1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
37 #include <linux/bpf.h>
38
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/block.h>
41
42 #include "blk.h"
43 #include "blk-mq.h"
44 #include "blk-mq-sched.h"
45 #include "blk-rq-qos.h"
46
47 #ifdef CONFIG_DEBUG_FS
48 struct dentry *blk_debugfs_root;
49 #endif
50
51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
56
57 DEFINE_IDA(blk_queue_ida);
58
59 /*
60 * For the allocated request tables
61 */
62 struct kmem_cache *request_cachep;
63
64 /*
65 * For queue allocation
66 */
67 struct kmem_cache *blk_requestq_cachep;
68
69 /*
70 * Controlling structure to kblockd
71 */
72 static struct workqueue_struct *kblockd_workqueue;
73
74 /**
75 * blk_queue_flag_set - atomically set a queue flag
76 * @flag: flag to be set
77 * @q: request queue
78 */
blk_queue_flag_set(unsigned int flag,struct request_queue * q)79 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
80 {
81 unsigned long flags;
82
83 spin_lock_irqsave(q->queue_lock, flags);
84 queue_flag_set(flag, q);
85 spin_unlock_irqrestore(q->queue_lock, flags);
86 }
87 EXPORT_SYMBOL(blk_queue_flag_set);
88
89 /**
90 * blk_queue_flag_clear - atomically clear a queue flag
91 * @flag: flag to be cleared
92 * @q: request queue
93 */
blk_queue_flag_clear(unsigned int flag,struct request_queue * q)94 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
95 {
96 unsigned long flags;
97
98 spin_lock_irqsave(q->queue_lock, flags);
99 queue_flag_clear(flag, q);
100 spin_unlock_irqrestore(q->queue_lock, flags);
101 }
102 EXPORT_SYMBOL(blk_queue_flag_clear);
103
104 /**
105 * blk_queue_flag_test_and_set - atomically test and set a queue flag
106 * @flag: flag to be set
107 * @q: request queue
108 *
109 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
110 * the flag was already set.
111 */
blk_queue_flag_test_and_set(unsigned int flag,struct request_queue * q)112 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
113 {
114 unsigned long flags;
115 bool res;
116
117 spin_lock_irqsave(q->queue_lock, flags);
118 res = queue_flag_test_and_set(flag, q);
119 spin_unlock_irqrestore(q->queue_lock, flags);
120
121 return res;
122 }
123 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
124
125 /**
126 * blk_queue_flag_test_and_clear - atomically test and clear a queue flag
127 * @flag: flag to be cleared
128 * @q: request queue
129 *
130 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
131 * the flag was set.
132 */
blk_queue_flag_test_and_clear(unsigned int flag,struct request_queue * q)133 bool blk_queue_flag_test_and_clear(unsigned int flag, struct request_queue *q)
134 {
135 unsigned long flags;
136 bool res;
137
138 spin_lock_irqsave(q->queue_lock, flags);
139 res = queue_flag_test_and_clear(flag, q);
140 spin_unlock_irqrestore(q->queue_lock, flags);
141
142 return res;
143 }
144 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_clear);
145
blk_clear_congested(struct request_list * rl,int sync)146 static void blk_clear_congested(struct request_list *rl, int sync)
147 {
148 #ifdef CONFIG_CGROUP_WRITEBACK
149 clear_wb_congested(rl->blkg->wb_congested, sync);
150 #else
151 /*
152 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
153 * flip its congestion state for events on other blkcgs.
154 */
155 if (rl == &rl->q->root_rl)
156 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
157 #endif
158 }
159
blk_set_congested(struct request_list * rl,int sync)160 static void blk_set_congested(struct request_list *rl, int sync)
161 {
162 #ifdef CONFIG_CGROUP_WRITEBACK
163 set_wb_congested(rl->blkg->wb_congested, sync);
164 #else
165 /* see blk_clear_congested() */
166 if (rl == &rl->q->root_rl)
167 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
168 #endif
169 }
170
blk_queue_congestion_threshold(struct request_queue * q)171 void blk_queue_congestion_threshold(struct request_queue *q)
172 {
173 int nr;
174
175 nr = q->nr_requests - (q->nr_requests / 8) + 1;
176 if (nr > q->nr_requests)
177 nr = q->nr_requests;
178 q->nr_congestion_on = nr;
179
180 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
181 if (nr < 1)
182 nr = 1;
183 q->nr_congestion_off = nr;
184 }
185
blk_rq_init(struct request_queue * q,struct request * rq)186 void blk_rq_init(struct request_queue *q, struct request *rq)
187 {
188 memset(rq, 0, sizeof(*rq));
189
190 INIT_LIST_HEAD(&rq->queuelist);
191 INIT_LIST_HEAD(&rq->timeout_list);
192 rq->cpu = -1;
193 rq->q = q;
194 rq->__sector = (sector_t) -1;
195 INIT_HLIST_NODE(&rq->hash);
196 RB_CLEAR_NODE(&rq->rb_node);
197 rq->tag = -1;
198 rq->internal_tag = -1;
199 rq->start_time_ns = ktime_get_ns();
200 rq->part = NULL;
201 refcount_set(&rq->ref, 1);
202 }
203 EXPORT_SYMBOL(blk_rq_init);
204
205 static const struct {
206 int errno;
207 const char *name;
208 } blk_errors[] = {
209 [BLK_STS_OK] = { 0, "" },
210 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
211 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
212 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
213 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
214 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
215 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
216 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
217 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
218 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
219 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
220 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
221
222 /* device mapper special case, should not leak out: */
223 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
224
225 /* everything else not covered above: */
226 [BLK_STS_IOERR] = { -EIO, "I/O" },
227 };
228
errno_to_blk_status(int errno)229 blk_status_t errno_to_blk_status(int errno)
230 {
231 int i;
232
233 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
234 if (blk_errors[i].errno == errno)
235 return (__force blk_status_t)i;
236 }
237
238 return BLK_STS_IOERR;
239 }
240 EXPORT_SYMBOL_GPL(errno_to_blk_status);
241
blk_status_to_errno(blk_status_t status)242 int blk_status_to_errno(blk_status_t status)
243 {
244 int idx = (__force int)status;
245
246 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
247 return -EIO;
248 return blk_errors[idx].errno;
249 }
250 EXPORT_SYMBOL_GPL(blk_status_to_errno);
251
print_req_error(struct request * req,blk_status_t status)252 static void print_req_error(struct request *req, blk_status_t status)
253 {
254 int idx = (__force int)status;
255
256 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
257 return;
258
259 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
260 __func__, blk_errors[idx].name, req->rq_disk ?
261 req->rq_disk->disk_name : "?",
262 (unsigned long long)blk_rq_pos(req));
263 }
264
req_bio_endio(struct request * rq,struct bio * bio,unsigned int nbytes,blk_status_t error)265 static void req_bio_endio(struct request *rq, struct bio *bio,
266 unsigned int nbytes, blk_status_t error)
267 {
268 if (error)
269 bio->bi_status = error;
270
271 if (unlikely(rq->rq_flags & RQF_QUIET))
272 bio_set_flag(bio, BIO_QUIET);
273
274 bio_advance(bio, nbytes);
275
276 /* don't actually finish bio if it's part of flush sequence */
277 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
278 bio_endio(bio);
279 }
280
blk_dump_rq_flags(struct request * rq,char * msg)281 void blk_dump_rq_flags(struct request *rq, char *msg)
282 {
283 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
284 rq->rq_disk ? rq->rq_disk->disk_name : "?",
285 (unsigned long long) rq->cmd_flags);
286
287 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
288 (unsigned long long)blk_rq_pos(rq),
289 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
290 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
291 rq->bio, rq->biotail, blk_rq_bytes(rq));
292 }
293 EXPORT_SYMBOL(blk_dump_rq_flags);
294
blk_delay_work(struct work_struct * work)295 static void blk_delay_work(struct work_struct *work)
296 {
297 struct request_queue *q;
298
299 q = container_of(work, struct request_queue, delay_work.work);
300 spin_lock_irq(q->queue_lock);
301 __blk_run_queue(q);
302 spin_unlock_irq(q->queue_lock);
303 }
304
305 /**
306 * blk_delay_queue - restart queueing after defined interval
307 * @q: The &struct request_queue in question
308 * @msecs: Delay in msecs
309 *
310 * Description:
311 * Sometimes queueing needs to be postponed for a little while, to allow
312 * resources to come back. This function will make sure that queueing is
313 * restarted around the specified time.
314 */
blk_delay_queue(struct request_queue * q,unsigned long msecs)315 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
316 {
317 lockdep_assert_held(q->queue_lock);
318 WARN_ON_ONCE(q->mq_ops);
319
320 if (likely(!blk_queue_dead(q)))
321 queue_delayed_work(kblockd_workqueue, &q->delay_work,
322 msecs_to_jiffies(msecs));
323 }
324 EXPORT_SYMBOL(blk_delay_queue);
325
326 /**
327 * blk_start_queue_async - asynchronously restart a previously stopped queue
328 * @q: The &struct request_queue in question
329 *
330 * Description:
331 * blk_start_queue_async() will clear the stop flag on the queue, and
332 * ensure that the request_fn for the queue is run from an async
333 * context.
334 **/
blk_start_queue_async(struct request_queue * q)335 void blk_start_queue_async(struct request_queue *q)
336 {
337 lockdep_assert_held(q->queue_lock);
338 WARN_ON_ONCE(q->mq_ops);
339
340 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
341 blk_run_queue_async(q);
342 }
343 EXPORT_SYMBOL(blk_start_queue_async);
344
345 /**
346 * blk_start_queue - restart a previously stopped queue
347 * @q: The &struct request_queue in question
348 *
349 * Description:
350 * blk_start_queue() will clear the stop flag on the queue, and call
351 * the request_fn for the queue if it was in a stopped state when
352 * entered. Also see blk_stop_queue().
353 **/
blk_start_queue(struct request_queue * q)354 void blk_start_queue(struct request_queue *q)
355 {
356 lockdep_assert_held(q->queue_lock);
357 WARN_ON_ONCE(q->mq_ops);
358
359 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
360 __blk_run_queue(q);
361 }
362 EXPORT_SYMBOL(blk_start_queue);
363
364 /**
365 * blk_stop_queue - stop a queue
366 * @q: The &struct request_queue in question
367 *
368 * Description:
369 * The Linux block layer assumes that a block driver will consume all
370 * entries on the request queue when the request_fn strategy is called.
371 * Often this will not happen, because of hardware limitations (queue
372 * depth settings). If a device driver gets a 'queue full' response,
373 * or if it simply chooses not to queue more I/O at one point, it can
374 * call this function to prevent the request_fn from being called until
375 * the driver has signalled it's ready to go again. This happens by calling
376 * blk_start_queue() to restart queue operations.
377 **/
blk_stop_queue(struct request_queue * q)378 void blk_stop_queue(struct request_queue *q)
379 {
380 lockdep_assert_held(q->queue_lock);
381 WARN_ON_ONCE(q->mq_ops);
382
383 cancel_delayed_work(&q->delay_work);
384 queue_flag_set(QUEUE_FLAG_STOPPED, q);
385 }
386 EXPORT_SYMBOL(blk_stop_queue);
387
388 /**
389 * blk_sync_queue - cancel any pending callbacks on a queue
390 * @q: the queue
391 *
392 * Description:
393 * The block layer may perform asynchronous callback activity
394 * on a queue, such as calling the unplug function after a timeout.
395 * A block device may call blk_sync_queue to ensure that any
396 * such activity is cancelled, thus allowing it to release resources
397 * that the callbacks might use. The caller must already have made sure
398 * that its ->make_request_fn will not re-add plugging prior to calling
399 * this function.
400 *
401 * This function does not cancel any asynchronous activity arising
402 * out of elevator or throttling code. That would require elevator_exit()
403 * and blkcg_exit_queue() to be called with queue lock initialized.
404 *
405 */
blk_sync_queue(struct request_queue * q)406 void blk_sync_queue(struct request_queue *q)
407 {
408 del_timer_sync(&q->timeout);
409 cancel_work_sync(&q->timeout_work);
410
411 if (q->mq_ops) {
412 struct blk_mq_hw_ctx *hctx;
413 int i;
414
415 queue_for_each_hw_ctx(q, hctx, i)
416 cancel_delayed_work_sync(&hctx->run_work);
417 } else {
418 cancel_delayed_work_sync(&q->delay_work);
419 }
420 }
421 EXPORT_SYMBOL(blk_sync_queue);
422
423 /**
424 * blk_set_pm_only - increment pm_only counter
425 * @q: request queue pointer
426 */
blk_set_pm_only(struct request_queue * q)427 void blk_set_pm_only(struct request_queue *q)
428 {
429 atomic_inc(&q->pm_only);
430 }
431 EXPORT_SYMBOL_GPL(blk_set_pm_only);
432
blk_clear_pm_only(struct request_queue * q)433 void blk_clear_pm_only(struct request_queue *q)
434 {
435 int pm_only;
436
437 pm_only = atomic_dec_return(&q->pm_only);
438 WARN_ON_ONCE(pm_only < 0);
439 if (pm_only == 0)
440 wake_up_all(&q->mq_freeze_wq);
441 }
442 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
443
444 /**
445 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
446 * @q: The queue to run
447 *
448 * Description:
449 * Invoke request handling on a queue if there are any pending requests.
450 * May be used to restart request handling after a request has completed.
451 * This variant runs the queue whether or not the queue has been
452 * stopped. Must be called with the queue lock held and interrupts
453 * disabled. See also @blk_run_queue.
454 */
__blk_run_queue_uncond(struct request_queue * q)455 inline void __blk_run_queue_uncond(struct request_queue *q)
456 {
457 lockdep_assert_held(q->queue_lock);
458 WARN_ON_ONCE(q->mq_ops);
459
460 if (unlikely(blk_queue_dead(q)))
461 return;
462
463 /*
464 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
465 * the queue lock internally. As a result multiple threads may be
466 * running such a request function concurrently. Keep track of the
467 * number of active request_fn invocations such that blk_drain_queue()
468 * can wait until all these request_fn calls have finished.
469 */
470 q->request_fn_active++;
471 q->request_fn(q);
472 q->request_fn_active--;
473 }
474 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
475
476 /**
477 * __blk_run_queue - run a single device queue
478 * @q: The queue to run
479 *
480 * Description:
481 * See @blk_run_queue.
482 */
__blk_run_queue(struct request_queue * q)483 void __blk_run_queue(struct request_queue *q)
484 {
485 lockdep_assert_held(q->queue_lock);
486 WARN_ON_ONCE(q->mq_ops);
487
488 if (unlikely(blk_queue_stopped(q)))
489 return;
490
491 __blk_run_queue_uncond(q);
492 }
493 EXPORT_SYMBOL(__blk_run_queue);
494
495 /**
496 * blk_run_queue_async - run a single device queue in workqueue context
497 * @q: The queue to run
498 *
499 * Description:
500 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
501 * of us.
502 *
503 * Note:
504 * Since it is not allowed to run q->delay_work after blk_cleanup_queue()
505 * has canceled q->delay_work, callers must hold the queue lock to avoid
506 * race conditions between blk_cleanup_queue() and blk_run_queue_async().
507 */
blk_run_queue_async(struct request_queue * q)508 void blk_run_queue_async(struct request_queue *q)
509 {
510 lockdep_assert_held(q->queue_lock);
511 WARN_ON_ONCE(q->mq_ops);
512
513 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
514 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
515 }
516 EXPORT_SYMBOL(blk_run_queue_async);
517
518 /**
519 * blk_run_queue - run a single device queue
520 * @q: The queue to run
521 *
522 * Description:
523 * Invoke request handling on this queue, if it has pending work to do.
524 * May be used to restart queueing when a request has completed.
525 */
blk_run_queue(struct request_queue * q)526 void blk_run_queue(struct request_queue *q)
527 {
528 unsigned long flags;
529
530 WARN_ON_ONCE(q->mq_ops);
531
532 spin_lock_irqsave(q->queue_lock, flags);
533 __blk_run_queue(q);
534 spin_unlock_irqrestore(q->queue_lock, flags);
535 }
536 EXPORT_SYMBOL(blk_run_queue);
537
blk_put_queue(struct request_queue * q)538 void blk_put_queue(struct request_queue *q)
539 {
540 kobject_put(&q->kobj);
541 }
542 EXPORT_SYMBOL(blk_put_queue);
543
544 /**
545 * __blk_drain_queue - drain requests from request_queue
546 * @q: queue to drain
547 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
548 *
549 * Drain requests from @q. If @drain_all is set, all requests are drained.
550 * If not, only ELVPRIV requests are drained. The caller is responsible
551 * for ensuring that no new requests which need to be drained are queued.
