <linux/msi.h>
19 #include <linux/smp.h>
20 #include <linux/errno.h>
21 #include <linux/io.h>
22 #include <linux/acpi_iort.h>
23 #include <linux/slab.h>
24 #include <linux/irqdomain.h>
25 #include <linux/of_irq.h>
26
27 #include "pci.h"
28
29 static int pci_msi_enable = 1;
30 int pci_msi_ignore_mask;
31
32 #define msix_table_size(flags) ((flags & PCI_MSIX_FLAGS_QSIZE) + 1)
33
34 #ifdef CONFIG_PCI_MSI_IRQ_DOMAIN
pci_msi_setup_msi_irqs(struct pci_dev * dev,int nvec,int type)35 static int pci_msi_setup_msi_irqs(struct pci_dev *dev, int nvec, int type)
36 {
37 struct irq_domain *domain;
38
39 domain = dev_get_msi_domain(&dev->dev);
40 if (domain && irq_domain_is_hierarchy(domain))
41 return msi_domain_alloc_irqs(domain, &dev->dev, nvec);
42
43 return arch_setup_msi_irqs(dev, nvec, type);
44 }
45
pci_msi_teardown_msi_irqs(struct pci_dev * dev)46 static void pci_msi_teardown_msi_irqs(struct pci_dev *dev)
47 {
48 struct irq_domain *domain;
49
50 domain = dev_get_msi_domain(&dev->dev);
51 if (domain && irq_domain_is_hierarchy(domain))
52 msi_domain_free_irqs(domain, &dev->dev);
53 else
54 arch_teardown_msi_irqs(dev);
55 }
56 #else
57 #define pci_msi_setup_msi_irqs arch_setup_msi_irqs
58 #define pci_msi_teardown_msi_irqs arch_teardown_msi_irqs
59 #endif
60
61 /* Arch hooks */
62
arch_setup_msi_irq(struct pci_dev * dev,struct msi_desc * desc)63 int __weak arch_setup_msi_irq(struct pci_dev *dev, struct msi_desc *desc)
64 {
65 struct msi_controller *chip = dev->bus->msi;
66 int err;
67
68 if (!chip || !chip->setup_irq)
69 return -EINVAL;
70
71 err = chip->setup_irq(chip, dev, desc);
72 if (err < 0)
73 return err;
74
75 irq_set_chip_data(desc->irq, chip);
76
77 return 0;
78 }
79
arch_teardown_msi_irq(unsigned int irq)80 void __weak arch_teardown_msi_irq(unsigned int irq)
81 {
82 struct msi_controller *chip = irq_get_chip_data(irq);
83
84 if (!chip || !chip->teardown_irq)
85 return;
86
87 chip->teardown_irq(chip, irq);
88 }
89
arch_setup_msi_irqs(struct pci_dev * dev,int nvec,int type)90 int __weak arch_setup_msi_irqs(struct pci_dev *dev, int nvec, int type)
91 {
92 struct msi_controller *chip = dev->bus->msi;
93 struct msi_desc *entry;
94 int ret;
95
96 if (chip && chip->setup_irqs)
97 return chip->setup_irqs(chip, dev, nvec, type);
98 /*
99 * If an architecture wants to support multiple MSI, it needs to
100 * override arch_setup_msi_irqs()
101 */
102 if (type == PCI_CAP_ID_MSI && nvec > 1)
103 return 1;
104
105 for_each_pci_msi_entry(entry, dev) {
106 ret = arch_setup_msi_irq(dev, entry);
107 if (ret < 0)
108 return ret;
109 if (ret > 0)
110 return -ENOSPC;
111 }
112
113 return 0;
114 }
115
116 /*
117 * We have a default implementation available as a separate non-weak
118 * function, as it is used by the Xen x86 PCI code
119 */
default_teardown_msi_irqs(struct pci_dev * dev)120 void default_teardown_msi_irqs(struct pci_dev *dev)
121 {
122 int i;
123 struct msi_desc *entry;
124
125 for_each_pci_msi_entry(entry, dev)
126 if (entry->irq)
127 for (i = 0; i < entry->nvec_used; i++)
128 arch_teardown_msi_irq(entry->irq + i);
129 }
130
arch_teardown_msi_irqs(struct pci_dev * dev)131 void __weak arch_teardown_msi_irqs(struct pci_dev *dev)
132 {
133 return default_teardown_msi_irqs(dev);
134 }
135
default_restore_msi_irq(struct pci_dev * dev,int irq)136 static void default_restore_msi_irq(struct pci_dev *dev, int irq)
137 {
138 struct msi_desc *entry;
139
140 entry = NULL;
141 if (dev->msix_enabled) {
142 for_each_pci_msi_entry(entry, dev) {
143 if (irq == entry->irq)
144 break;
145 }
146 } else if (dev->msi_enabled) {
147 entry = irq_get_msi_desc(irq);
148 }
149
150 if (entry)
151 __pci_write_msi_msg(entry, &entry->msg);
152 }
153
arch_restore_msi_irqs(struct pci_dev * dev)154 void __weak arch_restore_msi_irqs(struct pci_dev *dev)
155 {
156 return default_restore_msi_irqs(dev);
157 }
158
msi_mask(unsigned x)159 static inline __attribute_const__ u32 msi_mask(unsigned x)
160 {
161 /* Don't shift by >= width of type */
162 if (x >= 5)
163 return 0xffffffff;
164 return (1 << (1 << x)) - 1;
165 }
166
167 /*
168 * PCI 2.3 does not specify mask bits for each MSI interrupt. Attempting to
169 * mask all MSI interrupts by clearing the MSI enable bit does not work
170 * reliably as devices without an INTx disable bit will then generate a
171 * level IRQ which will never be cleared.
172 */
__pci_msi_desc_mask_irq(struct msi_desc * desc,u32 mask,u32 flag)173 void __pci_msi_desc_mask_irq(struct msi_desc *desc, u32 mask, u32 flag)
174 {
175 raw_spinlock_t *lock = &desc->dev->msi_lock;
176 unsigned long flags;
177
178 if (pci_msi_ignore_mask || !desc->msi_attrib.maskbit)
179 return;
180
181 raw_spin_lock_irqsave(lock, flags);
182 desc->masked &= ~mask;
183 desc->masked |= flag;
184 pci_write_config_dword(msi_desc_to_pci_dev(desc), desc->mask_pos,
185 desc->masked);
186 raw_spin_unlock_irqrestore(lock, flags);
187 }
188
msi_mask_irq(struct msi_desc * desc,u32 mask,u32 flag)189 static void msi_mask_irq(struct msi_desc *desc, u32 mask, u32 flag)
190 {
191 __pci_msi_desc_mask_irq(desc, mask, flag);
192 }
193
pci_msix_desc_addr(struct msi_desc * desc)194 static void __iomem *pci_msix_desc_addr(struct msi_desc *desc)
195 {
196 return desc->mask_base +
197 desc->msi_attrib.entry_nr * PCI_MSIX_ENTRY_SIZE;
198 }
199
200 /*
201 * This internal function does not flush PCI writes to the device.
202 * All users must ensure that they read from the device before either
203 * assuming that the device state is up to date, or returning out of this
204 * file. This saves a few milliseconds when initialising devices with lots
205 * of MSI-X interrupts.
