1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28 
29 #include <trace/events/block.h>
30 
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-mq-sched.h"
38 #include "blk-rq-qos.h"
39 
40 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43 
blk_mq_poll_stats_bkt(const struct request * rq)44 static int blk_mq_poll_stats_bkt(const struct request *rq)
45 {
46 	int ddir, bytes, bucket;
47 
48 	ddir = rq_data_dir(rq);
49 	bytes = blk_rq_bytes(rq);
50 
51 	bucket = ddir + 2*(ilog2(bytes) - 9);
52 
53 	if (bucket < 0)
54 		return -1;
55 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57 
58 	return bucket;
59 }
60 
61 /*
62  * Check if any of the ctx's have pending work in this hardware queue
63  */
blk_mq_hctx_has_pending(struct blk_mq_hw_ctx * hctx)64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65 {
66 	return !list_empty_careful(&hctx->dispatch) ||
67 		sbitmap_any_bit_set(&hctx->ctx_map) ||
68 			blk_mq_sched_has_work(hctx);
69 }
70 
71 /*
72  * Mark this ctx as having pending work in this hardware queue
73  */
blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75 				     struct blk_mq_ctx *ctx)
76 {
77 	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
78 		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 }
80 
blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
82 				      struct blk_mq_ctx *ctx)
83 {
84 	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 }
86 
87 struct mq_inflight {
88 	struct hd_struct *part;
89 	unsigned int *inflight;
90 };
91 
blk_mq_check_inflight(struct blk_mq_hw_ctx * hctx,struct request * rq,void * priv,bool reserved)92 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
93 				  struct request *rq, void *priv,
94 				  bool reserved)
95 {
96 	struct mq_inflight *mi = priv;
97 
98 	/*
99 	 * index[0] counts the specific partition that was asked for. index[1]
100 	 * counts the ones that are active on the whole device, so increment
101 	 * that if mi->part is indeed a partition, and not a whole device.
102 	 */
103 	if (rq->part == mi->part)
104 		mi->inflight[0]++;
105 	if (mi->part->partno)
106 		mi->inflight[1]++;
107 }
108 
blk_mq_in_flight(struct request_queue * q,struct hd_struct * part,unsigned int inflight[2])109 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
110 		      unsigned int inflight[2])
111 {
112 	struct mq_inflight mi = { .part = part, .inflight = inflight, };
113 
114 	inflight[0] = inflight[1] = 0;
115 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
116 }
117 
blk_mq_check_inflight_rw(struct blk_mq_hw_ctx * hctx,struct request * rq,void * priv,bool reserved)118 static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
119 				     struct request *rq, void *priv,
120 				     bool reserved)
121 {
122 	struct mq_inflight *mi = priv;
123 
124 	if (rq->part == mi->part)
125 		mi->inflight[rq_data_dir(rq)]++;
126 }
127 
blk_mq_in_flight_rw(struct request_queue * q,struct hd_struct * part,unsigned int inflight[2])128 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
129 			 unsigned int inflight[2])
130 {
131 	struct mq_inflight mi = { .part = part, .inflight = inflight, };
132 
133 	inflight[0] = inflight[1] = 0;
134 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
135 }
136 
blk_freeze_queue_start(struct request_queue * q)137 void blk_freeze_queue_start(struct request_queue *q)
138 {
139 	int freeze_depth;
140 
141 	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
142 	if (freeze_depth == 1) {
143 		percpu_ref_kill(&q->q_usage_counter);
144 		if (q->mq_ops)
145 			blk_mq_run_hw_queues(q, false);
146 	}
147 }
148 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
149 
blk_mq_freeze_queue_wait(struct request_queue * q)150 void blk_mq_freeze_queue_wait(struct request_queue *q)
151 {
152 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
153 }
154 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
155 
blk_mq_freeze_queue_wait_timeout(struct request_queue * q,unsigned long timeout)156 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
157 				     unsigned long timeout)
158 {
159 	return wait_event_timeout(q->mq_freeze_wq,
160 					percpu_ref_is_zero(&q->q_usage_counter),
161 					timeout);
162 }
163 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
164 
165 /*
166  * Guarantee no request is in use, so we can change any data structure of
167  * the queue afterward.
168  */
blk_freeze_queue(struct request_queue * q)169 void blk_freeze_queue(struct request_queue *q)
170 {
171 	/*
172 	 * In the !blk_mq case we are only calling this to kill the
173 	 * q_usage_counter, otherwise this increases the freeze depth
174 	 * and waits for it to return to zero.  For this reason there is
175 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
176 	 * exported to drivers as the only user for unfreeze is blk_mq.
177 	 */
178 	blk_freeze_queue_start(q);
179 	if (!q->mq_ops)
180 		blk_drain_queue(q);
181 	blk_mq_freeze_queue_wait(q);
182 }
183 
blk_mq_freeze_queue(struct request_queue * q)184 void blk_mq_freeze_queue(struct request_queue *q)
185 {
186 	/*
187 	 * ...just an alias to keep freeze and unfreeze actions balanced
188 	 * in the blk_mq_* namespace
189 	 */
190 	blk_freeze_queue(q);
191 }
192 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
193 
blk_mq_unfreeze_queue(struct request_queue * q)194 void blk_mq_unfreeze_queue(struct request_queue *q)
195 {
196 	int freeze_depth;
197 
198 	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
199 	WARN_ON_ONCE(freeze_depth < 0);
200 	if (!freeze_depth) {
201 		percpu_ref_reinit(&q->q_usage_counter);
202 		wake_up_all(&q->mq_freeze_wq);
203 	}
204 }
205 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
206 
207 /*
208  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
209  * mpt3sas driver such that this function can be removed.
210  */
blk_mq_quiesce_queue_nowait(struct request_queue * q)211 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
212 {
213 	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
214 }
215 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
216 
217 /**
218  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
219  * @q: request queue.
220  *
221  * Note: this function does not prevent that the struct request end_io()
222  * callback function is invoked. Once this function is returned, we make
223  * sure no dispatch can happen until the queue is unquiesced via
224  * blk_mq_unquiesce_queue().
225  */
blk_mq_quiesce_queue(struct request_queue * q)226 void blk_mq_quiesce_queue(struct request_queue *q)
227 {
228 	struct blk_mq_hw_ctx *hctx;
229 	unsigned int i;
230 	bool rcu = false;
231 
232 	blk_mq_quiesce_queue_nowait(q);
233 
234 	queue_for_each_hw_ctx(q, hctx, i) {
235 		if (hctx->flags & BLK_MQ_F_BLOCKING)
236 			synchronize_srcu(hctx->srcu);
237 		else
238 			rcu = true;
239 	}
240 	if (rcu)
241 		synchronize_rcu();
242 }
243 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
244 
245 /*
246  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
247  * @q: request queue.
248  *
249  * This function recovers queue into the state before quiescing
250  * which is done by blk_mq_quiesce_queue.
251  */
blk_mq_unquiesce_queue(struct request_queue * q)252 void blk_mq_unquiesce_queue(struct request_queue *q)
253 {
254 	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
255 
256 	/* dispatch requests which are inserted during quiescing */
257 	blk_mq_run_hw_queues(q, true);
258 }
259 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
260 
blk_mq_wake_waiters(struct request_queue * q)261 void blk_mq_wake_waiters(struct request_queue *q)
262 {
263 	struct blk_mq_hw_ctx *hctx;
264 	unsigned int i;
265 
266 	queue_for_each_hw_ctx(q, hctx, i)
267 		if (blk_mq_hw_queue_mapped(hctx))
268 			blk_mq_tag_wakeup_all(hctx->tags, true);
269 }
270 
blk_mq_can_queue(struct blk_mq_hw_ctx * hctx)271 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
272 {
273 	return blk_mq_has_free_tags(hctx->tags);
274 }
275 EXPORT_SYMBOL(blk_mq_can_queue);
276 
blk_mq_rq_ctx_init(struct blk_mq_alloc_data * data,unsigned int tag,unsigned int op)277 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
278 		unsigned int tag, unsigned int op)
279 {
280 	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
281 	struct request *rq = tags->static_rqs[tag];
282 	req_flags_t rq_flags = 0;
283 
284 	if (data->flags & BLK_MQ_REQ_INTERNAL) {
285 		rq->tag = -1;
286 		rq->internal_tag = tag;
287 	} else {
288 		if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
289 			rq_flags = RQF_MQ_INFLIGHT;
290 			atomic_inc(&data->hctx->nr_active);
291 		}
292 		rq->tag = tag;
293 		rq->internal_tag = -1;
294 		data->hctx->tags->rqs[rq->tag] = rq;
295 	}
296 
297 	/* csd/requeue_work/fifo_time is initialized before use */
298 	rq->q = data->q;
299 	rq->mq_ctx = data->ctx;
300 	rq->rq_flags = rq_flags;
301 	rq->cpu = -1;
302 	rq->cmd_flags = op;
303 	if (data->flags & BLK_MQ_REQ_PREEMPT)
304 		rq->rq_flags |= RQF_PREEMPT;
305 	if (blk_queue_io_stat(data->q))
306 		rq->rq_flags |= RQF_IO_STAT;
307 	INIT_LIST_HEAD(&rq->queuelist);
308 	INIT_HLIST_NODE(&rq->hash);
309 	RB_CLEAR_NODE(&rq->rb_node);
310 	rq->rq_disk = NULL;
311 	rq->part = NULL;
312 	rq->start_time_ns = ktime_get_ns();
313 	rq->io_start_time_ns = 0;
314 	rq->nr_phys_segments = 0;
315 #if defined(CONFIG_BLK_DEV_INTEGRITY)
316 	rq->nr_integrity_segments = 0;
317 #endif
318 	rq->special = NULL;
319 	/* tag was already set */
320 	rq->extra_len = 0;
321 	rq->__deadline = 0;
322 
323 	INIT_LIST_HEAD(&rq->timeout_list);
324 	rq->timeout = 0;
325 
326 	rq->end_io = NULL;
327 	rq->end_io_data = NULL;
328 	rq->next_rq = NULL;
329 
330 #ifdef CONFIG_BLK_CGROUP
331 	rq->rl = NULL;
332 #endif
333 
334 	data->ctx->rq_dispatched[op_is_sync(op)]++;
335 	refcount_set(&rq->ref, 1);
336 	return rq;
337 }
338 
blk_mq_get_request(struct request_queue * q,struct bio * bio,unsigned int op,struct blk_mq_alloc_data * data)339 static struct request *blk_mq_get_request(struct request_queue *q,
340 		struct bio *bio, unsigned int op,
341 		struct blk_mq_alloc_data *data)
342 {
343 	struct elevator_queue *e = q->elevator;
344 	struct request *rq;
345 	unsigned int tag;
346 	bool put_ctx_on_error = false;
347 
348 	blk_queue_enter_live(q);
349 	data->q = q;
350 	if (likely(!data->ctx)) {
351 		data->ctx = blk_mq_get_ctx(q);
352 		put_ctx_on_error = true;
353 	}
354 	if (likely(!data->hctx))
355 		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
356 	if (op & REQ_NOWAIT)
357 		data->flags |= BLK_MQ_REQ_NOWAIT;
358 
359 	if (e) {
360 		data->flags |= BLK_MQ_REQ_INTERNAL;
361 
362 		/*
363 		 * Flush requests are special and go directly to the
364 		 * dispatch list. Don't include reserved tags in the
365 		 * limiting, as it isn't useful.
366 		 */
367 		if (!op_is_flush(op) && e->type->ops.mq.limit_depth &&
368 		    !(data->flags & BLK_MQ_REQ_RESERVED))
369 			e->type->ops.mq.limit_depth(op, data);
370 	} else {
371 		blk_mq_tag_busy(data->hctx);
372 	}
373 
374 	tag = blk_mq_get_tag(data);
375 	if (tag == BLK_MQ_TAG_FAIL) {
376 		if (put_ctx_on_error) {
377 			blk_mq_put_ctx(data->ctx);
378 			data->ctx = NULL;
379 		}
380 		blk_queue_exit(q);
381 		return NULL;
382 	}
383 
384 	rq = blk_mq_rq_ctx_init(data, tag, op);
385 	if (!op_is_flush(op)) {
386 		rq->elv.icq = NULL;
387 		if (e && e->type->ops.mq.prepare_request) {
388 			if (e->type->icq_cache && rq_ioc(bio))
389 				blk_mq_sched_assign_ioc(rq, bio);
390 
391 			e->type->ops.mq.prepare_request(rq, bio);
392 			rq->rq_flags |= RQF_ELVPRIV;
393 		}
394 	}
395 	data->hctx->queued++;
396 	return rq;
397 }
398 
blk_mq_alloc_request(struct request_queue * q,unsigned int op,blk_mq_req_flags_t flags)399 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
400 		blk_mq_req_flags_t flags)
401 {
402 	struct blk_mq_alloc_data alloc_data = { .flags = flags };
403 	struct request *rq;
404 	int ret;
405 
406 	ret = blk_queue_enter(q, flags);
407 	if (ret)
408 		return ERR_PTR(ret);
409 
410 	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
411 	blk_queue_exit(q);
412 
413 	if (!rq)
414 		return ERR_PTR(-EWOULDBLOCK);
415 
416 	blk_mq_put_ctx(alloc_data.ctx);
417 
418 	rq->__data_len = 0;
419 	rq->__sector = (sector_t) -1;
420 	rq->bio = rq->biotail = NULL;
421 	return rq;
422 }
423 EXPORT_SYMBOL(blk_mq_alloc_request);
424 
blk_mq_alloc_request_hctx(struct request_queue * q,unsigned int op,blk_mq_req_flags_t flags,unsigned int hctx_idx)425 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
426 	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
427 {
428 	struct blk_mq_alloc_data alloc_data = { .flags = flags };
429 	struct request *rq;
430 	unsigned int cpu;
431 	int ret;
432 
433 	/*
434 	 * If the tag allocator sleeps we could get an allocation for a
435 	 * different hardware context.  No need to complicate the low level
436 	 * allocator for this for the rare use case of a command tied to
437 	 * a specific queue.
