1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Functions related to segment and merge handling
4 */
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/scatterlist.h>
10 #include <linux/blkdev.h>
11 #include <linux/blk-cgroup.h>
12
13 #include <trace/events/block.h>
14
15 #include "blk.h"
16
blk_bio_discard_split(struct request_queue * q,struct bio * bio,struct bio_set * bs,unsigned * nsegs)17 static struct bio *blk_bio_discard_split(struct request_queue *q,
18 struct bio *bio,
19 struct bio_set *bs,
20 unsigned *nsegs)
21 {
22 unsigned int max_discard_sectors, granularity;
23 int alignment;
24 sector_t tmp;
25 unsigned split_sectors;
26
27 *nsegs = 1;
28
29 /* Zero-sector (unknown) and one-sector granularities are the same. */
30 granularity = max(q->limits.discard_granularity >> 9, 1U);
31
32 max_discard_sectors = min(q->limits.max_discard_sectors,
33 bio_allowed_max_sectors(q));
34 max_discard_sectors -= max_discard_sectors % granularity;
35
36 if (unlikely(!max_discard_sectors)) {
37 /* XXX: warn */
38 return NULL;
39 }
40
41 if (bio_sectors(bio) <= max_discard_sectors)
42 return NULL;
43
44 split_sectors = max_discard_sectors;
45
46 /*
47 * If the next starting sector would be misaligned, stop the discard at
48 * the previous aligned sector.
49 */
50 alignment = (q->limits.discard_alignment >> 9) % granularity;
51
52 tmp = bio->bi_iter.bi_sector + split_sectors - alignment;
53 tmp = sector_div(tmp, granularity);
54
55 if (split_sectors > tmp)
56 split_sectors -= tmp;
57
58 return bio_split(bio, split_sectors, GFP_NOIO, bs);
59 }
60
blk_bio_write_zeroes_split(struct request_queue * q,struct bio * bio,struct bio_set * bs,unsigned * nsegs)61 static struct bio *blk_bio_write_zeroes_split(struct request_queue *q,
62 struct bio *bio, struct bio_set *bs, unsigned *nsegs)
63 {
64 *nsegs = 1;
65
66 if (!q->limits.max_write_zeroes_sectors)
67 return NULL;
68
69 if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors)
70 return NULL;
71
72 return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs);
73 }
74
blk_bio_write_same_split(struct request_queue * q,struct bio * bio,struct bio_set * bs,unsigned * nsegs)75 static struct bio *blk_bio_write_same_split(struct request_queue *q,
76 struct bio *bio,
77 struct bio_set *bs,
78 unsigned *nsegs)
79 {
80 *nsegs = 1;
81
82 if (!q->limits.max_write_same_sectors)
83 return NULL;
84
85 if (bio_sectors(bio) <= q->limits.max_write_same_sectors)
86 return NULL;
87
88 return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs);
89 }
90
get_max_io_size(struct request_queue * q,struct bio * bio)91 static inline unsigned get_max_io_size(struct request_queue *q,
92 struct bio *bio)
93 {
94 unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector);
95 unsigned mask = queue_logical_block_size(q) - 1;
96
97 /* aligned to logical block size */
98 sectors &= ~(mask >> 9);
99
100 return sectors;
101 }
102
blk_bio_segment_split(struct request_queue * q,struct bio * bio,struct bio_set * bs,unsigned * segs)103 static struct bio *blk_bio_segment_split(struct request_queue *q,
104 struct bio *bio,
105 struct bio_set *bs,
106 unsigned *segs)
107 {
108 struct bio_vec bv, bvprv, *bvprvp = NULL;
109 struct bvec_iter iter;
110 unsigned seg_size = 0, nsegs = 0, sectors = 0;
111 unsigned front_seg_size = bio->bi_seg_front_size;
112 bool do_split = true;
113 struct bio *new = NULL;
114 const unsigned max_sectors = get_max_io_size(q, bio);
115
116 bio_for_each_segment(bv, bio, iter) {
117 /*
118 * If the queue doesn't support SG gaps and adding this
119 * offset would create a gap, disallow it.
120 */
121 if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset))
122 goto split;
123
124 if (sectors + (bv.bv_len >> 9) > max_sectors) {
125 /*
126 * Consider this a new segment if we're splitting in
127 * the middle of this vector.