206 */
__pci_msix_desc_mask_irq(struct msi_desc * desc,u32 flag)207 u32 __pci_msix_desc_mask_irq(struct msi_desc *desc, u32 flag)
208 {
209 u32 mask_bits = desc->masked;
210
211 if (pci_msi_ignore_mask)
212 return 0;
213
214 mask_bits &= ~PCI_MSIX_ENTRY_CTRL_MASKBIT;
215 if (flag & PCI_MSIX_ENTRY_CTRL_MASKBIT)
216 mask_bits |= PCI_MSIX_ENTRY_CTRL_MASKBIT;
217 writel(mask_bits, pci_msix_desc_addr(desc) + PCI_MSIX_ENTRY_VECTOR_CTRL);
218
219 return mask_bits;
220 }
221
msix_mask_irq(struct msi_desc * desc,u32 flag)222 static void msix_mask_irq(struct msi_desc *desc, u32 flag)
223 {
224 desc->masked = __pci_msix_desc_mask_irq(desc, flag);
225 }
226
msi_set_mask_bit(struct irq_data * data,u32 flag)227 static void msi_set_mask_bit(struct irq_data *data, u32 flag)
228 {
229 struct msi_desc *desc = irq_data_get_msi_desc(data);
230
231 if (desc->msi_attrib.is_msix) {
232 msix_mask_irq(desc, flag);
233 readl(desc->mask_base); /* Flush write to device */
234 } else {
235 unsigned offset = data->irq - desc->irq;
236 msi_mask_irq(desc, 1 << offset, flag << offset);
237 }
238 }
239
240 /**
241 * pci_msi_mask_irq - Generic irq chip callback to mask PCI/MSI interrupts
242 * @data: pointer to irqdata associated to that interrupt
243 */
pci_msi_mask_irq(struct irq_data * data)244 void pci_msi_mask_irq(struct irq_data *data)
245 {
246 msi_set_mask_bit(data, 1);
247 }
248 EXPORT_SYMBOL_GPL(pci_msi_mask_irq);
249
250 /**
251 * pci_msi_unmask_irq - Generic irq chip callback to unmask PCI/MSI interrupts
252 * @data: pointer to irqdata associated to that interrupt
253 */
pci_msi_unmask_irq(struct irq_data * data)254 void pci_msi_unmask_irq(struct irq_data *data)
255 {
256 msi_set_mask_bit(data, 0);
257 }
258 EXPORT_SYMBOL_GPL(pci_msi_unmask_irq);
259
default_restore_msi_irqs(struct pci_dev * dev)260 void default_restore_msi_irqs(struct pci_dev *dev)
261 {
262 struct msi_desc *entry;
263
264 for_each_pci_msi_entry(entry, dev)
265 default_restore_msi_irq(dev, entry->irq);
266 }
267
__pci_read_msi_msg(struct msi_desc * entry,struct msi_msg * msg)268 void __pci_read_msi_msg(struct msi_desc *entry, struct msi_msg *msg)
269 {
270 struct pci_dev *dev = msi_desc_to_pci_dev(entry);
271
272 BUG_ON(dev->current_state != PCI_D0);
273
274 if (entry->msi_attrib.is_msix) {
275 void __iomem *base = pci_msix_desc_addr(entry);
276
277 msg->address_lo = readl(base + PCI_MSIX_ENTRY_LOWER_ADDR);
278 msg->address_hi = readl(base + PCI_MSIX_ENTRY_UPPER_ADDR);
279 msg->data = readl(base + PCI_MSIX_ENTRY_DATA);
280 } else {
281 int pos = dev->msi_cap;
282 u16 data;
283
284 pci_read_config_dword(dev, pos + PCI_MSI_ADDRESS_LO,
285 &msg->address_lo);
286 if (entry->msi_attrib.is_64) {
287 pci_read_config_dword(dev, pos + PCI_MSI_ADDRESS_HI,
288 &msg->address_hi);
289 pci_read_config_word(dev, pos + PCI_MSI_DATA_64, &data);
290 } else {
291 msg->address_hi = 0;
292 pci_read_config_word(dev, pos + PCI_MSI_DATA_32, &data);
293 }
294 msg->data = data;
295 }
296 }
297
__pci_write_msi_msg(struct msi_desc * entry,struct msi_msg * msg)298 void __pci_write_msi_msg(struct msi_desc *entry, struct msi_msg *msg)
299 {
300 struct pci_dev *dev = msi_desc_to_pci_dev(entry);
301
302 if (dev->current_state != PCI_D0 || pci_dev_is_disconnected(dev)) {
303 /* Don't touch the hardware now */
304 } else if (entry->msi_attrib.is_msix) {
305 void __iomem *base = pci_msix_desc_addr(entry);
306 bool unmasked = !(entry->masked & PCI_MSIX_ENTRY_CTRL_MASKBIT);
307
308 /*
309 * The specification mandates that the entry is masked
310 * when the message is modified:
311 *
312 * "If software changes the Address or Data value of an
313 * entry while the entry is unmasked, the result is
314 * undefined."
315 */
316 if (unmasked)
317 __pci_msix_desc_mask_irq(entry, PCI_MSIX_ENTRY_CTRL_MASKBIT);
318
319 writel(msg->address_lo, base + PCI_MSIX_ENTRY_LOWER_ADDR);
320 writel(msg->address_hi, base + PCI_MSIX_ENTRY_UPPER_ADDR);
321 writel(msg->data, base + PCI_MSIX_ENTRY_DATA);
322
323 if (unmasked)
324 __pci_msix_desc_mask_irq(entry, 0);
325
326 /* Ensure that the writes are visible in the device */
327 readl(base + PCI_MSIX_ENTRY_DATA);
328 } else {
329 int pos = dev->msi_cap;
330 u16 msgctl;
331
332 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &msgctl);
333 msgctl &= ~PCI_MSI_FLAGS_QSIZE;
334 msgctl |= entry->msi_attrib.multiple << 4;
335 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, msgctl);
336
337 pci_write_config_dword(dev, pos + PCI_MSI_ADDRESS_LO,
338 msg->address_lo);
339 if (entry->msi_attrib.is_64) {
340 pci_write_config_dword(dev, pos + PCI_MSI_ADDRESS_HI,
341 msg->address_hi);
342 pci_write_config_word(dev, pos + PCI_MSI_DATA_64,
343 msg->data);
344 } else {
345 pci_write_config_word(dev, pos + PCI_MSI_DATA_32,
346 msg->data);
347 }
348 /* Ensure that the writes are visible in the device */
349 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &msgctl);
350 }
351 entry->msg = *msg;
352 }
353
pci_write_msi_msg(unsigned int irq,struct msi_msg * msg)354 void pci_write_msi_msg(unsigned int irq, struct msi_msg *msg)
355 {
356 struct msi_desc *entry = irq_get_msi_desc(irq);
357
358 __pci_write_msi_msg(entry, msg);
359 }
360 EXPORT_SYMBOL_GPL(pci_write_msi_msg);
361
free_msi_irqs(struct pci_dev * dev)362 static void free_msi_irqs(struct pci_dev *dev)
363 {
364 struct list_head *msi_list = dev_to_msi_list(&dev->dev);
365 struct msi_desc *entry, *tmp;
366 struct attribute **msi_attrs;
367 struct device_attribute *dev_attr;
368 int i, count = 0;
369
370 for_each_pci_msi_entry(entry, dev)
371 if (entry->irq)
372 for (i = 0; i < entry->nvec_used; i++)
373 BUG_ON(irq_has_action(entry->irq + i));
374
375 if (dev->msi_irq_groups) {
376 sysfs_remove_groups(&dev->dev.kobj, dev->msi_irq_groups);
377 msi_attrs = dev->msi_irq_groups[0]->attrs;
378 while (msi_attrs[count]) {
379 dev_attr = container_of(msi_attrs[count],
380 struct device_attribute, attr);
381 kfree(dev_attr->attr.name);
382 kfree(dev_attr);
383 ++count;
384 }
385 kfree(msi_attrs);
386 kfree(dev->msi_irq_groups[0]);
387 kfree(dev->msi_irq_groups);
388 dev->msi_irq_groups = NULL;
389 }
390
391 pci_msi_teardown_msi_irqs(dev);
392
393 list_for_each_entry_safe(entry, tmp, msi_list, list) {
394 if (entry->msi_attrib.is_msix) {
395 if (list_is_last(&entry->list, msi_list))
396 iounmap(entry->mask_base);
397 }
398
399 list_del(&entry->list);
400 free_msi_entry(entry);
401 }
402 }
403
pci_intx_for_msi(struct pci_dev * dev,int enable)404 static void pci_intx_for_msi(struct pci_dev *dev, int enable)
405 {
406 if (!(dev->dev_flags & PCI_DEV_FLAGS_MSI_INTX_DISABLE_BUG))
407 pci_intx(dev, enable);
408 }
409