552 */
__blk_drain_queue(struct request_queue * q,bool drain_all)553 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
554 __releases(q->queue_lock)
555 __acquires(q->queue_lock)
556 {
557 int i;
558
559 lockdep_assert_held(q->queue_lock);
560 WARN_ON_ONCE(q->mq_ops);
561
562 while (true) {
563 bool drain = false;
564
565 /*
566 * The caller might be trying to drain @q before its
567 * elevator is initialized.
568 */
569 if (q->elevator)
570 elv_drain_elevator(q);
571
572 blkcg_drain_queue(q);
573
574 /*
575 * This function might be called on a queue which failed
576 * driver init after queue creation or is not yet fully
577 * active yet. Some drivers (e.g. fd and loop) get unhappy
578 * in such cases. Kick queue iff dispatch queue has
579 * something on it and @q has request_fn set.
580 */
581 if (!list_empty(&q->queue_head) && q->request_fn)
582 __blk_run_queue(q);
583
584 drain |= q->nr_rqs_elvpriv;
585 drain |= q->request_fn_active;
586
587 /*
588 * Unfortunately, requests are queued at and tracked from
589 * multiple places and there's no single counter which can
590 * be drained. Check all the queues and counters.
591 */
592 if (drain_all) {
593 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
594 drain |= !list_empty(&q->queue_head);
595 for (i = 0; i < 2; i++) {
596 drain |= q->nr_rqs[i];
597 drain |= q->in_flight[i];
598 if (fq)
599 drain |= !list_empty(&fq->flush_queue[i]);
600 }
601 }
602
603 if (!drain)
604 break;
605
606 spin_unlock_irq(q->queue_lock);
607
608 msleep(10);
609
610 spin_lock_irq(q->queue_lock);
611 }
612
613 /*
614 * With queue marked dead, any woken up waiter will fail the
615 * allocation path, so the wakeup chaining is lost and we're
616 * left with hung waiters. We need to wake up those waiters.
617 */
618 if (q->request_fn) {
619 struct request_list *rl;
620
621 blk_queue_for_each_rl(rl, q)
622 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
623 wake_up_all(&rl->wait[i]);
624 }
625 }
626
blk_drain_queue(struct request_queue * q)627 void blk_drain_queue(struct request_queue *q)
628 {
629 spin_lock_irq(q->queue_lock);
630 __blk_drain_queue(q, true);
631 spin_unlock_irq(q->queue_lock);
632 }
633
634 /**
635 * blk_queue_bypass_start - enter queue bypass mode
636 * @q: queue of interest
637 *
638 * In bypass mode, only the dispatch FIFO queue of @q is used. This
639 * function makes @q enter bypass mode and drains all requests which were
640 * throttled or issued before. On return, it's guaranteed that no request
641 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
642 * inside queue or RCU read lock.
643 */
blk_queue_bypass_start(struct request_queue * q)644 void blk_queue_bypass_start(struct request_queue *q)
645 {
646 WARN_ON_ONCE(q->mq_ops);
647
648 spin_lock_irq(q->queue_lock);
649 q->bypass_depth++;
650 queue_flag_set(QUEUE_FLAG_BYPASS, q);
651 spin_unlock_irq(q->queue_lock);
652
653 /*
654 * Queues start drained. Skip actual draining till init is
655 * complete. This avoids lenghty delays during queue init which
656 * can happen many times during boot.
657 */
658 if (blk_queue_init_done(q)) {
659 spin_lock_irq(q->queue_lock);
660 __blk_drain_queue(q, false);
661 spin_unlock_irq(q->queue_lock);
662
663 /* ensure blk_queue_bypass() is %true inside RCU read lock */
664 synchronize_rcu();
665 }
666 }
667 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
668
669 /**
670 * blk_queue_bypass_end - leave queue bypass mode
671 * @q: queue of interest
672 *
673 * Leave bypass mode and restore the normal queueing behavior.
674 *
675 * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
676 * this function is called for both blk-sq and blk-mq queues.
677 */
blk_queue_bypass_end(struct request_queue * q)678 void blk_queue_bypass_end(struct request_queue *q)
679 {
680 spin_lock_irq(q->queue_lock);
681 if (!--q->bypass_depth)
682 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
683 WARN_ON_ONCE(q->bypass_depth < 0);
684 spin_unlock_irq(q->queue_lock);
685 }
686 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
687
blk_set_queue_dying(struct request_queue * q)688 void blk_set_queue_dying(struct request_queue *q)
689 {
690 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
691
692 /*
693 * When queue DYING flag is set, we need to block new req
694 * entering queue, so we call blk_freeze_queue_start() to
695 * prevent I/O from crossing blk_queue_enter().
696 */
697 blk_freeze_queue_start(q);
698
699 if (q->mq_ops)
700 blk_mq_wake_waiters(q);
701 else {
702 struct request_list *rl;
703
704 spin_lock_irq(q->queue_lock);
705 blk_queue_for_each_rl(rl, q) {
706 if (rl->rq_pool) {
707 wake_up_all(&rl->wait[BLK_RW_SYNC]);
708 wake_up_all(&rl->wait[BLK_RW_ASYNC]);
709 }
710 }
711 spin_unlock_irq(q->queue_lock);
712 }
713
714 /* Make blk_queue_enter() reexamine the DYING flag. */
715 wake_up_all(&q->mq_freeze_wq);
716 }
717 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
718
719 /* Unconfigure the I/O scheduler and dissociate from the cgroup controller. */
blk_exit_queue(struct request_queue * q)720 void blk_exit_queue(struct request_queue *q)
721 {
722 /*
723 * Since the I/O scheduler exit code may access cgroup information,
724 * perform I/O scheduler exit before disassociating from the block
725 * cgroup controller.
726 */
727 if (q->elevator) {
728 ioc_clear_queue(q);
729 elevator_exit(q, q->elevator);
730 q->elevator = NULL;
731 }
732
733 /*
734 * Remove all references to @q from the block cgroup controller before
735 * restoring @q->queue_lock to avoid that restoring this pointer causes
736 * e.g. blkcg_print_blkgs() to crash.
737 */
738 blkcg_exit_queue(q);
739
740 /*
741 * Since the cgroup code may dereference the @q->backing_dev_info
742 * pointer, only decrease its reference count after having removed the
743 * association with the block cgroup controller.
744 */
745 bdi_put(q->backing_dev_info);
746 }
747
748 /**
749 * blk_cleanup_queue - shutdown a request queue
750 * @q: request queue to shutdown
751 *
752 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
753 * put it. All future requests will be failed immediately with -ENODEV.
754 */
blk_cleanup_queue(struct request_queue * q)755 void blk_cleanup_queue(struct request_queue *q)
756 {
757 spinlock_t *lock = q->queue_lock;
758
759 /* mark @q DYING, no new request or merges will be allowed afterwards */
760 mutex_lock(&q->sysfs_lock);
761 blk_set_queue_dying(q);
762 spin_lock_irq(lock);
763
764 /*
765 * A dying queue is permanently in bypass mode till released. Note
766 * that, unlike blk_queue_bypass_start(), we aren't performing
767 * synchronize_rcu() after entering bypass mode to avoid the delay
768 * as some drivers create and destroy a lot of queues while
769 * probing. This is still safe because blk_release_queue() will be
770 * called only after the queue refcnt drops to zero and nothing,
771 * RCU or not, would be traversing the queue by then.
772 */
773 q->bypass_depth++;
774 queue_flag_set(QUEUE_FLAG_BYPASS, q);
775
776 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
777 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
778 queue_flag_set(QUEUE_FLAG_DYING, q);
779 spin_unlock_irq(lock);
780 mutex_unlock(&q->sysfs_lock);
781
782 /*
783 * Drain all requests queued before DYING marking. Set DEAD flag to
784 * prevent that q->request_fn() gets invoked after draining finished.
785 */
786 blk_freeze_queue(q);
787
788 rq_qos_exit(q);
789
790 spin_lock_irq(lock);
791 queue_flag_set(QUEUE_FLAG_DEAD, q);
792 spin_unlock_irq(lock);
793
794 /*
795 * make sure all in-progress dispatch are completed because
796 * blk_freeze_queue() can only complete all requests, and
797 * dispatch may still be in-progress since we dispatch requests
798 * from more than one contexts.
799 *
800 * We rely on driver to deal with the race in case that queue
801 * initialization isn't done.
802 */
803 if (q->mq_ops && blk_queue_init_done(q))
804 blk_mq_quiesce_queue(q);
805
806 /* for synchronous bio-based driver finish in-flight integrity i/o */
807 blk_flush_integrity();
808
809 /* @q won't process any more request, flush async actions */
810 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
811 blk_sync_queue(q);
812
813 /*
814 * I/O scheduler exit is only safe after the sysfs scheduler attribute
815 * has been removed.
816 */
817 WARN_ON_ONCE(q->kobj.state_in_sysfs);
818
819 blk_exit_queue(q);
820
821 if (q->mq_ops)
822 blk_mq_exit_queue(q);
823
824 percpu_ref_exit(&q->q_usage_counter);
825
826 spin_lock_irq(lock);
827 if (q->queue_lock != &q->__queue_lock)
828 q->queue_lock = &q->__queue_lock;
829 spin_unlock_irq(lock);
830
831 /* @q is and will stay empty, shutdown and put */
832 blk_put_queue(q);
833 }
834 EXPORT_SYMBOL(blk_cleanup_queue);
835
836 /* Allocate memory local to the request queue */
alloc_request_simple(gfp_t gfp_mask,void * data)837 static void *alloc_request_simple(gfp_t gfp_mask, void *data)
838 {
839 struct request_queue *q = data;
840
841 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
842 }
843
free_request_simple(void * element,void * data)844 static void free_request_simple(void *element, void *data)
845 {
846 kmem_cache_free(request_cachep, element);
847 }
848
alloc_request_size(gfp_t gfp_mask,void * data)849 static void *alloc_request_size(gfp_t gfp_mask, void *data)
850 {
851 struct request_queue *q = data;
852 struct request *rq;
853
854 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
855 q->node);
856 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
857 kfree(rq);
858 rq = NULL;
859 }
860 return rq;
861 }
862
free_request_size(void * element,void * data)863 static void free_request_size(void *element, void *data)
864 {
865 struct request_queue *q = data;
866
867 if (q->exit_rq_fn)
868 q->exit_rq_fn(q, element);
869 kfree(element);
870 }
871
blk_init_rl(struct request_list * rl,struct request_queue * q,gfp_t gfp_mask)872 int blk_init_rl(struct request_list *rl, struct request_queue *q,
873 gfp_t gfp_mask)
874 {
875 if (unlikely(rl->rq_pool) || q->mq_ops)
876 return 0;
877
878 rl->q = q;
879 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
880 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
881 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
882 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
883
884 if (q->cmd_size) {
885 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
886 alloc_request_size, free_request_size,
887 q, gfp_mask, q->node);
888 } else {
889 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
890 alloc_request_simple, free_request_simple,
891 q, gfp_mask, q->node);
892 }
893 if (!rl->rq_pool)
894 return -ENOMEM;
895
896 if (rl != &q->root_rl)
897 WARN_ON_ONCE(!blk_get_queue(q));
898
899 return 0;
900 }
901
blk_exit_rl(struct request_queue * q,struct request_list * rl)902 void blk_exit_rl(struct request_queue *q, struct request_list *rl)
903 {
904 if (rl->rq_pool) {
905 mempool_destroy(rl->rq_pool);
906 if (rl != &q->root_rl)
907 blk_put_queue(q);
908 }
909 }
910
blk_alloc_queue(gfp_t gfp_mask)911 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
912 {
913 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE, NULL);
914 }
915 EXPORT_SYMBOL(blk_alloc_queue);
916
917 /**
918 * blk_queue_enter() - try to increase q->q_usage_counter
919 * @q: request queue pointer
920 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
921 */
blk_queue_enter(struct request_queue * q,blk_mq_req_flags_t flags)922 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
923 {
924 const bool pm = flags & BLK_MQ_REQ_PREEMPT;
925
926 while (true) {
927 bool success = false;
928
929 rcu_read_lock();
930 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
931 /*
932 * The code that increments the pm_only counter is
933 * responsible for ensuring that that counter is
934 * globally visible before the queue is unfrozen.
935 */
936 if (pm || !blk_queue_pm_only(q)) {
937 success = true;
938 } else {
939 percpu_ref_put(&q->q_usage_counter);
940 }
941 }
942 rcu_read_unlock();
943
944 if (success)
945 return 0;
946
947 if (flags & BLK_MQ_REQ_NOWAIT)
948 return -EBUSY;
949
950 /*
951 * read pair of barrier in blk_freeze_queue_start(),
952 * we need to order reading __PERCPU_REF_DEAD flag of
953 * .q_usage_counter and reading .mq_freeze_depth or
954 * queue dying flag, otherwise the following wait may
955 * never return if the two reads are reordered.
956 */
957 smp_rmb();
958
959 wait_event(q->mq_freeze_wq,
960 (atomic_read(&q->mq_freeze_depth) == 0 &&
961 (pm || !blk_queue_pm_only(q))) ||
962 blk_queue_dying(q));
963 if (blk_queue_dying(q))
964 return -ENODEV;
965 }
966 }
967
blk_queue_exit(struct request_queue * q)968 void blk_queue_exit(struct request_queue *q)
969 {
970 percpu_ref_put(&q->q_usage_counter);
971 }
972
blk_queue_usage_counter_release(struct percpu_ref * ref)973 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
974 {
975 struct request_queue *q =
976 container_of(ref, struct request_queue, q_usage_counter);
977
978 wake_up_all(&q->mq_freeze_wq);
979 }
980
blk_rq_timed_out_timer(struct timer_list * t)981 static void blk_rq_timed_out_timer(struct timer_list *t)
982 {
983 struct request_queue *q = from_timer(q, t, timeout);
984
985 kblockd_schedule_work(&q->timeout_work);
986 }
987
blk_timeout_work_dummy(struct work_struct * work)988 static void blk_timeout_work_dummy(struct work_struct *work)
989 {
990 }
991
992 /**
993 * blk_alloc_queue_node - allocate a request queue
994 * @gfp_mask: memory allocation flags
995 * @node_id: NUMA node to allocate memory from
996 * @lock: For legacy queues, pointer to a spinlock that will be used to e.g.
997 * serialize calls to the legacy .request_fn() callback. Ignored for
998 * blk-mq request queues.
999 *
1000 * Note: pass the queue lock as the third argument to this function instead of
1001 * setting the queue lock pointer explicitly to avoid triggering a sporadic
1002 * crash in the blkcg code. This function namely calls blkcg_init_queue() and
1003 * the queue lock pointer must be set before blkcg_init_queue() is called.
1004 */
blk_alloc_queue_node(gfp_t gfp_mask,int node_id,spinlock_t * lock)1005 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id,
1006 spinlock_t *lock)
1007 {
1008 struct request_queue *q;
1009 int ret;
1010
1011 q = kmem_cache_alloc_node(blk_requestq_cachep,
1012 gfp_mask | __GFP_ZERO, node_id);
1013 if (!q)
1014 return NULL;
1015
1016 INIT_LIST_HEAD(&q->queue_head);
1017 q->last_merge = NULL;
1018 q->end_sector = 0;
1019 q->boundary_rq = NULL;
1020
1021 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
1022 if (q->id < 0)
1023 goto fail_q;
1024
1025 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
1026 if (ret)
1027 goto fail_id;
1028
1029 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
1030 if (!q->backing_dev_info)
1031 goto fail_split;
1032
1033 q->stats = blk_alloc_queue_stats();
1034 if (!q->stats)
1035 goto fail_stats;
1036
1037 q->backing_dev_info->ra_pages =
1038 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
1039 q->backing_dev_info->io_pages =
1040 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
1041 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
1042 q->backing_dev_info->name = "block";
1043 q->node = node_id;
1044
1045 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
1046 laptop_mode_timer_fn, 0);
1047 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
1048 INIT_WORK(&q->timeout_work, blk_timeout_work_dummy);
1049 INIT_LIST_HEAD(&q->timeout_list);
1050 INIT_LIST_HEAD(&q->icq_list);
1051 #ifdef CONFIG_BLK_CGROUP
1052 INIT_LIST_HEAD(&q->blkg_list);
1053 #endif
1054 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
1055
1056 kobject_init(&q->kobj, &blk_queue_ktype);
1057
1058 #ifdef CONFIG_BLK_DEV_IO_TRACE
1059 mutex_init(&q->blk_trace_mutex);
1060 #endif
1061 mutex_init(&q->sysfs_lock);
1062 mutex_init(&q->sysfs_dir_lock);
1063 spin_lock_init(&q->__queue_lock);
1064
1065 if (!q->mq_ops)
1066 q->queue_lock = lock ? : &q->__queue_lock;
1067
1068 /*
1069 * A queue starts its life with bypass turned on to avoid
1070 * unnecessary bypass on/off overhead and nasty surprises during
1071 * init. The initial bypass will be finished when the queue is
1072 * registered by blk_register_queue().
