1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
37 #include <linux/bpf.h>
38 
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/block.h>
41 
42 #include "blk.h"
43 #include "blk-mq.h"
44 #include "blk-mq-sched.h"
45 #include "blk-rq-qos.h"
46 
47 #ifdef CONFIG_DEBUG_FS
48 struct dentry *blk_debugfs_root;
49 #endif
50 
51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
56 
57 DEFINE_IDA(blk_queue_ida);
58 
59 /*
60  * For the allocated request tables
61  */
62 struct kmem_cache *request_cachep;
63 
64 /*
65  * For queue allocation
66  */
67 struct kmem_cache *blk_requestq_cachep;
68 
69 /*
70  * Controlling structure to kblockd
71  */
72 static struct workqueue_struct *kblockd_workqueue;
73 
74 /**
75  * blk_queue_flag_set - atomically set a queue flag
76  * @flag: flag to be set
77  * @q: request queue
78  */
blk_queue_flag_set(unsigned int flag,struct request_queue * q)79 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
80 {
81 	unsigned long flags;
82 
83 	spin_lock_irqsave(q->queue_lock, flags);
84 	queue_flag_set(flag, q);
85 	spin_unlock_irqrestore(q->queue_lock, flags);
86 }
87 EXPORT_SYMBOL(blk_queue_flag_set);
88 
89 /**
90  * blk_queue_flag_clear - atomically clear a queue flag
91  * @flag: flag to be cleared
92  * @q: request queue
93  */
blk_queue_flag_clear(unsigned int flag,struct request_queue * q)94 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
95 {
96 	unsigned long flags;
97 
98 	spin_lock_irqsave(q->queue_lock, flags);
99 	queue_flag_clear(flag, q);
100 	spin_unlock_irqrestore(q->queue_lock, flags);
101 }
102 EXPORT_SYMBOL(blk_queue_flag_clear);
103 
104 /**
105  * blk_queue_flag_test_and_set - atomically test and set a queue flag
106  * @flag: flag to be set
107  * @q: request queue
108  *
109  * Returns the previous value of @flag - 0 if the flag was not set and 1 if
110  * the flag was already set.
111  */
blk_queue_flag_test_and_set(unsigned int flag,struct request_queue * q)112 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
113 {
114 	unsigned long flags;
115 	bool res;
116 
117 	spin_lock_irqsave(q->queue_lock, flags);
118 	res = queue_flag_test_and_set(flag, q);
119 	spin_unlock_irqrestore(q->queue_lock, flags);
120 
121 	return res;
122 }
123 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
124 
125 /**
126  * blk_queue_flag_test_and_clear - atomically test and clear a queue flag
127  * @flag: flag to be cleared
128  * @q: request queue
129  *
130  * Returns the previous value of @flag - 0 if the flag was not set and 1 if
131  * the flag was set.
132  */
blk_queue_flag_test_and_clear(unsigned int flag,struct request_queue * q)133 bool blk_queue_flag_test_and_clear(unsigned int flag, struct request_queue *q)
134 {
135 	unsigned long flags;
136 	bool res;
137 
138 	spin_lock_irqsave(q->queue_lock, flags);
139 	res = queue_flag_test_and_clear(flag, q);
140 	spin_unlock_irqrestore(q->queue_lock, flags);
141 
142 	return res;
143 }
144 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_clear);
145 
blk_clear_congested(struct request_list * rl,int sync)146 static void blk_clear_congested(struct request_list *rl, int sync)
147 {
148 #ifdef CONFIG_CGROUP_WRITEBACK
149 	clear_wb_congested(rl->blkg->wb_congested, sync);
150 #else
151 	/*
152 	 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
153 	 * flip its congestion state for events on other blkcgs.
154 	 */
155 	if (rl == &rl->q->root_rl)
156 		clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
157 #endif
158 }
159 
blk_set_congested(struct request_list * rl,int sync)160 static void blk_set_congested(struct request_list *rl, int sync)
161 {
162 #ifdef CONFIG_CGROUP_WRITEBACK
163 	set_wb_congested(rl->blkg->wb_congested, sync);
164 #else
165 	/* see blk_clear_congested() */
166 	if (rl == &rl->q->root_rl)
167 		set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
168 #endif
169 }
170 
blk_queue_congestion_threshold(struct request_queue * q)171 void blk_queue_congestion_threshold(struct request_queue *q)
172 {
173 	int nr;
174 
175 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
176 	if (nr > q->nr_requests)
177 		nr = q->nr_requests;
178 	q->nr_congestion_on = nr;
179 
180 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
181 	if (nr < 1)
182 		nr = 1;
183 	q->nr_congestion_off = nr;
184 }
185 
blk_rq_init(struct request_queue * q,struct request * rq)186 void blk_rq_init(struct request_queue *q, struct request *rq)
187 {
188 	memset(rq, 0, sizeof(*rq));
189 
190 	INIT_LIST_HEAD(&rq->queuelist);
191 	INIT_LIST_HEAD(&rq->timeout_list);
192 	rq->cpu = -1;
193 	rq->q = q;
194 	rq->__sector = (sector_t) -1;
195 	INIT_HLIST_NODE(&rq->hash);
196 	RB_CLEAR_NODE(&rq->rb_node);
197 	rq->tag = -1;
198 	rq->internal_tag = -1;
199 	rq->start_time_ns = ktime_get_ns();
200 	rq->part = NULL;
201 	refcount_set(&rq->ref, 1);
202 }
203 EXPORT_SYMBOL(blk_rq_init);
204 
205 static const struct {
206 	int		errno;
207 	const char	*name;
208 } blk_errors[] = {
209 	[BLK_STS_OK]		= { 0,		"" },
210 	[BLK_STS_NOTSUPP]	= { -EOPNOTSUPP, "operation not supported" },
211 	[BLK_STS_TIMEOUT]	= { -ETIMEDOUT,	"timeout" },
212 	[BLK_STS_NOSPC]		= { -ENOSPC,	"critical space allocation" },
213 	[BLK_STS_TRANSPORT]	= { -ENOLINK,	"recoverable transport" },
214 	[BLK_STS_TARGET]	= { -EREMOTEIO,	"critical target" },
215 	[BLK_STS_NEXUS]		= { -EBADE,	"critical nexus" },
216 	[BLK_STS_MEDIUM]	= { -ENODATA,	"critical medium" },
217 	[BLK_STS_PROTECTION]	= { -EILSEQ,	"protection" },
218 	[BLK_STS_RESOURCE]	= { -ENOMEM,	"kernel resource" },
219 	[BLK_STS_DEV_RESOURCE]	= { -EBUSY,	"device resource" },
220 	[BLK_STS_AGAIN]		= { -EAGAIN,	"nonblocking retry" },
221 
222 	/* device mapper special case, should not leak out: */
223 	[BLK_STS_DM_REQUEUE]	= { -EREMCHG, "dm internal retry" },
224 
225 	/* everything else not covered above: */
226 	[BLK_STS_IOERR]		= { -EIO,	"I/O" },
227 };
228 
errno_to_blk_status(int errno)229 blk_status_t errno_to_blk_status(int errno)
230 {
231 	int i;
232 
233 	for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
234 		if (blk_errors[i].errno == errno)
235 			return (__force blk_status_t)i;
236 	}
237 
238 	return BLK_STS_IOERR;
239 }
240 EXPORT_SYMBOL_GPL(errno_to_blk_status);
241 
blk_status_to_errno(blk_status_t status)242 int blk_status_to_errno(blk_status_t status)
243 {
244 	int idx = (__force int)status;
245 
246 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
247 		return -EIO;
248 	return blk_errors[idx].errno;
249 }
250 EXPORT_SYMBOL_GPL(blk_status_to_errno);
251 
print_req_error(struct request * req,blk_status_t status)252 static void print_req_error(struct request *req, blk_status_t status)
253 {
254 	int idx = (__force int)status;
255 
256 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
257 		return;
258 
259 	printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
260 			   __func__, blk_errors[idx].name, req->rq_disk ?
261 			   req->rq_disk->disk_name : "?",
262 			   (unsigned long long)blk_rq_pos(req));
263 }
264 
req_bio_endio(struct request * rq,struct bio * bio,unsigned int nbytes,blk_status_t error)265 static void req_bio_endio(struct request *rq, struct bio *bio,
266 			  unsigned int nbytes, blk_status_t error)
267 {
268 	if (error)
269 		bio->bi_status = error;
270 
271 	if (unlikely(rq->rq_flags & RQF_QUIET))
272 		bio_set_flag(bio, BIO_QUIET);
273 
274 	bio_advance(bio, nbytes);
275 
276 	/* don't actually finish bio if it's part of flush sequence */
277 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
278 		bio_endio(bio);
279 }
280 
blk_dump_rq_flags(struct request * rq,char * msg)281 void blk_dump_rq_flags(struct request *rq, char *msg)
282 {
283 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
284 		rq->rq_disk ? rq->rq_disk->disk_name : "?",
285 		(unsigned long long) rq->cmd_flags);
286 
287 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
288 	       (unsigned long long)blk_rq_pos(rq),
289 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
290 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
291 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
292 }
293 EXPORT_SYMBOL(blk_dump_rq_flags);
294 
blk_delay_work(struct work_struct * work)295 static void blk_delay_work(struct work_struct *work)
296 {
297 	struct request_queue *q;
298 
299 	q = container_of(work, struct request_queue, delay_work.work);
300 	spin_lock_irq(q->queue_lock);
301 	__blk_run_queue(q);
302 	spin_unlock_irq(q->queue_lock);
303 }
304 
305 /**
306  * blk_delay_queue - restart queueing after defined interval
307  * @q:		The &struct request_queue in question
308  * @msecs:	Delay in msecs
309  *
310  * Description:
311  *   Sometimes queueing needs to be postponed for a little while, to allow
312  *   resources to come back. This function will make sure that queueing is
313  *   restarted around the specified time.
314  */
blk_delay_queue(struct request_queue * q,unsigned long msecs)315 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
316 {
317 	lockdep_assert_held(q->queue_lock);
318 	WARN_ON_ONCE(q->mq_ops);
319 
320 	if (likely(!blk_queue_dead(q)))
321 		queue_delayed_work(kblockd_workqueue, &q->delay_work,
322 				   msecs_to_jiffies(msecs));
323 }
324 EXPORT_SYMBOL(blk_delay_queue);
325 
326 /**
327  * blk_start_queue_async - asynchronously restart a previously stopped queue
328  * @q:    The &struct request_queue in question
329  *
330  * Description:
331  *   blk_start_queue_async() will clear the stop flag on the queue, and
332  *   ensure that the request_fn for the queue is run from an async
333  *   context.
334  **/
blk_start_queue_async(struct request_queue * q)335 void blk_start_queue_async(struct request_queue *q)
336 {
337 	lockdep_assert_held(q->queue_lock);
338 	WARN_ON_ONCE(q->mq_ops);
339 
340 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
341 	blk_run_queue_async(q);
342 }
343 EXPORT_SYMBOL(blk_start_queue_async);
344 
345 /**
346  * blk_start_queue - restart a previously stopped queue
347  * @q:    The &struct request_queue in question
348  *
349  * Description:
350  *   blk_start_queue() will clear the stop flag on the queue, and call
351  *   the request_fn for the queue if it was in a stopped state when
352  *   entered. Also see blk_stop_queue().
353  **/
blk_start_queue(struct request_queue * q)354 void blk_start_queue(struct request_queue *q)
355 {
356 	lockdep_assert_held(q->queue_lock);
357 	WARN_ON_ONCE(q->mq_ops);
358 
359 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
360 	__blk_run_queue(q);
361 }
362 EXPORT_SYMBOL(blk_start_queue);
363 
364 /**
365  * blk_stop_queue - stop a queue
366  * @q:    The &struct request_queue in question
367  *
368  * Description:
369  *   The Linux block layer assumes that a block driver will consume all
370  *   entries on the request queue when the request_fn strategy is called.
371  *   Often this will not happen, because of hardware limitations (queue
372  *   depth settings). If a device driver gets a 'queue full' response,
373  *   or if it simply chooses not to queue more I/O at one point, it can
374  *   call this function to prevent the request_fn from being called until
375  *   the driver has signalled it's ready to go again. This happens by calling
376  *   blk_start_queue() to restart queue operations.
377  **/
blk_stop_queue(struct request_queue * q)378 void blk_stop_queue(struct request_queue *q)
379 {
380 	lockdep_assert_held(q->queue_lock);
381 	WARN_ON_ONCE(q->mq_ops);
382 
383 	cancel_delayed_work(&q->delay_work);
384 	queue_flag_set(QUEUE_FLAG_STOPPED, q);
385 }
386 EXPORT_SYMBOL(blk_stop_queue);
387 
388 /**
389  * blk_sync_queue - cancel any pending callbacks on a queue
390  * @q: the queue
391  *
392  * Description:
393  *     The block layer may perform asynchronous callback activity
394  *     on a queue, such as calling the unplug function after a timeout.
395  *     A block device may call blk_sync_queue to ensure that any
396  *     such activity is cancelled, thus allowing it to release resources
397  *     that the callbacks might use. The caller must already have made sure
398  *     that its ->make_request_fn will not re-add plugging prior to calling
399  *     this function.
400  *
401  *     This function does not cancel any asynchronous activity arising
402  *     out of elevator or throttling code. That would require elevator_exit()
403  *     and blkcg_exit_queue() to be called with queue lock initialized.
404  *
405  */
blk_sync_queue(struct request_queue * q)406 void blk_sync_queue(struct request_queue *q)
407 {
408 	del_timer_sync(&q->timeout);
409 	cancel_work_sync(&q->timeout_work);
410 
411 	if (q->mq_ops) {
412 		struct blk_mq_hw_ctx *hctx;
413 		int i;
414 
415 		queue_for_each_hw_ctx(q, hctx, i)
416 			cancel_delayed_work_sync(&hctx->run_work);
417 	} else {
418 		cancel_delayed_work_sync(&q->delay_work);
419 	}
420 }
421 EXPORT_SYMBOL(blk_sync_queue);
422 
423 /**
424  * blk_set_pm_only - increment pm_only counter
425  * @q: request queue pointer
426  */
blk_set_pm_only(struct request_queue * q)427 void blk_set_pm_only(struct request_queue *q)
428 {
429 	atomic_inc(&q->pm_only);
430 }
431 EXPORT_SYMBOL_GPL(blk_set_pm_only);
432 
blk_clear_pm_only(struct request_queue * q)433 void blk_clear_pm_only(struct request_queue *q)
434 {
435 	int pm_only;
436 
437 	pm_only = atomic_dec_return(&q->pm_only);
438 	WARN_ON_ONCE(pm_only < 0);
439 	if (pm_only == 0)
440 		wake_up_all(&q->mq_freeze_wq);
441 }
442 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
443 
444 /**
445  * __blk_run_queue_uncond - run a queue whether or not it has been stopped
446  * @q:	The queue to run
447  *
448  * Description:
449  *    Invoke request handling on a queue if there are any pending requests.
450  *    May be used to restart request handling after a request has completed.
451  *    This variant runs the queue whether or not the queue has been
452  *    stopped. Must be called with the queue lock held and interrupts
453  *    disabled. See also @blk_run_queue.
454  */
__blk_run_queue_uncond(struct request_queue * q)455 inline void __blk_run_queue_uncond(struct request_queue *q)
456 {
457 	lockdep_assert_held(q->queue_lock);
458 	WARN_ON_ONCE(q->mq_ops);
459 
460 	if (unlikely(blk_queue_dead(q)))
461 		return;
462 
463 	/*
464 	 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
465 	 * the queue lock internally. As a result multiple threads may be
466 	 * running such a request function concurrently. Keep track of the
467 	 * number of active request_fn invocations such that blk_drain_queue()
468 	 * can wait until all these request_fn calls have finished.
469 	 */
470 	q->request_fn_active++;
471 	q->request_fn(q);
472 	q->request_fn_active--;
473 }
474 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
475 
476 /**
477  * __blk_run_queue - run a single device queue
478  * @q:	The queue to run
479  *
480  * Description:
481  *    See @blk_run_queue.
482  */
__blk_run_queue(struct request_queue * q)483 void __blk_run_queue(struct request_queue *q)
484 {
485 	lockdep_assert_held(q->queue_lock);
486 	WARN_ON_ONCE(q->mq_ops);
487 
488 	if (unlikely(blk_queue_stopped(q)))
489 		return;
490 
491 	__blk_run_queue_uncond(q);
492 }
493 EXPORT_SYMBOL(__blk_run_queue);
494 
495 /**
496  * blk_run_queue_async - run a single device queue in workqueue context
497  * @q:	The queue to run
498  *
499  * Description:
500  *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
501  *    of us.
502  *
503  * Note:
504  *    Since it is not allowed to run q->delay_work after blk_cleanup_queue()
505  *    has canceled q->delay_work, callers must hold the queue lock to avoid
506  *    race conditions between blk_cleanup_queue() and blk_run_queue_async().
507  */
blk_run_queue_async(struct request_queue * q)508 void blk_run_queue_async(struct request_queue *q)
509 {
510 	lockdep_assert_held(q->queue_lock);
511 	WARN_ON_ONCE(q->mq_ops);
512 
513 	if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
514 		mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
515 }
516 EXPORT_SYMBOL(blk_run_queue_async);
517 
518 /**
519  * blk_run_queue - run a single device queue
520  * @q: The queue to run
521  *
522  * Description:
523  *    Invoke request handling on this queue, if it has pending work to do.
524  *    May be used to restart queueing when a request has completed.
525  */
blk_run_queue(struct request_queue * q)526 void blk_run_queue(struct request_queue *q)
527 {
528 	unsigned long flags;
529 
530 	WARN_ON_ONCE(q->mq_ops);
531 
532 	spin_lock_irqsave(q->queue_lock, flags);
533 	__blk_run_queue(q);
534 	spin_unlock_irqrestore(q->queue_lock, flags);
535 }
536 EXPORT_SYMBOL(blk_run_queue);
537 
blk_put_queue(struct request_queue * q)538 void blk_put_queue(struct request_queue *q)
539 {
540 	kobject_put(&q->kobj);
541 }
542 EXPORT_SYMBOL(blk_put_queue);
543 
544 /**
545  * __blk_drain_queue - drain requests from request_queue
546  * @q: queue to drain
547  * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
548  *
549  * Drain requests from @q.  If @drain_all is set, all requests are drained.