__pci_restore_msi_state(struct pci_dev * dev)410 static void __pci_restore_msi_state(struct pci_dev *dev)
411 {
412 u16 control;
413 struct msi_desc *entry;
414
415 if (!dev->msi_enabled)
416 return;
417
418 entry = irq_get_msi_desc(dev->irq);
419
420 pci_intx_for_msi(dev, 0);
421 pci_msi_set_enable(dev, 0);
422 arch_restore_msi_irqs(dev);
423
424 pci_read_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, &control);
425 msi_mask_irq(entry, msi_mask(entry->msi_attrib.multi_cap),
426 entry->masked);
427 control &= ~PCI_MSI_FLAGS_QSIZE;
428 control |= (entry->msi_attrib.multiple << 4) | PCI_MSI_FLAGS_ENABLE;
429 pci_write_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, control);
430 }
431
__pci_restore_msix_state(struct pci_dev * dev)432 static void __pci_restore_msix_state(struct pci_dev *dev)
433 {
434 struct msi_desc *entry;
435
436 if (!dev->msix_enabled)
437 return;
438 BUG_ON(list_empty(dev_to_msi_list(&dev->dev)));
439
440 /* route the table */
441 pci_intx_for_msi(dev, 0);
442 pci_msix_clear_and_set_ctrl(dev, 0,
443 PCI_MSIX_FLAGS_ENABLE | PCI_MSIX_FLAGS_MASKALL);
444
445 arch_restore_msi_irqs(dev);
446 for_each_pci_msi_entry(entry, dev)
447 msix_mask_irq(entry, entry->masked);
448
449 pci_msix_clear_and_set_ctrl(dev, PCI_MSIX_FLAGS_MASKALL, 0);
450 }
451
pci_restore_msi_state(struct pci_dev * dev)452 void pci_restore_msi_state(struct pci_dev *dev)
453 {
454 __pci_restore_msi_state(dev);
455 __pci_restore_msix_state(dev);
456 }
457 EXPORT_SYMBOL_GPL(pci_restore_msi_state);
458
msi_mode_show(struct device * dev,struct device_attribute * attr,char * buf)459 static ssize_t msi_mode_show(struct device *dev, struct device_attribute *attr,
460 char *buf)
461 {
462 struct msi_desc *entry;
463 unsigned long irq;
464 int retval;
465
466 retval = kstrtoul(attr->attr.name, 10, &irq);
467 if (retval)
468 return retval;
469
470 entry = irq_get_msi_desc(irq);
471 if (entry)
472 return sprintf(buf, "%s\n",
473 entry->msi_attrib.is_msix ? "msix" : "msi");
474
475 return -ENODEV;
476 }
477
populate_msi_sysfs(struct pci_dev * pdev)478 static int populate_msi_sysfs(struct pci_dev *pdev)
479 {
480 struct attribute **msi_attrs;
481 struct attribute *msi_attr;
482 struct device_attribute *msi_dev_attr;
483 struct attribute_group *msi_irq_group;
484 const struct attribute_group **msi_irq_groups;
485 struct msi_desc *entry;
486 int ret = -ENOMEM;
487 int num_msi = 0;
488 int count = 0;
489 int i;
490
491 /* Determine how many msi entries we have */
492 for_each_pci_msi_entry(entry, pdev)
493 num_msi += entry->nvec_used;
494 if (!num_msi)
495 return 0;
496
497 /* Dynamically create the MSI attributes for the PCI device */
498 msi_attrs = kcalloc(num_msi + 1, sizeof(void *), GFP_KERNEL);
499 if (!msi_attrs)
500 return -ENOMEM;
501 for_each_pci_msi_entry(entry, pdev) {
502 for (i = 0; i < entry->nvec_used; i++) {
503 msi_dev_attr = kzalloc(sizeof(*msi_dev_attr), GFP_KERNEL);
504 if (!msi_dev_attr)
505 goto error_attrs;
506 msi_attrs[count] = &msi_dev_attr->attr;
507
508 sysfs_attr_init(&msi_dev_attr->attr);
509 msi_dev_attr->attr.name = kasprintf(GFP_KERNEL, "%d",
510 entry->irq + i);
511 if (!msi_dev_attr->attr.name)
512 goto error_attrs;
513 msi_dev_attr->attr.mode = S_IRUGO;
514 msi_dev_attr->show = msi_mode_show;
515 ++count;
516 }
517 }
518
519 msi_irq_group = kzalloc(sizeof(*msi_irq_group), GFP_KERNEL);
520 if (!msi_irq_group)
521 goto error_attrs;
522 msi_irq_group->name = "msi_irqs";
523 msi_irq_group->attrs = msi_attrs;
524
525 msi_irq_groups = kcalloc(2, sizeof(void *), GFP_KERNEL);
526 if (!msi_irq_groups)
527 goto error_irq_group;
528 msi_irq_groups[0] = msi_irq_group;
529
530 ret = sysfs_create_groups(&pdev->dev.kobj, msi_irq_groups);
531 if (ret)
532 goto error_irq_groups;
533 pdev->msi_irq_groups = msi_irq_groups;
534
535 return 0;
536
537 error_irq_groups:
538 kfree(msi_irq_groups);
539 error_irq_group:
540 kfree(msi_irq_group);
541 error_attrs:
542 count = 0;
543 msi_attr = msi_attrs[count];
544 while (msi_attr) {
545 msi_dev_attr = container_of(msi_attr, struct device_attribute, attr);
546 kfree(msi_attr->name);
547 kfree(msi_dev_attr);
548 ++count;
549 msi_attr = msi_attrs[count];
550 }
551 kfree(msi_attrs);
552 return ret;
553 }
554
555 static struct msi_desc *
msi_setup_entry(struct pci_dev * dev,int nvec,const struct irq_affinity * affd)556 msi_setup_entry(struct pci_dev *dev, int nvec, const struct irq_affinity *affd)
557 {
558 struct cpumask *masks = NULL;
559 struct msi_desc *entry;
560 u16 control;
561
562 if (affd)
563 masks = irq_create_affinity_masks(nvec, affd);
564
565
566 /* MSI Entry Initialization */
567 entry = alloc_msi_entry(&dev->dev, nvec, masks);
568 if (!entry)
569 goto out;
570
571 pci_read_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, &control);
572 /* Lies, damned lies, and MSIs */
573 if (dev->dev_flags & PCI_DEV_FLAGS_HAS_MSI_MASKING)
574 control |= PCI_MSI_FLAGS_MASKBIT;
575
576 entry->msi_attrib.is_msix = 0;
577 entry->msi_attrib.is_64 = !!(control & PCI_MSI_FLAGS_64BIT);
578 entry->msi_attrib.entry_nr = 0;
579 entry->msi_attrib.maskbit = !!(control & PCI_MSI_FLAGS_MASKBIT);
580 entry->msi_attrib.default_irq = dev->irq; /* Save IOAPIC IRQ */
581 entry->msi_attrib.multi_cap = (control & PCI_MSI_FLAGS_QMASK) >> 1;
582 entry->msi_attrib.multiple = ilog2(__roundup_pow_of_two(nvec));
583
584 if (control & PCI_MSI_FLAGS_64BIT)
585 entry->mask_pos = dev->msi_cap + PCI_MSI_MASK_64;
586 else
587 entry->mask_pos = dev->msi_cap + PCI_MSI_MASK_32;
588
589 /* Save the initial mask status */
590 if (entry->msi_attrib.maskbit)
591 pci_read_config_dword(dev, entry->mask_pos, &entry->masked);
592
593 out:
594 kfree(masks);
595 return entry;
596 }
597
msi_verify_entries(struct pci_dev * dev)598 static int msi_verify_entries(struct pci_dev *dev)
599 {
600 struct msi_desc *entry;
601
602 for_each_pci_msi_entry(entry, dev) {
603 if (!dev->no_64bit_msi || !entry->msg.address_hi)
604 continue;
605 pci_err(dev, "Device has broken 64-bit MSI but arch"
606 " tried to assign one above 4G\n");
607 return -EIO;
608 }
609 return 0;
610 }
611
612 /**
613 * msi_capability_init - configure device's MSI capability structure
614 * @dev: pointer to the pci_dev data structure of MSI device function
615 * @nvec: number of interrupts to allocate
616 * @affd: description of automatic irq affinity assignments (may be %NULL)
617 *
618 * Setup the MSI capability structure of the device with the requested
619 * number of interrupts. A return value of zero indicates the successful
620 * setup of an entry with the new MSI irq. A negative return value indicates
621 * an error, and a positive return value indicates the number of interrupts
622 * which could have been allocated.
