1 /*
2  * Functions related to setting various queue properties from drivers
3  */
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/init.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/bootmem.h>	/* for max_pfn/max_low_pfn */
10 #include <linux/gcd.h>
11 #include <linux/lcm.h>
12 #include <linux/jiffies.h>
13 #include <linux/gfp.h>
14 
15 #include "blk.h"
16 #include "blk-wbt.h"
17 
18 unsigned long blk_max_low_pfn;
19 EXPORT_SYMBOL(blk_max_low_pfn);
20 
21 unsigned long blk_max_pfn;
22 
23 /**
24  * blk_queue_prep_rq - set a prepare_request function for queue
25  * @q:		queue
26  * @pfn:	prepare_request function
27  *
28  * It's possible for a queue to register a prepare_request callback which
29  * is invoked before the request is handed to the request_fn. The goal of
30  * the function is to prepare a request for I/O, it can be used to build a
31  * cdb from the request data for instance.
32  *
33  */
blk_queue_prep_rq(struct request_queue * q,prep_rq_fn * pfn)34 void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
35 {
36 	q->prep_rq_fn = pfn;
37 }
38 EXPORT_SYMBOL(blk_queue_prep_rq);
39 
40 /**
41  * blk_queue_unprep_rq - set an unprepare_request function for queue
42  * @q:		queue
43  * @ufn:	unprepare_request function
44  *
45  * It's possible for a queue to register an unprepare_request callback
46  * which is invoked before the request is finally completed. The goal
47  * of the function is to deallocate any data that was allocated in the
48  * prepare_request callback.
49  *
50  */
blk_queue_unprep_rq(struct request_queue * q,unprep_rq_fn * ufn)51 void blk_queue_unprep_rq(struct request_queue *q, unprep_rq_fn *ufn)
52 {
53 	q->unprep_rq_fn = ufn;
54 }
55 EXPORT_SYMBOL(blk_queue_unprep_rq);
56 
blk_queue_softirq_done(struct request_queue * q,softirq_done_fn * fn)57 void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
58 {
59 	q->softirq_done_fn = fn;
60 }
61 EXPORT_SYMBOL(blk_queue_softirq_done);
62 
blk_queue_rq_timeout(struct request_queue * q,unsigned int timeout)63 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
64 {
65 	q->rq_timeout = timeout;
66 }
67 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
68 
blk_queue_rq_timed_out(struct request_queue * q,rq_timed_out_fn * fn)69 void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn)
70 {
71 	WARN_ON_ONCE(q->mq_ops);
72 	q->rq_timed_out_fn = fn;
73 }
74 EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out);
75 
blk_queue_lld_busy(struct request_queue * q,lld_busy_fn * fn)76 void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn)
77 {
78 	q->lld_busy_fn = fn;
79 }
80 EXPORT_SYMBOL_GPL(blk_queue_lld_busy);
81 
82 /**
83  * blk_set_default_limits - reset limits to default values
84  * @lim:  the queue_limits structure to reset
85  *
86  * Description:
87  *   Returns a queue_limit struct to its default state.
88  */
blk_set_default_limits(struct queue_limits * lim)89 void blk_set_default_limits(struct queue_limits *lim)
90 {
91 	lim->max_segments = BLK_MAX_SEGMENTS;
92 	lim->max_discard_segments = 1;
93 	lim->max_integrity_segments = 0;
94 	lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
95 	lim->virt_boundary_mask = 0;
96 	lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
97 	lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
98 	lim->max_dev_sectors = 0;
99 	lim->chunk_sectors = 0;
100 	lim->max_write_same_sectors = 0;
101 	lim->max_write_zeroes_sectors = 0;
102 	lim->max_discard_sectors = 0;
103 	lim->max_hw_discard_sectors = 0;
104 	lim->discard_granularity = 0;
105 	lim->discard_alignment = 0;
106 	lim->discard_misaligned = 0;
107 	lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
108 	lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
109 	lim->alignment_offset = 0;
110 	lim->io_opt = 0;
111 	lim->misaligned = 0;
112 	lim->cluster = 1;
113 	lim->zoned = BLK_ZONED_NONE;
114 }
115 EXPORT_SYMBOL(blk_set_default_limits);
116 
117 /**
118  * blk_set_stacking_limits - set default limits for stacking devices
119  * @lim:  the queue_limits structure to reset
120  *
121  * Description:
122  *   Returns a queue_limit struct to its default state. Should be used
123  *   by stacking drivers like DM that have no internal limits.