438 	 */
439 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
440 		return ERR_PTR(-EINVAL);
441 
442 	if (hctx_idx >= q->nr_hw_queues)
443 		return ERR_PTR(-EIO);
444 
445 	ret = blk_queue_enter(q, flags);
446 	if (ret)
447 		return ERR_PTR(ret);
448 
449 	/*
450 	 * Check if the hardware context is actually mapped to anything.
451 	 * If not tell the caller that it should skip this queue.
452 	 */
453 	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
454 	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
455 		blk_queue_exit(q);
456 		return ERR_PTR(-EXDEV);
457 	}
458 	cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
459 	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
460 
461 	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
462 	blk_queue_exit(q);
463 
464 	if (!rq)
465 		return ERR_PTR(-EWOULDBLOCK);
466 
467 	return rq;
468 }
469 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
470 
__blk_mq_free_request(struct request * rq)471 static void __blk_mq_free_request(struct request *rq)
472 {
473 	struct request_queue *q = rq->q;
474 	struct blk_mq_ctx *ctx = rq->mq_ctx;
475 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
476 	const int sched_tag = rq->internal_tag;
477 
478 	if (rq->tag != -1)
479 		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
480 	if (sched_tag != -1)
481 		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
482 	blk_mq_sched_restart(hctx);
483 	blk_queue_exit(q);
484 }
485 
blk_mq_free_request(struct request * rq)486 void blk_mq_free_request(struct request *rq)
487 {
488 	struct request_queue *q = rq->q;
489 	struct elevator_queue *e = q->elevator;
490 	struct blk_mq_ctx *ctx = rq->mq_ctx;
491 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
492 
493 	if (rq->rq_flags & RQF_ELVPRIV) {
494 		if (e && e->type->ops.mq.finish_request)
495 			e->type->ops.mq.finish_request(rq);
496 		if (rq->elv.icq) {
497 			put_io_context(rq->elv.icq->ioc);
498 			rq->elv.icq = NULL;
499 		}
500 	}
501 
502 	ctx->rq_completed[rq_is_sync(rq)]++;
503 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
504 		atomic_dec(&hctx->nr_active);
505 
506 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
507 		laptop_io_completion(q->backing_dev_info);
508 
509 	rq_qos_done(q, rq);
510 
511 	if (blk_rq_rl(rq))
512 		blk_put_rl(blk_rq_rl(rq));
513 
514 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
515 	if (refcount_dec_and_test(&rq->ref))
516 		__blk_mq_free_request(rq);
517 }
518 EXPORT_SYMBOL_GPL(blk_mq_free_request);
519 
__blk_mq_end_request(struct request * rq,blk_status_t error)520 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
521 {
522 	u64 now = ktime_get_ns();
523 
524 	if (rq->rq_flags & RQF_STATS) {
525 		blk_mq_poll_stats_start(rq->q);
526 		blk_stat_add(rq, now);
527 	}
528 
529 	blk_account_io_done(rq, now);
530 
531 	if (rq->end_io) {
532 		rq_qos_done(rq->q, rq);
533 		rq->end_io(rq, error);
534 	} else {
535 		if (unlikely(blk_bidi_rq(rq)))
536 			blk_mq_free_request(rq->next_rq);
537 		blk_mq_free_request(rq);
538 	}
539 }
540 EXPORT_SYMBOL(__blk_mq_end_request);
541 
blk_mq_end_request(struct request * rq,blk_status_t error)542 void blk_mq_end_request(struct request *rq, blk_status_t error)
543 {
544 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
545 		BUG();
546 	__blk_mq_end_request(rq, error);
547 }
548 EXPORT_SYMBOL(blk_mq_end_request);
549 
__blk_mq_complete_request_remote(void * data)550 static void __blk_mq_complete_request_remote(void *data)
551 {
552 	struct request *rq = data;
553 
554 	rq->q->softirq_done_fn(rq);
555 }
556 
__blk_mq_complete_request(struct request * rq)557 static void __blk_mq_complete_request(struct request *rq)
558 {
559 	struct blk_mq_ctx *ctx = rq->mq_ctx;
560 	bool shared = false;
561 	int cpu;
562 
563 	if (!blk_mq_mark_complete(rq))
564 		return;
565 	if (rq->internal_tag != -1)
566 		blk_mq_sched_completed_request(rq);
567 
568 	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
569 		rq->q->softirq_done_fn(rq);
570 		return;
571 	}
572 
573 	cpu = get_cpu();
574 	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
575 		shared = cpus_share_cache(cpu, ctx->cpu);
576 
577 	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
578 		rq->csd.func = __blk_mq_complete_request_remote;
579 		rq->csd.info = rq;
580 		rq->csd.flags = 0;
581 		smp_call_function_single_async(ctx->cpu, &rq->csd);
582 	} else {
583 		rq->q->softirq_done_fn(rq);
584 	}
585 	put_cpu();
586 }
587 
hctx_unlock(struct blk_mq_hw_ctx * hctx,int srcu_idx)588 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
589 	__releases(hctx->srcu)
590 {
591 	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
592 		rcu_read_unlock();
593 	else
594 		srcu_read_unlock(hctx->srcu, srcu_idx);
595 }
596 
hctx_lock(struct blk_mq_hw_ctx * hctx,int * srcu_idx)597 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
598 	__acquires(hctx->srcu)
599 {
600 	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
601 		/* shut up gcc false positive */
602 		*srcu_idx = 0;
603 		rcu_read_lock();
604 	} else
605 		*srcu_idx = srcu_read_lock(hctx->srcu);
606 }
607 
608 /**
609  * blk_mq_complete_request - end I/O on a request
610  * @rq:		the request being processed
611  *
612  * Description:
613  *	Ends all I/O on a request. It does not handle partial completions.
614  *	The actual completion happens out-of-order, through a IPI handler.
615  **/
blk_mq_complete_request(struct request * rq)616 void blk_mq_complete_request(struct request *rq)
617 {
618 	if (unlikely(blk_should_fake_timeout(rq->q)))
619 		return;
620 	__blk_mq_complete_request(rq);
621 }
622 EXPORT_SYMBOL(blk_mq_complete_request);
623 
blk_mq_request_started(struct request * rq)624 int blk_mq_request_started(struct request *rq)
625 {
626 	return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
627 }
628 EXPORT_SYMBOL_GPL(blk_mq_request_started);
629 
blk_mq_start_request(struct request * rq)630 void blk_mq_start_request(struct request *rq)
631 {
632 	struct request_queue *q = rq->q;
633 
634 	blk_mq_sched_started_request(rq);
635 
636 	trace_block_rq_issue(q, rq);
637 
638 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
639 		rq->io_start_time_ns = ktime_get_ns();
640 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
641 		rq->throtl_size = blk_rq_sectors(rq);
642 #endif
643 		rq->rq_flags |= RQF_STATS;
644 		rq_qos_issue(q, rq);
645 	}
646 
647 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
648 
649 	blk_add_timer(rq);
650 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
651 
652 	if (q->dma_drain_size && blk_rq_bytes(rq)) {
653 		/*
654 		 * Make sure space for the drain appears.  We know we can do
655 		 * this because max_hw_segments has been adjusted to be one
656 		 * fewer than the device can handle.
657 		 */
658 		rq->nr_phys_segments++;
659 	}
660 }
661 EXPORT_SYMBOL(blk_mq_start_request);
662 
__blk_mq_requeue_request(struct request * rq)663 static void __blk_mq_requeue_request(struct request *rq)
664 {
665 	struct request_queue *q = rq->q;
666 
667 	blk_mq_put_driver_tag(rq);
668 
669 	trace_block_rq_requeue(q, rq);
670 	rq_qos_requeue(q, rq);
671 
672 	if (blk_mq_request_started(rq)) {
673 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
674 		rq->rq_flags &= ~RQF_TIMED_OUT;
675 		if (q->dma_drain_size && blk_rq_bytes(rq))
676 			rq->nr_phys_segments--;
677 	}
678 }
679 
blk_mq_requeue_request(struct request * rq,bool kick_requeue_list)680 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
681 {
682 	__blk_mq_requeue_request(rq);
683 
684 	/* this request will be re-inserted to io scheduler queue */
685 	blk_mq_sched_requeue_request(rq);
686 
687 	BUG_ON(blk_queued_rq(rq));
688 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
689 }
690 EXPORT_SYMBOL(blk_mq_requeue_request);
691 
blk_mq_requeue_work(struct work_struct * work)692 static void blk_mq_requeue_work(struct work_struct *work)
693 {
694 	struct request_queue *q =
695 		container_of(work, struct request_queue, requeue_work.work);
696 	LIST_HEAD(rq_list);
697 	struct request *rq, *next;
698 
699 	spin_lock_irq(&q->requeue_lock);
700 	list_splice_init(&q->requeue_list, &rq_list);
701 	spin_unlock_irq(&q->requeue_lock);
702 
703 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
704 		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
705 			continue;
706 
707 		rq->rq_flags &= ~RQF_SOFTBARRIER;
708 		list_del_init(&rq->queuelist);
709 		/*
710 		 * If RQF_DONTPREP, rq has contained some driver specific
711 		 * data, so insert it to hctx dispatch list to avoid any
712 		 * merge.
713 		 */
714 		if (rq->rq_flags & RQF_DONTPREP)
715 			blk_mq_request_bypass_insert(rq, false);
716 		else
717 			blk_mq_sched_insert_request(rq, true, false, false);
718 	}
719 
720 	while (!list_empty(&rq_list)) {
721 		rq = list_entry(rq_list.next, struct request, queuelist);
722 		list_del_init(&rq->queuelist);
723 		blk_mq_sched_insert_request(rq, false, false, false);
724 	}
725 
726 	blk_mq_run_hw_queues(q, false);
727 }
728 
blk_mq_add_to_requeue_list(struct request * rq,bool at_head,bool kick_requeue_list)729 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
730 				bool kick_requeue_list)
731 {
732 	struct request_queue *q = rq->q;
733 	unsigned long flags;
734 
735 	/*
736 	 * We abuse this flag that is otherwise used by the I/O scheduler to
737 	 * request head insertion from the workqueue.
738 	 */
739 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
740 
741 	spin_lock_irqsave(&q->requeue_lock, flags);
742 	if (at_head) {
743 		rq->rq_flags |= RQF_SOFTBARRIER;
744 		list_add(&rq->queuelist, &q->requeue_list);
745 	} else {
746 		list_add_tail(&rq->queuelist, &q->requeue_list);
747 	}
748 	spin_unlock_irqrestore(&q->requeue_lock, flags);
749 
750 	if (kick_requeue_list)
751 		blk_mq_kick_requeue_list(q);
752 }
753 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
754 
blk_mq_kick_requeue_list(struct request_queue * q)755 void blk_mq_kick_requeue_list(struct request_queue *q)
756 {
757 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
758 }
759 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
760 
blk_mq_delay_kick_requeue_list(struct request_queue * q,unsigned long msecs)761 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
762 				    unsigned long msecs)
763 {
764 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
765 				    msecs_to_jiffies(msecs));
766 }
767 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
768 
blk_mq_tag_to_rq(struct blk_mq_tags * tags,unsigned int tag)769 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
770 {
771 	if (tag < tags->nr_tags) {
772 		prefetch(tags->rqs[tag]);
773 		return tags->rqs[tag];
774 	}
775 
776 	return NULL;
777 }
778 EXPORT_SYMBOL(blk_mq_tag_to_rq);
779 
blk_mq_rq_timed_out(struct request * req,bool reserved)780 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
781 {
782 	req->rq_flags |= RQF_TIMED_OUT;
783 	if (req->q->mq_ops->timeout) {
784 		enum blk_eh_timer_return ret;
785 
786 		ret = req->q->mq_ops->timeout(req, reserved);
787 		if (ret == BLK_EH_DONE)
788 			return;
789 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
790 	}
791 
792 	blk_add_timer(req);
793 }
794 
blk_mq_req_expired(struct request * rq,unsigned long * next)795 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
796 {
797 	unsigned long deadline;
798 
799 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
800 		return false;
801 	if (rq->rq_flags & RQF_TIMED_OUT)
802 		return false;
803 
804 	deadline = blk_rq_deadline(rq);
805 	if (time_after_eq(jiffies, deadline))
806 		return true;
807 
808 	if (*next == 0)
809 		*next = deadline;
810 	else if (time_after(*next, deadline))
811 		*next = deadline;
812 	return false;
813 }
814 
blk_mq_check_expired(struct blk_mq_hw_ctx * hctx,struct request * rq,void * priv,bool reserved)815 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
816 		struct request *rq, void *priv, bool reserved)
817 {
818 	unsigned long *next = priv;
819 
820 	/*
821 	 * Just do a quick check if it is expired before locking the request in
822 	 * so we're not unnecessarilly synchronizing across CPUs.
823 	 */
824 	if (!blk_mq_req_expired(rq, next))
825 		return;
826 
827 	/*
828 	 * We have reason to believe the request may be expired. Take a
829 	 * reference on the request to lock this request lifetime into its
830 	 * currently allocated context to prevent it from being reallocated in
831 	 * the event the completion by-passes this timeout handler.