1073 */
1074 q->bypass_depth = 1;
1075 queue_flag_set_unlocked(QUEUE_FLAG_BYPASS, q);
1076
1077 init_waitqueue_head(&q->mq_freeze_wq);
1078
1079 /*
1080 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1081 * See blk_register_queue() for details.
1082 */
1083 if (percpu_ref_init(&q->q_usage_counter,
1084 blk_queue_usage_counter_release,
1085 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
1086 goto fail_bdi;
1087
1088 if (blkcg_init_queue(q))
1089 goto fail_ref;
1090
1091 return q;
1092
1093 fail_ref:
1094 percpu_ref_exit(&q->q_usage_counter);
1095 fail_bdi:
1096 blk_free_queue_stats(q->stats);
1097 fail_stats:
1098 bdi_put(q->backing_dev_info);
1099 fail_split:
1100 bioset_exit(&q->bio_split);
1101 fail_id:
1102 ida_simple_remove(&blk_queue_ida, q->id);
1103 fail_q:
1104 kmem_cache_free(blk_requestq_cachep, q);
1105 return NULL;
1106 }
1107 EXPORT_SYMBOL(blk_alloc_queue_node);
1108
1109 /**
1110 * blk_init_queue - prepare a request queue for use with a block device
1111 * @rfn: The function to be called to process requests that have been
1112 * placed on the queue.
1113 * @lock: Request queue spin lock
1114 *
1115 * Description:
1116 * If a block device wishes to use the standard request handling procedures,
1117 * which sorts requests and coalesces adjacent requests, then it must
1118 * call blk_init_queue(). The function @rfn will be called when there
1119 * are requests on the queue that need to be processed. If the device
1120 * supports plugging, then @rfn may not be called immediately when requests
1121 * are available on the queue, but may be called at some time later instead.
1122 * Plugged queues are generally unplugged when a buffer belonging to one
1123 * of the requests on the queue is needed, or due to memory pressure.
1124 *
1125 * @rfn is not required, or even expected, to remove all requests off the
1126 * queue, but only as many as it can handle at a time. If it does leave
1127 * requests on the queue, it is responsible for arranging that the requests
1128 * get dealt with eventually.
1129 *
1130 * The queue spin lock must be held while manipulating the requests on the
1131 * request queue; this lock will be taken also from interrupt context, so irq
1132 * disabling is needed for it.
1133 *
1134 * Function returns a pointer to the initialized request queue, or %NULL if
1135 * it didn't succeed.
1136 *
1137 * Note:
1138 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1139 * when the block device is deactivated (such as at module unload).
1140 **/
1141
blk_init_queue(request_fn_proc * rfn,spinlock_t * lock)1142 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1143 {
1144 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1145 }
1146 EXPORT_SYMBOL(blk_init_queue);
1147
1148 struct request_queue *
blk_init_queue_node(request_fn_proc * rfn,spinlock_t * lock,int node_id)1149 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1150 {
1151 struct request_queue *q;
1152
1153 q = blk_alloc_queue_node(GFP_KERNEL, node_id, lock);
1154 if (!q)
1155 return NULL;
1156
1157 q->request_fn = rfn;
1158 if (blk_init_allocated_queue(q) < 0) {
1159 blk_cleanup_queue(q);
1160 return NULL;
1161 }
1162
1163 return q;
1164 }
1165 EXPORT_SYMBOL(blk_init_queue_node);
1166
1167 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
1168
1169
blk_init_allocated_queue(struct request_queue * q)1170 int blk_init_allocated_queue(struct request_queue *q)
1171 {
1172 WARN_ON_ONCE(q->mq_ops);
1173
1174 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size, GFP_KERNEL);
1175 if (!q->fq)
1176 return -ENOMEM;
1177
1178 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
1179 goto out_free_flush_queue;
1180
1181 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
1182 goto out_exit_flush_rq;
1183
1184 INIT_WORK(&q->timeout_work, blk_timeout_work);
1185 q->queue_flags |= QUEUE_FLAG_DEFAULT;
1186
1187 /*
1188 * This also sets hw/phys segments, boundary and size
1189 */
1190 blk_queue_make_request(q, blk_queue_bio);
1191
1192 q->sg_reserved_size = INT_MAX;
1193
1194 if (elevator_init(q))
1195 goto out_exit_flush_rq;
1196 return 0;
1197
1198 out_exit_flush_rq:
1199 if (q->exit_rq_fn)
1200 q->exit_rq_fn(q, q->fq->flush_rq);
1201 out_free_flush_queue:
1202 blk_free_flush_queue(q->fq);
1203 q->fq = NULL;
1204 return -ENOMEM;
1205 }
1206 EXPORT_SYMBOL(blk_init_allocated_queue);
1207
blk_get_queue(struct request_queue * q)1208 bool blk_get_queue(struct request_queue *q)
1209 {
1210 if (likely(!blk_queue_dying(q))) {
1211 __blk_get_queue(q);
1212 return true;
1213 }
1214
1215 return false;
1216 }
1217 EXPORT_SYMBOL(blk_get_queue);
1218
blk_free_request(struct request_list * rl,struct request * rq)1219 static inline void blk_free_request(struct request_list *rl, struct request *rq)
1220 {
1221 if (rq->rq_flags & RQF_ELVPRIV) {
1222 elv_put_request(rl->q, rq);
1223 if (rq->elv.icq)
1224 put_io_context(rq->elv.icq->ioc);
1225 }
1226
1227 mempool_free(rq, rl->rq_pool);
1228 }
1229
1230 /*
1231 * ioc_batching returns true if the ioc is a valid batching request and
1232 * should be given priority access to a request.
1233 */
ioc_batching(struct request_queue * q,struct io_context * ioc)1234 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1235 {
1236 if (!ioc)
1237 return 0;
1238
1239 /*
1240 * Make sure the process is able to allocate at least 1 request
1241 * even if the batch times out, otherwise we could theoretically
1242 * lose wakeups.
1243 */
1244 return ioc->nr_batch_requests == q->nr_batching ||
1245 (ioc->nr_batch_requests > 0
1246 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1247 }
1248
1249 /*
1250 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1251 * will cause the process to be a "batcher" on all queues in the system. This
1252 * is the behaviour we want though - once it gets a wakeup it should be given
1253 * a nice run.
1254 */
ioc_set_batching(struct request_queue * q,struct io_context * ioc)1255 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1256 {
1257 if (!ioc || ioc_batching(q, ioc))
1258 return;
1259
1260 ioc->nr_batch_requests = q->nr_batching;
1261 ioc->last_waited = jiffies;
1262 }
1263
__freed_request(struct request_list * rl,int sync)1264 static void __freed_request(struct request_list *rl, int sync)
1265 {
1266 struct request_queue *q = rl->q;
1267
1268 if (rl->count[sync] < queue_congestion_off_threshold(q))
1269 blk_clear_congested(rl, sync);
1270
1271 if (rl->count[sync] + 1 <= q->nr_requests) {
1272 if (waitqueue_active(&rl->wait[sync]))
1273 wake_up(&rl->wait[sync]);
1274
1275 blk_clear_rl_full(rl, sync);
1276 }
1277 }
1278
1279 /*
1280 * A request has just been released. Account for it, update the full and
1281 * congestion status, wake up any waiters. Called under q->queue_lock.
1282 */
freed_request(struct request_list * rl,bool sync,req_flags_t rq_flags)1283 static void freed_request(struct request_list *rl, bool sync,
1284 req_flags_t rq_flags)
1285 {
1286 struct request_queue *q = rl->q;
1287
1288 q->nr_rqs[sync]--;
1289 rl->count[sync]--;
1290 if (rq_flags & RQF_ELVPRIV)
1291 q->nr_rqs_elvpriv--;
1292
1293 __freed_request(rl, sync);
1294
1295 if (unlikely(rl->starved[sync ^ 1]))
1296 __freed_request(rl, sync ^ 1);
1297 }
1298
blk_update_nr_requests(struct request_queue * q,unsigned int nr)1299 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1300 {
1301 struct request_list *rl;
1302 int on_thresh, off_thresh;
1303
1304 WARN_ON_ONCE(q->mq_ops);
1305
1306 spin_lock_irq(q->queue_lock);
1307 q->nr_requests = nr;
1308 blk_queue_congestion_threshold(q);
1309 on_thresh = queue_congestion_on_threshold(q);
1310 off_thresh = queue_congestion_off_threshold(q);
1311
1312 blk_queue_for_each_rl(rl, q) {
1313 if (rl->count[BLK_RW_SYNC] >= on_thresh)
1314 blk_set_congested(rl, BLK_RW_SYNC);
1315 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1316 blk_clear_congested(rl, BLK_RW_SYNC);
1317
1318 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1319 blk_set_congested(rl, BLK_RW_ASYNC);
1320 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1321 blk_clear_congested(rl, BLK_RW_ASYNC);
1322
1323 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1324 blk_set_rl_full(rl, BLK_RW_SYNC);
1325 } else {
1326 blk_clear_rl_full(rl, BLK_RW_SYNC);
1327 wake_up(&rl->wait[BLK_RW_SYNC]);
1328 }
1329
1330 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1331 blk_set_rl_full(rl, BLK_RW_ASYNC);
1332 } else {
1333 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1334 wake_up(&rl->wait[BLK_RW_ASYNC]);
1335 }
1336 }
1337
1338 spin_unlock_irq(q->queue_lock);
1339 return 0;
1340 }
1341
1342 /**
1343 * __get_request - get a free request
1344 * @rl: request list to allocate from
1345 * @op: operation and flags
1346 * @bio: bio to allocate request for (can be %NULL)
1347 * @flags: BLQ_MQ_REQ_* flags
1348 * @gfp_mask: allocator flags
1349 *
1350 * Get a free request from @q. This function may fail under memory
1351 * pressure or if @q is dead.
1352 *
1353 * Must be called with @q->queue_lock held and,
1354 * Returns ERR_PTR on failure, with @q->queue_lock held.
1355 * Returns request pointer on success, with @q->queue_lock *not held*.
1356 */
__get_request(struct request_list * rl,unsigned int op,struct bio * bio,blk_mq_req_flags_t flags,gfp_t gfp_mask)1357 static struct request *__get_request(struct request_list *rl, unsigned int op,
1358 struct bio *bio, blk_mq_req_flags_t flags, gfp_t gfp_mask)
1359 {
1360 struct request_queue *q = rl->q;
1361 struct request *rq;
1362 struct elevator_type *et = q->elevator->type;
1363 struct io_context *ioc = rq_ioc(bio);
1364 struct io_cq *icq = NULL;
1365 const bool is_sync = op_is_sync(op);
1366 int may_queue;
1367 req_flags_t rq_flags = RQF_ALLOCED;
1368
1369 lockdep_assert_held(q->queue_lock);
1370
1371 if (unlikely(blk_queue_dying(q)))
1372 return ERR_PTR(-ENODEV);
1373
1374 may_queue = elv_may_queue(q, op);
1375 if (may_queue == ELV_MQUEUE_NO)
1376 goto rq_starved;
1377
1378 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1379 if (rl->count[is_sync]+1 >= q->nr_requests) {
1380 /*
1381 * The queue will fill after this allocation, so set
1382 * it as full, and mark this process as "batching".
1383 * This process will be allowed to complete a batch of
1384 * requests, others will be blocked.
1385 */
1386 if (!blk_rl_full(rl, is_sync)) {
1387 ioc_set_batching(q, ioc);
1388 blk_set_rl_full(rl, is_sync);
1389 } else {
1390 if (may_queue != ELV_MQUEUE_MUST
1391 && !ioc_batching(q, ioc)) {
1392 /*
1393 * The queue is full and the allocating
1394 * process is not a "batcher", and not
1395 * exempted by the IO scheduler
1396 */
1397 return ERR_PTR(-ENOMEM);
1398 }
1399 }
1400 }
1401 blk_set_congested(rl, is_sync);
1402 }
1403
1404 /*
1405 * Only allow batching queuers to allocate up to 50% over the defined
1406 * limit of requests, otherwise we could have thousands of requests
1407 * allocated with any setting of ->nr_requests
1408 */
1409 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1410 return ERR_PTR(-ENOMEM);
1411
1412 q->nr_rqs[is_sync]++;
1413 rl->count[is_sync]++;
1414 rl->starved[is_sync] = 0;
1415
1416 /*
1417 * Decide whether the new request will be managed by elevator. If
1418 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
1419 * prevent the current elevator from being destroyed until the new
1420 * request is freed. This guarantees icq's won't be destroyed and
1421 * makes creating new ones safe.
1422 *
1423 * Flush requests do not use the elevator so skip initialization.
1424 * This allows a request to share the flush and elevator data.
1425 *
1426 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1427 * it will be created after releasing queue_lock.
1428 */
1429 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
1430 rq_flags |= RQF_ELVPRIV;
1431 q->nr_rqs_elvpriv++;
1432 if (et->icq_cache && ioc)
1433 icq = ioc_lookup_icq(ioc, q);
1434 }
1435
1436 if (blk_queue_io_stat(q))
1437 rq_flags |= RQF_IO_STAT;
1438 spin_unlock_irq(q->queue_lock);
1439
1440 /* allocate and init request */
1441 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1442 if (!rq)
1443 goto fail_alloc;
1444
1445 blk_rq_init(q, rq);
1446 blk_rq_set_rl(rq, rl);
1447 rq->cmd_flags = op;
1448 rq->rq_flags = rq_flags;
1449 if (flags & BLK_MQ_REQ_PREEMPT)
1450 rq->rq_flags |= RQF_PREEMPT;
1451
1452 /* init elvpriv */
1453 if (rq_flags & RQF_ELVPRIV) {
1454 if (unlikely(et->icq_cache && !icq)) {
1455 if (ioc)
1456 icq = ioc_create_icq(ioc, q, gfp_mask);
1457 if (!icq)
1458 goto fail_elvpriv;
1459 }
1460
1461 rq->elv.icq = icq;
1462 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1463 goto fail_elvpriv;
1464
1465 /* @rq->elv.icq holds io_context until @rq is freed */
1466 if (icq)
1467 get_io_context(icq->ioc);
1468 }
1469 out:
1470 /*
1471 * ioc may be NULL here, and ioc_batching will be false. That's
1472 * OK, if the queue is under the request limit then requests need
1473 * not count toward the nr_batch_requests limit. There will always
1474 * be some limit enforced by BLK_BATCH_TIME.
1475 */
1476 if (ioc_batching(q, ioc))
1477 ioc->nr_batch_requests--;
1478
1479 trace_block_getrq(q, bio, op);
1480 return rq;
1481
1482 fail_elvpriv:
1483 /*
1484 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1485 * and may fail indefinitely under memory pressure and thus
1486 * shouldn't stall IO. Treat this request as !elvpriv. This will
1487 * disturb iosched and blkcg but weird is bettern than dead.
1488 */
1489 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1490 __func__, dev_name(q->backing_dev_info->dev));
1491
1492 rq->rq_flags &= ~RQF_ELVPRIV;
1493 rq->elv.icq = NULL;
1494
1495 spin_lock_irq(q->queue_lock);
1496 q->nr_rqs_elvpriv--;
1497 spin_unlock_irq(q->queue_lock);
1498 goto out;
1499
1500 fail_alloc:
1501 /*
1502 * Allocation failed presumably due to memory. Undo anything we
1503 * might have messed up.
1504 *
1505 * Allocating task should really be put onto the front of the wait
1506 * queue, but this is pretty rare.
1507 */
1508 spin_lock_irq(q->queue_lock);
1509 freed_request(rl, is_sync, rq_flags);
1510
1511 /*
1512 * in the very unlikely event that allocation failed and no
1513 * requests for this direction was pending, mark us starved so that
1514 * freeing of a request in the other direction will notice
1515 * us. another possible fix would be to split the rq mempool into
1516 * READ and WRITE
1517 */
1518 rq_starved:
1519 if (unlikely(rl->count[is_sync] == 0))
1520 rl->starved[is_sync] = 1;
1521 return ERR_PTR(-ENOMEM);
1522 }
1523
1524 /**
1525 * get_request - get a free request
1526 * @q: request_queue to allocate request from
1527 * @op: operation and flags
1528 * @bio: bio to allocate request for (can be %NULL)
1529 * @flags: BLK_MQ_REQ_* flags.
1530 * @gfp: allocator flags
1531 *
1532 * Get a free request from @q. If %BLK_MQ_REQ_NOWAIT is set in @flags,
1533 * this function keeps retrying under memory pressure and fails iff @q is dead.