623 */
msi_capability_init(struct pci_dev * dev,int nvec,const struct irq_affinity * affd)624 static int msi_capability_init(struct pci_dev *dev, int nvec,
625 const struct irq_affinity *affd)
626 {
627 struct msi_desc *entry;
628 int ret;
629 unsigned mask;
630
631 pci_msi_set_enable(dev, 0); /* Disable MSI during set up */
632
633 entry = msi_setup_entry(dev, nvec, affd);
634 if (!entry)
635 return -ENOMEM;
636
637 /* All MSIs are unmasked by default, Mask them all */
638 mask = msi_mask(entry->msi_attrib.multi_cap);
639 msi_mask_irq(entry, mask, mask);
640
641 list_add_tail(&entry->list, dev_to_msi_list(&dev->dev));
642
643 /* Configure MSI capability structure */
644 ret = pci_msi_setup_msi_irqs(dev, nvec, PCI_CAP_ID_MSI);
645 if (ret) {
646 msi_mask_irq(entry, mask, 0);
647 free_msi_irqs(dev);
648 return ret;
649 }
650
651 ret = msi_verify_entries(dev);
652 if (ret) {
653 msi_mask_irq(entry, mask, 0);
654 free_msi_irqs(dev);
655 return ret;
656 }
657
658 ret = populate_msi_sysfs(dev);
659 if (ret) {
660 msi_mask_irq(entry, mask, 0);
661 free_msi_irqs(dev);
662 return ret;
663 }
664
665 /* Set MSI enabled bits */
666 pci_intx_for_msi(dev, 0);
667 pci_msi_set_enable(dev, 1);
668 dev->msi_enabled = 1;
669
670 pcibios_free_irq(dev);
671 dev->irq = entry->irq;
672 return 0;
673 }
674
msix_map_region(struct pci_dev * dev,unsigned nr_entries)675 static void __iomem *msix_map_region(struct pci_dev *dev, unsigned nr_entries)
676 {
677 resource_size_t phys_addr;
678 u32 table_offset;
679 unsigned long flags;
680 u8 bir;
681
682 pci_read_config_dword(dev, dev->msix_cap + PCI_MSIX_TABLE,
683 &table_offset);
684 bir = (u8)(table_offset & PCI_MSIX_TABLE_BIR);
685 flags = pci_resource_flags(dev, bir);
686 if (!flags || (flags & IORESOURCE_UNSET))
687 return NULL;
688
689 table_offset &= PCI_MSIX_TABLE_OFFSET;
690 phys_addr = pci_resource_start(dev, bir) + table_offset;
691
692 return ioremap_nocache(phys_addr, nr_entries * PCI_MSIX_ENTRY_SIZE);
693 }
694
msix_setup_entries(struct pci_dev * dev,void __iomem * base,struct msix_entry * entries,int nvec,const struct irq_affinity * affd)695 static int msix_setup_entries(struct pci_dev *dev, void __iomem *base,
696 struct msix_entry *entries, int nvec,
697 const struct irq_affinity *affd)
698 {
699 struct cpumask *curmsk, *masks = NULL;
700 struct msi_desc *entry;
701 void __iomem *addr;
702 int ret, i;
703
704 if (affd)
705 masks = irq_create_affinity_masks(nvec, affd);
706
707 for (i = 0, curmsk = masks; i < nvec; i++) {
708 entry = alloc_msi_entry(&dev->dev, 1, curmsk);
709 if (!entry) {
710 if (!i)
711 iounmap(base);
712 else
713 free_msi_irqs(dev);
714 /* No enough memory. Don't try again */
715 ret = -ENOMEM;
716 goto out;
717 }
718
719 entry->msi_attrib.is_msix = 1;
720 entry->msi_attrib.is_64 = 1;
721
722 if (entries)
723 entry->msi_attrib.entry_nr = entries[i].entry;
724 else
725 entry->msi_attrib.entry_nr = i;
726 entry->msi_attrib.default_irq = dev->irq;
727 entry->mask_base = base;
728
729 addr = pci_msix_desc_addr(entry);
730 if (addr)
731 entry->masked = readl(addr + PCI_MSIX_ENTRY_VECTOR_CTRL);
732
733 list_add_tail(&entry->list, dev_to_msi_list(&dev->dev));
734 if (masks)
735 curmsk++;
736 }
737 ret = 0;
738 out:
739 kfree(masks);
740 return ret;
741 }
742
msix_update_entries(struct pci_dev * dev,struct msix_entry * entries)743 static void msix_update_entries(struct pci_dev *dev, struct msix_entry *entries)
744 {
745 struct msi_desc *entry;
746
747 for_each_pci_msi_entry(entry, dev) {
748 if (entries) {
749 entries->vector = entry->irq;
750 entries++;
751 }
752 }
753 }
754
msix_mask_all(void __iomem * base,int tsize)755 static void msix_mask_all(void __iomem *base, int tsize)
756 {
757 u32 ctrl = PCI_MSIX_ENTRY_CTRL_MASKBIT;
758 int i;
759
760 if (pci_msi_ignore_mask)
761 return;
762
763 for (i = 0; i < tsize; i++, base += PCI_MSIX_ENTRY_SIZE)
764 writel(ctrl, base + PCI_MSIX_ENTRY_VECTOR_CTRL);
765 }
766
767 /**
768 * msix_capability_init - configure device's MSI-X capability
769 * @dev: pointer to the pci_dev data structure of MSI-X device function
770 * @entries: pointer to an array of struct msix_entry entries
771 * @nvec: number of @entries
772 * @affd: Optional pointer to enable automatic affinity assignement
773 *
774 * Setup the MSI-X capability structure of device function with a
775 * single MSI-X irq. A return of zero indicates the successful setup of
776 * requested MSI-X entries with allocated irqs or non-zero for otherwise.
777 **/
msix_capability_init(struct pci_dev * dev,struct msix_entry * entries,int nvec,const struct irq_affinity * affd)778 static int msix_capability_init(struct pci_dev *dev, struct msix_entry *entries,
779 int nvec, const struct irq_affinity *affd)
780 {
781 void __iomem *base;
782 int ret, tsize;
783 u16 control;
784
785 /*
786 * Some devices require MSI-X to be enabled before the MSI-X
787 * registers can be accessed. Mask all the vectors to prevent
788 * interrupts coming in before they're fully set up.
789 */
790 pci_msix_clear_and_set_ctrl(dev, 0, PCI_MSIX_FLAGS_MASKALL |
791 PCI_MSIX_FLAGS_ENABLE);
792
793 pci_read_config_word(dev, dev->msix_cap + PCI_MSIX_FLAGS, &control);
794 /* Request & Map MSI-X table region */
795 tsize = msix_table_size(control);
796 base = msix_map_region(dev, tsize);
797 if (!base) {
798 ret = -ENOMEM;
799 goto out_disable;
800 }
801
802 ret = msix_setup_entries(dev, base, entries, nvec, affd);
803 if (ret)
804 goto out_disable;
805
806 ret = pci_msi_setup_msi_irqs(dev, nvec, PCI_CAP_ID_MSIX);
807 if (ret)
808 goto out_avail;
809
810 /* Check if all MSI entries honor device restrictions */
811 ret = msi_verify_entries(dev);
812 if (ret)
813 goto out_free;
814
815 msix_update_entries(dev, entries);
816
817 ret = populate_msi_sysfs(dev);
818 if (ret)
819 goto out_free;
820
821 /* Set MSI-X enabled bits and unmask the function */
822 pci_intx_for_msi(dev, 0);
823 dev->msix_enabled = 1;
824
825 /*
826 * Ensure that all table entries are masked to prevent
827 * stale entries from firing in a crash kernel.