832 	 *
833 	 * If the reference was already released, then the driver beat the
834 	 * timeout handler to posting a natural completion.
835 	 */
836 	if (!refcount_inc_not_zero(&rq->ref))
837 		return;
838 
839 	/*
840 	 * The request is now locked and cannot be reallocated underneath the
841 	 * timeout handler's processing. Re-verify this exact request is truly
842 	 * expired; if it is not expired, then the request was completed and
843 	 * reallocated as a new request.
844 	 */
845 	if (blk_mq_req_expired(rq, next))
846 		blk_mq_rq_timed_out(rq, reserved);
847 
848 	if (is_flush_rq(rq, hctx))
849 		rq->end_io(rq, 0);
850 	else if (refcount_dec_and_test(&rq->ref))
851 		__blk_mq_free_request(rq);
852 }
853 
blk_mq_timeout_work(struct work_struct * work)854 static void blk_mq_timeout_work(struct work_struct *work)
855 {
856 	struct request_queue *q =
857 		container_of(work, struct request_queue, timeout_work);
858 	unsigned long next = 0;
859 	struct blk_mq_hw_ctx *hctx;
860 	int i;
861 
862 	/* A deadlock might occur if a request is stuck requiring a
863 	 * timeout at the same time a queue freeze is waiting
864 	 * completion, since the timeout code would not be able to
865 	 * acquire the queue reference here.
866 	 *
867 	 * That's why we don't use blk_queue_enter here; instead, we use
868 	 * percpu_ref_tryget directly, because we need to be able to
869 	 * obtain a reference even in the short window between the queue
870 	 * starting to freeze, by dropping the first reference in
871 	 * blk_freeze_queue_start, and the moment the last request is
872 	 * consumed, marked by the instant q_usage_counter reaches
873 	 * zero.
874 	 */
875 	if (!percpu_ref_tryget(&q->q_usage_counter))
876 		return;
877 
878 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
879 
880 	if (next != 0) {
881 		mod_timer(&q->timeout, next);
882 	} else {
883 		/*
884 		 * Request timeouts are handled as a forward rolling timer. If
885 		 * we end up here it means that no requests are pending and
886 		 * also that no request has been pending for a while. Mark
887 		 * each hctx as idle.
888 		 */
889 		queue_for_each_hw_ctx(q, hctx, i) {
890 			/* the hctx may be unmapped, so check it here */
891 			if (blk_mq_hw_queue_mapped(hctx))
892 				blk_mq_tag_idle(hctx);
893 		}
894 	}
895 	blk_queue_exit(q);
896 }
897 
898 struct flush_busy_ctx_data {
899 	struct blk_mq_hw_ctx *hctx;
900 	struct list_head *list;
901 };
902 
flush_busy_ctx(struct sbitmap * sb,unsigned int bitnr,void * data)903 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
904 {
905 	struct flush_busy_ctx_data *flush_data = data;
906 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
907 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
908 
909 	spin_lock(&ctx->lock);
910 	list_splice_tail_init(&ctx->rq_list, flush_data->list);
911 	sbitmap_clear_bit(sb, bitnr);
912 	spin_unlock(&ctx->lock);
913 	return true;
914 }
915 
916 /*
917  * Process software queues that have been marked busy, splicing them
918  * to the for-dispatch
919  */
blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx * hctx,struct list_head * list)920 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
921 {
922 	struct flush_busy_ctx_data data = {
923 		.hctx = hctx,
924 		.list = list,
925 	};
926 
927 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
928 }
929 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
930 
931 struct dispatch_rq_data {
932 	struct blk_mq_hw_ctx *hctx;
933 	struct request *rq;
934 };
935 
dispatch_rq_from_ctx(struct sbitmap * sb,unsigned int bitnr,void * data)936 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
937 		void *data)
938 {
939 	struct dispatch_rq_data *dispatch_data = data;
940 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
941 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
942 
943 	spin_lock(&ctx->lock);
944 	if (!list_empty(&ctx->rq_list)) {
945 		dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
946 		list_del_init(&dispatch_data->rq->queuelist);
947 		if (list_empty(&ctx->rq_list))
948 			sbitmap_clear_bit(sb, bitnr);
949 	}
950 	spin_unlock(&ctx->lock);
951 
952 	return !dispatch_data->rq;
953 }
954 
blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * start)955 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
956 					struct blk_mq_ctx *start)
957 {
958 	unsigned off = start ? start->index_hw : 0;
959 	struct dispatch_rq_data data = {
960 		.hctx = hctx,
961 		.rq   = NULL,
962 	};
963 
964 	__sbitmap_for_each_set(&hctx->ctx_map, off,
965 			       dispatch_rq_from_ctx, &data);
966 
967 	return data.rq;
968 }
969 
queued_to_index(unsigned int queued)970 static inline unsigned int queued_to_index(unsigned int queued)
971 {
972 	if (!queued)
973 		return 0;
974 
975 	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
976 }
977 
blk_mq_get_driver_tag(struct request * rq)978 bool blk_mq_get_driver_tag(struct request *rq)
979 {
980 	struct blk_mq_alloc_data data = {
981 		.q = rq->q,
982 		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
983 		.flags = BLK_MQ_REQ_NOWAIT,
984 	};
985 	bool shared;
986 
987 	if (rq->tag != -1)
988 		goto done;
989 
990 	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
991 		data.flags |= BLK_MQ_REQ_RESERVED;
992 
993 	shared = blk_mq_tag_busy(data.hctx);
994 	rq->tag = blk_mq_get_tag(&data);
995 	if (rq->tag >= 0) {
996 		if (shared) {
997 			rq->rq_flags |= RQF_MQ_INFLIGHT;
998 			atomic_inc(&data.hctx->nr_active);
999 		}
1000 		data.hctx->tags->rqs[rq->tag] = rq;
1001 	}
1002 
1003 done:
1004 	return rq->tag != -1;
1005 }
1006 
blk_mq_dispatch_wake(wait_queue_entry_t * wait,unsigned mode,int flags,void * key)1007 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1008 				int flags, void *key)
1009 {
1010 	struct blk_mq_hw_ctx *hctx;
1011 
1012 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1013 
1014 	spin_lock(&hctx->dispatch_wait_lock);
1015 	list_del_init(&wait->entry);
1016 	spin_unlock(&hctx->dispatch_wait_lock);
1017 
1018 	blk_mq_run_hw_queue(hctx, true);
1019 	return 1;
1020 }
1021 
1022 /*
1023  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1024  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1025  * restart. For both cases, take care to check the condition again after
1026  * marking us as waiting.
1027  */
blk_mq_mark_tag_wait(struct blk_mq_hw_ctx * hctx,struct request * rq)1028 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1029 				 struct request *rq)
1030 {
1031 	struct wait_queue_head *wq;
1032 	wait_queue_entry_t *wait;
1033 	bool ret;
1034 
1035 	if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1036 		if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
1037 			set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
1038 
1039 		/*
1040 		 * It's possible that a tag was freed in the window between the
1041 		 * allocation failure and adding the hardware queue to the wait
1042 		 * queue.
1043 		 *
1044 		 * Don't clear RESTART here, someone else could have set it.
1045 		 * At most this will cost an extra queue run.
1046 		 */
1047 		return blk_mq_get_driver_tag(rq);
1048 	}
1049 
1050 	wait = &hctx->dispatch_wait;
1051 	if (!list_empty_careful(&wait->entry))
1052 		return false;
1053 
1054 	wq = &bt_wait_ptr(&hctx->tags->bitmap_tags, hctx)->wait;
1055 
1056 	spin_lock_irq(&wq->lock);
1057 	spin_lock(&hctx->dispatch_wait_lock);
1058 	if (!list_empty(&wait->entry)) {
1059 		spin_unlock(&hctx->dispatch_wait_lock);
1060 		spin_unlock_irq(&wq->lock);
1061 		return false;
1062 	}
1063 
1064 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1065 	__add_wait_queue(wq, wait);
1066 
1067 	/*
1068 	 * It's possible that a tag was freed in the window between the
1069 	 * allocation failure and adding the hardware queue to the wait
1070 	 * queue.
1071 	 */
1072 	ret = blk_mq_get_driver_tag(rq);
1073 	if (!ret) {
1074 		spin_unlock(&hctx->dispatch_wait_lock);
1075 		spin_unlock_irq(&wq->lock);
1076 		return false;
1077 	}
1078 
1079 	/*
1080 	 * We got a tag, remove ourselves from the wait queue to ensure
1081 	 * someone else gets the wakeup.
1082 	 */
1083 	list_del_init(&wait->entry);
1084 	spin_unlock(&hctx->dispatch_wait_lock);
1085 	spin_unlock_irq(&wq->lock);
1086 
1087 	return true;
1088 }
1089 
1090 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1091 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1092 /*
1093  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1094  * - EWMA is one simple way to compute running average value
1095  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1096  * - take 4 as factor for avoiding to get too small(0) result, and this
1097  *   factor doesn't matter because EWMA decreases exponentially
1098  */
blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx * hctx,bool busy)1099 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1100 {
1101 	unsigned int ewma;
1102 
1103 	if (hctx->queue->elevator)
1104 		return;
1105 
1106 	ewma = hctx->dispatch_busy;
1107 
1108 	if (!ewma && !busy)
1109 		return;
1110 
1111 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1112 	if (busy)
1113 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1114 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1115 
1116 	hctx->dispatch_busy = ewma;
1117 }
1118 
1119 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1120 
blk_mq_handle_dev_resource(struct request * rq,struct list_head * list)1121 static void blk_mq_handle_dev_resource(struct request *rq,
1122 				       struct list_head *list)
1123 {
1124 	struct request *next =
1125 		list_first_entry_or_null(list, struct request, queuelist);
1126 
1127 	/*
1128 	 * If an I/O scheduler has been configured and we got a driver tag for
1129 	 * the next request already, free it.
1130 	 */
1131 	if (next)
1132 		blk_mq_put_driver_tag(next);
1133 
1134 	list_add(&rq->queuelist, list);
1135 	__blk_mq_requeue_request(rq);
1136 }
1137 
1138 /*
1139  * Returns true if we did some work AND can potentially do more.
1140  */
blk_mq_dispatch_rq_list(struct request_queue * q,struct list_head * list,bool got_budget)1141 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1142 			     bool got_budget)
1143 {
1144 	struct blk_mq_hw_ctx *hctx;
1145 	struct request *rq, *nxt;
1146 	bool no_tag = false;
1147 	int errors, queued;
1148 	blk_status_t ret = BLK_STS_OK;
1149 
1150 	if (list_empty(list))
1151 		return false;
1152 
1153 	WARN_ON(!list_is_singular(list) && got_budget);
1154 
1155 	/*
1156 	 * Now process all the entries, sending them to the driver.
1157 	 */
1158 	errors = queued = 0;
1159 	do {
1160 		struct blk_mq_queue_data bd;
1161 
1162 		rq = list_first_entry(list, struct request, queuelist);
1163 
1164 		hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
1165 		if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1166 			break;
1167 
1168 		if (!blk_mq_get_driver_tag(rq)) {
1169 			/*
1170 			 * The initial allocation attempt failed, so we need to
1171 			 * rerun the hardware queue when a tag is freed. The
1172 			 * waitqueue takes care of that. If the queue is run
1173 			 * before we add this entry back on the dispatch list,
1174 			 * we'll re-run it below.
1175 			 */
1176 			if (!blk_mq_mark_tag_wait(hctx, rq)) {
1177 				blk_mq_put_dispatch_budget(hctx);
1178 				/*
1179 				 * For non-shared tags, the RESTART check
1180 				 * will suffice.
1181 				 */
1182 				if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1183 					no_tag = true;
1184 				break;
1185 			}
1186 		}
1187 
1188 		list_del_init(&rq->queuelist);
1189 
1190 		bd.rq = rq;
1191 
1192 		/*
1193 		 * Flag last if we have no more requests, or if we have more
1194 		 * but can't assign a driver tag to it.
1195 		 */
1196 		if (list_empty(list))
1197 			bd.last = true;
1198 		else {
1199 			nxt = list_first_entry(list, struct request, queuelist);
1200 			bd.last = !blk_mq_get_driver_tag(nxt);
1201 		}
1202 
1203 		ret = q->mq_ops->queue_rq(hctx, &bd);
1204 		if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1205 			blk_mq_handle_dev_resource(rq, list);
1206 			break;
1207 		}
1208 
1209 		if (unlikely(ret != BLK_STS_OK)) {
1210 			errors++;
1211 			blk_mq_end_request(rq, BLK_STS_IOERR);
1212 			continue;
1213 		}
1214 
1215 		queued++;
1216 	} while (!list_empty(list));
1217 
1218 	hctx->dispatched[queued_to_index(queued)]++;
1219 
1220 	/*
1221 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1222 	 * that is where we will continue on next queue run.
1223 	 */
1224 	if (!list_empty(list)) {
1225 		bool needs_restart;
1226 
1227 		spin_lock(&hctx->lock);
1228 		list_splice_init(list, &hctx->dispatch);
1229 		spin_unlock(&hctx->lock);
1230 
1231 		/*
1232 		 * Order adding requests to hctx->dispatch and checking
1233 		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
1234 		 * in blk_mq_sched_restart(). Avoid restart code path to
1235 		 * miss the new added requests to hctx->dispatch, meantime
1236 		 * SCHED_RESTART is observed here.
