1 /*
2  * Budget Fair Queueing (BFQ) I/O scheduler.
3  *
4  * Based on ideas and code from CFQ:
5  * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
6  *
7  * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
8  *		      Paolo Valente <paolo.valente@unimore.it>
9  *
10  * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
11  *                    Arianna Avanzini <avanzini@google.com>
12  *
13  * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org>
14  *
15  *  This program is free software; you can redistribute it and/or
16  *  modify it under the terms of the GNU General Public License as
17  *  published by the Free Software Foundation; either version 2 of the
18  *  License, or (at your option) any later version.
19  *
20  *  This program is distributed in the hope that it will be useful,
21  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
22  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
23  *  General Public License for more details.
24  *
25  * BFQ is a proportional-share I/O scheduler, with some extra
26  * low-latency capabilities. BFQ also supports full hierarchical
27  * scheduling through cgroups. Next paragraphs provide an introduction
28  * on BFQ inner workings. Details on BFQ benefits, usage and
29  * limitations can be found in Documentation/block/bfq-iosched.txt.
30  *
31  * BFQ is a proportional-share storage-I/O scheduling algorithm based
32  * on the slice-by-slice service scheme of CFQ. But BFQ assigns
33  * budgets, measured in number of sectors, to processes instead of
34  * time slices. The device is not granted to the in-service process
35  * for a given time slice, but until it has exhausted its assigned
36  * budget. This change from the time to the service domain enables BFQ
37  * to distribute the device throughput among processes as desired,
38  * without any distortion due to throughput fluctuations, or to device
39  * internal queueing. BFQ uses an ad hoc internal scheduler, called
40  * B-WF2Q+, to schedule processes according to their budgets. More
41  * precisely, BFQ schedules queues associated with processes. Each
42  * process/queue is assigned a user-configurable weight, and B-WF2Q+
43  * guarantees that each queue receives a fraction of the throughput
44  * proportional to its weight. Thanks to the accurate policy of
45  * B-WF2Q+, BFQ can afford to assign high budgets to I/O-bound
46  * processes issuing sequential requests (to boost the throughput),
47  * and yet guarantee a low latency to interactive and soft real-time
48  * applications.
49  *
50  * In particular, to provide these low-latency guarantees, BFQ
51  * explicitly privileges the I/O of two classes of time-sensitive
52  * applications: interactive and soft real-time. In more detail, BFQ
53  * behaves this way if the low_latency parameter is set (default
54  * configuration). This feature enables BFQ to provide applications in
55  * these classes with a very low latency.
56  *
57  * To implement this feature, BFQ constantly tries to detect whether
58  * the I/O requests in a bfq_queue come from an interactive or a soft
59  * real-time application. For brevity, in these cases, the queue is
60  * said to be interactive or soft real-time. In both cases, BFQ
61  * privileges the service of the queue, over that of non-interactive
62  * and non-soft-real-time queues. This privileging is performed,
63  * mainly, by raising the weight of the queue. So, for brevity, we
64  * call just weight-raising periods the time periods during which a
65  * queue is privileged, because deemed interactive or soft real-time.
66  *
67  * The detection of soft real-time queues/applications is described in
68  * detail in the comments on the function
69  * bfq_bfqq_softrt_next_start. On the other hand, the detection of an
70  * interactive queue works as follows: a queue is deemed interactive
71  * if it is constantly non empty only for a limited time interval,
72  * after which it does become empty. The queue may be deemed
73  * interactive again (for a limited time), if it restarts being
74  * constantly non empty, provided that this happens only after the
75  * queue has remained empty for a given minimum idle time.
76  *
77  * By default, BFQ computes automatically the above maximum time
78  * interval, i.e., the time interval after which a constantly
79  * non-empty queue stops being deemed interactive. Since a queue is
80  * weight-raised while it is deemed interactive, this maximum time
81  * interval happens to coincide with the (maximum) duration of the
82  * weight-raising for interactive queues.
83  *
84  * Finally, BFQ also features additional heuristics for
85  * preserving both a low latency and a high throughput on NCQ-capable,
86  * rotational or flash-based devices, and to get the job done quickly
87  * for applications consisting in many I/O-bound processes.
88  *
89  * NOTE: if the main or only goal, with a given device, is to achieve
90  * the maximum-possible throughput at all times, then do switch off
91  * all low-latency heuristics for that device, by setting low_latency
92  * to 0.
93  *
94  * BFQ is described in [1], where also a reference to the initial,
95  * more theoretical paper on BFQ can be found. The interested reader
96  * can find in the latter paper full details on the main algorithm, as
97  * well as formulas of the guarantees and formal proofs of all the
98  * properties.  With respect to the version of BFQ presented in these
99  * papers, this implementation adds a few more heuristics, such as the
100  * ones that guarantee a low latency to interactive and soft real-time
101  * applications, and a hierarchical extension based on H-WF2Q+.
102  *
103  * B-WF2Q+ is based on WF2Q+, which is described in [2], together with
104  * H-WF2Q+, while the augmented tree used here to implement B-WF2Q+
105  * with O(log N) complexity derives from the one introduced with EEVDF
106  * in [3].
107  *
108  * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
109  *     Scheduler", Proceedings of the First Workshop on Mobile System
110  *     Technologies (MST-2015), May 2015.
111  *     http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf
112  *
113  * [2] Jon C.R. Bennett and H. Zhang, "Hierarchical Packet Fair Queueing
114  *     Algorithms", IEEE/ACM Transactions on Networking, 5(5):675-689,
115  *     Oct 1997.
116  *
117  * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz
118  *
119  * [3] I. Stoica and H. Abdel-Wahab, "Earliest Eligible Virtual Deadline
120  *     First: A Flexible and Accurate Mechanism for Proportional Share
121  *     Resource Allocation", technical report.
122  *
123  * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
124  */
125 #include <linux/module.h>
126 #include <linux/slab.h>
127 #include <linux/blkdev.h>
128 #include <linux/cgroup.h>
129 #include <linux/elevator.h>
130 #include <linux/ktime.h>
131 #include <linux/rbtree.h>
132 #include <linux/ioprio.h>
133 #include <linux/sbitmap.h>
134 #include <linux/delay.h>
135 #include <linux/backing-dev.h>
136 
137 #include "blk.h"
138 #include "blk-mq.h"
139 #include "blk-mq-tag.h"
140 #include "blk-mq-sched.h"
141 #include "bfq-iosched.h"
142 #include "blk-wbt.h"
143 
144 #define BFQ_BFQQ_FNS(name)						\
145 void bfq_mark_bfqq_##name(struct bfq_queue *bfqq)			\
146 {									\
147 	__set_bit(BFQQF_##name, &(bfqq)->flags);			\
148 }									\
149 void bfq_clear_bfqq_##name(struct bfq_queue *bfqq)			\
150 {									\
151 	__clear_bit(BFQQF_##name, &(bfqq)->flags);		\
152 }									\
153 int bfq_bfqq_##name(const struct bfq_queue *bfqq)			\
154 {									\
155 	return test_bit(BFQQF_##name, &(bfqq)->flags);		\
156 }
157 
158 BFQ_BFQQ_FNS(just_created);
159 BFQ_BFQQ_FNS(busy);
160 BFQ_BFQQ_FNS(wait_request);
161 BFQ_BFQQ_FNS(non_blocking_wait_rq);
162 BFQ_BFQQ_FNS(fifo_expire);
163 BFQ_BFQQ_FNS(has_short_ttime);
164 BFQ_BFQQ_FNS(sync);
165 BFQ_BFQQ_FNS(IO_bound);
166 BFQ_BFQQ_FNS(in_large_burst);
167 BFQ_BFQQ_FNS(coop);
168 BFQ_BFQQ_FNS(split_coop);
169 BFQ_BFQQ_FNS(softrt_update);
170 #undef BFQ_BFQQ_FNS						\
171 
172 /* Expiration time of sync (0) and async (1) requests, in ns. */
173 static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
174 
175 /* Maximum backwards seek (magic number lifted from CFQ), in KiB. */
176 static const int bfq_back_max = 16 * 1024;
177 
178 /* Penalty of a backwards seek, in number of sectors. */
179 static const int bfq_back_penalty = 2;
180 
181 /* Idling period duration, in ns. */
182 static u64 bfq_slice_idle = NSEC_PER_SEC / 125;
183 
184 /* Minimum number of assigned budgets for which stats are safe to compute. */
185 static const int bfq_stats_min_budgets = 194;
186 
187 /* Default maximum budget values, in sectors and number of requests. */
188 static const int bfq_default_max_budget = 16 * 1024;
189 
190 /*
191  * When a sync request is dispatched, the queue that contains that
192  * request, and all the ancestor entities of that queue, are charged
193  * with the number of sectors of the request. In constrast, if the
194  * request is async, then the queue and its ancestor entities are
195  * charged with the number of sectors of the request, multiplied by
196  * the factor below. This throttles the bandwidth for async I/O,
197  * w.r.t. to sync I/O, and it is done to counter the tendency of async
198  * writes to steal I/O throughput to reads.
199  *
200  * The current value of this parameter is the result of a tuning with
201  * several hardware and software configurations. We tried to find the
202  * lowest value for which writes do not cause noticeable problems to
203  * reads. In fact, the lower this parameter, the stabler I/O control,
204  * in the following respect.  The lower this parameter is, the less
205  * the bandwidth enjoyed by a group decreases
206  * - when the group does writes, w.r.t. to when it does reads;
207  * - when other groups do reads, w.r.t. to when they do writes.
208  */
209 static const int bfq_async_charge_factor = 3;
210 
211 /* Default timeout values, in jiffies, approximating CFQ defaults. */
212 const int bfq_timeout = HZ / 8;
213 
214 /*
215  * Time limit for merging (see comments in bfq_setup_cooperator). Set
216  * to the slowest value that, in our tests, proved to be effective in
217  * removing false positives, while not causing true positives to miss
218  * queue merging.
219  *
220  * As can be deduced from the low time limit below, queue merging, if
221  * successful, happens at the very beggining of the I/O of the involved
222  * cooperating processes, as a consequence of the arrival of the very
223  * first requests from each cooperator.  After that, there is very
224  * little chance to find cooperators.
225  */
226 static const unsigned long bfq_merge_time_limit = HZ/10;
227 
228 static struct kmem_cache *bfq_pool;
229 
230 /* Below this threshold (in ns), we consider thinktime immediate. */
231 #define BFQ_MIN_TT		(2 * NSEC_PER_MSEC)
232 
233 /* hw_tag detection: parallel requests threshold and min samples needed. */
234 #define BFQ_HW_QUEUE_THRESHOLD	4
235 #define BFQ_HW_QUEUE_SAMPLES	32
236 
237 #define BFQQ_SEEK_THR		(sector_t)(8 * 100)
238 #define BFQQ_SECT_THR_NONROT	(sector_t)(2 * 32)
239 #define BFQQ_CLOSE_THR		(sector_t)(8 * 1024)
240 #define BFQQ_SEEKY(bfqq)	(hweight32(bfqq->seek_history) > 19)
241 
242 /* Min number of samples required to perform peak-rate update */
243 #define BFQ_RATE_MIN_SAMPLES	32
244 /* Min observation time interval required to perform a peak-rate update (ns) */
245 #define BFQ_RATE_MIN_INTERVAL	(300*NSEC_PER_MSEC)
246 /* Target observation time interval for a peak-rate update (ns) */
247 #define BFQ_RATE_REF_INTERVAL	NSEC_PER_SEC
248 
249 /*
250  * Shift used for peak-rate fixed precision calculations.
251  * With
252  * - the current shift: 16 positions
253  * - the current type used to store rate: u32
254  * - the current unit of measure for rate: [sectors/usec], or, more precisely,
255  *   [(sectors/usec) / 2^BFQ_RATE_SHIFT] to take into account the shift,
256  * the range of rates that can be stored is
257  * [1 / 2^BFQ_RATE_SHIFT, 2^(32 - BFQ_RATE_SHIFT)] sectors/usec =
258  * [1 / 2^16, 2^16] sectors/usec = [15e-6, 65536] sectors/usec =
259  * [15, 65G] sectors/sec
260  * Which, assuming a sector size of 512B, corresponds to a range of
261  * [7.5K, 33T] B/sec
262  */
263 #define BFQ_RATE_SHIFT		16
264 
265 /*
266  * When configured for computing the duration of the weight-raising
267  * for interactive queues automatically (see the comments at the
268  * beginning of this file), BFQ does it using the following formula:
269  * duration = (ref_rate / r) * ref_wr_duration,
270  * where r is the peak rate of the device, and ref_rate and
271  * ref_wr_duration are two reference parameters.  In particular,
272  * ref_rate is the peak rate of the reference storage device (see
273  * below), and ref_wr_duration is about the maximum time needed, with
274  * BFQ and while reading two files in parallel, to load typical large
275  * applications on the reference device (see the comments on
276  * max_service_from_wr below, for more details on how ref_wr_duration
277  * is obtained).  In practice, the slower/faster the device at hand
278  * is, the more/less it takes to load applications with respect to the
279  * reference device.  Accordingly, the longer/shorter BFQ grants
280  * weight raising to interactive applications.
281  *
282  * BFQ uses two different reference pairs (ref_rate, ref_wr_duration),
283  * depending on whether the device is rotational or non-rotational.
284  *
285  * In the following definitions, ref_rate[0] and ref_wr_duration[0]
286  * are the reference values for a rotational device, whereas
287  * ref_rate[1] and ref_wr_duration[1] are the reference values for a
288  * non-rotational device. The reference rates are not the actual peak
289  * rates of the devices used as a reference, but slightly lower
290  * values. The reason for using slightly lower values is that the
291  * peak-rate estimator tends to yield slightly lower values than the
292  * actual peak rate (it can yield the actual peak rate only if there
293  * is only one process doing I/O, and the process does sequential
294  * I/O).
295  *
296  * The reference peak rates are measured in sectors/usec, left-shifted
297  * by BFQ_RATE_SHIFT.
298  */
299 static int ref_rate[2] = {14000, 33000};
300 /*
301  * To improve readability, a conversion function is used to initialize
302  * the following array, which entails that the array can be
303  * initialized only in a function.
304  */
305 static int ref_wr_duration[2];
306 
307 /*
308  * BFQ uses the above-detailed, time-based weight-raising mechanism to
309  * privilege interactive tasks. This mechanism is vulnerable to the
310  * following false positives: I/O-bound applications that will go on
311  * doing I/O for much longer than the duration of weight
312  * raising. These applications have basically no benefit from being
313  * weight-raised at the beginning of their I/O. On the opposite end,
314  * while being weight-raised, these applications
315  * a) unjustly steal throughput to applications that may actually need
316  * low latency;
317  * b) make BFQ uselessly perform device idling; device idling results
318  * in loss of device throughput with most flash-based storage, and may
319  * increase latencies when used purposelessly.
320  *
321  * BFQ tries to reduce these problems, by adopting the following
322  * countermeasure. To introduce this countermeasure, we need first to
323  * finish explaining how the duration of weight-raising for
324  * interactive tasks is computed.
325  *
326  * For a bfq_queue deemed as interactive, the duration of weight
327  * raising is dynamically adjusted, as a function of the estimated
328  * peak rate of the device, so as to be equal to the time needed to
329  * execute the 'largest' interactive task we benchmarked so far. By
330  * largest task, we mean the task for which each involved process has
331  * to do more I/O than for any of the other tasks we benchmarked. This
332  * reference interactive task is the start-up of LibreOffice Writer,
333  * and in this task each process/bfq_queue needs to have at most ~110K
334  * sectors transferred.
335  *
336  * This last piece of information enables BFQ to reduce the actual
337  * duration of weight-raising for at least one class of I/O-bound
338  * applications: those doing sequential or quasi-sequential I/O. An
339  * example is file copy. In fact, once started, the main I/O-bound
340  * processes of these applications usually consume the above 110K
341  * sectors in much less time than the processes of an application that
342  * is starting, because these I/O-bound processes will greedily devote
343  * almost all their CPU cycles only to their target,
344  * throughput-friendly I/O operations. This is even more true if BFQ
345  * happens to be underestimating the device peak rate, and thus
346  * overestimating the duration of weight raising. But, according to
347  * our measurements, once transferred 110K sectors, these processes
348  * have no right to be weight-raised any longer.
349  *
350  * Basing on the last consideration, BFQ ends weight-raising for a
351  * bfq_queue if the latter happens to have received an amount of
352  * service at least equal to the following constant. The constant is
353  * set to slightly more than 110K, to have a minimum safety margin.
354  *
355  * This early ending of weight-raising reduces the amount of time
356  * during which interactive false positives cause the two problems
357  * described at the beginning of these comments.
358  */
359 static const unsigned long max_service_from_wr = 120000;
360 
361 #define RQ_BIC(rq)		icq_to_bic((rq)->elv.priv[0])
362 #define RQ_BFQQ(rq)		((rq)->elv.priv[1])
363 
bic_to_bfqq(struct bfq_io_cq * bic,bool is_sync)364 struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync)
365 {
366 	return bic->bfqq[is_sync];
367 }
368 
bic_set_bfqq(struct bfq_io_cq * bic,struct bfq_queue * bfqq,bool is_sync)369 void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, bool is_sync)
370 {
371 	bic->bfqq[is_sync] = bfqq;
372 }
373 
bic_to_bfqd(struct bfq_io_cq * bic)374 struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic)
375 {
376 	return bic->icq.q->elevator->elevator_data;
377 }
378 
379 /**
380  * icq_to_bic - convert iocontext queue structure to bfq_io_cq.
381  * @icq: the iocontext queue.
382  */
icq_to_bic(struct io_cq * icq)383 static struct bfq_io_cq *icq_to_bic(struct io_cq *icq)
384 {
385 	/* bic->icq is the first member, %NULL will convert to %NULL */
386 	return container_of(icq, struct bfq_io_cq, icq);
387 }
388 
389 /**
390  * bfq_bic_lookup - search into @ioc a bic associated to @bfqd.
391  * @bfqd: the lookup key.
392  * @ioc: the io_context of the process doing I/O.
393  * @q: the request queue.
394  */
bfq_bic_lookup(struct bfq_data * bfqd,struct io_context * ioc,struct request_queue * q)395 static struct bfq_io_cq *bfq_bic_lookup(struct bfq_data *bfqd,
396 					struct io_context *ioc,
397 					struct request_queue *q)
398 {
399 	if (ioc) {
400 		unsigned long flags;
401 		struct bfq_io_cq *icq;
402 
403 		spin_lock_irqsave(q->queue_lock, flags);
404 		icq = icq_to_bic(ioc_lookup_icq(ioc, q));
405 		spin_unlock_irqrestore(q->queue_lock, flags);
406 
407 		return icq;
408 	}
409 
410 	return NULL;
411 }
412 
413 /*
414  * Scheduler run of queue, if there are requests pending and no one in the
415  * driver that will restart queueing.
416  */
bfq_schedule_dispatch(struct bfq_data * bfqd)417 void bfq_schedule_dispatch(struct bfq_data *bfqd)
418 {
419 	lockdep_assert_held(&bfqd->lock);
420 
421 	if (bfqd->queued != 0) {
422 		bfq_log(bfqd, "schedule dispatch");
423 		blk_mq_run_hw_queues(bfqd->queue, true);
424 	}
425 }
426 
427 #define bfq_class_idle(bfqq)	((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
428 #define bfq_class_rt(bfqq)	((bfqq)->ioprio_class == IOPRIO_CLASS_RT)
429 
430 #define bfq_sample_valid(samples)	((samples) > 80)
431 
432 /*
433  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
434  * We choose the request that is closesr to the head right now.  Distance
435  * behind the head is penalized and only allowed to a certain extent.
436  */
bfq_choose_req(struct bfq_data * bfqd,struct request * rq1,struct request * rq2,sector_t last)437 static struct request *bfq_choose_req(struct bfq_data *bfqd,
438 				      struct request *rq1,
439 				      struct request *rq2,
440 				      sector_t last)
441 {
442 	sector_t s1, s2, d1 = 0, d2 = 0;
443 	unsigned long back_max;
444 #define BFQ_RQ1_WRAP	0x01 /* request 1 wraps */
445 #define BFQ_RQ2_WRAP	0x02 /* request 2 wraps */
446 	unsigned int wrap = 0; /* bit mask: requests behind the disk head? */
447 
448 	if (!rq1 || rq1 == rq2)
449 		return rq2;
450 	if (!rq2)
451 		return rq1;
452 
453 	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
454 		return rq1;
455 	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
456 		return rq2;
457 	if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
458 		return rq1;
459 	else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META))
460 		return rq2;
461 
462 	s1 = blk_rq_pos(rq1);
463 	s2 = blk_rq_pos(rq2);
464 
465 	/*
466 	 * By definition, 1KiB is 2 sectors.
467 	 */
468 	back_max = bfqd->bfq_back_max * 2;
469 
470 	/*
471 	 * Strict one way elevator _except_ in the case where we allow
472 	 * short backward seeks which are biased as twice the cost of a
473 	 * similar forward seek.
474 	 */
475 	if (s1 >= last)
476 		d1 = s1 - last;
477 	else if (s1 + back_max >= last)
478 		d1 = (last - s1) * bfqd->bfq_back_penalty;
479 	else
480 		wrap |= BFQ_RQ1_WRAP;
481 
482 	if (s2 >= last)
483 		d2 = s2 - last;
484 	else if (s2 + back_max >= last)
485 		d2 = (last - s2) * bfqd->bfq_back_penalty;
486 	else
487 		wrap |= BFQ_RQ2_WRAP;
488 
489 	/* Found required data */
490 
491 	/*
492 	 * By doing switch() on the bit mask "wrap" we avoid having to
493 	 * check two variables for all permutations: --> faster!
494 	 */
495 	switch (wrap) {
496 	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
497 		if (d1 < d2)
498 			return rq1;
499 		else if (d2 < d1)
500 			return rq2;
501 
502 		if (s1 >= s2)
503 			return rq1;
504 		else
505 			return rq2;
506 
507 	case BFQ_RQ2_WRAP:
508 		return rq1;
509 	case BFQ_RQ1_WRAP:
510 		return rq2;
511 	case BFQ_RQ1_WRAP|BFQ_RQ2_WRAP: /* both rqs wrapped */
512 	default:
513 		/*
514 		 * Since both rqs are wrapped,
515 		 * start with the one that's further behind head
516 		 * (--> only *one* back seek required),
517 		 * since back seek takes more time than forward.
518 		 */
519 		if (s1 <= s2)
520 			return rq1;
521 		else
522 			return rq2;
523 	}
524 }
525 
526 /*
527  * Async I/O can easily starve sync I/O (both sync reads and sync
528  * writes), by consuming all tags. Similarly, storms of sync writes,
529  * such as those that sync(2) may trigger, can starve sync reads.
530  * Limit depths of async I/O and sync writes so as to counter both
531  * problems.
532  */
bfq_limit_depth(unsigned int op,struct blk_mq_alloc_data * data)533 static void bfq_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
534 {
535 	struct bfq_data *bfqd = data->q->elevator->elevator_data;
536 
537 	if (op_is_sync(op) && !op_is_write(op))
538 		return;
539 
540 	data->shallow_depth =
541 		bfqd->word_depths[!!bfqd->wr_busy_queues][op_is_sync(op)];
542 
543 	bfq_log(bfqd, "[%s] wr_busy %d sync %d depth %u",
544 			__func__, bfqd->wr_busy_queues, op_is_sync(op),
545 			data->shallow_depth);
546 }
547 
548 static struct bfq_queue *
bfq_rq_pos_tree_lookup(struct bfq_data * bfqd,struct rb_root * root,sector_t sector,struct rb_node ** ret_parent,struct rb_node *** rb_link)549 bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root,
550 		     sector_t sector, struct rb_node **ret_parent,
551 		     struct rb_node ***rb_link)
552 {
553 	struct rb_node **p, *parent;
554 	struct bfq_queue *bfqq = NULL;
555 
556 	parent = NULL;
557 	p = &root->rb_node;
558 	while (*p) {
559 		struct rb_node **n;
560 
561 		parent = *p;
562 		bfqq = rb_entry(parent, struct bfq_queue, pos_node);
563 
564 		/*
565 		 * Sort strictly based on sector. Smallest to the left,
566 		 * largest to the right.
567 		 */
568 		if (sector > blk_rq_pos(bfqq->next_rq))
569 			n = &(*p)->rb_right;
570 		else if (sector < blk_rq_pos(bfqq->next_rq))
571 			n = &(*p)->rb_left;
572 		else
573 			break;
574 		p = n;
575 		bfqq = NULL;
576 	}
577 
578 	*ret_parent = parent;
579 	if (rb_link)
580 		*rb_link = p;
581 
582 	bfq_log(bfqd, "rq_pos_tree_lookup %llu: returning %d",
583 		(unsigned long long)sector,
584 		bfqq ? bfqq->pid : 0);
585 
586 	return bfqq;
587 }
588 
bfq_too_late_for_merging(struct bfq_queue * bfqq)589 static bool bfq_too_late_for_merging(struct bfq_queue *bfqq)
590 {
591 	return bfqq->service_from_backlogged > 0 &&
592 		time_is_before_jiffies(bfqq->first_IO_time +
593 				       bfq_merge_time_limit);
594 }
595 
bfq_pos_tree_add_move(struct bfq_data * bfqd,struct bfq_queue * bfqq)596 void bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq)
597 {
598 	struct rb_node **p, *parent;
599 	struct bfq_queue *__bfqq;
600 
601 	if (bfqq->pos_root) {
602 		rb_erase(&bfqq->pos_node, bfqq->pos_root);
603 		bfqq->pos_root = NULL;
604 	}
605 
606 	/*
607 	 * bfqq cannot be merged any longer (see comments in
608 	 * bfq_setup_cooperator): no point in adding bfqq into the
609 	 * position tree.
610 	 */
611 	if (bfq_too_late_for_merging(bfqq))
612 		return;
613 
614 	if (bfq_class_idle(bfqq))
615 		return;
616 	if (!bfqq->next_rq)
617 		return;
618 
619 	bfqq->pos_root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
620 	__bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root,
621 			blk_rq_pos(bfqq->next_rq), &parent, &p);
622 	if (!__bfqq) {
623 		rb_link_node(&bfqq->pos_node, parent, p);
624 		rb_insert_color(&bfqq->pos_node, bfqq->pos_root);
625 	} else
626 		bfqq->pos_root = NULL;
627 }
628 
629 /*
630  * Tell whether there are active queues with different weights or
631  * active groups.
632  */
bfq_varied_queue_weights_or_active_groups(struct bfq_data * bfqd)633 static bool bfq_varied_queue_weights_or_active_groups(struct bfq_data *bfqd)
634 {
635 	/*
636 	 * For queue weights to differ, queue_weights_tree must contain
637 	 * at least two nodes.
638 	 */
639 	return (!RB_EMPTY_ROOT(&bfqd->queue_weights_tree) &&
640 		(bfqd->queue_weights_tree.rb_node->rb_left ||
641 		 bfqd->queue_weights_tree.rb_node->rb_right)
642 #ifdef CONFIG_BFQ_GROUP_IOSCHED
643 	       ) ||
644 		(bfqd->num_groups_with_pending_reqs > 0
645 #endif
646 	       );
647 }
648 
649 /*
650  * The following function returns true if every queue must receive the
651  * same share of the throughput (this condition is used when deciding
652  * whether idling may be disabled, see the comments in the function
653  * bfq_better_to_idle()).
654  *
655  * Such a scenario occurs when:
656  * 1) all active queues have the same weight,
657  * 2) all active groups at the same level in the groups tree have the same
658  *    weight,
659  * 3) all active groups at the same level in the groups tree have the same
660  *    number of children.
661  *
662  * Unfortunately, keeping the necessary state for evaluating exactly
663  * the last two symmetry sub-conditions above would be quite complex
664  * and time consuming.  Therefore this function evaluates, instead,
665  * only the following stronger two sub-conditions, for which it is
666  * much easier to maintain the needed state:
667  * 1) all active queues have the same weight,
668  * 2) there are no active groups.
669  * In particular, the last condition is always true if hierarchical
670  * support or the cgroups interface are not enabled, thus no state
671  * needs to be maintained in this case.
672  */
bfq_symmetric_scenario(struct bfq_data * bfqd)673 static bool bfq_symmetric_scenario(struct bfq_data *bfqd)
674 {
675 	return !bfq_varied_queue_weights_or_active_groups(bfqd);
676 }
677 
678 /*
679  * If the weight-counter tree passed as input contains no counter for
680  * the weight of the input queue, then add that counter; otherwise just
681  * increment the existing counter.
682  *
683  * Note that weight-counter trees contain few nodes in mostly symmetric
684  * scenarios. For example, if all queues have the same weight, then the
685  * weight-counter tree for the queues may contain at most one node.
686  * This holds even if low_latency is on, because weight-raised queues
687  * are not inserted in the tree.
688  * In most scenarios, the rate at which nodes are created/destroyed
689  * should be low too.
690  */
bfq_weights_tree_add(struct bfq_data * bfqd,struct bfq_queue * bfqq,struct rb_root * root)691 void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_queue *bfqq,
692 			  struct rb_root *root)
693 {
694 	struct bfq_entity *entity = &bfqq->entity;
695 	struct rb_node **new = &(root->rb_node), *parent = NULL;
696 
697 	/*
698 	 * Do not insert if the queue is already associated with a
699 	 * counter, which happens if:
700 	 *   1) a request arrival has caused the queue to become both
701 	 *      non-weight-raised, and hence change its weight, and
702 	 *      backlogged; in this respect, each of the two events
703 	 *      causes an invocation of this function,
704 	 *   2) this is the invocation of this function caused by the
705 	 *      second event. This second invocation is actually useless,
706 	 *      and we handle this fact by exiting immediately. More
707 	 *      efficient or clearer solutions might possibly be adopted.
708 	 */
709 	if (bfqq->weight_counter)
710 		return;
711 
712 	while (*new) {
713 		struct bfq_weight_counter *__counter = container_of(*new,
714 						struct bfq_weight_counter,
715 						weights_node);
716 		parent = *new;
717 
718 		if (entity->weight == __counter->weight) {
719 			bfqq->weight_counter = __counter;
720 			goto inc_counter;
721 		}
722 		if (entity->weight < __counter->weight)
723 			new = &((*new)->rb_left);
724 		else
725 			new = &((*new)->rb_right);
726 	}
727 
728 	bfqq->weight_counter = kzalloc(sizeof(struct bfq_weight_counter),
729 				       GFP_ATOMIC);
730 
731 	/*
732 	 * In the unlucky event of an allocation failure, we just
733 	 * exit. This will cause the weight of queue to not be
734 	 * considered in bfq_varied_queue_weights_or_active_groups,
735 	 * which, in its turn, causes the scenario to be deemed
736 	 * wrongly symmetric in case bfqq's weight would have been
737 	 * the only weight making the scenario asymmetric.  On the
738 	 * bright side, no unbalance will however occur when bfqq
739 	 * becomes inactive again (the invocation of this function
740 	 * is triggered by an activation of queue).  In fact,
741 	 * bfq_weights_tree_remove does nothing if
742 	 * !bfqq->weight_counter.
743 	 */
744 	if (unlikely(!bfqq->weight_counter))
745 		return;
746 
747 	bfqq->weight_counter->weight = entity->weight;
748 	rb_link_node(&bfqq->weight_counter->weights_node, parent, new);
749 	rb_insert_color(&bfqq->weight_counter->weights_node, root);
750 
751 inc_counter:
752 	bfqq->weight_counter->num_active++;
753 	bfqq->ref++;
754 }
755 
756 /*
757  * Decrement the weight counter associated with the queue, and, if the
758  * counter reaches 0, remove the counter from the tree.