550  * If not, only ELVPRIV requests are drained.  The caller is responsible
551  * for ensuring that no new requests which need to be drained are queued.
552  */
__blk_drain_queue(struct request_queue * q,bool drain_all)553 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
554 	__releases(q->queue_lock)
555 	__acquires(q->queue_lock)
556 {
557 	int i;
558 
559 	lockdep_assert_held(q->queue_lock);
560 	WARN_ON_ONCE(q->mq_ops);
561 
562 	while (true) {
563 		bool drain = false;
564 
565 		/*
566 		 * The caller might be trying to drain @q before its
567 		 * elevator is initialized.
568 		 */
569 		if (q->elevator)
570 			elv_drain_elevator(q);
571 
572 		blkcg_drain_queue(q);
573 
574 		/*
575 		 * This function might be called on a queue which failed
576 		 * driver init after queue creation or is not yet fully
577 		 * active yet.  Some drivers (e.g. fd and loop) get unhappy
578 		 * in such cases.  Kick queue iff dispatch queue has
579 		 * something on it and @q has request_fn set.
580 		 */
581 		if (!list_empty(&q->queue_head) && q->request_fn)
582 			__blk_run_queue(q);
583 
584 		drain |= q->nr_rqs_elvpriv;
585 		drain |= q->request_fn_active;
586 
587 		/*
588 		 * Unfortunately, requests are queued at and tracked from
589 		 * multiple places and there's no single counter which can
590 		 * be drained.  Check all the queues and counters.
591 		 */
592 		if (drain_all) {
593 			struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
594 			drain |= !list_empty(&q->queue_head);
595 			for (i = 0; i < 2; i++) {
596 				drain |= q->nr_rqs[i];
597 				drain |= q->in_flight[i];
598 				if (fq)
599 				    drain |= !list_empty(&fq->flush_queue[i]);
600 			}
601 		}
602 
603 		if (!drain)
604 			break;
605 
606 		spin_unlock_irq(q->queue_lock);
607 
608 		msleep(10);
609 
610 		spin_lock_irq(q->queue_lock);
611 	}
612 
613 	/*
614 	 * With queue marked dead, any woken up waiter will fail the
615 	 * allocation path, so the wakeup chaining is lost and we're
616 	 * left with hung waiters. We need to wake up those waiters.
617 	 */
618 	if (q->request_fn) {
619 		struct request_list *rl;
620 
621 		blk_queue_for_each_rl(rl, q)
622 			for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
623 				wake_up_all(&rl->wait[i]);
624 	}
625 }
626 
blk_drain_queue(struct request_queue * q)627 void blk_drain_queue(struct request_queue *q)
628 {
629 	spin_lock_irq(q->queue_lock);
630 	__blk_drain_queue(q, true);
631 	spin_unlock_irq(q->queue_lock);
632 }
633 
634 /**
635  * blk_queue_bypass_start - enter queue bypass mode
636  * @q: queue of interest
637  *
638  * In bypass mode, only the dispatch FIFO queue of @q is used.  This
639  * function makes @q enter bypass mode and drains all requests which were
640  * throttled or issued before.  On return, it's guaranteed that no request
641  * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
642  * inside queue or RCU read lock.
643  */
blk_queue_bypass_start(struct request_queue * q)644 void blk_queue_bypass_start(struct request_queue *q)
645 {
646 	WARN_ON_ONCE(q->mq_ops);
647 
648 	spin_lock_irq(q->queue_lock);
649 	q->bypass_depth++;
650 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
651 	spin_unlock_irq(q->queue_lock);
652 
653 	/*
654 	 * Queues start drained.  Skip actual draining till init is
655 	 * complete.  This avoids lenghty delays during queue init which
656 	 * can happen many times during boot.
657 	 */
658 	if (blk_queue_init_done(q)) {
659 		spin_lock_irq(q->queue_lock);
660 		__blk_drain_queue(q, false);
661 		spin_unlock_irq(q->queue_lock);
662 
663 		/* ensure blk_queue_bypass() is %true inside RCU read lock */
664 		synchronize_rcu();
665 	}
666 }
667 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
668 
669 /**
670  * blk_queue_bypass_end - leave queue bypass mode
671  * @q: queue of interest
672  *
673  * Leave bypass mode and restore the normal queueing behavior.
674  *
675  * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
676  * this function is called for both blk-sq and blk-mq queues.
677  */
blk_queue_bypass_end(struct request_queue * q)678 void blk_queue_bypass_end(struct request_queue *q)
679 {
680 	spin_lock_irq(q->queue_lock);
681 	if (!--q->bypass_depth)
682 		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
683 	WARN_ON_ONCE(q->bypass_depth < 0);
684 	spin_unlock_irq(q->queue_lock);
685 }
686 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
687 
blk_set_queue_dying(struct request_queue * q)688 void blk_set_queue_dying(struct request_queue *q)
689 {
690 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
691 
692 	/*
693 	 * When queue DYING flag is set, we need to block new req
694 	 * entering queue, so we call blk_freeze_queue_start() to
695 	 * prevent I/O from crossing blk_queue_enter().
696 	 */
697 	blk_freeze_queue_start(q);
698 
699 	if (q->mq_ops)
700 		blk_mq_wake_waiters(q);
701 	else {
702 		struct request_list *rl;
703 
704 		spin_lock_irq(q->queue_lock);
705 		blk_queue_for_each_rl(rl, q) {
706 			if (rl->rq_pool) {
707 				wake_up_all(&rl->wait[BLK_RW_SYNC]);
708 				wake_up_all(&rl->wait[BLK_RW_ASYNC]);
709 			}
710 		}
711 		spin_unlock_irq(q->queue_lock);
712 	}
713 
714 	/* Make blk_queue_enter() reexamine the DYING flag. */
715 	wake_up_all(&q->mq_freeze_wq);
716 }
717 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
718 
719 /* Unconfigure the I/O scheduler and dissociate from the cgroup controller. */
blk_exit_queue(struct request_queue * q)720 void blk_exit_queue(struct request_queue *q)
721 {
722 	/*
723 	 * Since the I/O scheduler exit code may access cgroup information,
724 	 * perform I/O scheduler exit before disassociating from the block
725 	 * cgroup controller.
726 	 */
727 	if (q->elevator) {
728 		ioc_clear_queue(q);
729 		elevator_exit(q, q->elevator);
730 		q->elevator = NULL;
731 	}
732 
733 	/*
734 	 * Remove all references to @q from the block cgroup controller before
735 	 * restoring @q->queue_lock to avoid that restoring this pointer causes
736 	 * e.g. blkcg_print_blkgs() to crash.
737 	 */
738 	blkcg_exit_queue(q);
739 
740 	/*
741 	 * Since the cgroup code may dereference the @q->backing_dev_info
742 	 * pointer, only decrease its reference count after having removed the
743 	 * association with the block cgroup controller.
744 	 */
745 	bdi_put(q->backing_dev_info);
746 }
747 
748 /**
749  * blk_cleanup_queue - shutdown a request queue
750  * @q: request queue to shutdown
751  *
752  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
753  * put it.  All future requests will be failed immediately with -ENODEV.
754  */
blk_cleanup_queue(struct request_queue * q)755 void blk_cleanup_queue(struct request_queue *q)
756 {
757 	spinlock_t *lock = q->queue_lock;
758 
759 	/* mark @q DYING, no new request or merges will be allowed afterwards */
760 	mutex_lock(&q->sysfs_lock);
761 	blk_set_queue_dying(q);
762 	spin_lock_irq(lock);
763 
764 	/*
765 	 * A dying queue is permanently in bypass mode till released.  Note
766 	 * that, unlike blk_queue_bypass_start(), we aren't performing
767 	 * synchronize_rcu() after entering bypass mode to avoid the delay
768 	 * as some drivers create and destroy a lot of queues while
769 	 * probing.  This is still safe because blk_release_queue() will be
770 	 * called only after the queue refcnt drops to zero and nothing,
771 	 * RCU or not, would be traversing the queue by then.
772 	 */
773 	q->bypass_depth++;
774 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
775 
776 	queue_flag_set(QUEUE_FLAG_NOMERGES, q);
777 	queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
778 	queue_flag_set(QUEUE_FLAG_DYING, q);
779 	spin_unlock_irq(lock);
780 	mutex_unlock(&q->sysfs_lock);
781 
782 	/*
783 	 * Drain all requests queued before DYING marking. Set DEAD flag to
784 	 * prevent that q->request_fn() gets invoked after draining finished.
785 	 */
786 	blk_freeze_queue(q);
787 
788 	rq_qos_exit(q);
789 
790 	spin_lock_irq(lock);
791 	queue_flag_set(QUEUE_FLAG_DEAD, q);
792 	spin_unlock_irq(lock);
793 
794 	/*
795 	 * make sure all in-progress dispatch are completed because
796 	 * blk_freeze_queue() can only complete all requests, and
797 	 * dispatch may still be in-progress since we dispatch requests
798 	 * from more than one contexts.
799 	 *
800 	 * We rely on driver to deal with the race in case that queue
801 	 * initialization isn't done.
802 	 */
803 	if (q->mq_ops && blk_queue_init_done(q))
804 		blk_mq_quiesce_queue(q);
805 
806 	/* for synchronous bio-based driver finish in-flight integrity i/o */
807 	blk_flush_integrity();
808 
809 	/* @q won't process any more request, flush async actions */
810 	del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
811 	blk_sync_queue(q);
812 
813 	/*
814 	 * I/O scheduler exit is only safe after the sysfs scheduler attribute
815 	 * has been removed.
816 	 */
817 	WARN_ON_ONCE(q->kobj.state_in_sysfs);
818 
819 	blk_exit_queue(q);
820 
821 	if (q->mq_ops)
822 		blk_mq_exit_queue(q);
823 
824 	percpu_ref_exit(&q->q_usage_counter);
825 
826 	spin_lock_irq(lock);
827 	if (q->queue_lock != &q->__queue_lock)
828 		q->queue_lock = &q->__queue_lock;
829 	spin_unlock_irq(lock);
830 
831 	/* @q is and will stay empty, shutdown and put */
832 	blk_put_queue(q);
833 }
834 EXPORT_SYMBOL(blk_cleanup_queue);
835 
836 /* Allocate memory local to the request queue */
alloc_request_simple(gfp_t gfp_mask,void * data)837 static void *alloc_request_simple(gfp_t gfp_mask, void *data)
838 {
839 	struct request_queue *q = data;
840 
841 	return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
842 }
843 
free_request_simple(void * element,void * data)844 static void free_request_simple(void *element, void *data)
845 {
846 	kmem_cache_free(request_cachep, element);
847 }
848 
alloc_request_size(gfp_t gfp_mask,void * data)849 static void *alloc_request_size(gfp_t gfp_mask, void *data)
850 {
851 	struct request_queue *q = data;
852 	struct request *rq;
853 
854 	rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
855 			q->node);
856 	if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
857 		kfree(rq);
858 		rq = NULL;
859 	}
860 	return rq;
861 }
862 
free_request_size(void * element,void * data)863 static void free_request_size(void *element, void *data)
864 {
865 	struct request_queue *q = data;
866 
867 	if (q->exit_rq_fn)
868 		q->exit_rq_fn(q, element);
869 	kfree(element);
870 }
871 
blk_init_rl(struct request_list * rl,struct request_queue * q,gfp_t gfp_mask)872 int blk_init_rl(struct request_list *rl, struct request_queue *q,
873 		gfp_t gfp_mask)
874 {
875 	if (unlikely(rl->rq_pool) || q->mq_ops)
876 		return 0;
877 
878 	rl->q = q;
879 	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
880 	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
881 	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
882 	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
883 
884 	if (q->cmd_size) {
885 		rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
886 				alloc_request_size, free_request_size,
887 				q, gfp_mask, q->node);
888 	} else {
889 		rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
890 				alloc_request_simple, free_request_simple,
891 				q, gfp_mask, q->node);
892 	}
893 	if (!rl->rq_pool)
894 		return -ENOMEM;
895 
896 	if (rl != &q->root_rl)
897 		WARN_ON_ONCE(!blk_get_queue(q));
898 
899 	return 0;
900 }
901 
blk_exit_rl(struct request_queue * q,struct request_list * rl)902 void blk_exit_rl(struct request_queue *q, struct request_list *rl)
903 {
904 	if (rl->rq_pool) {
905 		mempool_destroy(rl->rq_pool);
906 		if (rl != &q->root_rl)
907 			blk_put_queue(q);
908 	}
909 }
910 
blk_alloc_queue(gfp_t gfp_mask)911 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
912 {
913 	return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE, NULL);
914 }
915 EXPORT_SYMBOL(blk_alloc_queue);
916 
917 /**
918  * blk_queue_enter() - try to increase q->q_usage_counter
919  * @q: request queue pointer
920  * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
921  */
blk_queue_enter(struct request_queue * q,blk_mq_req_flags_t flags)922 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
923 {
924 	const bool pm = flags & BLK_MQ_REQ_PREEMPT;
925 
926 	while (true) {
927 		bool success = false;
928 
929 		rcu_read_lock();
930 		if (percpu_ref_tryget_live(&q->q_usage_counter)) {
931 			/*
932 			 * The code that increments the pm_only counter is
933 			 * responsible for ensuring that that counter is
934 			 * globally visible before the queue is unfrozen.
935 			 */
936 			if (pm || !blk_queue_pm_only(q)) {
937 				success = true;
938 			} else {
939 				percpu_ref_put(&q->q_usage_counter);
940 			}
941 		}
942 		rcu_read_unlock();
943 
944 		if (success)
945 			return 0;
946 
947 		if (flags & BLK_MQ_REQ_NOWAIT)
948 			return -EBUSY;
949 
950 		/*
951 		 * read pair of barrier in blk_freeze_queue_start(),
952 		 * we need to order reading __PERCPU_REF_DEAD flag of
953 		 * .q_usage_counter and reading .mq_freeze_depth or
954 		 * queue dying flag, otherwise the following wait may
955 		 * never return if the two reads are reordered.
956 		 */
957 		smp_rmb();
958 
959 		wait_event(q->mq_freeze_wq,
960 			   (atomic_read(&q->mq_freeze_depth) == 0 &&
961 			    (pm || !blk_queue_pm_only(q))) ||
962 			   blk_queue_dying(q));
963 		if (blk_queue_dying(q))
964 			return -ENODEV;
965 	}
966 }
967 
blk_queue_exit(struct request_queue * q)968 void blk_queue_exit(struct request_queue *q)
969 {
970 	percpu_ref_put(&q->q_usage_counter);
971 }
972 
blk_queue_usage_counter_release(struct percpu_ref * ref)973 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
974 {
975 	struct request_queue *q =
976 		container_of(ref, struct request_queue, q_usage_counter);
977 
978 	wake_up_all(&q->mq_freeze_wq);
979 }
980 
blk_rq_timed_out_timer(struct timer_list * t)981 static void blk_rq_timed_out_timer(struct timer_list *t)
982 {
983 	struct request_queue *q = from_timer(q, t, timeout);
984 
985 	kblockd_schedule_work(&q->timeout_work);
986 }
987 
blk_timeout_work_dummy(struct work_struct * work)988 static void blk_timeout_work_dummy(struct work_struct *work)
989 {
990 }
991 
992 /**
993  * blk_alloc_queue_node - allocate a request queue
994  * @gfp_mask: memory allocation flags
995  * @node_id: NUMA node to allocate memory from
996  * @lock: For legacy queues, pointer to a spinlock that will be used to e.g.
997  *        serialize calls to the legacy .request_fn() callback. Ignored for
998  *	  blk-mq request queues.
999  *
1000  * Note: pass the queue lock as the third argument to this function instead of
1001  * setting the queue lock pointer explicitly to avoid triggering a sporadic
1002  * crash in the blkcg code. This function namely calls blkcg_init_queue() and
1003  * the queue lock pointer must be set before blkcg_init_queue() is called.
1004  */
blk_alloc_queue_node(gfp_t gfp_mask,int node_id,spinlock_t * lock)1005 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id,
1006 					   spinlock_t *lock)
1007 {
1008 	struct request_queue *q;
1009 	int ret;
1010 
1011 	q = kmem_cache_alloc_node(blk_requestq_cachep,
1012 				gfp_mask | __GFP_ZERO, node_id);
1013 	if (!q)
1014 		return NULL;
1015 
1016 	INIT_LIST_HEAD(&q->queue_head);
1017 	q->last_merge = NULL;
1018 	q->end_sector = 0;
1019 	q->boundary_rq = NULL;
1020 
1021 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
1022 	if (q->id < 0)
1023 		goto fail_q;
1024 
1025 	ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
1026 	if (ret)
1027 		goto fail_id;
1028 
1029 	q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
1030 	if (!q->backing_dev_info)
1031 		goto fail_split;
1032 
1033 	q->stats = blk_alloc_queue_stats();
1034 	if (!q->stats)
1035 		goto fail_stats;
1036 
1037 	q->backing_dev_info->ra_pages =
1038 			(VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
1039 	q->backing_dev_info->io_pages =
1040 			(VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
1041 	q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
1042 	q->backing_dev_info->name = "block";
1043 	q->node = node_id;
1044 
1045 	timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
1046 		    laptop_mode_timer_fn, 0);
1047 	timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
1048 	INIT_WORK(&q->timeout_work, blk_timeout_work_dummy);
1049 	INIT_LIST_HEAD(&q->timeout_list);
1050 	INIT_LIST_HEAD(&q->icq_list);
1051 #ifdef CONFIG_BLK_CGROUP
1052 	INIT_LIST_HEAD(&q->blkg_list);
1053 #endif
1054 	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
1055 
1056 	kobject_init(&q->kobj, &blk_queue_ktype);
1057 
1058 #ifdef CONFIG_BLK_DEV_IO_TRACE
1059 	mutex_init(&q->blk_trace_mutex);
1060 #endif
1061 	mutex_init(&q->sysfs_lock);
1062 	mutex_init(&q->sysfs_dir_lock);
1063 	spin_lock_init(&q->__queue_lock);
1064 
1065 	if (!q->mq_ops)
1066 		q->queue_lock = lock ? : &q->__queue_lock;
1067 
1068 	/*
1069 	 * A queue starts its life with bypass turned on to avoid
1070 	 * unnecessary bypass on/off overhead and nasty surprises during
1071 	 * init.  The initial bypass will be finished when the queue is
1072 	 * registered by blk_register_queue().