1237 		 */
1238 		smp_mb();
1239 
1240 		/*
1241 		 * If SCHED_RESTART was set by the caller of this function and
1242 		 * it is no longer set that means that it was cleared by another
1243 		 * thread and hence that a queue rerun is needed.
1244 		 *
1245 		 * If 'no_tag' is set, that means that we failed getting
1246 		 * a driver tag with an I/O scheduler attached. If our dispatch
1247 		 * waitqueue is no longer active, ensure that we run the queue
1248 		 * AFTER adding our entries back to the list.
1249 		 *
1250 		 * If no I/O scheduler has been configured it is possible that
1251 		 * the hardware queue got stopped and restarted before requests
1252 		 * were pushed back onto the dispatch list. Rerun the queue to
1253 		 * avoid starvation. Notes:
1254 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1255 		 *   been stopped before rerunning a queue.
1256 		 * - Some but not all block drivers stop a queue before
1257 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1258 		 *   and dm-rq.
1259 		 *
1260 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1261 		 * bit is set, run queue after a delay to avoid IO stalls
1262 		 * that could otherwise occur if the queue is idle.
1263 		 */
1264 		needs_restart = blk_mq_sched_needs_restart(hctx);
1265 		if (!needs_restart ||
1266 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1267 			blk_mq_run_hw_queue(hctx, true);
1268 		else if (needs_restart && (ret == BLK_STS_RESOURCE))
1269 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1270 
1271 		blk_mq_update_dispatch_busy(hctx, true);
1272 		return false;
1273 	} else
1274 		blk_mq_update_dispatch_busy(hctx, false);
1275 
1276 	/*
1277 	 * If the host/device is unable to accept more work, inform the
1278 	 * caller of that.
1279 	 */
1280 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1281 		return false;
1282 
1283 	return (queued + errors) != 0;
1284 }
1285 
__blk_mq_run_hw_queue(struct blk_mq_hw_ctx * hctx)1286 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1287 {
1288 	int srcu_idx;
1289 
1290 	/*
1291 	 * We should be running this queue from one of the CPUs that
1292 	 * are mapped to it.
1293 	 *
1294 	 * There are at least two related races now between setting
1295 	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1296 	 * __blk_mq_run_hw_queue():
1297 	 *
1298 	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1299 	 *   but later it becomes online, then this warning is harmless
1300 	 *   at all
1301 	 *
1302 	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1303 	 *   but later it becomes offline, then the warning can't be
1304 	 *   triggered, and we depend on blk-mq timeout handler to
1305 	 *   handle dispatched requests to this hctx
1306 	 */
1307 	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1308 		cpu_online(hctx->next_cpu)) {
1309 		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1310 			raw_smp_processor_id(),
1311 			cpumask_empty(hctx->cpumask) ? "inactive": "active");
1312 		dump_stack();
1313 	}
1314 
1315 	/*
1316 	 * We can't run the queue inline with ints disabled. Ensure that
1317 	 * we catch bad users of this early.
1318 	 */
1319 	WARN_ON_ONCE(in_interrupt());
1320 
1321 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1322 
1323 	hctx_lock(hctx, &srcu_idx);
1324 	blk_mq_sched_dispatch_requests(hctx);
1325 	hctx_unlock(hctx, srcu_idx);
1326 }
1327 
blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx * hctx)1328 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1329 {
1330 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1331 
1332 	if (cpu >= nr_cpu_ids)
1333 		cpu = cpumask_first(hctx->cpumask);
1334 	return cpu;
1335 }
1336 
1337 /*
1338  * It'd be great if the workqueue API had a way to pass
1339  * in a mask and had some smarts for more clever placement.
1340  * For now we just round-robin here, switching for every
1341  * BLK_MQ_CPU_WORK_BATCH queued items.
1342  */
blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx * hctx)1343 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1344 {
1345 	bool tried = false;
1346 	int next_cpu = hctx->next_cpu;
1347 
1348 	if (hctx->queue->nr_hw_queues == 1)
1349 		return WORK_CPU_UNBOUND;
1350 
1351 	if (--hctx->next_cpu_batch <= 0) {
1352 select_cpu:
1353 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1354 				cpu_online_mask);
1355 		if (next_cpu >= nr_cpu_ids)
1356 			next_cpu = blk_mq_first_mapped_cpu(hctx);
1357 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1358 	}
1359 
1360 	/*
1361 	 * Do unbound schedule if we can't find a online CPU for this hctx,
1362 	 * and it should only happen in the path of handling CPU DEAD.
1363 	 */
1364 	if (!cpu_online(next_cpu)) {
1365 		if (!tried) {
1366 			tried = true;
1367 			goto select_cpu;
1368 		}
1369 
1370 		/*
1371 		 * Make sure to re-select CPU next time once after CPUs
1372 		 * in hctx->cpumask become online again.
1373 		 */
1374 		hctx->next_cpu = next_cpu;
1375 		hctx->next_cpu_batch = 1;
1376 		return WORK_CPU_UNBOUND;
1377 	}
1378 
1379 	hctx->next_cpu = next_cpu;
1380 	return next_cpu;
1381 }
1382 
__blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx * hctx,bool async,unsigned long msecs)1383 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1384 					unsigned long msecs)
1385 {
1386 	if (unlikely(blk_mq_hctx_stopped(hctx)))
1387 		return;
1388 
1389 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1390 		int cpu = get_cpu();
1391 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1392 			__blk_mq_run_hw_queue(hctx);
1393 			put_cpu();
1394 			return;
1395 		}
1396 
1397 		put_cpu();
1398 	}
1399 
1400 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1401 				    msecs_to_jiffies(msecs));
1402 }
1403 
blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx * hctx,unsigned long msecs)1404 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1405 {
1406 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
1407 }
1408 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1409 
blk_mq_run_hw_queue(struct blk_mq_hw_ctx * hctx,bool async)1410 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1411 {
1412 	int srcu_idx;
1413 	bool need_run;
1414 
1415 	/*
1416 	 * When queue is quiesced, we may be switching io scheduler, or
1417 	 * updating nr_hw_queues, or other things, and we can't run queue
1418 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1419 	 *
1420 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1421 	 * quiesced.
1422 	 */
1423 	hctx_lock(hctx, &srcu_idx);
1424 	need_run = !blk_queue_quiesced(hctx->queue) &&
1425 		blk_mq_hctx_has_pending(hctx);
1426 	hctx_unlock(hctx, srcu_idx);
1427 
1428 	if (need_run) {
1429 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1430 		return true;
1431 	}
1432 
1433 	return false;
1434 }
1435 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1436 
blk_mq_run_hw_queues(struct request_queue * q,bool async)1437 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1438 {
1439 	struct blk_mq_hw_ctx *hctx;
1440 	int i;
1441 
1442 	queue_for_each_hw_ctx(q, hctx, i) {
1443 		if (blk_mq_hctx_stopped(hctx))
1444 			continue;
1445 
1446 		blk_mq_run_hw_queue(hctx, async);
1447 	}
1448 }
1449 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1450 
1451 /**
1452  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1453  * @q: request queue.
1454  *
1455  * The caller is responsible for serializing this function against
1456  * blk_mq_{start,stop}_hw_queue().
1457  */
blk_mq_queue_stopped(struct request_queue * q)1458 bool blk_mq_queue_stopped(struct request_queue *q)
1459 {
1460 	struct blk_mq_hw_ctx *hctx;
1461 	int i;
1462 
1463 	queue_for_each_hw_ctx(q, hctx, i)
1464 		if (blk_mq_hctx_stopped(hctx))
1465 			return true;
1466 
1467 	return false;
1468 }
1469 EXPORT_SYMBOL(blk_mq_queue_stopped);
1470 
1471 /*
1472  * This function is often used for pausing .queue_rq() by driver when
1473  * there isn't enough resource or some conditions aren't satisfied, and
1474  * BLK_STS_RESOURCE is usually returned.
1475  *
1476  * We do not guarantee that dispatch can be drained or blocked
1477  * after blk_mq_stop_hw_queue() returns. Please use
1478  * blk_mq_quiesce_queue() for that requirement.
1479  */
blk_mq_stop_hw_queue(struct blk_mq_hw_ctx * hctx)1480 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1481 {
1482 	cancel_delayed_work(&hctx->run_work);
1483 
1484 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1485 }
1486 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1487 
1488 /*
1489  * This function is often used for pausing .queue_rq() by driver when
1490  * there isn't enough resource or some conditions aren't satisfied, and
1491  * BLK_STS_RESOURCE is usually returned.
1492  *
1493  * We do not guarantee that dispatch can be drained or blocked
1494  * after blk_mq_stop_hw_queues() returns. Please use
1495  * blk_mq_quiesce_queue() for that requirement.
1496  */
blk_mq_stop_hw_queues(struct request_queue * q)1497 void blk_mq_stop_hw_queues(struct request_queue *q)
1498 {
1499 	struct blk_mq_hw_ctx *hctx;
1500 	int i;
1501 
1502 	queue_for_each_hw_ctx(q, hctx, i)
1503 		blk_mq_stop_hw_queue(hctx);
1504 }
1505 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1506 
blk_mq_start_hw_queue(struct blk_mq_hw_ctx * hctx)1507 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1508 {
1509 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1510 
1511 	blk_mq_run_hw_queue(hctx, false);
1512 }
1513 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1514 
blk_mq_start_hw_queues(struct request_queue * q)1515 void blk_mq_start_hw_queues(struct request_queue *q)
1516 {
1517 	struct blk_mq_hw_ctx *hctx;
1518 	int i;
1519 
1520 	queue_for_each_hw_ctx(q, hctx, i)
1521 		blk_mq_start_hw_queue(hctx);
1522 }
1523 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1524 
blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx * hctx,bool async)1525 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1526 {
1527 	if (!blk_mq_hctx_stopped(hctx))
1528 		return;
1529 
1530 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1531 	blk_mq_run_hw_queue(hctx, async);
1532 }
1533 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1534 
blk_mq_start_stopped_hw_queues(struct request_queue * q,bool async)1535 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1536 {
1537 	struct blk_mq_hw_ctx *hctx;
1538 	int i;
1539 
1540 	queue_for_each_hw_ctx(q, hctx, i)
1541 		blk_mq_start_stopped_hw_queue(hctx, async);
1542 }
1543 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1544 
blk_mq_run_work_fn(struct work_struct * work)1545 static void blk_mq_run_work_fn(struct work_struct *work)
1546 {
1547 	struct blk_mq_hw_ctx *hctx;
1548 
1549 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1550 
1551 	/*
1552 	 * If we are stopped, don't run the queue.
1553 	 */
1554 	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1555 		return;
1556 
1557 	__blk_mq_run_hw_queue(hctx);
1558 }
1559 
__blk_mq_insert_req_list(struct blk_mq_hw_ctx * hctx,struct request * rq,bool at_head)1560 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1561 					    struct request *rq,
1562 					    bool at_head)
1563 {
1564 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1565 
1566 	lockdep_assert_held(&ctx->lock);
1567 
1568 	trace_block_rq_insert(hctx->queue, rq);
1569 
1570 	if (at_head)
1571 		list_add(&rq->queuelist, &ctx->rq_list);
1572 	else
1573 		list_add_tail(&rq->queuelist, &ctx->rq_list);
1574 }
1575 
__blk_mq_insert_request(struct blk_mq_hw_ctx * hctx,struct request * rq,bool at_head)1576 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1577 			     bool at_head)
1578 {
1579 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1580 
1581 	lockdep_assert_held(&ctx->lock);
1582 
1583 	__blk_mq_insert_req_list(hctx, rq, at_head);
1584 	blk_mq_hctx_mark_pending(hctx, ctx);
1585 }
1586 
1587 /*
1588  * Should only be used carefully, when the caller knows we want to
1589  * bypass a potential IO scheduler on the target device.
1590  */
blk_mq_request_bypass_insert(struct request * rq,bool run_queue)1591 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1592 {
1593 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1594 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1595 
1596 	spin_lock(&hctx->lock);
1597 	list_add_tail(&rq->queuelist, &hctx->dispatch);
1598 	spin_unlock(&hctx->lock);
1599 
1600 	if (run_queue)
1601 		blk_mq_run_hw_queue(hctx, false);
1602 }
1603 
blk_mq_insert_requests(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx,struct list_head * list)1604 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1605 			    struct list_head *list)
1606 
1607 {
1608 	struct request *rq;
1609 
1610 	/*
1611 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1612 	 * offline now
1613 	 */
1614 	list_for_each_entry(rq, list, queuelist) {
1615 		BUG_ON(rq->mq_ctx != ctx);
1616 		trace_block_rq_insert(hctx->queue, rq);
1617 	}
1618 
1619 	spin_lock(&ctx->lock);
1620 	list_splice_tail_init(list, &ctx->rq_list);
1621 	blk_mq_hctx_mark_pending(hctx, ctx);
1622 	spin_unlock(&ctx->lock);
1623 }
1624 
plug_ctx_cmp(void * priv,struct list_head * a,struct list_head * b)1625 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1626 {
1627 	struct request *rqa = container_of(a, struct request, queuelist);
1628 	struct request *rqb = container_of(b, struct request, queuelist);
1629 
1630 	return !(rqa->mq_ctx < rqb->mq_ctx ||
1631 		 (rqa->mq_ctx == rqb->mq_ctx &&
1632 		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1633 }
1634 
blk_mq_flush_plug_list(struct blk_plug * plug,bool from_schedule)1635 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1636 {
1637 	struct blk_mq_ctx *this_ctx;
1638 	struct request_queue *this_q;
1639 	struct request *rq;
1640 	LIST_HEAD(list);
1641 	LIST_HEAD(ctx_list);
1642 	unsigned int depth;
1643 
1644 	list_splice_init(&plug->mq_list, &list);
1645 
1646 	list_sort(NULL, &list, plug_ctx_cmp);
1647 
1648 	this_q = NULL;
1649 	this_ctx = NULL;
1650 	depth = 0;
1651 
1652 	while (!list_empty(&list)) {
1653 		rq = list_entry_rq(list.next);
1654 		list_del_init(&rq->queuelist);
1655 		BUG_ON(!rq->q);
1656 		if (rq->mq_ctx != this_ctx) {
1657 			if (this_ctx) {
1658 				trace_block_unplug(this_q, depth, !from_schedule);
1659 				blk_mq_sched_insert_requests(this_q, this_ctx,
1660 								&ctx_list,
1661 								from_schedule);
1662 			}
1663 
1664 			this_ctx = rq->mq_ctx;
1665 			this_q = rq->q;
1666 			depth = 0;
1667 		}
1668 
1669 		depth++;
1670 		list_add_tail(&rq->queuelist, &ctx_list);
1671 	}
1672 
1673 	/*
1674 	 * If 'this_ctx' is set, we know we have entries to complete
1675 	 * on 'ctx_list'. Do those.