759  * See the comments to the function bfq_weights_tree_add() for considerations
760  * about overhead.
761  */
__bfq_weights_tree_remove(struct bfq_data * bfqd,struct bfq_queue * bfqq,struct rb_root * root)762 void __bfq_weights_tree_remove(struct bfq_data *bfqd,
763 			       struct bfq_queue *bfqq,
764 			       struct rb_root *root)
765 {
766 	if (!bfqq->weight_counter)
767 		return;
768 
769 	bfqq->weight_counter->num_active--;
770 	if (bfqq->weight_counter->num_active > 0)
771 		goto reset_entity_pointer;
772 
773 	rb_erase(&bfqq->weight_counter->weights_node, root);
774 	kfree(bfqq->weight_counter);
775 
776 reset_entity_pointer:
777 	bfqq->weight_counter = NULL;
778 	bfq_put_queue(bfqq);
779 }
780 
781 /*
782  * Invoke __bfq_weights_tree_remove on bfqq and decrement the number
783  * of active groups for each queue's inactive parent entity.
784  */
bfq_weights_tree_remove(struct bfq_data * bfqd,struct bfq_queue * bfqq)785 void bfq_weights_tree_remove(struct bfq_data *bfqd,
786 			     struct bfq_queue *bfqq)
787 {
788 	struct bfq_entity *entity = bfqq->entity.parent;
789 
790 	for_each_entity(entity) {
791 		struct bfq_sched_data *sd = entity->my_sched_data;
792 
793 		if (sd->next_in_service || sd->in_service_entity) {
794 			/*
795 			 * entity is still active, because either
796 			 * next_in_service or in_service_entity is not
797 			 * NULL (see the comments on the definition of
798 			 * next_in_service for details on why
799 			 * in_service_entity must be checked too).
800 			 *
801 			 * As a consequence, its parent entities are
802 			 * active as well, and thus this loop must
803 			 * stop here.
804 			 */
805 			break;
806 		}
807 
808 		/*
809 		 * The decrement of num_groups_with_pending_reqs is
810 		 * not performed immediately upon the deactivation of
811 		 * entity, but it is delayed to when it also happens
812 		 * that the first leaf descendant bfqq of entity gets
813 		 * all its pending requests completed. The following
814 		 * instructions perform this delayed decrement, if
815 		 * needed. See the comments on
816 		 * num_groups_with_pending_reqs for details.
817 		 */
818 		if (entity->in_groups_with_pending_reqs) {
819 			entity->in_groups_with_pending_reqs = false;
820 			bfqd->num_groups_with_pending_reqs--;
821 		}
822 	}
823 
824 	/*
825 	 * Next function is invoked last, because it causes bfqq to be
826 	 * freed if the following holds: bfqq is not in service and
827 	 * has no dispatched request. DO NOT use bfqq after the next
828 	 * function invocation.
829 	 */
830 	__bfq_weights_tree_remove(bfqd, bfqq,
831 				  &bfqd->queue_weights_tree);
832 }
833 
834 /*
835  * Return expired entry, or NULL to just start from scratch in rbtree.
836  */
bfq_check_fifo(struct bfq_queue * bfqq,struct request * last)837 static struct request *bfq_check_fifo(struct bfq_queue *bfqq,
838 				      struct request *last)
839 {
840 	struct request *rq;
841 
842 	if (bfq_bfqq_fifo_expire(bfqq))
843 		return NULL;
844 
845 	bfq_mark_bfqq_fifo_expire(bfqq);
846 
847 	rq = rq_entry_fifo(bfqq->fifo.next);
848 
849 	if (rq == last || ktime_get_ns() < rq->fifo_time)
850 		return NULL;
851 
852 	bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq);
853 	return rq;
854 }
855 
bfq_find_next_rq(struct bfq_data * bfqd,struct bfq_queue * bfqq,struct request * last)856 static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
857 					struct bfq_queue *bfqq,
858 					struct request *last)
859 {
860 	struct rb_node *rbnext = rb_next(&last->rb_node);
861 	struct rb_node *rbprev = rb_prev(&last->rb_node);
862 	struct request *next, *prev = NULL;
863 
864 	/* Follow expired path, else get first next available. */
865 	next = bfq_check_fifo(bfqq, last);
866 	if (next)
867 		return next;
868 
869 	if (rbprev)
870 		prev = rb_entry_rq(rbprev);
871 
872 	if (rbnext)
873 		next = rb_entry_rq(rbnext);
874 	else {
875 		rbnext = rb_first(&bfqq->sort_list);
876 		if (rbnext && rbnext != &last->rb_node)
877 			next = rb_entry_rq(rbnext);
878 	}
879 
880 	return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last));
881 }
882 
883 /* see the definition of bfq_async_charge_factor for details */
bfq_serv_to_charge(struct request * rq,struct bfq_queue * bfqq)884 static unsigned long bfq_serv_to_charge(struct request *rq,
885 					struct bfq_queue *bfqq)
886 {
887 	if (bfq_bfqq_sync(bfqq) || bfqq->wr_coeff > 1)
888 		return blk_rq_sectors(rq);
889 
890 	return blk_rq_sectors(rq) * bfq_async_charge_factor;
891 }
892 
893 /**
894  * bfq_updated_next_req - update the queue after a new next_rq selection.
895  * @bfqd: the device data the queue belongs to.
896  * @bfqq: the queue to update.
897  *
898  * If the first request of a queue changes we make sure that the queue
899  * has enough budget to serve at least its first request (if the
900  * request has grown).  We do this because if the queue has not enough
901  * budget for its first request, it has to go through two dispatch
902  * rounds to actually get it dispatched.
903  */
bfq_updated_next_req(struct bfq_data * bfqd,struct bfq_queue * bfqq)904 static void bfq_updated_next_req(struct bfq_data *bfqd,
905 				 struct bfq_queue *bfqq)
906 {
907 	struct bfq_entity *entity = &bfqq->entity;
908 	struct request *next_rq = bfqq->next_rq;
909 	unsigned long new_budget;
910 
911 	if (!next_rq)
912 		return;
913 
914 	if (bfqq == bfqd->in_service_queue)
915 		/*
916 		 * In order not to break guarantees, budgets cannot be
917 		 * changed after an entity has been selected.
918 		 */
919 		return;
920 
921 	new_budget = max_t(unsigned long, bfqq->max_budget,
922 			   bfq_serv_to_charge(next_rq, bfqq));
923 	if (entity->budget != new_budget) {
924 		entity->budget = new_budget;
925 		bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu",
926 					 new_budget);
927 		bfq_requeue_bfqq(bfqd, bfqq, false);
928 	}
929 }
930 
bfq_wr_duration(struct bfq_data * bfqd)931 static unsigned int bfq_wr_duration(struct bfq_data *bfqd)
932 {
933 	u64 dur;
934 
935 	if (bfqd->bfq_wr_max_time > 0)
936 		return bfqd->bfq_wr_max_time;
937 
938 	dur = bfqd->rate_dur_prod;
939 	do_div(dur, bfqd->peak_rate);
940 
941 	/*
942 	 * Limit duration between 3 and 25 seconds. The upper limit
943 	 * has been conservatively set after the following worst case:
944 	 * on a QEMU/KVM virtual machine
945 	 * - running in a slow PC
946 	 * - with a virtual disk stacked on a slow low-end 5400rpm HDD
947 	 * - serving a heavy I/O workload, such as the sequential reading
948 	 *   of several files
949 	 * mplayer took 23 seconds to start, if constantly weight-raised.
950 	 *
951 	 * As for higher values than that accomodating the above bad
952 	 * scenario, tests show that higher values would often yield
953 	 * the opposite of the desired result, i.e., would worsen
954 	 * responsiveness by allowing non-interactive applications to
955 	 * preserve weight raising for too long.
956 	 *
957 	 * On the other end, lower values than 3 seconds make it
958 	 * difficult for most interactive tasks to complete their jobs
959 	 * before weight-raising finishes.
960 	 */
961 	return clamp_val(dur, msecs_to_jiffies(3000), msecs_to_jiffies(25000));
962 }
963 
964 /* switch back from soft real-time to interactive weight raising */
switch_back_to_interactive_wr(struct bfq_queue * bfqq,struct bfq_data * bfqd)965 static void switch_back_to_interactive_wr(struct bfq_queue *bfqq,
966 					  struct bfq_data *bfqd)
967 {
968 	bfqq->wr_coeff = bfqd->bfq_wr_coeff;
969 	bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
970 	bfqq->last_wr_start_finish = bfqq->wr_start_at_switch_to_srt;
971 }
972 
973 static void
bfq_bfqq_resume_state(struct bfq_queue * bfqq,struct bfq_data * bfqd,struct bfq_io_cq * bic,bool bfq_already_existing)974 bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_data *bfqd,
975 		      struct bfq_io_cq *bic, bool bfq_already_existing)
976 {
977 	unsigned int old_wr_coeff = bfqq->wr_coeff;
978 	bool busy = bfq_already_existing && bfq_bfqq_busy(bfqq);
979 
980 	if (bic->saved_has_short_ttime)
981 		bfq_mark_bfqq_has_short_ttime(bfqq);
982 	else
983 		bfq_clear_bfqq_has_short_ttime(bfqq);
984 
985 	if (bic->saved_IO_bound)
986 		bfq_mark_bfqq_IO_bound(bfqq);
987 	else
988 		bfq_clear_bfqq_IO_bound(bfqq);
989 
990 	bfqq->ttime = bic->saved_ttime;
991 	bfqq->wr_coeff = bic->saved_wr_coeff;
992 	bfqq->wr_start_at_switch_to_srt = bic->saved_wr_start_at_switch_to_srt;
993 	bfqq->last_wr_start_finish = bic->saved_last_wr_start_finish;
994 	bfqq->wr_cur_max_time = bic->saved_wr_cur_max_time;
995 
996 	if (bfqq->wr_coeff > 1 && (bfq_bfqq_in_large_burst(bfqq) ||
997 	    time_is_before_jiffies(bfqq->last_wr_start_finish +
998 				   bfqq->wr_cur_max_time))) {
999 		if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
1000 		    !bfq_bfqq_in_large_burst(bfqq) &&
1001 		    time_is_after_eq_jiffies(bfqq->wr_start_at_switch_to_srt +
1002 					     bfq_wr_duration(bfqd))) {
1003 			switch_back_to_interactive_wr(bfqq, bfqd);
1004 		} else {
1005 			bfqq->wr_coeff = 1;
1006 			bfq_log_bfqq(bfqq->bfqd, bfqq,
1007 				     "resume state: switching off wr");
1008 		}
1009 	}
1010 
1011 	/* make sure weight will be updated, however we got here */
1012 	bfqq->entity.prio_changed = 1;
1013 
1014 	if (likely(!busy))
1015 		return;
1016 
1017 	if (old_wr_coeff == 1 && bfqq->wr_coeff > 1)
1018 		bfqd->wr_busy_queues++;
1019 	else if (old_wr_coeff > 1 && bfqq->wr_coeff == 1)
1020 		bfqd->wr_busy_queues--;
1021 }
1022 
bfqq_process_refs(struct bfq_queue * bfqq)1023 static int bfqq_process_refs(struct bfq_queue *bfqq)
1024 {
1025 	return bfqq->ref - bfqq->allocated - bfqq->entity.on_st -
1026 		(bfqq->weight_counter != NULL);
1027 }
1028 
1029 /* Empty burst list and add just bfqq (see comments on bfq_handle_burst) */
bfq_reset_burst_list(struct bfq_data * bfqd,struct bfq_queue * bfqq)1030 static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1031 {
1032 	struct bfq_queue *item;
1033 	struct hlist_node *n;
1034 
1035 	hlist_for_each_entry_safe(item, n, &bfqd->burst_list, burst_list_node)
1036 		hlist_del_init(&item->burst_list_node);
1037 	hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1038 	bfqd->burst_size = 1;
1039 	bfqd->burst_parent_entity = bfqq->entity.parent;
1040 }
1041 
1042 /* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */
bfq_add_to_burst(struct bfq_data * bfqd,struct bfq_queue * bfqq)1043 static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1044 {
1045 	/* Increment burst size to take into account also bfqq */
1046 	bfqd->burst_size++;
1047 
1048 	if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) {
1049 		struct bfq_queue *pos, *bfqq_item;
1050 		struct hlist_node *n;
1051 
1052 		/*
1053 		 * Enough queues have been activated shortly after each
1054 		 * other to consider this burst as large.
1055 		 */
1056 		bfqd->large_burst = true;
1057 
1058 		/*
1059 		 * We can now mark all queues in the burst list as
1060 		 * belonging to a large burst.
1061 		 */
1062 		hlist_for_each_entry(bfqq_item, &bfqd->burst_list,
1063 				     burst_list_node)
1064 			bfq_mark_bfqq_in_large_burst(bfqq_item);
1065 		bfq_mark_bfqq_in_large_burst(bfqq);
1066 
1067 		/*
1068 		 * From now on, and until the current burst finishes, any
1069 		 * new queue being activated shortly after the last queue
1070 		 * was inserted in the burst can be immediately marked as
1071 		 * belonging to a large burst. So the burst list is not
1072 		 * needed any more. Remove it.
1073 		 */
1074 		hlist_for_each_entry_safe(pos, n, &bfqd->burst_list,
1075 					  burst_list_node)
1076 			hlist_del_init(&pos->burst_list_node);
1077 	} else /*
1078 		* Burst not yet large: add bfqq to the burst list. Do
1079 		* not increment the ref counter for bfqq, because bfqq
1080 		* is removed from the burst list before freeing bfqq
1081 		* in put_queue.
1082 		*/
1083 		hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1084 }
1085 
1086 /*
1087  * If many queues belonging to the same group happen to be created
1088  * shortly after each other, then the processes associated with these
1089  * queues have typically a common goal. In particular, bursts of queue
1090  * creations are usually caused by services or applications that spawn
1091  * many parallel threads/processes. Examples are systemd during boot,
1092  * or git grep. To help these processes get their job done as soon as
1093  * possible, it is usually better to not grant either weight-raising
1094  * or device idling to their queues.
1095  *
1096  * In this comment we describe, firstly, the reasons why this fact
1097  * holds, and, secondly, the next function, which implements the main
1098  * steps needed to properly mark these queues so that they can then be
1099  * treated in a different way.
1100  *
1101  * The above services or applications benefit mostly from a high
1102  * throughput: the quicker the requests of the activated queues are
1103  * cumulatively served, the sooner the target job of these queues gets
1104  * completed. As a consequence, weight-raising any of these queues,
1105  * which also implies idling the device for it, is almost always
1106  * counterproductive. In most cases it just lowers throughput.
1107  *
1108  * On the other hand, a burst of queue creations may be caused also by
1109  * the start of an application that does not consist of a lot of
1110  * parallel I/O-bound threads. In fact, with a complex application,
1111  * several short processes may need to be executed to start-up the
1112  * application. In this respect, to start an application as quickly as
1113  * possible, the best thing to do is in any case to privilege the I/O
1114  * related to the application with respect to all other
1115  * I/O. Therefore, the best strategy to start as quickly as possible
1116  * an application that causes a burst of queue creations is to
1117  * weight-raise all the queues created during the burst. This is the
1118  * exact opposite of the best strategy for the other type of bursts.
1119  *
1120  * In the end, to take the best action for each of the two cases, the
1121  * two types of bursts need to be distinguished. Fortunately, this
1122  * seems relatively easy, by looking at the sizes of the bursts. In
1123  * particular, we found a threshold such that only bursts with a
1124  * larger size than that threshold are apparently caused by
1125  * services or commands such as systemd or git grep. For brevity,
1126  * hereafter we call just 'large' these bursts. BFQ *does not*
1127  * weight-raise queues whose creation occurs in a large burst. In
1128  * addition, for each of these queues BFQ performs or does not perform
1129  * idling depending on which choice boosts the throughput more. The
1130  * exact choice depends on the device and request pattern at
1131  * hand.
1132  *
1133  * Unfortunately, false positives may occur while an interactive task
1134  * is starting (e.g., an application is being started). The
1135  * consequence is that the queues associated with the task do not
1136  * enjoy weight raising as expected. Fortunately these false positives
1137  * are very rare. They typically occur if some service happens to
1138  * start doing I/O exactly when the interactive task starts.
1139  *
1140  * Turning back to the next function, it implements all the steps
1141  * needed to detect the occurrence of a large burst and to properly
1142  * mark all the queues belonging to it (so that they can then be
1143  * treated in a different way). This goal is achieved by maintaining a
1144  * "burst list" that holds, temporarily, the queues that belong to the
1145  * burst in progress. The list is then used to mark these queues as
1146  * belonging to a large burst if the burst does become large. The main
1147  * steps are the following.
1148  *
1149  * . when the very first queue is created, the queue is inserted into the
1150  *   list (as it could be the first queue in a possible burst)
1151  *
1152  * . if the current burst has not yet become large, and a queue Q that does
1153  *   not yet belong to the burst is activated shortly after the last time
1154  *   at which a new queue entered the burst list, then the function appends
1155  *   Q to the burst list
1156  *
1157  * . if, as a consequence of the previous step, the burst size reaches
1158  *   the large-burst threshold, then
1159  *
1160  *     . all the queues in the burst list are marked as belonging to a
1161  *       large burst
1162  *
1163  *     . the burst list is deleted; in fact, the burst list already served
1164  *       its purpose (keeping temporarily track of the queues in a burst,
1165  *       so as to be able to mark them as belonging to a large burst in the
1166  *       previous sub-step), and now is not needed any more
1167  *
1168  *     . the device enters a large-burst mode
1169  *
1170  * . if a queue Q that does not belong to the burst is created while
1171  *   the device is in large-burst mode and shortly after the last time
1172  *   at which a queue either entered the burst list or was marked as
1173  *   belonging to the current large burst, then Q is immediately marked
1174  *   as belonging to a large burst.
1175  *
1176  * . if a queue Q that does not belong to the burst is created a while
1177  *   later, i.e., not shortly after, than the last time at which a queue
1178  *   either entered the burst list or was marked as belonging to the
1179  *   current large burst, then the current burst is deemed as finished and:
1180  *
1181  *        . the large-burst mode is reset if set
1182  *
1183  *        . the burst list is emptied
1184  *
1185  *        . Q is inserted in the burst list, as Q may be the first queue
1186  *          in a possible new burst (then the burst list contains just Q
1187  *          after this step).
1188  */
bfq_handle_burst(struct bfq_data * bfqd,struct bfq_queue * bfqq)1189 static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1190 {
1191 	/*
1192 	 * If bfqq is already in the burst list or is part of a large
1193 	 * burst, or finally has just been split, then there is
1194 	 * nothing else to do.
1195 	 */
1196 	if (!hlist_unhashed(&bfqq->burst_list_node) ||
1197 	    bfq_bfqq_in_large_burst(bfqq) ||
1198 	    time_is_after_eq_jiffies(bfqq->split_time +
1199 				     msecs_to_jiffies(10)))
1200 		return;
1201 
1202 	/*
1203 	 * If bfqq's creation happens late enough, or bfqq belongs to
1204 	 * a different group than the burst group, then the current
1205 	 * burst is finished, and related data structures must be
1206 	 * reset.
1207 	 *
1208 	 * In this respect, consider the special case where bfqq is
1209 	 * the very first queue created after BFQ is selected for this
1210 	 * device. In this case, last_ins_in_burst and
1211 	 * burst_parent_entity are not yet significant when we get
1212 	 * here. But it is easy to verify that, whether or not the
1213 	 * following condition is true, bfqq will end up being
1214 	 * inserted into the burst list. In particular the list will
1215 	 * happen to contain only bfqq. And this is exactly what has
1216 	 * to happen, as bfqq may be the first queue of the first
1217 	 * burst.
1218 	 */
1219 	if (time_is_before_jiffies(bfqd->last_ins_in_burst +
1220 	    bfqd->bfq_burst_interval) ||
1221 	    bfqq->entity.parent != bfqd->burst_parent_entity) {
1222 		bfqd->large_burst = false;
1223 		bfq_reset_burst_list(bfqd, bfqq);
1224 		goto end;
1225 	}
1226 
1227 	/*
1228 	 * If we get here, then bfqq is being activated shortly after the
1229 	 * last queue. So, if the current burst is also large, we can mark
1230 	 * bfqq as belonging to this large burst immediately.
1231 	 */
1232 	if (bfqd->large_burst) {
1233 		bfq_mark_bfqq_in_large_burst(bfqq);
1234 		goto end;
1235 	}
1236 
1237 	/*
1238 	 * If we get here, then a large-burst state has not yet been
1239 	 * reached, but bfqq is being activated shortly after the last
1240 	 * queue. Then we add bfqq to the burst.
1241 	 */
1242 	bfq_add_to_burst(bfqd, bfqq);
1243 end:
1244 	/*
1245 	 * At this point, bfqq either has been added to the current
1246 	 * burst or has caused the current burst to terminate and a
1247 	 * possible new burst to start. In particular, in the second
1248 	 * case, bfqq has become the first queue in the possible new
1249 	 * burst.  In both cases last_ins_in_burst needs to be moved
1250 	 * forward.
1251 	 */
1252 	bfqd->last_ins_in_burst = jiffies;
1253 }
1254 
bfq_bfqq_budget_left(struct bfq_queue * bfqq)1255 static int bfq_bfqq_budget_left(struct bfq_queue *bfqq)
1256 {
1257 	struct bfq_entity *entity = &bfqq->entity;
1258 
1259 	return entity->budget - entity->service;
1260 }
1261 
1262 /*
1263  * If enough samples have been computed, return the current max budget
1264  * stored in bfqd, which is dynamically updated according to the
1265  * estimated disk peak rate; otherwise return the default max budget
1266  */
bfq_max_budget(struct bfq_data * bfqd)1267 static int bfq_max_budget(struct bfq_data *bfqd)
1268 {
1269 	if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1270 		return bfq_default_max_budget;
1271 	else
1272 		return bfqd->bfq_max_budget;
1273 }
1274 
1275 /*
1276  * Return min budget, which is a fraction of the current or default
1277  * max budget (trying with 1/32)
1278  */
bfq_min_budget(struct bfq_data * bfqd)1279 static int bfq_min_budget(struct bfq_data *bfqd)
1280 {
1281 	if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1282 		return bfq_default_max_budget / 32;
1283 	else
1284 		return bfqd->bfq_max_budget / 32;
1285 }
1286 
1287 /*
1288  * The next function, invoked after the input queue bfqq switches from
1289  * idle to busy, updates the budget of bfqq. The function also tells
1290  * whether the in-service queue should be expired, by returning
1291  * true. The purpose of expiring the in-service queue is to give bfqq
1292  * the chance to possibly preempt the in-service queue, and the reason
1293  * for preempting the in-service queue is to achieve one of the two
1294  * goals below.
1295  *
1296  * 1. Guarantee to bfqq its reserved bandwidth even if bfqq has
1297  * expired because it has remained idle. In particular, bfqq may have
1298  * expired for one of the following two reasons:
1299  *
1300  * - BFQQE_NO_MORE_REQUESTS bfqq did not enjoy any device idling
1301  *   and did not make it to issue a new request before its last
1302  *   request was served;
1303  *
1304  * - BFQQE_TOO_IDLE bfqq did enjoy device idling, but did not issue
1305  *   a new request before the expiration of the idling-time.
1306  *
1307  * Even if bfqq has expired for one of the above reasons, the process
1308  * associated with the queue may be however issuing requests greedily,
1309  * and thus be sensitive to the bandwidth it receives (bfqq may have
1310  * remained idle for other reasons: CPU high load, bfqq not enjoying
1311  * idling, I/O throttling somewhere in the path from the process to
1312  * the I/O scheduler, ...). But if, after every expiration for one of
1313  * the above two reasons, bfqq has to wait for the service of at least
1314  * one full budget of another queue before being served again, then
1315  * bfqq is likely to get a much lower bandwidth or resource time than
1316  * its reserved ones. To address this issue, two countermeasures need
1317  * to be taken.
1318  *
1319  * First, the budget and the timestamps of bfqq need to be updated in
1320  * a special way on bfqq reactivation: they need to be updated as if
1321  * bfqq did not remain idle and did not expire. In fact, if they are
1322  * computed as if bfqq expired and remained idle until reactivation,
1323  * then the process associated with bfqq is treated as if, instead of
1324  * being greedy, it stopped issuing requests when bfqq remained idle,
1325  * and restarts issuing requests only on this reactivation. In other
1326  * words, the scheduler does not help the process recover the "service
1327  * hole" between bfqq expiration and reactivation. As a consequence,
1328  * the process receives a lower bandwidth than its reserved one. In
1329  * contrast, to recover this hole, the budget must be updated as if
1330  * bfqq was not expired at all before this reactivation, i.e., it must
1331  * be set to the value of the remaining budget when bfqq was
1332  * expired. Along the same line, timestamps need to be assigned the
1333  * value they had the last time bfqq was selected for service, i.e.,
1334  * before last expiration. Thus timestamps need to be back-shifted
1335  * with respect to their normal computation (see [1] for more details
1336  * on this tricky aspect).
1337  *
1338  * Secondly, to allow the process to recover the hole, the in-service
1339  * queue must be expired too, to give bfqq the chance to preempt it
1340  * immediately. In fact, if bfqq has to wait for a full budget of the
1341  * in-service queue to be completed, then it may become impossible to
1342  * let the process recover the hole, even if the back-shifted
1343  * timestamps of bfqq are lower than those of the in-service queue. If
1344  * this happens for most or all of the holes, then the process may not
1345  * receive its reserved bandwidth. In this respect, it is worth noting
1346  * that, being the service of outstanding requests unpreemptible, a
1347  * little fraction of the holes may however be unrecoverable, thereby
1348  * causing a little loss of bandwidth.
1349  *
1350  * The last important point is detecting whether bfqq does need this
1351  * bandwidth recovery. In this respect, the next function deems the
1352  * process associated with bfqq greedy, and thus allows it to recover
1353  * the hole, if: 1) the process is waiting for the arrival of a new
1354  * request (which implies that bfqq expired for one of the above two
1355  * reasons), and 2) such a request has arrived soon. The first
1356  * condition is controlled through the flag non_blocking_wait_rq,
1357  * while the second through the flag arrived_in_time. If both
1358  * conditions hold, then the function computes the budget in the
1359  * above-described special way, and signals that the in-service queue
1360  * should be expired. Timestamp back-shifting is done later in
1361  * __bfq_activate_entity.
1362  *
1363  * 2. Reduce latency. Even if timestamps are not backshifted to let
1364  * the process associated with bfqq recover a service hole, bfqq may
1365  * however happen to have, after being (re)activated, a lower finish
1366  * timestamp than the in-service queue.	 That is, the next budget of
1367  * bfqq may have to be completed before the one of the in-service
1368  * queue. If this is the case, then preempting the in-service queue
1369  * allows this goal to be achieved, apart from the unpreemptible,
1370  * outstanding requests mentioned above.
1371  *
1372  * Unfortunately, regardless of which of the above two goals one wants
1373  * to achieve, service trees need first to be updated to know whether
1374  * the in-service queue must be preempted. To have service trees
1375  * correctly updated, the in-service queue must be expired and
1376  * rescheduled, and bfqq must be scheduled too. This is one of the
1377  * most costly operations (in future versions, the scheduling
1378  * mechanism may be re-designed in such a way to make it possible to
1379  * know whether preemption is needed without needing to update service
1380  * trees). In addition, queue preemptions almost always cause random
1381  * I/O, and thus loss of throughput. Because of these facts, the next
1382  * function adopts the following simple scheme to avoid both costly
1383  * operations and too frequent preemptions: it requests the expiration
1384  * of the in-service queue (unconditionally) only for queues that need
1385  * to recover a hole, or that either are weight-raised or deserve to
1386  * be weight-raised.
1387  */
bfq_bfqq_update_budg_for_activation(struct bfq_data * bfqd,struct bfq_queue * bfqq,bool arrived_in_time,bool wr_or_deserves_wr)1388 static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd,
1389 						struct bfq_queue *bfqq,
1390 						bool arrived_in_time,
1391 						bool wr_or_deserves_wr)
1392 {
1393 	struct bfq_entity *entity = &bfqq->entity;
1394 
1395 	if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time) {
1396 		/*
1397 		 * We do not clear the flag non_blocking_wait_rq here, as
1398 		 * the latter is used in bfq_activate_bfqq to signal
1399 		 * that timestamps need to be back-shifted (and is
1400 		 * cleared right after).
1401 		 */
1402 
1403 		/*
1404 		 * In next assignment we rely on that either
1405 		 * entity->service or entity->budget are not updated
1406 		 * on expiration if bfqq is empty (see
1407 		 * __bfq_bfqq_recalc_budget). Thus both quantities
1408 		 * remain unchanged after such an expiration, and the
1409 		 * following statement therefore assigns to
1410 		 * entity->budget the remaining budget on such an
1411 		 * expiration.
1412 		 */
1413 		entity->budget = min_t(unsigned long,
1414 				       bfq_bfqq_budget_left(bfqq),
1415 				       bfqq->max_budget);
1416 
1417 		/*
1418 		 * At this point, we have used entity->service to get
1419 		 * the budget left (needed for updating
1420 		 * entity->budget). Thus we finally can, and have to,
1421 		 * reset entity->service. The latter must be reset
1422 		 * because bfqq would otherwise be charged again for
1423 		 * the service it has received during its previous
1424 		 * service slot(s).
1425 		 */
1426 		entity->service = 0;
1427 
1428 		return true;
1429 	}
1430 
1431 	/*
1432 	 * We can finally complete expiration, by setting service to 0.
1433 	 */
1434 	entity->service = 0;
1435 	entity->budget = max_t(unsigned long, bfqq->max_budget,
1436 			       bfq_serv_to_charge(bfqq->next_rq, bfqq));
1437 	bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
1438 	return wr_or_deserves_wr;
1439 }
1440 
1441 /*
1442  * Return the farthest past time instant according to jiffies
1443  * macros.
1444  */
bfq_smallest_from_now(void)1445 static unsigned long bfq_smallest_from_now(void)
1446 {
1447 	return jiffies - MAX_JIFFY_OFFSET;
1448 }
1449 
bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data * bfqd,struct bfq_queue * bfqq,unsigned int old_wr_coeff,bool wr_or_deserves_wr,bool interactive,bool in_burst,bool soft_rt)1450 static void bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data *bfqd,
1451 					     struct bfq_queue *bfqq,
1452 					     unsigned int old_wr_coeff,
1453 					     bool wr_or_deserves_wr,
1454 					     bool interactive,
1455 					     bool in_burst,
1456 					     bool soft_rt)
1457 {
1458 	if (old_wr_coeff == 1 && wr_or_deserves_wr) {
1459 		/* start a weight-raising period */
1460 		if (interactive) {
1461 			bfqq->service_from_wr = 0;
1462 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1463 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1464 		} else {
1465 			/*
1466 			 * No interactive weight raising in progress
1467 			 * here: assign minus infinity to
1468 			 * wr_start_at_switch_to_srt, to make sure
1469 			 * that, at the end of the soft-real-time
1470 			 * weight raising periods that is starting
1471 			 * now, no interactive weight-raising period
1472 			 * may be wrongly considered as still in
1473 			 * progress (and thus actually started by
1474 			 * mistake).