828 *
829 * Done late to deal with a broken Marvell NVME device
830 * which takes the MSI-X mask bits into account even
831 * when MSI-X is disabled, which prevents MSI delivery.
832 */
833 msix_mask_all(base, tsize);
834 pci_msix_clear_and_set_ctrl(dev, PCI_MSIX_FLAGS_MASKALL, 0);
835
836 pcibios_free_irq(dev);
837 return 0;
838
839 out_avail:
840 if (ret < 0) {
841 /*
842 * If we had some success, report the number of irqs
843 * we succeeded in setting up.
844 */
845 struct msi_desc *entry;
846 int avail = 0;
847
848 for_each_pci_msi_entry(entry, dev) {
849 if (entry->irq != 0)
850 avail++;
851 }
852 if (avail != 0)
853 ret = avail;
854 }
855
856 out_free:
857 free_msi_irqs(dev);
858
859 out_disable:
860 pci_msix_clear_and_set_ctrl(dev, PCI_MSIX_FLAGS_MASKALL | PCI_MSIX_FLAGS_ENABLE, 0);
861
862 return ret;
863 }
864
865 /**
866 * pci_msi_supported - check whether MSI may be enabled on a device
867 * @dev: pointer to the pci_dev data structure of MSI device function
868 * @nvec: how many MSIs have been requested ?
869 *
870 * Look at global flags, the device itself, and its parent buses
871 * to determine if MSI/-X are supported for the device. If MSI/-X is
872 * supported return 1, else return 0.
873 **/
pci_msi_supported(struct pci_dev * dev,int nvec)874 static int pci_msi_supported(struct pci_dev *dev, int nvec)
875 {
876 struct pci_bus *bus;
877
878 /* MSI must be globally enabled and supported by the device */
879 if (!pci_msi_enable)
880 return 0;
881
882 if (!dev || dev->no_msi || dev->current_state != PCI_D0)
883 return 0;
884
885 /*
886 * You can't ask to have 0 or less MSIs configured.
887 * a) it's stupid ..
888 * b) the list manipulation code assumes nvec >= 1.
889 */
890 if (nvec < 1)
891 return 0;
892
893 /*
894 * Any bridge which does NOT route MSI transactions from its
895 * secondary bus to its primary bus must set NO_MSI flag on
896 * the secondary pci_bus.
897 * We expect only arch-specific PCI host bus controller driver
898 * or quirks for specific PCI bridges to be setting NO_MSI.
899 */
900 for (bus = dev->bus; bus; bus = bus->parent)
901 if (bus->bus_flags & PCI_BUS_FLAGS_NO_MSI)
902 return 0;
903
904 return 1;
905 }
906
907 /**
908 * pci_msi_vec_count - Return the number of MSI vectors a device can send
909 * @dev: device to report about
910 *
911 * This function returns the number of MSI vectors a device requested via
912 * Multiple Message Capable register. It returns a negative errno if the
913 * device is not capable sending MSI interrupts. Otherwise, the call succeeds
914 * and returns a power of two, up to a maximum of 2^5 (32), according to the
915 * MSI specification.
916 **/
pci_msi_vec_count(struct pci_dev * dev)917 int pci_msi_vec_count(struct pci_dev *dev)
918 {
919 int ret;
920 u16 msgctl;
921
922 if (!dev->msi_cap)
923 return -EINVAL;
924
925 pci_read_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, &msgctl);
926 ret = 1 << ((msgctl & PCI_MSI_FLAGS_QMASK) >> 1);
927
928 return ret;
929 }
930 EXPORT_SYMBOL(pci_msi_vec_count);
931
pci_msi_shutdown(struct pci_dev * dev)932 static void pci_msi_shutdown(struct pci_dev *dev)
933 {
934 struct msi_desc *desc;
935 u32 mask;
936
937 if (!pci_msi_enable || !dev || !dev->msi_enabled)
938 return;
939
940 BUG_ON(list_empty(dev_to_msi_list(&dev->dev)));
941 desc = first_pci_msi_entry(dev);
942
943 pci_msi_set_enable(dev, 0);
944 pci_intx_for_msi(dev, 1);
945 dev->msi_enabled = 0;
946
947 /* Return the device with MSI unmasked as initial states */
948 mask = msi_mask(desc->msi_attrib.multi_cap);
949 msi_mask_irq(desc, mask, 0);
950
951 /* Restore dev->irq to its default pin-assertion irq */
952 dev->irq = desc->msi_attrib.default_irq;
953 pcibios_alloc_irq(dev);
954 }
955
pci_disable_msi(struct pci_dev * dev)956 void pci_disable_msi(struct pci_dev *dev)
957 {
958 if (!pci_msi_enable || !dev || !dev->msi_enabled)
959 return;
960
961 pci_msi_shutdown(dev);
962 free_msi_irqs(dev);
963 }
964 EXPORT_SYMBOL(pci_disable_msi);
965
966 /**
967 * pci_msix_vec_count - return the number of device's MSI-X table entries
968 * @dev: pointer to the pci_dev data structure of MSI-X device function
969 * This function returns the number of device's MSI-X table entries and
970 * therefore the number of MSI-X vectors device is capable of sending.
971 * It returns a negative errno if the device is not capable of sending MSI-X
972 * interrupts.
973 **/
pci_msix_vec_count(struct pci_dev * dev)974 int pci_msix_vec_count(struct pci_dev *dev)
975 {
976 u16 control;
977
978 if (!dev->msix_cap)
979 return -EINVAL;
980
981 pci_read_config_word(dev, dev->msix_cap + PCI_MSIX_FLAGS, &control);
982 return msix_table_size(control);
983 }
984 EXPORT_SYMBOL(pci_msix_vec_count);
985
__pci_enable_msix(struct pci_dev * dev,struct msix_entry * entries,int nvec,const struct irq_affinity * affd)986 static int __pci_enable_msix(struct pci_dev *dev, struct msix_entry *entries,
987 int nvec, const struct irq_affinity *affd)
988 {
989 int nr_entries;
990 int i, j;
991
992 if (!pci_msi_supported(dev, nvec))
993 return -EINVAL;
994
995 nr_entries = pci_msix_vec_count(dev);
996 if (nr_entries < 0)
997 return nr_entries;
998 if (nvec > nr_entries)
999 return nr_entries;
1000
1001 if (entries) {
1002 /* Check for any invalid entries */
1003 for (i = 0; i < nvec; i++) {
1004 if (entries[i].entry >= nr_entries)
1005 return -EINVAL; /* invalid entry */
1006 for (j = i + 1; j < nvec; j++) {
1007 if (entries[i].entry == entries[j].entry)
1008 return -EINVAL; /* duplicate entry */
1009 }
1010 }
1011 }
1012
1013 /* Check whether driver already requested for MSI irq */
1014 if (dev->msi_enabled) {
1015 pci_info(dev, "can't enable MSI-X (MSI IRQ already assigned)\n");
1016 return -EINVAL;
1017 }
1018 return msix_capability_init(dev, entries, nvec, affd);
1019 }
1020
pci_msix_shutdown(struct pci_dev * dev)1021 static void pci_msix_shutdown(struct pci_dev *dev)
1022 {
1023 struct msi_desc *entry;
1024
1025 if (!pci_msi_enable || !dev || !dev->msix_enabled)
1026 return;
1027
1028 if (pci_dev_is_disconnected(dev)) {
1029 dev->msix_enabled = 0;
1030 return;
1031 }
1032
1033 /* Return the device with MSI-X masked as initial states */
1034 for_each_pci_msi_entry(entry, dev)
1035 __pci_msix_desc_mask_irq(entry, 1);
1036
1037 pci_msix_clear_and_set_ctrl(dev, PCI_MSIX_FLAGS_ENABLE, 0);
1038 pci_intx_for_msi(dev, 1);
1039 dev->msix_enabled = 0;
1040 pcibios_alloc_irq(dev);
1041 }
1042
pci_disable_msix(struct pci_dev * dev)1043 void pci_disable_msix(struct pci_dev *dev)
1044 {
1045 if (!pci_msi_enable || !dev || !dev->msix_enabled)
1046 return;
1047
1048 pci_msix_shutdown(dev);
1049 free_msi_irqs(dev);
1050 }
1051 EXPORT_SYMBOL(pci_disable_msix);
1052
pci_no_msi(void)1053 void pci_no_msi(void)
1054 {
1055 pci_msi_enable = 0;
1056 }
1057
1058 /**
1059 * pci_msi_enabled - is MSI enabled?