1676 	 */
1677 	if (this_ctx) {
1678 		trace_block_unplug(this_q, depth, !from_schedule);
1679 		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1680 						from_schedule);
1681 	}
1682 }
1683 
blk_mq_bio_to_request(struct request * rq,struct bio * bio)1684 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1685 {
1686 	blk_init_request_from_bio(rq, bio);
1687 
1688 	blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1689 
1690 	blk_account_io_start(rq, true);
1691 }
1692 
request_to_qc_t(struct blk_mq_hw_ctx * hctx,struct request * rq)1693 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1694 {
1695 	if (rq->tag != -1)
1696 		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1697 
1698 	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1699 }
1700 
__blk_mq_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq,blk_qc_t * cookie)1701 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1702 					    struct request *rq,
1703 					    blk_qc_t *cookie)
1704 {
1705 	struct request_queue *q = rq->q;
1706 	struct blk_mq_queue_data bd = {
1707 		.rq = rq,
1708 		.last = true,
1709 	};
1710 	blk_qc_t new_cookie;
1711 	blk_status_t ret;
1712 
1713 	new_cookie = request_to_qc_t(hctx, rq);
1714 
1715 	/*
1716 	 * For OK queue, we are done. For error, caller may kill it.
1717 	 * Any other error (busy), just add it to our list as we
1718 	 * previously would have done.
1719 	 */
1720 	ret = q->mq_ops->queue_rq(hctx, &bd);
1721 	switch (ret) {
1722 	case BLK_STS_OK:
1723 		blk_mq_update_dispatch_busy(hctx, false);
1724 		*cookie = new_cookie;
1725 		break;
1726 	case BLK_STS_RESOURCE:
1727 	case BLK_STS_DEV_RESOURCE:
1728 		blk_mq_update_dispatch_busy(hctx, true);
1729 		__blk_mq_requeue_request(rq);
1730 		break;
1731 	default:
1732 		blk_mq_update_dispatch_busy(hctx, false);
1733 		*cookie = BLK_QC_T_NONE;
1734 		break;
1735 	}
1736 
1737 	return ret;
1738 }
1739 
__blk_mq_try_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq,blk_qc_t * cookie,bool bypass_insert)1740 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1741 						struct request *rq,
1742 						blk_qc_t *cookie,
1743 						bool bypass_insert)
1744 {
1745 	struct request_queue *q = rq->q;
1746 	bool run_queue = true;
1747 
1748 	/*
1749 	 * RCU or SRCU read lock is needed before checking quiesced flag.
1750 	 *
1751 	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1752 	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1753 	 * and avoid driver to try to dispatch again.
1754 	 */
1755 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1756 		run_queue = false;
1757 		bypass_insert = false;
1758 		goto insert;
1759 	}
1760 
1761 	if (q->elevator && !bypass_insert)
1762 		goto insert;
1763 
1764 	if (!blk_mq_get_dispatch_budget(hctx))
1765 		goto insert;
1766 
1767 	if (!blk_mq_get_driver_tag(rq)) {
1768 		blk_mq_put_dispatch_budget(hctx);
1769 		goto insert;
1770 	}
1771 
1772 	return __blk_mq_issue_directly(hctx, rq, cookie);
1773 insert:
1774 	if (bypass_insert)
1775 		return BLK_STS_RESOURCE;
1776 
1777 	blk_mq_request_bypass_insert(rq, run_queue);
1778 	return BLK_STS_OK;
1779 }
1780 
blk_mq_try_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq,blk_qc_t * cookie)1781 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1782 		struct request *rq, blk_qc_t *cookie)
1783 {
1784 	blk_status_t ret;
1785 	int srcu_idx;
1786 
1787 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1788 
1789 	hctx_lock(hctx, &srcu_idx);
1790 
1791 	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1792 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1793 		blk_mq_request_bypass_insert(rq, true);
1794 	else if (ret != BLK_STS_OK)
1795 		blk_mq_end_request(rq, ret);
1796 
1797 	hctx_unlock(hctx, srcu_idx);
1798 }
1799 
blk_mq_request_issue_directly(struct request * rq)1800 blk_status_t blk_mq_request_issue_directly(struct request *rq)
1801 {
1802 	blk_status_t ret;
1803 	int srcu_idx;
1804 	blk_qc_t unused_cookie;
1805 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1806 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1807 
1808 	hctx_lock(hctx, &srcu_idx);
1809 	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
1810 	hctx_unlock(hctx, srcu_idx);
1811 
1812 	return ret;
1813 }
1814 
blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx * hctx,struct list_head * list)1815 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1816 		struct list_head *list)
1817 {
1818 	while (!list_empty(list)) {
1819 		blk_status_t ret;
1820 		struct request *rq = list_first_entry(list, struct request,
1821 				queuelist);
1822 
1823 		list_del_init(&rq->queuelist);
1824 		ret = blk_mq_request_issue_directly(rq);
1825 		if (ret != BLK_STS_OK) {
1826 			if (ret == BLK_STS_RESOURCE ||
1827 					ret == BLK_STS_DEV_RESOURCE) {
1828 				blk_mq_request_bypass_insert(rq,
1829 							list_empty(list));
1830 				break;
1831 			}
1832 			blk_mq_end_request(rq, ret);
1833 		}
1834 	}
1835 }
1836 
blk_mq_make_request(struct request_queue * q,struct bio * bio)1837 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1838 {
1839 	const int is_sync = op_is_sync(bio->bi_opf);
1840 	const int is_flush_fua = op_is_flush(bio->bi_opf);
1841 	struct blk_mq_alloc_data data = { .flags = 0 };
1842 	struct request *rq;
1843 	unsigned int request_count = 0;
1844 	struct blk_plug *plug;
1845 	struct request *same_queue_rq = NULL;
1846 	blk_qc_t cookie;
1847 
1848 	blk_queue_bounce(q, &bio);
1849 
1850 	blk_queue_split(q, &bio);
1851 
1852 	if (!bio_integrity_prep(bio))
1853 		return BLK_QC_T_NONE;
1854 
1855 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1856 	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1857 		return BLK_QC_T_NONE;
1858 
1859 	if (blk_mq_sched_bio_merge(q, bio))
1860 		return BLK_QC_T_NONE;
1861 
1862 	rq_qos_throttle(q, bio, NULL);
1863 
1864 	trace_block_getrq(q, bio, bio->bi_opf);
1865 
1866 	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1867 	if (unlikely(!rq)) {
1868 		rq_qos_cleanup(q, bio);
1869 		if (bio->bi_opf & REQ_NOWAIT)
1870 			bio_wouldblock_error(bio);
1871 		return BLK_QC_T_NONE;
1872 	}
1873 
1874 	rq_qos_track(q, rq, bio);
1875 
1876 	cookie = request_to_qc_t(data.hctx, rq);
1877 
1878 	plug = current->plug;
1879 	if (unlikely(is_flush_fua)) {
1880 		blk_mq_put_ctx(data.ctx);
1881 		blk_mq_bio_to_request(rq, bio);
1882 
1883 		/* bypass scheduler for flush rq */
1884 		blk_insert_flush(rq);
1885 		blk_mq_run_hw_queue(data.hctx, true);
1886 	} else if (plug && q->nr_hw_queues == 1) {
1887 		struct request *last = NULL;
1888 
1889 		blk_mq_put_ctx(data.ctx);
1890 		blk_mq_bio_to_request(rq, bio);
1891 
1892 		/*
1893 		 * @request_count may become stale because of schedule
1894 		 * out, so check the list again.
1895 		 */
1896 		if (list_empty(&plug->mq_list))
1897 			request_count = 0;
1898 		else if (blk_queue_nomerges(q))
1899 			request_count = blk_plug_queued_count(q);
1900 
1901 		if (!request_count)
1902 			trace_block_plug(q);
1903 		else
1904 			last = list_entry_rq(plug->mq_list.prev);
1905 
1906 		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1907 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1908 			blk_flush_plug_list(plug, false);
1909 			trace_block_plug(q);
1910 		}
1911 
1912 		list_add_tail(&rq->queuelist, &plug->mq_list);
1913 	} else if (plug && !blk_queue_nomerges(q)) {
1914 		blk_mq_bio_to_request(rq, bio);
1915 
1916 		/*
1917 		 * We do limited plugging. If the bio can be merged, do that.
1918 		 * Otherwise the existing request in the plug list will be
1919 		 * issued. So the plug list will have one request at most
1920 		 * The plug list might get flushed before this. If that happens,
1921 		 * the plug list is empty, and same_queue_rq is invalid.
1922 		 */
1923 		if (list_empty(&plug->mq_list))
1924 			same_queue_rq = NULL;
1925 		if (same_queue_rq)
1926 			list_del_init(&same_queue_rq->queuelist);
1927 		list_add_tail(&rq->queuelist, &plug->mq_list);
1928 
1929 		blk_mq_put_ctx(data.ctx);
1930 
1931 		if (same_queue_rq) {
1932 			data.hctx = blk_mq_map_queue(q,
1933 					same_queue_rq->mq_ctx->cpu);
1934 			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1935 					&cookie);
1936 		}
1937 	} else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator &&
1938 			!data.hctx->dispatch_busy)) {
1939 		blk_mq_put_ctx(data.ctx);
1940 		blk_mq_bio_to_request(rq, bio);
1941 		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1942 	} else {
1943 		blk_mq_put_ctx(data.ctx);
1944 		blk_mq_bio_to_request(rq, bio);
1945 		blk_mq_sched_insert_request(rq, false, true, true);
1946 	}
1947 
1948 	return cookie;
1949 }
1950 
blk_mq_free_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx)1951 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1952 		     unsigned int hctx_idx)
1953 {
1954 	struct page *page;
1955 
1956 	if (tags->rqs && set->ops->exit_request) {
1957 		int i;
1958 
1959 		for (i = 0; i < tags->nr_tags; i++) {
1960 			struct request *rq = tags->static_rqs[i];
1961 
1962 			if (!rq)
1963 				continue;
1964 			set->ops->exit_request(set, rq, hctx_idx);
1965 			tags->static_rqs[i] = NULL;
1966 		}
1967 	}
1968 
1969 	while (!list_empty(&tags->page_list)) {
1970 		page = list_first_entry(&tags->page_list, struct page, lru);
1971 		list_del_init(&page->lru);
1972 		/*
1973 		 * Remove kmemleak object previously allocated in
1974 		 * blk_mq_init_rq_map().
1975 		 */
1976 		kmemleak_free(page_address(page));
1977 		__free_pages(page, page->private);
1978 	}
1979 }
1980 
blk_mq_free_rq_map(struct blk_mq_tags * tags)1981 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1982 {
1983 	kfree(tags->rqs);
1984 	tags->rqs = NULL;
1985 	kfree(tags->static_rqs);
1986 	tags->static_rqs = NULL;
1987 
1988 	blk_mq_free_tags(tags);
1989 }
1990 
blk_mq_alloc_rq_map(struct blk_mq_tag_set * set,unsigned int hctx_idx,unsigned int nr_tags,unsigned int reserved_tags)1991 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1992 					unsigned int hctx_idx,
1993 					unsigned int nr_tags,
1994 					unsigned int reserved_tags)
1995 {
1996 	struct blk_mq_tags *tags;
1997 	int node;
1998 
1999 	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
2000 	if (node == NUMA_NO_NODE)
2001 		node = set->numa_node;
2002 
2003 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2004 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2005 	if (!tags)
2006 		return NULL;
2007 
2008 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2009 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2010 				 node);
2011 	if (!tags->rqs) {
2012 		blk_mq_free_tags(tags);
2013 		return NULL;
2014 	}
2015 
2016 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2017 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2018 					node);
2019 	if (!tags->static_rqs) {
2020 		kfree(tags->rqs);
2021 		blk_mq_free_tags(tags);
2022 		return NULL;
2023 	}
2024 
2025 	return tags;
2026 }
2027 
order_to_size(unsigned int order)2028 static size_t order_to_size(unsigned int order)
2029 {
2030 	return (size_t)PAGE_SIZE << order;
2031 }
2032 
blk_mq_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,int node)2033 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2034 			       unsigned int hctx_idx, int node)
2035 {
2036 	int ret;
2037 
2038 	if (set->ops->init_request) {
2039 		ret = set->ops->init_request(set, rq, hctx_idx, node);
2040 		if (ret)
2041 			return ret;
2042 	}
2043 
2044 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2045 	return 0;
2046 }
2047 
blk_mq_alloc_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx,unsigned int depth)2048 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2049 		     unsigned int hctx_idx, unsigned int depth)
2050 {
2051 	unsigned int i, j, entries_per_page, max_order = 4;
2052 	size_t rq_size, left;
2053 	int node;
2054 
2055 	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
2056 	if (node == NUMA_NO_NODE)
2057 		node = set->numa_node;
2058 
2059 	INIT_LIST_HEAD(&tags->page_list);
2060 
2061 	/*
2062 	 * rq_size is the size of the request plus driver payload, rounded
2063 	 * to the cacheline size
2064 	 */
2065 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2066 				cache_line_size());
2067 	left = rq_size * depth;
2068 
2069 	for (i = 0; i < depth; ) {
2070 		int this_order = max_order;
2071 		struct page *page;
2072 		int to_do;
2073 		void *p;
2074 
2075 		while (this_order && left < order_to_size(this_order - 1))
2076 			this_order--;
2077 
2078 		do {
2079 			page = alloc_pages_node(node,
2080 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2081 				this_order);
2082 			if (page)
2083 				break;
2084 			if (!this_order--)
2085 				break;
2086 			if (order_to_size(this_order) < rq_size)
2087 				break;
2088 		} while (1);
2089 
2090 		if (!page)
2091 			goto fail;
2092 
2093 		page->private = this_order;
2094 		list_add_tail(&page->lru, &tags->page_list);
2095 
2096 		p = page_address(page);
2097 		/*
2098 		 * Allow kmemleak to scan these pages as they contain pointers
2099 		 * to additional allocations like via ops->init_request().