1475 			 */
1476 			bfqq->wr_start_at_switch_to_srt =
1477 				bfq_smallest_from_now();
1478 			bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1479 				BFQ_SOFTRT_WEIGHT_FACTOR;
1480 			bfqq->wr_cur_max_time =
1481 				bfqd->bfq_wr_rt_max_time;
1482 		}
1483 
1484 		/*
1485 		 * If needed, further reduce budget to make sure it is
1486 		 * close to bfqq's backlog, so as to reduce the
1487 		 * scheduling-error component due to a too large
1488 		 * budget. Do not care about throughput consequences,
1489 		 * but only about latency. Finally, do not assign a
1490 		 * too small budget either, to avoid increasing
1491 		 * latency by causing too frequent expirations.
1492 		 */
1493 		bfqq->entity.budget = min_t(unsigned long,
1494 					    bfqq->entity.budget,
1495 					    2 * bfq_min_budget(bfqd));
1496 	} else if (old_wr_coeff > 1) {
1497 		if (interactive) { /* update wr coeff and duration */
1498 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1499 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1500 		} else if (in_burst)
1501 			bfqq->wr_coeff = 1;
1502 		else if (soft_rt) {
1503 			/*
1504 			 * The application is now or still meeting the
1505 			 * requirements for being deemed soft rt.  We
1506 			 * can then correctly and safely (re)charge
1507 			 * the weight-raising duration for the
1508 			 * application with the weight-raising
1509 			 * duration for soft rt applications.
1510 			 *
1511 			 * In particular, doing this recharge now, i.e.,
1512 			 * before the weight-raising period for the
1513 			 * application finishes, reduces the probability
1514 			 * of the following negative scenario:
1515 			 * 1) the weight of a soft rt application is
1516 			 *    raised at startup (as for any newly
1517 			 *    created application),
1518 			 * 2) since the application is not interactive,
1519 			 *    at a certain time weight-raising is
1520 			 *    stopped for the application,
1521 			 * 3) at that time the application happens to
1522 			 *    still have pending requests, and hence
1523 			 *    is destined to not have a chance to be
1524 			 *    deemed soft rt before these requests are
1525 			 *    completed (see the comments to the
1526 			 *    function bfq_bfqq_softrt_next_start()
1527 			 *    for details on soft rt detection),
1528 			 * 4) these pending requests experience a high
1529 			 *    latency because the application is not
1530 			 *    weight-raised while they are pending.
1531 			 */
1532 			if (bfqq->wr_cur_max_time !=
1533 				bfqd->bfq_wr_rt_max_time) {
1534 				bfqq->wr_start_at_switch_to_srt =
1535 					bfqq->last_wr_start_finish;
1536 
1537 				bfqq->wr_cur_max_time =
1538 					bfqd->bfq_wr_rt_max_time;
1539 				bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1540 					BFQ_SOFTRT_WEIGHT_FACTOR;
1541 			}
1542 			bfqq->last_wr_start_finish = jiffies;
1543 		}
1544 	}
1545 }
1546 
bfq_bfqq_idle_for_long_time(struct bfq_data * bfqd,struct bfq_queue * bfqq)1547 static bool bfq_bfqq_idle_for_long_time(struct bfq_data *bfqd,
1548 					struct bfq_queue *bfqq)
1549 {
1550 	return bfqq->dispatched == 0 &&
1551 		time_is_before_jiffies(
1552 			bfqq->budget_timeout +
1553 			bfqd->bfq_wr_min_idle_time);
1554 }
1555 
bfq_bfqq_handle_idle_busy_switch(struct bfq_data * bfqd,struct bfq_queue * bfqq,int old_wr_coeff,struct request * rq,bool * interactive)1556 static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd,
1557 					     struct bfq_queue *bfqq,
1558 					     int old_wr_coeff,
1559 					     struct request *rq,
1560 					     bool *interactive)
1561 {
1562 	bool soft_rt, in_burst,	wr_or_deserves_wr,
1563 		bfqq_wants_to_preempt,
1564 		idle_for_long_time = bfq_bfqq_idle_for_long_time(bfqd, bfqq),
1565 		/*
1566 		 * See the comments on
1567 		 * bfq_bfqq_update_budg_for_activation for
1568 		 * details on the usage of the next variable.
1569 		 */
1570 		arrived_in_time =  ktime_get_ns() <=
1571 			bfqq->ttime.last_end_request +
1572 			bfqd->bfq_slice_idle * 3;
1573 
1574 
1575 	/*
1576 	 * bfqq deserves to be weight-raised if:
1577 	 * - it is sync,
1578 	 * - it does not belong to a large burst,
1579 	 * - it has been idle for enough time or is soft real-time,
1580 	 * - is linked to a bfq_io_cq (it is not shared in any sense).
1581 	 */
1582 	in_burst = bfq_bfqq_in_large_burst(bfqq);
1583 	soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
1584 		!in_burst &&
1585 		time_is_before_jiffies(bfqq->soft_rt_next_start) &&
1586 		bfqq->dispatched == 0;
1587 	*interactive = !in_burst && idle_for_long_time;
1588 	wr_or_deserves_wr = bfqd->low_latency &&
1589 		(bfqq->wr_coeff > 1 ||
1590 		 (bfq_bfqq_sync(bfqq) &&
1591 		  bfqq->bic && (*interactive || soft_rt)));
1592 
1593 	/*
1594 	 * Using the last flag, update budget and check whether bfqq
1595 	 * may want to preempt the in-service queue.
1596 	 */
1597 	bfqq_wants_to_preempt =
1598 		bfq_bfqq_update_budg_for_activation(bfqd, bfqq,
1599 						    arrived_in_time,
1600 						    wr_or_deserves_wr);
1601 
1602 	/*
1603 	 * If bfqq happened to be activated in a burst, but has been
1604 	 * idle for much more than an interactive queue, then we
1605 	 * assume that, in the overall I/O initiated in the burst, the
1606 	 * I/O associated with bfqq is finished. So bfqq does not need
1607 	 * to be treated as a queue belonging to a burst
1608 	 * anymore. Accordingly, we reset bfqq's in_large_burst flag
1609 	 * if set, and remove bfqq from the burst list if it's
1610 	 * there. We do not decrement burst_size, because the fact
1611 	 * that bfqq does not need to belong to the burst list any
1612 	 * more does not invalidate the fact that bfqq was created in
1613 	 * a burst.
1614 	 */
1615 	if (likely(!bfq_bfqq_just_created(bfqq)) &&
1616 	    idle_for_long_time &&
1617 	    time_is_before_jiffies(
1618 		    bfqq->budget_timeout +
1619 		    msecs_to_jiffies(10000))) {
1620 		hlist_del_init(&bfqq->burst_list_node);
1621 		bfq_clear_bfqq_in_large_burst(bfqq);
1622 	}
1623 
1624 	bfq_clear_bfqq_just_created(bfqq);
1625 
1626 
1627 	if (!bfq_bfqq_IO_bound(bfqq)) {
1628 		if (arrived_in_time) {
1629 			bfqq->requests_within_timer++;
1630 			if (bfqq->requests_within_timer >=
1631 			    bfqd->bfq_requests_within_timer)
1632 				bfq_mark_bfqq_IO_bound(bfqq);
1633 		} else
1634 			bfqq->requests_within_timer = 0;
1635 	}
1636 
1637 	if (bfqd->low_latency) {
1638 		if (unlikely(time_is_after_jiffies(bfqq->split_time)))
1639 			/* wraparound */
1640 			bfqq->split_time =
1641 				jiffies - bfqd->bfq_wr_min_idle_time - 1;
1642 
1643 		if (time_is_before_jiffies(bfqq->split_time +
1644 					   bfqd->bfq_wr_min_idle_time)) {
1645 			bfq_update_bfqq_wr_on_rq_arrival(bfqd, bfqq,
1646 							 old_wr_coeff,
1647 							 wr_or_deserves_wr,
1648 							 *interactive,
1649 							 in_burst,
1650 							 soft_rt);
1651 
1652 			if (old_wr_coeff != bfqq->wr_coeff)
1653 				bfqq->entity.prio_changed = 1;
1654 		}
1655 	}
1656 
1657 	bfqq->last_idle_bklogged = jiffies;
1658 	bfqq->service_from_backlogged = 0;
1659 	bfq_clear_bfqq_softrt_update(bfqq);
1660 
1661 	bfq_add_bfqq_busy(bfqd, bfqq);
1662 
1663 	/*
1664 	 * Expire in-service queue only if preemption may be needed
1665 	 * for guarantees. In this respect, the function
1666 	 * next_queue_may_preempt just checks a simple, necessary
1667 	 * condition, and not a sufficient condition based on
1668 	 * timestamps. In fact, for the latter condition to be
1669 	 * evaluated, timestamps would need first to be updated, and
1670 	 * this operation is quite costly (see the comments on the
1671 	 * function bfq_bfqq_update_budg_for_activation).
1672 	 */
1673 	if (bfqd->in_service_queue && bfqq_wants_to_preempt &&
1674 	    bfqd->in_service_queue->wr_coeff < bfqq->wr_coeff &&
1675 	    next_queue_may_preempt(bfqd))
1676 		bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
1677 				false, BFQQE_PREEMPTED);
1678 }
1679 
bfq_add_request(struct request * rq)1680 static void bfq_add_request(struct request *rq)
1681 {
1682 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
1683 	struct bfq_data *bfqd = bfqq->bfqd;
1684 	struct request *next_rq, *prev;
1685 	unsigned int old_wr_coeff = bfqq->wr_coeff;
1686 	bool interactive = false;
1687 
1688 	bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq));
1689 	bfqq->queued[rq_is_sync(rq)]++;
1690 	bfqd->queued++;
1691 
1692 	elv_rb_add(&bfqq->sort_list, rq);
1693 
1694 	/*
1695 	 * Check if this request is a better next-serve candidate.
1696 	 */
1697 	prev = bfqq->next_rq;
1698 	next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
1699 	bfqq->next_rq = next_rq;
1700 
1701 	/*
1702 	 * Adjust priority tree position, if next_rq changes.
1703 	 */
1704 	if (prev != bfqq->next_rq)
1705 		bfq_pos_tree_add_move(bfqd, bfqq);
1706 
1707 	if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */
1708 		bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, old_wr_coeff,
1709 						 rq, &interactive);
1710 	else {
1711 		if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) &&
1712 		    time_is_before_jiffies(
1713 				bfqq->last_wr_start_finish +
1714 				bfqd->bfq_wr_min_inter_arr_async)) {
1715 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1716 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1717 
1718 			bfqd->wr_busy_queues++;
1719 			bfqq->entity.prio_changed = 1;
1720 		}
1721 		if (prev != bfqq->next_rq)
1722 			bfq_updated_next_req(bfqd, bfqq);
1723 	}
1724 
1725 	/*
1726 	 * Assign jiffies to last_wr_start_finish in the following
1727 	 * cases:
1728 	 *
1729 	 * . if bfqq is not going to be weight-raised, because, for
1730 	 *   non weight-raised queues, last_wr_start_finish stores the
1731 	 *   arrival time of the last request; as of now, this piece
1732 	 *   of information is used only for deciding whether to
1733 	 *   weight-raise async queues
1734 	 *
1735 	 * . if bfqq is not weight-raised, because, if bfqq is now
1736 	 *   switching to weight-raised, then last_wr_start_finish
1737 	 *   stores the time when weight-raising starts
1738 	 *
1739 	 * . if bfqq is interactive, because, regardless of whether
1740 	 *   bfqq is currently weight-raised, the weight-raising
1741 	 *   period must start or restart (this case is considered
1742 	 *   separately because it is not detected by the above
1743 	 *   conditions, if bfqq is already weight-raised)
1744 	 *
1745 	 * last_wr_start_finish has to be updated also if bfqq is soft
1746 	 * real-time, because the weight-raising period is constantly
1747 	 * restarted on idle-to-busy transitions for these queues, but
1748 	 * this is already done in bfq_bfqq_handle_idle_busy_switch if
1749 	 * needed.
1750 	 */
1751 	if (bfqd->low_latency &&
1752 		(old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive))
1753 		bfqq->last_wr_start_finish = jiffies;
1754 }
1755 
bfq_find_rq_fmerge(struct bfq_data * bfqd,struct bio * bio,struct request_queue * q)1756 static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
1757 					  struct bio *bio,
1758 					  struct request_queue *q)
1759 {
1760 	struct bfq_queue *bfqq = bfqd->bio_bfqq;
1761 
1762 
1763 	if (bfqq)
1764 		return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio));
1765 
1766 	return NULL;
1767 }
1768 
get_sdist(sector_t last_pos,struct request * rq)1769 static sector_t get_sdist(sector_t last_pos, struct request *rq)
1770 {
1771 	if (last_pos)
1772 		return abs(blk_rq_pos(rq) - last_pos);
1773 
1774 	return 0;
1775 }
1776 
1777 #if 0 /* Still not clear if we can do without next two functions */
1778 static void bfq_activate_request(struct request_queue *q, struct request *rq)
1779 {
1780 	struct bfq_data *bfqd = q->elevator->elevator_data;
1781 
1782 	bfqd->rq_in_driver++;
1783 }
1784 
1785 static void bfq_deactivate_request(struct request_queue *q, struct request *rq)
1786 {
1787 	struct bfq_data *bfqd = q->elevator->elevator_data;
1788 
1789 	bfqd->rq_in_driver--;
1790 }
1791 #endif
1792 
bfq_remove_request(struct request_queue * q,struct request * rq)1793 static void bfq_remove_request(struct request_queue *q,
1794 			       struct request *rq)
1795 {
1796 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
1797 	struct bfq_data *bfqd = bfqq->bfqd;
1798 	const int sync = rq_is_sync(rq);
1799 
1800 	if (bfqq->next_rq == rq) {
1801 		bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
1802 		bfq_updated_next_req(bfqd, bfqq);
1803 	}
1804 
1805 	if (rq->queuelist.prev != &rq->queuelist)
1806 		list_del_init(&rq->queuelist);
1807 	bfqq->queued[sync]--;
1808 	bfqd->queued--;
1809 	elv_rb_del(&bfqq->sort_list, rq);
1810 
1811 	elv_rqhash_del(q, rq);
1812 	if (q->last_merge == rq)
1813 		q->last_merge = NULL;
1814 
1815 	if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
1816 		bfqq->next_rq = NULL;
1817 
1818 		if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) {
1819 			bfq_del_bfqq_busy(bfqd, bfqq, false);
1820 			/*
1821 			 * bfqq emptied. In normal operation, when
1822 			 * bfqq is empty, bfqq->entity.service and
1823 			 * bfqq->entity.budget must contain,
1824 			 * respectively, the service received and the
1825 			 * budget used last time bfqq emptied. These
1826 			 * facts do not hold in this case, as at least
1827 			 * this last removal occurred while bfqq is
1828 			 * not in service. To avoid inconsistencies,
1829 			 * reset both bfqq->entity.service and
1830 			 * bfqq->entity.budget, if bfqq has still a
1831 			 * process that may issue I/O requests to it.
1832 			 */
1833 			bfqq->entity.budget = bfqq->entity.service = 0;
1834 		}
1835 
1836 		/*
1837 		 * Remove queue from request-position tree as it is empty.
1838 		 */
1839 		if (bfqq->pos_root) {
1840 			rb_erase(&bfqq->pos_node, bfqq->pos_root);
1841 			bfqq->pos_root = NULL;
1842 		}
1843 	} else {
1844 		bfq_pos_tree_add_move(bfqd, bfqq);
1845 	}
1846 
1847 	if (rq->cmd_flags & REQ_META)
1848 		bfqq->meta_pending--;
1849 
1850 }
1851 
bfq_bio_merge(struct blk_mq_hw_ctx * hctx,struct bio * bio)1852 static bool bfq_bio_merge(struct blk_mq_hw_ctx *hctx, struct bio *bio)
1853 {
1854 	struct request_queue *q = hctx->queue;
1855 	struct bfq_data *bfqd = q->elevator->elevator_data;
1856 	struct request *free = NULL;
1857 	/*
1858 	 * bfq_bic_lookup grabs the queue_lock: invoke it now and
1859 	 * store its return value for later use, to avoid nesting
1860 	 * queue_lock inside the bfqd->lock. We assume that the bic
1861 	 * returned by bfq_bic_lookup does not go away before
1862 	 * bfqd->lock is taken.
1863 	 */
1864 	struct bfq_io_cq *bic = bfq_bic_lookup(bfqd, current->io_context, q);
1865 	bool ret;
1866 
1867 	spin_lock_irq(&bfqd->lock);
1868 
1869 	if (bic)
1870 		bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf));
1871 	else
1872 		bfqd->bio_bfqq = NULL;
1873 	bfqd->bio_bic = bic;
1874 
1875 	ret = blk_mq_sched_try_merge(q, bio, &free);
1876 
1877 	if (free)
1878 		blk_mq_free_request(free);
1879 	spin_unlock_irq(&bfqd->lock);
1880 
1881 	return ret;
1882 }
1883 
bfq_request_merge(struct request_queue * q,struct request ** req,struct bio * bio)1884 static int bfq_request_merge(struct request_queue *q, struct request **req,
1885 			     struct bio *bio)
1886 {
1887 	struct bfq_data *bfqd = q->elevator->elevator_data;
1888 	struct request *__rq;
1889 
1890 	__rq = bfq_find_rq_fmerge(bfqd, bio, q);
1891 	if (__rq && elv_bio_merge_ok(__rq, bio)) {
1892 		*req = __rq;
1893 		return ELEVATOR_FRONT_MERGE;
1894 	}
1895 
1896 	return ELEVATOR_NO_MERGE;
1897 }
1898 
1899 static struct bfq_queue *bfq_init_rq(struct request *rq);
1900 
bfq_request_merged(struct request_queue * q,struct request * req,enum elv_merge type)1901 static void bfq_request_merged(struct request_queue *q, struct request *req,
1902 			       enum elv_merge type)
1903 {
1904 	if (type == ELEVATOR_FRONT_MERGE &&
1905 	    rb_prev(&req->rb_node) &&
1906 	    blk_rq_pos(req) <
1907 	    blk_rq_pos(container_of(rb_prev(&req->rb_node),
1908 				    struct request, rb_node))) {
1909 		struct bfq_queue *bfqq = bfq_init_rq(req);
1910 		struct bfq_data *bfqd;
1911 		struct request *prev, *next_rq;
1912 
1913 		if (!bfqq)
1914 			return;
1915 
1916 		bfqd = bfqq->bfqd;
1917 
1918 		/* Reposition request in its sort_list */
1919 		elv_rb_del(&bfqq->sort_list, req);
1920 		elv_rb_add(&bfqq->sort_list, req);
1921 
1922 		/* Choose next request to be served for bfqq */
1923 		prev = bfqq->next_rq;
1924 		next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req,
1925 					 bfqd->last_position);
1926 		bfqq->next_rq = next_rq;
1927 		/*
1928 		 * If next_rq changes, update both the queue's budget to
1929 		 * fit the new request and the queue's position in its
1930 		 * rq_pos_tree.
1931 		 */
1932 		if (prev != bfqq->next_rq) {
1933 			bfq_updated_next_req(bfqd, bfqq);
1934 			bfq_pos_tree_add_move(bfqd, bfqq);
1935 		}
1936 	}
1937 }
1938 
1939 /*
1940  * This function is called to notify the scheduler that the requests
1941  * rq and 'next' have been merged, with 'next' going away.  BFQ
1942  * exploits this hook to address the following issue: if 'next' has a
1943  * fifo_time lower that rq, then the fifo_time of rq must be set to
1944  * the value of 'next', to not forget the greater age of 'next'.
1945  *
1946  * NOTE: in this function we assume that rq is in a bfq_queue, basing
1947  * on that rq is picked from the hash table q->elevator->hash, which,
1948  * in its turn, is filled only with I/O requests present in
1949  * bfq_queues, while BFQ is in use for the request queue q. In fact,
1950  * the function that fills this hash table (elv_rqhash_add) is called
1951  * only by bfq_insert_request.
1952  */
bfq_requests_merged(struct request_queue * q,struct request * rq,struct request * next)1953 static void bfq_requests_merged(struct request_queue *q, struct request *rq,
1954 				struct request *next)
1955 {
1956 	struct bfq_queue *bfqq = bfq_init_rq(rq),
1957 		*next_bfqq = bfq_init_rq(next);
1958 
1959 	if (!bfqq)
1960 		return;
1961 
1962 	/*
1963 	 * If next and rq belong to the same bfq_queue and next is older
1964 	 * than rq, then reposition rq in the fifo (by substituting next
1965 	 * with rq). Otherwise, if next and rq belong to different
1966 	 * bfq_queues, never reposition rq: in fact, we would have to
1967 	 * reposition it with respect to next's position in its own fifo,
1968 	 * which would most certainly be too expensive with respect to
1969 	 * the benefits.
1970 	 */
1971 	if (bfqq == next_bfqq &&
1972 	    !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1973 	    next->fifo_time < rq->fifo_time) {
1974 		list_del_init(&rq->queuelist);
1975 		list_replace_init(&next->queuelist, &rq->queuelist);
1976 		rq->fifo_time = next->fifo_time;
1977 	}
1978 
1979 	if (bfqq->next_rq == next)
1980 		bfqq->next_rq = rq;
1981 
1982 	bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags);
1983 }
1984 
1985 /* Must be called with bfqq != NULL */
bfq_bfqq_end_wr(struct bfq_queue * bfqq)1986 static void bfq_bfqq_end_wr(struct bfq_queue *bfqq)
1987 {
1988 	if (bfq_bfqq_busy(bfqq))
1989 		bfqq->bfqd->wr_busy_queues--;
1990 	bfqq->wr_coeff = 1;
1991 	bfqq->wr_cur_max_time = 0;
1992 	bfqq->last_wr_start_finish = jiffies;
1993 	/*
1994 	 * Trigger a weight change on the next invocation of
1995 	 * __bfq_entity_update_weight_prio.
1996 	 */
1997 	bfqq->entity.prio_changed = 1;
1998 }
1999 
bfq_end_wr_async_queues(struct bfq_data * bfqd,struct bfq_group * bfqg)2000 void bfq_end_wr_async_queues(struct bfq_data *bfqd,
2001 			     struct bfq_group *bfqg)
2002 {
2003 	int i, j;
2004 
2005 	for (i = 0; i < 2; i++)
2006 		for (j = 0; j < IOPRIO_BE_NR; j++)
2007 			if (bfqg->async_bfqq[i][j])
2008 				bfq_bfqq_end_wr(bfqg->async_bfqq[i][j]);
2009 	if (bfqg->async_idle_bfqq)
2010 		bfq_bfqq_end_wr(bfqg->async_idle_bfqq);
2011 }
2012 
bfq_end_wr(struct bfq_data * bfqd)2013 static void bfq_end_wr(struct bfq_data *bfqd)
2014 {
2015 	struct bfq_queue *bfqq;
2016 
2017 	spin_lock_irq(&bfqd->lock);
2018 
2019 	list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
2020 		bfq_bfqq_end_wr(bfqq);
2021 	list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list)
2022 		bfq_bfqq_end_wr(bfqq);
2023 	bfq_end_wr_async(bfqd);
2024 
2025 	spin_unlock_irq(&bfqd->lock);
2026 }
2027 
bfq_io_struct_pos(void * io_struct,bool request)2028 static sector_t bfq_io_struct_pos(void *io_struct, bool request)
2029 {
2030 	if (request)
2031 		return blk_rq_pos(io_struct);
2032 	else
2033 		return ((struct bio *)io_struct)->bi_iter.bi_sector;
2034 }
2035 
bfq_rq_close_to_sector(void * io_struct,bool request,sector_t sector)2036 static int bfq_rq_close_to_sector(void *io_struct, bool request,
2037 				  sector_t sector)
2038 {
2039 	return abs(bfq_io_struct_pos(io_struct, request) - sector) <=
2040 	       BFQQ_CLOSE_THR;
2041 }
2042 
bfqq_find_close(struct bfq_data * bfqd,struct bfq_queue * bfqq,sector_t sector)2043 static struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd,
2044 					 struct bfq_queue *bfqq,
2045 					 sector_t sector)
2046 {
2047 	struct rb_root *root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
2048 	struct rb_node *parent, *node;
2049 	struct bfq_queue *__bfqq;
2050 
2051 	if (RB_EMPTY_ROOT(root))
2052 		return NULL;
2053 
2054 	/*
2055 	 * First, if we find a request starting at the end of the last
2056 	 * request, choose it.
2057 	 */
2058 	__bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL);
2059 	if (__bfqq)
2060 		return __bfqq;
2061 
2062 	/*
2063 	 * If the exact sector wasn't found, the parent of the NULL leaf
2064 	 * will contain the closest sector (rq_pos_tree sorted by
2065 	 * next_request position).
2066 	 */
2067 	__bfqq = rb_entry(parent, struct bfq_queue, pos_node);
2068 	if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2069 		return __bfqq;
2070 
2071 	if (blk_rq_pos(__bfqq->next_rq) < sector)
2072 		node = rb_next(&__bfqq->pos_node);
2073 	else
2074 		node = rb_prev(&__bfqq->pos_node);
2075 	if (!node)
2076 		return NULL;
2077 
2078 	__bfqq = rb_entry(node, struct bfq_queue, pos_node);
2079 	if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2080 		return __bfqq;
2081 
2082 	return NULL;
2083 }
2084 
bfq_find_close_cooperator(struct bfq_data * bfqd,struct bfq_queue * cur_bfqq,sector_t sector)2085 static struct bfq_queue *bfq_find_close_cooperator(struct bfq_data *bfqd,
2086 						   struct bfq_queue *cur_bfqq,
2087 						   sector_t sector)
2088 {
2089 	struct bfq_queue *bfqq;
2090 
2091 	/*
2092 	 * We shall notice if some of the queues are cooperating,
2093 	 * e.g., working closely on the same area of the device. In
2094 	 * that case, we can group them together and: 1) don't waste
2095 	 * time idling, and 2) serve the union of their requests in
2096 	 * the best possible order for throughput.
2097 	 */
2098 	bfqq = bfqq_find_close(bfqd, cur_bfqq, sector);
2099 	if (!bfqq || bfqq == cur_bfqq)
2100 		return NULL;
2101 
2102 	return bfqq;
2103 }
2104 
2105 static struct bfq_queue *
bfq_setup_merge(struct bfq_queue * bfqq,struct bfq_queue * new_bfqq)2106 bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2107 {
2108 	int process_refs, new_process_refs;
2109 	struct bfq_queue *__bfqq;
2110 
2111 	/*
2112 	 * If there are no process references on the new_bfqq, then it is
2113 	 * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain
2114 	 * may have dropped their last reference (not just their last process
2115 	 * reference).
2116 	 */
2117 	if (!bfqq_process_refs(new_bfqq))
2118 		return NULL;
2119 
2120 	/* Avoid a circular list and skip interim queue merges. */
2121 	while ((__bfqq = new_bfqq->new_bfqq)) {
2122 		if (__bfqq == bfqq)
2123 			return NULL;
2124 		new_bfqq = __bfqq;
2125 	}
2126 
2127 	process_refs = bfqq_process_refs(bfqq);
2128 	new_process_refs = bfqq_process_refs(new_bfqq);
2129 	/*
2130 	 * If the process for the bfqq has gone away, there is no
2131 	 * sense in merging the queues.
2132 	 */
2133 	if (process_refs == 0 || new_process_refs == 0)
2134 		return NULL;
2135 
2136 	bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d",
2137 		new_bfqq->pid);
2138 
2139 	/*
2140 	 * Merging is just a redirection: the requests of the process
2141 	 * owning one of the two queues are redirected to the other queue.
2142 	 * The latter queue, in its turn, is set as shared if this is the
2143 	 * first time that the requests of some process are redirected to
2144 	 * it.
2145 	 *
2146 	 * We redirect bfqq to new_bfqq and not the opposite, because
2147 	 * we are in the context of the process owning bfqq, thus we
2148 	 * have the io_cq of this process. So we can immediately
2149 	 * configure this io_cq to redirect the requests of the
2150 	 * process to new_bfqq. In contrast, the io_cq of new_bfqq is
2151 	 * not available any more (new_bfqq->bic == NULL).
2152 	 *
2153 	 * Anyway, even in case new_bfqq coincides with the in-service
2154 	 * queue, redirecting requests the in-service queue is the
2155 	 * best option, as we feed the in-service queue with new
2156 	 * requests close to the last request served and, by doing so,
2157 	 * are likely to increase the throughput.
2158 	 */
2159 	bfqq->new_bfqq = new_bfqq;
2160 	/*
2161 	 * The above assignment schedules the following redirections:
2162 	 * each time some I/O for bfqq arrives, the process that
2163 	 * generated that I/O is disassociated from bfqq and
2164 	 * associated with new_bfqq. Here we increases new_bfqq->ref
2165 	 * in advance, adding the number of processes that are
2166 	 * expected to be associated with new_bfqq as they happen to
2167 	 * issue I/O.
2168 	 */
2169 	new_bfqq->ref += process_refs;
2170 	return new_bfqq;
2171 }
2172 
bfq_may_be_close_cooperator(struct bfq_queue * bfqq,struct bfq_queue * new_bfqq)2173 static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq,
2174 					struct bfq_queue *new_bfqq)
2175 {
2176 	if (bfq_too_late_for_merging(new_bfqq))
2177 		return false;
2178 
2179 	if (bfq_class_idle(bfqq) || bfq_class_idle(new_bfqq) ||
2180 	    (bfqq->ioprio_class != new_bfqq->ioprio_class))
2181 		return false;
2182 
2183 	/*
2184 	 * If either of the queues has already been detected as seeky,
2185 	 * then merging it with the other queue is unlikely to lead to
2186 	 * sequential I/O.
2187 	 */
2188 	if (BFQQ_SEEKY(bfqq) || BFQQ_SEEKY(new_bfqq))
2189 		return false;
2190 
2191 	/*
2192 	 * Interleaved I/O is known to be done by (some) applications
2193 	 * only for reads, so it does not make sense to merge async
2194 	 * queues.
2195 	 */
2196 	if (!bfq_bfqq_sync(bfqq) || !bfq_bfqq_sync(new_bfqq))
2197 		return false;
2198 
2199 	return true;
2200 }
2201 
2202 /*
2203  * Attempt to schedule a merge of bfqq with the currently in-service
2204  * queue or with a close queue among the scheduled queues.  Return
2205  * NULL if no merge was scheduled, a pointer to the shared bfq_queue
2206  * structure otherwise.
2207  *
2208  * The OOM queue is not allowed to participate to cooperation: in fact, since
2209  * the requests temporarily redirected to the OOM queue could be redirected
2210  * again to dedicated queues at any time, the state needed to correctly
2211  * handle merging with the OOM queue would be quite complex and expensive
2212  * to maintain. Besides, in such a critical condition as an out of memory,
2213  * the benefits of queue merging may be little relevant, or even negligible.
2214  *
2215  * WARNING: queue merging may impair fairness among non-weight raised
2216  * queues, for at least two reasons: 1) the original weight of a
2217  * merged queue may change during the merged state, 2) even being the
2218  * weight the same, a merged queue may be bloated with many more
2219  * requests than the ones produced by its originally-associated
2220  * process.
2221  */
2222 static struct bfq_queue *
bfq_setup_cooperator(struct bfq_data * bfqd,struct bfq_queue * bfqq,void * io_struct,bool request)2223 bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2224 		     void *io_struct, bool request)
2225 {
2226 	struct bfq_queue *in_service_bfqq, *new_bfqq;
2227 
2228 	/* if a merge has already been setup, then proceed with that first */
2229 	if (bfqq->new_bfqq)
2230 		return bfqq->new_bfqq;
2231 
2232 	/*
2233 	 * Prevent bfqq from being merged if it has been created too
2234 	 * long ago. The idea is that true cooperating processes, and
2235 	 * thus their associated bfq_queues, are supposed to be
2236 	 * created shortly after each other. This is the case, e.g.,
2237 	 * for KVM/QEMU and dump I/O threads. Basing on this
2238 	 * assumption, the following filtering greatly reduces the
2239 	 * probability that two non-cooperating processes, which just
2240 	 * happen to do close I/O for some short time interval, have
2241 	 * their queues merged by mistake.