128 */
129 if (nsegs < queue_max_segments(q) &&
130 sectors < max_sectors) {
131 nsegs++;
132 sectors = max_sectors;
133 }
134 goto split;
135 }
136
137 if (bvprvp && blk_queue_cluster(q)) {
138 if (seg_size + bv.bv_len > queue_max_segment_size(q))
139 goto new_segment;
140 if (!BIOVEC_PHYS_MERGEABLE(bvprvp, &bv))
141 goto new_segment;
142 if (!BIOVEC_SEG_BOUNDARY(q, bvprvp, &bv))
143 goto new_segment;
144
145 seg_size += bv.bv_len;
146 bvprv = bv;
147 bvprvp = &bvprv;
148 sectors += bv.bv_len >> 9;
149
150 continue;
151 }
152 new_segment:
153 if (nsegs == queue_max_segments(q))
154 goto split;
155
156 if (nsegs == 1 && seg_size > front_seg_size)
157 front_seg_size = seg_size;
158
159 nsegs++;
160 bvprv = bv;
161 bvprvp = &bvprv;
162 seg_size = bv.bv_len;
163 sectors += bv.bv_len >> 9;
164
165 }
166
167 do_split = false;
168 split:
169 *segs = nsegs;
170
171 if (do_split) {
172 new = bio_split(bio, sectors, GFP_NOIO, bs);
173 if (new)
174 bio = new;
175 }
176
177 if (nsegs == 1 && seg_size > front_seg_size)
178 front_seg_size = seg_size;
179 bio->bi_seg_front_size = front_seg_size;
180 if (seg_size > bio->bi_seg_back_size)
181 bio->bi_seg_back_size = seg_size;
182
183 return do_split ? new : NULL;
184 }
185
blk_queue_split(struct request_queue * q,struct bio ** bio)186 void blk_queue_split(struct request_queue *q, struct bio **bio)
187 {
188 struct bio *split, *res;
189 unsigned nsegs;
190
191 switch (bio_op(*bio)) {
192 case REQ_OP_DISCARD:
193 case REQ_OP_SECURE_ERASE:
194 split = blk_bio_discard_split(q, *bio, &q->bio_split, &nsegs);
195 break;
196 case REQ_OP_WRITE_ZEROES:
197 split = blk_bio_write_zeroes_split(q, *bio, &q->bio_split, &nsegs);
198 break;
199 case REQ_OP_WRITE_SAME:
200 split = blk_bio_write_same_split(q, *bio, &q->bio_split, &nsegs);
201 break;
202 default:
203 split = blk_bio_segment_split(q, *bio, &q->bio_split, &nsegs);
204 break;
205 }
206
207 /* physical segments can be figured out during splitting */
208 res = split ? split : *bio;
209 res->bi_phys_segments = nsegs;
210 bio_set_flag(res, BIO_SEG_VALID);
211
212 if (split) {
213 /* there isn't chance to merge the splitted bio */
214 split->bi_opf |= REQ_NOMERGE;
215
216 /*
217 * Since we're recursing into make_request here, ensure
218 * that we mark this bio as already having entered the queue.
219 * If not, and the queue is going away, we can get stuck
220 * forever on waiting for the queue reference to drop. But
221 * that will never happen, as we're already holding a
222 * reference to it.