2100 		 */
2101 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2102 		entries_per_page = order_to_size(this_order) / rq_size;
2103 		to_do = min(entries_per_page, depth - i);
2104 		left -= to_do * rq_size;
2105 		for (j = 0; j < to_do; j++) {
2106 			struct request *rq = p;
2107 
2108 			tags->static_rqs[i] = rq;
2109 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2110 				tags->static_rqs[i] = NULL;
2111 				goto fail;
2112 			}
2113 
2114 			p += rq_size;
2115 			i++;
2116 		}
2117 	}
2118 	return 0;
2119 
2120 fail:
2121 	blk_mq_free_rqs(set, tags, hctx_idx);
2122 	return -ENOMEM;
2123 }
2124 
2125 /*
2126  * 'cpu' is going away. splice any existing rq_list entries from this
2127  * software queue to the hw queue dispatch list, and ensure that it
2128  * gets run.
2129  */
blk_mq_hctx_notify_dead(unsigned int cpu,struct hlist_node * node)2130 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2131 {
2132 	struct blk_mq_hw_ctx *hctx;
2133 	struct blk_mq_ctx *ctx;
2134 	LIST_HEAD(tmp);
2135 
2136 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2137 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2138 
2139 	spin_lock(&ctx->lock);
2140 	if (!list_empty(&ctx->rq_list)) {
2141 		list_splice_init(&ctx->rq_list, &tmp);
2142 		blk_mq_hctx_clear_pending(hctx, ctx);
2143 	}
2144 	spin_unlock(&ctx->lock);
2145 
2146 	if (list_empty(&tmp))
2147 		return 0;
2148 
2149 	spin_lock(&hctx->lock);
2150 	list_splice_tail_init(&tmp, &hctx->dispatch);
2151 	spin_unlock(&hctx->lock);
2152 
2153 	blk_mq_run_hw_queue(hctx, true);
2154 	return 0;
2155 }
2156 
blk_mq_remove_cpuhp(struct blk_mq_hw_ctx * hctx)2157 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2158 {
2159 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2160 					    &hctx->cpuhp_dead);
2161 }
2162 
2163 /* hctx->ctxs will be freed in queue's release handler */
blk_mq_exit_hctx(struct request_queue * q,struct blk_mq_tag_set * set,struct blk_mq_hw_ctx * hctx,unsigned int hctx_idx)2164 static void blk_mq_exit_hctx(struct request_queue *q,
2165 		struct blk_mq_tag_set *set,
2166 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2167 {
2168 	blk_mq_debugfs_unregister_hctx(hctx);
2169 
2170 	if (blk_mq_hw_queue_mapped(hctx))
2171 		blk_mq_tag_idle(hctx);
2172 
2173 	if (set->ops->exit_request)
2174 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2175 
2176 	if (set->ops->exit_hctx)
2177 		set->ops->exit_hctx(hctx, hctx_idx);
2178 
2179 	blk_mq_remove_cpuhp(hctx);
2180 }
2181 
blk_mq_exit_hw_queues(struct request_queue * q,struct blk_mq_tag_set * set,int nr_queue)2182 static void blk_mq_exit_hw_queues(struct request_queue *q,
2183 		struct blk_mq_tag_set *set, int nr_queue)
2184 {
2185 	struct blk_mq_hw_ctx *hctx;
2186 	unsigned int i;
2187 
2188 	queue_for_each_hw_ctx(q, hctx, i) {
2189 		if (i == nr_queue)
2190 			break;
2191 		blk_mq_exit_hctx(q, set, hctx, i);
2192 	}
2193 }
2194 
blk_mq_init_hctx(struct request_queue * q,struct blk_mq_tag_set * set,struct blk_mq_hw_ctx * hctx,unsigned hctx_idx)2195 static int blk_mq_init_hctx(struct request_queue *q,
2196 		struct blk_mq_tag_set *set,
2197 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2198 {
2199 	int node;
2200 
2201 	node = hctx->numa_node;
2202 	if (node == NUMA_NO_NODE)
2203 		node = hctx->numa_node = set->numa_node;
2204 
2205 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2206 	spin_lock_init(&hctx->lock);
2207 	INIT_LIST_HEAD(&hctx->dispatch);
2208 	hctx->queue = q;
2209 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2210 
2211 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2212 
2213 	hctx->tags = set->tags[hctx_idx];
2214 
2215 	/*
2216 	 * Allocate space for all possible cpus to avoid allocation at
2217 	 * runtime
2218 	 */
2219 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2220 			GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node);
2221 	if (!hctx->ctxs)
2222 		goto unregister_cpu_notifier;
2223 
2224 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2225 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node))
2226 		goto free_ctxs;
2227 
2228 	hctx->nr_ctx = 0;
2229 
2230 	spin_lock_init(&hctx->dispatch_wait_lock);
2231 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2232 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2233 
2234 	if (set->ops->init_hctx &&
2235 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2236 		goto free_bitmap;
2237 
2238 	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
2239 			GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
2240 	if (!hctx->fq)
2241 		goto exit_hctx;
2242 
2243 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2244 		goto free_fq;
2245 
2246 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2247 		init_srcu_struct(hctx->srcu);
2248 
2249 	blk_mq_debugfs_register_hctx(q, hctx);
2250 
2251 	return 0;
2252 
2253  free_fq:
2254 	blk_free_flush_queue(hctx->fq);
2255  exit_hctx:
2256 	if (set->ops->exit_hctx)
2257 		set->ops->exit_hctx(hctx, hctx_idx);
2258  free_bitmap:
2259 	sbitmap_free(&hctx->ctx_map);
2260  free_ctxs:
2261 	kfree(hctx->ctxs);
2262  unregister_cpu_notifier:
2263 	blk_mq_remove_cpuhp(hctx);
2264 	return -1;
2265 }
2266 
blk_mq_init_cpu_queues(struct request_queue * q,unsigned int nr_hw_queues)2267 static void blk_mq_init_cpu_queues(struct request_queue *q,
2268 				   unsigned int nr_hw_queues)
2269 {
2270 	unsigned int i;
2271 
2272 	for_each_possible_cpu(i) {
2273 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2274 		struct blk_mq_hw_ctx *hctx;
2275 
2276 		__ctx->cpu = i;
2277 		spin_lock_init(&__ctx->lock);
2278 		INIT_LIST_HEAD(&__ctx->rq_list);
2279 		__ctx->queue = q;
2280 
2281 		/*
2282 		 * Set local node, IFF we have more than one hw queue. If
2283 		 * not, we remain on the home node of the device
2284 		 */
2285 		hctx = blk_mq_map_queue(q, i);
2286 		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2287 			hctx->numa_node = local_memory_node(cpu_to_node(i));
2288 	}
2289 }
2290 
__blk_mq_alloc_rq_map(struct blk_mq_tag_set * set,int hctx_idx)2291 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2292 {
2293 	int ret = 0;
2294 
2295 	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2296 					set->queue_depth, set->reserved_tags);
2297 	if (!set->tags[hctx_idx])
2298 		return false;
2299 
2300 	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2301 				set->queue_depth);
2302 	if (!ret)
2303 		return true;
2304 
2305 	blk_mq_free_rq_map(set->tags[hctx_idx]);
2306 	set->tags[hctx_idx] = NULL;
2307 	return false;
2308 }
2309 
blk_mq_free_map_and_requests(struct blk_mq_tag_set * set,unsigned int hctx_idx)2310 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2311 					 unsigned int hctx_idx)
2312 {
2313 	if (set->tags[hctx_idx]) {
2314 		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2315 		blk_mq_free_rq_map(set->tags[hctx_idx]);
2316 		set->tags[hctx_idx] = NULL;
2317 	}
2318 }
2319 
blk_mq_map_swqueue(struct request_queue * q)2320 static void blk_mq_map_swqueue(struct request_queue *q)
2321 {
2322 	unsigned int i, hctx_idx;
2323 	struct blk_mq_hw_ctx *hctx;
2324 	struct blk_mq_ctx *ctx;
2325 	struct blk_mq_tag_set *set = q->tag_set;
2326 
2327 	queue_for_each_hw_ctx(q, hctx, i) {
2328 		cpumask_clear(hctx->cpumask);
2329 		hctx->nr_ctx = 0;
2330 		hctx->dispatch_from = NULL;
2331 	}
2332 
2333 	/*
2334 	 * Map software to hardware queues.
2335 	 *
2336 	 * If the cpu isn't present, the cpu is mapped to first hctx.
2337 	 */
2338 	for_each_possible_cpu(i) {
2339 		hctx_idx = q->mq_map[i];
2340 		/* unmapped hw queue can be remapped after CPU topo changed */
2341 		if (!set->tags[hctx_idx] &&
2342 		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2343 			/*
2344 			 * If tags initialization fail for some hctx,
2345 			 * that hctx won't be brought online.  In this
2346 			 * case, remap the current ctx to hctx[0] which
2347 			 * is guaranteed to always have tags allocated
2348 			 */
2349 			q->mq_map[i] = 0;
2350 		}
2351 
2352 		ctx = per_cpu_ptr(q->queue_ctx, i);
2353 		hctx = blk_mq_map_queue(q, i);
2354 
2355 		cpumask_set_cpu(i, hctx->cpumask);
2356 		ctx->index_hw = hctx->nr_ctx;
2357 		hctx->ctxs[hctx->nr_ctx++] = ctx;
2358 	}
2359 
2360 	queue_for_each_hw_ctx(q, hctx, i) {
2361 		/*
2362 		 * If no software queues are mapped to this hardware queue,
2363 		 * disable it and free the request entries.
2364 		 */
2365 		if (!hctx->nr_ctx) {
2366 			/* Never unmap queue 0.  We need it as a
2367 			 * fallback in case of a new remap fails
2368 			 * allocation
2369 			 */
2370 			if (i && set->tags[i])
2371 				blk_mq_free_map_and_requests(set, i);
2372 
2373 			hctx->tags = NULL;
2374 			continue;
2375 		}
2376 
2377 		hctx->tags = set->tags[i];
2378 		WARN_ON(!hctx->tags);
2379 
2380 		/*
2381 		 * Set the map size to the number of mapped software queues.
2382 		 * This is more accurate and more efficient than looping
2383 		 * over all possibly mapped software queues.
2384 		 */
2385 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2386 
2387 		/*
2388 		 * Initialize batch roundrobin counts
2389 		 */
2390 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2391 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2392 	}
2393 }
2394 
2395 /*
2396  * Caller needs to ensure that we're either frozen/quiesced, or that
2397  * the queue isn't live yet.
2398  */
queue_set_hctx_shared(struct request_queue * q,bool shared)2399 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2400 {
2401 	struct blk_mq_hw_ctx *hctx;
2402 	int i;
2403 
2404 	queue_for_each_hw_ctx(q, hctx, i) {
2405 		if (shared)
2406 			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2407 		else
2408 			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2409 	}
2410 }
2411 
blk_mq_update_tag_set_depth(struct blk_mq_tag_set * set,bool shared)2412 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2413 					bool shared)
2414 {
2415 	struct request_queue *q;
2416 
2417 	lockdep_assert_held(&set->tag_list_lock);
2418 
2419 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2420 		blk_mq_freeze_queue(q);
2421 		queue_set_hctx_shared(q, shared);
2422 		blk_mq_unfreeze_queue(q);
2423 	}
2424 }
2425 
blk_mq_del_queue_tag_set(struct request_queue * q)2426 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2427 {
2428 	struct blk_mq_tag_set *set = q->tag_set;
2429 
2430 	mutex_lock(&set->tag_list_lock);
2431 	list_del_rcu(&q->tag_set_list);
2432 	if (list_is_singular(&set->tag_list)) {
2433 		/* just transitioned to unshared */
2434 		set->flags &= ~BLK_MQ_F_TAG_SHARED;
2435 		/* update existing queue */
2436 		blk_mq_update_tag_set_depth(set, false);
2437 	}
2438 	mutex_unlock(&set->tag_list_lock);
2439 	INIT_LIST_HEAD(&q->tag_set_list);
2440 }
2441 
blk_mq_add_queue_tag_set(struct blk_mq_tag_set * set,struct request_queue * q)2442 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2443 				     struct request_queue *q)
2444 {
2445 	q->tag_set = set;
2446 
2447 	mutex_lock(&set->tag_list_lock);
2448 
2449 	/*
2450 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2451 	 */
2452 	if (!list_empty(&set->tag_list) &&
2453 	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2454 		set->flags |= BLK_MQ_F_TAG_SHARED;
2455 		/* update existing queue */
2456 		blk_mq_update_tag_set_depth(set, true);
2457 	}
2458 	if (set->flags & BLK_MQ_F_TAG_SHARED)
2459 		queue_set_hctx_shared(q, true);
2460 	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2461 
2462 	mutex_unlock(&set->tag_list_lock);
2463 }
2464 
2465 /*
2466  * It is the actual release handler for mq, but we do it from
2467  * request queue's release handler for avoiding use-after-free
2468  * and headache because q->mq_kobj shouldn't have been introduced,
2469  * but we can't group ctx/kctx kobj without it.