2242 	 */
2243 	if (bfq_too_late_for_merging(bfqq))
2244 		return NULL;
2245 
2246 	if (!io_struct || unlikely(bfqq == &bfqd->oom_bfqq))
2247 		return NULL;
2248 
2249 	/* If there is only one backlogged queue, don't search. */
2250 	if (bfqd->busy_queues == 1)
2251 		return NULL;
2252 
2253 	in_service_bfqq = bfqd->in_service_queue;
2254 
2255 	if (in_service_bfqq && in_service_bfqq != bfqq &&
2256 	    likely(in_service_bfqq != &bfqd->oom_bfqq) &&
2257 	    bfq_rq_close_to_sector(io_struct, request,
2258 				   bfqd->in_serv_last_pos) &&
2259 	    bfqq->entity.parent == in_service_bfqq->entity.parent &&
2260 	    bfq_may_be_close_cooperator(bfqq, in_service_bfqq)) {
2261 		new_bfqq = bfq_setup_merge(bfqq, in_service_bfqq);
2262 		if (new_bfqq)
2263 			return new_bfqq;
2264 	}
2265 	/*
2266 	 * Check whether there is a cooperator among currently scheduled
2267 	 * queues. The only thing we need is that the bio/request is not
2268 	 * NULL, as we need it to establish whether a cooperator exists.
2269 	 */
2270 	new_bfqq = bfq_find_close_cooperator(bfqd, bfqq,
2271 			bfq_io_struct_pos(io_struct, request));
2272 
2273 	if (new_bfqq && likely(new_bfqq != &bfqd->oom_bfqq) &&
2274 	    bfq_may_be_close_cooperator(bfqq, new_bfqq))
2275 		return bfq_setup_merge(bfqq, new_bfqq);
2276 
2277 	return NULL;
2278 }
2279 
bfq_bfqq_save_state(struct bfq_queue * bfqq)2280 static void bfq_bfqq_save_state(struct bfq_queue *bfqq)
2281 {
2282 	struct bfq_io_cq *bic = bfqq->bic;
2283 
2284 	/*
2285 	 * If !bfqq->bic, the queue is already shared or its requests
2286 	 * have already been redirected to a shared queue; both idle window
2287 	 * and weight raising state have already been saved. Do nothing.
2288 	 */
2289 	if (!bic)
2290 		return;
2291 
2292 	bic->saved_ttime = bfqq->ttime;
2293 	bic->saved_has_short_ttime = bfq_bfqq_has_short_ttime(bfqq);
2294 	bic->saved_IO_bound = bfq_bfqq_IO_bound(bfqq);
2295 	bic->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq);
2296 	bic->was_in_burst_list = !hlist_unhashed(&bfqq->burst_list_node);
2297 	if (unlikely(bfq_bfqq_just_created(bfqq) &&
2298 		     !bfq_bfqq_in_large_burst(bfqq) &&
2299 		     bfqq->bfqd->low_latency)) {
2300 		/*
2301 		 * bfqq being merged right after being created: bfqq
2302 		 * would have deserved interactive weight raising, but
2303 		 * did not make it to be set in a weight-raised state,
2304 		 * because of this early merge.	Store directly the
2305 		 * weight-raising state that would have been assigned
2306 		 * to bfqq, so that to avoid that bfqq unjustly fails
2307 		 * to enjoy weight raising if split soon.
2308 		 */
2309 		bic->saved_wr_coeff = bfqq->bfqd->bfq_wr_coeff;
2310 		bic->saved_wr_cur_max_time = bfq_wr_duration(bfqq->bfqd);
2311 		bic->saved_last_wr_start_finish = jiffies;
2312 	} else {
2313 		bic->saved_wr_coeff = bfqq->wr_coeff;
2314 		bic->saved_wr_start_at_switch_to_srt =
2315 			bfqq->wr_start_at_switch_to_srt;
2316 		bic->saved_last_wr_start_finish = bfqq->last_wr_start_finish;
2317 		bic->saved_wr_cur_max_time = bfqq->wr_cur_max_time;
2318 	}
2319 }
2320 
2321 static void
bfq_merge_bfqqs(struct bfq_data * bfqd,struct bfq_io_cq * bic,struct bfq_queue * bfqq,struct bfq_queue * new_bfqq)2322 bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
2323 		struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2324 {
2325 	bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu",
2326 		(unsigned long)new_bfqq->pid);
2327 	/* Save weight raising and idle window of the merged queues */
2328 	bfq_bfqq_save_state(bfqq);
2329 	bfq_bfqq_save_state(new_bfqq);
2330 	if (bfq_bfqq_IO_bound(bfqq))
2331 		bfq_mark_bfqq_IO_bound(new_bfqq);
2332 	bfq_clear_bfqq_IO_bound(bfqq);
2333 
2334 	/*
2335 	 * If bfqq is weight-raised, then let new_bfqq inherit
2336 	 * weight-raising. To reduce false positives, neglect the case
2337 	 * where bfqq has just been created, but has not yet made it
2338 	 * to be weight-raised (which may happen because EQM may merge
2339 	 * bfqq even before bfq_add_request is executed for the first
2340 	 * time for bfqq). Handling this case would however be very
2341 	 * easy, thanks to the flag just_created.
2342 	 */
2343 	if (new_bfqq->wr_coeff == 1 && bfqq->wr_coeff > 1) {
2344 		new_bfqq->wr_coeff = bfqq->wr_coeff;
2345 		new_bfqq->wr_cur_max_time = bfqq->wr_cur_max_time;
2346 		new_bfqq->last_wr_start_finish = bfqq->last_wr_start_finish;
2347 		new_bfqq->wr_start_at_switch_to_srt =
2348 			bfqq->wr_start_at_switch_to_srt;
2349 		if (bfq_bfqq_busy(new_bfqq))
2350 			bfqd->wr_busy_queues++;
2351 		new_bfqq->entity.prio_changed = 1;
2352 	}
2353 
2354 	if (bfqq->wr_coeff > 1) { /* bfqq has given its wr to new_bfqq */
2355 		bfqq->wr_coeff = 1;
2356 		bfqq->entity.prio_changed = 1;
2357 		if (bfq_bfqq_busy(bfqq))
2358 			bfqd->wr_busy_queues--;
2359 	}
2360 
2361 	bfq_log_bfqq(bfqd, new_bfqq, "merge_bfqqs: wr_busy %d",
2362 		     bfqd->wr_busy_queues);
2363 
2364 	/*
2365 	 * Merge queues (that is, let bic redirect its requests to new_bfqq)
2366 	 */
2367 	bic_set_bfqq(bic, new_bfqq, 1);
2368 	bfq_mark_bfqq_coop(new_bfqq);
2369 	/*
2370 	 * new_bfqq now belongs to at least two bics (it is a shared queue):
2371 	 * set new_bfqq->bic to NULL. bfqq either:
2372 	 * - does not belong to any bic any more, and hence bfqq->bic must
2373 	 *   be set to NULL, or
2374 	 * - is a queue whose owning bics have already been redirected to a
2375 	 *   different queue, hence the queue is destined to not belong to
2376 	 *   any bic soon and bfqq->bic is already NULL (therefore the next
2377 	 *   assignment causes no harm).
2378 	 */
2379 	new_bfqq->bic = NULL;
2380 	bfqq->bic = NULL;
2381 	/* release process reference to bfqq */
2382 	bfq_put_queue(bfqq);
2383 }
2384 
bfq_allow_bio_merge(struct request_queue * q,struct request * rq,struct bio * bio)2385 static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq,
2386 				struct bio *bio)
2387 {
2388 	struct bfq_data *bfqd = q->elevator->elevator_data;
2389 	bool is_sync = op_is_sync(bio->bi_opf);
2390 	struct bfq_queue *bfqq = bfqd->bio_bfqq, *new_bfqq;
2391 
2392 	/*
2393 	 * Disallow merge of a sync bio into an async request.
2394 	 */
2395 	if (is_sync && !rq_is_sync(rq))
2396 		return false;
2397 
2398 	/*
2399 	 * Lookup the bfqq that this bio will be queued with. Allow
2400 	 * merge only if rq is queued there.
2401 	 */
2402 	if (!bfqq)
2403 		return false;
2404 
2405 	/*
2406 	 * We take advantage of this function to perform an early merge
2407 	 * of the queues of possible cooperating processes.
2408 	 */
2409 	new_bfqq = bfq_setup_cooperator(bfqd, bfqq, bio, false);
2410 	if (new_bfqq) {
2411 		/*
2412 		 * bic still points to bfqq, then it has not yet been
2413 		 * redirected to some other bfq_queue, and a queue
2414 		 * merge beween bfqq and new_bfqq can be safely
2415 		 * fulfillled, i.e., bic can be redirected to new_bfqq
2416 		 * and bfqq can be put.
2417 		 */
2418 		bfq_merge_bfqqs(bfqd, bfqd->bio_bic, bfqq,
2419 				new_bfqq);
2420 		/*
2421 		 * If we get here, bio will be queued into new_queue,
2422 		 * so use new_bfqq to decide whether bio and rq can be
2423 		 * merged.
2424 		 */
2425 		bfqq = new_bfqq;
2426 
2427 		/*
2428 		 * Change also bqfd->bio_bfqq, as
2429 		 * bfqd->bio_bic now points to new_bfqq, and
2430 		 * this function may be invoked again (and then may
2431 		 * use again bqfd->bio_bfqq).
2432 		 */
2433 		bfqd->bio_bfqq = bfqq;
2434 	}
2435 
2436 	return bfqq == RQ_BFQQ(rq);
2437 }
2438 
2439 /*
2440  * Set the maximum time for the in-service queue to consume its
2441  * budget. This prevents seeky processes from lowering the throughput.
2442  * In practice, a time-slice service scheme is used with seeky
2443  * processes.
2444  */
bfq_set_budget_timeout(struct bfq_data * bfqd,struct bfq_queue * bfqq)2445 static void bfq_set_budget_timeout(struct bfq_data *bfqd,
2446 				   struct bfq_queue *bfqq)
2447 {
2448 	unsigned int timeout_coeff;
2449 
2450 	if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time)
2451 		timeout_coeff = 1;
2452 	else
2453 		timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
2454 
2455 	bfqd->last_budget_start = ktime_get();
2456 
2457 	bfqq->budget_timeout = jiffies +
2458 		bfqd->bfq_timeout * timeout_coeff;
2459 }
2460 
__bfq_set_in_service_queue(struct bfq_data * bfqd,struct bfq_queue * bfqq)2461 static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
2462 				       struct bfq_queue *bfqq)
2463 {
2464 	if (bfqq) {
2465 		bfq_clear_bfqq_fifo_expire(bfqq);
2466 
2467 		bfqd->budgets_assigned = (bfqd->budgets_assigned * 7 + 256) / 8;
2468 
2469 		if (time_is_before_jiffies(bfqq->last_wr_start_finish) &&
2470 		    bfqq->wr_coeff > 1 &&
2471 		    bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
2472 		    time_is_before_jiffies(bfqq->budget_timeout)) {
2473 			/*
2474 			 * For soft real-time queues, move the start
2475 			 * of the weight-raising period forward by the
2476 			 * time the queue has not received any
2477 			 * service. Otherwise, a relatively long
2478 			 * service delay is likely to cause the
2479 			 * weight-raising period of the queue to end,
2480 			 * because of the short duration of the
2481 			 * weight-raising period of a soft real-time
2482 			 * queue.  It is worth noting that this move
2483 			 * is not so dangerous for the other queues,
2484 			 * because soft real-time queues are not
2485 			 * greedy.
2486 			 *
2487 			 * To not add a further variable, we use the
2488 			 * overloaded field budget_timeout to
2489 			 * determine for how long the queue has not
2490 			 * received service, i.e., how much time has
2491 			 * elapsed since the queue expired. However,
2492 			 * this is a little imprecise, because
2493 			 * budget_timeout is set to jiffies if bfqq
2494 			 * not only expires, but also remains with no
2495 			 * request.
2496 			 */
2497 			if (time_after(bfqq->budget_timeout,
2498 				       bfqq->last_wr_start_finish))
2499 				bfqq->last_wr_start_finish +=
2500 					jiffies - bfqq->budget_timeout;
2501 			else
2502 				bfqq->last_wr_start_finish = jiffies;
2503 		}
2504 
2505 		bfq_set_budget_timeout(bfqd, bfqq);
2506 		bfq_log_bfqq(bfqd, bfqq,
2507 			     "set_in_service_queue, cur-budget = %d",
2508 			     bfqq->entity.budget);
2509 	}
2510 
2511 	bfqd->in_service_queue = bfqq;
2512 	bfqd->in_serv_last_pos = 0;
2513 }
2514 
2515 /*
2516  * Get and set a new queue for service.
2517  */
bfq_set_in_service_queue(struct bfq_data * bfqd)2518 static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd)
2519 {
2520 	struct bfq_queue *bfqq = bfq_get_next_queue(bfqd);
2521 
2522 	__bfq_set_in_service_queue(bfqd, bfqq);
2523 	return bfqq;
2524 }
2525 
bfq_arm_slice_timer(struct bfq_data * bfqd)2526 static void bfq_arm_slice_timer(struct bfq_data *bfqd)
2527 {
2528 	struct bfq_queue *bfqq = bfqd->in_service_queue;
2529 	u32 sl;
2530 
2531 	bfq_mark_bfqq_wait_request(bfqq);
2532 
2533 	/*
2534 	 * We don't want to idle for seeks, but we do want to allow
2535 	 * fair distribution of slice time for a process doing back-to-back
2536 	 * seeks. So allow a little bit of time for him to submit a new rq.
2537 	 */
2538 	sl = bfqd->bfq_slice_idle;
2539 	/*
2540 	 * Unless the queue is being weight-raised or the scenario is
2541 	 * asymmetric, grant only minimum idle time if the queue
2542 	 * is seeky. A long idling is preserved for a weight-raised
2543 	 * queue, or, more in general, in an asymmetric scenario,
2544 	 * because a long idling is needed for guaranteeing to a queue
2545 	 * its reserved share of the throughput (in particular, it is
2546 	 * needed if the queue has a higher weight than some other
2547 	 * queue).
2548 	 */
2549 	if (BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
2550 	    bfq_symmetric_scenario(bfqd))
2551 		sl = min_t(u64, sl, BFQ_MIN_TT);
2552 	else if (bfqq->wr_coeff > 1)
2553 		sl = max_t(u32, sl, 20ULL * NSEC_PER_MSEC);
2554 
2555 	bfqd->last_idling_start = ktime_get();
2556 	hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl),
2557 		      HRTIMER_MODE_REL);
2558 	bfqg_stats_set_start_idle_time(bfqq_group(bfqq));
2559 }
2560 
2561 /*
2562  * In autotuning mode, max_budget is dynamically recomputed as the
2563  * amount of sectors transferred in timeout at the estimated peak
2564  * rate. This enables BFQ to utilize a full timeslice with a full
2565  * budget, even if the in-service queue is served at peak rate. And
2566  * this maximises throughput with sequential workloads.
2567  */
bfq_calc_max_budget(struct bfq_data * bfqd)2568 static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd)
2569 {
2570 	return (u64)bfqd->peak_rate * USEC_PER_MSEC *
2571 		jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT;
2572 }
2573 
2574 /*
2575  * Update parameters related to throughput and responsiveness, as a
2576  * function of the estimated peak rate. See comments on
2577  * bfq_calc_max_budget(), and on the ref_wr_duration array.
2578  */
update_thr_responsiveness_params(struct bfq_data * bfqd)2579 static void update_thr_responsiveness_params(struct bfq_data *bfqd)
2580 {
2581 	if (bfqd->bfq_user_max_budget == 0) {
2582 		bfqd->bfq_max_budget =
2583 			bfq_calc_max_budget(bfqd);
2584 		bfq_log(bfqd, "new max_budget = %d", bfqd->bfq_max_budget);
2585 	}
2586 }
2587 
bfq_reset_rate_computation(struct bfq_data * bfqd,struct request * rq)2588 static void bfq_reset_rate_computation(struct bfq_data *bfqd,
2589 				       struct request *rq)
2590 {
2591 	if (rq != NULL) { /* new rq dispatch now, reset accordingly */
2592 		bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns();
2593 		bfqd->peak_rate_samples = 1;
2594 		bfqd->sequential_samples = 0;
2595 		bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size =
2596 			blk_rq_sectors(rq);
2597 	} else /* no new rq dispatched, just reset the number of samples */
2598 		bfqd->peak_rate_samples = 0; /* full re-init on next disp. */
2599 
2600 	bfq_log(bfqd,
2601 		"reset_rate_computation at end, sample %u/%u tot_sects %llu",
2602 		bfqd->peak_rate_samples, bfqd->sequential_samples,
2603 		bfqd->tot_sectors_dispatched);
2604 }
2605 
bfq_update_rate_reset(struct bfq_data * bfqd,struct request * rq)2606 static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq)
2607 {
2608 	u32 rate, weight, divisor;
2609 
2610 	/*
2611 	 * For the convergence property to hold (see comments on
2612 	 * bfq_update_peak_rate()) and for the assessment to be
2613 	 * reliable, a minimum number of samples must be present, and
2614 	 * a minimum amount of time must have elapsed. If not so, do
2615 	 * not compute new rate. Just reset parameters, to get ready
2616 	 * for a new evaluation attempt.
2617 	 */
2618 	if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES ||
2619 	    bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL)
2620 		goto reset_computation;
2621 
2622 	/*
2623 	 * If a new request completion has occurred after last
2624 	 * dispatch, then, to approximate the rate at which requests
2625 	 * have been served by the device, it is more precise to
2626 	 * extend the observation interval to the last completion.
2627 	 */
2628 	bfqd->delta_from_first =
2629 		max_t(u64, bfqd->delta_from_first,
2630 		      bfqd->last_completion - bfqd->first_dispatch);
2631 
2632 	/*
2633 	 * Rate computed in sects/usec, and not sects/nsec, for
2634 	 * precision issues.
2635 	 */
2636 	rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT,
2637 			div_u64(bfqd->delta_from_first, NSEC_PER_USEC));
2638 
2639 	/*
2640 	 * Peak rate not updated if:
2641 	 * - the percentage of sequential dispatches is below 3/4 of the
2642 	 *   total, and rate is below the current estimated peak rate
2643 	 * - rate is unreasonably high (> 20M sectors/sec)
2644 	 */
2645 	if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 &&
2646 	     rate <= bfqd->peak_rate) ||
2647 		rate > 20<<BFQ_RATE_SHIFT)
2648 		goto reset_computation;
2649 
2650 	/*
2651 	 * We have to update the peak rate, at last! To this purpose,
2652 	 * we use a low-pass filter. We compute the smoothing constant
2653 	 * of the filter as a function of the 'weight' of the new
2654 	 * measured rate.
2655 	 *
2656 	 * As can be seen in next formulas, we define this weight as a
2657 	 * quantity proportional to how sequential the workload is,
2658 	 * and to how long the observation time interval is.
2659 	 *
2660 	 * The weight runs from 0 to 8. The maximum value of the
2661 	 * weight, 8, yields the minimum value for the smoothing
2662 	 * constant. At this minimum value for the smoothing constant,
2663 	 * the measured rate contributes for half of the next value of
2664 	 * the estimated peak rate.
2665 	 *
2666 	 * So, the first step is to compute the weight as a function
2667 	 * of how sequential the workload is. Note that the weight
2668 	 * cannot reach 9, because bfqd->sequential_samples cannot
2669 	 * become equal to bfqd->peak_rate_samples, which, in its
2670 	 * turn, holds true because bfqd->sequential_samples is not
2671 	 * incremented for the first sample.
2672 	 */
2673 	weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples;
2674 
2675 	/*
2676 	 * Second step: further refine the weight as a function of the
2677 	 * duration of the observation interval.
2678 	 */
2679 	weight = min_t(u32, 8,
2680 		       div_u64(weight * bfqd->delta_from_first,
2681 			       BFQ_RATE_REF_INTERVAL));
2682 
2683 	/*
2684 	 * Divisor ranging from 10, for minimum weight, to 2, for
2685 	 * maximum weight.
2686 	 */
2687 	divisor = 10 - weight;
2688 
2689 	/*
2690 	 * Finally, update peak rate:
2691 	 *
2692 	 * peak_rate = peak_rate * (divisor-1) / divisor  +  rate / divisor
2693 	 */
2694 	bfqd->peak_rate *= divisor-1;
2695 	bfqd->peak_rate /= divisor;
2696 	rate /= divisor; /* smoothing constant alpha = 1/divisor */
2697 
2698 	bfqd->peak_rate += rate;
2699 
2700 	/*
2701 	 * For a very slow device, bfqd->peak_rate can reach 0 (see
2702 	 * the minimum representable values reported in the comments
2703 	 * on BFQ_RATE_SHIFT). Push to 1 if this happens, to avoid
2704 	 * divisions by zero where bfqd->peak_rate is used as a
2705 	 * divisor.
2706 	 */
2707 	bfqd->peak_rate = max_t(u32, 1, bfqd->peak_rate);
2708 
2709 	update_thr_responsiveness_params(bfqd);
2710 
2711 reset_computation:
2712 	bfq_reset_rate_computation(bfqd, rq);
2713 }
2714 
2715 /*
2716  * Update the read/write peak rate (the main quantity used for
2717  * auto-tuning, see update_thr_responsiveness_params()).
2718  *
2719  * It is not trivial to estimate the peak rate (correctly): because of
2720  * the presence of sw and hw queues between the scheduler and the
2721  * device components that finally serve I/O requests, it is hard to
2722  * say exactly when a given dispatched request is served inside the
2723  * device, and for how long. As a consequence, it is hard to know
2724  * precisely at what rate a given set of requests is actually served
2725  * by the device.
2726  *
2727  * On the opposite end, the dispatch time of any request is trivially
2728  * available, and, from this piece of information, the "dispatch rate"
2729  * of requests can be immediately computed. So, the idea in the next
2730  * function is to use what is known, namely request dispatch times
2731  * (plus, when useful, request completion times), to estimate what is
2732  * unknown, namely in-device request service rate.
2733  *
2734  * The main issue is that, because of the above facts, the rate at
2735  * which a certain set of requests is dispatched over a certain time
2736  * interval can vary greatly with respect to the rate at which the
2737  * same requests are then served. But, since the size of any
2738  * intermediate queue is limited, and the service scheme is lossless
2739  * (no request is silently dropped), the following obvious convergence
2740  * property holds: the number of requests dispatched MUST become
2741  * closer and closer to the number of requests completed as the
2742  * observation interval grows. This is the key property used in
2743  * the next function to estimate the peak service rate as a function
2744  * of the observed dispatch rate. The function assumes to be invoked
2745  * on every request dispatch.
2746  */
bfq_update_peak_rate(struct bfq_data * bfqd,struct request * rq)2747 static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq)
2748 {
2749 	u64 now_ns = ktime_get_ns();
2750 
2751 	if (bfqd->peak_rate_samples == 0) { /* first dispatch */
2752 		bfq_log(bfqd, "update_peak_rate: goto reset, samples %d",
2753 			bfqd->peak_rate_samples);
2754 		bfq_reset_rate_computation(bfqd, rq);
2755 		goto update_last_values; /* will add one sample */
2756 	}
2757 
2758 	/*
2759 	 * Device idle for very long: the observation interval lasting
2760 	 * up to this dispatch cannot be a valid observation interval
2761 	 * for computing a new peak rate (similarly to the late-
2762 	 * completion event in bfq_completed_request()). Go to
2763 	 * update_rate_and_reset to have the following three steps
2764 	 * taken:
2765 	 * - close the observation interval at the last (previous)
2766 	 *   request dispatch or completion
2767 	 * - compute rate, if possible, for that observation interval
2768 	 * - start a new observation interval with this dispatch
2769 	 */
2770 	if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC &&
2771 	    bfqd->rq_in_driver == 0)
2772 		goto update_rate_and_reset;
2773 
2774 	/* Update sampling information */
2775 	bfqd->peak_rate_samples++;
2776 
2777 	if ((bfqd->rq_in_driver > 0 ||
2778 		now_ns - bfqd->last_completion < BFQ_MIN_TT)
2779 	     && get_sdist(bfqd->last_position, rq) < BFQQ_SEEK_THR)
2780 		bfqd->sequential_samples++;
2781 
2782 	bfqd->tot_sectors_dispatched += blk_rq_sectors(rq);
2783 
2784 	/* Reset max observed rq size every 32 dispatches */
2785 	if (likely(bfqd->peak_rate_samples % 32))
2786 		bfqd->last_rq_max_size =
2787 			max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size);
2788 	else
2789 		bfqd->last_rq_max_size = blk_rq_sectors(rq);
2790 
2791 	bfqd->delta_from_first = now_ns - bfqd->first_dispatch;
2792 
2793 	/* Target observation interval not yet reached, go on sampling */
2794 	if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL)
2795 		goto update_last_values;
2796 
2797 update_rate_and_reset:
2798 	bfq_update_rate_reset(bfqd, rq);
2799 update_last_values:
2800 	bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
2801 	if (RQ_BFQQ(rq) == bfqd->in_service_queue)
2802 		bfqd->in_serv_last_pos = bfqd->last_position;
2803 	bfqd->last_dispatch = now_ns;
2804 }
2805 
2806 /*
2807  * Remove request from internal lists.
2808  */
bfq_dispatch_remove(struct request_queue * q,struct request * rq)2809 static void bfq_dispatch_remove(struct request_queue *q, struct request *rq)
2810 {
2811 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
2812 
2813 	/*
2814 	 * For consistency, the next instruction should have been
2815 	 * executed after removing the request from the queue and
2816 	 * dispatching it.  We execute instead this instruction before
2817 	 * bfq_remove_request() (and hence introduce a temporary
2818 	 * inconsistency), for efficiency.  In fact, should this
2819 	 * dispatch occur for a non in-service bfqq, this anticipated
2820 	 * increment prevents two counters related to bfqq->dispatched
2821 	 * from risking to be, first, uselessly decremented, and then
2822 	 * incremented again when the (new) value of bfqq->dispatched
2823 	 * happens to be taken into account.
2824 	 */
2825 	bfqq->dispatched++;
2826 	bfq_update_peak_rate(q->elevator->elevator_data, rq);
2827 
2828 	bfq_remove_request(q, rq);
2829 }
2830 
__bfq_bfqq_expire(struct bfq_data * bfqd,struct bfq_queue * bfqq)2831 static bool __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq)
2832 {
2833 	/*
2834 	 * If this bfqq is shared between multiple processes, check
2835 	 * to make sure that those processes are still issuing I/Os
2836 	 * within the mean seek distance. If not, it may be time to
2837 	 * break the queues apart again.
2838 	 */
2839 	if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq))
2840 		bfq_mark_bfqq_split_coop(bfqq);
2841 
2842 	if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
2843 		if (bfqq->dispatched == 0)
2844 			/*
2845 			 * Overloading budget_timeout field to store
2846 			 * the time at which the queue remains with no
2847 			 * backlog and no outstanding request; used by
2848 			 * the weight-raising mechanism.
2849 			 */
2850 			bfqq->budget_timeout = jiffies;
2851 
2852 		bfq_del_bfqq_busy(bfqd, bfqq, true);
2853 	} else {
2854 		bfq_requeue_bfqq(bfqd, bfqq, true);
2855 		/*
2856 		 * Resort priority tree of potential close cooperators.
2857 		 */
2858 		bfq_pos_tree_add_move(bfqd, bfqq);
2859 	}
2860 
2861 	/*
2862 	 * All in-service entities must have been properly deactivated
2863 	 * or requeued before executing the next function, which
2864 	 * resets all in-service entities as no more in service. This
2865 	 * may cause bfqq to be freed. If this happens, the next
2866 	 * function returns true.
2867 	 */
2868 	return __bfq_bfqd_reset_in_service(bfqd);
2869 }
2870 
2871 /**
2872  * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior.
2873  * @bfqd: device data.
2874  * @bfqq: queue to update.
2875  * @reason: reason for expiration.
2876  *
2877  * Handle the feedback on @bfqq budget at queue expiration.
2878  * See the body for detailed comments.
2879  */
__bfq_bfqq_recalc_budget(struct bfq_data * bfqd,struct bfq_queue * bfqq,enum bfqq_expiration reason)2880 static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
2881 				     struct bfq_queue *bfqq,
2882 				     enum bfqq_expiration reason)
2883 {
2884 	struct request *next_rq;
2885 	int budget, min_budget;
2886 
2887 	min_budget = bfq_min_budget(bfqd);
2888 
2889 	if (bfqq->wr_coeff == 1)
2890 		budget = bfqq->max_budget;
2891 	else /*
2892 	      * Use a constant, low budget for weight-raised queues,
2893 	      * to help achieve a low latency. Keep it slightly higher
2894 	      * than the minimum possible budget, to cause a little
2895 	      * bit fewer expirations.
2896 	      */
2897 		budget = 2 * min_budget;
2898 
2899 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d",
2900 		bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
2901 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d",
2902 		budget, bfq_min_budget(bfqd));
2903 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d",
2904 		bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
2905 
2906 	if (bfq_bfqq_sync(bfqq) && bfqq->wr_coeff == 1) {
2907 		switch (reason) {
2908 		/*
2909 		 * Caveat: in all the following cases we trade latency
2910 		 * for throughput.
2911 		 */
2912 		case BFQQE_TOO_IDLE:
2913 			/*
2914 			 * This is the only case where we may reduce
2915 			 * the budget: if there is no request of the
2916 			 * process still waiting for completion, then
2917 			 * we assume (tentatively) that the timer has
2918 			 * expired because the batch of requests of
2919 			 * the process could have been served with a
2920 			 * smaller budget.  Hence, betting that
2921 			 * process will behave in the same way when it
2922 			 * becomes backlogged again, we reduce its
2923 			 * next budget.  As long as we guess right,
2924 			 * this budget cut reduces the latency
2925 			 * experienced by the process.
2926 			 *
2927 			 * However, if there are still outstanding
2928 			 * requests, then the process may have not yet
2929 			 * issued its next request just because it is
2930 			 * still waiting for the completion of some of
2931 			 * the still outstanding ones.  So in this
2932 			 * subcase we do not reduce its budget, on the
2933 			 * contrary we increase it to possibly boost
2934 			 * the throughput, as discussed in the
2935 			 * comments to the BUDGET_TIMEOUT case.
2936 			 */
2937 			if (bfqq->dispatched > 0) /* still outstanding reqs */
2938 				budget = min(budget * 2, bfqd->bfq_max_budget);
2939 			else {
2940 				if (budget > 5 * min_budget)
2941 					budget -= 4 * min_budget;
2942 				else
2943 					budget = min_budget;
2944 			}
2945 			break;
2946 		case BFQQE_BUDGET_TIMEOUT:
2947 			/*
2948 			 * We double the budget here because it gives
2949 			 * the chance to boost the throughput if this
2950 			 * is not a seeky process (and has bumped into
2951 			 * this timeout because of, e.g., ZBR).