223 */
224 bio_set_flag(*bio, BIO_QUEUE_ENTERED);
225
226 bio_chain(split, *bio);
227 trace_block_split(q, split, (*bio)->bi_iter.bi_sector);
228 generic_make_request(*bio);
229 *bio = split;
230 }
231 }
232 EXPORT_SYMBOL(blk_queue_split);
233
__blk_recalc_rq_segments(struct request_queue * q,struct bio * bio,bool no_sg_merge)234 static unsigned int __blk_recalc_rq_segments(struct request_queue *q,
235 struct bio *bio,
236 bool no_sg_merge)
237 {
238 struct bio_vec bv, bvprv = { NULL };
239 int cluster, prev = 0;
240 unsigned int seg_size, nr_phys_segs;
241 struct bio *fbio, *bbio;
242 struct bvec_iter iter;
243
244 if (!bio)
245 return 0;
246
247 switch (bio_op(bio)) {
248 case REQ_OP_DISCARD:
249 case REQ_OP_SECURE_ERASE:
250 case REQ_OP_WRITE_ZEROES:
251 return 0;
252 case REQ_OP_WRITE_SAME:
253 return 1;
254 }
255
256 fbio = bio;
257 cluster = blk_queue_cluster(q);
258 seg_size = 0;
259 nr_phys_segs = 0;
260 for_each_bio(bio) {
261 bio_for_each_segment(bv, bio, iter) {
262 /*
263 * If SG merging is disabled, each bio vector is
264 * a segment
265 */
266 if (no_sg_merge)
267 goto new_segment;
268
269 if (prev && cluster) {
270 if (seg_size + bv.bv_len
271 > queue_max_segment_size(q))
272 goto new_segment;
273 if (!BIOVEC_PHYS_MERGEABLE(&bvprv, &bv))
274 goto new_segment;
275 if (!BIOVEC_SEG_BOUNDARY(q, &bvprv, &bv))
276 goto new_segment;
277
278 seg_size += bv.bv_len;
279 bvprv = bv;
280 continue;
281 }
282 new_segment:
283 if (nr_phys_segs == 1 && seg_size >
284 fbio->bi_seg_front_size)
285 fbio->bi_seg_front_size = seg_size;
286
287 nr_phys_segs++;
288 bvprv = bv;
289 prev = 1;
290 seg_size = bv.bv_len;
291 }
292 bbio = bio;
293 }
294
295 if (nr_phys_segs == 1 && seg_size > fbio->bi_seg_front_size)
296 fbio->bi_seg_front_size = seg_size;
297 if (seg_size > bbio->bi_seg_back_size)
298 bbio->bi_seg_back_size = seg_size;
299
300 return nr_phys_segs;
301 }
302
blk_recalc_rq_segments(struct request * rq)303 void blk_recalc_rq_segments(struct request *rq)
304 {
305 bool no_sg_merge = !!test_bit(QUEUE_FLAG_NO_SG_MERGE,
306 &rq->q->queue_flags);
307
308 rq->nr_phys_segments = __blk_recalc_rq_segments(rq->q, rq->bio,
309 no_sg_merge);
310 }
311
blk_recount_segments(struct request_queue * q,struct bio * bio)312 void blk_recount_segments(struct request_queue *q, struct bio *bio)
313 {
314 unsigned short seg_cnt = bio_segments(bio);
315
316 if (test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags) &&
317 (seg_cnt < queue_max_segments(q)))
318 bio->bi_phys_segments = seg_cnt;
319 else {
320 struct bio *nxt = bio->bi_next;
321
322 bio->bi_next = NULL;
323 bio->bi_phys_segments = __blk_recalc_rq_segments(q, bio, false);
324 bio->bi_next = nxt;
325 }
326
327 bio_set_flag(bio, BIO_SEG_VALID);
328 }
329 EXPORT_SYMBOL(blk_recount_segments);
330
blk_phys_contig_segment(struct request_queue * q,struct bio * bio,struct bio * nxt)331 static int blk_phys_contig_segment(struct request_queue *q, struct bio *bio,
332 struct bio *nxt)
333 {
334 struct bio_vec end_bv = { NULL }, nxt_bv;
335
336 if (!blk_queue_cluster(q))
337 return 0;
338
339 if (bio->bi_seg_back_size + nxt->bi_seg_front_size >
340 queue_max_segment_size(q))
341 return 0;
342
343 if (!bio_has_data(bio))
344 return 1;
345
346 bio_get_last_bvec(bio, &end_bv);
347 bio_get_first_bvec(nxt, &nxt_bv);
348
349 if (!BIOVEC_PHYS_MERGEABLE(&end_bv, &nxt_bv))
350 return 0;
351
352 /*
353 * bio and nxt are contiguous in memory; check if the queue allows
354 * these two to be merged into one
355 */
356 if (BIOVEC_SEG_BOUNDARY(q, &end_bv, &nxt_bv))
357 return 1;
358
359 return 0;
360 }
361
362 static inline void
__blk_segment_map_sg(struct request_queue * q,struct bio_vec * bvec,struct scatterlist * sglist,struct bio_vec * bvprv,struct scatterlist ** sg,int * nsegs,int * cluster)363 __blk_segment_map_sg(struct request_queue *q, struct bio_vec *bvec,
364 struct scatterlist *sglist, struct bio_vec *bvprv,
365 struct scatterlist **sg, int *nsegs, int *cluster)
366 {
367
368 int nbytes = bvec->bv_len;
369
370 if (*sg && *cluster) {
371 if ((*sg)->length + nbytes > queue_max_segment_size(q))
372 goto new_segment;
373
374 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
375 goto new_segment;
376 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
377 goto new_segment;
378
379 (*sg)->length += nbytes;
380 } else {
381 new_segment:
382 if (!*sg)
383 *sg = sglist;
384 else {
385 /*
386 * If the driver previously mapped a shorter
387 * list, we could see a termination bit
388 * prematurely unless it fully inits the sg
389 * table on each mapping. We KNOW that there
390 * must be more entries here or the driver
391 * would be buggy, so force clear the
392 * termination bit to avoid doing a full
393 * sg_init_table() in drivers for each command.