1073 	 */
1074 	q->bypass_depth = 1;
1075 	queue_flag_set_unlocked(QUEUE_FLAG_BYPASS, q);
1076 
1077 	init_waitqueue_head(&q->mq_freeze_wq);
1078 
1079 	/*
1080 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1081 	 * See blk_register_queue() for details.
1082 	 */
1083 	if (percpu_ref_init(&q->q_usage_counter,
1084 				blk_queue_usage_counter_release,
1085 				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
1086 		goto fail_bdi;
1087 
1088 	if (blkcg_init_queue(q))
1089 		goto fail_ref;
1090 
1091 	return q;
1092 
1093 fail_ref:
1094 	percpu_ref_exit(&q->q_usage_counter);
1095 fail_bdi:
1096 	blk_free_queue_stats(q->stats);
1097 fail_stats:
1098 	bdi_put(q->backing_dev_info);
1099 fail_split:
1100 	bioset_exit(&q->bio_split);
1101 fail_id:
1102 	ida_simple_remove(&blk_queue_ida, q->id);
1103 fail_q:
1104 	kmem_cache_free(blk_requestq_cachep, q);
1105 	return NULL;
1106 }
1107 EXPORT_SYMBOL(blk_alloc_queue_node);
1108 
1109 /**
1110  * blk_init_queue  - prepare a request queue for use with a block device
1111  * @rfn:  The function to be called to process requests that have been
1112  *        placed on the queue.
1113  * @lock: Request queue spin lock
1114  *
1115  * Description:
1116  *    If a block device wishes to use the standard request handling procedures,
1117  *    which sorts requests and coalesces adjacent requests, then it must
1118  *    call blk_init_queue().  The function @rfn will be called when there
1119  *    are requests on the queue that need to be processed.  If the device
1120  *    supports plugging, then @rfn may not be called immediately when requests
1121  *    are available on the queue, but may be called at some time later instead.
1122  *    Plugged queues are generally unplugged when a buffer belonging to one
1123  *    of the requests on the queue is needed, or due to memory pressure.
1124  *
1125  *    @rfn is not required, or even expected, to remove all requests off the
1126  *    queue, but only as many as it can handle at a time.  If it does leave
1127  *    requests on the queue, it is responsible for arranging that the requests
1128  *    get dealt with eventually.
1129  *
1130  *    The queue spin lock must be held while manipulating the requests on the
1131  *    request queue; this lock will be taken also from interrupt context, so irq
1132  *    disabling is needed for it.
1133  *
1134  *    Function returns a pointer to the initialized request queue, or %NULL if
1135  *    it didn't succeed.
1136  *
1137  * Note:
1138  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
1139  *    when the block device is deactivated (such as at module unload).
1140  **/
1141 
blk_init_queue(request_fn_proc * rfn,spinlock_t * lock)1142 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1143 {
1144 	return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1145 }
1146 EXPORT_SYMBOL(blk_init_queue);
1147 
1148 struct request_queue *
blk_init_queue_node(request_fn_proc * rfn,spinlock_t * lock,int node_id)1149 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1150 {
1151 	struct request_queue *q;
1152 
1153 	q = blk_alloc_queue_node(GFP_KERNEL, node_id, lock);
1154 	if (!q)
1155 		return NULL;
1156 
1157 	q->request_fn = rfn;
1158 	if (blk_init_allocated_queue(q) < 0) {
1159 		blk_cleanup_queue(q);
1160 		return NULL;
1161 	}
1162 
1163 	return q;
1164 }
1165 EXPORT_SYMBOL(blk_init_queue_node);
1166 
1167 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
1168 
1169 
blk_init_allocated_queue(struct request_queue * q)1170 int blk_init_allocated_queue(struct request_queue *q)
1171 {
1172 	WARN_ON_ONCE(q->mq_ops);
1173 
1174 	q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size, GFP_KERNEL);
1175 	if (!q->fq)
1176 		return -ENOMEM;
1177 
1178 	if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
1179 		goto out_free_flush_queue;
1180 
1181 	if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
1182 		goto out_exit_flush_rq;
1183 
1184 	INIT_WORK(&q->timeout_work, blk_timeout_work);
1185 	q->queue_flags		|= QUEUE_FLAG_DEFAULT;
1186 
1187 	/*
1188 	 * This also sets hw/phys segments, boundary and size
1189 	 */
1190 	blk_queue_make_request(q, blk_queue_bio);
1191 
1192 	q->sg_reserved_size = INT_MAX;
1193 
1194 	if (elevator_init(q))
1195 		goto out_exit_flush_rq;
1196 	return 0;
1197 
1198 out_exit_flush_rq:
1199 	if (q->exit_rq_fn)
1200 		q->exit_rq_fn(q, q->fq->flush_rq);
1201 out_free_flush_queue:
1202 	blk_free_flush_queue(q->fq);
1203 	q->fq = NULL;
1204 	return -ENOMEM;
1205 }
1206 EXPORT_SYMBOL(blk_init_allocated_queue);
1207 
blk_get_queue(struct request_queue * q)1208 bool blk_get_queue(struct request_queue *q)
1209 {
1210 	if (likely(!blk_queue_dying(q))) {
1211 		__blk_get_queue(q);
1212 		return true;
1213 	}
1214 
1215 	return false;
1216 }
1217 EXPORT_SYMBOL(blk_get_queue);
1218 
blk_free_request(struct request_list * rl,struct request * rq)1219 static inline void blk_free_request(struct request_list *rl, struct request *rq)
1220 {
1221 	if (rq->rq_flags & RQF_ELVPRIV) {
1222 		elv_put_request(rl->q, rq);
1223 		if (rq->elv.icq)
1224 			put_io_context(rq->elv.icq->ioc);
1225 	}
1226 
1227 	mempool_free(rq, rl->rq_pool);
1228 }
1229 
1230 /*
1231  * ioc_batching returns true if the ioc is a valid batching request and
1232  * should be given priority access to a request.
1233  */
ioc_batching(struct request_queue * q,struct io_context * ioc)1234 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1235 {
1236 	if (!ioc)
1237 		return 0;
1238 
1239 	/*
1240 	 * Make sure the process is able to allocate at least 1 request
1241 	 * even if the batch times out, otherwise we could theoretically
1242 	 * lose wakeups.
1243 	 */
1244 	return ioc->nr_batch_requests == q->nr_batching ||
1245 		(ioc->nr_batch_requests > 0
1246 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1247 }
1248 
1249 /*
1250  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1251  * will cause the process to be a "batcher" on all queues in the system. This
1252  * is the behaviour we want though - once it gets a wakeup it should be given
1253  * a nice run.
1254  */
ioc_set_batching(struct request_queue * q,struct io_context * ioc)1255 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1256 {
1257 	if (!ioc || ioc_batching(q, ioc))
1258 		return;
1259 
1260 	ioc->nr_batch_requests = q->nr_batching;
1261 	ioc->last_waited = jiffies;
1262 }
1263 
__freed_request(struct request_list * rl,int sync)1264 static void __freed_request(struct request_list *rl, int sync)
1265 {
1266 	struct request_queue *q = rl->q;
1267 
1268 	if (rl->count[sync] < queue_congestion_off_threshold(q))
1269 		blk_clear_congested(rl, sync);
1270 
1271 	if (rl->count[sync] + 1 <= q->nr_requests) {
1272 		if (waitqueue_active(&rl->wait[sync]))
1273 			wake_up(&rl->wait[sync]);
1274 
1275 		blk_clear_rl_full(rl, sync);
1276 	}
1277 }
1278 
1279 /*
1280  * A request has just been released.  Account for it, update the full and
1281  * congestion status, wake up any waiters.   Called under q->queue_lock.
1282  */
freed_request(struct request_list * rl,bool sync,req_flags_t rq_flags)1283 static void freed_request(struct request_list *rl, bool sync,
1284 		req_flags_t rq_flags)
1285 {
1286 	struct request_queue *q = rl->q;
1287 
1288 	q->nr_rqs[sync]--;
1289 	rl->count[sync]--;
1290 	if (rq_flags & RQF_ELVPRIV)
1291 		q->nr_rqs_elvpriv--;
1292 
1293 	__freed_request(rl, sync);
1294 
1295 	if (unlikely(rl->starved[sync ^ 1]))
1296 		__freed_request(rl, sync ^ 1);
1297 }
1298 
blk_update_nr_requests(struct request_queue * q,unsigned int nr)1299 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1300 {
1301 	struct request_list *rl;
1302 	int on_thresh, off_thresh;
1303 
1304 	WARN_ON_ONCE(q->mq_ops);
1305 
1306 	spin_lock_irq(q->queue_lock);
1307 	q->nr_requests = nr;
1308 	blk_queue_congestion_threshold(q);
1309 	on_thresh = queue_congestion_on_threshold(q);
1310 	off_thresh = queue_congestion_off_threshold(q);
1311 
1312 	blk_queue_for_each_rl(rl, q) {
1313 		if (rl->count[BLK_RW_SYNC] >= on_thresh)
1314 			blk_set_congested(rl, BLK_RW_SYNC);
1315 		else if (rl->count[BLK_RW_SYNC] < off_thresh)
1316 			blk_clear_congested(rl, BLK_RW_SYNC);
1317 
1318 		if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1319 			blk_set_congested(rl, BLK_RW_ASYNC);
1320 		else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1321 			blk_clear_congested(rl, BLK_RW_ASYNC);
1322 
1323 		if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1324 			blk_set_rl_full(rl, BLK_RW_SYNC);
1325 		} else {
1326 			blk_clear_rl_full(rl, BLK_RW_SYNC);
1327 			wake_up(&rl->wait[BLK_RW_SYNC]);
1328 		}
1329 
1330 		if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1331 			blk_set_rl_full(rl, BLK_RW_ASYNC);
1332 		} else {
1333 			blk_clear_rl_full(rl, BLK_RW_ASYNC);
1334 			wake_up(&rl->wait[BLK_RW_ASYNC]);
1335 		}
1336 	}
1337 
1338 	spin_unlock_irq(q->queue_lock);
1339 	return 0;
1340 }
1341 
1342 /**
1343  * __get_request - get a free request
1344  * @rl: request list to allocate from
1345  * @op: operation and flags
1346  * @bio: bio to allocate request for (can be %NULL)
1347  * @flags: BLQ_MQ_REQ_* flags
1348  * @gfp_mask: allocator flags
1349  *
1350  * Get a free request from @q.  This function may fail under memory
1351  * pressure or if @q is dead.
1352  *
1353  * Must be called with @q->queue_lock held and,
1354  * Returns ERR_PTR on failure, with @q->queue_lock held.
1355  * Returns request pointer on success, with @q->queue_lock *not held*.
1356  */
__get_request(struct request_list * rl,unsigned int op,struct bio * bio,blk_mq_req_flags_t flags,gfp_t gfp_mask)1357 static struct request *__get_request(struct request_list *rl, unsigned int op,
1358 		struct bio *bio, blk_mq_req_flags_t flags, gfp_t gfp_mask)
1359 {
1360 	struct request_queue *q = rl->q;
1361 	struct request *rq;
1362 	struct elevator_type *et = q->elevator->type;
1363 	struct io_context *ioc = rq_ioc(bio);
1364 	struct io_cq *icq = NULL;
1365 	const bool is_sync = op_is_sync(op);
1366 	int may_queue;
1367 	req_flags_t rq_flags = RQF_ALLOCED;
1368 
1369 	lockdep_assert_held(q->queue_lock);
1370 
1371 	if (unlikely(blk_queue_dying(q)))
1372 		return ERR_PTR(-ENODEV);
1373 
1374 	may_queue = elv_may_queue(q, op);
1375 	if (may_queue == ELV_MQUEUE_NO)
1376 		goto rq_starved;
1377 
1378 	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1379 		if (rl->count[is_sync]+1 >= q->nr_requests) {
1380 			/*
1381 			 * The queue will fill after this allocation, so set
1382 			 * it as full, and mark this process as "batching".
1383 			 * This process will be allowed to complete a batch of
1384 			 * requests, others will be blocked.
1385 			 */
1386 			if (!blk_rl_full(rl, is_sync)) {
1387 				ioc_set_batching(q, ioc);
1388 				blk_set_rl_full(rl, is_sync);
1389 			} else {
1390 				if (may_queue != ELV_MQUEUE_MUST
1391 						&& !ioc_batching(q, ioc)) {
1392 					/*
1393 					 * The queue is full and the allocating
1394 					 * process is not a "batcher", and not
1395 					 * exempted by the IO scheduler
1396 					 */
1397 					return ERR_PTR(-ENOMEM);
1398 				}
1399 			}
1400 		}
1401 		blk_set_congested(rl, is_sync);
1402 	}
1403 
1404 	/*
1405 	 * Only allow batching queuers to allocate up to 50% over the defined
1406 	 * limit of requests, otherwise we could have thousands of requests
1407 	 * allocated with any setting of ->nr_requests
1408 	 */
1409 	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1410 		return ERR_PTR(-ENOMEM);
1411 
1412 	q->nr_rqs[is_sync]++;
1413 	rl->count[is_sync]++;
1414 	rl->starved[is_sync] = 0;
1415 
1416 	/*
1417 	 * Decide whether the new request will be managed by elevator.  If
1418 	 * so, mark @rq_flags and increment elvpriv.  Non-zero elvpriv will
1419 	 * prevent the current elevator from being destroyed until the new
1420 	 * request is freed.  This guarantees icq's won't be destroyed and
1421 	 * makes creating new ones safe.
1422 	 *
1423 	 * Flush requests do not use the elevator so skip initialization.
1424 	 * This allows a request to share the flush and elevator data.
1425 	 *
1426 	 * Also, lookup icq while holding queue_lock.  If it doesn't exist,
1427 	 * it will be created after releasing queue_lock.
1428 	 */
1429 	if (!op_is_flush(op) && !blk_queue_bypass(q)) {
1430 		rq_flags |= RQF_ELVPRIV;
1431 		q->nr_rqs_elvpriv++;
1432 		if (et->icq_cache && ioc)
1433 			icq = ioc_lookup_icq(ioc, q);
1434 	}
1435 
1436 	if (blk_queue_io_stat(q))
1437 		rq_flags |= RQF_IO_STAT;
1438 	spin_unlock_irq(q->queue_lock);
1439 
1440 	/* allocate and init request */
1441 	rq = mempool_alloc(rl->rq_pool, gfp_mask);
1442 	if (!rq)
1443 		goto fail_alloc;
1444 
1445 	blk_rq_init(q, rq);
1446 	blk_rq_set_rl(rq, rl);
1447 	rq->cmd_flags = op;
1448 	rq->rq_flags = rq_flags;
1449 	if (flags & BLK_MQ_REQ_PREEMPT)
1450 		rq->rq_flags |= RQF_PREEMPT;
1451 
1452 	/* init elvpriv */
1453 	if (rq_flags & RQF_ELVPRIV) {
1454 		if (unlikely(et->icq_cache && !icq)) {
1455 			if (ioc)
1456 				icq = ioc_create_icq(ioc, q, gfp_mask);
1457 			if (!icq)
1458 				goto fail_elvpriv;
1459 		}
1460 
1461 		rq->elv.icq = icq;
1462 		if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1463 			goto fail_elvpriv;
1464 
1465 		/* @rq->elv.icq holds io_context until @rq is freed */
1466 		if (icq)
1467 			get_io_context(icq->ioc);
1468 	}
1469 out:
1470 	/*
1471 	 * ioc may be NULL here, and ioc_batching will be false. That's
1472 	 * OK, if the queue is under the request limit then requests need
1473 	 * not count toward the nr_batch_requests limit. There will always
1474 	 * be some limit enforced by BLK_BATCH_TIME.
1475 	 */
1476 	if (ioc_batching(q, ioc))
1477 		ioc->nr_batch_requests--;
1478 
1479 	trace_block_getrq(q, bio, op);
1480 	return rq;
1481 
1482 fail_elvpriv:
1483 	/*
1484 	 * elvpriv init failed.  ioc, icq and elvpriv aren't mempool backed
1485 	 * and may fail indefinitely under memory pressure and thus
1486 	 * shouldn't stall IO.  Treat this request as !elvpriv.  This will
1487 	 * disturb iosched and blkcg but weird is bettern than dead.
1488 	 */
1489 	printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1490 			   __func__, dev_name(q->backing_dev_info->dev));
1491 
1492 	rq->rq_flags &= ~RQF_ELVPRIV;
1493 	rq->elv.icq = NULL;
1494 
1495 	spin_lock_irq(q->queue_lock);
1496 	q->nr_rqs_elvpriv--;
1497 	spin_unlock_irq(q->queue_lock);
1498 	goto out;
1499 
1500 fail_alloc:
1501 	/*
1502 	 * Allocation failed presumably due to memory. Undo anything we
1503 	 * might have messed up.
1504 	 *
1505 	 * Allocating task should really be put onto the front of the wait
1506 	 * queue, but this is pretty rare.