1534 *
1535 * Must be called with @q->queue_lock held and,
1536 * Returns ERR_PTR on failure, with @q->queue_lock held.
1537 * Returns request pointer on success, with @q->queue_lock *not held*.
1538 */
get_request(struct request_queue * q,unsigned int op,struct bio * bio,blk_mq_req_flags_t flags,gfp_t gfp)1539 static struct request *get_request(struct request_queue *q, unsigned int op,
1540 struct bio *bio, blk_mq_req_flags_t flags, gfp_t gfp)
1541 {
1542 const bool is_sync = op_is_sync(op);
1543 DEFINE_WAIT(wait);
1544 struct request_list *rl;
1545 struct request *rq;
1546
1547 lockdep_assert_held(q->queue_lock);
1548 WARN_ON_ONCE(q->mq_ops);
1549
1550 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1551 retry:
1552 rq = __get_request(rl, op, bio, flags, gfp);
1553 if (!IS_ERR(rq))
1554 return rq;
1555
1556 if (op & REQ_NOWAIT) {
1557 blk_put_rl(rl);
1558 return ERR_PTR(-EAGAIN);
1559 }
1560
1561 if ((flags & BLK_MQ_REQ_NOWAIT) || unlikely(blk_queue_dying(q))) {
1562 blk_put_rl(rl);
1563 return rq;
1564 }
1565
1566 /* wait on @rl and retry */
1567 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1568 TASK_UNINTERRUPTIBLE);
1569
1570 trace_block_sleeprq(q, bio, op);
1571
1572 spin_unlock_irq(q->queue_lock);
1573 io_schedule();
1574
1575 /*
1576 * After sleeping, we become a "batching" process and will be able
1577 * to allocate at least one request, and up to a big batch of them
1578 * for a small period time. See ioc_batching, ioc_set_batching
1579 */
1580 ioc_set_batching(q, current->io_context);
1581
1582 spin_lock_irq(q->queue_lock);
1583 finish_wait(&rl->wait[is_sync], &wait);
1584
1585 goto retry;
1586 }
1587
1588 /* flags: BLK_MQ_REQ_PREEMPT and/or BLK_MQ_REQ_NOWAIT. */
blk_old_get_request(struct request_queue * q,unsigned int op,blk_mq_req_flags_t flags)1589 static struct request *blk_old_get_request(struct request_queue *q,
1590 unsigned int op, blk_mq_req_flags_t flags)
1591 {
1592 struct request *rq;
1593 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC : GFP_NOIO;
1594 int ret = 0;
1595
1596 WARN_ON_ONCE(q->mq_ops);
1597
1598 /* create ioc upfront */
1599 create_io_context(gfp_mask, q->node);
1600
1601 ret = blk_queue_enter(q, flags);
1602 if (ret)
1603 return ERR_PTR(ret);
1604 spin_lock_irq(q->queue_lock);
1605 rq = get_request(q, op, NULL, flags, gfp_mask);
1606 if (IS_ERR(rq)) {
1607 spin_unlock_irq(q->queue_lock);
1608 blk_queue_exit(q);
1609 return rq;
1610 }
1611
1612 /* q->queue_lock is unlocked at this point */
1613 rq->__data_len = 0;
1614 rq->__sector = (sector_t) -1;
1615 rq->bio = rq->biotail = NULL;
1616 return rq;
1617 }
1618
1619 /**
1620 * blk_get_request - allocate a request
1621 * @q: request queue to allocate a request for
1622 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
1623 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
1624 */
blk_get_request(struct request_queue * q,unsigned int op,blk_mq_req_flags_t flags)1625 struct request *blk_get_request(struct request_queue *q, unsigned int op,
1626 blk_mq_req_flags_t flags)
1627 {
1628 struct request *req;
1629
1630 WARN_ON_ONCE(op & REQ_NOWAIT);
1631 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
1632
1633 if (q->mq_ops) {
1634 req = blk_mq_alloc_request(q, op, flags);
1635 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1636 q->mq_ops->initialize_rq_fn(req);
1637 } else {
1638 req = blk_old_get_request(q, op, flags);
1639 if (!IS_ERR(req) && q->initialize_rq_fn)
1640 q->initialize_rq_fn(req);
1641 }
1642
1643 return req;
1644 }
1645 EXPORT_SYMBOL(blk_get_request);
1646
1647 /**
1648 * blk_requeue_request - put a request back on queue
1649 * @q: request queue where request should be inserted
1650 * @rq: request to be inserted
1651 *
1652 * Description:
1653 * Drivers often keep queueing requests until the hardware cannot accept
1654 * more, when that condition happens we need to put the request back
1655 * on the queue. Must be called with queue lock held.
1656 */
blk_requeue_request(struct request_queue * q,struct request * rq)1657 void blk_requeue_request(struct request_queue *q, struct request *rq)
1658 {
1659 lockdep_assert_held(q->queue_lock);
1660 WARN_ON_ONCE(q->mq_ops);
1661
1662 blk_delete_timer(rq);
1663 blk_clear_rq_complete(rq);
1664 trace_block_rq_requeue(q, rq);
1665 rq_qos_requeue(q, rq);
1666
1667 if (rq->rq_flags & RQF_QUEUED)
1668 blk_queue_end_tag(q, rq);
1669
1670 BUG_ON(blk_queued_rq(rq));
1671
1672 elv_requeue_request(q, rq);
1673 }
1674 EXPORT_SYMBOL(blk_requeue_request);
1675
add_acct_request(struct request_queue * q,struct request * rq,int where)1676 static void add_acct_request(struct request_queue *q, struct request *rq,
1677 int where)
1678 {
1679 blk_account_io_start(rq, true);
1680 __elv_add_request(q, rq, where);
1681 }
1682
part_round_stats_single(struct request_queue * q,int cpu,struct hd_struct * part,unsigned long now,unsigned int inflight)1683 static void part_round_stats_single(struct request_queue *q, int cpu,
1684 struct hd_struct *part, unsigned long now,
1685 unsigned int inflight)
1686 {
1687 if (inflight) {
1688 __part_stat_add(cpu, part, time_in_queue,
1689 inflight * (now - part->stamp));
1690 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1691 }
1692 part->stamp = now;
1693 }
1694
1695 /**
1696 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1697 * @q: target block queue
1698 * @cpu: cpu number for stats access
1699 * @part: target partition
1700 *
1701 * The average IO queue length and utilisation statistics are maintained
1702 * by observing the current state of the queue length and the amount of
1703 * time it has been in this state for.
1704 *
1705 * Normally, that accounting is done on IO completion, but that can result
1706 * in more than a second's worth of IO being accounted for within any one
1707 * second, leading to >100% utilisation. To deal with that, we call this
1708 * function to do a round-off before returning the results when reading
1709 * /proc/diskstats. This accounts immediately for all queue usage up to
1710 * the current jiffies and restarts the counters again.
1711 */
part_round_stats(struct request_queue * q,int cpu,struct hd_struct * part)1712 void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part)
1713 {
1714 struct hd_struct *part2 = NULL;
1715 unsigned long now = jiffies;
1716 unsigned int inflight[2];
1717 int stats = 0;
1718
1719 if (part->stamp != now)
1720 stats |= 1;
1721
1722 if (part->partno) {
1723 part2 = &part_to_disk(part)->part0;
1724 if (part2->stamp != now)
1725 stats |= 2;
1726 }
1727
1728 if (!stats)
1729 return;
1730
1731 part_in_flight(q, part, inflight);
1732
1733 if (stats & 2)
1734 part_round_stats_single(q, cpu, part2, now, inflight[1]);
1735 if (stats & 1)
1736 part_round_stats_single(q, cpu, part, now, inflight[0]);
1737 }
1738 EXPORT_SYMBOL_GPL(part_round_stats);
1739
1740 #ifdef CONFIG_PM
blk_pm_put_request(struct request * rq)1741 static void blk_pm_put_request(struct request *rq)
1742 {
1743 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
1744 pm_runtime_mark_last_busy(rq->q->dev);
1745 }
1746 #else
blk_pm_put_request(struct request * rq)1747 static inline void blk_pm_put_request(struct request *rq) {}
1748 #endif
1749
__blk_put_request(struct request_queue * q,struct request * req)1750 void __blk_put_request(struct request_queue *q, struct request *req)
1751 {
1752 req_flags_t rq_flags = req->rq_flags;
1753
1754 if (unlikely(!q))
1755 return;
1756
1757 if (q->mq_ops) {
1758 blk_mq_free_request(req);
1759 return;
1760 }
1761
1762 lockdep_assert_held(q->queue_lock);
1763
1764 blk_req_zone_write_unlock(req);
1765 blk_pm_put_request(req);
1766
1767 elv_completed_request(q, req);
1768
1769 /* this is a bio leak */
1770 WARN_ON(req->bio != NULL);
1771
1772 rq_qos_done(q, req);
1773
1774 /*
1775 * Request may not have originated from ll_rw_blk. if not,
1776 * it didn't come out of our reserved rq pools
1777 */
1778 if (rq_flags & RQF_ALLOCED) {
1779 struct request_list *rl = blk_rq_rl(req);
1780 bool sync = op_is_sync(req->cmd_flags);
1781
1782 BUG_ON(!list_empty(&req->queuelist));
1783 BUG_ON(ELV_ON_HASH(req));
1784
1785 blk_free_request(rl, req);
1786 freed_request(rl, sync, rq_flags);
1787 blk_put_rl(rl);
1788 blk_queue_exit(q);
1789 }
1790 }
1791 EXPORT_SYMBOL_GPL(__blk_put_request);
1792
blk_put_request(struct request * req)1793 void blk_put_request(struct request *req)
1794 {
1795 struct request_queue *q = req->q;
1796
1797 if (q->mq_ops)
1798 blk_mq_free_request(req);
1799 else {
1800 unsigned long flags;
1801
1802 spin_lock_irqsave(q->queue_lock, flags);
1803 __blk_put_request(q, req);
1804 spin_unlock_irqrestore(q->queue_lock, flags);
1805 }
1806 }
1807 EXPORT_SYMBOL(blk_put_request);
1808
bio_attempt_back_merge(struct request_queue * q,struct request * req,struct bio * bio)1809 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1810 struct bio *bio)
1811 {
1812 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1813
1814 if (!ll_back_merge_fn(q, req, bio))
1815 return false;
1816
1817 trace_block_bio_backmerge(q, req, bio);
1818
1819 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1820 blk_rq_set_mixed_merge(req);
1821
1822 req->biotail->bi_next = bio;
1823 req->biotail = bio;
1824 req->__data_len += bio->bi_iter.bi_size;
1825 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1826
1827 blk_account_io_start(req, false);
1828 return true;
1829 }
1830
bio_attempt_front_merge(struct request_queue * q,struct request * req,struct bio * bio)1831 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1832 struct bio *bio)
1833 {
1834 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1835
1836 if (!ll_front_merge_fn(q, req, bio))
1837 return false;
1838
1839 trace_block_bio_frontmerge(q, req, bio);
1840
1841 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1842 blk_rq_set_mixed_merge(req);
1843
1844 bio->bi_next = req->bio;
1845 req->bio = bio;
1846
1847 req->__sector = bio->bi_iter.bi_sector;
1848 req->__data_len += bio->bi_iter.bi_size;
1849 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1850
1851 blk_account_io_start(req, false);
1852 return true;
1853 }
1854
bio_attempt_discard_merge(struct request_queue * q,struct request * req,struct bio * bio)1855 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1856 struct bio *bio)
1857 {
1858 unsigned short segments = blk_rq_nr_discard_segments(req);
1859
1860 if (segments >= queue_max_discard_segments(q))
1861 goto no_merge;
1862 if (blk_rq_sectors(req) + bio_sectors(bio) >
1863 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1864 goto no_merge;
1865
1866 req->biotail->bi_next = bio;
1867 req->biotail = bio;
1868 req->__data_len += bio->bi_iter.bi_size;
1869 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1870 req->nr_phys_segments = segments + 1;
1871
1872 blk_account_io_start(req, false);
1873 return true;
1874 no_merge:
1875 req_set_nomerge(q, req);
1876 return false;
1877 }
1878
1879 /**
1880 * blk_attempt_plug_merge - try to merge with %current's plugged list
1881 * @q: request_queue new bio is being queued at
1882 * @bio: new bio being queued
1883 * @request_count: out parameter for number of traversed plugged requests
1884 * @same_queue_rq: pointer to &struct request that gets filled in when
1885 * another request associated with @q is found on the plug list
1886 * (optional, may be %NULL)
1887 *
1888 * Determine whether @bio being queued on @q can be merged with a request
1889 * on %current's plugged list. Returns %true if merge was successful,
1890 * otherwise %false.
1891 *
1892 * Plugging coalesces IOs from the same issuer for the same purpose without
1893 * going through @q->queue_lock. As such it's more of an issuing mechanism
1894 * than scheduling, and the request, while may have elvpriv data, is not
1895 * added on the elevator at this point. In addition, we don't have
1896 * reliable access to the elevator outside queue lock. Only check basic
1897 * merging parameters without querying the elevator.
1898 *
1899 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1900 */
blk_attempt_plug_merge(struct request_queue * q,struct bio * bio,unsigned int * request_count,struct request ** same_queue_rq)1901 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1902 unsigned int *request_count,
1903 struct request **same_queue_rq)
1904 {
1905 struct blk_plug *plug;
1906 struct request *rq;
1907 struct list_head *plug_list;
1908
1909 plug = current->plug;
1910 if (!plug)
1911 return false;
1912 *request_count = 0;
1913
1914 if (q->mq_ops)
1915 plug_list = &plug->mq_list;
1916 else
1917 plug_list = &plug->list;
1918
1919 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1920 bool merged = false;
1921
1922 if (rq->q == q) {
1923 (*request_count)++;
1924 /*
1925 * Only blk-mq multiple hardware queues case checks the
1926 * rq in the same queue, there should be only one such
1927 * rq in a queue
1928 **/
1929 if (same_queue_rq)
1930 *same_queue_rq = rq;
1931 }
1932
1933 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1934 continue;
1935
1936 switch (blk_try_merge(rq, bio)) {
1937 case ELEVATOR_BACK_MERGE:
1938 merged = bio_attempt_back_merge(q, rq, bio);
1939 break;
1940 case ELEVATOR_FRONT_MERGE:
1941 merged = bio_attempt_front_merge(q, rq, bio);
1942 break;
1943 case ELEVATOR_DISCARD_MERGE:
1944 merged = bio_attempt_discard_merge(q, rq, bio);
1945 break;
1946 default:
1947 break;
1948 }
1949
1950 if (merged)
1951 return true;
1952 }
1953
1954 return false;
1955 }
1956
blk_plug_queued_count(struct request_queue * q)1957 unsigned int blk_plug_queued_count(struct request_queue *q)
1958 {
1959 struct blk_plug *plug;
1960 struct request *rq;
1961 struct list_head *plug_list;
1962 unsigned int ret = 0;
1963
1964 plug = current->plug;
1965 if (!plug)
1966 goto out;
1967
1968 if (q->mq_ops)
1969 plug_list = &plug->mq_list;
1970 else
1971 plug_list = &plug->list;
1972
1973 list_for_each_entry(rq, plug_list, queuelist) {
1974 if (rq->q == q)
1975 ret++;
1976 }
1977 out:
1978 return ret;
1979 }
1980
blk_init_request_from_bio(struct request * req,struct bio * bio)1981 void blk_init_request_from_bio(struct request *req, struct bio *bio)
1982 {
1983 struct io_context *ioc = rq_ioc(bio);
1984
1985 if (bio->bi_opf & REQ_RAHEAD)
1986 req->cmd_flags |= REQ_FAILFAST_MASK;
1987
1988 req->__sector = bio->bi_iter.bi_sector;
1989 if (ioprio_valid(bio_prio(bio)))
1990 req->ioprio = bio_prio(bio);
1991 else if (ioc)
1992 req->ioprio = ioc->ioprio;
1993 else
1994 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1995 req->write_hint = bio->bi_write_hint;
1996 blk_rq_bio_prep(req->q, req, bio);
1997 }
1998 EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
1999
blk_queue_bio(struct request_queue * q,struct bio * bio)2000 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
2001 {
2002 struct blk_plug *plug;
2003 int where = ELEVATOR_INSERT_SORT;
2004 struct request *req, *free;
2005 unsigned int request_count = 0;
2006
2007 /*
2008 * low level driver can indicate that it wants pages above a
2009 * certain limit bounced to low memory (ie for highmem, or even
2010 * ISA dma in theory)
2011 */
2012 blk_queue_bounce(q, &bio);
2013
2014 blk_queue_split(q, &bio);
2015
2016 if (!bio_integrity_prep(bio))
2017 return BLK_QC_T_NONE;
2018
2019 if (op_is_flush(bio->bi_opf)) {
2020 spin_lock_irq(q->queue_lock);
2021 where = ELEVATOR_INSERT_FLUSH;
2022 goto get_rq;
2023 }
2024
2025 /*
2026 * Check if we can merge with the plugged list before grabbing
2027 * any locks.