394 */
395 sg_unmark_end(*sg);
396 *sg = sg_next(*sg);
397 }
398
399 sg_set_page(*sg, bvec->bv_page, nbytes, bvec->bv_offset);
400 (*nsegs)++;
401 }
402 *bvprv = *bvec;
403 }
404
__blk_bvec_map_sg(struct request_queue * q,struct bio_vec bv,struct scatterlist * sglist,struct scatterlist ** sg)405 static inline int __blk_bvec_map_sg(struct request_queue *q, struct bio_vec bv,
406 struct scatterlist *sglist, struct scatterlist **sg)
407 {
408 *sg = sglist;
409 sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
410 return 1;
411 }
412
__blk_bios_map_sg(struct request_queue * q,struct bio * bio,struct scatterlist * sglist,struct scatterlist ** sg)413 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
414 struct scatterlist *sglist,
415 struct scatterlist **sg)
416 {
417 struct bio_vec bvec, bvprv = { NULL };
418 struct bvec_iter iter;
419 int cluster = blk_queue_cluster(q), nsegs = 0;
420
421 for_each_bio(bio)
422 bio_for_each_segment(bvec, bio, iter)
423 __blk_segment_map_sg(q, &bvec, sglist, &bvprv, sg,
424 &nsegs, &cluster);
425
426 return nsegs;
427 }
428
429 /*
430 * map a request to scatterlist, return number of sg entries setup. Caller
431 * must make sure sg can hold rq->nr_phys_segments entries
432 */
blk_rq_map_sg(struct request_queue * q,struct request * rq,struct scatterlist * sglist)433 int blk_rq_map_sg(struct request_queue *q, struct request *rq,
434 struct scatterlist *sglist)
435 {
436 struct scatterlist *sg = NULL;
437 int nsegs = 0;
438
439 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
440 nsegs = __blk_bvec_map_sg(q, rq->special_vec, sglist, &sg);
441 else if (rq->bio && bio_op(rq->bio) == REQ_OP_WRITE_SAME)
442 nsegs = __blk_bvec_map_sg(q, bio_iovec(rq->bio), sglist, &sg);
443 else if (rq->bio)
444 nsegs = __blk_bios_map_sg(q, rq->bio, sglist, &sg);
445
446 if (unlikely(rq->rq_flags & RQF_COPY_USER) &&
447 (blk_rq_bytes(rq) & q->dma_pad_mask)) {
448 unsigned int pad_len =
449 (q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
450
451 sg->length += pad_len;
452 rq->extra_len += pad_len;
453 }
454
455 if (q->dma_drain_size && q->dma_drain_needed(rq)) {
456 if (op_is_write(req_op(rq)))
457 memset(q->dma_drain_buffer, 0, q->dma_drain_size);
458
459 sg_unmark_end(sg);
460 sg = sg_next(sg);
461 sg_set_page(sg, virt_to_page(q->dma_drain_buffer),
462 q->dma_drain_size,
463 ((unsigned long)q->dma_drain_buffer) &
464 (PAGE_SIZE - 1));
465 nsegs++;
466 rq->extra_len += q->dma_drain_size;
467 }
468
469 if (sg)
470 sg_mark_end(sg);
471
472 /*
473 * Something must have been wrong if the figured number of
474 * segment is bigger than number of req's physical segments
475 */
476 WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
477
478 return nsegs;
479 }
480 EXPORT_SYMBOL(blk_rq_map_sg);
481
ll_new_hw_segment(struct request_queue * q,struct request * req,struct bio * bio)482 static inline int ll_new_hw_segment(struct request_queue *q,
483 struct request *req,
484 struct bio *bio)
485 {
486 int nr_phys_segs = bio_phys_segments(q, bio);
487
488 if (req->nr_phys_segments + nr_phys_segs > queue_max_segments(q))
489 goto no_merge;
490
491 if (!blk_cgroup_mergeable(req, bio))
492 goto no_merge;
493
494 if (blk_integrity_merge_bio(q, req, bio) == false)
495 goto no_merge;
496
497 /*
498 * This will form the start of a new hw segment. Bump both
499 * counters.