1507 	 */
1508 	spin_lock_irq(q->queue_lock);
1509 	freed_request(rl, is_sync, rq_flags);
1510 
1511 	/*
1512 	 * in the very unlikely event that allocation failed and no
1513 	 * requests for this direction was pending, mark us starved so that
1514 	 * freeing of a request in the other direction will notice
1515 	 * us. another possible fix would be to split the rq mempool into
1516 	 * READ and WRITE
1517 	 */
1518 rq_starved:
1519 	if (unlikely(rl->count[is_sync] == 0))
1520 		rl->starved[is_sync] = 1;
1521 	return ERR_PTR(-ENOMEM);
1522 }
1523 
1524 /**
1525  * get_request - get a free request
1526  * @q: request_queue to allocate request from
1527  * @op: operation and flags
1528  * @bio: bio to allocate request for (can be %NULL)
1529  * @flags: BLK_MQ_REQ_* flags.
1530  * @gfp: allocator flags
1531  *
1532  * Get a free request from @q.  If %BLK_MQ_REQ_NOWAIT is set in @flags,
1533  * this function keeps retrying under memory pressure and fails iff @q is dead.
1534  *
1535  * Must be called with @q->queue_lock held and,
1536  * Returns ERR_PTR on failure, with @q->queue_lock held.
1537  * Returns request pointer on success, with @q->queue_lock *not held*.
1538  */
get_request(struct request_queue * q,unsigned int op,struct bio * bio,blk_mq_req_flags_t flags,gfp_t gfp)1539 static struct request *get_request(struct request_queue *q, unsigned int op,
1540 		struct bio *bio, blk_mq_req_flags_t flags, gfp_t gfp)
1541 {
1542 	const bool is_sync = op_is_sync(op);
1543 	DEFINE_WAIT(wait);
1544 	struct request_list *rl;
1545 	struct request *rq;
1546 
1547 	lockdep_assert_held(q->queue_lock);
1548 	WARN_ON_ONCE(q->mq_ops);
1549 
1550 	rl = blk_get_rl(q, bio);	/* transferred to @rq on success */
1551 retry:
1552 	rq = __get_request(rl, op, bio, flags, gfp);
1553 	if (!IS_ERR(rq))
1554 		return rq;
1555 
1556 	if (op & REQ_NOWAIT) {
1557 		blk_put_rl(rl);
1558 		return ERR_PTR(-EAGAIN);
1559 	}
1560 
1561 	if ((flags & BLK_MQ_REQ_NOWAIT) || unlikely(blk_queue_dying(q))) {
1562 		blk_put_rl(rl);
1563 		return rq;
1564 	}
1565 
1566 	/* wait on @rl and retry */
1567 	prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1568 				  TASK_UNINTERRUPTIBLE);
1569 
1570 	trace_block_sleeprq(q, bio, op);
1571 
1572 	spin_unlock_irq(q->queue_lock);
1573 	io_schedule();
1574 
1575 	/*
1576 	 * After sleeping, we become a "batching" process and will be able
1577 	 * to allocate at least one request, and up to a big batch of them
1578 	 * for a small period time.  See ioc_batching, ioc_set_batching
1579 	 */
1580 	ioc_set_batching(q, current->io_context);
1581 
1582 	spin_lock_irq(q->queue_lock);
1583 	finish_wait(&rl->wait[is_sync], &wait);
1584 
1585 	goto retry;
1586 }
1587 
1588 /* flags: BLK_MQ_REQ_PREEMPT and/or BLK_MQ_REQ_NOWAIT. */
blk_old_get_request(struct request_queue * q,unsigned int op,blk_mq_req_flags_t flags)1589 static struct request *blk_old_get_request(struct request_queue *q,
1590 				unsigned int op, blk_mq_req_flags_t flags)
1591 {
1592 	struct request *rq;
1593 	gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC : GFP_NOIO;
1594 	int ret = 0;
1595 
1596 	WARN_ON_ONCE(q->mq_ops);
1597 
1598 	/* create ioc upfront */
1599 	create_io_context(gfp_mask, q->node);
1600 
1601 	ret = blk_queue_enter(q, flags);
1602 	if (ret)
1603 		return ERR_PTR(ret);
1604 	spin_lock_irq(q->queue_lock);
1605 	rq = get_request(q, op, NULL, flags, gfp_mask);
1606 	if (IS_ERR(rq)) {
1607 		spin_unlock_irq(q->queue_lock);
1608 		blk_queue_exit(q);
1609 		return rq;
1610 	}
1611 
1612 	/* q->queue_lock is unlocked at this point */
1613 	rq->__data_len = 0;
1614 	rq->__sector = (sector_t) -1;
1615 	rq->bio = rq->biotail = NULL;
1616 	return rq;
1617 }
1618 
1619 /**
1620  * blk_get_request - allocate a request
1621  * @q: request queue to allocate a request for
1622  * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
1623  * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
1624  */
blk_get_request(struct request_queue * q,unsigned int op,blk_mq_req_flags_t flags)1625 struct request *blk_get_request(struct request_queue *q, unsigned int op,
1626 				blk_mq_req_flags_t flags)
1627 {
1628 	struct request *req;
1629 
1630 	WARN_ON_ONCE(op & REQ_NOWAIT);
1631 	WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
1632 
1633 	if (q->mq_ops) {
1634 		req = blk_mq_alloc_request(q, op, flags);
1635 		if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1636 			q->mq_ops->initialize_rq_fn(req);
1637 	} else {
1638 		req = blk_old_get_request(q, op, flags);
1639 		if (!IS_ERR(req) && q->initialize_rq_fn)
1640 			q->initialize_rq_fn(req);
1641 	}
1642 
1643 	return req;
1644 }
1645 EXPORT_SYMBOL(blk_get_request);
1646 
1647 /**
1648  * blk_requeue_request - put a request back on queue
1649  * @q:		request queue where request should be inserted
1650  * @rq:		request to be inserted
1651  *
1652  * Description:
1653  *    Drivers often keep queueing requests until the hardware cannot accept
1654  *    more, when that condition happens we need to put the request back
1655  *    on the queue. Must be called with queue lock held.
1656  */
blk_requeue_request(struct request_queue * q,struct request * rq)1657 void blk_requeue_request(struct request_queue *q, struct request *rq)
1658 {
1659 	lockdep_assert_held(q->queue_lock);
1660 	WARN_ON_ONCE(q->mq_ops);
1661 
1662 	blk_delete_timer(rq);
1663 	blk_clear_rq_complete(rq);
1664 	trace_block_rq_requeue(q, rq);
1665 	rq_qos_requeue(q, rq);
1666 
1667 	if (rq->rq_flags & RQF_QUEUED)
1668 		blk_queue_end_tag(q, rq);
1669 
1670 	BUG_ON(blk_queued_rq(rq));
1671 
1672 	elv_requeue_request(q, rq);
1673 }
1674 EXPORT_SYMBOL(blk_requeue_request);
1675 
add_acct_request(struct request_queue * q,struct request * rq,int where)1676 static void add_acct_request(struct request_queue *q, struct request *rq,
1677 			     int where)
1678 {
1679 	blk_account_io_start(rq, true);
1680 	__elv_add_request(q, rq, where);
1681 }
1682 
part_round_stats_single(struct request_queue * q,int cpu,struct hd_struct * part,unsigned long now,unsigned int inflight)1683 static void part_round_stats_single(struct request_queue *q, int cpu,
1684 				    struct hd_struct *part, unsigned long now,
1685 				    unsigned int inflight)
1686 {
1687 	if (inflight) {
1688 		__part_stat_add(cpu, part, time_in_queue,
1689 				inflight * (now - part->stamp));
1690 		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1691 	}
1692 	part->stamp = now;
1693 }
1694 
1695 /**
1696  * part_round_stats() - Round off the performance stats on a struct disk_stats.
1697  * @q: target block queue
1698  * @cpu: cpu number for stats access
1699  * @part: target partition
1700  *
1701  * The average IO queue length and utilisation statistics are maintained
1702  * by observing the current state of the queue length and the amount of
1703  * time it has been in this state for.
1704  *
1705  * Normally, that accounting is done on IO completion, but that can result
1706  * in more than a second's worth of IO being accounted for within any one
1707  * second, leading to >100% utilisation.  To deal with that, we call this
1708  * function to do a round-off before returning the results when reading
1709  * /proc/diskstats.  This accounts immediately for all queue usage up to
1710  * the current jiffies and restarts the counters again.
1711  */
part_round_stats(struct request_queue * q,int cpu,struct hd_struct * part)1712 void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part)
1713 {
1714 	struct hd_struct *part2 = NULL;
1715 	unsigned long now = jiffies;
1716 	unsigned int inflight[2];
1717 	int stats = 0;
1718 
1719 	if (part->stamp != now)
1720 		stats |= 1;
1721 
1722 	if (part->partno) {
1723 		part2 = &part_to_disk(part)->part0;
1724 		if (part2->stamp != now)
1725 			stats |= 2;
1726 	}
1727 
1728 	if (!stats)
1729 		return;
1730 
1731 	part_in_flight(q, part, inflight);
1732 
1733 	if (stats & 2)
1734 		part_round_stats_single(q, cpu, part2, now, inflight[1]);
1735 	if (stats & 1)
1736 		part_round_stats_single(q, cpu, part, now, inflight[0]);
1737 }
1738 EXPORT_SYMBOL_GPL(part_round_stats);
1739 
1740 #ifdef CONFIG_PM
blk_pm_put_request(struct request * rq)1741 static void blk_pm_put_request(struct request *rq)
1742 {
1743 	if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
1744 		pm_runtime_mark_last_busy(rq->q->dev);
1745 }
1746 #else
blk_pm_put_request(struct request * rq)1747 static inline void blk_pm_put_request(struct request *rq) {}
1748 #endif
1749 
__blk_put_request(struct request_queue * q,struct request * req)1750 void __blk_put_request(struct request_queue *q, struct request *req)
1751 {
1752 	req_flags_t rq_flags = req->rq_flags;
1753 
1754 	if (unlikely(!q))
1755 		return;
1756 
1757 	if (q->mq_ops) {
1758 		blk_mq_free_request(req);
1759 		return;
1760 	}
1761 
1762 	lockdep_assert_held(q->queue_lock);
1763 
1764 	blk_req_zone_write_unlock(req);
1765 	blk_pm_put_request(req);
1766 
1767 	elv_completed_request(q, req);
1768 
1769 	/* this is a bio leak */
1770 	WARN_ON(req->bio != NULL);
1771 
1772 	rq_qos_done(q, req);
1773 
1774 	/*
1775 	 * Request may not have originated from ll_rw_blk. if not,
1776 	 * it didn't come out of our reserved rq pools
1777 	 */
1778 	if (rq_flags & RQF_ALLOCED) {
1779 		struct request_list *rl = blk_rq_rl(req);
1780 		bool sync = op_is_sync(req->cmd_flags);
1781 
1782 		BUG_ON(!list_empty(&req->queuelist));
1783 		BUG_ON(ELV_ON_HASH(req));
1784 
1785 		blk_free_request(rl, req);
1786 		freed_request(rl, sync, rq_flags);
1787 		blk_put_rl(rl);
1788 		blk_queue_exit(q);
1789 	}
1790 }
1791 EXPORT_SYMBOL_GPL(__blk_put_request);
1792 
blk_put_request(struct request * req)1793 void blk_put_request(struct request *req)
1794 {
1795 	struct request_queue *q = req->q;
1796 
1797 	if (q->mq_ops)
1798 		blk_mq_free_request(req);
1799 	else {
1800 		unsigned long flags;
1801 
1802 		spin_lock_irqsave(q->queue_lock, flags);
1803 		__blk_put_request(q, req);
1804 		spin_unlock_irqrestore(q->queue_lock, flags);
1805 	}
1806 }
1807 EXPORT_SYMBOL(blk_put_request);
1808 
bio_attempt_back_merge(struct request_queue * q,struct request * req,struct bio * bio)1809 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1810 			    struct bio *bio)
1811 {
1812 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1813 
1814 	if (!ll_back_merge_fn(q, req, bio))
1815 		return false;
1816 
1817 	trace_block_bio_backmerge(q, req, bio);
1818 
1819 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1820 		blk_rq_set_mixed_merge(req);
1821 
1822 	req->biotail->bi_next = bio;
1823 	req->biotail = bio;
1824 	req->__data_len += bio->bi_iter.bi_size;
1825 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1826 
1827 	blk_account_io_start(req, false);
1828 	return true;
1829 }
1830 
bio_attempt_front_merge(struct request_queue * q,struct request * req,struct bio * bio)1831 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1832 			     struct bio *bio)
1833 {
1834 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1835 
1836 	if (!ll_front_merge_fn(q, req, bio))
1837 		return false;
1838 
1839 	trace_block_bio_frontmerge(q, req, bio);
1840 
1841 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1842 		blk_rq_set_mixed_merge(req);
1843 
1844 	bio->bi_next = req->bio;
1845 	req->bio = bio;
1846 
1847 	req->__sector = bio->bi_iter.bi_sector;
1848 	req->__data_len += bio->bi_iter.bi_size;
1849 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1850 
1851 	blk_account_io_start(req, false);
1852 	return true;
1853 }
1854 
bio_attempt_discard_merge(struct request_queue * q,struct request * req,struct bio * bio)1855 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1856 		struct bio *bio)
1857 {
1858 	unsigned short segments = blk_rq_nr_discard_segments(req);
1859 
1860 	if (segments >= queue_max_discard_segments(q))
1861 		goto no_merge;
1862 	if (blk_rq_sectors(req) + bio_sectors(bio) >
1863 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1864 		goto no_merge;
1865 
1866 	req->biotail->bi_next = bio;
1867 	req->biotail = bio;
1868 	req->__data_len += bio->bi_iter.bi_size;
1869 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1870 	req->nr_phys_segments = segments + 1;
1871 
1872 	blk_account_io_start(req, false);
1873 	return true;
1874 no_merge:
1875 	req_set_nomerge(q, req);
1876 	return false;
1877 }
1878 
1879 /**
1880  * blk_attempt_plug_merge - try to merge with %current's plugged list
1881  * @q: request_queue new bio is being queued at
1882  * @bio: new bio being queued
1883  * @request_count: out parameter for number of traversed plugged requests
1884  * @same_queue_rq: pointer to &struct request that gets filled in when
1885  * another request associated with @q is found on the plug list
1886  * (optional, may be %NULL)
1887  *
1888  * Determine whether @bio being queued on @q can be merged with a request
1889  * on %current's plugged list.  Returns %true if merge was successful,
1890  * otherwise %false.
1891  *
1892  * Plugging coalesces IOs from the same issuer for the same purpose without
1893  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1894  * than scheduling, and the request, while may have elvpriv data, is not
1895  * added on the elevator at this point.  In addition, we don't have
1896  * reliable access to the elevator outside queue lock.  Only check basic
1897  * merging parameters without querying the elevator.
1898  *
1899  * Caller must ensure !blk_queue_nomerges(q) beforehand.
1900  */
blk_attempt_plug_merge(struct request_queue * q,struct bio * bio,unsigned int * request_count,struct request ** same_queue_rq)1901 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1902 			    unsigned int *request_count,
1903 			    struct request **same_queue_rq)
1904 {
1905 	struct blk_plug *plug;
1906 	struct request *rq;
1907 	struct list_head *plug_list;
1908 
1909 	plug = current->plug;
1910 	if (!plug)
1911 		return false;
1912 	*request_count = 0;
1913 
1914 	if (q->mq_ops)
1915 		plug_list = &plug->mq_list;
1916 	else
1917 		plug_list = &plug->list;
1918 
1919 	list_for_each_entry_reverse(rq, plug_list, queuelist) {
1920 		bool merged = false;
1921 
1922 		if (rq->q == q) {
1923 			(*request_count)++;
1924 			/*
1925 			 * Only blk-mq multiple hardware queues case checks the
1926 			 * rq in the same queue, there should be only one such
1927 			 * rq in a queue
1928 			 **/
1929 			if (same_queue_rq)
1930 				*same_queue_rq = rq;
1931 		}
1932 
1933 		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1934 			continue;
1935 
1936 		switch (blk_try_merge(rq, bio)) {
1937 		case ELEVATOR_BACK_MERGE:
1938 			merged = bio_attempt_back_merge(q, rq, bio);
1939 			break;
1940 		case ELEVATOR_FRONT_MERGE:
1941 			merged = bio_attempt_front_merge(q, rq, bio);
1942 			break;
1943 		case ELEVATOR_DISCARD_MERGE:
1944 			merged = bio_attempt_discard_merge(q, rq, bio);
1945 			break;
1946 		default:
1947 			break;
1948 		}
1949 
1950 		if (merged)
1951 			return true;
1952 	}
1953 
1954 	return false;
1955 }
1956 
blk_plug_queued_count(struct request_queue * q)1957 unsigned int blk_plug_queued_count(struct request_queue *q)
1958 {
1959 	struct blk_plug *plug;
1960 	struct request *rq;
1961 	struct list_head *plug_list;
1962 	unsigned int ret = 0;
1963 
1964 	plug = current->plug;
1965 	if (!plug)
1966 		goto out;
1967 
1968 	if (q->mq_ops)
1969 		plug_list = &plug->mq_list;
1970 	else
1971 		plug_list = &plug->list;
1972 
1973 	list_for_each_entry(rq, plug_list, queuelist) {
1974 		if (rq->q == q)
1975 			ret++;
1976 	}
1977 out:
1978 	return ret;
1979 }
1980 
blk_init_request_from_bio(struct request * req,struct bio * bio)1981 void blk_init_request_from_bio(struct request *req, struct bio *bio)
1982 {
1983 	struct io_context *ioc = rq_ioc(bio);
1984 
1985 	if (bio->bi_opf & REQ_RAHEAD)
1986 		req->cmd_flags |= REQ_FAILFAST_MASK;
1987 
1988 	req->__sector = bio->bi_iter.bi_sector;
1989 	if (ioprio_valid(bio_prio(bio)))
1990 		req->ioprio = bio_prio(bio);
1991 	else if (ioc)
1992 		req->ioprio = ioc->ioprio;
1993 	else
1994 		req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1995 	req->write_hint = bio->bi_write_hint;
1996 	blk_rq_bio_prep(req->q, req, bio);
1997 }
1998 EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
1999 
blk_queue_bio(struct request_queue * q,struct bio * bio)2000 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
2001 {
2002 	struct blk_plug *plug;
2003 	int where = ELEVATOR_INSERT_SORT;
2004 	struct request *req, *free;
2005 	unsigned int request_count = 0;
2006 
2007 	/*
2008 	 * low level driver can indicate that it wants pages above a
2009 	 * certain limit bounced to low memory (ie for highmem, or even
2010 	 * ISA dma in theory)
2011 	 */
2012 	blk_queue_bounce(q, &bio);
2013 
2014 	blk_queue_split(q, &bio);
2015 
2016 	if (!bio_integrity_prep(bio))
2017 		return BLK_QC_T_NONE;
2018 
2019 	if (op_is_flush(bio->bi_opf)) {
2020 		spin_lock_irq(q->queue_lock);
2021 		where = ELEVATOR_INSERT_FLUSH;
2022 		goto get_rq;
2023 	}
2024 
2025 	/*
2026 	 * Check if we can merge with the plugged list before grabbing
2027 	 * any locks.