2952 			 */
2953 			budget = min(budget * 2, bfqd->bfq_max_budget);
2954 			break;
2955 		case BFQQE_BUDGET_EXHAUSTED:
2956 			/*
2957 			 * The process still has backlog, and did not
2958 			 * let either the budget timeout or the disk
2959 			 * idling timeout expire. Hence it is not
2960 			 * seeky, has a short thinktime and may be
2961 			 * happy with a higher budget too. So
2962 			 * definitely increase the budget of this good
2963 			 * candidate to boost the disk throughput.
2964 			 */
2965 			budget = min(budget * 4, bfqd->bfq_max_budget);
2966 			break;
2967 		case BFQQE_NO_MORE_REQUESTS:
2968 			/*
2969 			 * For queues that expire for this reason, it
2970 			 * is particularly important to keep the
2971 			 * budget close to the actual service they
2972 			 * need. Doing so reduces the timestamp
2973 			 * misalignment problem described in the
2974 			 * comments in the body of
2975 			 * __bfq_activate_entity. In fact, suppose
2976 			 * that a queue systematically expires for
2977 			 * BFQQE_NO_MORE_REQUESTS and presents a
2978 			 * new request in time to enjoy timestamp
2979 			 * back-shifting. The larger the budget of the
2980 			 * queue is with respect to the service the
2981 			 * queue actually requests in each service
2982 			 * slot, the more times the queue can be
2983 			 * reactivated with the same virtual finish
2984 			 * time. It follows that, even if this finish
2985 			 * time is pushed to the system virtual time
2986 			 * to reduce the consequent timestamp
2987 			 * misalignment, the queue unjustly enjoys for
2988 			 * many re-activations a lower finish time
2989 			 * than all newly activated queues.
2990 			 *
2991 			 * The service needed by bfqq is measured
2992 			 * quite precisely by bfqq->entity.service.
2993 			 * Since bfqq does not enjoy device idling,
2994 			 * bfqq->entity.service is equal to the number
2995 			 * of sectors that the process associated with
2996 			 * bfqq requested to read/write before waiting
2997 			 * for request completions, or blocking for
2998 			 * other reasons.
2999 			 */
3000 			budget = max_t(int, bfqq->entity.service, min_budget);
3001 			break;
3002 		default:
3003 			return;
3004 		}
3005 	} else if (!bfq_bfqq_sync(bfqq)) {
3006 		/*
3007 		 * Async queues get always the maximum possible
3008 		 * budget, as for them we do not care about latency
3009 		 * (in addition, their ability to dispatch is limited
3010 		 * by the charging factor).
3011 		 */
3012 		budget = bfqd->bfq_max_budget;
3013 	}
3014 
3015 	bfqq->max_budget = budget;
3016 
3017 	if (bfqd->budgets_assigned >= bfq_stats_min_budgets &&
3018 	    !bfqd->bfq_user_max_budget)
3019 		bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget);
3020 
3021 	/*
3022 	 * If there is still backlog, then assign a new budget, making
3023 	 * sure that it is large enough for the next request.  Since
3024 	 * the finish time of bfqq must be kept in sync with the
3025 	 * budget, be sure to call __bfq_bfqq_expire() *after* this
3026 	 * update.
3027 	 *
3028 	 * If there is no backlog, then no need to update the budget;
3029 	 * it will be updated on the arrival of a new request.
3030 	 */
3031 	next_rq = bfqq->next_rq;
3032 	if (next_rq)
3033 		bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
3034 					    bfq_serv_to_charge(next_rq, bfqq));
3035 
3036 	bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d",
3037 			next_rq ? blk_rq_sectors(next_rq) : 0,
3038 			bfqq->entity.budget);
3039 }
3040 
3041 /*
3042  * Return true if the process associated with bfqq is "slow". The slow
3043  * flag is used, in addition to the budget timeout, to reduce the
3044  * amount of service provided to seeky processes, and thus reduce
3045  * their chances to lower the throughput. More details in the comments
3046  * on the function bfq_bfqq_expire().
3047  *
3048  * An important observation is in order: as discussed in the comments
3049  * on the function bfq_update_peak_rate(), with devices with internal
3050  * queues, it is hard if ever possible to know when and for how long
3051  * an I/O request is processed by the device (apart from the trivial
3052  * I/O pattern where a new request is dispatched only after the
3053  * previous one has been completed). This makes it hard to evaluate
3054  * the real rate at which the I/O requests of each bfq_queue are
3055  * served.  In fact, for an I/O scheduler like BFQ, serving a
3056  * bfq_queue means just dispatching its requests during its service
3057  * slot (i.e., until the budget of the queue is exhausted, or the
3058  * queue remains idle, or, finally, a timeout fires). But, during the
3059  * service slot of a bfq_queue, around 100 ms at most, the device may
3060  * be even still processing requests of bfq_queues served in previous
3061  * service slots. On the opposite end, the requests of the in-service
3062  * bfq_queue may be completed after the service slot of the queue
3063  * finishes.
3064  *
3065  * Anyway, unless more sophisticated solutions are used
3066  * (where possible), the sum of the sizes of the requests dispatched
3067  * during the service slot of a bfq_queue is probably the only
3068  * approximation available for the service received by the bfq_queue
3069  * during its service slot. And this sum is the quantity used in this
3070  * function to evaluate the I/O speed of a process.
3071  */
bfq_bfqq_is_slow(struct bfq_data * bfqd,struct bfq_queue * bfqq,bool compensate,enum bfqq_expiration reason,unsigned long * delta_ms)3072 static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq,
3073 				 bool compensate, enum bfqq_expiration reason,
3074 				 unsigned long *delta_ms)
3075 {
3076 	ktime_t delta_ktime;
3077 	u32 delta_usecs;
3078 	bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */
3079 
3080 	if (!bfq_bfqq_sync(bfqq))
3081 		return false;
3082 
3083 	if (compensate)
3084 		delta_ktime = bfqd->last_idling_start;
3085 	else
3086 		delta_ktime = ktime_get();
3087 	delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start);
3088 	delta_usecs = ktime_to_us(delta_ktime);
3089 
3090 	/* don't use too short time intervals */
3091 	if (delta_usecs < 1000) {
3092 		if (blk_queue_nonrot(bfqd->queue))
3093 			 /*
3094 			  * give same worst-case guarantees as idling
3095 			  * for seeky
3096 			  */
3097 			*delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC;
3098 		else /* charge at least one seek */
3099 			*delta_ms = bfq_slice_idle / NSEC_PER_MSEC;
3100 
3101 		return slow;
3102 	}
3103 
3104 	*delta_ms = delta_usecs / USEC_PER_MSEC;
3105 
3106 	/*
3107 	 * Use only long (> 20ms) intervals to filter out excessive
3108 	 * spikes in service rate estimation.
3109 	 */
3110 	if (delta_usecs > 20000) {
3111 		/*
3112 		 * Caveat for rotational devices: processes doing I/O
3113 		 * in the slower disk zones tend to be slow(er) even
3114 		 * if not seeky. In this respect, the estimated peak
3115 		 * rate is likely to be an average over the disk
3116 		 * surface. Accordingly, to not be too harsh with
3117 		 * unlucky processes, a process is deemed slow only if
3118 		 * its rate has been lower than half of the estimated
3119 		 * peak rate.
3120 		 */
3121 		slow = bfqq->entity.service < bfqd->bfq_max_budget / 2;
3122 	}
3123 
3124 	bfq_log_bfqq(bfqd, bfqq, "bfq_bfqq_is_slow: slow %d", slow);
3125 
3126 	return slow;
3127 }
3128 
3129 /*
3130  * To be deemed as soft real-time, an application must meet two
3131  * requirements. First, the application must not require an average
3132  * bandwidth higher than the approximate bandwidth required to playback or
3133  * record a compressed high-definition video.
3134  * The next function is invoked on the completion of the last request of a
3135  * batch, to compute the next-start time instant, soft_rt_next_start, such
3136  * that, if the next request of the application does not arrive before
3137  * soft_rt_next_start, then the above requirement on the bandwidth is met.
3138  *
3139  * The second requirement is that the request pattern of the application is
3140  * isochronous, i.e., that, after issuing a request or a batch of requests,
3141  * the application stops issuing new requests until all its pending requests
3142  * have been completed. After that, the application may issue a new batch,
3143  * and so on.
3144  * For this reason the next function is invoked to compute
3145  * soft_rt_next_start only for applications that meet this requirement,
3146  * whereas soft_rt_next_start is set to infinity for applications that do
3147  * not.
3148  *
3149  * Unfortunately, even a greedy (i.e., I/O-bound) application may
3150  * happen to meet, occasionally or systematically, both the above
3151  * bandwidth and isochrony requirements. This may happen at least in
3152  * the following circumstances. First, if the CPU load is high. The
3153  * application may stop issuing requests while the CPUs are busy
3154  * serving other processes, then restart, then stop again for a while,
3155  * and so on. The other circumstances are related to the storage
3156  * device: the storage device is highly loaded or reaches a low-enough
3157  * throughput with the I/O of the application (e.g., because the I/O
3158  * is random and/or the device is slow). In all these cases, the
3159  * I/O of the application may be simply slowed down enough to meet
3160  * the bandwidth and isochrony requirements. To reduce the probability
3161  * that greedy applications are deemed as soft real-time in these
3162  * corner cases, a further rule is used in the computation of
3163  * soft_rt_next_start: the return value of this function is forced to
3164  * be higher than the maximum between the following two quantities.
3165  *
3166  * (a) Current time plus: (1) the maximum time for which the arrival
3167  *     of a request is waited for when a sync queue becomes idle,
3168  *     namely bfqd->bfq_slice_idle, and (2) a few extra jiffies. We
3169  *     postpone for a moment the reason for adding a few extra
3170  *     jiffies; we get back to it after next item (b).  Lower-bounding
3171  *     the return value of this function with the current time plus
3172  *     bfqd->bfq_slice_idle tends to filter out greedy applications,
3173  *     because the latter issue their next request as soon as possible
3174  *     after the last one has been completed. In contrast, a soft
3175  *     real-time application spends some time processing data, after a
3176  *     batch of its requests has been completed.
3177  *
3178  * (b) Current value of bfqq->soft_rt_next_start. As pointed out
3179  *     above, greedy applications may happen to meet both the
3180  *     bandwidth and isochrony requirements under heavy CPU or
3181  *     storage-device load. In more detail, in these scenarios, these
3182  *     applications happen, only for limited time periods, to do I/O
3183  *     slowly enough to meet all the requirements described so far,
3184  *     including the filtering in above item (a). These slow-speed
3185  *     time intervals are usually interspersed between other time
3186  *     intervals during which these applications do I/O at a very high
3187  *     speed. Fortunately, exactly because of the high speed of the
3188  *     I/O in the high-speed intervals, the values returned by this
3189  *     function happen to be so high, near the end of any such
3190  *     high-speed interval, to be likely to fall *after* the end of
3191  *     the low-speed time interval that follows. These high values are
3192  *     stored in bfqq->soft_rt_next_start after each invocation of
3193  *     this function. As a consequence, if the last value of
3194  *     bfqq->soft_rt_next_start is constantly used to lower-bound the
3195  *     next value that this function may return, then, from the very
3196  *     beginning of a low-speed interval, bfqq->soft_rt_next_start is
3197  *     likely to be constantly kept so high that any I/O request
3198  *     issued during the low-speed interval is considered as arriving
3199  *     to soon for the application to be deemed as soft
3200  *     real-time. Then, in the high-speed interval that follows, the
3201  *     application will not be deemed as soft real-time, just because
3202  *     it will do I/O at a high speed. And so on.
3203  *
3204  * Getting back to the filtering in item (a), in the following two
3205  * cases this filtering might be easily passed by a greedy
3206  * application, if the reference quantity was just
3207  * bfqd->bfq_slice_idle:
3208  * 1) HZ is so low that the duration of a jiffy is comparable to or
3209  *    higher than bfqd->bfq_slice_idle. This happens, e.g., on slow
3210  *    devices with HZ=100. The time granularity may be so coarse
3211  *    that the approximation, in jiffies, of bfqd->bfq_slice_idle
3212  *    is rather lower than the exact value.
3213  * 2) jiffies, instead of increasing at a constant rate, may stop increasing
3214  *    for a while, then suddenly 'jump' by several units to recover the lost
3215  *    increments. This seems to happen, e.g., inside virtual machines.
3216  * To address this issue, in the filtering in (a) we do not use as a
3217  * reference time interval just bfqd->bfq_slice_idle, but
3218  * bfqd->bfq_slice_idle plus a few jiffies. In particular, we add the
3219  * minimum number of jiffies for which the filter seems to be quite
3220  * precise also in embedded systems and KVM/QEMU virtual machines.
3221  */
bfq_bfqq_softrt_next_start(struct bfq_data * bfqd,struct bfq_queue * bfqq)3222 static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd,
3223 						struct bfq_queue *bfqq)
3224 {
3225 	return max3(bfqq->soft_rt_next_start,
3226 		    bfqq->last_idle_bklogged +
3227 		    HZ * bfqq->service_from_backlogged /
3228 		    bfqd->bfq_wr_max_softrt_rate,
3229 		    jiffies + nsecs_to_jiffies(bfqq->bfqd->bfq_slice_idle) + 4);
3230 }
3231 
bfq_bfqq_injectable(struct bfq_queue * bfqq)3232 static bool bfq_bfqq_injectable(struct bfq_queue *bfqq)
3233 {
3234 	return BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
3235 		blk_queue_nonrot(bfqq->bfqd->queue) &&
3236 		bfqq->bfqd->hw_tag;
3237 }
3238 
3239 /**
3240  * bfq_bfqq_expire - expire a queue.
3241  * @bfqd: device owning the queue.
3242  * @bfqq: the queue to expire.
3243  * @compensate: if true, compensate for the time spent idling.
3244  * @reason: the reason causing the expiration.
3245  *
3246  * If the process associated with bfqq does slow I/O (e.g., because it
3247  * issues random requests), we charge bfqq with the time it has been
3248  * in service instead of the service it has received (see
3249  * bfq_bfqq_charge_time for details on how this goal is achieved). As
3250  * a consequence, bfqq will typically get higher timestamps upon
3251  * reactivation, and hence it will be rescheduled as if it had
3252  * received more service than what it has actually received. In the
3253  * end, bfqq receives less service in proportion to how slowly its
3254  * associated process consumes its budgets (and hence how seriously it
3255  * tends to lower the throughput). In addition, this time-charging
3256  * strategy guarantees time fairness among slow processes. In
3257  * contrast, if the process associated with bfqq is not slow, we
3258  * charge bfqq exactly with the service it has received.
3259  *
3260  * Charging time to the first type of queues and the exact service to
3261  * the other has the effect of using the WF2Q+ policy to schedule the
3262  * former on a timeslice basis, without violating service domain
3263  * guarantees among the latter.
3264  */
bfq_bfqq_expire(struct bfq_data * bfqd,struct bfq_queue * bfqq,bool compensate,enum bfqq_expiration reason)3265 void bfq_bfqq_expire(struct bfq_data *bfqd,
3266 		     struct bfq_queue *bfqq,
3267 		     bool compensate,
3268 		     enum bfqq_expiration reason)
3269 {
3270 	bool slow;
3271 	unsigned long delta = 0;
3272 	struct bfq_entity *entity = &bfqq->entity;
3273 
3274 	/*
3275 	 * Check whether the process is slow (see bfq_bfqq_is_slow).
3276 	 */
3277 	slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, reason, &delta);
3278 
3279 	/*
3280 	 * As above explained, charge slow (typically seeky) and
3281 	 * timed-out queues with the time and not the service
3282 	 * received, to favor sequential workloads.
3283 	 *
3284 	 * Processes doing I/O in the slower disk zones will tend to
3285 	 * be slow(er) even if not seeky. Therefore, since the
3286 	 * estimated peak rate is actually an average over the disk
3287 	 * surface, these processes may timeout just for bad luck. To
3288 	 * avoid punishing them, do not charge time to processes that
3289 	 * succeeded in consuming at least 2/3 of their budget. This
3290 	 * allows BFQ to preserve enough elasticity to still perform
3291 	 * bandwidth, and not time, distribution with little unlucky
3292 	 * or quasi-sequential processes.
3293 	 */
3294 	if (bfqq->wr_coeff == 1 &&
3295 	    (slow ||
3296 	     (reason == BFQQE_BUDGET_TIMEOUT &&
3297 	      bfq_bfqq_budget_left(bfqq) >=  entity->budget / 3)))
3298 		bfq_bfqq_charge_time(bfqd, bfqq, delta);
3299 
3300 	if (reason == BFQQE_TOO_IDLE &&
3301 	    entity->service <= 2 * entity->budget / 10)
3302 		bfq_clear_bfqq_IO_bound(bfqq);
3303 
3304 	if (bfqd->low_latency && bfqq->wr_coeff == 1)
3305 		bfqq->last_wr_start_finish = jiffies;
3306 
3307 	if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 &&
3308 	    RB_EMPTY_ROOT(&bfqq->sort_list)) {
3309 		/*
3310 		 * If we get here, and there are no outstanding
3311 		 * requests, then the request pattern is isochronous
3312 		 * (see the comments on the function
3313 		 * bfq_bfqq_softrt_next_start()). Thus we can compute
3314 		 * soft_rt_next_start. If, instead, the queue still
3315 		 * has outstanding requests, then we have to wait for
3316 		 * the completion of all the outstanding requests to
3317 		 * discover whether the request pattern is actually
3318 		 * isochronous.
3319 		 */
3320 		if (bfqq->dispatched == 0)
3321 			bfqq->soft_rt_next_start =
3322 				bfq_bfqq_softrt_next_start(bfqd, bfqq);
3323 		else {
3324 			/*
3325 			 * Schedule an update of soft_rt_next_start to when
3326 			 * the task may be discovered to be isochronous.
3327 			 */
3328 			bfq_mark_bfqq_softrt_update(bfqq);
3329 		}
3330 	}
3331 
3332 	bfq_log_bfqq(bfqd, bfqq,
3333 		"expire (%d, slow %d, num_disp %d, short_ttime %d)", reason,
3334 		slow, bfqq->dispatched, bfq_bfqq_has_short_ttime(bfqq));
3335 
3336 	/*
3337 	 * Increase, decrease or leave budget unchanged according to
3338 	 * reason.
3339 	 */
3340 	__bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
3341 	if (__bfq_bfqq_expire(bfqd, bfqq))
3342 		/* bfqq is gone, no more actions on it */
3343 		return;
3344 
3345 	bfqq->injected_service = 0;
3346 
3347 	/* mark bfqq as waiting a request only if a bic still points to it */
3348 	if (!bfq_bfqq_busy(bfqq) &&
3349 	    reason != BFQQE_BUDGET_TIMEOUT &&
3350 	    reason != BFQQE_BUDGET_EXHAUSTED) {
3351 		bfq_mark_bfqq_non_blocking_wait_rq(bfqq);
3352 		/*
3353 		 * Not setting service to 0, because, if the next rq
3354 		 * arrives in time, the queue will go on receiving
3355 		 * service with this same budget (as if it never expired)
3356 		 */
3357 	} else
3358 		entity->service = 0;
3359 
3360 	/*
3361 	 * Reset the received-service counter for every parent entity.
3362 	 * Differently from what happens with bfqq->entity.service,
3363 	 * the resetting of this counter never needs to be postponed
3364 	 * for parent entities. In fact, in case bfqq may have a
3365 	 * chance to go on being served using the last, partially
3366 	 * consumed budget, bfqq->entity.service needs to be kept,
3367 	 * because if bfqq then actually goes on being served using
3368 	 * the same budget, the last value of bfqq->entity.service is
3369 	 * needed to properly decrement bfqq->entity.budget by the
3370 	 * portion already consumed. In contrast, it is not necessary
3371 	 * to keep entity->service for parent entities too, because
3372 	 * the bubble up of the new value of bfqq->entity.budget will
3373 	 * make sure that the budgets of parent entities are correct,
3374 	 * even in case bfqq and thus parent entities go on receiving
3375 	 * service with the same budget.
3376 	 */
3377 	entity = entity->parent;
3378 	for_each_entity(entity)
3379 		entity->service = 0;
3380 }
3381 
3382 /*
3383  * Budget timeout is not implemented through a dedicated timer, but
3384  * just checked on request arrivals and completions, as well as on
3385  * idle timer expirations.
3386  */
bfq_bfqq_budget_timeout(struct bfq_queue * bfqq)3387 static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
3388 {
3389 	return time_is_before_eq_jiffies(bfqq->budget_timeout);
3390 }
3391 
3392 /*
3393  * If we expire a queue that is actively waiting (i.e., with the
3394  * device idled) for the arrival of a new request, then we may incur
3395  * the timestamp misalignment problem described in the body of the
3396  * function __bfq_activate_entity. Hence we return true only if this
3397  * condition does not hold, or if the queue is slow enough to deserve
3398  * only to be kicked off for preserving a high throughput.
3399  */
bfq_may_expire_for_budg_timeout(struct bfq_queue * bfqq)3400 static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
3401 {
3402 	bfq_log_bfqq(bfqq->bfqd, bfqq,
3403 		"may_budget_timeout: wait_request %d left %d timeout %d",
3404 		bfq_bfqq_wait_request(bfqq),
3405 			bfq_bfqq_budget_left(bfqq) >=  bfqq->entity.budget / 3,
3406 		bfq_bfqq_budget_timeout(bfqq));
3407 
3408 	return (!bfq_bfqq_wait_request(bfqq) ||
3409 		bfq_bfqq_budget_left(bfqq) >=  bfqq->entity.budget / 3)
3410 		&&
3411 		bfq_bfqq_budget_timeout(bfqq);
3412 }
3413 
3414 /*
3415  * For a queue that becomes empty, device idling is allowed only if
3416  * this function returns true for the queue. As a consequence, since
3417  * device idling plays a critical role in both throughput boosting and
3418  * service guarantees, the return value of this function plays a
3419  * critical role in both these aspects as well.
3420  *
3421  * In a nutshell, this function returns true only if idling is
3422  * beneficial for throughput or, even if detrimental for throughput,
3423  * idling is however necessary to preserve service guarantees (low
3424  * latency, desired throughput distribution, ...). In particular, on
3425  * NCQ-capable devices, this function tries to return false, so as to
3426  * help keep the drives' internal queues full, whenever this helps the
3427  * device boost the throughput without causing any service-guarantee
3428  * issue.
3429  *
3430  * In more detail, the return value of this function is obtained by,
3431  * first, computing a number of boolean variables that take into
3432  * account throughput and service-guarantee issues, and, then,
3433  * combining these variables in a logical expression. Most of the
3434  * issues taken into account are not trivial. We discuss these issues
3435  * individually while introducing the variables.
3436  */
bfq_better_to_idle(struct bfq_queue * bfqq)3437 static bool bfq_better_to_idle(struct bfq_queue *bfqq)
3438 {
3439 	struct bfq_data *bfqd = bfqq->bfqd;
3440 	bool rot_without_queueing =
3441 		!blk_queue_nonrot(bfqd->queue) && !bfqd->hw_tag,
3442 		bfqq_sequential_and_IO_bound,
3443 		idling_boosts_thr, idling_boosts_thr_without_issues,
3444 		idling_needed_for_service_guarantees,
3445 		asymmetric_scenario;
3446 
3447 	if (bfqd->strict_guarantees)
3448 		return true;
3449 
3450 	/*
3451 	 * Idling is performed only if slice_idle > 0. In addition, we
3452 	 * do not idle if
3453 	 * (a) bfqq is async
3454 	 * (b) bfqq is in the idle io prio class: in this case we do
3455 	 * not idle because we want to minimize the bandwidth that
3456 	 * queues in this class can steal to higher-priority queues
3457 	 */
3458 	if (bfqd->bfq_slice_idle == 0 || !bfq_bfqq_sync(bfqq) ||
3459 	    bfq_class_idle(bfqq))
3460 		return false;
3461 
3462 	bfqq_sequential_and_IO_bound = !BFQQ_SEEKY(bfqq) &&
3463 		bfq_bfqq_IO_bound(bfqq) && bfq_bfqq_has_short_ttime(bfqq);
3464 
3465 	/*
3466 	 * The next variable takes into account the cases where idling
3467 	 * boosts the throughput.
3468 	 *
3469 	 * The value of the variable is computed considering, first, that
3470 	 * idling is virtually always beneficial for the throughput if:
3471 	 * (a) the device is not NCQ-capable and rotational, or
3472 	 * (b) regardless of the presence of NCQ, the device is rotational and
3473 	 *     the request pattern for bfqq is I/O-bound and sequential, or
3474 	 * (c) regardless of whether it is rotational, the device is
3475 	 *     not NCQ-capable and the request pattern for bfqq is
3476 	 *     I/O-bound and sequential.
3477 	 *
3478 	 * Secondly, and in contrast to the above item (b), idling an
3479 	 * NCQ-capable flash-based device would not boost the
3480 	 * throughput even with sequential I/O; rather it would lower
3481 	 * the throughput in proportion to how fast the device
3482 	 * is. Accordingly, the next variable is true if any of the
3483 	 * above conditions (a), (b) or (c) is true, and, in
3484 	 * particular, happens to be false if bfqd is an NCQ-capable
3485 	 * flash-based device.
3486 	 */
3487 	idling_boosts_thr = rot_without_queueing ||
3488 		((!blk_queue_nonrot(bfqd->queue) || !bfqd->hw_tag) &&
3489 		 bfqq_sequential_and_IO_bound);
3490 
3491 	/*
3492 	 * The value of the next variable,
3493 	 * idling_boosts_thr_without_issues, is equal to that of
3494 	 * idling_boosts_thr, unless a special case holds. In this
3495 	 * special case, described below, idling may cause problems to
3496 	 * weight-raised queues.
3497 	 *
3498 	 * When the request pool is saturated (e.g., in the presence
3499 	 * of write hogs), if the processes associated with
3500 	 * non-weight-raised queues ask for requests at a lower rate,
3501 	 * then processes associated with weight-raised queues have a
3502 	 * higher probability to get a request from the pool
3503 	 * immediately (or at least soon) when they need one. Thus
3504 	 * they have a higher probability to actually get a fraction
3505 	 * of the device throughput proportional to their high
3506 	 * weight. This is especially true with NCQ-capable drives,
3507 	 * which enqueue several requests in advance, and further
3508 	 * reorder internally-queued requests.
3509 	 *
3510 	 * For this reason, we force to false the value of
3511 	 * idling_boosts_thr_without_issues if there are weight-raised
3512 	 * busy queues. In this case, and if bfqq is not weight-raised,
3513 	 * this guarantees that the device is not idled for bfqq (if,
3514 	 * instead, bfqq is weight-raised, then idling will be
3515 	 * guaranteed by another variable, see below). Combined with
3516 	 * the timestamping rules of BFQ (see [1] for details), this
3517 	 * behavior causes bfqq, and hence any sync non-weight-raised
3518 	 * queue, to get a lower number of requests served, and thus
3519 	 * to ask for a lower number of requests from the request
3520 	 * pool, before the busy weight-raised queues get served
3521 	 * again. This often mitigates starvation problems in the
3522 	 * presence of heavy write workloads and NCQ, thereby
3523 	 * guaranteeing a higher application and system responsiveness
3524 	 * in these hostile scenarios.
3525 	 */
3526 	idling_boosts_thr_without_issues = idling_boosts_thr &&
3527 		bfqd->wr_busy_queues == 0;
3528 
3529 	/*
3530 	 * There is then a case where idling must be performed not
3531 	 * for throughput concerns, but to preserve service
3532 	 * guarantees.
3533 	 *
3534 	 * To introduce this case, we can note that allowing the drive
3535 	 * to enqueue more than one request at a time, and hence
3536 	 * delegating de facto final scheduling decisions to the
3537 	 * drive's internal scheduler, entails loss of control on the
3538 	 * actual request service order. In particular, the critical
3539 	 * situation is when requests from different processes happen
3540 	 * to be present, at the same time, in the internal queue(s)
3541 	 * of the drive. In such a situation, the drive, by deciding
3542 	 * the service order of the internally-queued requests, does
3543 	 * determine also the actual throughput distribution among
3544 	 * these processes. But the drive typically has no notion or
3545 	 * concern about per-process throughput distribution, and
3546 	 * makes its decisions only on a per-request basis. Therefore,
3547 	 * the service distribution enforced by the drive's internal
3548 	 * scheduler is likely to coincide with the desired
3549 	 * device-throughput distribution only in a completely
3550 	 * symmetric scenario where:
3551 	 * (i)  each of these processes must get the same throughput as
3552 	 *      the others;
3553 	 * (ii) the I/O of each process has the same properties, in
3554 	 *      terms of locality (sequential or random), direction
3555 	 *      (reads or writes), request sizes, greediness
3556 	 *      (from I/O-bound to sporadic), and so on.
3557 	 * In fact, in such a scenario, the drive tends to treat
3558 	 * the requests of each of these processes in about the same
3559 	 * way as the requests of the others, and thus to provide
3560 	 * each of these processes with about the same throughput
3561 	 * (which is exactly the desired throughput distribution). In
3562 	 * contrast, in any asymmetric scenario, device idling is
3563 	 * certainly needed to guarantee that bfqq receives its
3564 	 * assigned fraction of the device throughput (see [1] for
3565 	 * details).
3566 	 * The problem is that idling may significantly reduce
3567 	 * throughput with certain combinations of types of I/O and
3568 	 * devices. An important example is sync random I/O, on flash
3569 	 * storage with command queueing. So, unless bfqq falls in the
3570 	 * above cases where idling also boosts throughput, it would
3571 	 * be important to check conditions (i) and (ii) accurately,
3572 	 * so as to avoid idling when not strictly needed for service
3573 	 * guarantees.
3574 	 *
3575 	 * Unfortunately, it is extremely difficult to thoroughly
3576 	 * check condition (ii). And, in case there are active groups,
3577 	 * it becomes very difficult to check condition (i) too. In
3578 	 * fact, if there are active groups, then, for condition (i)
3579 	 * to become false, it is enough that an active group contains
3580 	 * more active processes or sub-groups than some other active
3581 	 * group. More precisely, for condition (i) to hold because of
3582 	 * such a group, it is not even necessary that the group is
3583 	 * (still) active: it is sufficient that, even if the group
3584 	 * has become inactive, some of its descendant processes still
3585 	 * have some request already dispatched but still waiting for
3586 	 * completion. In fact, requests have still to be guaranteed
3587 	 * their share of the throughput even after being
3588 	 * dispatched. In this respect, it is easy to show that, if a
3589 	 * group frequently becomes inactive while still having
3590 	 * in-flight requests, and if, when this happens, the group is
3591 	 * not considered in the calculation of whether the scenario
3592 	 * is asymmetric, then the group may fail to be guaranteed its
3593 	 * fair share of the throughput (basically because idling may
3594 	 * not be performed for the descendant processes of the group,
3595 	 * but it had to be).  We address this issue with the
3596 	 * following bi-modal behavior, implemented in the function
3597 	 * bfq_symmetric_scenario().
3598 	 *
3599 	 * If there are groups with requests waiting for completion
3600 	 * (as commented above, some of these groups may even be
3601 	 * already inactive), then the scenario is tagged as
3602 	 * asymmetric, conservatively, without checking any of the
3603 	 * conditions (i) and (ii). So the device is idled for bfqq.
3604 	 * This behavior matches also the fact that groups are created
3605 	 * exactly if controlling I/O is a primary concern (to
3606 	 * preserve bandwidth and latency guarantees).