1060 *
1061 * Returns true if MSI has not been disabled by the command-line option
1062 * pci=nomsi.
1063 **/
pci_msi_enabled(void)1064 int pci_msi_enabled(void)
1065 {
1066 return pci_msi_enable;
1067 }
1068 EXPORT_SYMBOL(pci_msi_enabled);
1069
__pci_enable_msi_range(struct pci_dev * dev,int minvec,int maxvec,const struct irq_affinity * affd)1070 static int __pci_enable_msi_range(struct pci_dev *dev, int minvec, int maxvec,
1071 const struct irq_affinity *affd)
1072 {
1073 int nvec;
1074 int rc;
1075
1076 if (!pci_msi_supported(dev, minvec))
1077 return -EINVAL;
1078
1079 /* Check whether driver already requested MSI-X irqs */
1080 if (dev->msix_enabled) {
1081 pci_info(dev, "can't enable MSI (MSI-X already enabled)\n");
1082 return -EINVAL;
1083 }
1084
1085 if (maxvec < minvec)
1086 return -ERANGE;
1087
1088 if (WARN_ON_ONCE(dev->msi_enabled))
1089 return -EINVAL;
1090
1091 nvec = pci_msi_vec_count(dev);
1092 if (nvec < 0)
1093 return nvec;
1094 if (nvec < minvec)
1095 return -ENOSPC;
1096
1097 if (nvec > maxvec)
1098 nvec = maxvec;
1099
1100 for (;;) {
1101 if (affd) {
1102 nvec = irq_calc_affinity_vectors(minvec, nvec, affd);
1103 if (nvec < minvec)
1104 return -ENOSPC;
1105 }
1106
1107 rc = msi_capability_init(dev, nvec, affd);
1108 if (rc == 0)
1109 return nvec;
1110
1111 if (rc < 0)
1112 return rc;
1113 if (rc < minvec)
1114 return -ENOSPC;
1115
1116 nvec = rc;
1117 }
1118 }
1119
1120 /* deprecated, don't use */
pci_enable_msi(struct pci_dev * dev)1121 int pci_enable_msi(struct pci_dev *dev)
1122 {
1123 int rc = __pci_enable_msi_range(dev, 1, 1, NULL);
1124 if (rc < 0)
1125 return rc;
1126 return 0;
1127 }
1128 EXPORT_SYMBOL(pci_enable_msi);
1129
__pci_enable_msix_range(struct pci_dev * dev,struct msix_entry * entries,int minvec,int maxvec,const struct irq_affinity * affd)1130 static int __pci_enable_msix_range(struct pci_dev *dev,
1131 struct msix_entry *entries, int minvec,
1132 int maxvec, const struct irq_affinity *affd)
1133 {
1134 int rc, nvec = maxvec;
1135
1136 if (maxvec < minvec)
1137 return -ERANGE;
1138
1139 if (WARN_ON_ONCE(dev->msix_enabled))
1140 return -EINVAL;
1141
1142 for (;;) {
1143 if (affd) {
1144 nvec = irq_calc_affinity_vectors(minvec, nvec, affd);
1145 if (nvec < minvec)
1146 return -ENOSPC;
1147 }
1148
1149 rc = __pci_enable_msix(dev, entries, nvec, affd);
1150 if (rc == 0)
1151 return nvec;
1152
1153 if (rc < 0)
1154 return rc;
1155 if (rc < minvec)
1156 return -ENOSPC;
1157
1158 nvec = rc;
1159 }
1160 }
1161
1162 /**
1163 * pci_enable_msix_range - configure device's MSI-X capability structure
1164 * @dev: pointer to the pci_dev data structure of MSI-X device function
1165 * @entries: pointer to an array of MSI-X entries
1166 * @minvec: minimum number of MSI-X irqs requested
1167 * @maxvec: maximum number of MSI-X irqs requested
1168 *
1169 * Setup the MSI-X capability structure of device function with a maximum
1170 * possible number of interrupts in the range between @minvec and @maxvec
1171 * upon its software driver call to request for MSI-X mode enabled on its
1172 * hardware device function. It returns a negative errno if an error occurs.
1173 * If it succeeds, it returns the actual number of interrupts allocated and
1174 * indicates the successful configuration of MSI-X capability structure
1175 * with new allocated MSI-X interrupts.
1176 **/
pci_enable_msix_range(struct pci_dev * dev,struct msix_entry * entries,int minvec,int maxvec)1177 int pci_enable_msix_range(struct pci_dev *dev, struct msix_entry *entries,
1178 int minvec, int maxvec)
1179 {
1180 return __pci_enable_msix_range(dev, entries, minvec, maxvec, NULL);
1181 }
1182 EXPORT_SYMBOL(pci_enable_msix_range);
1183
1184 /**
1185 * pci_alloc_irq_vectors_affinity - allocate multiple IRQs for a device
1186 * @dev: PCI device to operate on
1187 * @min_vecs: minimum number of vectors required (must be >= 1)
1188 * @max_vecs: maximum (desired) number of vectors
1189 * @flags: flags or quirks for the allocation
1190 * @affd: optional description of the affinity requirements
1191 *
1192 * Allocate up to @max_vecs interrupt vectors for @dev, using MSI-X or MSI
1193 * vectors if available, and fall back to a single legacy vector
1194 * if neither is available. Return the number of vectors allocated,
1195 * (which might be smaller than @max_vecs) if successful, or a negative
1196 * error code on error. If less than @min_vecs interrupt vectors are
1197 * available for @dev the function will fail with -ENOSPC.
1198 *
1199 * To get the Linux IRQ number used for a vector that can be passed to
1200 * request_irq() use the pci_irq_vector() helper.
1201 */
pci_alloc_irq_vectors_affinity(struct pci_dev * dev,unsigned int min_vecs,unsigned int max_vecs,unsigned int flags,const struct irq_affinity * affd)1202 int pci_alloc_irq_vectors_affinity(struct pci_dev *dev, unsigned int min_vecs,
1203 unsigned int max_vecs, unsigned int flags,
1204 const struct irq_affinity *affd)
1205 {
1206 static const struct irq_affinity msi_default_affd;
1207 int msix_vecs = -ENOSPC;
1208 int msi_vecs = -ENOSPC;
1209
1210 if (flags & PCI_IRQ_AFFINITY) {
1211 if (!affd)
1212 affd = &msi_default_affd;
1213 } else {
1214 if (WARN_ON(affd))
1215 affd = NULL;
1216 }
1217
1218 if (flags & PCI_IRQ_MSIX) {
1219 msix_vecs = __pci_enable_msix_range(dev, NULL, min_vecs,
1220 max_vecs, affd);
1221 if (msix_vecs > 0)
1222 return msix_vecs;
1223 }
1224
1225 if (flags & PCI_IRQ_MSI) {
1226 msi_vecs = __pci_enable_msi_range(dev, min_vecs, max_vecs,
1227 affd);
1228 if (msi_vecs > 0)
1229 return msi_vecs;
1230 }
1231
1232 /* use legacy irq if allowed */
1233 if (flags & PCI_IRQ_LEGACY) {
1234 if (min_vecs == 1 && dev->irq) {
1235 pci_intx(dev, 1);
1236 return 1;
1237 }
1238 }
1239
1240 if (msix_vecs == -ENOSPC)
1241 return -ENOSPC;
1242 return msi_vecs;
1243 }
1244 EXPORT_SYMBOL(pci_alloc_irq_vectors_affinity);
1245
1246 /**
1247 * pci_free_irq_vectors - free previously allocated IRQs for a device
1248 * @dev: PCI device to operate on
1249 *
1250 * Undoes the allocations and enabling in pci_alloc_irq_vectors().