500 */
501 req->nr_phys_segments += nr_phys_segs;
502 return 1;
503
504 no_merge:
505 req_set_nomerge(q, req);
506 return 0;
507 }
508
ll_back_merge_fn(struct request_queue * q,struct request * req,struct bio * bio)509 int ll_back_merge_fn(struct request_queue *q, struct request *req,
510 struct bio *bio)
511 {
512 if (req_gap_back_merge(req, bio))
513 return 0;
514 if (blk_integrity_rq(req) &&
515 integrity_req_gap_back_merge(req, bio))
516 return 0;
517 if (blk_rq_sectors(req) + bio_sectors(bio) >
518 blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
519 req_set_nomerge(q, req);
520 return 0;
521 }
522 if (!bio_flagged(req->biotail, BIO_SEG_VALID))
523 blk_recount_segments(q, req->biotail);
524 if (!bio_flagged(bio, BIO_SEG_VALID))
525 blk_recount_segments(q, bio);
526
527 return ll_new_hw_segment(q, req, bio);
528 }
529
ll_front_merge_fn(struct request_queue * q,struct request * req,struct bio * bio)530 int ll_front_merge_fn(struct request_queue *q, struct request *req,
531 struct bio *bio)
532 {
533
534 if (req_gap_front_merge(req, bio))
535 return 0;
536 if (blk_integrity_rq(req) &&
537 integrity_req_gap_front_merge(req, bio))
538 return 0;
539 if (blk_rq_sectors(req) + bio_sectors(bio) >
540 blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
541 req_set_nomerge(q, req);
542 return 0;
543 }
544 if (!bio_flagged(bio, BIO_SEG_VALID))
545 blk_recount_segments(q, bio);
546 if (!bio_flagged(req->bio, BIO_SEG_VALID))
547 blk_recount_segments(q, req->bio);
548
549 return ll_new_hw_segment(q, req, bio);
550 }
551
552 /*
553 * blk-mq uses req->special to carry normal driver per-request payload, it
554 * does not indicate a prepared command that we cannot merge with.
555 */
req_no_special_merge(struct request * req)556 static bool req_no_special_merge(struct request *req)
557 {
558 struct request_queue *q = req->q;
559
560 return !q->mq_ops && req->special;
561 }
562
req_attempt_discard_merge(struct request_queue * q,struct request * req,struct request * next)563 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
564 struct request *next)
565 {
566 unsigned short segments = blk_rq_nr_discard_segments(req);
567
568 if (segments >= queue_max_discard_segments(q))
569 goto no_merge;
570 if (blk_rq_sectors(req) + bio_sectors(next->bio) >
571 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
572 goto no_merge;
573
574 req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
575 return true;
576 no_merge:
577 req_set_nomerge(q, req);
578 return false;
579 }
580
ll_merge_requests_fn(struct request_queue * q,struct request * req,struct request * next)581 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
582 struct request *next)
583 {
584 int total_phys_segments;
585 unsigned int seg_size =
586 req->biotail->bi_seg_back_size + next->bio->bi_seg_front_size;
587
588 /*
589 * First check if the either of the requests are re-queued
590 * requests. Can't merge them if they are.
591 */
592 if (req_no_special_merge(req) || req_no_special_merge(next))
593 return 0;
594
595 if (req_gap_back_merge(req, next->bio))
596 return 0;
597
598 /*
599 * Will it become too large?
600 */
601 if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
602 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
603 return 0;
604
605 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
606 if (blk_phys_contig_segment(q, req->biotail, next->bio)) {
607 if (req->nr_phys_segments == 1)
608 req->bio->bi_seg_front_size = seg_size;
609 if (next->nr_phys_segments == 1)
610 next->biotail->bi_seg_back_size = seg_size;
611 total_phys_segments--;
612 }
613
614 if (total_phys_segments > queue_max_segments(q))
615 return 0;
616
617 if (!blk_cgroup_mergeable(req, next->bio))
618 return 0;
619
620 if (blk_integrity_merge_rq(q, req, next) == false)
621 return 0;
622
623 /* Merge is OK... */
624 req->nr_phys_segments = total_phys_segments;
625 return 1;
626 }
627
628 /**
629 * blk_rq_set_mixed_merge - mark a request as mixed merge
630 * @rq: request to mark as mixed merge
631 *
632 * Description:
633 * @rq is about to be mixed merged. Make sure the attributes
634 * which can be mixed are set in each bio and mark @rq as mixed
635 * merged.