2028 */
2029 if (!blk_queue_nomerges(q)) {
2030 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
2031 return BLK_QC_T_NONE;
2032 } else
2033 request_count = blk_plug_queued_count(q);
2034
2035 spin_lock_irq(q->queue_lock);
2036
2037 switch (elv_merge(q, &req, bio)) {
2038 case ELEVATOR_BACK_MERGE:
2039 if (!bio_attempt_back_merge(q, req, bio))
2040 break;
2041 elv_bio_merged(q, req, bio);
2042 free = attempt_back_merge(q, req);
2043 if (free)
2044 __blk_put_request(q, free);
2045 else
2046 elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
2047 goto out_unlock;
2048 case ELEVATOR_FRONT_MERGE:
2049 if (!bio_attempt_front_merge(q, req, bio))
2050 break;
2051 elv_bio_merged(q, req, bio);
2052 free = attempt_front_merge(q, req);
2053 if (free)
2054 __blk_put_request(q, free);
2055 else
2056 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
2057 goto out_unlock;
2058 default:
2059 break;
2060 }
2061
2062 get_rq:
2063 rq_qos_throttle(q, bio, q->queue_lock);
2064
2065 /*
2066 * Grab a free request. This is might sleep but can not fail.
2067 * Returns with the queue unlocked.
2068 */
2069 blk_queue_enter_live(q);
2070 req = get_request(q, bio->bi_opf, bio, 0, GFP_NOIO);
2071 if (IS_ERR(req)) {
2072 blk_queue_exit(q);
2073 rq_qos_cleanup(q, bio);
2074 if (PTR_ERR(req) == -ENOMEM)
2075 bio->bi_status = BLK_STS_RESOURCE;
2076 else
2077 bio->bi_status = BLK_STS_IOERR;
2078 bio_endio(bio);
2079 goto out_unlock;
2080 }
2081
2082 rq_qos_track(q, req, bio);
2083
2084 /*
2085 * After dropping the lock and possibly sleeping here, our request
2086 * may now be mergeable after it had proven unmergeable (above).
2087 * We don't worry about that case for efficiency. It won't happen
2088 * often, and the elevators are able to handle it.
2089 */
2090 blk_init_request_from_bio(req, bio);
2091
2092 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
2093 req->cpu = raw_smp_processor_id();
2094
2095 plug = current->plug;
2096 if (plug) {
2097 /*
2098 * If this is the first request added after a plug, fire
2099 * of a plug trace.
2100 *
2101 * @request_count may become stale because of schedule
2102 * out, so check plug list again.
2103 */
2104 if (!request_count || list_empty(&plug->list))
2105 trace_block_plug(q);
2106 else {
2107 struct request *last = list_entry_rq(plug->list.prev);
2108 if (request_count >= BLK_MAX_REQUEST_COUNT ||
2109 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
2110 blk_flush_plug_list(plug, false);
2111 trace_block_plug(q);
2112 }
2113 }
2114 list_add_tail(&req->queuelist, &plug->list);
2115 blk_account_io_start(req, true);
2116 } else {
2117 spin_lock_irq(q->queue_lock);
2118 add_acct_request(q, req, where);
2119 __blk_run_queue(q);
2120 out_unlock:
2121 spin_unlock_irq(q->queue_lock);
2122 }
2123
2124 return BLK_QC_T_NONE;
2125 }
2126
handle_bad_sector(struct bio * bio,sector_t maxsector)2127 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
2128 {
2129 char b[BDEVNAME_SIZE];
2130
2131 printk(KERN_INFO "attempt to access beyond end of device\n");
2132 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
2133 bio_devname(bio, b), bio->bi_opf,
2134 (unsigned long long)bio_end_sector(bio),
2135 (long long)maxsector);
2136 }
2137
2138 #ifdef CONFIG_FAIL_MAKE_REQUEST
2139
2140 static DECLARE_FAULT_ATTR(fail_make_request);
2141
setup_fail_make_request(char * str)2142 static int __init setup_fail_make_request(char *str)
2143 {
2144 return setup_fault_attr(&fail_make_request, str);
2145 }
2146 __setup("fail_make_request=", setup_fail_make_request);
2147
should_fail_request(struct hd_struct * part,unsigned int bytes)2148 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
2149 {
2150 return part->make_it_fail && should_fail(&fail_make_request, bytes);
2151 }
2152
fail_make_request_debugfs(void)2153 static int __init fail_make_request_debugfs(void)
2154 {
2155 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
2156 NULL, &fail_make_request);
2157
2158 return PTR_ERR_OR_ZERO(dir);
2159 }
2160
2161 late_initcall(fail_make_request_debugfs);
2162
2163 #else /* CONFIG_FAIL_MAKE_REQUEST */
2164
should_fail_request(struct hd_struct * part,unsigned int bytes)2165 static inline bool should_fail_request(struct hd_struct *part,
2166 unsigned int bytes)
2167 {
2168 return false;
2169 }
2170
2171 #endif /* CONFIG_FAIL_MAKE_REQUEST */
2172
bio_check_ro(struct bio * bio,struct hd_struct * part)2173 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
2174 {
2175 const int op = bio_op(bio);
2176
2177 if (part->policy && op_is_write(op)) {
2178 char b[BDEVNAME_SIZE];
2179
2180 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
2181 return false;
2182 pr_warn("Trying to write to read-only block-device %s (partno %d)\n",
2183 bio_devname(bio, b), part->partno);
2184 /* Older lvm-tools actually trigger this */
2185 return false;
2186 }
2187
2188 return false;
2189 }
2190
should_fail_bio(struct bio * bio)2191 static noinline int should_fail_bio(struct bio *bio)
2192 {
2193 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
2194 return -EIO;
2195 return 0;
2196 }
2197 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
2198
2199 /*
2200 * Check whether this bio extends beyond the end of the device or partition.
2201 * This may well happen - the kernel calls bread() without checking the size of
2202 * the device, e.g., when mounting a file system.
2203 */
bio_check_eod(struct bio * bio,sector_t maxsector)2204 static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
2205 {
2206 unsigned int nr_sectors = bio_sectors(bio);
2207
2208 if (nr_sectors && maxsector &&
2209 (nr_sectors > maxsector ||
2210 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
2211 handle_bad_sector(bio, maxsector);
2212 return -EIO;
2213 }
2214 return 0;
2215 }
2216
2217 /*
2218 * Remap block n of partition p to block n+start(p) of the disk.
2219 */
blk_partition_remap(struct bio * bio)2220 static inline int blk_partition_remap(struct bio *bio)
2221 {
2222 struct hd_struct *p;
2223 int ret = -EIO;
2224
2225 rcu_read_lock();
2226 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
2227 if (unlikely(!p))
2228 goto out;
2229 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
2230 goto out;
2231 if (unlikely(bio_check_ro(bio, p)))
2232 goto out;
2233
2234 /*
2235 * Zone reset does not include bi_size so bio_sectors() is always 0.
2236 * Include a test for the reset op code and perform the remap if needed.
2237 */
2238 if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET) {
2239 if (bio_check_eod(bio, part_nr_sects_read(p)))
2240 goto out;
2241 bio->bi_iter.bi_sector += p->start_sect;
2242 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
2243 bio->bi_iter.bi_sector - p->start_sect);
2244 }
2245 bio->bi_partno = 0;
2246 ret = 0;
2247 out:
2248 rcu_read_unlock();
2249 return ret;
2250 }
2251
2252 static noinline_for_stack bool
generic_make_request_checks(struct bio * bio)2253 generic_make_request_checks(struct bio *bio)
2254 {
2255 struct request_queue *q;
2256 int nr_sectors = bio_sectors(bio);
2257 blk_status_t status = BLK_STS_IOERR;
2258 char b[BDEVNAME_SIZE];
2259
2260 might_sleep();
2261
2262 q = bio->bi_disk->queue;
2263 if (unlikely(!q)) {
2264 printk(KERN_ERR
2265 "generic_make_request: Trying to access "
2266 "nonexistent block-device %s (%Lu)\n",
2267 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
2268 goto end_io;
2269 }
2270
2271 /*
2272 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2273 * if queue is not a request based queue.
2274 */
2275 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
2276 goto not_supported;
2277
2278 if (should_fail_bio(bio))
2279 goto end_io;
2280
2281 if (bio->bi_partno) {
2282 if (unlikely(blk_partition_remap(bio)))
2283 goto end_io;
2284 } else {
2285 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
2286 goto end_io;
2287 if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
2288 goto end_io;
2289 }
2290
2291 /*
2292 * Filter flush bio's early so that make_request based
2293 * drivers without flush support don't have to worry
2294 * about them.
2295 */
2296 if (op_is_flush(bio->bi_opf) &&
2297 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
2298 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
2299 if (!nr_sectors) {
2300 status = BLK_STS_OK;
2301 goto end_io;
2302 }
2303 }
2304
2305 switch (bio_op(bio)) {
2306 case REQ_OP_DISCARD:
2307 if (!blk_queue_discard(q))
2308 goto not_supported;
2309 break;
2310 case REQ_OP_SECURE_ERASE:
2311 if (!blk_queue_secure_erase(q))
2312 goto not_supported;
2313 break;
2314 case REQ_OP_WRITE_SAME:
2315 if (!q->limits.max_write_same_sectors)
2316 goto not_supported;
2317 break;
2318 case REQ_OP_ZONE_REPORT:
2319 case REQ_OP_ZONE_RESET:
2320 if (!blk_queue_is_zoned(q))
2321 goto not_supported;
2322 break;
2323 case REQ_OP_WRITE_ZEROES:
2324 if (!q->limits.max_write_zeroes_sectors)
2325 goto not_supported;
2326 break;
2327 default:
2328 break;
2329 }
2330
2331 /*
2332 * Various block parts want %current->io_context and lazy ioc
2333 * allocation ends up trading a lot of pain for a small amount of
2334 * memory. Just allocate it upfront. This may fail and block
2335 * layer knows how to live with it.
2336 */
2337 create_io_context(GFP_ATOMIC, q->node);
2338
2339 if (!blkcg_bio_issue_check(q, bio))
2340 return false;
2341
2342 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2343 trace_block_bio_queue(q, bio);
2344 /* Now that enqueuing has been traced, we need to trace
2345 * completion as well.
2346 */
2347 bio_set_flag(bio, BIO_TRACE_COMPLETION);
2348 }
2349 return true;
2350
2351 not_supported:
2352 status = BLK_STS_NOTSUPP;
2353 end_io:
2354 bio->bi_status = status;
2355 bio_endio(bio);
2356 return false;
2357 }
2358
2359 /**
2360 * generic_make_request - hand a buffer to its device driver for I/O
2361 * @bio: The bio describing the location in memory and on the device.
2362 *
2363 * generic_make_request() is used to make I/O requests of block
2364 * devices. It is passed a &struct bio, which describes the I/O that needs
2365 * to be done.
2366 *
2367 * generic_make_request() does not return any status. The
2368 * success/failure status of the request, along with notification of
2369 * completion, is delivered asynchronously through the bio->bi_end_io
2370 * function described (one day) else where.
2371 *
2372 * The caller of generic_make_request must make sure that bi_io_vec
2373 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2374 * set to describe the device address, and the
2375 * bi_end_io and optionally bi_private are set to describe how
2376 * completion notification should be signaled.
2377 *
2378 * generic_make_request and the drivers it calls may use bi_next if this
2379 * bio happens to be merged with someone else, and may resubmit the bio to
2380 * a lower device by calling into generic_make_request recursively, which
2381 * means the bio should NOT be touched after the call to ->make_request_fn.
2382 */
generic_make_request(struct bio * bio)2383 blk_qc_t generic_make_request(struct bio *bio)
2384 {
2385 /*
2386 * bio_list_on_stack[0] contains bios submitted by the current
2387 * make_request_fn.
2388 * bio_list_on_stack[1] contains bios that were submitted before
2389 * the current make_request_fn, but that haven't been processed
2390 * yet.
2391 */
2392 struct bio_list bio_list_on_stack[2];
2393 blk_mq_req_flags_t flags = 0;
2394 struct request_queue *q = bio->bi_disk->queue;
2395 blk_qc_t ret = BLK_QC_T_NONE;
2396
2397 if (bio->bi_opf & REQ_NOWAIT)
2398 flags = BLK_MQ_REQ_NOWAIT;
2399 if (bio_flagged(bio, BIO_QUEUE_ENTERED))
2400 blk_queue_enter_live(q);
2401 else if (blk_queue_enter(q, flags) < 0) {
2402 if (!blk_queue_dying(q) && (bio->bi_opf & REQ_NOWAIT))
2403 bio_wouldblock_error(bio);
2404 else
2405 bio_io_error(bio);
2406 return ret;
2407 }
2408
2409 if (!generic_make_request_checks(bio))
2410 goto out;
2411
2412 /*
2413 * We only want one ->make_request_fn to be active at a time, else
2414 * stack usage with stacked devices could be a problem. So use
2415 * current->bio_list to keep a list of requests submited by a
2416 * make_request_fn function. current->bio_list is also used as a
2417 * flag to say if generic_make_request is currently active in this
2418 * task or not. If it is NULL, then no make_request is active. If
2419 * it is non-NULL, then a make_request is active, and new requests
2420 * should be added at the tail
2421 */
2422 if (current->bio_list) {
2423 bio_list_add(¤t->bio_list[0], bio);
2424 goto out;
2425 }
2426
2427 /* following loop may be a bit non-obvious, and so deserves some
2428 * explanation.
2429 * Before entering the loop, bio->bi_next is NULL (as all callers
2430 * ensure that) so we have a list with a single bio.
2431 * We pretend that we have just taken it off a longer list, so
2432 * we assign bio_list to a pointer to the bio_list_on_stack,
2433 * thus initialising the bio_list of new bios to be
2434 * added. ->make_request() may indeed add some more bios
2435 * through a recursive call to generic_make_request. If it
2436 * did, we find a non-NULL value in bio_list and re-enter the loop
2437 * from the top. In this case we really did just take the bio
2438 * of the top of the list (no pretending) and so remove it from
2439 * bio_list, and call into ->make_request() again.
2440 */
2441 BUG_ON(bio->bi_next);
2442 bio_list_init(&bio_list_on_stack[0]);
2443 current->bio_list = bio_list_on_stack;
2444 do {
2445 bool enter_succeeded = true;
2446
2447 if (unlikely(q != bio->bi_disk->queue)) {
2448 if (q)
2449 blk_queue_exit(q);
2450 q = bio->bi_disk->queue;
2451 flags = 0;
2452 if (bio->bi_opf & REQ_NOWAIT)
2453 flags = BLK_MQ_REQ_NOWAIT;
2454 if (blk_queue_enter(q, flags) < 0)
2455 enter_succeeded = false;
2456 }
2457
2458 if (enter_succeeded) {
2459 struct bio_list lower, same;
2460
2461 /* Create a fresh bio_list for all subordinate requests */
2462 bio_list_on_stack[1] = bio_list_on_stack[0];
2463 bio_list_init(&bio_list_on_stack[0]);
2464 ret = q->make_request_fn(q, bio);
2465
2466 /* sort new bios into those for a lower level
2467 * and those for the same level
2468 */
2469 bio_list_init(&lower);
2470 bio_list_init(&same);
2471 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
2472 if (q == bio->bi_disk->queue)
2473 bio_list_add(&same, bio);
2474 else
2475 bio_list_add(&lower, bio);
2476 /* now assemble so we handle the lowest level first */
2477 bio_list_merge(&bio_list_on_stack[0], &lower);
2478 bio_list_merge(&bio_list_on_stack[0], &same);
2479 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
2480 } else {
2481 if (unlikely(!blk_queue_dying(q) &&
2482 (bio->bi_opf & REQ_NOWAIT)))
2483 bio_wouldblock_error(bio);
2484 else
2485 bio_io_error(bio);
2486 q = NULL;
2487 }
2488 bio = bio_list_pop(&bio_list_on_stack[0]);
2489 } while (bio);
2490 current->bio_list = NULL; /* deactivate */
2491
2492 out:
2493 if (q)
2494 blk_queue_exit(q);
2495 return ret;
2496 }
2497 EXPORT_SYMBOL(generic_make_request);
2498
2499 /**
2500 * direct_make_request - hand a buffer directly to its device driver for I/O
2501 * @bio: The bio describing the location in memory and on the device.
2502 *
2503 * This function behaves like generic_make_request(), but does not protect
2504 * against recursion. Must only be used if the called driver is known
2505 * to not call generic_make_request (or direct_make_request) again from
2506 * its make_request function. (Calling direct_make_request again from
2507 * a workqueue is perfectly fine as that doesn't recurse).