1251 */
pci_free_irq_vectors(struct pci_dev * dev)1252 void pci_free_irq_vectors(struct pci_dev *dev)
1253 {
1254 pci_disable_msix(dev);
1255 pci_disable_msi(dev);
1256 }
1257 EXPORT_SYMBOL(pci_free_irq_vectors);
1258
1259 /**
1260 * pci_irq_vector - return Linux IRQ number of a device vector
1261 * @dev: PCI device to operate on
1262 * @nr: device-relative interrupt vector index (0-based).
1263 */
pci_irq_vector(struct pci_dev * dev,unsigned int nr)1264 int pci_irq_vector(struct pci_dev *dev, unsigned int nr)
1265 {
1266 if (dev->msix_enabled) {
1267 struct msi_desc *entry;
1268 int i = 0;
1269
1270 for_each_pci_msi_entry(entry, dev) {
1271 if (i == nr)
1272 return entry->irq;
1273 i++;
1274 }
1275 WARN_ON_ONCE(1);
1276 return -EINVAL;
1277 }
1278
1279 if (dev->msi_enabled) {
1280 struct msi_desc *entry = first_pci_msi_entry(dev);
1281
1282 if (WARN_ON_ONCE(nr >= entry->nvec_used))
1283 return -EINVAL;
1284 } else {
1285 if (WARN_ON_ONCE(nr > 0))
1286 return -EINVAL;
1287 }
1288
1289 return dev->irq + nr;
1290 }
1291 EXPORT_SYMBOL(pci_irq_vector);
1292
1293 /**
1294 * pci_irq_get_affinity - return the affinity of a particular msi vector
1295 * @dev: PCI device to operate on
1296 * @nr: device-relative interrupt vector index (0-based).
1297 */
pci_irq_get_affinity(struct pci_dev * dev,int nr)1298 const struct cpumask *pci_irq_get_affinity(struct pci_dev *dev, int nr)
1299 {
1300 if (dev->msix_enabled) {
1301 struct msi_desc *entry;
1302 int i = 0;
1303
1304 for_each_pci_msi_entry(entry, dev) {
1305 if (i == nr)
1306 return entry->affinity;
1307 i++;
1308 }
1309 WARN_ON_ONCE(1);
1310 return NULL;
1311 } else if (dev->msi_enabled) {
1312 struct msi_desc *entry = first_pci_msi_entry(dev);
1313
1314 if (WARN_ON_ONCE(!entry || !entry->affinity ||
1315 nr >= entry->nvec_used))
1316 return NULL;
1317
1318 return &entry->affinity[nr];
1319 } else {
1320 return cpu_possible_mask;
1321 }
1322 }
1323 EXPORT_SYMBOL(pci_irq_get_affinity);
1324
1325 /**
1326 * pci_irq_get_node - return the numa node of a particular msi vector
1327 * @pdev: PCI device to operate on
1328 * @vec: device-relative interrupt vector index (0-based).
1329 */
pci_irq_get_node(struct pci_dev * pdev,int vec)1330 int pci_irq_get_node(struct pci_dev *pdev, int vec)
1331 {
1332 const struct cpumask *mask;
1333
1334 mask = pci_irq_get_affinity(pdev, vec);
1335 if (mask)
1336 return local_memory_node(cpu_to_node(cpumask_first(mask)));
1337 return dev_to_node(&pdev->dev);
1338 }
1339 EXPORT_SYMBOL(pci_irq_get_node);
1340
msi_desc_to_pci_dev(struct msi_desc * desc)1341 struct pci_dev *msi_desc_to_pci_dev(struct msi_desc *desc)
1342 {
1343 return to_pci_dev(desc->dev);
1344 }
1345 EXPORT_SYMBOL(msi_desc_to_pci_dev);
1346
msi_desc_to_pci_sysdata(struct msi_desc * desc)1347 void *msi_desc_to_pci_sysdata(struct msi_desc *desc)
1348 {
1349 struct pci_dev *dev = msi_desc_to_pci_dev(desc);
1350
1351 return dev->bus->sysdata;
1352 }
1353 EXPORT_SYMBOL_GPL(msi_desc_to_pci_sysdata);
1354
1355 #ifdef CONFIG_PCI_MSI_IRQ_DOMAIN
1356 /**
1357 * pci_msi_domain_write_msg - Helper to write MSI message to PCI config space
1358 * @irq_data: Pointer to interrupt data of the MSI interrupt
1359 * @msg: Pointer to the message
1360 */
pci_msi_domain_write_msg(struct irq_data * irq_data,struct msi_msg * msg)1361 void pci_msi_domain_write_msg(struct irq_data *irq_data, struct msi_msg *msg)
1362 {
1363 struct msi_desc *desc = irq_data_get_msi_desc(irq_data);
1364
1365 /*
1366 * For MSI-X desc->irq is always equal to irq_data->irq. For
1367 * MSI only the first interrupt of MULTI MSI passes the test.
1368 */
1369 if (desc->irq == irq_data->irq)
1370 __pci_write_msi_msg(desc, msg);
1371 }
1372
1373 /**
1374 * pci_msi_domain_calc_hwirq - Generate a unique ID for an MSI source
1375 * @dev: Pointer to the PCI device
1376 * @desc: Pointer to the msi descriptor
1377 *
1378 * The ID number is only used within the irqdomain.