124  */
blk_set_stacking_limits(struct queue_limits * lim)125 void blk_set_stacking_limits(struct queue_limits *lim)
126 {
127 	blk_set_default_limits(lim);
128 
129 	/* Inherit limits from component devices */
130 	lim->max_segments = USHRT_MAX;
131 	lim->max_discard_segments = USHRT_MAX;
132 	lim->max_hw_sectors = UINT_MAX;
133 	lim->max_segment_size = UINT_MAX;
134 	lim->max_sectors = UINT_MAX;
135 	lim->max_dev_sectors = UINT_MAX;
136 	lim->max_write_same_sectors = UINT_MAX;
137 	lim->max_write_zeroes_sectors = UINT_MAX;
138 }
139 EXPORT_SYMBOL(blk_set_stacking_limits);
140 
141 /**
142  * blk_queue_make_request - define an alternate make_request function for a device
143  * @q:  the request queue for the device to be affected
144  * @mfn: the alternate make_request function
145  *
146  * Description:
147  *    The normal way for &struct bios to be passed to a device
148  *    driver is for them to be collected into requests on a request
149  *    queue, and then to allow the device driver to select requests
150  *    off that queue when it is ready.  This works well for many block
151  *    devices. However some block devices (typically virtual devices
152  *    such as md or lvm) do not benefit from the processing on the
153  *    request queue, and are served best by having the requests passed
154  *    directly to them.  This can be achieved by providing a function
155  *    to blk_queue_make_request().
156  *
157  * Caveat:
158  *    The driver that does this *must* be able to deal appropriately
159  *    with buffers in "highmemory". This can be accomplished by either calling
160  *    kmap_atomic() to get a temporary kernel mapping, or by calling
161  *    blk_queue_bounce() to create a buffer in normal memory.
162  **/
blk_queue_make_request(struct request_queue * q,make_request_fn * mfn)163 void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
164 {
165 	/*
166 	 * set defaults
167 	 */
168 	q->nr_requests = BLKDEV_MAX_RQ;
169 
170 	q->make_request_fn = mfn;
171 	blk_queue_dma_alignment(q, 511);
172 	blk_queue_congestion_threshold(q);
173 	q->nr_batching = BLK_BATCH_REQ;
174 
175 	blk_set_default_limits(&q->limits);
176 }
177 EXPORT_SYMBOL(blk_queue_make_request);
178 
179 /**
180  * blk_queue_bounce_limit - set bounce buffer limit for queue
181  * @q: the request queue for the device
182  * @max_addr: the maximum address the device can handle
183  *
184  * Description:
185  *    Different hardware can have different requirements as to what pages
186  *    it can do I/O directly to. A low level driver can call
187  *    blk_queue_bounce_limit to have lower memory pages allocated as bounce
188  *    buffers for doing I/O to pages residing above @max_addr.
189  **/
blk_queue_bounce_limit(struct request_queue * q,u64 max_addr)190 void blk_queue_bounce_limit(struct request_queue *q, u64 max_addr)
191 {
192 	unsigned long b_pfn = max_addr >> PAGE_SHIFT;
193 	int dma = 0;
194 
195 	q->bounce_gfp = GFP_NOIO;
196 #if BITS_PER_LONG == 64
197 	/*
198 	 * Assume anything <= 4GB can be handled by IOMMU.  Actually
199 	 * some IOMMUs can handle everything, but I don't know of a
200 	 * way to test this here.
201 	 */
202 	if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
203 		dma = 1;
204 	q->limits.bounce_pfn = max(max_low_pfn, b_pfn);
205 #else
206 	if (b_pfn < blk_max_low_pfn)
207 		dma = 1;
208 	q->limits.bounce_pfn = b_pfn;
209 #endif
210 	if (dma) {
211 		init_emergency_isa_pool();
212 		q->bounce_gfp = GFP_NOIO | GFP_DMA;
213 		q->limits.bounce_pfn = b_pfn;
214 	}
215 }
216 EXPORT_SYMBOL(blk_queue_bounce_limit);
217 
218 /**
219  * blk_queue_max_hw_sectors - set max sectors for a request for this queue
220  * @q:  the request queue for the device
221  * @max_hw_sectors:  max hardware sectors in the usual 512b unit
222  *
223  * Description:
224  *    Enables a low level driver to set a hard upper limit,
225  *    max_hw_sectors, on the size of requests.  max_hw_sectors is set by
226  *    the device driver based upon the capabilities of the I/O
227  *    controller.
228  *
229  *    max_dev_sectors is a hard limit imposed by the storage device for
230  *    READ/WRITE requests. It is set by the disk driver.
231  *
232  *    max_sectors is a soft limit imposed by the block layer for
233  *    filesystem type requests.  This value can be overridden on a
234  *    per-device basis in /sys/block/<device>/queue/max_sectors_kb.
235  *    The soft limit can not exceed max_hw_sectors.