2028 	 */
2029 	if (!blk_queue_nomerges(q)) {
2030 		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
2031 			return BLK_QC_T_NONE;
2032 	} else
2033 		request_count = blk_plug_queued_count(q);
2034 
2035 	spin_lock_irq(q->queue_lock);
2036 
2037 	switch (elv_merge(q, &req, bio)) {
2038 	case ELEVATOR_BACK_MERGE:
2039 		if (!bio_attempt_back_merge(q, req, bio))
2040 			break;
2041 		elv_bio_merged(q, req, bio);
2042 		free = attempt_back_merge(q, req);
2043 		if (free)
2044 			__blk_put_request(q, free);
2045 		else
2046 			elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
2047 		goto out_unlock;
2048 	case ELEVATOR_FRONT_MERGE:
2049 		if (!bio_attempt_front_merge(q, req, bio))
2050 			break;
2051 		elv_bio_merged(q, req, bio);
2052 		free = attempt_front_merge(q, req);
2053 		if (free)
2054 			__blk_put_request(q, free);
2055 		else
2056 			elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
2057 		goto out_unlock;
2058 	default:
2059 		break;
2060 	}
2061 
2062 get_rq:
2063 	rq_qos_throttle(q, bio, q->queue_lock);
2064 
2065 	/*
2066 	 * Grab a free request. This is might sleep but can not fail.
2067 	 * Returns with the queue unlocked.
2068 	 */
2069 	blk_queue_enter_live(q);
2070 	req = get_request(q, bio->bi_opf, bio, 0, GFP_NOIO);
2071 	if (IS_ERR(req)) {
2072 		blk_queue_exit(q);
2073 		rq_qos_cleanup(q, bio);
2074 		if (PTR_ERR(req) == -ENOMEM)
2075 			bio->bi_status = BLK_STS_RESOURCE;
2076 		else
2077 			bio->bi_status = BLK_STS_IOERR;
2078 		bio_endio(bio);
2079 		goto out_unlock;
2080 	}
2081 
2082 	rq_qos_track(q, req, bio);
2083 
2084 	/*
2085 	 * After dropping the lock and possibly sleeping here, our request
2086 	 * may now be mergeable after it had proven unmergeable (above).
2087 	 * We don't worry about that case for efficiency. It won't happen
2088 	 * often, and the elevators are able to handle it.
2089 	 */
2090 	blk_init_request_from_bio(req, bio);
2091 
2092 	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
2093 		req->cpu = raw_smp_processor_id();
2094 
2095 	plug = current->plug;
2096 	if (plug) {
2097 		/*
2098 		 * If this is the first request added after a plug, fire
2099 		 * of a plug trace.
2100 		 *
2101 		 * @request_count may become stale because of schedule
2102 		 * out, so check plug list again.
2103 		 */
2104 		if (!request_count || list_empty(&plug->list))
2105 			trace_block_plug(q);
2106 		else {
2107 			struct request *last = list_entry_rq(plug->list.prev);
2108 			if (request_count >= BLK_MAX_REQUEST_COUNT ||
2109 			    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
2110 				blk_flush_plug_list(plug, false);
2111 				trace_block_plug(q);
2112 			}
2113 		}
2114 		list_add_tail(&req->queuelist, &plug->list);
2115 		blk_account_io_start(req, true);
2116 	} else {
2117 		spin_lock_irq(q->queue_lock);
2118 		add_acct_request(q, req, where);
2119 		__blk_run_queue(q);
2120 out_unlock:
2121 		spin_unlock_irq(q->queue_lock);
2122 	}
2123 
2124 	return BLK_QC_T_NONE;
2125 }
2126 
handle_bad_sector(struct bio * bio,sector_t maxsector)2127 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
2128 {
2129 	char b[BDEVNAME_SIZE];
2130 
2131 	printk(KERN_INFO "attempt to access beyond end of device\n");
2132 	printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
2133 			bio_devname(bio, b), bio->bi_opf,
2134 			(unsigned long long)bio_end_sector(bio),
2135 			(long long)maxsector);
2136 }
2137 
2138 #ifdef CONFIG_FAIL_MAKE_REQUEST
2139 
2140 static DECLARE_FAULT_ATTR(fail_make_request);
2141 
setup_fail_make_request(char * str)2142 static int __init setup_fail_make_request(char *str)
2143 {
2144 	return setup_fault_attr(&fail_make_request, str);
2145 }
2146 __setup("fail_make_request=", setup_fail_make_request);
2147 
should_fail_request(struct hd_struct * part,unsigned int bytes)2148 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
2149 {
2150 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
2151 }
2152 
fail_make_request_debugfs(void)2153 static int __init fail_make_request_debugfs(void)
2154 {
2155 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
2156 						NULL, &fail_make_request);
2157 
2158 	return PTR_ERR_OR_ZERO(dir);
2159 }
2160 
2161 late_initcall(fail_make_request_debugfs);
2162 
2163 #else /* CONFIG_FAIL_MAKE_REQUEST */
2164 
should_fail_request(struct hd_struct * part,unsigned int bytes)2165 static inline bool should_fail_request(struct hd_struct *part,
2166 					unsigned int bytes)
2167 {
2168 	return false;
2169 }
2170 
2171 #endif /* CONFIG_FAIL_MAKE_REQUEST */
2172 
bio_check_ro(struct bio * bio,struct hd_struct * part)2173 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
2174 {
2175 	const int op = bio_op(bio);
2176 
2177 	if (part->policy && op_is_write(op)) {
2178 		char b[BDEVNAME_SIZE];
2179 
2180 		if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
2181 			return false;
2182 		pr_warn("Trying to write to read-only block-device %s (partno %d)\n",
2183 			bio_devname(bio, b), part->partno);
2184 		/* Older lvm-tools actually trigger this */
2185 		return false;
2186 	}
2187 
2188 	return false;
2189 }
2190 
should_fail_bio(struct bio * bio)2191 static noinline int should_fail_bio(struct bio *bio)
2192 {
2193 	if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
2194 		return -EIO;
2195 	return 0;
2196 }
2197 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
2198 
2199 /*
2200  * Check whether this bio extends beyond the end of the device or partition.
2201  * This may well happen - the kernel calls bread() without checking the size of
2202  * the device, e.g., when mounting a file system.
2203  */
bio_check_eod(struct bio * bio,sector_t maxsector)2204 static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
2205 {
2206 	unsigned int nr_sectors = bio_sectors(bio);
2207 
2208 	if (nr_sectors && maxsector &&
2209 	    (nr_sectors > maxsector ||
2210 	     bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
2211 		handle_bad_sector(bio, maxsector);
2212 		return -EIO;
2213 	}
2214 	return 0;
2215 }
2216 
2217 /*
2218  * Remap block n of partition p to block n+start(p) of the disk.
2219  */
blk_partition_remap(struct bio * bio)2220 static inline int blk_partition_remap(struct bio *bio)
2221 {
2222 	struct hd_struct *p;
2223 	int ret = -EIO;
2224 
2225 	rcu_read_lock();
2226 	p = __disk_get_part(bio->bi_disk, bio->bi_partno);
2227 	if (unlikely(!p))
2228 		goto out;
2229 	if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
2230 		goto out;
2231 	if (unlikely(bio_check_ro(bio, p)))
2232 		goto out;
2233 
2234 	/*
2235 	 * Zone reset does not include bi_size so bio_sectors() is always 0.
2236 	 * Include a test for the reset op code and perform the remap if needed.
2237 	 */
2238 	if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET) {
2239 		if (bio_check_eod(bio, part_nr_sects_read(p)))
2240 			goto out;
2241 		bio->bi_iter.bi_sector += p->start_sect;
2242 		trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
2243 				      bio->bi_iter.bi_sector - p->start_sect);
2244 	}
2245 	bio->bi_partno = 0;
2246 	ret = 0;
2247 out:
2248 	rcu_read_unlock();
2249 	return ret;
2250 }
2251 
2252 static noinline_for_stack bool
generic_make_request_checks(struct bio * bio)2253 generic_make_request_checks(struct bio *bio)
2254 {
2255 	struct request_queue *q;
2256 	int nr_sectors = bio_sectors(bio);
2257 	blk_status_t status = BLK_STS_IOERR;
2258 	char b[BDEVNAME_SIZE];
2259 
2260 	might_sleep();
2261 
2262 	q = bio->bi_disk->queue;
2263 	if (unlikely(!q)) {
2264 		printk(KERN_ERR
2265 		       "generic_make_request: Trying to access "
2266 			"nonexistent block-device %s (%Lu)\n",
2267 			bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
2268 		goto end_io;
2269 	}
2270 
2271 	/*
2272 	 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2273 	 * if queue is not a request based queue.
2274 	 */
2275 	if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
2276 		goto not_supported;
2277 
2278 	if (should_fail_bio(bio))
2279 		goto end_io;
2280 
2281 	if (bio->bi_partno) {
2282 		if (unlikely(blk_partition_remap(bio)))
2283 			goto end_io;
2284 	} else {
2285 		if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
2286 			goto end_io;
2287 		if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
2288 			goto end_io;
2289 	}
2290 
2291 	/*
2292 	 * Filter flush bio's early so that make_request based
2293 	 * drivers without flush support don't have to worry
2294 	 * about them.
2295 	 */
2296 	if (op_is_flush(bio->bi_opf) &&
2297 	    !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
2298 		bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
2299 		if (!nr_sectors) {
2300 			status = BLK_STS_OK;
2301 			goto end_io;
2302 		}
2303 	}
2304 
2305 	switch (bio_op(bio)) {
2306 	case REQ_OP_DISCARD:
2307 		if (!blk_queue_discard(q))
2308 			goto not_supported;
2309 		break;
2310 	case REQ_OP_SECURE_ERASE:
2311 		if (!blk_queue_secure_erase(q))
2312 			goto not_supported;
2313 		break;
2314 	case REQ_OP_WRITE_SAME:
2315 		if (!q->limits.max_write_same_sectors)
2316 			goto not_supported;
2317 		break;
2318 	case REQ_OP_ZONE_REPORT:
2319 	case REQ_OP_ZONE_RESET:
2320 		if (!blk_queue_is_zoned(q))
2321 			goto not_supported;
2322 		break;
2323 	case REQ_OP_WRITE_ZEROES:
2324 		if (!q->limits.max_write_zeroes_sectors)
2325 			goto not_supported;
2326 		break;
2327 	default:
2328 		break;
2329 	}
2330 
2331 	/*
2332 	 * Various block parts want %current->io_context and lazy ioc
2333 	 * allocation ends up trading a lot of pain for a small amount of
2334 	 * memory.  Just allocate it upfront.  This may fail and block
2335 	 * layer knows how to live with it.
2336 	 */
2337 	create_io_context(GFP_ATOMIC, q->node);
2338 
2339 	if (!blkcg_bio_issue_check(q, bio))
2340 		return false;
2341 
2342 	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2343 		trace_block_bio_queue(q, bio);
2344 		/* Now that enqueuing has been traced, we need to trace
2345 		 * completion as well.
2346 		 */
2347 		bio_set_flag(bio, BIO_TRACE_COMPLETION);
2348 	}
2349 	return true;
2350 
2351 not_supported:
2352 	status = BLK_STS_NOTSUPP;
2353 end_io:
2354 	bio->bi_status = status;
2355 	bio_endio(bio);
2356 	return false;
2357 }
2358 
2359 /**
2360  * generic_make_request - hand a buffer to its device driver for I/O
2361  * @bio:  The bio describing the location in memory and on the device.
2362  *
2363  * generic_make_request() is used to make I/O requests of block
2364  * devices. It is passed a &struct bio, which describes the I/O that needs
2365  * to be done.
2366  *
2367  * generic_make_request() does not return any status.  The
2368  * success/failure status of the request, along with notification of
2369  * completion, is delivered asynchronously through the bio->bi_end_io
2370  * function described (one day) else where.
2371  *
2372  * The caller of generic_make_request must make sure that bi_io_vec
2373  * are set to describe the memory buffer, and that bi_dev and bi_sector are
2374  * set to describe the device address, and the
2375  * bi_end_io and optionally bi_private are set to describe how
2376  * completion notification should be signaled.
2377  *
2378  * generic_make_request and the drivers it calls may use bi_next if this
2379  * bio happens to be merged with someone else, and may resubmit the bio to
2380  * a lower device by calling into generic_make_request recursively, which
2381  * means the bio should NOT be touched after the call to ->make_request_fn.
2382  */
generic_make_request(struct bio * bio)2383 blk_qc_t generic_make_request(struct bio *bio)
2384 {
2385 	/*
2386 	 * bio_list_on_stack[0] contains bios submitted by the current
2387 	 * make_request_fn.
2388 	 * bio_list_on_stack[1] contains bios that were submitted before
2389 	 * the current make_request_fn, but that haven't been processed
2390 	 * yet.
2391 	 */
2392 	struct bio_list bio_list_on_stack[2];
2393 	blk_mq_req_flags_t flags = 0;
2394 	struct request_queue *q = bio->bi_disk->queue;
2395 	blk_qc_t ret = BLK_QC_T_NONE;
2396 
2397 	if (bio->bi_opf & REQ_NOWAIT)
2398 		flags = BLK_MQ_REQ_NOWAIT;
2399 	if (bio_flagged(bio, BIO_QUEUE_ENTERED))
2400 		blk_queue_enter_live(q);
2401 	else if (blk_queue_enter(q, flags) < 0) {
2402 		if (!blk_queue_dying(q) && (bio->bi_opf & REQ_NOWAIT))
2403 			bio_wouldblock_error(bio);
2404 		else
2405 			bio_io_error(bio);
2406 		return ret;
2407 	}
2408 
2409 	if (!generic_make_request_checks(bio))
2410 		goto out;
2411 
2412 	/*
2413 	 * We only want one ->make_request_fn to be active at a time, else
2414 	 * stack usage with stacked devices could be a problem.  So use
2415 	 * current->bio_list to keep a list of requests submited by a
2416 	 * make_request_fn function.  current->bio_list is also used as a
2417 	 * flag to say if generic_make_request is currently active in this
2418 	 * task or not.  If it is NULL, then no make_request is active.  If
2419 	 * it is non-NULL, then a make_request is active, and new requests
2420 	 * should be added at the tail
2421 	 */
2422 	if (current->bio_list) {
2423 		bio_list_add(&current->bio_list[0], bio);
2424 		goto out;
2425 	}
2426 
2427 	/* following loop may be a bit non-obvious, and so deserves some
2428 	 * explanation.
2429 	 * Before entering the loop, bio->bi_next is NULL (as all callers
2430 	 * ensure that) so we have a list with a single bio.
2431 	 * We pretend that we have just taken it off a longer list, so
2432 	 * we assign bio_list to a pointer to the bio_list_on_stack,
2433 	 * thus initialising the bio_list of new bios to be
2434 	 * added.  ->make_request() may indeed add some more bios
2435 	 * through a recursive call to generic_make_request.  If it
2436 	 * did, we find a non-NULL value in bio_list and re-enter the loop
2437 	 * from the top.  In this case we really did just take the bio
2438 	 * of the top of the list (no pretending) and so remove it from
2439 	 * bio_list, and call into ->make_request() again.
2440 	 */
2441 	BUG_ON(bio->bi_next);
2442 	bio_list_init(&bio_list_on_stack[0]);
2443 	current->bio_list = bio_list_on_stack;
2444 	do {
2445 		bool enter_succeeded = true;
2446 
2447 		if (unlikely(q != bio->bi_disk->queue)) {
2448 			if (q)
2449 				blk_queue_exit(q);
2450 			q = bio->bi_disk->queue;
2451 			flags = 0;
2452 			if (bio->bi_opf & REQ_NOWAIT)
2453 				flags = BLK_MQ_REQ_NOWAIT;
2454 			if (blk_queue_enter(q, flags) < 0)
2455 				enter_succeeded = false;
2456 		}
2457 
2458 		if (enter_succeeded) {
2459 			struct bio_list lower, same;
2460 
2461 			/* Create a fresh bio_list for all subordinate requests */
2462 			bio_list_on_stack[1] = bio_list_on_stack[0];
2463 			bio_list_init(&bio_list_on_stack[0]);
2464 			ret = q->make_request_fn(q, bio);
2465 
2466 			/* sort new bios into those for a lower level
2467 			 * and those for the same level
2468 			 */
2469 			bio_list_init(&lower);
2470 			bio_list_init(&same);
2471 			while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
2472 				if (q == bio->bi_disk->queue)
2473 					bio_list_add(&same, bio);
2474 				else
2475 					bio_list_add(&lower, bio);
2476 			/* now assemble so we handle the lowest level first */
2477 			bio_list_merge(&bio_list_on_stack[0], &lower);
2478 			bio_list_merge(&bio_list_on_stack[0], &same);
2479 			bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
2480 		} else {
2481 			if (unlikely(!blk_queue_dying(q) &&
2482 					(bio->bi_opf & REQ_NOWAIT)))
2483 				bio_wouldblock_error(bio);
2484 			else
2485 				bio_io_error(bio);
2486 			q = NULL;
2487 		}
2488 		bio = bio_list_pop(&bio_list_on_stack[0]);
2489 	} while (bio);
2490 	current->bio_list = NULL; /* deactivate */
2491 
2492 out:
2493 	if (q)
2494 		blk_queue_exit(q);
2495 	return ret;
2496 }
2497 EXPORT_SYMBOL(generic_make_request);
2498 
2499 /**
2500  * direct_make_request - hand a buffer directly to its device driver for I/O
2501  * @bio:  The bio describing the location in memory and on the device.