1379 */
pci_msi_domain_calc_hwirq(struct pci_dev * dev,struct msi_desc * desc)1380 irq_hw_number_t pci_msi_domain_calc_hwirq(struct pci_dev *dev,
1381 struct msi_desc *desc)
1382 {
1383 return (irq_hw_number_t)desc->msi_attrib.entry_nr |
1384 PCI_DEVID(dev->bus->number, dev->devfn) << 11 |
1385 (pci_domain_nr(dev->bus) & 0xFFFFFFFF) << 27;
1386 }
1387
pci_msi_desc_is_multi_msi(struct msi_desc * desc)1388 static inline bool pci_msi_desc_is_multi_msi(struct msi_desc *desc)
1389 {
1390 return !desc->msi_attrib.is_msix && desc->nvec_used > 1;
1391 }
1392
1393 /**
1394 * pci_msi_domain_check_cap - Verify that @domain supports the capabilities for @dev
1395 * @domain: The interrupt domain to check
1396 * @info: The domain info for verification
1397 * @dev: The device to check
1398 *
1399 * Returns:
1400 * 0 if the functionality is supported
1401 * 1 if Multi MSI is requested, but the domain does not support it
1402 * -ENOTSUPP otherwise
1403 */
pci_msi_domain_check_cap(struct irq_domain * domain,struct msi_domain_info * info,struct device * dev)1404 int pci_msi_domain_check_cap(struct irq_domain *domain,
1405 struct msi_domain_info *info, struct device *dev)
1406 {
1407 struct msi_desc *desc = first_pci_msi_entry(to_pci_dev(dev));
1408
1409 /* Special handling to support __pci_enable_msi_range() */
1410 if (pci_msi_desc_is_multi_msi(desc) &&
1411 !(info->flags & MSI_FLAG_MULTI_PCI_MSI))
1412 return 1;
1413 else if (desc->msi_attrib.is_msix && !(info->flags & MSI_FLAG_PCI_MSIX))
1414 return -ENOTSUPP;
1415
1416 return 0;
1417 }
1418
pci_msi_domain_handle_error(struct irq_domain * domain,struct msi_desc * desc,int error)1419 static int pci_msi_domain_handle_error(struct irq_domain *domain,
1420 struct msi_desc *desc, int error)
1421 {
1422 /* Special handling to support __pci_enable_msi_range() */
1423 if (pci_msi_desc_is_multi_msi(desc) && error == -ENOSPC)
1424 return 1;
1425
1426 return error;
1427 }
1428
1429 #ifdef GENERIC_MSI_DOMAIN_OPS
pci_msi_domain_set_desc(msi_alloc_info_t * arg,struct msi_desc * desc)1430 static void pci_msi_domain_set_desc(msi_alloc_info_t *arg,
1431 struct msi_desc *desc)
1432 {
1433 arg->desc = desc;
1434 arg->hwirq = pci_msi_domain_calc_hwirq(msi_desc_to_pci_dev(desc),
1435 desc);
1436 }
1437 #else
1438 #define pci_msi_domain_set_desc NULL
1439 #endif
1440
1441 static struct msi_domain_ops pci_msi_domain_ops_default = {
1442 .set_desc = pci_msi_domain_set_desc,
1443 .msi_check = pci_msi_domain_check_cap,
1444 .handle_error = pci_msi_domain_handle_error,
1445 };
1446
pci_msi_domain_update_dom_ops(struct msi_domain_info * info)1447 static void pci_msi_domain_update_dom_ops(struct msi_domain_info *info)
1448 {
1449 struct msi_domain_ops *ops = info->ops;
1450
1451 if (ops == NULL) {
1452 info->ops = &pci_msi_domain_ops_default;
1453 } else {
1454 if (ops->set_desc == NULL)
1455 ops->set_desc = pci_msi_domain_set_desc;
1456 if (ops->msi_check == NULL)
1457 ops->msi_check = pci_msi_domain_check_cap;
1458 if (ops->handle_error == NULL)
1459 ops->handle_error = pci_msi_domain_handle_error;
1460 }
1461 }
1462
pci_msi_domain_update_chip_ops(struct msi_domain_info * info)1463 static void pci_msi_domain_update_chip_ops(struct msi_domain_info *info)
1464 {
1465 struct irq_chip *chip = info->chip;
1466
1467 BUG_ON(!chip);
1468 if (!chip->irq_write_msi_msg)
1469 chip->irq_write_msi_msg = pci_msi_domain_write_msg;
1470 if (!chip->irq_mask)
1471 chip->irq_mask = pci_msi_mask_irq;
1472 if (!chip->irq_unmask)
1473 chip->irq_unmask = pci_msi_unmask_irq;
1474 }
1475
1476 /**
1477 * pci_msi_create_irq_domain - Create a MSI interrupt domain
1478 * @fwnode: Optional fwnode of the interrupt controller
1479 * @info: MSI domain info
1480 * @parent: Parent irq domain
1481 *
1482 * Updates the domain and chip ops and creates a MSI interrupt domain.
1483 *
1484 * Returns:
1485 * A domain pointer or NULL in case of failure.
1486 */
pci_msi_create_irq_domain(struct fwnode_handle * fwnode,struct msi_domain_info * info,struct irq_domain * parent)1487 struct irq_domain *pci_msi_create_irq_domain(struct fwnode_handle *fwnode,
1488 struct msi_domain_info *info,
1489 struct irq_domain *parent)
1490 {
1491 struct irq_domain *domain;
1492
1493 if (WARN_ON(info->flags & MSI_FLAG_LEVEL_CAPABLE))
1494 info->flags &= ~MSI_FLAG_LEVEL_CAPABLE;
1495
1496 if (info->flags & MSI_FLAG_USE_DEF_DOM_OPS)
1497 pci_msi_domain_update_dom_ops(info);
1498 if (info->flags & MSI_FLAG_USE_DEF_CHIP_OPS)
1499 pci_msi_domain_update_chip_ops(info);
1500
1501 info->flags |= MSI_FLAG_ACTIVATE_EARLY;
1502 if (IS_ENABLED(CONFIG_GENERIC_IRQ_RESERVATION_MODE))
1503 info->flags |= MSI_FLAG_MUST_REACTIVATE;
1504
1505 /* PCI-MSI is oneshot-safe */
1506 info->chip->flags |= IRQCHIP_ONESHOT_SAFE;
1507
1508 domain = msi_create_irq_domain(fwnode, info, parent);
1509 if (!domain)
1510 return NULL;
1511
1512 irq_domain_update_bus_token(domain, DOMAIN_BUS_PCI_MSI);
1513 return domain;
1514 }
1515 EXPORT_SYMBOL_GPL(pci_msi_create_irq_domain);
1516
1517 /*
1518 * Users of the generic MSI infrastructure expect a device to have a single ID,
1519 * so with DMA aliases we have to pick the least-worst compromise. Devices with
1520 * DMA phantom functions tend to still emit MSIs from the real function number,
1521 * so we ignore those and only consider topological aliases where either the
1522 * alias device or RID appears on a different bus number. We also make the
1523 * reasonable assumption that bridges are walked in an upstream direction (so
1524 * the last one seen wins), and the much braver assumption that the most likely
1525 * case is that of PCI->PCIe so we should always use the alias RID. This echoes
1526 * the logic from intel_irq_remapping's set_msi_sid(), which presumably works
1527 * well enough in practice; in the face of the horrible PCIe<->PCI-X conditions
1528 * for taking ownership all we can really do is close our eyes and hope...
1529 */
get_msi_id_cb(struct pci_dev * pdev,u16 alias,void * data)1530 static int get_msi_id_cb(struct pci_dev *pdev, u16 alias, void *data)
1531 {
1532 u32 *pa = data;
1533 u8 bus = PCI_BUS_NUM(*pa);
1534
1535 if (pdev->bus->number != bus || PCI_BUS_NUM(alias) != bus)
1536 *pa = alias;
1537
1538 return 0;
1539 }
1540
1541 /**
1542 * pci_msi_domain_get_msi_rid - Get the MSI requester id (RID)
1543 * @domain: The interrupt domain
1544 * @pdev: The PCI device.
1545 *
1546 * The RID for a device is formed from the alias, with a firmware
1547 * supplied mapping applied
1548 *
1549 * Returns: The RID.
1550 */
pci_msi_domain_get_msi_rid(struct irq_domain * domain,struct pci_dev * pdev)1551 u32 pci_msi_domain_get_msi_rid(struct irq_domain *domain, struct pci_dev *pdev)
1552 {
1553 struct device_node *of_node;
1554 u32 rid = PCI_DEVID(pdev->bus->number, pdev->devfn);
1555
1556 pci_for_each_dma_alias(pdev, get_msi_id_cb, &rid);
1557
1558 of_node = irq_domain_get_of_node(domain);
1559 rid = of_node ? of_msi_map_rid(&pdev->dev, of_node, rid) :
1560 iort_msi_map_rid(&pdev->dev, rid);
1561
1562 return rid;
1563 }
1564
1565 /**
1566 * pci_msi_get_device_domain - Get the MSI domain for a given PCI device
1567 * @pdev: The PCI device
1568 *
1569 * Use the firmware data to find a device-specific MSI domain
1570 * (i.e. not one that is set as a default).
1571 *
1572 * Returns: The corresponding MSI domain or NULL if none has been found.
1573 */
pci_msi_get_device_domain(struct pci_dev * pdev)1574 struct irq_domain *pci_msi_get_device_domain(struct pci_dev *pdev)
1575 {
1576 struct irq_domain *dom;
1577 u32 rid = PCI_DEVID(pdev->bus->number, pdev->devfn);
1578
1579 pci_for_each_dma_alias(pdev, get_msi_id_cb, &rid);
1580 dom = of_msi_map_get_device_domain(&pdev->dev, rid);
1581 if (!dom)
1582 dom = iort_get_device_domain(&pdev->dev, rid);
1583 return dom;
1584 }
1585 #endif /* CONFIG_PCI_MSI_IRQ_DOMAIN */
1586