2508 */
direct_make_request(struct bio * bio)2509 blk_qc_t direct_make_request(struct bio *bio)
2510 {
2511 struct request_queue *q = bio->bi_disk->queue;
2512 bool nowait = bio->bi_opf & REQ_NOWAIT;
2513 blk_qc_t ret;
2514
2515 if (!generic_make_request_checks(bio))
2516 return BLK_QC_T_NONE;
2517
2518 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
2519 if (nowait && !blk_queue_dying(q))
2520 bio->bi_status = BLK_STS_AGAIN;
2521 else
2522 bio->bi_status = BLK_STS_IOERR;
2523 bio_endio(bio);
2524 return BLK_QC_T_NONE;
2525 }
2526
2527 ret = q->make_request_fn(q, bio);
2528 blk_queue_exit(q);
2529 return ret;
2530 }
2531 EXPORT_SYMBOL_GPL(direct_make_request);
2532
2533 /**
2534 * submit_bio - submit a bio to the block device layer for I/O
2535 * @bio: The &struct bio which describes the I/O
2536 *
2537 * submit_bio() is very similar in purpose to generic_make_request(), and
2538 * uses that function to do most of the work. Both are fairly rough
2539 * interfaces; @bio must be presetup and ready for I/O.
2540 *
2541 */
submit_bio(struct bio * bio)2542 blk_qc_t submit_bio(struct bio *bio)
2543 {
2544 /*
2545 * If it's a regular read/write or a barrier with data attached,
2546 * go through the normal accounting stuff before submission.
2547 */
2548 if (bio_has_data(bio)) {
2549 unsigned int count;
2550
2551 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2552 count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
2553 else
2554 count = bio_sectors(bio);
2555
2556 if (op_is_write(bio_op(bio))) {
2557 count_vm_events(PGPGOUT, count);
2558 } else {
2559 task_io_account_read(bio->bi_iter.bi_size);
2560 count_vm_events(PGPGIN, count);
2561 }
2562
2563 if (unlikely(block_dump)) {
2564 char b[BDEVNAME_SIZE];
2565 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2566 current->comm, task_pid_nr(current),
2567 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2568 (unsigned long long)bio->bi_iter.bi_sector,
2569 bio_devname(bio, b), count);
2570 }
2571 }
2572
2573 return generic_make_request(bio);
2574 }
2575 EXPORT_SYMBOL(submit_bio);
2576
blk_poll(struct request_queue * q,blk_qc_t cookie)2577 bool blk_poll(struct request_queue *q, blk_qc_t cookie)
2578 {
2579 if (!q->poll_fn || !blk_qc_t_valid(cookie))
2580 return false;
2581
2582 if (current->plug)
2583 blk_flush_plug_list(current->plug, false);
2584 return q->poll_fn(q, cookie);
2585 }
2586 EXPORT_SYMBOL_GPL(blk_poll);
2587
2588 /**
2589 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2590 * for new the queue limits
2591 * @q: the queue
2592 * @rq: the request being checked
2593 *
2594 * Description:
2595 * @rq may have been made based on weaker limitations of upper-level queues
2596 * in request stacking drivers, and it may violate the limitation of @q.
2597 * Since the block layer and the underlying device driver trust @rq
2598 * after it is inserted to @q, it should be checked against @q before
2599 * the insertion using this generic function.
2600 *
2601 * Request stacking drivers like request-based dm may change the queue
2602 * limits when retrying requests on other queues. Those requests need
2603 * to be checked against the new queue limits again during dispatch.
2604 */
blk_cloned_rq_check_limits(struct request_queue * q,struct request * rq)2605 static int blk_cloned_rq_check_limits(struct request_queue *q,
2606 struct request *rq)
2607 {
2608 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2609 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2610 return -EIO;
2611 }
2612
2613 /*
2614 * queue's settings related to segment counting like q->bounce_pfn
2615 * may differ from that of other stacking queues.
2616 * Recalculate it to check the request correctly on this queue's
2617 * limitation.
2618 */
2619 blk_recalc_rq_segments(rq);
2620 if (rq->nr_phys_segments > queue_max_segments(q)) {
2621 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2622 return -EIO;
2623 }
2624
2625 return 0;
2626 }
2627
2628 /**
2629 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2630 * @q: the queue to submit the request
2631 * @rq: the request being queued
2632 */
blk_insert_cloned_request(struct request_queue * q,struct request * rq)2633 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2634 {
2635 unsigned long flags;
2636 int where = ELEVATOR_INSERT_BACK;
2637
2638 if (blk_cloned_rq_check_limits(q, rq))
2639 return BLK_STS_IOERR;
2640
2641 if (rq->rq_disk &&
2642 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2643 return BLK_STS_IOERR;
2644
2645 if (q->mq_ops) {
2646 if (blk_queue_io_stat(q))
2647 blk_account_io_start(rq, true);
2648 /*
2649 * Since we have a scheduler attached on the top device,
2650 * bypass a potential scheduler on the bottom device for
2651 * insert.
2652 */
2653 return blk_mq_request_issue_directly(rq);
2654 }
2655
2656 spin_lock_irqsave(q->queue_lock, flags);
2657 if (unlikely(blk_queue_dying(q))) {
2658 spin_unlock_irqrestore(q->queue_lock, flags);
2659 return BLK_STS_IOERR;
2660 }
2661
2662 /*
2663 * Submitting request must be dequeued before calling this function
2664 * because it will be linked to another request_queue
2665 */
2666 BUG_ON(blk_queued_rq(rq));
2667
2668 if (op_is_flush(rq->cmd_flags))
2669 where = ELEVATOR_INSERT_FLUSH;
2670
2671 add_acct_request(q, rq, where);
2672 if (where == ELEVATOR_INSERT_FLUSH)
2673 __blk_run_queue(q);
2674 spin_unlock_irqrestore(q->queue_lock, flags);
2675
2676 return BLK_STS_OK;
2677 }
2678 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2679
2680 /**
2681 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2682 * @rq: request to examine
2683 *
2684 * Description:
2685 * A request could be merge of IOs which require different failure
2686 * handling. This function determines the number of bytes which
2687 * can be failed from the beginning of the request without
2688 * crossing into area which need to be retried further.
2689 *
2690 * Return:
2691 * The number of bytes to fail.
2692 */
blk_rq_err_bytes(const struct request * rq)2693 unsigned int blk_rq_err_bytes(const struct request *rq)
2694 {
2695 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2696 unsigned int bytes = 0;
2697 struct bio *bio;
2698
2699 if (!(rq->rq_flags & RQF_MIXED_MERGE))
2700 return blk_rq_bytes(rq);
2701
2702 /*
2703 * Currently the only 'mixing' which can happen is between
2704 * different fastfail types. We can safely fail portions
2705 * which have all the failfast bits that the first one has -
2706 * the ones which are at least as eager to fail as the first
2707 * one.
2708 */
2709 for (bio = rq->bio; bio; bio = bio->bi_next) {
2710 if ((bio->bi_opf & ff) != ff)
2711 break;
2712 bytes += bio->bi_iter.bi_size;
2713 }
2714
2715 /* this could lead to infinite loop */
2716 BUG_ON(blk_rq_bytes(rq) && !bytes);
2717 return bytes;
2718 }
2719 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2720
blk_account_io_completion(struct request * req,unsigned int bytes)2721 void blk_account_io_completion(struct request *req, unsigned int bytes)
2722 {
2723 if (blk_do_io_stat(req)) {
2724 const int sgrp = op_stat_group(req_op(req));
2725 struct hd_struct *part;
2726 int cpu;
2727
2728 cpu = part_stat_lock();
2729 part = req->part;
2730 part_stat_add(cpu, part, sectors[sgrp], bytes >> 9);
2731 part_stat_unlock();
2732 }
2733 }
2734
blk_account_io_done(struct request * req,u64 now)2735 void blk_account_io_done(struct request *req, u64 now)
2736 {
2737 /*
2738 * Account IO completion. flush_rq isn't accounted as a
2739 * normal IO on queueing nor completion. Accounting the
2740 * containing request is enough.
2741 */
2742 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2743 const int sgrp = op_stat_group(req_op(req));
2744 struct hd_struct *part;
2745 int cpu;
2746
2747 cpu = part_stat_lock();
2748 part = req->part;
2749
2750 part_stat_inc(cpu, part, ios[sgrp]);
2751 part_stat_add(cpu, part, nsecs[sgrp], now - req->start_time_ns);
2752 part_round_stats(req->q, cpu, part);
2753 part_dec_in_flight(req->q, part, rq_data_dir(req));
2754
2755 hd_struct_put(part);
2756 part_stat_unlock();
2757 }
2758 }
2759
2760 #ifdef CONFIG_PM
2761 /*
2762 * Don't process normal requests when queue is suspended
2763 * or in the process of suspending/resuming
2764 */
blk_pm_allow_request(struct request * rq)2765 static bool blk_pm_allow_request(struct request *rq)
2766 {
2767 switch (rq->q->rpm_status) {
2768 case RPM_RESUMING:
2769 case RPM_SUSPENDING:
2770 return rq->rq_flags & RQF_PM;
2771 case RPM_SUSPENDED:
2772 return false;
2773 default:
2774 return true;
2775 }
2776 }
2777 #else
blk_pm_allow_request(struct request * rq)2778 static bool blk_pm_allow_request(struct request *rq)
2779 {
2780 return true;
2781 }
2782 #endif
2783
blk_account_io_start(struct request * rq,bool new_io)2784 void blk_account_io_start(struct request *rq, bool new_io)
2785 {
2786 struct hd_struct *part;
2787 int rw = rq_data_dir(rq);
2788 int cpu;
2789
2790 if (!blk_do_io_stat(rq))
2791 return;
2792
2793 cpu = part_stat_lock();
2794
2795 if (!new_io) {
2796 part = rq->part;
2797 part_stat_inc(cpu, part, merges[rw]);
2798 } else {
2799 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2800 if (!hd_struct_try_get(part)) {
2801 /*
2802 * The partition is already being removed,
2803 * the request will be accounted on the disk only
2804 *
2805 * We take a reference on disk->part0 although that
2806 * partition will never be deleted, so we can treat
2807 * it as any other partition.
2808 */
2809 part = &rq->rq_disk->part0;
2810 hd_struct_get(part);
2811 }
2812 part_round_stats(rq->q, cpu, part);
2813 part_inc_in_flight(rq->q, part, rw);
2814 rq->part = part;
2815 }
2816
2817 part_stat_unlock();
2818 }
2819
elv_next_request(struct request_queue * q)2820 static struct request *elv_next_request(struct request_queue *q)
2821 {
2822 struct request *rq;
2823 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
2824
2825 WARN_ON_ONCE(q->mq_ops);
2826
2827 while (1) {
2828 list_for_each_entry(rq, &q->queue_head, queuelist) {
2829 if (blk_pm_allow_request(rq))
2830 return rq;
2831
2832 if (rq->rq_flags & RQF_SOFTBARRIER)
2833 break;
2834 }
2835
2836 /*
2837 * Flush request is running and flush request isn't queueable
2838 * in the drive, we can hold the queue till flush request is
2839 * finished. Even we don't do this, driver can't dispatch next
2840 * requests and will requeue them. And this can improve
2841 * throughput too. For example, we have request flush1, write1,
2842 * flush 2. flush1 is dispatched, then queue is hold, write1
2843 * isn't inserted to queue. After flush1 is finished, flush2
2844 * will be dispatched. Since disk cache is already clean,
2845 * flush2 will be finished very soon, so looks like flush2 is
2846 * folded to flush1.
2847 * Since the queue is hold, a flag is set to indicate the queue
2848 * should be restarted later. Please see flush_end_io() for
2849 * details.
2850 */
2851 if (fq->flush_pending_idx != fq->flush_running_idx &&
2852 !queue_flush_queueable(q)) {
2853 fq->flush_queue_delayed = 1;
2854 return NULL;
2855 }
2856 if (unlikely(blk_queue_bypass(q)) ||
2857 !q->elevator->type->ops.sq.elevator_dispatch_fn(q, 0))
2858 return NULL;
2859 }
2860 }
2861
2862 /**
2863 * blk_peek_request - peek at the top of a request queue
2864 * @q: request queue to peek at
2865 *
2866 * Description:
2867 * Return the request at the top of @q. The returned request
2868 * should be started using blk_start_request() before LLD starts
2869 * processing it.
2870 *
2871 * Return:
2872 * Pointer to the request at the top of @q if available. Null
2873 * otherwise.
2874 */
blk_peek_request(struct request_queue * q)2875 struct request *blk_peek_request(struct request_queue *q)
2876 {
2877 struct request *rq;
2878 int ret;
2879
2880 lockdep_assert_held(q->queue_lock);
2881 WARN_ON_ONCE(q->mq_ops);
2882
2883 while ((rq = elv_next_request(q)) != NULL) {
2884 if (!(rq->rq_flags & RQF_STARTED)) {
2885 /*
2886 * This is the first time the device driver
2887 * sees this request (possibly after
2888 * requeueing). Notify IO scheduler.
2889 */
2890 if (rq->rq_flags & RQF_SORTED)
2891 elv_activate_rq(q, rq);
2892
2893 /*
2894 * just mark as started even if we don't start
2895 * it, a request that has been delayed should
2896 * not be passed by new incoming requests
2897 */
2898 rq->rq_flags |= RQF_STARTED;
2899 trace_block_rq_issue(q, rq);
2900 }
2901
2902 if (!q->boundary_rq || q->boundary_rq == rq) {
2903 q->end_sector = rq_end_sector(rq);
2904 q->boundary_rq = NULL;
2905 }
2906
2907 if (rq->rq_flags & RQF_DONTPREP)
2908 break;
2909
2910 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2911 /*
2912 * make sure space for the drain appears we
2913 * know we can do this because max_hw_segments
2914 * has been adjusted to be one fewer than the
2915 * device can handle
2916 */
2917 rq->nr_phys_segments++;
2918 }
2919
2920 if (!q->prep_rq_fn)
2921 break;
2922
2923 ret = q->prep_rq_fn(q, rq);
2924 if (ret == BLKPREP_OK) {
2925 break;
2926 } else if (ret == BLKPREP_DEFER) {
2927 /*
2928 * the request may have been (partially) prepped.
2929 * we need to keep this request in the front to
2930 * avoid resource deadlock. RQF_STARTED will
2931 * prevent other fs requests from passing this one.
2932 */
2933 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2934 !(rq->rq_flags & RQF_DONTPREP)) {
2935 /*
2936 * remove the space for the drain we added
2937 * so that we don't add it again
2938 */
2939 --rq->nr_phys_segments;
2940 }
2941
2942 rq = NULL;
2943 break;
2944 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2945 rq->rq_flags |= RQF_QUIET;
2946 /*
2947 * Mark this request as started so we don't trigger
2948 * any debug logic in the end I/O path.
2949 */
2950 blk_start_request(rq);
2951 __blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2952 BLK_STS_TARGET : BLK_STS_IOERR);
2953 } else {
2954 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2955 break;
2956 }
2957 }
2958
2959 return rq;
2960 }
2961 EXPORT_SYMBOL(blk_peek_request);
2962
blk_dequeue_request(struct request * rq)2963 static void blk_dequeue_request(struct request *rq)
2964 {
2965 struct request_queue *q = rq->q;
2966
2967 BUG_ON(list_empty(&rq->queuelist));
2968 BUG_ON(ELV_ON_HASH(rq));
2969
2970 list_del_init(&rq->queuelist);
2971
2972 /*
2973 * the time frame between a request being removed from the lists
2974 * and to it is freed is accounted as io that is in progress at
2975 * the driver side.
2976 */
2977 if (blk_account_rq(rq))
2978 q->in_flight[rq_is_sync(rq)]++;
2979 }
2980
2981 /**
2982 * blk_start_request - start request processing on the driver
2983 * @req: request to dequeue
2984 *
2985 * Description:
2986 * Dequeue @req and start timeout timer on it. This hands off the
2987 * request to the driver.
2988 */
blk_start_request(struct request * req)2989 void blk_start_request(struct request *req)
2990 {
2991 lockdep_assert_held(req->q->queue_lock);
2992 WARN_ON_ONCE(req->q->mq_ops);
2993
2994 blk_dequeue_request(req);
2995
2996 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2997 req->io_start_time_ns = ktime_get_ns();
2998 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2999 req->throtl_size = blk_rq_sectors(req);
3000 #endif
3001 req->rq_flags |= RQF_STATS;
3002 rq_qos_issue(req->q, req);
3003 }
3004
3005 BUG_ON(blk_rq_is_complete(req));
3006 blk_add_timer(req);
3007 }
3008 EXPORT_SYMBOL(blk_start_request);
3009
3010 /**
3011 * blk_fetch_request - fetch a request from a request queue
3012 * @q: request queue to fetch a request from
3013 *
3014 * Description:
3015 * Return the request at the top of @q. The request is started on
3016 * return and LLD can start processing it immediately.