2502  *
2503  * This function behaves like generic_make_request(), but does not protect
2504  * against recursion.  Must only be used if the called driver is known
2505  * to not call generic_make_request (or direct_make_request) again from
2506  * its make_request function.  (Calling direct_make_request again from
2507  * a workqueue is perfectly fine as that doesn't recurse).
2508  */
direct_make_request(struct bio * bio)2509 blk_qc_t direct_make_request(struct bio *bio)
2510 {
2511 	struct request_queue *q = bio->bi_disk->queue;
2512 	bool nowait = bio->bi_opf & REQ_NOWAIT;
2513 	blk_qc_t ret;
2514 
2515 	if (!generic_make_request_checks(bio))
2516 		return BLK_QC_T_NONE;
2517 
2518 	if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
2519 		if (nowait && !blk_queue_dying(q))
2520 			bio->bi_status = BLK_STS_AGAIN;
2521 		else
2522 			bio->bi_status = BLK_STS_IOERR;
2523 		bio_endio(bio);
2524 		return BLK_QC_T_NONE;
2525 	}
2526 
2527 	ret = q->make_request_fn(q, bio);
2528 	blk_queue_exit(q);
2529 	return ret;
2530 }
2531 EXPORT_SYMBOL_GPL(direct_make_request);
2532 
2533 /**
2534  * submit_bio - submit a bio to the block device layer for I/O
2535  * @bio: The &struct bio which describes the I/O
2536  *
2537  * submit_bio() is very similar in purpose to generic_make_request(), and
2538  * uses that function to do most of the work. Both are fairly rough
2539  * interfaces; @bio must be presetup and ready for I/O.
2540  *
2541  */
submit_bio(struct bio * bio)2542 blk_qc_t submit_bio(struct bio *bio)
2543 {
2544 	/*
2545 	 * If it's a regular read/write or a barrier with data attached,
2546 	 * go through the normal accounting stuff before submission.
2547 	 */
2548 	if (bio_has_data(bio)) {
2549 		unsigned int count;
2550 
2551 		if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2552 			count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
2553 		else
2554 			count = bio_sectors(bio);
2555 
2556 		if (op_is_write(bio_op(bio))) {
2557 			count_vm_events(PGPGOUT, count);
2558 		} else {
2559 			task_io_account_read(bio->bi_iter.bi_size);
2560 			count_vm_events(PGPGIN, count);
2561 		}
2562 
2563 		if (unlikely(block_dump)) {
2564 			char b[BDEVNAME_SIZE];
2565 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2566 			current->comm, task_pid_nr(current),
2567 				op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2568 				(unsigned long long)bio->bi_iter.bi_sector,
2569 				bio_devname(bio, b), count);
2570 		}
2571 	}
2572 
2573 	return generic_make_request(bio);
2574 }
2575 EXPORT_SYMBOL(submit_bio);
2576 
blk_poll(struct request_queue * q,blk_qc_t cookie)2577 bool blk_poll(struct request_queue *q, blk_qc_t cookie)
2578 {
2579 	if (!q->poll_fn || !blk_qc_t_valid(cookie))
2580 		return false;
2581 
2582 	if (current->plug)
2583 		blk_flush_plug_list(current->plug, false);
2584 	return q->poll_fn(q, cookie);
2585 }
2586 EXPORT_SYMBOL_GPL(blk_poll);
2587 
2588 /**
2589  * blk_cloned_rq_check_limits - Helper function to check a cloned request
2590  *                              for new the queue limits
2591  * @q:  the queue
2592  * @rq: the request being checked
2593  *
2594  * Description:
2595  *    @rq may have been made based on weaker limitations of upper-level queues
2596  *    in request stacking drivers, and it may violate the limitation of @q.
2597  *    Since the block layer and the underlying device driver trust @rq
2598  *    after it is inserted to @q, it should be checked against @q before
2599  *    the insertion using this generic function.
2600  *
2601  *    Request stacking drivers like request-based dm may change the queue
2602  *    limits when retrying requests on other queues. Those requests need
2603  *    to be checked against the new queue limits again during dispatch.
2604  */
blk_cloned_rq_check_limits(struct request_queue * q,struct request * rq)2605 static int blk_cloned_rq_check_limits(struct request_queue *q,
2606 				      struct request *rq)
2607 {
2608 	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2609 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
2610 		return -EIO;
2611 	}
2612 
2613 	/*
2614 	 * queue's settings related to segment counting like q->bounce_pfn
2615 	 * may differ from that of other stacking queues.
2616 	 * Recalculate it to check the request correctly on this queue's
2617 	 * limitation.
2618 	 */
2619 	blk_recalc_rq_segments(rq);
2620 	if (rq->nr_phys_segments > queue_max_segments(q)) {
2621 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2622 		return -EIO;
2623 	}
2624 
2625 	return 0;
2626 }
2627 
2628 /**
2629  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2630  * @q:  the queue to submit the request
2631  * @rq: the request being queued
2632  */
blk_insert_cloned_request(struct request_queue * q,struct request * rq)2633 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2634 {
2635 	unsigned long flags;
2636 	int where = ELEVATOR_INSERT_BACK;
2637 
2638 	if (blk_cloned_rq_check_limits(q, rq))
2639 		return BLK_STS_IOERR;
2640 
2641 	if (rq->rq_disk &&
2642 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2643 		return BLK_STS_IOERR;
2644 
2645 	if (q->mq_ops) {
2646 		if (blk_queue_io_stat(q))
2647 			blk_account_io_start(rq, true);
2648 		/*
2649 		 * Since we have a scheduler attached on the top device,
2650 		 * bypass a potential scheduler on the bottom device for
2651 		 * insert.
2652 		 */
2653 		return blk_mq_request_issue_directly(rq);
2654 	}
2655 
2656 	spin_lock_irqsave(q->queue_lock, flags);
2657 	if (unlikely(blk_queue_dying(q))) {
2658 		spin_unlock_irqrestore(q->queue_lock, flags);
2659 		return BLK_STS_IOERR;
2660 	}
2661 
2662 	/*
2663 	 * Submitting request must be dequeued before calling this function
2664 	 * because it will be linked to another request_queue
2665 	 */
2666 	BUG_ON(blk_queued_rq(rq));
2667 
2668 	if (op_is_flush(rq->cmd_flags))
2669 		where = ELEVATOR_INSERT_FLUSH;
2670 
2671 	add_acct_request(q, rq, where);
2672 	if (where == ELEVATOR_INSERT_FLUSH)
2673 		__blk_run_queue(q);
2674 	spin_unlock_irqrestore(q->queue_lock, flags);
2675 
2676 	return BLK_STS_OK;
2677 }
2678 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2679 
2680 /**
2681  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2682  * @rq: request to examine
2683  *
2684  * Description:
2685  *     A request could be merge of IOs which require different failure
2686  *     handling.  This function determines the number of bytes which
2687  *     can be failed from the beginning of the request without
2688  *     crossing into area which need to be retried further.
2689  *
2690  * Return:
2691  *     The number of bytes to fail.
2692  */
blk_rq_err_bytes(const struct request * rq)2693 unsigned int blk_rq_err_bytes(const struct request *rq)
2694 {
2695 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2696 	unsigned int bytes = 0;
2697 	struct bio *bio;
2698 
2699 	if (!(rq->rq_flags & RQF_MIXED_MERGE))
2700 		return blk_rq_bytes(rq);
2701 
2702 	/*
2703 	 * Currently the only 'mixing' which can happen is between
2704 	 * different fastfail types.  We can safely fail portions
2705 	 * which have all the failfast bits that the first one has -
2706 	 * the ones which are at least as eager to fail as the first
2707 	 * one.
2708 	 */
2709 	for (bio = rq->bio; bio; bio = bio->bi_next) {
2710 		if ((bio->bi_opf & ff) != ff)
2711 			break;
2712 		bytes += bio->bi_iter.bi_size;
2713 	}
2714 
2715 	/* this could lead to infinite loop */
2716 	BUG_ON(blk_rq_bytes(rq) && !bytes);
2717 	return bytes;
2718 }
2719 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2720 
blk_account_io_completion(struct request * req,unsigned int bytes)2721 void blk_account_io_completion(struct request *req, unsigned int bytes)
2722 {
2723 	if (blk_do_io_stat(req)) {
2724 		const int sgrp = op_stat_group(req_op(req));
2725 		struct hd_struct *part;
2726 		int cpu;
2727 
2728 		cpu = part_stat_lock();
2729 		part = req->part;
2730 		part_stat_add(cpu, part, sectors[sgrp], bytes >> 9);
2731 		part_stat_unlock();
2732 	}
2733 }
2734 
blk_account_io_done(struct request * req,u64 now)2735 void blk_account_io_done(struct request *req, u64 now)
2736 {
2737 	/*
2738 	 * Account IO completion.  flush_rq isn't accounted as a
2739 	 * normal IO on queueing nor completion.  Accounting the
2740 	 * containing request is enough.
2741 	 */
2742 	if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2743 		const int sgrp = op_stat_group(req_op(req));
2744 		struct hd_struct *part;
2745 		int cpu;
2746 
2747 		cpu = part_stat_lock();
2748 		part = req->part;
2749 
2750 		part_stat_inc(cpu, part, ios[sgrp]);
2751 		part_stat_add(cpu, part, nsecs[sgrp], now - req->start_time_ns);
2752 		part_round_stats(req->q, cpu, part);
2753 		part_dec_in_flight(req->q, part, rq_data_dir(req));
2754 
2755 		hd_struct_put(part);
2756 		part_stat_unlock();
2757 	}
2758 }
2759 
2760 #ifdef CONFIG_PM
2761 /*
2762  * Don't process normal requests when queue is suspended
2763  * or in the process of suspending/resuming
2764  */
blk_pm_allow_request(struct request * rq)2765 static bool blk_pm_allow_request(struct request *rq)
2766 {
2767 	switch (rq->q->rpm_status) {
2768 	case RPM_RESUMING:
2769 	case RPM_SUSPENDING:
2770 		return rq->rq_flags & RQF_PM;
2771 	case RPM_SUSPENDED:
2772 		return false;
2773 	default:
2774 		return true;
2775 	}
2776 }
2777 #else
blk_pm_allow_request(struct request * rq)2778 static bool blk_pm_allow_request(struct request *rq)
2779 {
2780 	return true;
2781 }
2782 #endif
2783 
blk_account_io_start(struct request * rq,bool new_io)2784 void blk_account_io_start(struct request *rq, bool new_io)
2785 {
2786 	struct hd_struct *part;
2787 	int rw = rq_data_dir(rq);
2788 	int cpu;
2789 
2790 	if (!blk_do_io_stat(rq))
2791 		return;
2792 
2793 	cpu = part_stat_lock();
2794 
2795 	if (!new_io) {
2796 		part = rq->part;
2797 		part_stat_inc(cpu, part, merges[rw]);
2798 	} else {
2799 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2800 		if (!hd_struct_try_get(part)) {
2801 			/*
2802 			 * The partition is already being removed,
2803 			 * the request will be accounted on the disk only
2804 			 *
2805 			 * We take a reference on disk->part0 although that
2806 			 * partition will never be deleted, so we can treat
2807 			 * it as any other partition.
2808 			 */
2809 			part = &rq->rq_disk->part0;
2810 			hd_struct_get(part);
2811 		}
2812 		part_round_stats(rq->q, cpu, part);
2813 		part_inc_in_flight(rq->q, part, rw);
2814 		rq->part = part;
2815 	}
2816 
2817 	part_stat_unlock();
2818 }
2819 
elv_next_request(struct request_queue * q)2820 static struct request *elv_next_request(struct request_queue *q)
2821 {
2822 	struct request *rq;
2823 	struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
2824 
2825 	WARN_ON_ONCE(q->mq_ops);
2826 
2827 	while (1) {
2828 		list_for_each_entry(rq, &q->queue_head, queuelist) {
2829 			if (blk_pm_allow_request(rq))
2830 				return rq;
2831 
2832 			if (rq->rq_flags & RQF_SOFTBARRIER)
2833 				break;
2834 		}
2835 
2836 		/*
2837 		 * Flush request is running and flush request isn't queueable
2838 		 * in the drive, we can hold the queue till flush request is
2839 		 * finished. Even we don't do this, driver can't dispatch next
2840 		 * requests and will requeue them. And this can improve
2841 		 * throughput too. For example, we have request flush1, write1,
2842 		 * flush 2. flush1 is dispatched, then queue is hold, write1
2843 		 * isn't inserted to queue. After flush1 is finished, flush2
2844 		 * will be dispatched. Since disk cache is already clean,
2845 		 * flush2 will be finished very soon, so looks like flush2 is
2846 		 * folded to flush1.
2847 		 * Since the queue is hold, a flag is set to indicate the queue
2848 		 * should be restarted later. Please see flush_end_io() for
2849 		 * details.
2850 		 */
2851 		if (fq->flush_pending_idx != fq->flush_running_idx &&
2852 				!queue_flush_queueable(q)) {
2853 			fq->flush_queue_delayed = 1;
2854 			return NULL;
2855 		}
2856 		if (unlikely(blk_queue_bypass(q)) ||
2857 		    !q->elevator->type->ops.sq.elevator_dispatch_fn(q, 0))
2858 			return NULL;
2859 	}
2860 }
2861 
2862 /**
2863  * blk_peek_request - peek at the top of a request queue
2864  * @q: request queue to peek at
2865  *
2866  * Description:
2867  *     Return the request at the top of @q.  The returned request
2868  *     should be started using blk_start_request() before LLD starts
2869  *     processing it.
2870  *
2871  * Return:
2872  *     Pointer to the request at the top of @q if available.  Null
2873  *     otherwise.
2874  */
blk_peek_request(struct request_queue * q)2875 struct request *blk_peek_request(struct request_queue *q)
2876 {
2877 	struct request *rq;
2878 	int ret;
2879 
2880 	lockdep_assert_held(q->queue_lock);
2881 	WARN_ON_ONCE(q->mq_ops);
2882 
2883 	while ((rq = elv_next_request(q)) != NULL) {
2884 		if (!(rq->rq_flags & RQF_STARTED)) {
2885 			/*
2886 			 * This is the first time the device driver
2887 			 * sees this request (possibly after
2888 			 * requeueing).  Notify IO scheduler.
2889 			 */
2890 			if (rq->rq_flags & RQF_SORTED)
2891 				elv_activate_rq(q, rq);
2892 
2893 			/*
2894 			 * just mark as started even if we don't start
2895 			 * it, a request that has been delayed should
2896 			 * not be passed by new incoming requests
2897 			 */
2898 			rq->rq_flags |= RQF_STARTED;
2899 			trace_block_rq_issue(q, rq);
2900 		}
2901 
2902 		if (!q->boundary_rq || q->boundary_rq == rq) {
2903 			q->end_sector = rq_end_sector(rq);
2904 			q->boundary_rq = NULL;
2905 		}
2906 
2907 		if (rq->rq_flags & RQF_DONTPREP)
2908 			break;
2909 
2910 		if (q->dma_drain_size && blk_rq_bytes(rq)) {
2911 			/*
2912 			 * make sure space for the drain appears we
2913 			 * know we can do this because max_hw_segments
2914 			 * has been adjusted to be one fewer than the
2915 			 * device can handle
2916 			 */
2917 			rq->nr_phys_segments++;
2918 		}
2919 
2920 		if (!q->prep_rq_fn)
2921 			break;
2922 
2923 		ret = q->prep_rq_fn(q, rq);
2924 		if (ret == BLKPREP_OK) {
2925 			break;
2926 		} else if (ret == BLKPREP_DEFER) {
2927 			/*
2928 			 * the request may have been (partially) prepped.
2929 			 * we need to keep this request in the front to
2930 			 * avoid resource deadlock.  RQF_STARTED will
2931 			 * prevent other fs requests from passing this one.
2932 			 */
2933 			if (q->dma_drain_size && blk_rq_bytes(rq) &&
2934 			    !(rq->rq_flags & RQF_DONTPREP)) {
2935 				/*
2936 				 * remove the space for the drain we added
2937 				 * so that we don't add it again
2938 				 */
2939 				--rq->nr_phys_segments;
2940 			}
2941 
2942 			rq = NULL;
2943 			break;
2944 		} else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2945 			rq->rq_flags |= RQF_QUIET;
2946 			/*
2947 			 * Mark this request as started so we don't trigger
2948 			 * any debug logic in the end I/O path.
2949 			 */
2950 			blk_start_request(rq);
2951 			__blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2952 					BLK_STS_TARGET : BLK_STS_IOERR);
2953 		} else {
2954 			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2955 			break;
2956 		}
2957 	}
2958 
2959 	return rq;
2960 }
2961 EXPORT_SYMBOL(blk_peek_request);
2962 
blk_dequeue_request(struct request * rq)2963 static void blk_dequeue_request(struct request *rq)
2964 {
2965 	struct request_queue *q = rq->q;
2966 
2967 	BUG_ON(list_empty(&rq->queuelist));
2968 	BUG_ON(ELV_ON_HASH(rq));
2969 
2970 	list_del_init(&rq->queuelist);
2971 
2972 	/*
2973 	 * the time frame between a request being removed from the lists
2974 	 * and to it is freed is accounted as io that is in progress at
2975 	 * the driver side.
2976 	 */
2977 	if (blk_account_rq(rq))
2978 		q->in_flight[rq_is_sync(rq)]++;
2979 }
2980 
2981 /**
2982  * blk_start_request - start request processing on the driver
2983  * @req: request to dequeue
2984  *
2985  * Description:
2986  *     Dequeue @req and start timeout timer on it.  This hands off the
2987  *     request to the driver.