636 */
blk_rq_set_mixed_merge(struct request * rq)637 void blk_rq_set_mixed_merge(struct request *rq)
638 {
639 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
640 struct bio *bio;
641
642 if (rq->rq_flags & RQF_MIXED_MERGE)
643 return;
644
645 /*
646 * @rq will no longer represent mixable attributes for all the
647 * contained bios. It will just track those of the first one.
648 * Distributes the attributs to each bio.
649 */
650 for (bio = rq->bio; bio; bio = bio->bi_next) {
651 WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
652 (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
653 bio->bi_opf |= ff;
654 }
655 rq->rq_flags |= RQF_MIXED_MERGE;
656 }
657
blk_account_io_merge(struct request * req)658 static void blk_account_io_merge(struct request *req)
659 {
660 if (blk_do_io_stat(req)) {
661 struct hd_struct *part;
662 int cpu;
663
664 cpu = part_stat_lock();
665 part = req->part;
666
667 part_round_stats(req->q, cpu, part);
668 part_dec_in_flight(req->q, part, rq_data_dir(req));
669
670 hd_struct_put(part);
671 part_stat_unlock();
672 }
673 }
674 /*
675 * Two cases of handling DISCARD merge:
676 * If max_discard_segments > 1, the driver takes every bio
677 * as a range and send them to controller together. The ranges
678 * needn't to be contiguous.
679 * Otherwise, the bios/requests will be handled as same as
680 * others which should be contiguous.
681 */
blk_discard_mergable(struct request * req)682 static inline bool blk_discard_mergable(struct request *req)
683 {
684 if (req_op(req) == REQ_OP_DISCARD &&
685 queue_max_discard_segments(req->q) > 1)
686 return true;
687 return false;
688 }
689
blk_try_req_merge(struct request * req,struct request * next)690 enum elv_merge blk_try_req_merge(struct request *req, struct request *next)
691 {
692 if (blk_discard_mergable(req))
693 return ELEVATOR_DISCARD_MERGE;
694 else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next))
695 return ELEVATOR_BACK_MERGE;
696
697 return ELEVATOR_NO_MERGE;
698 }
699
700 /*
701 * For non-mq, this has to be called with the request spinlock acquired.
702 * For mq with scheduling, the appropriate queue wide lock should be held.
703 */
attempt_merge(struct request_queue * q,struct request * req,struct request * next)704 static struct request *attempt_merge(struct request_queue *q,
705 struct request *req, struct request *next)
706 {
707 if (!q->mq_ops)
708 lockdep_assert_held(q->queue_lock);
709
710 if (!rq_mergeable(req) || !rq_mergeable(next))
711 return NULL;
712
713 if (req_op(req) != req_op(next))
714 return NULL;
715
716 if (rq_data_dir(req) != rq_data_dir(next)
717 || req->rq_disk != next->rq_disk
718 || req_no_special_merge(next))
719 return NULL;
720
721 if (req_op(req) == REQ_OP_WRITE_SAME &&
722 !blk_write_same_mergeable(req->bio, next->bio))
723 return NULL;
724
725 /*
726 * Don't allow merge of different write hints, or for a hint with
727 * non-hint IO.
728 */
729 if (req->write_hint != next->write_hint)
730 return NULL;
731
732 /*
733 * If we are allowed to merge, then append bio list
734 * from next to rq and release next. merge_requests_fn
735 * will have updated segment counts, update sector
736 * counts here. Handle DISCARDs separately, as they
737 * have separate settings.
738 */
739
740 switch (blk_try_req_merge(req, next)) {
741 case ELEVATOR_DISCARD_MERGE:
742 if (!req_attempt_discard_merge(q, req, next))
743 return NULL;
744 break;
745 case ELEVATOR_BACK_MERGE:
746 if (!ll_merge_requests_fn(q, req, next))
747 return NULL;
748 break;
749 default:
750 return NULL;
751 }
752
753 /*
754 * If failfast settings disagree or any of the two is already
755 * a mixed merge, mark both as mixed before proceeding. This
756 * makes sure that all involved bios have mixable attributes
757 * set properly.