3017 *
3018 * Return:
3019 * Pointer to the request at the top of @q if available. Null
3020 * otherwise.
3021 */
blk_fetch_request(struct request_queue * q)3022 struct request *blk_fetch_request(struct request_queue *q)
3023 {
3024 struct request *rq;
3025
3026 lockdep_assert_held(q->queue_lock);
3027 WARN_ON_ONCE(q->mq_ops);
3028
3029 rq = blk_peek_request(q);
3030 if (rq)
3031 blk_start_request(rq);
3032 return rq;
3033 }
3034 EXPORT_SYMBOL(blk_fetch_request);
3035
3036 /*
3037 * Steal bios from a request and add them to a bio list.
3038 * The request must not have been partially completed before.
3039 */
blk_steal_bios(struct bio_list * list,struct request * rq)3040 void blk_steal_bios(struct bio_list *list, struct request *rq)
3041 {
3042 if (rq->bio) {
3043 if (list->tail)
3044 list->tail->bi_next = rq->bio;
3045 else
3046 list->head = rq->bio;
3047 list->tail = rq->biotail;
3048
3049 rq->bio = NULL;
3050 rq->biotail = NULL;
3051 }
3052
3053 rq->__data_len = 0;
3054 }
3055 EXPORT_SYMBOL_GPL(blk_steal_bios);
3056
3057 /**
3058 * blk_update_request - Special helper function for request stacking drivers
3059 * @req: the request being processed
3060 * @error: block status code
3061 * @nr_bytes: number of bytes to complete @req
3062 *
3063 * Description:
3064 * Ends I/O on a number of bytes attached to @req, but doesn't complete
3065 * the request structure even if @req doesn't have leftover.
3066 * If @req has leftover, sets it up for the next range of segments.
3067 *
3068 * This special helper function is only for request stacking drivers
3069 * (e.g. request-based dm) so that they can handle partial completion.
3070 * Actual device drivers should use blk_end_request instead.
3071 *
3072 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
3073 * %false return from this function.
3074 *
3075 * Note:
3076 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
3077 * blk_rq_bytes() and in blk_update_request().
3078 *
3079 * Return:
3080 * %false - this request doesn't have any more data
3081 * %true - this request has more data
3082 **/
blk_update_request(struct request * req,blk_status_t error,unsigned int nr_bytes)3083 bool blk_update_request(struct request *req, blk_status_t error,
3084 unsigned int nr_bytes)
3085 {
3086 int total_bytes;
3087
3088 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
3089
3090 if (!req->bio)
3091 return false;
3092
3093 if (unlikely(error && !blk_rq_is_passthrough(req) &&
3094 !(req->rq_flags & RQF_QUIET)))
3095 print_req_error(req, error);
3096
3097 blk_account_io_completion(req, nr_bytes);
3098
3099 total_bytes = 0;
3100 while (req->bio) {
3101 struct bio *bio = req->bio;
3102 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
3103
3104 if (bio_bytes == bio->bi_iter.bi_size)
3105 req->bio = bio->bi_next;
3106
3107 /* Completion has already been traced */
3108 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
3109 req_bio_endio(req, bio, bio_bytes, error);
3110
3111 total_bytes += bio_bytes;
3112 nr_bytes -= bio_bytes;
3113
3114 if (!nr_bytes)
3115 break;
3116 }
3117
3118 /*
3119 * completely done
3120 */
3121 if (!req->bio) {
3122 /*
3123 * Reset counters so that the request stacking driver
3124 * can find how many bytes remain in the request
3125 * later.
3126 */
3127 req->__data_len = 0;
3128 return false;
3129 }
3130
3131 req->__data_len -= total_bytes;
3132
3133 /* update sector only for requests with clear definition of sector */
3134 if (!blk_rq_is_passthrough(req))
3135 req->__sector += total_bytes >> 9;
3136
3137 /* mixed attributes always follow the first bio */
3138 if (req->rq_flags & RQF_MIXED_MERGE) {
3139 req->cmd_flags &= ~REQ_FAILFAST_MASK;
3140 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
3141 }
3142
3143 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
3144 /*
3145 * If total number of sectors is less than the first segment
3146 * size, something has gone terribly wrong.
3147 */
3148 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
3149 blk_dump_rq_flags(req, "request botched");
3150 req->__data_len = blk_rq_cur_bytes(req);
3151 }
3152
3153 /* recalculate the number of segments */
3154 blk_recalc_rq_segments(req);
3155 }
3156
3157 return true;
3158 }
3159 EXPORT_SYMBOL_GPL(blk_update_request);
3160
blk_update_bidi_request(struct request * rq,blk_status_t error,unsigned int nr_bytes,unsigned int bidi_bytes)3161 static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
3162 unsigned int nr_bytes,
3163 unsigned int bidi_bytes)
3164 {
3165 if (blk_update_request(rq, error, nr_bytes))
3166 return true;
3167
3168 /* Bidi request must be completed as a whole */
3169 if (unlikely(blk_bidi_rq(rq)) &&
3170 blk_update_request(rq->next_rq, error, bidi_bytes))
3171 return true;
3172
3173 if (blk_queue_add_random(rq->q))
3174 add_disk_randomness(rq->rq_disk);
3175
3176 return false;
3177 }
3178
3179 /**
3180 * blk_unprep_request - unprepare a request
3181 * @req: the request
3182 *
3183 * This function makes a request ready for complete resubmission (or
3184 * completion). It happens only after all error handling is complete,
3185 * so represents the appropriate moment to deallocate any resources
3186 * that were allocated to the request in the prep_rq_fn. The queue
3187 * lock is held when calling this.
3188 */
blk_unprep_request(struct request * req)3189 void blk_unprep_request(struct request *req)
3190 {
3191 struct request_queue *q = req->q;
3192
3193 req->rq_flags &= ~RQF_DONTPREP;
3194 if (q->unprep_rq_fn)
3195 q->unprep_rq_fn(q, req);
3196 }
3197 EXPORT_SYMBOL_GPL(blk_unprep_request);
3198
blk_finish_request(struct request * req,blk_status_t error)3199 void blk_finish_request(struct request *req, blk_status_t error)
3200 {
3201 struct request_queue *q = req->q;
3202 u64 now = ktime_get_ns();
3203
3204 lockdep_assert_held(req->q->queue_lock);
3205 WARN_ON_ONCE(q->mq_ops);
3206
3207 if (req->rq_flags & RQF_STATS)
3208 blk_stat_add(req, now);
3209
3210 if (req->rq_flags & RQF_QUEUED)
3211 blk_queue_end_tag(q, req);
3212
3213 BUG_ON(blk_queued_rq(req));
3214
3215 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
3216 laptop_io_completion(req->q->backing_dev_info);
3217
3218 blk_delete_timer(req);
3219
3220 if (req->rq_flags & RQF_DONTPREP)
3221 blk_unprep_request(req);
3222
3223 blk_account_io_done(req, now);
3224
3225 if (req->end_io) {
3226 rq_qos_done(q, req);
3227 req->end_io(req, error);
3228 } else {
3229 if (blk_bidi_rq(req))
3230 __blk_put_request(req->next_rq->q, req->next_rq);
3231
3232 __blk_put_request(q, req);
3233 }
3234 }
3235 EXPORT_SYMBOL(blk_finish_request);
3236
3237 /**
3238 * blk_end_bidi_request - Complete a bidi request
3239 * @rq: the request to complete
3240 * @error: block status code
3241 * @nr_bytes: number of bytes to complete @rq
3242 * @bidi_bytes: number of bytes to complete @rq->next_rq
3243 *
3244 * Description:
3245 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
3246 * Drivers that supports bidi can safely call this member for any
3247 * type of request, bidi or uni. In the later case @bidi_bytes is
3248 * just ignored.
3249 *
3250 * Return:
3251 * %false - we are done with this request
3252 * %true - still buffers pending for this request
3253 **/
blk_end_bidi_request(struct request * rq,blk_status_t error,unsigned int nr_bytes,unsigned int bidi_bytes)3254 static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
3255 unsigned int nr_bytes, unsigned int bidi_bytes)
3256 {
3257 struct request_queue *q = rq->q;
3258 unsigned long flags;
3259
3260 WARN_ON_ONCE(q->mq_ops);
3261
3262 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3263 return true;
3264
3265 spin_lock_irqsave(q->queue_lock, flags);
3266 blk_finish_request(rq, error);
3267 spin_unlock_irqrestore(q->queue_lock, flags);
3268
3269 return false;
3270 }
3271
3272 /**
3273 * __blk_end_bidi_request - Complete a bidi request with queue lock held
3274 * @rq: the request to complete
3275 * @error: block status code
3276 * @nr_bytes: number of bytes to complete @rq
3277 * @bidi_bytes: number of bytes to complete @rq->next_rq
3278 *
3279 * Description:
3280 * Identical to blk_end_bidi_request() except that queue lock is
3281 * assumed to be locked on entry and remains so on return.
3282 *
3283 * Return:
3284 * %false - we are done with this request
3285 * %true - still buffers pending for this request
3286 **/
__blk_end_bidi_request(struct request * rq,blk_status_t error,unsigned int nr_bytes,unsigned int bidi_bytes)3287 static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
3288 unsigned int nr_bytes, unsigned int bidi_bytes)
3289 {
3290 lockdep_assert_held(rq->q->queue_lock);
3291 WARN_ON_ONCE(rq->q->mq_ops);
3292
3293 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3294 return true;
3295
3296 blk_finish_request(rq, error);
3297
3298 return false;
3299 }
3300
3301 /**
3302 * blk_end_request - Helper function for drivers to complete the request.
3303 * @rq: the request being processed
3304 * @error: block status code
3305 * @nr_bytes: number of bytes to complete
3306 *
3307 * Description:
3308 * Ends I/O on a number of bytes attached to @rq.
3309 * If @rq has leftover, sets it up for the next range of segments.
3310 *
3311 * Return:
3312 * %false - we are done with this request
3313 * %true - still buffers pending for this request
3314 **/
blk_end_request(struct request * rq,blk_status_t error,unsigned int nr_bytes)3315 bool blk_end_request(struct request *rq, blk_status_t error,
3316 unsigned int nr_bytes)
3317 {
3318 WARN_ON_ONCE(rq->q->mq_ops);
3319 return blk_end_bidi_request(rq, error, nr_bytes, 0);
3320 }
3321 EXPORT_SYMBOL(blk_end_request);
3322
3323 /**
3324 * blk_end_request_all - Helper function for drives to finish the request.
3325 * @rq: the request to finish
3326 * @error: block status code
3327 *
3328 * Description:
3329 * Completely finish @rq.
3330 */
blk_end_request_all(struct request * rq,blk_status_t error)3331 void blk_end_request_all(struct request *rq, blk_status_t error)
3332 {
3333 bool pending;
3334 unsigned int bidi_bytes = 0;
3335
3336 if (unlikely(blk_bidi_rq(rq)))
3337 bidi_bytes = blk_rq_bytes(rq->next_rq);
3338
3339 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3340 BUG_ON(pending);
3341 }
3342 EXPORT_SYMBOL(blk_end_request_all);
3343
3344 /**
3345 * __blk_end_request - Helper function for drivers to complete the request.
3346 * @rq: the request being processed
3347 * @error: block status code
3348 * @nr_bytes: number of bytes to complete
3349 *
3350 * Description:
3351 * Must be called with queue lock held unlike blk_end_request().
3352 *
3353 * Return:
3354 * %false - we are done with this request
3355 * %true - still buffers pending for this request
3356 **/
__blk_end_request(struct request * rq,blk_status_t error,unsigned int nr_bytes)3357 bool __blk_end_request(struct request *rq, blk_status_t error,
3358 unsigned int nr_bytes)
3359 {
3360 lockdep_assert_held(rq->q->queue_lock);
3361 WARN_ON_ONCE(rq->q->mq_ops);
3362
3363 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
3364 }
3365 EXPORT_SYMBOL(__blk_end_request);
3366
3367 /**
3368 * __blk_end_request_all - Helper function for drives to finish the request.
3369 * @rq: the request to finish
3370 * @error: block status code
3371 *
3372 * Description:
3373 * Completely finish @rq. Must be called with queue lock held.
3374 */
__blk_end_request_all(struct request * rq,blk_status_t error)3375 void __blk_end_request_all(struct request *rq, blk_status_t error)
3376 {
3377 bool pending;
3378 unsigned int bidi_bytes = 0;
3379
3380 lockdep_assert_held(rq->q->queue_lock);
3381 WARN_ON_ONCE(rq->q->mq_ops);
3382
3383 if (unlikely(blk_bidi_rq(rq)))
3384 bidi_bytes = blk_rq_bytes(rq->next_rq);
3385
3386 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3387 BUG_ON(pending);
3388 }
3389 EXPORT_SYMBOL(__blk_end_request_all);
3390
3391 /**
3392 * __blk_end_request_cur - Helper function to finish the current request chunk.
3393 * @rq: the request to finish the current chunk for
3394 * @error: block status code
3395 *
3396 * Description:
3397 * Complete the current consecutively mapped chunk from @rq. Must
3398 * be called with queue lock held.
3399 *
3400 * Return:
3401 * %false - we are done with this request
3402 * %true - still buffers pending for this request
3403 */
__blk_end_request_cur(struct request * rq,blk_status_t error)3404 bool __blk_end_request_cur(struct request *rq, blk_status_t error)
3405 {
3406 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
3407 }
3408 EXPORT_SYMBOL(__blk_end_request_cur);
3409
blk_rq_bio_prep(struct request_queue * q,struct request * rq,struct bio * bio)3410 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3411 struct bio *bio)
3412 {
3413 if (bio_has_data(bio))
3414 rq->nr_phys_segments = bio_phys_segments(q, bio);
3415 else if (bio_op(bio) == REQ_OP_DISCARD)
3416 rq->nr_phys_segments = 1;
3417
3418 rq->__data_len = bio->bi_iter.bi_size;
3419 rq->bio = rq->biotail = bio;
3420
3421 if (bio->bi_disk)
3422 rq->rq_disk = bio->bi_disk;
3423 }
3424
3425 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3426 /**
3427 * rq_flush_dcache_pages - Helper function to flush all pages in a request
3428 * @rq: the request to be flushed
3429 *
3430 * Description:
3431 * Flush all pages in @rq.
3432 */
rq_flush_dcache_pages(struct request * rq)3433 void rq_flush_dcache_pages(struct request *rq)
3434 {
3435 struct req_iterator iter;
3436 struct bio_vec bvec;
3437
3438 rq_for_each_segment(bvec, rq, iter)
3439 flush_dcache_page(bvec.bv_page);
3440 }
3441 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3442 #endif
3443
3444 /**
3445 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3446 * @q : the queue of the device being checked
3447 *
3448 * Description:
3449 * Check if underlying low-level drivers of a device are busy.
3450 * If the drivers want to export their busy state, they must set own
3451 * exporting function using blk_queue_lld_busy() first.
3452 *
3453 * Basically, this function is used only by request stacking drivers
3454 * to stop dispatching requests to underlying devices when underlying
3455 * devices are busy. This behavior helps more I/O merging on the queue
3456 * of the request stacking driver and prevents I/O throughput regression
3457 * on burst I/O load.
3458 *
3459 * Return:
3460 * 0 - Not busy (The request stacking driver should dispatch request)
3461 * 1 - Busy (The request stacking driver should stop dispatching request)
3462 */
blk_lld_busy(struct request_queue * q)3463 int blk_lld_busy(struct request_queue *q)
3464 {
3465 if (q->lld_busy_fn)
3466 return q->lld_busy_fn(q);
3467
3468 return 0;
3469 }
3470 EXPORT_SYMBOL_GPL(blk_lld_busy);
3471
3472 /**
3473 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3474 * @rq: the clone request to be cleaned up
3475 *
3476 * Description:
3477 * Free all bios in @rq for a cloned request.
3478 */
blk_rq_unprep_clone(struct request * rq)3479 void blk_rq_unprep_clone(struct request *rq)
3480 {
3481 struct bio *bio;
3482
3483 while ((bio = rq->bio) != NULL) {
3484 rq->bio = bio->bi_next;
3485
3486 bio_put(bio);
3487 }
3488 }
3489 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3490
3491 /*
3492 * Copy attributes of the original request to the clone request.