2988  */
blk_start_request(struct request * req)2989 void blk_start_request(struct request *req)
2990 {
2991 	lockdep_assert_held(req->q->queue_lock);
2992 	WARN_ON_ONCE(req->q->mq_ops);
2993 
2994 	blk_dequeue_request(req);
2995 
2996 	if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2997 		req->io_start_time_ns = ktime_get_ns();
2998 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2999 		req->throtl_size = blk_rq_sectors(req);
3000 #endif
3001 		req->rq_flags |= RQF_STATS;
3002 		rq_qos_issue(req->q, req);
3003 	}
3004 
3005 	BUG_ON(blk_rq_is_complete(req));
3006 	blk_add_timer(req);
3007 }
3008 EXPORT_SYMBOL(blk_start_request);
3009 
3010 /**
3011  * blk_fetch_request - fetch a request from a request queue
3012  * @q: request queue to fetch a request from
3013  *
3014  * Description:
3015  *     Return the request at the top of @q.  The request is started on
3016  *     return and LLD can start processing it immediately.
3017  *
3018  * Return:
3019  *     Pointer to the request at the top of @q if available.  Null
3020  *     otherwise.
3021  */
blk_fetch_request(struct request_queue * q)3022 struct request *blk_fetch_request(struct request_queue *q)
3023 {
3024 	struct request *rq;
3025 
3026 	lockdep_assert_held(q->queue_lock);
3027 	WARN_ON_ONCE(q->mq_ops);
3028 
3029 	rq = blk_peek_request(q);
3030 	if (rq)
3031 		blk_start_request(rq);
3032 	return rq;
3033 }
3034 EXPORT_SYMBOL(blk_fetch_request);
3035 
3036 /*
3037  * Steal bios from a request and add them to a bio list.
3038  * The request must not have been partially completed before.
3039  */
blk_steal_bios(struct bio_list * list,struct request * rq)3040 void blk_steal_bios(struct bio_list *list, struct request *rq)
3041 {
3042 	if (rq->bio) {
3043 		if (list->tail)
3044 			list->tail->bi_next = rq->bio;
3045 		else
3046 			list->head = rq->bio;
3047 		list->tail = rq->biotail;
3048 
3049 		rq->bio = NULL;
3050 		rq->biotail = NULL;
3051 	}
3052 
3053 	rq->__data_len = 0;
3054 }
3055 EXPORT_SYMBOL_GPL(blk_steal_bios);
3056 
3057 /**
3058  * blk_update_request - Special helper function for request stacking drivers
3059  * @req:      the request being processed
3060  * @error:    block status code
3061  * @nr_bytes: number of bytes to complete @req
3062  *
3063  * Description:
3064  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
3065  *     the request structure even if @req doesn't have leftover.
3066  *     If @req has leftover, sets it up for the next range of segments.
3067  *
3068  *     This special helper function is only for request stacking drivers
3069  *     (e.g. request-based dm) so that they can handle partial completion.
3070  *     Actual device drivers should use blk_end_request instead.
3071  *
3072  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
3073  *     %false return from this function.
3074  *
3075  * Note:
3076  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
3077  *	blk_rq_bytes() and in blk_update_request().
3078  *
3079  * Return:
3080  *     %false - this request doesn't have any more data
3081  *     %true  - this request has more data
3082  **/
blk_update_request(struct request * req,blk_status_t error,unsigned int nr_bytes)3083 bool blk_update_request(struct request *req, blk_status_t error,
3084 		unsigned int nr_bytes)
3085 {
3086 	int total_bytes;
3087 
3088 	trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
3089 
3090 	if (!req->bio)
3091 		return false;
3092 
3093 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
3094 		     !(req->rq_flags & RQF_QUIET)))
3095 		print_req_error(req, error);
3096 
3097 	blk_account_io_completion(req, nr_bytes);
3098 
3099 	total_bytes = 0;
3100 	while (req->bio) {
3101 		struct bio *bio = req->bio;
3102 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
3103 
3104 		if (bio_bytes == bio->bi_iter.bi_size)
3105 			req->bio = bio->bi_next;
3106 
3107 		/* Completion has already been traced */
3108 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
3109 		req_bio_endio(req, bio, bio_bytes, error);
3110 
3111 		total_bytes += bio_bytes;
3112 		nr_bytes -= bio_bytes;
3113 
3114 		if (!nr_bytes)
3115 			break;
3116 	}
3117 
3118 	/*
3119 	 * completely done
3120 	 */
3121 	if (!req->bio) {
3122 		/*
3123 		 * Reset counters so that the request stacking driver
3124 		 * can find how many bytes remain in the request
3125 		 * later.
3126 		 */
3127 		req->__data_len = 0;
3128 		return false;
3129 	}
3130 
3131 	req->__data_len -= total_bytes;
3132 
3133 	/* update sector only for requests with clear definition of sector */
3134 	if (!blk_rq_is_passthrough(req))
3135 		req->__sector += total_bytes >> 9;
3136 
3137 	/* mixed attributes always follow the first bio */
3138 	if (req->rq_flags & RQF_MIXED_MERGE) {
3139 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
3140 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
3141 	}
3142 
3143 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
3144 		/*
3145 		 * If total number of sectors is less than the first segment
3146 		 * size, something has gone terribly wrong.
3147 		 */
3148 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
3149 			blk_dump_rq_flags(req, "request botched");
3150 			req->__data_len = blk_rq_cur_bytes(req);
3151 		}
3152 
3153 		/* recalculate the number of segments */
3154 		blk_recalc_rq_segments(req);
3155 	}
3156 
3157 	return true;
3158 }
3159 EXPORT_SYMBOL_GPL(blk_update_request);
3160 
blk_update_bidi_request(struct request * rq,blk_status_t error,unsigned int nr_bytes,unsigned int bidi_bytes)3161 static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
3162 				    unsigned int nr_bytes,
3163 				    unsigned int bidi_bytes)
3164 {
3165 	if (blk_update_request(rq, error, nr_bytes))
3166 		return true;
3167 
3168 	/* Bidi request must be completed as a whole */
3169 	if (unlikely(blk_bidi_rq(rq)) &&
3170 	    blk_update_request(rq->next_rq, error, bidi_bytes))
3171 		return true;
3172 
3173 	if (blk_queue_add_random(rq->q))
3174 		add_disk_randomness(rq->rq_disk);
3175 
3176 	return false;
3177 }
3178 
3179 /**
3180  * blk_unprep_request - unprepare a request
3181  * @req:	the request
3182  *
3183  * This function makes a request ready for complete resubmission (or
3184  * completion).  It happens only after all error handling is complete,
3185  * so represents the appropriate moment to deallocate any resources
3186  * that were allocated to the request in the prep_rq_fn.  The queue
3187  * lock is held when calling this.
3188  */
blk_unprep_request(struct request * req)3189 void blk_unprep_request(struct request *req)
3190 {
3191 	struct request_queue *q = req->q;
3192 
3193 	req->rq_flags &= ~RQF_DONTPREP;
3194 	if (q->unprep_rq_fn)
3195 		q->unprep_rq_fn(q, req);
3196 }
3197 EXPORT_SYMBOL_GPL(blk_unprep_request);
3198 
blk_finish_request(struct request * req,blk_status_t error)3199 void blk_finish_request(struct request *req, blk_status_t error)
3200 {
3201 	struct request_queue *q = req->q;
3202 	u64 now = ktime_get_ns();
3203 
3204 	lockdep_assert_held(req->q->queue_lock);
3205 	WARN_ON_ONCE(q->mq_ops);
3206 
3207 	if (req->rq_flags & RQF_STATS)
3208 		blk_stat_add(req, now);
3209 
3210 	if (req->rq_flags & RQF_QUEUED)
3211 		blk_queue_end_tag(q, req);
3212 
3213 	BUG_ON(blk_queued_rq(req));
3214 
3215 	if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
3216 		laptop_io_completion(req->q->backing_dev_info);
3217 
3218 	blk_delete_timer(req);
3219 
3220 	if (req->rq_flags & RQF_DONTPREP)
3221 		blk_unprep_request(req);
3222 
3223 	blk_account_io_done(req, now);
3224 
3225 	if (req->end_io) {
3226 		rq_qos_done(q, req);
3227 		req->end_io(req, error);
3228 	} else {
3229 		if (blk_bidi_rq(req))
3230 			__blk_put_request(req->next_rq->q, req->next_rq);
3231 
3232 		__blk_put_request(q, req);
3233 	}
3234 }
3235 EXPORT_SYMBOL(blk_finish_request);
3236 
3237 /**
3238  * blk_end_bidi_request - Complete a bidi request
3239  * @rq:         the request to complete
3240  * @error:      block status code
3241  * @nr_bytes:   number of bytes to complete @rq
3242  * @bidi_bytes: number of bytes to complete @rq->next_rq
3243  *
3244  * Description:
3245  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
3246  *     Drivers that supports bidi can safely call this member for any
3247  *     type of request, bidi or uni.  In the later case @bidi_bytes is
3248  *     just ignored.
3249  *
3250  * Return:
3251  *     %false - we are done with this request
3252  *     %true  - still buffers pending for this request
3253  **/
blk_end_bidi_request(struct request * rq,blk_status_t error,unsigned int nr_bytes,unsigned int bidi_bytes)3254 static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
3255 				 unsigned int nr_bytes, unsigned int bidi_bytes)
3256 {
3257 	struct request_queue *q = rq->q;
3258 	unsigned long flags;
3259 
3260 	WARN_ON_ONCE(q->mq_ops);
3261 
3262 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3263 		return true;
3264 
3265 	spin_lock_irqsave(q->queue_lock, flags);
3266 	blk_finish_request(rq, error);
3267 	spin_unlock_irqrestore(q->queue_lock, flags);
3268 
3269 	return false;
3270 }
3271 
3272 /**
3273  * __blk_end_bidi_request - Complete a bidi request with queue lock held
3274  * @rq:         the request to complete
3275  * @error:      block status code
3276  * @nr_bytes:   number of bytes to complete @rq
3277  * @bidi_bytes: number of bytes to complete @rq->next_rq
3278  *
3279  * Description:
3280  *     Identical to blk_end_bidi_request() except that queue lock is
3281  *     assumed to be locked on entry and remains so on return.
3282  *
3283  * Return:
3284  *     %false - we are done with this request
3285  *     %true  - still buffers pending for this request
3286  **/
__blk_end_bidi_request(struct request * rq,blk_status_t error,unsigned int nr_bytes,unsigned int bidi_bytes)3287 static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
3288 				   unsigned int nr_bytes, unsigned int bidi_bytes)
3289 {
3290 	lockdep_assert_held(rq->q->queue_lock);
3291 	WARN_ON_ONCE(rq->q->mq_ops);
3292 
3293 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3294 		return true;
3295 
3296 	blk_finish_request(rq, error);
3297 
3298 	return false;
3299 }
3300 
3301 /**
3302  * blk_end_request - Helper function for drivers to complete the request.
3303  * @rq:       the request being processed
3304  * @error:    block status code
3305  * @nr_bytes: number of bytes to complete
3306  *
3307  * Description:
3308  *     Ends I/O on a number of bytes attached to @rq.
3309  *     If @rq has leftover, sets it up for the next range of segments.
3310  *
3311  * Return:
3312  *     %false - we are done with this request
3313  *     %true  - still buffers pending for this request
3314  **/
blk_end_request(struct request * rq,blk_status_t error,unsigned int nr_bytes)3315 bool blk_end_request(struct request *rq, blk_status_t error,
3316 		unsigned int nr_bytes)
3317 {
3318 	WARN_ON_ONCE(rq->q->mq_ops);
3319 	return blk_end_bidi_request(rq, error, nr_bytes, 0);
3320 }
3321 EXPORT_SYMBOL(blk_end_request);
3322 
3323 /**
3324  * blk_end_request_all - Helper function for drives to finish the request.
3325  * @rq: the request to finish
3326  * @error: block status code
3327  *
3328  * Description:
3329  *     Completely finish @rq.
3330  */
blk_end_request_all(struct request * rq,blk_status_t error)3331 void blk_end_request_all(struct request *rq, blk_status_t error)
3332 {
3333 	bool pending;
3334 	unsigned int bidi_bytes = 0;
3335 
3336 	if (unlikely(blk_bidi_rq(rq)))
3337 		bidi_bytes = blk_rq_bytes(rq->next_rq);
3338 
3339 	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3340 	BUG_ON(pending);
3341 }
3342 EXPORT_SYMBOL(blk_end_request_all);
3343 
3344 /**
3345  * __blk_end_request - Helper function for drivers to complete the request.
3346  * @rq:       the request being processed
3347  * @error:    block status code
3348  * @nr_bytes: number of bytes to complete
3349  *
3350  * Description:
3351  *     Must be called with queue lock held unlike blk_end_request().
3352  *
3353  * Return:
3354  *     %false - we are done with this request
3355  *     %true  - still buffers pending for this request
3356  **/
__blk_end_request(struct request * rq,blk_status_t error,unsigned int nr_bytes)3357 bool __blk_end_request(struct request *rq, blk_status_t error,
3358 		unsigned int nr_bytes)
3359 {
3360 	lockdep_assert_held(rq->q->queue_lock);
3361 	WARN_ON_ONCE(rq->q->mq_ops);
3362 
3363 	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
3364 }
3365 EXPORT_SYMBOL(__blk_end_request);
3366 
3367 /**
3368  * __blk_end_request_all - Helper function for drives to finish the request.
3369  * @rq: the request to finish
3370  * @error:    block status code
3371  *
3372  * Description:
3373  *     Completely finish @rq.  Must be called with queue lock held.
3374  */
__blk_end_request_all(struct request * rq,blk_status_t error)3375 void __blk_end_request_all(struct request *rq, blk_status_t error)
3376 {
3377 	bool pending;
3378 	unsigned int bidi_bytes = 0;
3379 
3380 	lockdep_assert_held(rq->q->queue_lock);
3381 	WARN_ON_ONCE(rq->q->mq_ops);
3382 
3383 	if (unlikely(blk_bidi_rq(rq)))
3384 		bidi_bytes = blk_rq_bytes(rq->next_rq);
3385 
3386 	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3387 	BUG_ON(pending);
3388 }
3389 EXPORT_SYMBOL(__blk_end_request_all);
3390 
3391 /**
3392  * __blk_end_request_cur - Helper function to finish the current request chunk.
3393  * @rq: the request to finish the current chunk for
3394  * @error:    block status code
3395  *
3396  * Description:
3397  *     Complete the current consecutively mapped chunk from @rq.  Must
3398  *     be called with queue lock held.
3399  *
3400  * Return:
3401  *     %false - we are done with this request
3402  *     %true  - still buffers pending for this request
3403  */
__blk_end_request_cur(struct request * rq,blk_status_t error)3404 bool __blk_end_request_cur(struct request *rq, blk_status_t error)
3405 {
3406 	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
3407 }
3408 EXPORT_SYMBOL(__blk_end_request_cur);
3409 
blk_rq_bio_prep(struct request_queue * q,struct request * rq,struct bio * bio)3410 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3411 		     struct bio *bio)
3412 {
3413 	if (bio_has_data(bio))
3414 		rq->nr_phys_segments = bio_phys_segments(q, bio);
3415 	else if (bio_op(bio) == REQ_OP_DISCARD)
3416 		rq->nr_phys_segments = 1;
3417 
3418 	rq->__data_len = bio->bi_iter.bi_size;
3419 	rq->bio = rq->biotail = bio;
3420 
3421 	if (bio->bi_disk)
3422 		rq->rq_disk = bio->bi_disk;
3423 }
3424 
3425 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3426 /**
3427  * rq_flush_dcache_pages - Helper function to flush all pages in a request
3428  * @rq: the request to be flushed
3429  *
3430  * Description:
3431  *     Flush all pages in @rq.
3432  */
rq_flush_dcache_pages(struct request * rq)3433 void rq_flush_dcache_pages(struct request *rq)
3434 {
3435 	struct req_iterator iter;
3436 	struct bio_vec bvec;
3437 
3438 	rq_for_each_segment(bvec, rq, iter)
3439 		flush_dcache_page(bvec.bv_page);
3440 }
3441 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3442 #endif
3443 
3444 /**
3445  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3446  * @q : the queue of the device being checked
3447  *
3448  * Description:
3449  *    Check if underlying low-level drivers of a device are busy.
3450  *    If the drivers want to export their busy state, they must set own
3451  *    exporting function using blk_queue_lld_busy() first.
3452  *
3453  *    Basically, this function is used only by request stacking drivers
3454  *    to stop dispatching requests to underlying devices when underlying
3455  *    devices are busy.  This behavior helps more I/O merging on the queue
3456  *    of the request stacking driver and prevents I/O throughput regression
3457  *    on burst I/O load.
3458  *
3459  * Return:
3460  *    0 - Not busy (The request stacking driver should dispatch request)
3461  *    1 - Busy (The request stacking driver should stop dispatching request)
3462  */
blk_lld_busy(struct request_queue * q)3463 int blk_lld_busy(struct request_queue *q)
3464 {
3465 	if (q->lld_busy_fn)
3466 		return q->lld_busy_fn(q);
3467 
3468 	return 0;
3469 }
3470 EXPORT_SYMBOL_GPL(blk_lld_busy);
3471 
3472 /**
3473  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3474  * @rq: the clone request to be cleaned up
3475  *
3476  * Description:
3477  *     Free all bios in @rq for a cloned request.
3478  */
blk_rq_unprep_clone(struct request * rq)3479 void blk_rq_unprep_clone(struct request *rq)
3480 {
3481 	struct bio *bio;
3482 
3483 	while ((bio = rq->bio) != NULL) {
3484 		rq->bio = bio->bi_next;
3485 
3486 		bio_put(bio);
3487 	}
3488 }
3489 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3490 
3491 /*
3492  * Copy attributes of the original request to the clone request.