758 */
759 if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
760 (req->cmd_flags & REQ_FAILFAST_MASK) !=
761 (next->cmd_flags & REQ_FAILFAST_MASK)) {
762 blk_rq_set_mixed_merge(req);
763 blk_rq_set_mixed_merge(next);
764 }
765
766 /*
767 * At this point we have either done a back merge or front merge. We
768 * need the smaller start_time_ns of the merged requests to be the
769 * current request for accounting purposes.
770 */
771 if (next->start_time_ns < req->start_time_ns)
772 req->start_time_ns = next->start_time_ns;
773
774 req->biotail->bi_next = next->bio;
775 req->biotail = next->biotail;
776
777 req->__data_len += blk_rq_bytes(next);
778
779 if (!blk_discard_mergable(req))
780 elv_merge_requests(q, req, next);
781
782 /*
783 * 'next' is going away, so update stats accordingly
784 */
785 blk_account_io_merge(next);
786
787 req->ioprio = ioprio_best(req->ioprio, next->ioprio);
788 if (blk_rq_cpu_valid(next))
789 req->cpu = next->cpu;
790
791 /*
792 * ownership of bio passed from next to req, return 'next' for
793 * the caller to free
794 */
795 next->bio = NULL;
796 return next;
797 }
798
attempt_back_merge(struct request_queue * q,struct request * rq)799 struct request *attempt_back_merge(struct request_queue *q, struct request *rq)
800 {
801 struct request *next = elv_latter_request(q, rq);
802
803 if (next)
804 return attempt_merge(q, rq, next);
805
806 return NULL;
807 }
808
attempt_front_merge(struct request_queue * q,struct request * rq)809 struct request *attempt_front_merge(struct request_queue *q, struct request *rq)
810 {
811 struct request *prev = elv_former_request(q, rq);
812
813 if (prev)
814 return attempt_merge(q, prev, rq);
815
816 return NULL;
817 }
818
blk_attempt_req_merge(struct request_queue * q,struct request * rq,struct request * next)819 int blk_attempt_req_merge(struct request_queue *q, struct request *rq,
820 struct request *next)
821 {
822 struct elevator_queue *e = q->elevator;
823 struct request *free;
824
825 if (!e->uses_mq && e->type->ops.sq.elevator_allow_rq_merge_fn)
826 if (!e->type->ops.sq.elevator_allow_rq_merge_fn(q, rq, next))
827 return 0;
828
829 free = attempt_merge(q, rq, next);
830 if (free) {
831 __blk_put_request(q, free);
832 return 1;
833 }
834
835 return 0;
836 }
837
blk_rq_merge_ok(struct request * rq,struct bio * bio)838 bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
839 {
840 if (!rq_mergeable(rq) || !bio_mergeable(bio))
841 return false;
842
843 if (req_op(rq) != bio_op(bio))
844 return false;
845
846 /* different data direction or already started, don't merge */
847 if (bio_data_dir(bio) != rq_data_dir(rq))
848 return false;
849
850 /* must be same device and not a special request */
851 if (rq->rq_disk != bio->bi_disk || req_no_special_merge(rq))
852 return false;
853
854 /* don't merge across cgroup boundaries */
855 if (!blk_cgroup_mergeable(rq, bio))
856 return false;
857
858 /* only merge integrity protected bio into ditto rq */
859 if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
860 return false;
861
862 /* must be using the same buffer */
863 if (req_op(rq) == REQ_OP_WRITE_SAME &&
864 !blk_write_same_mergeable(rq->bio, bio))
865 return false;
866
867 /*
868 * Don't allow merge of different write hints, or for a hint with
869 * non-hint IO.
870 */
871 if (rq->write_hint != bio->bi_write_hint)
872 return false;
873
874 return true;
875 }
876
blk_try_merge(struct request * rq,struct bio * bio)877 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
878 {
879 if (blk_discard_mergable(rq))
880 return ELEVATOR_DISCARD_MERGE;
881 else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
882 return ELEVATOR_BACK_MERGE;
883 else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
884 return ELEVATOR_FRONT_MERGE;
885 return ELEVATOR_NO_MERGE;
886 }
887