3607 	 *
3608 	 * On the opposite end, if there are no groups with requests
3609 	 * waiting for completion, then only condition (i) is actually
3610 	 * controlled, i.e., provided that condition (i) holds, idling
3611 	 * is not performed, regardless of whether condition (ii)
3612 	 * holds. In other words, only if condition (i) does not hold,
3613 	 * then idling is allowed, and the device tends to be
3614 	 * prevented from queueing many requests, possibly of several
3615 	 * processes. Since there are no groups with requests waiting
3616 	 * for completion, then, to control condition (i) it is enough
3617 	 * to check just whether all the queues with requests waiting
3618 	 * for completion also have the same weight.
3619 	 *
3620 	 * Not checking condition (ii) evidently exposes bfqq to the
3621 	 * risk of getting less throughput than its fair share.
3622 	 * However, for queues with the same weight, a further
3623 	 * mechanism, preemption, mitigates or even eliminates this
3624 	 * problem. And it does so without consequences on overall
3625 	 * throughput. This mechanism and its benefits are explained
3626 	 * in the next three paragraphs.
3627 	 *
3628 	 * Even if a queue, say Q, is expired when it remains idle, Q
3629 	 * can still preempt the new in-service queue if the next
3630 	 * request of Q arrives soon (see the comments on
3631 	 * bfq_bfqq_update_budg_for_activation). If all queues and
3632 	 * groups have the same weight, this form of preemption,
3633 	 * combined with the hole-recovery heuristic described in the
3634 	 * comments on function bfq_bfqq_update_budg_for_activation,
3635 	 * are enough to preserve a correct bandwidth distribution in
3636 	 * the mid term, even without idling. In fact, even if not
3637 	 * idling allows the internal queues of the device to contain
3638 	 * many requests, and thus to reorder requests, we can rather
3639 	 * safely assume that the internal scheduler still preserves a
3640 	 * minimum of mid-term fairness.
3641 	 *
3642 	 * More precisely, this preemption-based, idleless approach
3643 	 * provides fairness in terms of IOPS, and not sectors per
3644 	 * second. This can be seen with a simple example. Suppose
3645 	 * that there are two queues with the same weight, but that
3646 	 * the first queue receives requests of 8 sectors, while the
3647 	 * second queue receives requests of 1024 sectors. In
3648 	 * addition, suppose that each of the two queues contains at
3649 	 * most one request at a time, which implies that each queue
3650 	 * always remains idle after it is served. Finally, after
3651 	 * remaining idle, each queue receives very quickly a new
3652 	 * request. It follows that the two queues are served
3653 	 * alternatively, preempting each other if needed. This
3654 	 * implies that, although both queues have the same weight,
3655 	 * the queue with large requests receives a service that is
3656 	 * 1024/8 times as high as the service received by the other
3657 	 * queue.
3658 	 *
3659 	 * The motivation for using preemption instead of idling (for
3660 	 * queues with the same weight) is that, by not idling,
3661 	 * service guarantees are preserved (completely or at least in
3662 	 * part) without minimally sacrificing throughput. And, if
3663 	 * there is no active group, then the primary expectation for
3664 	 * this device is probably a high throughput.
3665 	 *
3666 	 * We are now left only with explaining the additional
3667 	 * compound condition that is checked below for deciding
3668 	 * whether the scenario is asymmetric. To explain this
3669 	 * compound condition, we need to add that the function
3670 	 * bfq_symmetric_scenario checks the weights of only
3671 	 * non-weight-raised queues, for efficiency reasons (see
3672 	 * comments on bfq_weights_tree_add()). Then the fact that
3673 	 * bfqq is weight-raised is checked explicitly here. More
3674 	 * precisely, the compound condition below takes into account
3675 	 * also the fact that, even if bfqq is being weight-raised,
3676 	 * the scenario is still symmetric if all queues with requests
3677 	 * waiting for completion happen to be
3678 	 * weight-raised. Actually, we should be even more precise
3679 	 * here, and differentiate between interactive weight raising
3680 	 * and soft real-time weight raising.
3681 	 *
3682 	 * As a side note, it is worth considering that the above
3683 	 * device-idling countermeasures may however fail in the
3684 	 * following unlucky scenario: if idling is (correctly)
3685 	 * disabled in a time period during which all symmetry
3686 	 * sub-conditions hold, and hence the device is allowed to
3687 	 * enqueue many requests, but at some later point in time some
3688 	 * sub-condition stops to hold, then it may become impossible
3689 	 * to let requests be served in the desired order until all
3690 	 * the requests already queued in the device have been served.
3691 	 */
3692 	asymmetric_scenario = (bfqq->wr_coeff > 1 &&
3693 			       bfqd->wr_busy_queues < bfqd->busy_queues) ||
3694 		!bfq_symmetric_scenario(bfqd);
3695 
3696 	/*
3697 	 * Finally, there is a case where maximizing throughput is the
3698 	 * best choice even if it may cause unfairness toward
3699 	 * bfqq. Such a case is when bfqq became active in a burst of
3700 	 * queue activations. Queues that became active during a large
3701 	 * burst benefit only from throughput, as discussed in the
3702 	 * comments on bfq_handle_burst. Thus, if bfqq became active
3703 	 * in a burst and not idling the device maximizes throughput,
3704 	 * then the device must no be idled, because not idling the
3705 	 * device provides bfqq and all other queues in the burst with
3706 	 * maximum benefit. Combining this and the above case, we can
3707 	 * now establish when idling is actually needed to preserve
3708 	 * service guarantees.
3709 	 */
3710 	idling_needed_for_service_guarantees =
3711 		asymmetric_scenario && !bfq_bfqq_in_large_burst(bfqq);
3712 
3713 	/*
3714 	 * We have now all the components we need to compute the
3715 	 * return value of the function, which is true only if idling
3716 	 * either boosts the throughput (without issues), or is
3717 	 * necessary to preserve service guarantees.
3718 	 */
3719 	return idling_boosts_thr_without_issues ||
3720 		idling_needed_for_service_guarantees;
3721 }
3722 
3723 /*
3724  * If the in-service queue is empty but the function bfq_better_to_idle
3725  * returns true, then:
3726  * 1) the queue must remain in service and cannot be expired, and
3727  * 2) the device must be idled to wait for the possible arrival of a new
3728  *    request for the queue.
3729  * See the comments on the function bfq_better_to_idle for the reasons
3730  * why performing device idling is the best choice to boost the throughput
3731  * and preserve service guarantees when bfq_better_to_idle itself
3732  * returns true.
3733  */
bfq_bfqq_must_idle(struct bfq_queue * bfqq)3734 static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq)
3735 {
3736 	return RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_better_to_idle(bfqq);
3737 }
3738 
bfq_choose_bfqq_for_injection(struct bfq_data * bfqd)3739 static struct bfq_queue *bfq_choose_bfqq_for_injection(struct bfq_data *bfqd)
3740 {
3741 	struct bfq_queue *bfqq;
3742 
3743 	/*
3744 	 * A linear search; but, with a high probability, very few
3745 	 * steps are needed to find a candidate queue, i.e., a queue
3746 	 * with enough budget left for its next request. In fact:
3747 	 * - BFQ dynamically updates the budget of every queue so as
3748 	 *   to accommodate the expected backlog of the queue;
3749 	 * - if a queue gets all its requests dispatched as injected
3750 	 *   service, then the queue is removed from the active list
3751 	 *   (and re-added only if it gets new requests, but with
3752 	 *   enough budget for its new backlog).
3753 	 */
3754 	list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
3755 		if (!RB_EMPTY_ROOT(&bfqq->sort_list) &&
3756 		    bfq_serv_to_charge(bfqq->next_rq, bfqq) <=
3757 		    bfq_bfqq_budget_left(bfqq))
3758 			return bfqq;
3759 
3760 	return NULL;
3761 }
3762 
3763 /*
3764  * Select a queue for service.  If we have a current queue in service,
3765  * check whether to continue servicing it, or retrieve and set a new one.
3766  */
bfq_select_queue(struct bfq_data * bfqd)3767 static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
3768 {
3769 	struct bfq_queue *bfqq;
3770 	struct request *next_rq;
3771 	enum bfqq_expiration reason = BFQQE_BUDGET_TIMEOUT;
3772 
3773 	bfqq = bfqd->in_service_queue;
3774 	if (!bfqq)
3775 		goto new_queue;
3776 
3777 	bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue");
3778 
3779 	/*
3780 	 * Do not expire bfqq for budget timeout if bfqq may be about
3781 	 * to enjoy device idling. The reason why, in this case, we
3782 	 * prevent bfqq from expiring is the same as in the comments
3783 	 * on the case where bfq_bfqq_must_idle() returns true, in
3784 	 * bfq_completed_request().
3785 	 */
3786 	if (bfq_may_expire_for_budg_timeout(bfqq) &&
3787 	    !bfq_bfqq_must_idle(bfqq))
3788 		goto expire;
3789 
3790 check_queue:
3791 	/*
3792 	 * This loop is rarely executed more than once. Even when it
3793 	 * happens, it is much more convenient to re-execute this loop
3794 	 * than to return NULL and trigger a new dispatch to get a
3795 	 * request served.
3796 	 */
3797 	next_rq = bfqq->next_rq;
3798 	/*
3799 	 * If bfqq has requests queued and it has enough budget left to
3800 	 * serve them, keep the queue, otherwise expire it.
3801 	 */
3802 	if (next_rq) {
3803 		if (bfq_serv_to_charge(next_rq, bfqq) >
3804 			bfq_bfqq_budget_left(bfqq)) {
3805 			/*
3806 			 * Expire the queue for budget exhaustion,
3807 			 * which makes sure that the next budget is
3808 			 * enough to serve the next request, even if
3809 			 * it comes from the fifo expired path.
3810 			 */
3811 			reason = BFQQE_BUDGET_EXHAUSTED;
3812 			goto expire;
3813 		} else {
3814 			/*
3815 			 * The idle timer may be pending because we may
3816 			 * not disable disk idling even when a new request
3817 			 * arrives.
3818 			 */
3819 			if (bfq_bfqq_wait_request(bfqq)) {
3820 				/*
3821 				 * If we get here: 1) at least a new request
3822 				 * has arrived but we have not disabled the
3823 				 * timer because the request was too small,
3824 				 * 2) then the block layer has unplugged
3825 				 * the device, causing the dispatch to be
3826 				 * invoked.
3827 				 *
3828 				 * Since the device is unplugged, now the
3829 				 * requests are probably large enough to
3830 				 * provide a reasonable throughput.
3831 				 * So we disable idling.
3832 				 */
3833 				bfq_clear_bfqq_wait_request(bfqq);
3834 				hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
3835 			}
3836 			goto keep_queue;
3837 		}
3838 	}
3839 
3840 	/*
3841 	 * No requests pending. However, if the in-service queue is idling
3842 	 * for a new request, or has requests waiting for a completion and
3843 	 * may idle after their completion, then keep it anyway.
3844 	 *
3845 	 * Yet, to boost throughput, inject service from other queues if
3846 	 * possible.
3847 	 */
3848 	if (bfq_bfqq_wait_request(bfqq) ||
3849 	    (bfqq->dispatched != 0 && bfq_better_to_idle(bfqq))) {
3850 		if (bfq_bfqq_injectable(bfqq) &&
3851 		    bfqq->injected_service * bfqq->inject_coeff <
3852 		    bfqq->entity.service * 10)
3853 			bfqq = bfq_choose_bfqq_for_injection(bfqd);
3854 		else
3855 			bfqq = NULL;
3856 
3857 		goto keep_queue;
3858 	}
3859 
3860 	reason = BFQQE_NO_MORE_REQUESTS;
3861 expire:
3862 	bfq_bfqq_expire(bfqd, bfqq, false, reason);
3863 new_queue:
3864 	bfqq = bfq_set_in_service_queue(bfqd);
3865 	if (bfqq) {
3866 		bfq_log_bfqq(bfqd, bfqq, "select_queue: checking new queue");
3867 		goto check_queue;
3868 	}
3869 keep_queue:
3870 	if (bfqq)
3871 		bfq_log_bfqq(bfqd, bfqq, "select_queue: returned this queue");
3872 	else
3873 		bfq_log(bfqd, "select_queue: no queue returned");
3874 
3875 	return bfqq;
3876 }
3877 
bfq_update_wr_data(struct bfq_data * bfqd,struct bfq_queue * bfqq)3878 static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
3879 {
3880 	struct bfq_entity *entity = &bfqq->entity;
3881 
3882 	if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */
3883 		bfq_log_bfqq(bfqd, bfqq,
3884 			"raising period dur %u/%u msec, old coeff %u, w %d(%d)",
3885 			jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
3886 			jiffies_to_msecs(bfqq->wr_cur_max_time),
3887 			bfqq->wr_coeff,
3888 			bfqq->entity.weight, bfqq->entity.orig_weight);
3889 
3890 		if (entity->prio_changed)
3891 			bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change");
3892 
3893 		/*
3894 		 * If the queue was activated in a burst, or too much
3895 		 * time has elapsed from the beginning of this
3896 		 * weight-raising period, then end weight raising.
3897 		 */
3898 		if (bfq_bfqq_in_large_burst(bfqq))
3899 			bfq_bfqq_end_wr(bfqq);
3900 		else if (time_is_before_jiffies(bfqq->last_wr_start_finish +
3901 						bfqq->wr_cur_max_time)) {
3902 			if (bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time ||
3903 			time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
3904 					       bfq_wr_duration(bfqd)))
3905 				bfq_bfqq_end_wr(bfqq);
3906 			else {
3907 				switch_back_to_interactive_wr(bfqq, bfqd);
3908 				bfqq->entity.prio_changed = 1;
3909 			}
3910 		}
3911 		if (bfqq->wr_coeff > 1 &&
3912 		    bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time &&
3913 		    bfqq->service_from_wr > max_service_from_wr) {
3914 			/* see comments on max_service_from_wr */
3915 			bfq_bfqq_end_wr(bfqq);
3916 		}
3917 	}
3918 	/*
3919 	 * To improve latency (for this or other queues), immediately
3920 	 * update weight both if it must be raised and if it must be
3921 	 * lowered. Since, entity may be on some active tree here, and
3922 	 * might have a pending change of its ioprio class, invoke
3923 	 * next function with the last parameter unset (see the
3924 	 * comments on the function).
3925 	 */
3926 	if ((entity->weight > entity->orig_weight) != (bfqq->wr_coeff > 1))
3927 		__bfq_entity_update_weight_prio(bfq_entity_service_tree(entity),
3928 						entity, false);
3929 }
3930 
3931 /*
3932  * Dispatch next request from bfqq.
3933  */
bfq_dispatch_rq_from_bfqq(struct bfq_data * bfqd,struct bfq_queue * bfqq)3934 static struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd,
3935 						 struct bfq_queue *bfqq)
3936 {
3937 	struct request *rq = bfqq->next_rq;
3938 	unsigned long service_to_charge;
3939 
3940 	service_to_charge = bfq_serv_to_charge(rq, bfqq);
3941 
3942 	bfq_bfqq_served(bfqq, service_to_charge);
3943 
3944 	bfq_dispatch_remove(bfqd->queue, rq);
3945 
3946 	if (bfqq != bfqd->in_service_queue) {
3947 		if (likely(bfqd->in_service_queue))
3948 			bfqd->in_service_queue->injected_service +=
3949 				bfq_serv_to_charge(rq, bfqq);
3950 
3951 		goto return_rq;
3952 	}
3953 
3954 	/*
3955 	 * If weight raising has to terminate for bfqq, then next
3956 	 * function causes an immediate update of bfqq's weight,
3957 	 * without waiting for next activation. As a consequence, on
3958 	 * expiration, bfqq will be timestamped as if has never been
3959 	 * weight-raised during this service slot, even if it has
3960 	 * received part or even most of the service as a
3961 	 * weight-raised queue. This inflates bfqq's timestamps, which
3962 	 * is beneficial, as bfqq is then more willing to leave the
3963 	 * device immediately to possible other weight-raised queues.
3964 	 */
3965 	bfq_update_wr_data(bfqd, bfqq);
3966 
3967 	/*
3968 	 * Expire bfqq, pretending that its budget expired, if bfqq
3969 	 * belongs to CLASS_IDLE and other queues are waiting for
3970 	 * service.
3971 	 */
3972 	if (!(bfqd->busy_queues > 1 && bfq_class_idle(bfqq)))
3973 		goto return_rq;
3974 
3975 	bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_BUDGET_EXHAUSTED);
3976 
3977 return_rq:
3978 	return rq;
3979 }
3980 
bfq_has_work(struct blk_mq_hw_ctx * hctx)3981 static bool bfq_has_work(struct blk_mq_hw_ctx *hctx)
3982 {
3983 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
3984 
3985 	/*
3986 	 * Avoiding lock: a race on bfqd->busy_queues should cause at
3987 	 * most a call to dispatch for nothing
3988 	 */
3989 	return !list_empty_careful(&bfqd->dispatch) ||
3990 		bfqd->busy_queues > 0;
3991 }
3992 
__bfq_dispatch_request(struct blk_mq_hw_ctx * hctx)3993 static struct request *__bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
3994 {
3995 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
3996 	struct request *rq = NULL;
3997 	struct bfq_queue *bfqq = NULL;
3998 
3999 	if (!list_empty(&bfqd->dispatch)) {
4000 		rq = list_first_entry(&bfqd->dispatch, struct request,
4001 				      queuelist);
4002 		list_del_init(&rq->queuelist);
4003 
4004 		bfqq = RQ_BFQQ(rq);
4005 
4006 		if (bfqq) {
4007 			/*
4008 			 * Increment counters here, because this
4009 			 * dispatch does not follow the standard
4010 			 * dispatch flow (where counters are
4011 			 * incremented)
4012 			 */
4013 			bfqq->dispatched++;
4014 
4015 			goto inc_in_driver_start_rq;
4016 		}
4017 
4018 		/*
4019 		 * We exploit the bfq_finish_requeue_request hook to
4020 		 * decrement rq_in_driver, but
4021 		 * bfq_finish_requeue_request will not be invoked on
4022 		 * this request. So, to avoid unbalance, just start
4023 		 * this request, without incrementing rq_in_driver. As
4024 		 * a negative consequence, rq_in_driver is deceptively
4025 		 * lower than it should be while this request is in
4026 		 * service. This may cause bfq_schedule_dispatch to be
4027 		 * invoked uselessly.
4028 		 *
4029 		 * As for implementing an exact solution, the
4030 		 * bfq_finish_requeue_request hook, if defined, is
4031 		 * probably invoked also on this request. So, by
4032 		 * exploiting this hook, we could 1) increment
4033 		 * rq_in_driver here, and 2) decrement it in
4034 		 * bfq_finish_requeue_request. Such a solution would
4035 		 * let the value of the counter be always accurate,
4036 		 * but it would entail using an extra interface
4037 		 * function. This cost seems higher than the benefit,
4038 		 * being the frequency of non-elevator-private
4039 		 * requests very low.
4040 		 */
4041 		goto start_rq;
4042 	}
4043 
4044 	bfq_log(bfqd, "dispatch requests: %d busy queues", bfqd->busy_queues);
4045 
4046 	if (bfqd->busy_queues == 0)
4047 		goto exit;
4048 
4049 	/*
4050 	 * Force device to serve one request at a time if
4051 	 * strict_guarantees is true. Forcing this service scheme is
4052 	 * currently the ONLY way to guarantee that the request
4053 	 * service order enforced by the scheduler is respected by a
4054 	 * queueing device. Otherwise the device is free even to make
4055 	 * some unlucky request wait for as long as the device
4056 	 * wishes.
4057 	 *
4058 	 * Of course, serving one request at at time may cause loss of
4059 	 * throughput.
4060 	 */
4061 	if (bfqd->strict_guarantees && bfqd->rq_in_driver > 0)
4062 		goto exit;
4063 
4064 	bfqq = bfq_select_queue(bfqd);
4065 	if (!bfqq)
4066 		goto exit;
4067 
4068 	rq = bfq_dispatch_rq_from_bfqq(bfqd, bfqq);
4069 
4070 	if (rq) {
4071 inc_in_driver_start_rq:
4072 		bfqd->rq_in_driver++;
4073 start_rq:
4074 		rq->rq_flags |= RQF_STARTED;
4075 	}
4076 exit:
4077 	return rq;
4078 }
4079 
4080 #if defined(CONFIG_BFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
bfq_update_dispatch_stats(struct request_queue * q,struct request * rq,struct bfq_queue * in_serv_queue,bool idle_timer_disabled)4081 static void bfq_update_dispatch_stats(struct request_queue *q,
4082 				      struct request *rq,
4083 				      struct bfq_queue *in_serv_queue,
4084 				      bool idle_timer_disabled)
4085 {
4086 	struct bfq_queue *bfqq = rq ? RQ_BFQQ(rq) : NULL;
4087 
4088 	if (!idle_timer_disabled && !bfqq)
4089 		return;
4090 
4091 	/*
4092 	 * rq and bfqq are guaranteed to exist until this function
4093 	 * ends, for the following reasons. First, rq can be
4094 	 * dispatched to the device, and then can be completed and
4095 	 * freed, only after this function ends. Second, rq cannot be
4096 	 * merged (and thus freed because of a merge) any longer,
4097 	 * because it has already started. Thus rq cannot be freed
4098 	 * before this function ends, and, since rq has a reference to
4099 	 * bfqq, the same guarantee holds for bfqq too.
4100 	 *
4101 	 * In addition, the following queue lock guarantees that
4102 	 * bfqq_group(bfqq) exists as well.
4103 	 */
4104 	spin_lock_irq(q->queue_lock);
4105 	if (idle_timer_disabled)
4106 		/*
4107 		 * Since the idle timer has been disabled,
4108 		 * in_serv_queue contained some request when
4109 		 * __bfq_dispatch_request was invoked above, which
4110 		 * implies that rq was picked exactly from
4111 		 * in_serv_queue. Thus in_serv_queue == bfqq, and is
4112 		 * therefore guaranteed to exist because of the above
4113 		 * arguments.
4114 		 */
4115 		bfqg_stats_update_idle_time(bfqq_group(in_serv_queue));
4116 	if (bfqq) {
4117 		struct bfq_group *bfqg = bfqq_group(bfqq);
4118 
4119 		bfqg_stats_update_avg_queue_size(bfqg);
4120 		bfqg_stats_set_start_empty_time(bfqg);
4121 		bfqg_stats_update_io_remove(bfqg, rq->cmd_flags);
4122 	}
4123 	spin_unlock_irq(q->queue_lock);
4124 }
4125 #else
bfq_update_dispatch_stats(struct request_queue * q,struct request * rq,struct bfq_queue * in_serv_queue,bool idle_timer_disabled)4126 static inline void bfq_update_dispatch_stats(struct request_queue *q,
4127 					     struct request *rq,
4128 					     struct bfq_queue *in_serv_queue,
4129 					     bool idle_timer_disabled) {}
4130 #endif
4131 
bfq_dispatch_request(struct blk_mq_hw_ctx * hctx)4132 static struct request *bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
4133 {
4134 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
4135 	struct request *rq;
4136 	struct bfq_queue *in_serv_queue;
4137 	bool waiting_rq, idle_timer_disabled = false;
4138 
4139 	spin_lock_irq(&bfqd->lock);
4140 
4141 	in_serv_queue = bfqd->in_service_queue;
4142 	waiting_rq = in_serv_queue && bfq_bfqq_wait_request(in_serv_queue);
4143 
4144 	rq = __bfq_dispatch_request(hctx);
4145 	if (in_serv_queue == bfqd->in_service_queue) {
4146 		idle_timer_disabled =
4147 			waiting_rq && !bfq_bfqq_wait_request(in_serv_queue);
4148 	}
4149 
4150 	spin_unlock_irq(&bfqd->lock);
4151 	bfq_update_dispatch_stats(hctx->queue, rq,
4152 			idle_timer_disabled ? in_serv_queue : NULL,
4153 				idle_timer_disabled);
4154 
4155 	return rq;
4156 }
4157 
4158 /*
4159  * Task holds one reference to the queue, dropped when task exits.  Each rq
4160  * in-flight on this queue also holds a reference, dropped when rq is freed.
4161  *
4162  * Scheduler lock must be held here. Recall not to use bfqq after calling
4163  * this function on it.
4164  */
bfq_put_queue(struct bfq_queue * bfqq)4165 void bfq_put_queue(struct bfq_queue *bfqq)
4166 {
4167 #ifdef CONFIG_BFQ_GROUP_IOSCHED
4168 	struct bfq_group *bfqg = bfqq_group(bfqq);
4169 #endif
4170 
4171 	if (bfqq->bfqd)
4172 		bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d",
4173 			     bfqq, bfqq->ref);
4174 
4175 	bfqq->ref--;
4176 	if (bfqq->ref)
4177 		return;
4178 
4179 	if (!hlist_unhashed(&bfqq->burst_list_node)) {
4180 		hlist_del_init(&bfqq->burst_list_node);
4181 		/*
4182 		 * Decrement also burst size after the removal, if the
4183 		 * process associated with bfqq is exiting, and thus
4184 		 * does not contribute to the burst any longer. This
4185 		 * decrement helps filter out false positives of large
4186 		 * bursts, when some short-lived process (often due to
4187 		 * the execution of commands by some service) happens
4188 		 * to start and exit while a complex application is
4189 		 * starting, and thus spawning several processes that
4190 		 * do I/O (and that *must not* be treated as a large
4191 		 * burst, see comments on bfq_handle_burst).
4192 		 *
4193 		 * In particular, the decrement is performed only if:
4194 		 * 1) bfqq is not a merged queue, because, if it is,
4195 		 * then this free of bfqq is not triggered by the exit
4196 		 * of the process bfqq is associated with, but exactly
4197 		 * by the fact that bfqq has just been merged.
4198 		 * 2) burst_size is greater than 0, to handle
4199 		 * unbalanced decrements. Unbalanced decrements may
4200 		 * happen in te following case: bfqq is inserted into
4201 		 * the current burst list--without incrementing
4202 		 * bust_size--because of a split, but the current
4203 		 * burst list is not the burst list bfqq belonged to
4204 		 * (see comments on the case of a split in
4205 		 * bfq_set_request).
4206 		 */
4207 		if (bfqq->bic && bfqq->bfqd->burst_size > 0)
4208 			bfqq->bfqd->burst_size--;
4209 	}
4210 
4211 	kmem_cache_free(bfq_pool, bfqq);
4212 #ifdef CONFIG_BFQ_GROUP_IOSCHED
4213 	bfqg_and_blkg_put(bfqg);
4214 #endif
4215 }
4216 
bfq_put_cooperator(struct bfq_queue * bfqq)4217 static void bfq_put_cooperator(struct bfq_queue *bfqq)
4218 {
4219 	struct bfq_queue *__bfqq, *next;
4220 
4221 	/*
4222 	 * If this queue was scheduled to merge with another queue, be
4223 	 * sure to drop the reference taken on that queue (and others in
4224 	 * the merge chain). See bfq_setup_merge and bfq_merge_bfqqs.
4225 	 */
4226 	__bfqq = bfqq->new_bfqq;
4227 	while (__bfqq) {
4228 		if (__bfqq == bfqq)
4229 			break;
4230 		next = __bfqq->new_bfqq;
4231 		bfq_put_queue(__bfqq);
4232 		__bfqq = next;
4233 	}
4234 }
4235 
bfq_exit_bfqq(struct bfq_data * bfqd,struct bfq_queue * bfqq)4236 static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
4237 {
4238 	if (bfqq == bfqd->in_service_queue) {
4239 		__bfq_bfqq_expire(bfqd, bfqq);
4240 		bfq_schedule_dispatch(bfqd);
4241 	}
4242 
4243 	bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref);
4244 
4245 	bfq_put_cooperator(bfqq);
4246 
4247 	bfq_put_queue(bfqq); /* release process reference */
4248 }
4249 
bfq_exit_icq_bfqq(struct bfq_io_cq * bic,bool is_sync)4250 static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync)
4251 {
4252 	struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
4253 	struct bfq_data *bfqd;
4254 
4255 	if (bfqq)
4256 		bfqd = bfqq->bfqd; /* NULL if scheduler already exited */
4257 
4258 	if (bfqq && bfqd) {
4259 		unsigned long flags;
4260 
4261 		spin_lock_irqsave(&bfqd->lock, flags);
4262 		bfqq->bic = NULL;
4263 		bfq_exit_bfqq(bfqd, bfqq);
4264 		bic_set_bfqq(bic, NULL, is_sync);
4265 		spin_unlock_irqrestore(&bfqd->lock, flags);
4266 	}
4267 }
4268 
bfq_exit_icq(struct io_cq * icq)4269 static void bfq_exit_icq(struct io_cq *icq)
4270 {
4271 	struct bfq_io_cq *bic = icq_to_bic(icq);
4272 
4273 	bfq_exit_icq_bfqq(bic, true);
4274 	bfq_exit_icq_bfqq(bic, false);
4275 }
4276 
4277 /*
4278  * Update the entity prio values; note that the new values will not
4279  * be used until the next (re)activation.
4280  */
4281 static void
bfq_set_next_ioprio_data(struct bfq_queue * bfqq,struct bfq_io_cq * bic)4282 bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
4283 {
4284 	struct task_struct *tsk = current;
4285 	int ioprio_class;
4286 	struct bfq_data *bfqd = bfqq->bfqd;
4287 
4288 	if (!bfqd)
4289 		return;
4290 
4291 	ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
4292 	switch (ioprio_class) {
4293 	default:
4294 		pr_err("bdi %s: bfq: bad prio class %d\n",
4295 				bdi_dev_name(bfqq->bfqd->queue->backing_dev_info),
4296 				ioprio_class);
4297 		/* fall through */
4298 	case IOPRIO_CLASS_NONE:
4299 		/*
4300 		 * No prio set, inherit CPU scheduling settings.
4301 		 */
4302 		bfqq->new_ioprio = task_nice_ioprio(tsk);
4303 		bfqq->new_ioprio_class = task_nice_ioclass(tsk);
4304 		break;
4305 	case IOPRIO_CLASS_RT:
4306 		bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
4307 		bfqq->new_ioprio_class = IOPRIO_CLASS_RT;
4308 		break;
4309 	case IOPRIO_CLASS_BE:
4310 		bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
4311 		bfqq->new_ioprio_class = IOPRIO_CLASS_BE;
4312 		break;
4313 	case IOPRIO_CLASS_IDLE:
4314 		bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE;
4315 		bfqq->new_ioprio = 7;
4316 		break;
4317 	}
4318 
4319 	if (bfqq->new_ioprio >= IOPRIO_BE_NR) {
4320 		pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n",
4321 			bfqq->new_ioprio);
4322 		bfqq->new_ioprio = IOPRIO_BE_NR - 1;
4323 	}
4324 
4325 	bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio);
4326 	bfqq->entity.prio_changed = 1;
4327 }
4328 
4329 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
4330 				       struct bio *bio, bool is_sync,
4331 				       struct bfq_io_cq *bic);
4332 
bfq_check_ioprio_change(struct bfq_io_cq * bic,struct bio * bio)4333 static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio)
4334 {
4335 	struct bfq_data *bfqd = bic_to_bfqd(bic);
4336 	struct bfq_queue *bfqq;
4337 	int ioprio = bic->icq.ioc->ioprio;
4338 
4339 	/*
4340 	 * This condition may trigger on a newly created bic, be sure to
4341 	 * drop the lock before returning.