2470  */
blk_mq_release(struct request_queue * q)2471 void blk_mq_release(struct request_queue *q)
2472 {
2473 	struct blk_mq_hw_ctx *hctx;
2474 	unsigned int i;
2475 
2476 	/* hctx kobj stays in hctx */
2477 	queue_for_each_hw_ctx(q, hctx, i) {
2478 		if (!hctx)
2479 			continue;
2480 		kobject_put(&hctx->kobj);
2481 	}
2482 
2483 	q->mq_map = NULL;
2484 
2485 	kfree(q->queue_hw_ctx);
2486 
2487 	/*
2488 	 * release .mq_kobj and sw queue's kobject now because
2489 	 * both share lifetime with request queue.
2490 	 */
2491 	blk_mq_sysfs_deinit(q);
2492 
2493 	free_percpu(q->queue_ctx);
2494 }
2495 
blk_mq_init_queue(struct blk_mq_tag_set * set)2496 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2497 {
2498 	struct request_queue *uninit_q, *q;
2499 
2500 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node, NULL);
2501 	if (!uninit_q)
2502 		return ERR_PTR(-ENOMEM);
2503 
2504 	q = blk_mq_init_allocated_queue(set, uninit_q);
2505 	if (IS_ERR(q))
2506 		blk_cleanup_queue(uninit_q);
2507 
2508 	return q;
2509 }
2510 EXPORT_SYMBOL(blk_mq_init_queue);
2511 
blk_mq_hw_ctx_size(struct blk_mq_tag_set * tag_set)2512 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2513 {
2514 	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2515 
2516 	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2517 			   __alignof__(struct blk_mq_hw_ctx)) !=
2518 		     sizeof(struct blk_mq_hw_ctx));
2519 
2520 	if (tag_set->flags & BLK_MQ_F_BLOCKING)
2521 		hw_ctx_size += sizeof(struct srcu_struct);
2522 
2523 	return hw_ctx_size;
2524 }
2525 
blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set * set,struct request_queue * q)2526 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2527 						struct request_queue *q)
2528 {
2529 	int i, j;
2530 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2531 
2532 	blk_mq_sysfs_unregister(q);
2533 
2534 	/* protect against switching io scheduler  */
2535 	mutex_lock(&q->sysfs_lock);
2536 	for (i = 0; i < set->nr_hw_queues; i++) {
2537 		int node;
2538 
2539 		if (hctxs[i])
2540 			continue;
2541 
2542 		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2543 		hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2544 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2545 				node);
2546 		if (!hctxs[i])
2547 			break;
2548 
2549 		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask,
2550 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2551 					node)) {
2552 			kfree(hctxs[i]);
2553 			hctxs[i] = NULL;
2554 			break;
2555 		}
2556 
2557 		atomic_set(&hctxs[i]->nr_active, 0);
2558 		hctxs[i]->numa_node = node;
2559 		hctxs[i]->queue_num = i;
2560 
2561 		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2562 			free_cpumask_var(hctxs[i]->cpumask);
2563 			kfree(hctxs[i]);
2564 			hctxs[i] = NULL;
2565 			break;
2566 		}
2567 		blk_mq_hctx_kobj_init(hctxs[i]);
2568 	}
2569 	for (j = i; j < q->nr_hw_queues; j++) {
2570 		struct blk_mq_hw_ctx *hctx = hctxs[j];
2571 
2572 		if (hctx) {
2573 			if (hctx->tags)
2574 				blk_mq_free_map_and_requests(set, j);
2575 			blk_mq_exit_hctx(q, set, hctx, j);
2576 			kobject_put(&hctx->kobj);
2577 			hctxs[j] = NULL;
2578 
2579 		}
2580 	}
2581 	q->nr_hw_queues = i;
2582 	mutex_unlock(&q->sysfs_lock);
2583 	blk_mq_sysfs_register(q);
2584 }
2585 
blk_mq_init_allocated_queue(struct blk_mq_tag_set * set,struct request_queue * q)2586 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2587 						  struct request_queue *q)
2588 {
2589 	/* mark the queue as mq asap */
2590 	q->mq_ops = set->ops;
2591 
2592 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2593 					     blk_mq_poll_stats_bkt,
2594 					     BLK_MQ_POLL_STATS_BKTS, q);
2595 	if (!q->poll_cb)
2596 		goto err_exit;
2597 
2598 	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2599 	if (!q->queue_ctx)
2600 		goto err_exit;
2601 
2602 	/* init q->mq_kobj and sw queues' kobjects */
2603 	blk_mq_sysfs_init(q);
2604 
2605 	q->queue_hw_ctx = kcalloc_node(nr_cpu_ids, sizeof(*(q->queue_hw_ctx)),
2606 						GFP_KERNEL, set->numa_node);
2607 	if (!q->queue_hw_ctx)
2608 		goto err_percpu;
2609 
2610 	q->mq_map = set->mq_map;
2611 
2612 	blk_mq_realloc_hw_ctxs(set, q);
2613 	if (!q->nr_hw_queues)
2614 		goto err_hctxs;
2615 
2616 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2617 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2618 
2619 	q->nr_queues = nr_cpu_ids;
2620 
2621 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2622 
2623 	if (!(set->flags & BLK_MQ_F_SG_MERGE))
2624 		queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
2625 
2626 	q->sg_reserved_size = INT_MAX;
2627 
2628 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2629 	INIT_LIST_HEAD(&q->requeue_list);
2630 	spin_lock_init(&q->requeue_lock);
2631 
2632 	blk_queue_make_request(q, blk_mq_make_request);
2633 	if (q->mq_ops->poll)
2634 		q->poll_fn = blk_mq_poll;
2635 
2636 	/*
2637 	 * Do this after blk_queue_make_request() overrides it...
2638 	 */
2639 	q->nr_requests = set->queue_depth;
2640 
2641 	/*
2642 	 * Default to classic polling
2643 	 */
2644 	q->poll_nsec = -1;
2645 
2646 	if (set->ops->complete)
2647 		blk_queue_softirq_done(q, set->ops->complete);
2648 
2649 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2650 	blk_mq_add_queue_tag_set(set, q);
2651 	blk_mq_map_swqueue(q);
2652 
2653 	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2654 		int ret;
2655 
2656 		ret = elevator_init_mq(q);
2657 		if (ret)
2658 			return ERR_PTR(ret);
2659 	}
2660 
2661 	return q;
2662 
2663 err_hctxs:
2664 	kfree(q->queue_hw_ctx);
2665 err_percpu:
2666 	free_percpu(q->queue_ctx);
2667 err_exit:
2668 	q->mq_ops = NULL;
2669 	return ERR_PTR(-ENOMEM);
2670 }
2671 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2672 
2673 /* tags can _not_ be used after returning from blk_mq_exit_queue */
blk_mq_exit_queue(struct request_queue * q)2674 void blk_mq_exit_queue(struct request_queue *q)
2675 {
2676 	struct blk_mq_tag_set *set = q->tag_set;
2677 
2678 	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
2679 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2680 	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
2681 	blk_mq_del_queue_tag_set(q);
2682 }
2683 
2684 /* Basically redo blk_mq_init_queue with queue frozen */
blk_mq_queue_reinit(struct request_queue * q)2685 static void blk_mq_queue_reinit(struct request_queue *q)
2686 {
2687 	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2688 
2689 	blk_mq_debugfs_unregister_hctxs(q);
2690 	blk_mq_sysfs_unregister(q);
2691 
2692 	/*
2693 	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2694 	 * we should change hctx numa_node according to the new topology (this
2695 	 * involves freeing and re-allocating memory, worth doing?)
2696 	 */
2697 	blk_mq_map_swqueue(q);
2698 
2699 	blk_mq_sysfs_register(q);
2700 	blk_mq_debugfs_register_hctxs(q);
2701 }
2702 
__blk_mq_alloc_rq_maps(struct blk_mq_tag_set * set)2703 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2704 {
2705 	int i;
2706 
2707 	for (i = 0; i < set->nr_hw_queues; i++)
2708 		if (!__blk_mq_alloc_rq_map(set, i))
2709 			goto out_unwind;
2710 
2711 	return 0;
2712 
2713 out_unwind:
2714 	while (--i >= 0)
2715 		blk_mq_free_rq_map(set->tags[i]);
2716 
2717 	return -ENOMEM;
2718 }
2719 
2720 /*
2721  * Allocate the request maps associated with this tag_set. Note that this
2722  * may reduce the depth asked for, if memory is tight. set->queue_depth
2723  * will be updated to reflect the allocated depth.
2724  */
blk_mq_alloc_rq_maps(struct blk_mq_tag_set * set)2725 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2726 {
2727 	unsigned int depth;
2728 	int err;
2729 
2730 	depth = set->queue_depth;
2731 	do {
2732 		err = __blk_mq_alloc_rq_maps(set);
2733 		if (!err)
2734 			break;
2735 
2736 		set->queue_depth >>= 1;
2737 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2738 			err = -ENOMEM;
2739 			break;
2740 		}
2741 	} while (set->queue_depth);
2742 
2743 	if (!set->queue_depth || err) {
2744 		pr_err("blk-mq: failed to allocate request map\n");
2745 		return -ENOMEM;
2746 	}
2747 
2748 	if (depth != set->queue_depth)
2749 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2750 						depth, set->queue_depth);
2751 
2752 	return 0;
2753 }
2754 
blk_mq_update_queue_map(struct blk_mq_tag_set * set)2755 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2756 {
2757 	if (set->ops->map_queues) {
2758 		/*
2759 		 * transport .map_queues is usually done in the following
2760 		 * way:
2761 		 *
2762 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2763 		 * 	mask = get_cpu_mask(queue)
2764 		 * 	for_each_cpu(cpu, mask)
2765 		 * 		set->mq_map[cpu] = queue;
2766 		 * }
2767 		 *
2768 		 * When we need to remap, the table has to be cleared for
2769 		 * killing stale mapping since one CPU may not be mapped
2770 		 * to any hw queue.
2771 		 */
2772 		blk_mq_clear_mq_map(set);
2773 
2774 		return set->ops->map_queues(set);
2775 	} else
2776 		return blk_mq_map_queues(set);
2777 }
2778 
2779 /*
2780  * Alloc a tag set to be associated with one or more request queues.
2781  * May fail with EINVAL for various error conditions. May adjust the
2782  * requested depth down, if it's too large. In that case, the set
2783  * value will be stored in set->queue_depth.
2784  */
blk_mq_alloc_tag_set(struct blk_mq_tag_set * set)2785 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2786 {
2787 	int ret;
2788 
2789 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2790 
2791 	if (!set->nr_hw_queues)
2792 		return -EINVAL;
2793 	if (!set->queue_depth)
2794 		return -EINVAL;
2795 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2796 		return -EINVAL;
2797 
2798 	if (!set->ops->queue_rq)
2799 		return -EINVAL;
2800 
2801 	if (!set->ops->get_budget ^ !set->ops->put_budget)
2802 		return -EINVAL;
2803 
2804 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2805 		pr_info("blk-mq: reduced tag depth to %u\n",
2806 			BLK_MQ_MAX_DEPTH);
2807 		set->queue_depth = BLK_MQ_MAX_DEPTH;
2808 	}
2809 
2810 	/*
2811 	 * If a crashdump is active, then we are potentially in a very
2812 	 * memory constrained environment. Limit us to 1 queue and
2813 	 * 64 tags to prevent using too much memory.
2814 	 */
2815 	if (is_kdump_kernel()) {
2816 		set->nr_hw_queues = 1;
2817 		set->queue_depth = min(64U, set->queue_depth);
2818 	}
2819 	/*
2820 	 * There is no use for more h/w queues than cpus.