3493  * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3494  */
__blk_rq_prep_clone(struct request * dst,struct request * src)3495 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3496 {
3497 	dst->cpu = src->cpu;
3498 	dst->__sector = blk_rq_pos(src);
3499 	dst->__data_len = blk_rq_bytes(src);
3500 	if (src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3501 		dst->rq_flags |= RQF_SPECIAL_PAYLOAD;
3502 		dst->special_vec = src->special_vec;
3503 	}
3504 	dst->nr_phys_segments = src->nr_phys_segments;
3505 	dst->ioprio = src->ioprio;
3506 	dst->extra_len = src->extra_len;
3507 }
3508 
3509 /**
3510  * blk_rq_prep_clone - Helper function to setup clone request
3511  * @rq: the request to be setup
3512  * @rq_src: original request to be cloned
3513  * @bs: bio_set that bios for clone are allocated from
3514  * @gfp_mask: memory allocation mask for bio
3515  * @bio_ctr: setup function to be called for each clone bio.
3516  *           Returns %0 for success, non %0 for failure.
3517  * @data: private data to be passed to @bio_ctr
3518  *
3519  * Description:
3520  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3521  *     The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3522  *     are not copied, and copying such parts is the caller's responsibility.
3523  *     Also, pages which the original bios are pointing to are not copied
3524  *     and the cloned bios just point same pages.
3525  *     So cloned bios must be completed before original bios, which means
3526  *     the caller must complete @rq before @rq_src.
3527  */
blk_rq_prep_clone(struct request * rq,struct request * rq_src,struct bio_set * bs,gfp_t gfp_mask,int (* bio_ctr)(struct bio *,struct bio *,void *),void * data)3528 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3529 		      struct bio_set *bs, gfp_t gfp_mask,
3530 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3531 		      void *data)
3532 {
3533 	struct bio *bio, *bio_src;
3534 
3535 	if (!bs)
3536 		bs = &fs_bio_set;
3537 
3538 	__rq_for_each_bio(bio_src, rq_src) {
3539 		bio = bio_clone_fast(bio_src, gfp_mask, bs);
3540 		if (!bio)
3541 			goto free_and_out;
3542 
3543 		if (bio_ctr && bio_ctr(bio, bio_src, data))
3544 			goto free_and_out;
3545 
3546 		if (rq->bio) {
3547 			rq->biotail->bi_next = bio;
3548 			rq->biotail = bio;
3549 		} else
3550 			rq->bio = rq->biotail = bio;
3551 	}
3552 
3553 	__blk_rq_prep_clone(rq, rq_src);
3554 
3555 	return 0;
3556 
3557 free_and_out:
3558 	if (bio)
3559 		bio_put(bio);
3560 	blk_rq_unprep_clone(rq);
3561 
3562 	return -ENOMEM;
3563 }
3564 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3565 
kblockd_schedule_work(struct work_struct * work)3566 int kblockd_schedule_work(struct work_struct *work)
3567 {
3568 	return queue_work(kblockd_workqueue, work);
3569 }
3570 EXPORT_SYMBOL(kblockd_schedule_work);
3571 
kblockd_schedule_work_on(int cpu,struct work_struct * work)3572 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3573 {
3574 	return queue_work_on(cpu, kblockd_workqueue, work);
3575 }
3576 EXPORT_SYMBOL(kblockd_schedule_work_on);
3577 
kblockd_mod_delayed_work_on(int cpu,struct delayed_work * dwork,unsigned long delay)3578 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3579 				unsigned long delay)
3580 {
3581 	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3582 }
3583 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3584 
3585 /**
3586  * blk_start_plug - initialize blk_plug and track it inside the task_struct
3587  * @plug:	The &struct blk_plug that needs to be initialized
3588  *
3589  * Description:
3590  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
3591  *   pending I/O should the task end up blocking between blk_start_plug() and
3592  *   blk_finish_plug(). This is important from a performance perspective, but
3593  *   also ensures that we don't deadlock. For instance, if the task is blocking
3594  *   for a memory allocation, memory reclaim could end up wanting to free a
3595  *   page belonging to that request that is currently residing in our private
3596  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
3597  *   this kind of deadlock.
3598  */
blk_start_plug(struct blk_plug * plug)3599 void blk_start_plug(struct blk_plug *plug)
3600 {
3601 	struct task_struct *tsk = current;
3602 
3603 	/*
3604 	 * If this is a nested plug, don't actually assign it.
3605 	 */
3606 	if (tsk->plug)
3607 		return;
3608 
3609 	INIT_LIST_HEAD(&plug->list);
3610 	INIT_LIST_HEAD(&plug->mq_list);
3611 	INIT_LIST_HEAD(&plug->cb_list);
3612 	/*
3613 	 * Store ordering should not be needed here, since a potential
3614 	 * preempt will imply a full memory barrier
3615 	 */
3616 	tsk->plug = plug;
3617 }
3618 EXPORT_SYMBOL(blk_start_plug);
3619 
plug_rq_cmp(void * priv,struct list_head * a,struct list_head * b)3620 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3621 {
3622 	struct request *rqa = container_of(a, struct request, queuelist);
3623 	struct request *rqb = container_of(b, struct request, queuelist);
3624 
3625 	return !(rqa->q < rqb->q ||
3626 		(rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3627 }
3628 
3629 /*
3630  * If 'from_schedule' is true, then postpone the dispatch of requests
3631  * until a safe kblockd context. We due this to avoid accidental big
3632  * additional stack usage in driver dispatch, in places where the originally
3633  * plugger did not intend it.
3634  */
queue_unplugged(struct request_queue * q,unsigned int depth,bool from_schedule)3635 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3636 			    bool from_schedule)
3637 	__releases(q->queue_lock)
3638 {
3639 	lockdep_assert_held(q->queue_lock);
3640 
3641 	trace_block_unplug(q, depth, !from_schedule);
3642 
3643 	if (from_schedule)
3644 		blk_run_queue_async(q);
3645 	else
3646 		__blk_run_queue(q);
3647 	spin_unlock_irq(q->queue_lock);
3648 }
3649 
flush_plug_callbacks(struct blk_plug * plug,bool from_schedule)3650 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3651 {
3652 	LIST_HEAD(callbacks);
3653 
3654 	while (!list_empty(&plug->cb_list)) {
3655 		list_splice_init(&plug->cb_list, &callbacks);
3656 
3657 		while (!list_empty(&callbacks)) {
3658 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
3659 							  struct blk_plug_cb,
3660 							  list);
3661 			list_del(&cb->list);
3662 			cb->callback(cb, from_schedule);
3663 		}
3664 	}
3665 }
3666 
blk_check_plugged(blk_plug_cb_fn unplug,void * data,int size)3667 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3668 				      int size)
3669 {
3670 	struct blk_plug *plug = current->plug;
3671 	struct blk_plug_cb *cb;
3672 
3673 	if (!plug)
3674 		return NULL;
3675 
3676 	list_for_each_entry(cb, &plug->cb_list, list)
3677 		if (cb->callback == unplug && cb->data == data)
3678 			return cb;
3679 
3680 	/* Not currently on the callback list */
3681 	BUG_ON(size < sizeof(*cb));
3682 	cb = kzalloc(size, GFP_ATOMIC);
3683 	if (cb) {
3684 		cb->data = data;
3685 		cb->callback = unplug;
3686 		list_add(&cb->list, &plug->cb_list);
3687 	}
3688 	return cb;
3689 }
3690 EXPORT_SYMBOL(blk_check_plugged);
3691 
blk_flush_plug_list(struct blk_plug * plug,bool from_schedule)3692 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3693 {
3694 	struct request_queue *q;
3695 	struct request *rq;
3696 	LIST_HEAD(list);
3697 	unsigned int depth;
3698 
3699 	flush_plug_callbacks(plug, from_schedule);
3700 
3701 	if (!list_empty(&plug->mq_list))
3702 		blk_mq_flush_plug_list(plug, from_schedule);
3703 
3704 	if (list_empty(&plug->list))
3705 		return;
3706 
3707 	list_splice_init(&plug->list, &list);
3708 
3709 	list_sort(NULL, &list, plug_rq_cmp);
3710 
3711 	q = NULL;
3712 	depth = 0;
3713 
3714 	while (!list_empty(&list)) {
3715 		rq = list_entry_rq(list.next);
3716 		list_del_init(&rq->queuelist);
3717 		BUG_ON(!rq->q);
3718 		if (rq->q != q) {
3719 			/*
3720 			 * This drops the queue lock
3721 			 */
3722 			if (q)
3723 				queue_unplugged(q, depth, from_schedule);
3724 			q = rq->q;
3725 			depth = 0;
3726 			spin_lock_irq(q->queue_lock);
3727 		}
3728 
3729 		/*
3730 		 * Short-circuit if @q is dead
3731 		 */
3732 		if (unlikely(blk_queue_dying(q))) {
3733 			__blk_end_request_all(rq, BLK_STS_IOERR);
3734 			continue;
3735 		}
3736 
3737 		/*
3738 		 * rq is already accounted, so use raw insert
3739 		 */
3740 		if (op_is_flush(rq->cmd_flags))
3741 			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3742 		else
3743 			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3744 
3745 		depth++;
3746 	}
3747 
3748 	/*
3749 	 * This drops the queue lock
3750 	 */
3751 	if (q)
3752 		queue_unplugged(q, depth, from_schedule);
3753 }
3754 
blk_finish_plug(struct blk_plug * plug)3755 void blk_finish_plug(struct blk_plug *plug)
3756 {
3757 	if (plug != current->plug)
3758 		return;
3759 	blk_flush_plug_list(plug, false);
3760 
3761 	current->plug = NULL;
3762 }
3763 EXPORT_SYMBOL(blk_finish_plug);
3764 
3765 #ifdef CONFIG_PM
3766 /**
3767  * blk_pm_runtime_init - Block layer runtime PM initialization routine
3768  * @q: the queue of the device
3769  * @dev: the device the queue belongs to
3770  *
3771  * Description:
3772  *    Initialize runtime-PM-related fields for @q and start auto suspend for
3773  *    @dev. Drivers that want to take advantage of request-based runtime PM
3774  *    should call this function after @dev has been initialized, and its
3775  *    request queue @q has been allocated, and runtime PM for it can not happen
3776  *    yet(either due to disabled/forbidden or its usage_count > 0). In most
3777  *    cases, driver should call this function before any I/O has taken place.
3778  *
3779  *    This function takes care of setting up using auto suspend for the device,
3780  *    the autosuspend delay is set to -1 to make runtime suspend impossible
3781  *    until an updated value is either set by user or by driver. Drivers do
3782  *    not need to touch other autosuspend settings.
3783  *
3784  *    The block layer runtime PM is request based, so only works for drivers
3785  *    that use request as their IO unit instead of those directly use bio's.
3786  */
blk_pm_runtime_init(struct request_queue * q,struct device * dev)3787 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3788 {
3789 	/* Don't enable runtime PM for blk-mq until it is ready */
3790 	if (q->mq_ops) {
3791 		pm_runtime_disable(dev);
3792 		return;
3793 	}
3794 
3795 	q->dev = dev;
3796 	q->rpm_status = RPM_ACTIVE;
3797 	pm_runtime_set_autosuspend_delay(q->dev, -1);
3798 	pm_runtime_use_autosuspend(q->dev);
3799 }
3800 EXPORT_SYMBOL(blk_pm_runtime_init);
3801 
3802 /**
3803  * blk_pre_runtime_suspend - Pre runtime suspend check
3804  * @q: the queue of the device
3805  *
3806  * Description:
3807  *    This function will check if runtime suspend is allowed for the device
3808  *    by examining if there are any requests pending in the queue. If there
3809  *    are requests pending, the device can not be runtime suspended; otherwise,
3810  *    the queue's status will be updated to SUSPENDING and the driver can
3811  *    proceed to suspend the device.
3812  *
3813  *    For the not allowed case, we mark last busy for the device so that
3814  *    runtime PM core will try to autosuspend it some time later.
3815  *
3816  *    This function should be called near the start of the device's
3817  *    runtime_suspend callback.
3818  *
3819  * Return:
3820  *    0		- OK to runtime suspend the device
3821  *    -EBUSY	- Device should not be runtime suspended
3822  */
blk_pre_runtime_suspend(struct request_queue * q)3823 int blk_pre_runtime_suspend(struct request_queue *q)
3824 {
3825 	int ret = 0;
3826 
3827 	if (!q->dev)
3828 		return ret;
3829 
3830 	spin_lock_irq(q->queue_lock);
3831 	if (q->nr_pending) {
3832 		ret = -EBUSY;
3833 		pm_runtime_mark_last_busy(q->dev);
3834 	} else {
3835 		q->rpm_status = RPM_SUSPENDING;
3836 	}
3837 	spin_unlock_irq(q->queue_lock);
3838 	return ret;
3839 }
3840 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3841 
3842 /**
3843  * blk_post_runtime_suspend - Post runtime suspend processing
3844  * @q: the queue of the device
3845  * @err: return value of the device's runtime_suspend function
3846  *
3847  * Description:
3848  *    Update the queue's runtime status according to the return value of the
3849  *    device's runtime suspend function and mark last busy for the device so
3850  *    that PM core will try to auto suspend the device at a later time.
3851  *
3852  *    This function should be called near the end of the device's
3853  *    runtime_suspend callback.
3854  */
blk_post_runtime_suspend(struct request_queue * q,int err)3855 void blk_post_runtime_suspend(struct request_queue *q, int err)
3856 {
3857 	if (!q->dev)
3858 		return;
3859 
3860 	spin_lock_irq(q->queue_lock);
3861 	if (!err) {
3862 		q->rpm_status = RPM_SUSPENDED;
3863 	} else {
3864 		q->rpm_status = RPM_ACTIVE;
3865 		pm_runtime_mark_last_busy(q->dev);
3866 	}
3867 	spin_unlock_irq(q->queue_lock);
3868 }
3869 EXPORT_SYMBOL(blk_post_runtime_suspend);
3870 
3871 /**
3872  * blk_pre_runtime_resume - Pre runtime resume processing
3873  * @q: the queue of the device
3874  *
3875  * Description:
3876  *    Update the queue's runtime status to RESUMING in preparation for the
3877  *    runtime resume of the device.
3878  *
3879  *    This function should be called near the start of the device's
3880  *    runtime_resume callback.
3881  */
blk_pre_runtime_resume(struct request_queue * q)3882 void blk_pre_runtime_resume(struct request_queue *q)
3883 {
3884 	if (!q->dev)
3885 		return;
3886 
3887 	spin_lock_irq(q->queue_lock);
3888 	q->rpm_status = RPM_RESUMING;
3889 	spin_unlock_irq(q->queue_lock);
3890 }
3891 EXPORT_SYMBOL(blk_pre_runtime_resume);
3892 
3893 /**
3894  * blk_post_runtime_resume - Post runtime resume processing
3895  * @q: the queue of the device
3896  * @err: return value of the device's runtime_resume function
3897  *
3898  * Description:
3899  *    Update the queue's runtime status according to the return value of the
3900  *    device's runtime_resume function. If it is successfully resumed, process
3901  *    the requests that are queued into the device's queue when it is resuming
3902  *    and then mark last busy and initiate autosuspend for it.
3903  *
3904  *    This function should be called near the end of the device's
3905  *    runtime_resume callback.
3906  */
blk_post_runtime_resume(struct request_queue * q,int err)3907 void blk_post_runtime_resume(struct request_queue *q, int err)
3908 {
3909 	if (!q->dev)
3910 		return;
3911 
3912 	spin_lock_irq(q->queue_lock);
3913 	if (!err) {
3914 		q->rpm_status = RPM_ACTIVE;
3915 		__blk_run_queue(q);
3916 		pm_runtime_mark_last_busy(q->dev);
3917 		pm_request_autosuspend(q->dev);
3918 	} else {
3919 		q->rpm_status = RPM_SUSPENDED;
3920 	}
3921 	spin_unlock_irq(q->queue_lock);
3922 }
3923 EXPORT_SYMBOL(blk_post_runtime_resume);
3924 
3925 /**
3926  * blk_set_runtime_active - Force runtime status of the queue to be active
3927  * @q: the queue of the device
3928  *
3929  * If the device is left runtime suspended during system suspend the resume
3930  * hook typically resumes the device and corrects runtime status
3931  * accordingly. However, that does not affect the queue runtime PM status
3932  * which is still "suspended". This prevents processing requests from the
3933  * queue.
3934  *
3935  * This function can be used in driver's resume hook to correct queue
3936  * runtime PM status and re-enable peeking requests from the queue. It
3937  * should be called before first request is added to the queue.
3938  */
blk_set_runtime_active(struct request_queue * q)3939 void blk_set_runtime_active(struct request_queue *q)
3940 {
3941 	spin_lock_irq(q->queue_lock);
3942 	q->rpm_status = RPM_ACTIVE;
3943 	pm_runtime_mark_last_busy(q->dev);
3944 	pm_request_autosuspend(q->dev);
3945 	spin_unlock_irq(q->queue_lock);
3946 }
3947 EXPORT_SYMBOL(blk_set_runtime_active);
3948 #endif
3949 
blk_dev_init(void)3950 int __init blk_dev_init(void)
3951 {
3952 	BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3953 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3954 			FIELD_SIZEOF(struct request, cmd_flags));
3955 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3956 			FIELD_SIZEOF(struct bio, bi_opf));
3957 
3958 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
3959 	kblockd_workqueue = alloc_workqueue("kblockd",
3960 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3961 	if (!kblockd_workqueue)
3962 		panic("Failed to create kblockd\n");
3963 
3964 	request_cachep = kmem_cache_create("blkdev_requests",
3965 			sizeof(struct request), 0, SLAB_PANIC, NULL);
3966 
3967 	blk_requestq_cachep = kmem_cache_create("request_queue",
3968 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3969 
3970 #ifdef CONFIG_DEBUG_FS
3971 	blk_debugfs_root = debugfs_create_dir("block", NULL);
3972 #endif
3973 
3974 	return 0;
3975 }
3976