4342 	 */
4343 	if (unlikely(!bfqd) || likely(bic->ioprio == ioprio))
4344 		return;
4345 
4346 	bic->ioprio = ioprio;
4347 
4348 	bfqq = bic_to_bfqq(bic, false);
4349 	if (bfqq) {
4350 		/* release process reference on this queue */
4351 		bfq_put_queue(bfqq);
4352 		bfqq = bfq_get_queue(bfqd, bio, BLK_RW_ASYNC, bic);
4353 		bic_set_bfqq(bic, bfqq, false);
4354 	}
4355 
4356 	bfqq = bic_to_bfqq(bic, true);
4357 	if (bfqq)
4358 		bfq_set_next_ioprio_data(bfqq, bic);
4359 }
4360 
bfq_init_bfqq(struct bfq_data * bfqd,struct bfq_queue * bfqq,struct bfq_io_cq * bic,pid_t pid,int is_sync)4361 static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4362 			  struct bfq_io_cq *bic, pid_t pid, int is_sync)
4363 {
4364 	RB_CLEAR_NODE(&bfqq->entity.rb_node);
4365 	INIT_LIST_HEAD(&bfqq->fifo);
4366 	INIT_HLIST_NODE(&bfqq->burst_list_node);
4367 
4368 	bfqq->ref = 0;
4369 	bfqq->bfqd = bfqd;
4370 
4371 	if (bic)
4372 		bfq_set_next_ioprio_data(bfqq, bic);
4373 
4374 	if (is_sync) {
4375 		/*
4376 		 * No need to mark as has_short_ttime if in
4377 		 * idle_class, because no device idling is performed
4378 		 * for queues in idle class
4379 		 */
4380 		if (!bfq_class_idle(bfqq))
4381 			/* tentatively mark as has_short_ttime */
4382 			bfq_mark_bfqq_has_short_ttime(bfqq);
4383 		bfq_mark_bfqq_sync(bfqq);
4384 		bfq_mark_bfqq_just_created(bfqq);
4385 		/*
4386 		 * Aggressively inject a lot of service: up to 90%.
4387 		 * This coefficient remains constant during bfqq life,
4388 		 * but this behavior might be changed, after enough
4389 		 * testing and tuning.
4390 		 */
4391 		bfqq->inject_coeff = 1;
4392 	} else
4393 		bfq_clear_bfqq_sync(bfqq);
4394 
4395 	/* set end request to minus infinity from now */
4396 	bfqq->ttime.last_end_request = ktime_get_ns() + 1;
4397 
4398 	bfq_mark_bfqq_IO_bound(bfqq);
4399 
4400 	bfqq->pid = pid;
4401 
4402 	/* Tentative initial value to trade off between thr and lat */
4403 	bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3;
4404 	bfqq->budget_timeout = bfq_smallest_from_now();
4405 
4406 	bfqq->wr_coeff = 1;
4407 	bfqq->last_wr_start_finish = jiffies;
4408 	bfqq->wr_start_at_switch_to_srt = bfq_smallest_from_now();
4409 	bfqq->split_time = bfq_smallest_from_now();
4410 
4411 	/*
4412 	 * To not forget the possibly high bandwidth consumed by a
4413 	 * process/queue in the recent past,
4414 	 * bfq_bfqq_softrt_next_start() returns a value at least equal
4415 	 * to the current value of bfqq->soft_rt_next_start (see
4416 	 * comments on bfq_bfqq_softrt_next_start).  Set
4417 	 * soft_rt_next_start to now, to mean that bfqq has consumed
4418 	 * no bandwidth so far.
4419 	 */
4420 	bfqq->soft_rt_next_start = jiffies;
4421 
4422 	/* first request is almost certainly seeky */
4423 	bfqq->seek_history = 1;
4424 }
4425 
bfq_async_queue_prio(struct bfq_data * bfqd,struct bfq_group * bfqg,int ioprio_class,int ioprio)4426 static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
4427 					       struct bfq_group *bfqg,
4428 					       int ioprio_class, int ioprio)
4429 {
4430 	switch (ioprio_class) {
4431 	case IOPRIO_CLASS_RT:
4432 		return &bfqg->async_bfqq[0][ioprio];
4433 	case IOPRIO_CLASS_NONE:
4434 		ioprio = IOPRIO_NORM;
4435 		/* fall through */
4436 	case IOPRIO_CLASS_BE:
4437 		return &bfqg->async_bfqq[1][ioprio];
4438 	case IOPRIO_CLASS_IDLE:
4439 		return &bfqg->async_idle_bfqq;
4440 	default:
4441 		return NULL;
4442 	}
4443 }
4444 
bfq_get_queue(struct bfq_data * bfqd,struct bio * bio,bool is_sync,struct bfq_io_cq * bic)4445 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
4446 				       struct bio *bio, bool is_sync,
4447 				       struct bfq_io_cq *bic)
4448 {
4449 	const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
4450 	const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
4451 	struct bfq_queue **async_bfqq = NULL;
4452 	struct bfq_queue *bfqq;
4453 	struct bfq_group *bfqg;
4454 
4455 	rcu_read_lock();
4456 
4457 	bfqg = bfq_find_set_group(bfqd, bio_blkcg(bio));
4458 	if (!bfqg) {
4459 		bfqq = &bfqd->oom_bfqq;
4460 		goto out;
4461 	}
4462 
4463 	if (!is_sync) {
4464 		async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class,
4465 						  ioprio);
4466 		bfqq = *async_bfqq;
4467 		if (bfqq)
4468 			goto out;
4469 	}
4470 
4471 	bfqq = kmem_cache_alloc_node(bfq_pool,
4472 				     GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
4473 				     bfqd->queue->node);
4474 
4475 	if (bfqq) {
4476 		bfq_init_bfqq(bfqd, bfqq, bic, current->pid,
4477 			      is_sync);
4478 		bfq_init_entity(&bfqq->entity, bfqg);
4479 		bfq_log_bfqq(bfqd, bfqq, "allocated");
4480 	} else {
4481 		bfqq = &bfqd->oom_bfqq;
4482 		bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
4483 		goto out;
4484 	}
4485 
4486 	/*
4487 	 * Pin the queue now that it's allocated, scheduler exit will
4488 	 * prune it.
4489 	 */
4490 	if (async_bfqq) {
4491 		bfqq->ref++; /*
4492 			      * Extra group reference, w.r.t. sync
4493 			      * queue. This extra reference is removed
4494 			      * only if bfqq->bfqg disappears, to
4495 			      * guarantee that this queue is not freed
4496 			      * until its group goes away.
4497 			      */
4498 		bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d",
4499 			     bfqq, bfqq->ref);
4500 		*async_bfqq = bfqq;
4501 	}
4502 
4503 out:
4504 	bfqq->ref++; /* get a process reference to this queue */
4505 	bfq_log_bfqq(bfqd, bfqq, "get_queue, at end: %p, %d", bfqq, bfqq->ref);
4506 	rcu_read_unlock();
4507 	return bfqq;
4508 }
4509 
bfq_update_io_thinktime(struct bfq_data * bfqd,struct bfq_queue * bfqq)4510 static void bfq_update_io_thinktime(struct bfq_data *bfqd,
4511 				    struct bfq_queue *bfqq)
4512 {
4513 	struct bfq_ttime *ttime = &bfqq->ttime;
4514 	u64 elapsed = ktime_get_ns() - bfqq->ttime.last_end_request;
4515 
4516 	elapsed = min_t(u64, elapsed, 2ULL * bfqd->bfq_slice_idle);
4517 
4518 	ttime->ttime_samples = (7*bfqq->ttime.ttime_samples + 256) / 8;
4519 	ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed,  8);
4520 	ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
4521 				     ttime->ttime_samples);
4522 }
4523 
4524 static void
bfq_update_io_seektime(struct bfq_data * bfqd,struct bfq_queue * bfqq,struct request * rq)4525 bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4526 		       struct request *rq)
4527 {
4528 	bfqq->seek_history <<= 1;
4529 	bfqq->seek_history |=
4530 		get_sdist(bfqq->last_request_pos, rq) > BFQQ_SEEK_THR &&
4531 		(!blk_queue_nonrot(bfqd->queue) ||
4532 		 blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT);
4533 }
4534 
bfq_update_has_short_ttime(struct bfq_data * bfqd,struct bfq_queue * bfqq,struct bfq_io_cq * bic)4535 static void bfq_update_has_short_ttime(struct bfq_data *bfqd,
4536 				       struct bfq_queue *bfqq,
4537 				       struct bfq_io_cq *bic)
4538 {
4539 	bool has_short_ttime = true;
4540 
4541 	/*
4542 	 * No need to update has_short_ttime if bfqq is async or in
4543 	 * idle io prio class, or if bfq_slice_idle is zero, because
4544 	 * no device idling is performed for bfqq in this case.
4545 	 */
4546 	if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq) ||
4547 	    bfqd->bfq_slice_idle == 0)
4548 		return;
4549 
4550 	/* Idle window just restored, statistics are meaningless. */
4551 	if (time_is_after_eq_jiffies(bfqq->split_time +
4552 				     bfqd->bfq_wr_min_idle_time))
4553 		return;
4554 
4555 	/* Think time is infinite if no process is linked to
4556 	 * bfqq. Otherwise check average think time to
4557 	 * decide whether to mark as has_short_ttime
4558 	 */
4559 	if (atomic_read(&bic->icq.ioc->active_ref) == 0 ||
4560 	    (bfq_sample_valid(bfqq->ttime.ttime_samples) &&
4561 	     bfqq->ttime.ttime_mean > bfqd->bfq_slice_idle))
4562 		has_short_ttime = false;
4563 
4564 	bfq_log_bfqq(bfqd, bfqq, "update_has_short_ttime: has_short_ttime %d",
4565 		     has_short_ttime);
4566 
4567 	if (has_short_ttime)
4568 		bfq_mark_bfqq_has_short_ttime(bfqq);
4569 	else
4570 		bfq_clear_bfqq_has_short_ttime(bfqq);
4571 }
4572 
4573 /*
4574  * Called when a new fs request (rq) is added to bfqq.  Check if there's
4575  * something we should do about it.
4576  */
bfq_rq_enqueued(struct bfq_data * bfqd,struct bfq_queue * bfqq,struct request * rq)4577 static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4578 			    struct request *rq)
4579 {
4580 	struct bfq_io_cq *bic = RQ_BIC(rq);
4581 
4582 	if (rq->cmd_flags & REQ_META)
4583 		bfqq->meta_pending++;
4584 
4585 	bfq_update_io_thinktime(bfqd, bfqq);
4586 	bfq_update_has_short_ttime(bfqd, bfqq, bic);
4587 	bfq_update_io_seektime(bfqd, bfqq, rq);
4588 
4589 	bfq_log_bfqq(bfqd, bfqq,
4590 		     "rq_enqueued: has_short_ttime=%d (seeky %d)",
4591 		     bfq_bfqq_has_short_ttime(bfqq), BFQQ_SEEKY(bfqq));
4592 
4593 	bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
4594 
4595 	if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) {
4596 		bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 &&
4597 				 blk_rq_sectors(rq) < 32;
4598 		bool budget_timeout = bfq_bfqq_budget_timeout(bfqq);
4599 
4600 		/*
4601 		 * There is just this request queued: if the request
4602 		 * is small and the queue is not to be expired, then
4603 		 * just exit.
4604 		 *
4605 		 * In this way, if the device is being idled to wait
4606 		 * for a new request from the in-service queue, we
4607 		 * avoid unplugging the device and committing the
4608 		 * device to serve just a small request. On the
4609 		 * contrary, we wait for the block layer to decide
4610 		 * when to unplug the device: hopefully, new requests
4611 		 * will be merged to this one quickly, then the device
4612 		 * will be unplugged and larger requests will be
4613 		 * dispatched.
4614 		 */
4615 		if (small_req && !budget_timeout)
4616 			return;
4617 
4618 		/*
4619 		 * A large enough request arrived, or the queue is to
4620 		 * be expired: in both cases disk idling is to be
4621 		 * stopped, so clear wait_request flag and reset
4622 		 * timer.
4623 		 */
4624 		bfq_clear_bfqq_wait_request(bfqq);
4625 		hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
4626 
4627 		/*
4628 		 * The queue is not empty, because a new request just
4629 		 * arrived. Hence we can safely expire the queue, in
4630 		 * case of budget timeout, without risking that the
4631 		 * timestamps of the queue are not updated correctly.
4632 		 * See [1] for more details.
4633 		 */
4634 		if (budget_timeout)
4635 			bfq_bfqq_expire(bfqd, bfqq, false,
4636 					BFQQE_BUDGET_TIMEOUT);
4637 	}
4638 }
4639 
4640 /* returns true if it causes the idle timer to be disabled */
__bfq_insert_request(struct bfq_data * bfqd,struct request * rq)4641 static bool __bfq_insert_request(struct bfq_data *bfqd, struct request *rq)
4642 {
4643 	struct bfq_queue *bfqq = RQ_BFQQ(rq),
4644 		*new_bfqq = bfq_setup_cooperator(bfqd, bfqq, rq, true);
4645 	bool waiting, idle_timer_disabled = false;
4646 
4647 	if (new_bfqq) {
4648 		if (bic_to_bfqq(RQ_BIC(rq), 1) != bfqq)
4649 			new_bfqq = bic_to_bfqq(RQ_BIC(rq), 1);
4650 		/*
4651 		 * Release the request's reference to the old bfqq
4652 		 * and make sure one is taken to the shared queue.
4653 		 */
4654 		new_bfqq->allocated++;
4655 		bfqq->allocated--;
4656 		new_bfqq->ref++;
4657 		/*
4658 		 * If the bic associated with the process
4659 		 * issuing this request still points to bfqq
4660 		 * (and thus has not been already redirected
4661 		 * to new_bfqq or even some other bfq_queue),
4662 		 * then complete the merge and redirect it to
4663 		 * new_bfqq.
4664 		 */
4665 		if (bic_to_bfqq(RQ_BIC(rq), 1) == bfqq)
4666 			bfq_merge_bfqqs(bfqd, RQ_BIC(rq),
4667 					bfqq, new_bfqq);
4668 
4669 		bfq_clear_bfqq_just_created(bfqq);
4670 		/*
4671 		 * rq is about to be enqueued into new_bfqq,
4672 		 * release rq reference on bfqq
4673 		 */
4674 		bfq_put_queue(bfqq);
4675 		rq->elv.priv[1] = new_bfqq;
4676 		bfqq = new_bfqq;
4677 	}
4678 
4679 	waiting = bfqq && bfq_bfqq_wait_request(bfqq);
4680 	bfq_add_request(rq);
4681 	idle_timer_disabled = waiting && !bfq_bfqq_wait_request(bfqq);
4682 
4683 	rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
4684 	list_add_tail(&rq->queuelist, &bfqq->fifo);
4685 
4686 	bfq_rq_enqueued(bfqd, bfqq, rq);
4687 
4688 	return idle_timer_disabled;
4689 }
4690 
4691 #if defined(CONFIG_BFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
bfq_update_insert_stats(struct request_queue * q,struct bfq_queue * bfqq,bool idle_timer_disabled,unsigned int cmd_flags)4692 static void bfq_update_insert_stats(struct request_queue *q,
4693 				    struct bfq_queue *bfqq,
4694 				    bool idle_timer_disabled,
4695 				    unsigned int cmd_flags)
4696 {
4697 	if (!bfqq)
4698 		return;
4699 
4700 	/*
4701 	 * bfqq still exists, because it can disappear only after
4702 	 * either it is merged with another queue, or the process it
4703 	 * is associated with exits. But both actions must be taken by
4704 	 * the same process currently executing this flow of
4705 	 * instructions.
4706 	 *
4707 	 * In addition, the following queue lock guarantees that
4708 	 * bfqq_group(bfqq) exists as well.
4709 	 */
4710 	spin_lock_irq(q->queue_lock);
4711 	bfqg_stats_update_io_add(bfqq_group(bfqq), bfqq, cmd_flags);
4712 	if (idle_timer_disabled)
4713 		bfqg_stats_update_idle_time(bfqq_group(bfqq));
4714 	spin_unlock_irq(q->queue_lock);
4715 }
4716 #else
bfq_update_insert_stats(struct request_queue * q,struct bfq_queue * bfqq,bool idle_timer_disabled,unsigned int cmd_flags)4717 static inline void bfq_update_insert_stats(struct request_queue *q,
4718 					   struct bfq_queue *bfqq,
4719 					   bool idle_timer_disabled,
4720 					   unsigned int cmd_flags) {}
4721 #endif
4722 
bfq_insert_request(struct blk_mq_hw_ctx * hctx,struct request * rq,bool at_head)4723 static void bfq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
4724 			       bool at_head)
4725 {
4726 	struct request_queue *q = hctx->queue;
4727 	struct bfq_data *bfqd = q->elevator->elevator_data;
4728 	struct bfq_queue *bfqq;
4729 	bool idle_timer_disabled = false;
4730 	unsigned int cmd_flags;
4731 
4732 	spin_lock_irq(&bfqd->lock);
4733 	if (blk_mq_sched_try_insert_merge(q, rq)) {
4734 		spin_unlock_irq(&bfqd->lock);
4735 		return;
4736 	}
4737 
4738 	spin_unlock_irq(&bfqd->lock);
4739 
4740 	blk_mq_sched_request_inserted(rq);
4741 
4742 	spin_lock_irq(&bfqd->lock);
4743 	bfqq = bfq_init_rq(rq);
4744 	if (!bfqq || at_head || blk_rq_is_passthrough(rq)) {
4745 		if (at_head)
4746 			list_add(&rq->queuelist, &bfqd->dispatch);
4747 		else
4748 			list_add_tail(&rq->queuelist, &bfqd->dispatch);
4749 	} else {
4750 		idle_timer_disabled = __bfq_insert_request(bfqd, rq);
4751 		/*
4752 		 * Update bfqq, because, if a queue merge has occurred
4753 		 * in __bfq_insert_request, then rq has been
4754 		 * redirected into a new queue.
4755 		 */
4756 		bfqq = RQ_BFQQ(rq);
4757 
4758 		if (rq_mergeable(rq)) {
4759 			elv_rqhash_add(q, rq);
4760 			if (!q->last_merge)
4761 				q->last_merge = rq;
4762 		}
4763 	}
4764 
4765 	/*
4766 	 * Cache cmd_flags before releasing scheduler lock, because rq
4767 	 * may disappear afterwards (for example, because of a request
4768 	 * merge).
4769 	 */
4770 	cmd_flags = rq->cmd_flags;
4771 
4772 	spin_unlock_irq(&bfqd->lock);
4773 
4774 	bfq_update_insert_stats(q, bfqq, idle_timer_disabled,
4775 				cmd_flags);
4776 }
4777 
bfq_insert_requests(struct blk_mq_hw_ctx * hctx,struct list_head * list,bool at_head)4778 static void bfq_insert_requests(struct blk_mq_hw_ctx *hctx,
4779 				struct list_head *list, bool at_head)
4780 {
4781 	while (!list_empty(list)) {
4782 		struct request *rq;
4783 
4784 		rq = list_first_entry(list, struct request, queuelist);
4785 		list_del_init(&rq->queuelist);
4786 		bfq_insert_request(hctx, rq, at_head);
4787 	}
4788 }
4789 
bfq_update_hw_tag(struct bfq_data * bfqd)4790 static void bfq_update_hw_tag(struct bfq_data *bfqd)
4791 {
4792 	bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver,
4793 				       bfqd->rq_in_driver);
4794 
4795 	if (bfqd->hw_tag == 1)
4796 		return;
4797 
4798 	/*
4799 	 * This sample is valid if the number of outstanding requests
4800 	 * is large enough to allow a queueing behavior.  Note that the
4801 	 * sum is not exact, as it's not taking into account deactivated
4802 	 * requests.
4803 	 */
4804 	if (bfqd->rq_in_driver + bfqd->queued < BFQ_HW_QUEUE_THRESHOLD)
4805 		return;
4806 
4807 	if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES)
4808 		return;
4809 
4810 	bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD;
4811 	bfqd->max_rq_in_driver = 0;
4812 	bfqd->hw_tag_samples = 0;
4813 }
4814 
bfq_completed_request(struct bfq_queue * bfqq,struct bfq_data * bfqd)4815 static void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd)
4816 {
4817 	u64 now_ns;
4818 	u32 delta_us;
4819 
4820 	bfq_update_hw_tag(bfqd);
4821 
4822 	bfqd->rq_in_driver--;
4823 	bfqq->dispatched--;
4824 
4825 	if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) {
4826 		/*
4827 		 * Set budget_timeout (which we overload to store the
4828 		 * time at which the queue remains with no backlog and
4829 		 * no outstanding request; used by the weight-raising
4830 		 * mechanism).
4831 		 */
4832 		bfqq->budget_timeout = jiffies;
4833 
4834 		bfq_weights_tree_remove(bfqd, bfqq);
4835 	}
4836 
4837 	now_ns = ktime_get_ns();
4838 
4839 	bfqq->ttime.last_end_request = now_ns;
4840 
4841 	/*
4842 	 * Using us instead of ns, to get a reasonable precision in
4843 	 * computing rate in next check.
4844 	 */
4845 	delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC);
4846 
4847 	/*
4848 	 * If the request took rather long to complete, and, according
4849 	 * to the maximum request size recorded, this completion latency
4850 	 * implies that the request was certainly served at a very low
4851 	 * rate (less than 1M sectors/sec), then the whole observation
4852 	 * interval that lasts up to this time instant cannot be a
4853 	 * valid time interval for computing a new peak rate.  Invoke
4854 	 * bfq_update_rate_reset to have the following three steps
4855 	 * taken:
4856 	 * - close the observation interval at the last (previous)
4857 	 *   request dispatch or completion
4858 	 * - compute rate, if possible, for that observation interval
4859 	 * - reset to zero samples, which will trigger a proper
4860 	 *   re-initialization of the observation interval on next
4861 	 *   dispatch
4862 	 */
4863 	if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC &&
4864 	   (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us <
4865 			1UL<<(BFQ_RATE_SHIFT - 10))
4866 		bfq_update_rate_reset(bfqd, NULL);
4867 	bfqd->last_completion = now_ns;
4868 
4869 	/*
4870 	 * If we are waiting to discover whether the request pattern
4871 	 * of the task associated with the queue is actually
4872 	 * isochronous, and both requisites for this condition to hold
4873 	 * are now satisfied, then compute soft_rt_next_start (see the
4874 	 * comments on the function bfq_bfqq_softrt_next_start()). We
4875 	 * schedule this delayed check when bfqq expires, if it still
4876 	 * has in-flight requests.
4877 	 */
4878 	if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 &&
4879 	    RB_EMPTY_ROOT(&bfqq->sort_list))
4880 		bfqq->soft_rt_next_start =
4881 			bfq_bfqq_softrt_next_start(bfqd, bfqq);
4882 
4883 	/*
4884 	 * If this is the in-service queue, check if it needs to be expired,
4885 	 * or if we want to idle in case it has no pending requests.
4886 	 */
4887 	if (bfqd->in_service_queue == bfqq) {
4888 		if (bfq_bfqq_must_idle(bfqq)) {
4889 			if (bfqq->dispatched == 0)
4890 				bfq_arm_slice_timer(bfqd);
4891 			/*
4892 			 * If we get here, we do not expire bfqq, even
4893 			 * if bfqq was in budget timeout or had no
4894 			 * more requests (as controlled in the next
4895 			 * conditional instructions). The reason for
4896 			 * not expiring bfqq is as follows.
4897 			 *
4898 			 * Here bfqq->dispatched > 0 holds, but
4899 			 * bfq_bfqq_must_idle() returned true. This
4900 			 * implies that, even if no request arrives
4901 			 * for bfqq before bfqq->dispatched reaches 0,
4902 			 * bfqq will, however, not be expired on the
4903 			 * completion event that causes bfqq->dispatch
4904 			 * to reach zero. In contrast, on this event,
4905 			 * bfqq will start enjoying device idling
4906 			 * (I/O-dispatch plugging).
4907 			 *
4908 			 * But, if we expired bfqq here, bfqq would
4909 			 * not have the chance to enjoy device idling
4910 			 * when bfqq->dispatched finally reaches
4911 			 * zero. This would expose bfqq to violation
4912 			 * of its reserved service guarantees.
4913 			 */
4914 			return;
4915 		} else if (bfq_may_expire_for_budg_timeout(bfqq))
4916 			bfq_bfqq_expire(bfqd, bfqq, false,
4917 					BFQQE_BUDGET_TIMEOUT);
4918 		else if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
4919 			 (bfqq->dispatched == 0 ||
4920 			  !bfq_better_to_idle(bfqq)))
4921 			bfq_bfqq_expire(bfqd, bfqq, false,
4922 					BFQQE_NO_MORE_REQUESTS);
4923 	}
4924 
4925 	if (!bfqd->rq_in_driver)
4926 		bfq_schedule_dispatch(bfqd);
4927 }
4928 
bfq_finish_requeue_request_body(struct bfq_queue * bfqq)4929 static void bfq_finish_requeue_request_body(struct bfq_queue *bfqq)
4930 {
4931 	bfqq->allocated--;
4932 
4933 	bfq_put_queue(bfqq);
4934 }
4935 
4936 /*
4937  * Handle either a requeue or a finish for rq. The things to do are
4938  * the same in both cases: all references to rq are to be dropped. In
4939  * particular, rq is considered completed from the point of view of
4940  * the scheduler.
4941  */
bfq_finish_requeue_request(struct request * rq)4942 static void bfq_finish_requeue_request(struct request *rq)
4943 {
4944 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
4945 	struct bfq_data *bfqd;
4946 
4947 	/*
4948 	 * Requeue and finish hooks are invoked in blk-mq without
4949 	 * checking whether the involved request is actually still
4950 	 * referenced in the scheduler. To handle this fact, the
4951 	 * following two checks make this function exit in case of
4952 	 * spurious invocations, for which there is nothing to do.
4953 	 *
4954 	 * First, check whether rq has nothing to do with an elevator.
4955 	 */
4956 	if (unlikely(!(rq->rq_flags & RQF_ELVPRIV)))
4957 		return;
4958 
4959 	/*
4960 	 * rq either is not associated with any icq, or is an already
4961 	 * requeued request that has not (yet) been re-inserted into
4962 	 * a bfq_queue.
4963 	 */
4964 	if (!rq->elv.icq || !bfqq)
4965 		return;
4966 
4967 	bfqd = bfqq->bfqd;
4968 
4969 	if (rq->rq_flags & RQF_STARTED)
4970 		bfqg_stats_update_completion(bfqq_group(bfqq),
4971 					     rq->start_time_ns,
4972 					     rq->io_start_time_ns,
4973 					     rq->cmd_flags);
4974 
4975 	if (likely(rq->rq_flags & RQF_STARTED)) {
4976 		unsigned long flags;
4977 
4978 		spin_lock_irqsave(&bfqd->lock, flags);
4979 
4980 		bfq_completed_request(bfqq, bfqd);
4981 		bfq_finish_requeue_request_body(bfqq);
4982 
4983 		spin_unlock_irqrestore(&bfqd->lock, flags);
4984 	} else {
4985 		/*
4986 		 * Request rq may be still/already in the scheduler,
4987 		 * in which case we need to remove it (this should
4988 		 * never happen in case of requeue). And we cannot
4989 		 * defer such a check and removal, to avoid
4990 		 * inconsistencies in the time interval from the end
4991 		 * of this function to the start of the deferred work.
4992 		 * This situation seems to occur only in process
4993 		 * context, as a consequence of a merge. In the
4994 		 * current version of the code, this implies that the
4995 		 * lock is held.
4996 		 */
4997 
4998 		if (!RB_EMPTY_NODE(&rq->rb_node)) {
4999 			bfq_remove_request(rq->q, rq);
5000 			bfqg_stats_update_io_remove(bfqq_group(bfqq),
5001 						    rq->cmd_flags);
5002 		}
5003 		bfq_finish_requeue_request_body(bfqq);
5004 	}
5005 
5006 	/*
5007 	 * Reset private fields. In case of a requeue, this allows
5008 	 * this function to correctly do nothing if it is spuriously
5009 	 * invoked again on this same request (see the check at the
5010 	 * beginning of the function). Probably, a better general
5011 	 * design would be to prevent blk-mq from invoking the requeue
5012 	 * or finish hooks of an elevator, for a request that is not
5013 	 * referred by that elevator.
5014 	 *
5015 	 * Resetting the following fields would break the
5016 	 * request-insertion logic if rq is re-inserted into a bfq
5017 	 * internal queue, without a re-preparation. Here we assume
5018 	 * that re-insertions of requeued requests, without
5019 	 * re-preparation, can happen only for pass_through or at_head
5020 	 * requests (which are not re-inserted into bfq internal
5021 	 * queues).
5022 	 */
5023 	rq->elv.priv[0] = NULL;
5024 	rq->elv.priv[1] = NULL;
5025 }
5026 
5027 /*
5028  * Returns NULL if a new bfqq should be allocated, or the old bfqq if this
5029  * was the last process referring to that bfqq.
5030  */
5031 static struct bfq_queue *
bfq_split_bfqq(struct bfq_io_cq * bic,struct bfq_queue * bfqq)5032 bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq)
5033 {
5034 	bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue");
5035 
5036 	if (bfqq_process_refs(bfqq) == 1) {
5037 		bfqq->pid = current->pid;
5038 		bfq_clear_bfqq_coop(bfqq);
5039 		bfq_clear_bfqq_split_coop(bfqq);
5040 		return bfqq;
5041 	}
5042 
5043 	bic_set_bfqq(bic, NULL, 1);
5044 
5045 	bfq_put_cooperator(bfqq);
5046 
5047 	bfq_put_queue(bfqq);
5048 	return NULL;
5049 }
5050 
bfq_get_bfqq_handle_split(struct bfq_data * bfqd,struct bfq_io_cq * bic,struct bio * bio,bool split,bool is_sync,bool * new_queue)5051 static struct bfq_queue *bfq_get_bfqq_handle_split(struct bfq_data *bfqd,
5052 						   struct bfq_io_cq *bic,
5053 						   struct bio *bio,
5054 						   bool split, bool is_sync,
5055 						   bool *new_queue)
5056 {
5057 	struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
5058 
5059 	if (likely(bfqq && bfqq != &bfqd->oom_bfqq))
5060 		return bfqq;
5061 
5062 	if (new_queue)
5063 		*new_queue = true;
5064 
5065 	if (bfqq)
5066 		bfq_put_queue(bfqq);
5067 	bfqq = bfq_get_queue(bfqd, bio, is_sync, bic);
5068 
5069 	bic_set_bfqq(bic, bfqq, is_sync);
5070 	if (split && is_sync) {
5071 		if ((bic->was_in_burst_list && bfqd->large_burst) ||
5072 		    bic->saved_in_large_burst)
5073 			bfq_mark_bfqq_in_large_burst(bfqq);
5074 		else {
5075 			bfq_clear_bfqq_in_large_burst(bfqq);
5076 			if (bic->was_in_burst_list)
5077 				/*
5078 				 * If bfqq was in the current
5079 				 * burst list before being
5080 				 * merged, then we have to add
5081 				 * it back. And we do not need
5082 				 * to increase burst_size, as
5083 				 * we did not decrement
5084 				 * burst_size when we removed
5085 				 * bfqq from the burst list as
5086 				 * a consequence of a merge
5087 				 * (see comments in
5088 				 * bfq_put_queue). In this
5089 				 * respect, it would be rather
5090 				 * costly to know whether the
5091 				 * current burst list is still
5092 				 * the same burst list from
5093 				 * which bfqq was removed on
5094 				 * the merge. To avoid this
5095 				 * cost, if bfqq was in a
5096 				 * burst list, then we add
5097 				 * bfqq to the current burst
5098 				 * list without any further
5099 				 * check. This can cause
5100 				 * inappropriate insertions,
5101 				 * but rarely enough to not
5102 				 * harm the detection of large
5103 				 * bursts significantly.