3493 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3494 */
__blk_rq_prep_clone(struct request * dst,struct request * src)3495 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3496 {
3497 dst->cpu = src->cpu;
3498 dst->__sector = blk_rq_pos(src);
3499 dst->__data_len = blk_rq_bytes(src);
3500 if (src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3501 dst->rq_flags |= RQF_SPECIAL_PAYLOAD;
3502 dst->special_vec = src->special_vec;
3503 }
3504 dst->nr_phys_segments = src->nr_phys_segments;
3505 dst->ioprio = src->ioprio;
3506 dst->extra_len = src->extra_len;
3507 }
3508
3509 /**
3510 * blk_rq_prep_clone - Helper function to setup clone request
3511 * @rq: the request to be setup
3512 * @rq_src: original request to be cloned
3513 * @bs: bio_set that bios for clone are allocated from
3514 * @gfp_mask: memory allocation mask for bio
3515 * @bio_ctr: setup function to be called for each clone bio.
3516 * Returns %0 for success, non %0 for failure.
3517 * @data: private data to be passed to @bio_ctr
3518 *
3519 * Description:
3520 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3521 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3522 * are not copied, and copying such parts is the caller's responsibility.
3523 * Also, pages which the original bios are pointing to are not copied
3524 * and the cloned bios just point same pages.
3525 * So cloned bios must be completed before original bios, which means
3526 * the caller must complete @rq before @rq_src.
3527 */
blk_rq_prep_clone(struct request * rq,struct request * rq_src,struct bio_set * bs,gfp_t gfp_mask,int (* bio_ctr)(struct bio *,struct bio *,void *),void * data)3528 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3529 struct bio_set *bs, gfp_t gfp_mask,
3530 int (*bio_ctr)(struct bio *, struct bio *, void *),
3531 void *data)
3532 {
3533 struct bio *bio, *bio_src;
3534
3535 if (!bs)
3536 bs = &fs_bio_set;
3537
3538 __rq_for_each_bio(bio_src, rq_src) {
3539 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3540 if (!bio)
3541 goto free_and_out;
3542
3543 if (bio_ctr && bio_ctr(bio, bio_src, data))
3544 goto free_and_out;
3545
3546 if (rq->bio) {
3547 rq->biotail->bi_next = bio;
3548 rq->biotail = bio;
3549 } else
3550 rq->bio = rq->biotail = bio;
3551 }
3552
3553 __blk_rq_prep_clone(rq, rq_src);
3554
3555 return 0;
3556
3557 free_and_out:
3558 if (bio)
3559 bio_put(bio);
3560 blk_rq_unprep_clone(rq);
3561
3562 return -ENOMEM;
3563 }
3564 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3565
kblockd_schedule_work(struct work_struct * work)3566 int kblockd_schedule_work(struct work_struct *work)
3567 {
3568 return queue_work(kblockd_workqueue, work);
3569 }
3570 EXPORT_SYMBOL(kblockd_schedule_work);
3571
kblockd_schedule_work_on(int cpu,struct work_struct * work)3572 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3573 {
3574 return queue_work_on(cpu, kblockd_workqueue, work);
3575 }
3576 EXPORT_SYMBOL(kblockd_schedule_work_on);
3577
kblockd_mod_delayed_work_on(int cpu,struct delayed_work * dwork,unsigned long delay)3578 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3579 unsigned long delay)
3580 {
3581 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3582 }
3583 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3584
3585 /**
3586 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3587 * @plug: The &struct blk_plug that needs to be initialized
3588 *
3589 * Description:
3590 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3591 * pending I/O should the task end up blocking between blk_start_plug() and
3592 * blk_finish_plug(). This is important from a performance perspective, but
3593 * also ensures that we don't deadlock. For instance, if the task is blocking
3594 * for a memory allocation, memory reclaim could end up wanting to free a
3595 * page belonging to that request that is currently residing in our private
3596 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3597 * this kind of deadlock.
3598 */
blk_start_plug(struct blk_plug * plug)3599 void blk_start_plug(struct blk_plug *plug)
3600 {
3601 struct task_struct *tsk = current;
3602
3603 /*
3604 * If this is a nested plug, don't actually assign it.
3605 */
3606 if (tsk->plug)
3607 return;
3608
3609 INIT_LIST_HEAD(&plug->list);
3610 INIT_LIST_HEAD(&plug->mq_list);
3611 INIT_LIST_HEAD(&plug->cb_list);
3612 /*
3613 * Store ordering should not be needed here, since a potential
3614 * preempt will imply a full memory barrier
3615 */
3616 tsk->plug = plug;
3617 }
3618 EXPORT_SYMBOL(blk_start_plug);
3619
plug_rq_cmp(void * priv,struct list_head * a,struct list_head * b)3620 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3621 {
3622 struct request *rqa = container_of(a, struct request, queuelist);
3623 struct request *rqb = container_of(b, struct request, queuelist);
3624
3625 return !(rqa->q < rqb->q ||
3626 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3627 }
3628
3629 /*
3630 * If 'from_schedule' is true, then postpone the dispatch of requests
3631 * until a safe kblockd context. We due this to avoid accidental big
3632 * additional stack usage in driver dispatch, in places where the originally
3633 * plugger did not intend it.
3634 */
queue_unplugged(struct request_queue * q,unsigned int depth,bool from_schedule)3635 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3636 bool from_schedule)
3637 __releases(q->queue_lock)
3638 {
3639 lockdep_assert_held(q->queue_lock);
3640
3641 trace_block_unplug(q, depth, !from_schedule);
3642
3643 if (from_schedule)
3644 blk_run_queue_async(q);
3645 else
3646 __blk_run_queue(q);
3647 spin_unlock_irq(q->queue_lock);
3648 }
3649
flush_plug_callbacks(struct blk_plug * plug,bool from_schedule)3650 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3651 {
3652 LIST_HEAD(callbacks);
3653
3654 while (!list_empty(&plug->cb_list)) {
3655 list_splice_init(&plug->cb_list, &callbacks);
3656
3657 while (!list_empty(&callbacks)) {
3658 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3659 struct blk_plug_cb,
3660 list);
3661 list_del(&cb->list);
3662 cb->callback(cb, from_schedule);
3663 }
3664 }
3665 }
3666
blk_check_plugged(blk_plug_cb_fn unplug,void * data,int size)3667 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3668 int size)
3669 {
3670 struct blk_plug *plug = current->plug;
3671 struct blk_plug_cb *cb;
3672
3673 if (!plug)
3674 return NULL;
3675
3676 list_for_each_entry(cb, &plug->cb_list, list)
3677 if (cb->callback == unplug && cb->data == data)
3678 return cb;
3679
3680 /* Not currently on the callback list */
3681 BUG_ON(size < sizeof(*cb));
3682 cb = kzalloc(size, GFP_ATOMIC);
3683 if (cb) {
3684 cb->data = data;
3685 cb->callback = unplug;
3686 list_add(&cb->list, &plug->cb_list);
3687 }
3688 return cb;
3689 }
3690 EXPORT_SYMBOL(blk_check_plugged);
3691
blk_flush_plug_list(struct blk_plug * plug,bool from_schedule)3692 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3693 {
3694 struct request_queue *q;
3695 struct request *rq;
3696 LIST_HEAD(list);
3697 unsigned int depth;
3698
3699 flush_plug_callbacks(plug, from_schedule);
3700
3701 if (!list_empty(&plug->mq_list))
3702 blk_mq_flush_plug_list(plug, from_schedule);
3703
3704 if (list_empty(&plug->list))
3705 return;
3706
3707 list_splice_init(&plug->list, &list);
3708
3709 list_sort(NULL, &list, plug_rq_cmp);
3710
3711 q = NULL;
3712 depth = 0;
3713
3714 while (!list_empty(&list)) {
3715 rq = list_entry_rq(list.next);
3716 list_del_init(&rq->queuelist);
3717 BUG_ON(!rq->q);
3718 if (rq->q != q) {
3719 /*
3720 * This drops the queue lock
3721 */
3722 if (q)
3723 queue_unplugged(q, depth, from_schedule);
3724 q = rq->q;
3725 depth = 0;
3726 spin_lock_irq(q->queue_lock);
3727 }
3728
3729 /*
3730 * Short-circuit if @q is dead
3731 */
3732 if (unlikely(blk_queue_dying(q))) {
3733 __blk_end_request_all(rq, BLK_STS_IOERR);
3734 continue;
3735 }
3736
3737 /*
3738 * rq is already accounted, so use raw insert
3739 */
3740 if (op_is_flush(rq->cmd_flags))
3741 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3742 else
3743 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3744
3745 depth++;
3746 }
3747
3748 /*
3749 * This drops the queue lock
3750 */
3751 if (q)
3752 queue_unplugged(q, depth, from_schedule);
3753 }
3754
blk_finish_plug(struct blk_plug * plug)3755 void blk_finish_plug(struct blk_plug *plug)
3756 {
3757 if (plug != current->plug)
3758 return;
3759 blk_flush_plug_list(plug, false);
3760
3761 current->plug = NULL;
3762 }
3763 EXPORT_SYMBOL(blk_finish_plug);
3764
3765 #ifdef CONFIG_PM
3766 /**
3767 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3768 * @q: the queue of the device
3769 * @dev: the device the queue belongs to
3770 *
3771 * Description:
3772 * Initialize runtime-PM-related fields for @q and start auto suspend for
3773 * @dev. Drivers that want to take advantage of request-based runtime PM
3774 * should call this function after @dev has been initialized, and its
3775 * request queue @q has been allocated, and runtime PM for it can not happen
3776 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3777 * cases, driver should call this function before any I/O has taken place.
3778 *
3779 * This function takes care of setting up using auto suspend for the device,
3780 * the autosuspend delay is set to -1 to make runtime suspend impossible
3781 * until an updated value is either set by user or by driver. Drivers do
3782 * not need to touch other autosuspend settings.
3783 *
3784 * The block layer runtime PM is request based, so only works for drivers
3785 * that use request as their IO unit instead of those directly use bio's.
3786 */
blk_pm_runtime_init(struct request_queue * q,struct device * dev)3787 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3788 {
3789 /* Don't enable runtime PM for blk-mq until it is ready */
3790 if (q->mq_ops) {
3791 pm_runtime_disable(dev);
3792 return;
3793 }
3794
3795 q->dev = dev;
3796 q->rpm_status = RPM_ACTIVE;
3797 pm_runtime_set_autosuspend_delay(q->dev, -1);
3798 pm_runtime_use_autosuspend(q->dev);
3799 }
3800 EXPORT_SYMBOL(blk_pm_runtime_init);
3801
3802 /**
3803 * blk_pre_runtime_suspend - Pre runtime suspend check
3804 * @q: the queue of the device
3805 *
3806 * Description:
3807 * This function will check if runtime suspend is allowed for the device
3808 * by examining if there are any requests pending in the queue. If there
3809 * are requests pending, the device can not be runtime suspended; otherwise,
3810 * the queue's status will be updated to SUSPENDING and the driver can
3811 * proceed to suspend the device.
3812 *
3813 * For the not allowed case, we mark last busy for the device so that
3814 * runtime PM core will try to autosuspend it some time later.
3815 *
3816 * This function should be called near the start of the device's
3817 * runtime_suspend callback.
3818 *
3819 * Return:
3820 * 0 - OK to runtime suspend the device
3821 * -EBUSY - Device should not be runtime suspended
3822 */
blk_pre_runtime_suspend(struct request_queue * q)3823 int blk_pre_runtime_suspend(struct request_queue *q)
3824 {
3825 int ret = 0;
3826
3827 if (!q->dev)
3828 return ret;
3829
3830 spin_lock_irq(q->queue_lock);
3831 if (q->nr_pending) {
3832 ret = -EBUSY;
3833 pm_runtime_mark_last_busy(q->dev);
3834 } else {
3835 q->rpm_status = RPM_SUSPENDING;
3836 }
3837 spin_unlock_irq(q->queue_lock);
3838 return ret;
3839 }
3840 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3841
3842 /**
3843 * blk_post_runtime_suspend - Post runtime suspend processing
3844 * @q: the queue of the device
3845 * @err: return value of the device's runtime_suspend function
3846 *
3847 * Description:
3848 * Update the queue's runtime status according to the return value of the
3849 * device's runtime suspend function and mark last busy for the device so
3850 * that PM core will try to auto suspend the device at a later time.
3851 *
3852 * This function should be called near the end of the device's
3853 * runtime_suspend callback.
3854 */
blk_post_runtime_suspend(struct request_queue * q,int err)3855 void blk_post_runtime_suspend(struct request_queue *q, int err)
3856 {
3857 if (!q->dev)
3858 return;
3859
3860 spin_lock_irq(q->queue_lock);
3861 if (!err) {
3862 q->rpm_status = RPM_SUSPENDED;
3863 } else {
3864 q->rpm_status = RPM_ACTIVE;
3865 pm_runtime_mark_last_busy(q->dev);
3866 }
3867 spin_unlock_irq(q->queue_lock);
3868 }
3869 EXPORT_SYMBOL(blk_post_runtime_suspend);
3870
3871 /**
3872 * blk_pre_runtime_resume - Pre runtime resume processing
3873 * @q: the queue of the device
3874 *
3875 * Description:
3876 * Update the queue's runtime status to RESUMING in preparation for the
3877 * runtime resume of the device.
3878 *
3879 * This function should be called near the start of the device's
3880 * runtime_resume callback.
3881 */
blk_pre_runtime_resume(struct request_queue * q)3882 void blk_pre_runtime_resume(struct request_queue *q)
3883 {
3884 if (!q->dev)
3885 return;
3886
3887 spin_lock_irq(q->queue_lock);
3888 q->rpm_status = RPM_RESUMING;
3889 spin_unlock_irq(q->queue_lock);
3890 }
3891 EXPORT_SYMBOL(blk_pre_runtime_resume);
3892
3893 /**
3894 * blk_post_runtime_resume - Post runtime resume processing
3895 * @q: the queue of the device
3896 * @err: return value of the device's runtime_resume function
3897 *
3898 * Description:
3899 * Update the queue's runtime status according to the return value of the
3900 * device's runtime_resume function. If it is successfully resumed, process
3901 * the requests that are queued into the device's queue when it is resuming
3902 * and then mark last busy and initiate autosuspend for it.
3903 *
3904 * This function should be called near the end of the device's
3905 * runtime_resume callback.
3906 */
blk_post_runtime_resume(struct request_queue * q,int err)3907 void blk_post_runtime_resume(struct request_queue *q, int err)
3908 {
3909 if (!q->dev)
3910 return;
3911
3912 spin_lock_irq(q->queue_lock);
3913 if (!err) {
3914 q->rpm_status = RPM_ACTIVE;
3915 __blk_run_queue(q);
3916 pm_runtime_mark_last_busy(q->dev);
3917 pm_request_autosuspend(q->dev);
3918 } else {
3919 q->rpm_status = RPM_SUSPENDED;
3920 }
3921 spin_unlock_irq(q->queue_lock);
3922 }
3923 EXPORT_SYMBOL(blk_post_runtime_resume);
3924
3925 /**
3926 * blk_set_runtime_active - Force runtime status of the queue to be active
3927 * @q: the queue of the device
3928 *
3929 * If the device is left runtime suspended during system suspend the resume
3930 * hook typically resumes the device and corrects runtime status
3931 * accordingly. However, that does not affect the queue runtime PM status
3932 * which is still "suspended". This prevents processing requests from the
3933 * queue.
3934 *
3935 * This function can be used in driver's resume hook to correct queue
3936 * runtime PM status and re-enable peeking requests from the queue. It
3937 * should be called before first request is added to the queue.
3938 */
blk_set_runtime_active(struct request_queue * q)3939 void blk_set_runtime_active(struct request_queue *q)
3940 {
3941 spin_lock_irq(q->queue_lock);
3942 q->rpm_status = RPM_ACTIVE;
3943 pm_runtime_mark_last_busy(q->dev);
3944 pm_request_autosuspend(q->dev);
3945 spin_unlock_irq(q->queue_lock);
3946 }
3947 EXPORT_SYMBOL(blk_set_runtime_active);
3948 #endif
3949
blk_dev_init(void)3950 int __init blk_dev_init(void)
3951 {
3952 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3953 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3954 FIELD_SIZEOF(struct request, cmd_flags));
3955 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3956 FIELD_SIZEOF(struct bio, bi_opf));
3957
3958 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3959 kblockd_workqueue = alloc_workqueue("kblockd",
3960 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3961 if (!kblockd_workqueue)
3962 panic("Failed to create kblockd\n");
3963
3964 request_cachep = kmem_cache_create("blkdev_requests",
3965 sizeof(struct request), 0, SLAB_PANIC, NULL);
3966
3967 blk_requestq_cachep = kmem_cache_create("request_queue",
3968 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3969
3970 #ifdef CONFIG_DEBUG_FS
3971 blk_debugfs_root = debugfs_create_dir("block", NULL);
3972 #endif
3973
3974 return 0;
3975 }
3976