2821 	 */
2822 	if (set->nr_hw_queues > nr_cpu_ids)
2823 		set->nr_hw_queues = nr_cpu_ids;
2824 
2825 	set->tags = kcalloc_node(nr_cpu_ids, sizeof(struct blk_mq_tags *),
2826 				 GFP_KERNEL, set->numa_node);
2827 	if (!set->tags)
2828 		return -ENOMEM;
2829 
2830 	ret = -ENOMEM;
2831 	set->mq_map = kcalloc_node(nr_cpu_ids, sizeof(*set->mq_map),
2832 				   GFP_KERNEL, set->numa_node);
2833 	if (!set->mq_map)
2834 		goto out_free_tags;
2835 
2836 	ret = blk_mq_update_queue_map(set);
2837 	if (ret)
2838 		goto out_free_mq_map;
2839 
2840 	ret = blk_mq_alloc_rq_maps(set);
2841 	if (ret)
2842 		goto out_free_mq_map;
2843 
2844 	mutex_init(&set->tag_list_lock);
2845 	INIT_LIST_HEAD(&set->tag_list);
2846 
2847 	return 0;
2848 
2849 out_free_mq_map:
2850 	kfree(set->mq_map);
2851 	set->mq_map = NULL;
2852 out_free_tags:
2853 	kfree(set->tags);
2854 	set->tags = NULL;
2855 	return ret;
2856 }
2857 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2858 
blk_mq_free_tag_set(struct blk_mq_tag_set * set)2859 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2860 {
2861 	int i;
2862 
2863 	for (i = 0; i < nr_cpu_ids; i++)
2864 		blk_mq_free_map_and_requests(set, i);
2865 
2866 	kfree(set->mq_map);
2867 	set->mq_map = NULL;
2868 
2869 	kfree(set->tags);
2870 	set->tags = NULL;
2871 }
2872 EXPORT_SYMBOL(blk_mq_free_tag_set);
2873 
blk_mq_update_nr_requests(struct request_queue * q,unsigned int nr)2874 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2875 {
2876 	struct blk_mq_tag_set *set = q->tag_set;
2877 	struct blk_mq_hw_ctx *hctx;
2878 	int i, ret;
2879 
2880 	if (!set)
2881 		return -EINVAL;
2882 
2883 	blk_mq_freeze_queue(q);
2884 	blk_mq_quiesce_queue(q);
2885 
2886 	ret = 0;
2887 	queue_for_each_hw_ctx(q, hctx, i) {
2888 		if (!hctx->tags)
2889 			continue;
2890 		/*
2891 		 * If we're using an MQ scheduler, just update the scheduler
2892 		 * queue depth. This is similar to what the old code would do.
2893 		 */
2894 		if (!hctx->sched_tags) {
2895 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2896 							false);
2897 		} else {
2898 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2899 							nr, true);
2900 		}
2901 		if (ret)
2902 			break;
2903 		if (q->elevator && q->elevator->type->ops.mq.depth_updated)
2904 			q->elevator->type->ops.mq.depth_updated(hctx);
2905 	}
2906 
2907 	if (!ret)
2908 		q->nr_requests = nr;
2909 
2910 	blk_mq_unquiesce_queue(q);
2911 	blk_mq_unfreeze_queue(q);
2912 
2913 	return ret;
2914 }
2915 
2916 /*
2917  * request_queue and elevator_type pair.
2918  * It is just used by __blk_mq_update_nr_hw_queues to cache
2919  * the elevator_type associated with a request_queue.
2920  */
2921 struct blk_mq_qe_pair {
2922 	struct list_head node;
2923 	struct request_queue *q;
2924 	struct elevator_type *type;
2925 };
2926 
2927 /*
2928  * Cache the elevator_type in qe pair list and switch the
2929  * io scheduler to 'none'
2930  */
blk_mq_elv_switch_none(struct list_head * head,struct request_queue * q)2931 static bool blk_mq_elv_switch_none(struct list_head *head,
2932 		struct request_queue *q)
2933 {
2934 	struct blk_mq_qe_pair *qe;
2935 
2936 	if (!q->elevator)
2937 		return true;
2938 
2939 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
2940 	if (!qe)
2941 		return false;
2942 
2943 	INIT_LIST_HEAD(&qe->node);
2944 	qe->q = q;
2945 	qe->type = q->elevator->type;
2946 	list_add(&qe->node, head);
2947 
2948 	mutex_lock(&q->sysfs_lock);
2949 	/*
2950 	 * After elevator_switch_mq, the previous elevator_queue will be
2951 	 * released by elevator_release. The reference of the io scheduler
2952 	 * module get by elevator_get will also be put. So we need to get
2953 	 * a reference of the io scheduler module here to prevent it to be
2954 	 * removed.
2955 	 */
2956 	__module_get(qe->type->elevator_owner);
2957 	elevator_switch_mq(q, NULL);
2958 	mutex_unlock(&q->sysfs_lock);
2959 
2960 	return true;
2961 }
2962 
blk_mq_elv_switch_back(struct list_head * head,struct request_queue * q)2963 static void blk_mq_elv_switch_back(struct list_head *head,
2964 		struct request_queue *q)
2965 {
2966 	struct blk_mq_qe_pair *qe;
2967 	struct elevator_type *t = NULL;
2968 
2969 	list_for_each_entry(qe, head, node)
2970 		if (qe->q == q) {
2971 			t = qe->type;
2972 			break;
2973 		}
2974 
2975 	if (!t)
2976 		return;
2977 
2978 	list_del(&qe->node);
2979 	kfree(qe);
2980 
2981 	mutex_lock(&q->sysfs_lock);
2982 	elevator_switch_mq(q, t);
2983 	mutex_unlock(&q->sysfs_lock);
2984 }
2985 
__blk_mq_update_nr_hw_queues(struct blk_mq_tag_set * set,int nr_hw_queues)2986 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2987 							int nr_hw_queues)
2988 {
2989 	struct request_queue *q;
2990 	LIST_HEAD(head);
2991 
2992 	lockdep_assert_held(&set->tag_list_lock);
2993 
2994 	if (nr_hw_queues > nr_cpu_ids)
2995 		nr_hw_queues = nr_cpu_ids;
2996 	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2997 		return;
2998 
2999 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3000 		blk_mq_freeze_queue(q);
3001 	/*
3002 	 * Sync with blk_mq_queue_tag_busy_iter.
3003 	 */
3004 	synchronize_rcu();
3005 	/*
3006 	 * Switch IO scheduler to 'none', cleaning up the data associated
3007 	 * with the previous scheduler. We will switch back once we are done
3008 	 * updating the new sw to hw queue mappings.
3009 	 */
3010 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3011 		if (!blk_mq_elv_switch_none(&head, q))
3012 			goto switch_back;
3013 
3014 	set->nr_hw_queues = nr_hw_queues;
3015 	blk_mq_update_queue_map(set);
3016 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3017 		blk_mq_realloc_hw_ctxs(set, q);
3018 		blk_mq_queue_reinit(q);
3019 	}
3020 
3021 switch_back:
3022 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3023 		blk_mq_elv_switch_back(&head, q);
3024 
3025 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3026 		blk_mq_unfreeze_queue(q);
3027 }
3028 
blk_mq_update_nr_hw_queues(struct blk_mq_tag_set * set,int nr_hw_queues)3029 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3030 {
3031 	mutex_lock(&set->tag_list_lock);
3032 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3033 	mutex_unlock(&set->tag_list_lock);
3034 }
3035 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3036 
3037 /* Enable polling stats and return whether they were already enabled. */
blk_poll_stats_enable(struct request_queue * q)3038 static bool blk_poll_stats_enable(struct request_queue *q)
3039 {
3040 	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3041 	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3042 		return true;
3043 	blk_stat_add_callback(q, q->poll_cb);
3044 	return false;
3045 }
3046 
blk_mq_poll_stats_start(struct request_queue * q)3047 static void blk_mq_poll_stats_start(struct request_queue *q)
3048 {
3049 	/*
3050 	 * We don't arm the callback if polling stats are not enabled or the
3051 	 * callback is already active.
3052 	 */
3053 	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3054 	    blk_stat_is_active(q->poll_cb))
3055 		return;
3056 
3057 	blk_stat_activate_msecs(q->poll_cb, 100);
3058 }
3059 
blk_mq_poll_stats_fn(struct blk_stat_callback * cb)3060 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3061 {
3062 	struct request_queue *q = cb->data;
3063 	int bucket;
3064 
3065 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3066 		if (cb->stat[bucket].nr_samples)
3067 			q->poll_stat[bucket] = cb->stat[bucket];
3068 	}
3069 }
3070 
blk_mq_poll_nsecs(struct request_queue * q,struct blk_mq_hw_ctx * hctx,struct request * rq)3071 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3072 				       struct blk_mq_hw_ctx *hctx,
3073 				       struct request *rq)
3074 {
3075 	unsigned long ret = 0;
3076 	int bucket;
3077 
3078 	/*
3079 	 * If stats collection isn't on, don't sleep but turn it on for
3080 	 * future users
3081 	 */
3082 	if (!blk_poll_stats_enable(q))
3083 		return 0;
3084 
3085 	/*
3086 	 * As an optimistic guess, use half of the mean service time
3087 	 * for this type of request. We can (and should) make this smarter.
3088 	 * For instance, if the completion latencies are tight, we can
3089 	 * get closer than just half the mean. This is especially
3090 	 * important on devices where the completion latencies are longer
3091 	 * than ~10 usec. We do use the stats for the relevant IO size
3092 	 * if available which does lead to better estimates.
3093 	 */
3094 	bucket = blk_mq_poll_stats_bkt(rq);
3095 	if (bucket < 0)
3096 		return ret;
3097 
3098 	if (q->poll_stat[bucket].nr_samples)
3099 		ret = (q->poll_stat[bucket].mean + 1) / 2;
3100 
3101 	return ret;
3102 }
3103 
blk_mq_poll_hybrid_sleep(struct request_queue * q,struct blk_mq_hw_ctx * hctx,struct request * rq)3104 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3105 				     struct blk_mq_hw_ctx *hctx,
3106 				     struct request *rq)
3107 {
3108 	struct hrtimer_sleeper hs;
3109 	enum hrtimer_mode mode;
3110 	unsigned int nsecs;
3111 	ktime_t kt;
3112 
3113 	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3114 		return false;
3115 
3116 	/*
3117 	 * poll_nsec can be:
3118 	 *
3119 	 * -1:	don't ever hybrid sleep
3120 	 *  0:	use half of prev avg
3121 	 * >0:	use this specific value
3122 	 */
3123 	if (q->poll_nsec == -1)
3124 		return false;
3125 	else if (q->poll_nsec > 0)
3126 		nsecs = q->poll_nsec;
3127 	else
3128 		nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3129 
3130 	if (!nsecs)
3131 		return false;
3132 
3133 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3134 
3135 	/*
3136 	 * This will be replaced with the stats tracking code, using
3137 	 * 'avg_completion_time / 2' as the pre-sleep target.
3138 	 */
3139 	kt = nsecs;
3140 
3141 	mode = HRTIMER_MODE_REL;
3142 	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3143 	hrtimer_set_expires(&hs.timer, kt);
3144 
3145 	hrtimer_init_sleeper(&hs, current);
3146 	do {
3147 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3148 			break;
3149 		set_current_state(TASK_UNINTERRUPTIBLE);
3150 		hrtimer_start_expires(&hs.timer, mode);
3151 		if (hs.task)
3152 			io_schedule();
3153 		hrtimer_cancel(&hs.timer);
3154 		mode = HRTIMER_MODE_ABS;
3155 	} while (hs.task && !signal_pending(current));
3156 
3157 	__set_current_state(TASK_RUNNING);
3158 	destroy_hrtimer_on_stack(&hs.timer);
3159 	return true;
3160 }
3161 
__blk_mq_poll(struct blk_mq_hw_ctx * hctx,struct request * rq)3162 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
3163 {
3164 	struct request_queue *q = hctx->queue;
3165 	long state;
3166 
3167 	/*
3168 	 * If we sleep, have the caller restart the poll loop to reset
3169 	 * the state. Like for the other success return cases, the
3170 	 * caller is responsible for checking if the IO completed. If
3171 	 * the IO isn't complete, we'll get called again and will go
3172 	 * straight to the busy poll loop.
3173 	 */
3174 	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3175 		return true;
3176 
3177 	hctx->poll_considered++;
3178 
3179 	state = current->state;
3180 	while (!need_resched()) {
3181 		int ret;
3182 
3183 		hctx->poll_invoked++;
3184 
3185 		ret = q->mq_ops->poll(hctx, rq->tag);
3186 		if (ret > 0) {
3187 			hctx->poll_success++;
3188 			set_current_state(TASK_RUNNING);
3189 			return true;
3190 		}
3191 
3192 		if (signal_pending_state(state, current))
3193 			set_current_state(TASK_RUNNING);
3194 
3195 		if (current->state == TASK_RUNNING)
3196 			return true;
3197 		if (ret < 0)
3198 			break;
3199 		cpu_relax();
3200 	}
3201 
3202 	__set_current_state(TASK_RUNNING);
3203 	return false;
3204 }
3205 
blk_mq_poll(struct request_queue * q,blk_qc_t cookie)3206 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
3207 {
3208 	struct blk_mq_hw_ctx *hctx;
3209 	struct request *rq;
3210 
3211 	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3212 		return false;
3213 
3214 	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3215 	if (!blk_qc_t_is_internal(cookie))
3216 		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3217 	else {
3218 		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3219 		/*
3220 		 * With scheduling, if the request has completed, we'll
3221 		 * get a NULL return here, as we clear the sched tag when
3222 		 * that happens. The request still remains valid, like always,
3223 		 * so we should be safe with just the NULL check.
3224 		 */
3225 		if (!rq)
3226 			return false;
3227 	}
3228 
3229 	return __blk_mq_poll(hctx, rq);
3230 }
3231 
blk_mq_init(void)3232 static int __init blk_mq_init(void)
3233 {
3234 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3235 				blk_mq_hctx_notify_dead);
3236 	return 0;
3237 }
3238 subsys_initcall(blk_mq_init);
3239