5104 				 */
5105 				hlist_add_head(&bfqq->burst_list_node,
5106 					       &bfqd->burst_list);
5107 		}
5108 		bfqq->split_time = jiffies;
5109 	}
5110 
5111 	return bfqq;
5112 }
5113 
5114 /*
5115  * Only reset private fields. The actual request preparation will be
5116  * performed by bfq_init_rq, when rq is either inserted or merged. See
5117  * comments on bfq_init_rq for the reason behind this delayed
5118  * preparation.
5119  */
bfq_prepare_request(struct request * rq,struct bio * bio)5120 static void bfq_prepare_request(struct request *rq, struct bio *bio)
5121 {
5122 	/*
5123 	 * Regardless of whether we have an icq attached, we have to
5124 	 * clear the scheduler pointers, as they might point to
5125 	 * previously allocated bic/bfqq structs.
5126 	 */
5127 	rq->elv.priv[0] = rq->elv.priv[1] = NULL;
5128 }
5129 
5130 /*
5131  * If needed, init rq, allocate bfq data structures associated with
5132  * rq, and increment reference counters in the destination bfq_queue
5133  * for rq. Return the destination bfq_queue for rq, or NULL is rq is
5134  * not associated with any bfq_queue.
5135  *
5136  * This function is invoked by the functions that perform rq insertion
5137  * or merging. One may have expected the above preparation operations
5138  * to be performed in bfq_prepare_request, and not delayed to when rq
5139  * is inserted or merged. The rationale behind this delayed
5140  * preparation is that, after the prepare_request hook is invoked for
5141  * rq, rq may still be transformed into a request with no icq, i.e., a
5142  * request not associated with any queue. No bfq hook is invoked to
5143  * signal this tranformation. As a consequence, should these
5144  * preparation operations be performed when the prepare_request hook
5145  * is invoked, and should rq be transformed one moment later, bfq
5146  * would end up in an inconsistent state, because it would have
5147  * incremented some queue counters for an rq destined to
5148  * transformation, without any chance to correctly lower these
5149  * counters back. In contrast, no transformation can still happen for
5150  * rq after rq has been inserted or merged. So, it is safe to execute
5151  * these preparation operations when rq is finally inserted or merged.
5152  */
bfq_init_rq(struct request * rq)5153 static struct bfq_queue *bfq_init_rq(struct request *rq)
5154 {
5155 	struct request_queue *q = rq->q;
5156 	struct bio *bio = rq->bio;
5157 	struct bfq_data *bfqd = q->elevator->elevator_data;
5158 	struct bfq_io_cq *bic;
5159 	const int is_sync = rq_is_sync(rq);
5160 	struct bfq_queue *bfqq;
5161 	bool new_queue = false;
5162 	bool bfqq_already_existing = false, split = false;
5163 
5164 	if (unlikely(!rq->elv.icq))
5165 		return NULL;
5166 
5167 	/*
5168 	 * Assuming that elv.priv[1] is set only if everything is set
5169 	 * for this rq. This holds true, because this function is
5170 	 * invoked only for insertion or merging, and, after such
5171 	 * events, a request cannot be manipulated any longer before
5172 	 * being removed from bfq.
5173 	 */
5174 	if (rq->elv.priv[1])
5175 		return rq->elv.priv[1];
5176 
5177 	bic = icq_to_bic(rq->elv.icq);
5178 
5179 	bfq_check_ioprio_change(bic, bio);
5180 
5181 	bfq_bic_update_cgroup(bic, bio);
5182 
5183 	bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, false, is_sync,
5184 					 &new_queue);
5185 
5186 	if (likely(!new_queue)) {
5187 		/* If the queue was seeky for too long, break it apart. */
5188 		if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq)) {
5189 			bfq_log_bfqq(bfqd, bfqq, "breaking apart bfqq");
5190 
5191 			/* Update bic before losing reference to bfqq */
5192 			if (bfq_bfqq_in_large_burst(bfqq))
5193 				bic->saved_in_large_burst = true;
5194 
5195 			bfqq = bfq_split_bfqq(bic, bfqq);
5196 			split = true;
5197 
5198 			if (!bfqq)
5199 				bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio,
5200 								 true, is_sync,
5201 								 NULL);
5202 			else
5203 				bfqq_already_existing = true;
5204 		}
5205 	}
5206 
5207 	bfqq->allocated++;
5208 	bfqq->ref++;
5209 	bfq_log_bfqq(bfqd, bfqq, "get_request %p: bfqq %p, %d",
5210 		     rq, bfqq, bfqq->ref);
5211 
5212 	rq->elv.priv[0] = bic;
5213 	rq->elv.priv[1] = bfqq;
5214 
5215 	/*
5216 	 * If a bfq_queue has only one process reference, it is owned
5217 	 * by only this bic: we can then set bfqq->bic = bic. in
5218 	 * addition, if the queue has also just been split, we have to
5219 	 * resume its state.
5220 	 */
5221 	if (likely(bfqq != &bfqd->oom_bfqq) && bfqq_process_refs(bfqq) == 1) {
5222 		bfqq->bic = bic;
5223 		if (split) {
5224 			/*
5225 			 * The queue has just been split from a shared
5226 			 * queue: restore the idle window and the
5227 			 * possible weight raising period.
5228 			 */
5229 			bfq_bfqq_resume_state(bfqq, bfqd, bic,
5230 					      bfqq_already_existing);
5231 		}
5232 	}
5233 
5234 	if (unlikely(bfq_bfqq_just_created(bfqq)))
5235 		bfq_handle_burst(bfqd, bfqq);
5236 
5237 	return bfqq;
5238 }
5239 
5240 static void
bfq_idle_slice_timer_body(struct bfq_data * bfqd,struct bfq_queue * bfqq)5241 bfq_idle_slice_timer_body(struct bfq_data *bfqd, struct bfq_queue *bfqq)
5242 {
5243 	enum bfqq_expiration reason;
5244 	unsigned long flags;
5245 
5246 	spin_lock_irqsave(&bfqd->lock, flags);
5247 
5248 	/*
5249 	 * Considering that bfqq may be in race, we should firstly check
5250 	 * whether bfqq is in service before doing something on it. If
5251 	 * the bfqq in race is not in service, it has already been expired
5252 	 * through __bfq_bfqq_expire func and its wait_request flags has
5253 	 * been cleared in __bfq_bfqd_reset_in_service func.
5254 	 */
5255 	if (bfqq != bfqd->in_service_queue) {
5256 		spin_unlock_irqrestore(&bfqd->lock, flags);
5257 		return;
5258 	}
5259 
5260 	bfq_clear_bfqq_wait_request(bfqq);
5261 
5262 	if (bfq_bfqq_budget_timeout(bfqq))
5263 		/*
5264 		 * Also here the queue can be safely expired
5265 		 * for budget timeout without wasting
5266 		 * guarantees
5267 		 */
5268 		reason = BFQQE_BUDGET_TIMEOUT;
5269 	else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0)
5270 		/*
5271 		 * The queue may not be empty upon timer expiration,
5272 		 * because we may not disable the timer when the
5273 		 * first request of the in-service queue arrives
5274 		 * during disk idling.
5275 		 */
5276 		reason = BFQQE_TOO_IDLE;
5277 	else
5278 		goto schedule_dispatch;
5279 
5280 	bfq_bfqq_expire(bfqd, bfqq, true, reason);
5281 
5282 schedule_dispatch:
5283 	bfq_schedule_dispatch(bfqd);
5284 	spin_unlock_irqrestore(&bfqd->lock, flags);
5285 }
5286 
5287 /*
5288  * Handler of the expiration of the timer running if the in-service queue
5289  * is idling inside its time slice.
5290  */
bfq_idle_slice_timer(struct hrtimer * timer)5291 static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer)
5292 {
5293 	struct bfq_data *bfqd = container_of(timer, struct bfq_data,
5294 					     idle_slice_timer);
5295 	struct bfq_queue *bfqq = bfqd->in_service_queue;
5296 
5297 	/*
5298 	 * Theoretical race here: the in-service queue can be NULL or
5299 	 * different from the queue that was idling if a new request
5300 	 * arrives for the current queue and there is a full dispatch
5301 	 * cycle that changes the in-service queue.  This can hardly
5302 	 * happen, but in the worst case we just expire a queue too
5303 	 * early.
5304 	 */
5305 	if (bfqq)
5306 		bfq_idle_slice_timer_body(bfqd, bfqq);
5307 
5308 	return HRTIMER_NORESTART;
5309 }
5310 
__bfq_put_async_bfqq(struct bfq_data * bfqd,struct bfq_queue ** bfqq_ptr)5311 static void __bfq_put_async_bfqq(struct bfq_data *bfqd,
5312 				 struct bfq_queue **bfqq_ptr)
5313 {
5314 	struct bfq_queue *bfqq = *bfqq_ptr;
5315 
5316 	bfq_log(bfqd, "put_async_bfqq: %p", bfqq);
5317 	if (bfqq) {
5318 		bfq_bfqq_move(bfqd, bfqq, bfqd->root_group);
5319 
5320 		bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d",
5321 			     bfqq, bfqq->ref);
5322 		bfq_put_queue(bfqq);
5323 		*bfqq_ptr = NULL;
5324 	}
5325 }
5326 
5327 /*
5328  * Release all the bfqg references to its async queues.  If we are
5329  * deallocating the group these queues may still contain requests, so
5330  * we reparent them to the root cgroup (i.e., the only one that will
5331  * exist for sure until all the requests on a device are gone).
5332  */
bfq_put_async_queues(struct bfq_data * bfqd,struct bfq_group * bfqg)5333 void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg)
5334 {
5335 	int i, j;
5336 
5337 	for (i = 0; i < 2; i++)
5338 		for (j = 0; j < IOPRIO_BE_NR; j++)
5339 			__bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]);
5340 
5341 	__bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq);
5342 }
5343 
5344 /*
5345  * See the comments on bfq_limit_depth for the purpose of
5346  * the depths set in the function. Return minimum shallow depth we'll use.
5347  */
bfq_update_depths(struct bfq_data * bfqd,struct sbitmap_queue * bt)5348 static unsigned int bfq_update_depths(struct bfq_data *bfqd,
5349 				      struct sbitmap_queue *bt)
5350 {
5351 	unsigned int i, j, min_shallow = UINT_MAX;
5352 
5353 	/*
5354 	 * In-word depths if no bfq_queue is being weight-raised:
5355 	 * leaving 25% of tags only for sync reads.
5356 	 *
5357 	 * In next formulas, right-shift the value
5358 	 * (1U<<bt->sb.shift), instead of computing directly
5359 	 * (1U<<(bt->sb.shift - something)), to be robust against
5360 	 * any possible value of bt->sb.shift, without having to
5361 	 * limit 'something'.
5362 	 */
5363 	/* no more than 50% of tags for async I/O */
5364 	bfqd->word_depths[0][0] = max((1U << bt->sb.shift) >> 1, 1U);
5365 	/*
5366 	 * no more than 75% of tags for sync writes (25% extra tags
5367 	 * w.r.t. async I/O, to prevent async I/O from starving sync
5368 	 * writes)
5369 	 */
5370 	bfqd->word_depths[0][1] = max(((1U << bt->sb.shift) * 3) >> 2, 1U);
5371 
5372 	/*
5373 	 * In-word depths in case some bfq_queue is being weight-
5374 	 * raised: leaving ~63% of tags for sync reads. This is the
5375 	 * highest percentage for which, in our tests, application
5376 	 * start-up times didn't suffer from any regression due to tag
5377 	 * shortage.
5378 	 */
5379 	/* no more than ~18% of tags for async I/O */
5380 	bfqd->word_depths[1][0] = max(((1U << bt->sb.shift) * 3) >> 4, 1U);
5381 	/* no more than ~37% of tags for sync writes (~20% extra tags) */
5382 	bfqd->word_depths[1][1] = max(((1U << bt->sb.shift) * 6) >> 4, 1U);
5383 
5384 	for (i = 0; i < 2; i++)
5385 		for (j = 0; j < 2; j++)
5386 			min_shallow = min(min_shallow, bfqd->word_depths[i][j]);
5387 
5388 	return min_shallow;
5389 }
5390 
bfq_depth_updated(struct blk_mq_hw_ctx * hctx)5391 static void bfq_depth_updated(struct blk_mq_hw_ctx *hctx)
5392 {
5393 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
5394 	struct blk_mq_tags *tags = hctx->sched_tags;
5395 	unsigned int min_shallow;
5396 
5397 	min_shallow = bfq_update_depths(bfqd, &tags->bitmap_tags);
5398 	sbitmap_queue_min_shallow_depth(&tags->bitmap_tags, min_shallow);
5399 }
5400 
bfq_init_hctx(struct blk_mq_hw_ctx * hctx,unsigned int index)5401 static int bfq_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int index)
5402 {
5403 	bfq_depth_updated(hctx);
5404 	return 0;
5405 }
5406 
bfq_exit_queue(struct elevator_queue * e)5407 static void bfq_exit_queue(struct elevator_queue *e)
5408 {
5409 	struct bfq_data *bfqd = e->elevator_data;
5410 	struct bfq_queue *bfqq, *n;
5411 
5412 	hrtimer_cancel(&bfqd->idle_slice_timer);
5413 
5414 	spin_lock_irq(&bfqd->lock);
5415 	list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
5416 		bfq_deactivate_bfqq(bfqd, bfqq, false, false);
5417 	spin_unlock_irq(&bfqd->lock);
5418 
5419 	hrtimer_cancel(&bfqd->idle_slice_timer);
5420 
5421 #ifdef CONFIG_BFQ_GROUP_IOSCHED
5422 	/* release oom-queue reference to root group */
5423 	bfqg_and_blkg_put(bfqd->root_group);
5424 
5425 	blkcg_deactivate_policy(bfqd->queue, &blkcg_policy_bfq);
5426 #else
5427 	spin_lock_irq(&bfqd->lock);
5428 	bfq_put_async_queues(bfqd, bfqd->root_group);
5429 	kfree(bfqd->root_group);
5430 	spin_unlock_irq(&bfqd->lock);
5431 #endif
5432 
5433 	wbt_enable_default(bfqd->queue);
5434 
5435 	kfree(bfqd);
5436 }
5437 
bfq_init_root_group(struct bfq_group * root_group,struct bfq_data * bfqd)5438 static void bfq_init_root_group(struct bfq_group *root_group,
5439 				struct bfq_data *bfqd)
5440 {
5441 	int i;
5442 
5443 #ifdef CONFIG_BFQ_GROUP_IOSCHED
5444 	root_group->entity.parent = NULL;
5445 	root_group->my_entity = NULL;
5446 	root_group->bfqd = bfqd;
5447 #endif
5448 	root_group->rq_pos_tree = RB_ROOT;
5449 	for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
5450 		root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
5451 	root_group->sched_data.bfq_class_idle_last_service = jiffies;
5452 }
5453 
bfq_init_queue(struct request_queue * q,struct elevator_type * e)5454 static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
5455 {
5456 	struct bfq_data *bfqd;
5457 	struct elevator_queue *eq;
5458 
5459 	eq = elevator_alloc(q, e);
5460 	if (!eq)
5461 		return -ENOMEM;
5462 
5463 	bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node);
5464 	if (!bfqd) {
5465 		kobject_put(&eq->kobj);
5466 		return -ENOMEM;
5467 	}
5468 	eq->elevator_data = bfqd;
5469 
5470 	spin_lock_irq(q->queue_lock);
5471 	q->elevator = eq;
5472 	spin_unlock_irq(q->queue_lock);
5473 
5474 	/*
5475 	 * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues.
5476 	 * Grab a permanent reference to it, so that the normal code flow
5477 	 * will not attempt to free it.
5478 	 */
5479 	bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0);
5480 	bfqd->oom_bfqq.ref++;
5481 	bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO;
5482 	bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE;
5483 	bfqd->oom_bfqq.entity.new_weight =
5484 		bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio);
5485 
5486 	/* oom_bfqq does not participate to bursts */
5487 	bfq_clear_bfqq_just_created(&bfqd->oom_bfqq);
5488 
5489 	/*
5490 	 * Trigger weight initialization, according to ioprio, at the
5491 	 * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio
5492 	 * class won't be changed any more.
5493 	 */
5494 	bfqd->oom_bfqq.entity.prio_changed = 1;
5495 
5496 	bfqd->queue = q;
5497 
5498 	INIT_LIST_HEAD(&bfqd->dispatch);
5499 
5500 	hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC,
5501 		     HRTIMER_MODE_REL);
5502 	bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
5503 
5504 	bfqd->queue_weights_tree = RB_ROOT;
5505 	bfqd->num_groups_with_pending_reqs = 0;
5506 
5507 	INIT_LIST_HEAD(&bfqd->active_list);
5508 	INIT_LIST_HEAD(&bfqd->idle_list);
5509 	INIT_HLIST_HEAD(&bfqd->burst_list);
5510 
5511 	bfqd->hw_tag = -1;
5512 
5513 	bfqd->bfq_max_budget = bfq_default_max_budget;
5514 
5515 	bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0];
5516 	bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1];
5517 	bfqd->bfq_back_max = bfq_back_max;
5518 	bfqd->bfq_back_penalty = bfq_back_penalty;
5519 	bfqd->bfq_slice_idle = bfq_slice_idle;
5520 	bfqd->bfq_timeout = bfq_timeout;
5521 
5522 	bfqd->bfq_requests_within_timer = 120;
5523 
5524 	bfqd->bfq_large_burst_thresh = 8;
5525 	bfqd->bfq_burst_interval = msecs_to_jiffies(180);
5526 
5527 	bfqd->low_latency = true;
5528 
5529 	/*
5530 	 * Trade-off between responsiveness and fairness.
5531 	 */
5532 	bfqd->bfq_wr_coeff = 30;
5533 	bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300);
5534 	bfqd->bfq_wr_max_time = 0;
5535 	bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000);
5536 	bfqd->bfq_wr_min_inter_arr_async = msecs_to_jiffies(500);
5537 	bfqd->bfq_wr_max_softrt_rate = 7000; /*
5538 					      * Approximate rate required
5539 					      * to playback or record a
5540 					      * high-definition compressed
5541 					      * video.
5542 					      */
5543 	bfqd->wr_busy_queues = 0;
5544 
5545 	/*
5546 	 * Begin by assuming, optimistically, that the device peak
5547 	 * rate is equal to 2/3 of the highest reference rate.
5548 	 */
5549 	bfqd->rate_dur_prod = ref_rate[blk_queue_nonrot(bfqd->queue)] *
5550 		ref_wr_duration[blk_queue_nonrot(bfqd->queue)];
5551 	bfqd->peak_rate = ref_rate[blk_queue_nonrot(bfqd->queue)] * 2 / 3;
5552 
5553 	spin_lock_init(&bfqd->lock);
5554 
5555 	/*
5556 	 * The invocation of the next bfq_create_group_hierarchy
5557 	 * function is the head of a chain of function calls
5558 	 * (bfq_create_group_hierarchy->blkcg_activate_policy->
5559 	 * blk_mq_freeze_queue) that may lead to the invocation of the
5560 	 * has_work hook function. For this reason,
5561 	 * bfq_create_group_hierarchy is invoked only after all
5562 	 * scheduler data has been initialized, apart from the fields
5563 	 * that can be initialized only after invoking
5564 	 * bfq_create_group_hierarchy. This, in particular, enables
5565 	 * has_work to correctly return false. Of course, to avoid
5566 	 * other inconsistencies, the blk-mq stack must then refrain
5567 	 * from invoking further scheduler hooks before this init
5568 	 * function is finished.
5569 	 */
5570 	bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node);
5571 	if (!bfqd->root_group)
5572 		goto out_free;
5573 	bfq_init_root_group(bfqd->root_group, bfqd);
5574 	bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group);
5575 
5576 	wbt_disable_default(q);
5577 	return 0;
5578 
5579 out_free:
5580 	kfree(bfqd);
5581 	kobject_put(&eq->kobj);
5582 	return -ENOMEM;
5583 }
5584 
bfq_slab_kill(void)5585 static void bfq_slab_kill(void)
5586 {
5587 	kmem_cache_destroy(bfq_pool);
5588 }
5589 
bfq_slab_setup(void)5590 static int __init bfq_slab_setup(void)
5591 {
5592 	bfq_pool = KMEM_CACHE(bfq_queue, 0);
5593 	if (!bfq_pool)
5594 		return -ENOMEM;
5595 	return 0;
5596 }
5597 
bfq_var_show(unsigned int var,char * page)5598 static ssize_t bfq_var_show(unsigned int var, char *page)
5599 {
5600 	return sprintf(page, "%u\n", var);
5601 }
5602 
bfq_var_store(unsigned long * var,const char * page)5603 static int bfq_var_store(unsigned long *var, const char *page)
5604 {
5605 	unsigned long new_val;
5606 	int ret = kstrtoul(page, 10, &new_val);
5607 
5608 	if (ret)
5609 		return ret;
5610 	*var = new_val;
5611 	return 0;
5612 }
5613 
5614 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
5615 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
5616 {									\
5617 	struct bfq_data *bfqd = e->elevator_data;			\
5618 	u64 __data = __VAR;						\
5619 	if (__CONV == 1)						\
5620 		__data = jiffies_to_msecs(__data);			\
5621 	else if (__CONV == 2)						\
5622 		__data = div_u64(__data, NSEC_PER_MSEC);		\
5623 	return bfq_var_show(__data, (page));				\
5624 }
5625 SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2);
5626 SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2);
5627 SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
5628 SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
5629 SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2);
5630 SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
5631 SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1);
5632 SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0);
5633 SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0);
5634 #undef SHOW_FUNCTION
5635 
5636 #define USEC_SHOW_FUNCTION(__FUNC, __VAR)				\
5637 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
5638 {									\
5639 	struct bfq_data *bfqd = e->elevator_data;			\
5640 	u64 __data = __VAR;						\
5641 	__data = div_u64(__data, NSEC_PER_USEC);			\
5642 	return bfq_var_show(__data, (page));				\
5643 }
5644 USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle);
5645 #undef USEC_SHOW_FUNCTION
5646 
5647 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
5648 static ssize_t								\
5649 __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
5650 {									\
5651 	struct bfq_data *bfqd = e->elevator_data;			\
5652 	unsigned long __data, __min = (MIN), __max = (MAX);		\
5653 	int ret;							\
5654 									\
5655 	ret = bfq_var_store(&__data, (page));				\
5656 	if (ret)							\
5657 		return ret;						\
5658 	if (__data < __min)						\
5659 		__data = __min;						\
5660 	else if (__data > __max)					\
5661 		__data = __max;						\
5662 	if (__CONV == 1)						\
5663 		*(__PTR) = msecs_to_jiffies(__data);			\
5664 	else if (__CONV == 2)						\
5665 		*(__PTR) = (u64)__data * NSEC_PER_MSEC;			\
5666 	else								\
5667 		*(__PTR) = __data;					\
5668 	return count;							\
5669 }
5670 STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
5671 		INT_MAX, 2);
5672 STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
5673 		INT_MAX, 2);
5674 STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
5675 STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
5676 		INT_MAX, 0);
5677 STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2);
5678 #undef STORE_FUNCTION
5679 
5680 #define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX)			\
5681 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\
5682 {									\
5683 	struct bfq_data *bfqd = e->elevator_data;			\
5684 	unsigned long __data, __min = (MIN), __max = (MAX);		\
5685 	int ret;							\
5686 									\
5687 	ret = bfq_var_store(&__data, (page));				\
5688 	if (ret)							\
5689 		return ret;						\
5690 	if (__data < __min)						\
5691 		__data = __min;						\
5692 	else if (__data > __max)					\
5693 		__data = __max;						\
5694 	*(__PTR) = (u64)__data * NSEC_PER_USEC;				\
5695 	return count;							\
5696 }
5697 USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0,
5698 		    UINT_MAX);
5699 #undef USEC_STORE_FUNCTION
5700 
bfq_max_budget_store(struct elevator_queue * e,const char * page,size_t count)5701 static ssize_t bfq_max_budget_store(struct elevator_queue *e,
5702 				    const char *page, size_t count)
5703 {
5704 	struct bfq_data *bfqd = e->elevator_data;
5705 	unsigned long __data;
5706 	int ret;
5707 
5708 	ret = bfq_var_store(&__data, (page));
5709 	if (ret)
5710 		return ret;
5711 
5712 	if (__data == 0)
5713 		bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
5714 	else {
5715 		if (__data > INT_MAX)
5716 			__data = INT_MAX;
5717 		bfqd->bfq_max_budget = __data;
5718 	}
5719 
5720 	bfqd->bfq_user_max_budget = __data;
5721 
5722 	return count;
5723 }
5724 
5725 /*
5726  * Leaving this name to preserve name compatibility with cfq
5727  * parameters, but this timeout is used for both sync and async.
5728  */
bfq_timeout_sync_store(struct elevator_queue * e,const char * page,size_t count)5729 static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
5730 				      const char *page, size_t count)
5731 {
5732 	struct bfq_data *bfqd = e->elevator_data;
5733 	unsigned long __data;
5734 	int ret;
5735 
5736 	ret = bfq_var_store(&__data, (page));
5737 	if (ret)
5738 		return ret;
5739 
5740 	if (__data < 1)
5741 		__data = 1;
5742 	else if (__data > INT_MAX)
5743 		__data = INT_MAX;
5744 
5745 	bfqd->bfq_timeout = msecs_to_jiffies(__data);
5746 	if (bfqd->bfq_user_max_budget == 0)
5747 		bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
5748 
5749 	return count;
5750 }
5751 
bfq_strict_guarantees_store(struct elevator_queue * e,const char * page,size_t count)5752 static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e,
5753 				     const char *page, size_t count)
5754 {
5755 	struct bfq_data *bfqd = e->elevator_data;
5756 	unsigned long __data;
5757 	int ret;
5758 
5759 	ret = bfq_var_store(&__data, (page));
5760 	if (ret)
5761 		return ret;
5762 
5763 	if (__data > 1)
5764 		__data = 1;
5765 	if (!bfqd->strict_guarantees && __data == 1
5766 	    && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC)
5767 		bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC;
5768 
5769 	bfqd->strict_guarantees = __data;
5770 
5771 	return count;
5772 }
5773 
bfq_low_latency_store(struct elevator_queue * e,const char * page,size_t count)5774 static ssize_t bfq_low_latency_store(struct elevator_queue *e,
5775 				     const char *page, size_t count)
5776 {
5777 	struct bfq_data *bfqd = e->elevator_data;
5778 	unsigned long __data;
5779 	int ret;
5780 
5781 	ret = bfq_var_store(&__data, (page));
5782 	if (ret)
5783 		return ret;
5784 
5785 	if (__data > 1)
5786 		__data = 1;
5787 	if (__data == 0 && bfqd->low_latency != 0)
5788 		bfq_end_wr(bfqd);
5789 	bfqd->low_latency = __data;
5790 
5791 	return count;
5792 }
5793 
5794 #define BFQ_ATTR(name) \
5795 	__ATTR(name, 0644, bfq_##name##_show, bfq_##name##_store)
5796 
5797 static struct elv_fs_entry bfq_attrs[] = {
5798 	BFQ_ATTR(fifo_expire_sync),
5799 	BFQ_ATTR(fifo_expire_async),
5800 	BFQ_ATTR(back_seek_max),
5801 	BFQ_ATTR(back_seek_penalty),
5802 	BFQ_ATTR(slice_idle),
5803 	BFQ_ATTR(slice_idle_us),
5804 	BFQ_ATTR(max_budget),
5805 	BFQ_ATTR(timeout_sync),
5806 	BFQ_ATTR(strict_guarantees),
5807 	BFQ_ATTR(low_latency),
5808 	__ATTR_NULL
5809 };
5810 
5811 static struct elevator_type iosched_bfq_mq = {
5812 	.ops.mq = {
5813 		.limit_depth		= bfq_limit_depth,
5814 		.prepare_request	= bfq_prepare_request,
5815 		.requeue_request        = bfq_finish_requeue_request,
5816 		.finish_request		= bfq_finish_requeue_request,
5817 		.exit_icq		= bfq_exit_icq,
5818 		.insert_requests	= bfq_insert_requests,
5819 		.dispatch_request	= bfq_dispatch_request,
5820 		.next_request		= elv_rb_latter_request,
5821 		.former_request		= elv_rb_former_request,
5822 		.allow_merge		= bfq_allow_bio_merge,
5823 		.bio_merge		= bfq_bio_merge,
5824 		.request_merge		= bfq_request_merge,
5825 		.requests_merged	= bfq_requests_merged,
5826 		.request_merged		= bfq_request_merged,
5827 		.has_work		= bfq_has_work,
5828 		.depth_updated		= bfq_depth_updated,
5829 		.init_hctx		= bfq_init_hctx,
5830 		.init_sched		= bfq_init_queue,
5831 		.exit_sched		= bfq_exit_queue,
5832 	},
5833 
5834 	.uses_mq =		true,
5835 	.icq_size =		sizeof(struct bfq_io_cq),
5836 	.icq_align =		__alignof__(struct bfq_io_cq),
5837 	.elevator_attrs =	bfq_attrs,
5838 	.elevator_name =	"bfq",
5839 	.elevator_owner =	THIS_MODULE,
5840 };
5841 MODULE_ALIAS("bfq-iosched");
5842 
bfq_init(void)5843 static int __init bfq_init(void)
5844 {
5845 	int ret;
5846 
5847 #ifdef CONFIG_BFQ_GROUP_IOSCHED
5848 	ret = blkcg_policy_register(&blkcg_policy_bfq);
5849 	if (ret)
5850 		return ret;
5851 #endif
5852 
5853 	ret = -ENOMEM;
5854 	if (bfq_slab_setup())
5855 		goto err_pol_unreg;
5856 
5857 	/*
5858 	 * Times to load large popular applications for the typical
5859 	 * systems installed on the reference devices (see the
5860 	 * comments before the definition of the next
5861 	 * array). Actually, we use slightly lower values, as the
5862 	 * estimated peak rate tends to be smaller than the actual
5863 	 * peak rate.  The reason for this last fact is that estimates
5864 	 * are computed over much shorter time intervals than the long
5865 	 * intervals typically used for benchmarking. Why? First, to
5866 	 * adapt more quickly to variations. Second, because an I/O
5867 	 * scheduler cannot rely on a peak-rate-evaluation workload to
5868 	 * be run for a long time.
5869 	 */
5870 	ref_wr_duration[0] = msecs_to_jiffies(7000); /* actually 8 sec */
5871 	ref_wr_duration[1] = msecs_to_jiffies(2500); /* actually 3 sec */
5872 
5873 	ret = elv_register(&iosched_bfq_mq);
5874 	if (ret)
5875 		goto slab_kill;
5876 
5877 	return 0;
5878 
5879 slab_kill:
5880 	bfq_slab_kill();
5881 err_pol_unreg:
5882 #ifdef CONFIG_BFQ_GROUP_IOSCHED
5883 	blkcg_policy_unregister(&blkcg_policy_bfq);
5884 #endif
5885 	return ret;
5886 }
5887 
bfq_exit(void)5888 static void __exit bfq_exit(void)
5889 {
5890 	elv_unregister(&iosched_bfq_mq);
5891 #ifdef CONFIG_BFQ_GROUP_IOSCHED
5892 	blkcg_policy_unregister(&blkcg_policy_bfq);
5893 #endif
5894 	bfq_slab_kill();
5895 }
5896 
5897 module_init(bfq_init);
5898 module_exit(bfq_exit);
5899 
5900 MODULE_AUTHOR("Paolo Valente");
5901 MODULE_LICENSE("GPL");
5902 MODULE_DESCRIPTION("MQ Budget Fair Queueing I/O Scheduler");
5903