236  **/
blk_queue_max_hw_sectors(struct request_queue * q,unsigned int max_hw_sectors)237 void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
238 {
239 	struct queue_limits *limits = &q->limits;
240 	unsigned int max_sectors;
241 
242 	if ((max_hw_sectors << 9) < PAGE_SIZE) {
243 		max_hw_sectors = 1 << (PAGE_SHIFT - 9);
244 		printk(KERN_INFO "%s: set to minimum %d\n",
245 		       __func__, max_hw_sectors);
246 	}
247 
248 	limits->max_hw_sectors = max_hw_sectors;
249 	max_sectors = min_not_zero(max_hw_sectors, limits->max_dev_sectors);
250 	max_sectors = min_t(unsigned int, max_sectors, BLK_DEF_MAX_SECTORS);
251 	limits->max_sectors = max_sectors;
252 	q->backing_dev_info->io_pages = max_sectors >> (PAGE_SHIFT - 9);
253 }
254 EXPORT_SYMBOL(blk_queue_max_hw_sectors);
255 
256 /**
257  * blk_queue_chunk_sectors - set size of the chunk for this queue
258  * @q:  the request queue for the device
259  * @chunk_sectors:  chunk sectors in the usual 512b unit
260  *
261  * Description:
262  *    If a driver doesn't want IOs to cross a given chunk size, it can set
263  *    this limit and prevent merging across chunks. Note that the chunk size
264  *    must currently be a power-of-2 in sectors. Also note that the block
265  *    layer must accept a page worth of data at any offset. So if the
266  *    crossing of chunks is a hard limitation in the driver, it must still be
267  *    prepared to split single page bios.
268  **/
blk_queue_chunk_sectors(struct request_queue * q,unsigned int chunk_sectors)269 void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors)
270 {
271 	BUG_ON(!is_power_of_2(chunk_sectors));
272 	q->limits.chunk_sectors = chunk_sectors;
273 }
274 EXPORT_SYMBOL(blk_queue_chunk_sectors);
275 
276 /**
277  * blk_queue_max_discard_sectors - set max sectors for a single discard
278  * @q:  the request queue for the device
279  * @max_discard_sectors: maximum number of sectors to discard
280  **/
blk_queue_max_discard_sectors(struct request_queue * q,unsigned int max_discard_sectors)281 void blk_queue_max_discard_sectors(struct request_queue *q,
282 		unsigned int max_discard_sectors)
283 {
284 	q->limits.max_hw_discard_sectors = max_discard_sectors;
285 	q->limits.max_discard_sectors = max_discard_sectors;
286 }
287 EXPORT_SYMBOL(blk_queue_max_discard_sectors);
288 
289 /**
290  * blk_queue_max_write_same_sectors - set max sectors for a single write same
291  * @q:  the request queue for the device
292  * @max_write_same_sectors: maximum number of sectors to write per command
293  **/
blk_queue_max_write_same_sectors(struct request_queue * q,unsigned int max_write_same_sectors)294 void blk_queue_max_write_same_sectors(struct request_queue *q,
295 				      unsigned int max_write_same_sectors)
296 {
297 	q->limits.max_write_same_sectors = max_write_same_sectors;
298 }
299 EXPORT_SYMBOL(blk_queue_max_write_same_sectors);
300 
301 /**
302  * blk_queue_max_write_zeroes_sectors - set max sectors for a single
303  *                                      write zeroes
304  * @q:  the request queue for the device
305  * @max_write_zeroes_sectors: maximum number of sectors to write per command
306  **/
blk_queue_max_write_zeroes_sectors(struct request_queue * q,unsigned int max_write_zeroes_sectors)307 void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
308 		unsigned int max_write_zeroes_sectors)
309 {
310 	q->limits.max_write_zeroes_sectors = max_write_zeroes_sectors;
311 }
312 EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors);
313 
314 /**
315  * blk_queue_max_segments - set max hw segments for a request for this queue
316  * @q:  the request queue for the device
317  * @max_segments:  max number of segments
318  *
319  * Description:
320  *    Enables a low level driver to set an upper limit on the number of
321  *    hw data segments in a request.
322  **/
blk_queue_max_segments(struct request_queue * q,unsigned short max_segments)323 void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
324 {
325 	if (!max_segments) {
326 		max_segments = 1;
327 		printk(KERN_INFO "%s: set to minimum %d\n",
328 		       __func__, max_segments);
329 	}
330 
331 	q->limits.max_segments = max_segments;
332 }
333 EXPORT_SYMBOL(blk_queue_max_segments);
334 
335 /**
336  * blk_queue_max_discard_segments - set max segments for discard requests
337  * @q:  the request queue for the device
338  * @max_segments:  max number of segments
339  *
340  * Description:
341  *    Enables a low level driver to set an upper limit on the number of
342  *    segments in a discard request.
343  **/
blk_queue_max_discard_segments(struct request_queue * q,unsigned short max_segments)344 void blk_queue_max_discard_segments(struct request_queue *q,
345 		unsigned short max_segments)
346 {
347 	q->limits.max_discard_segments = max_segments;
348 }
349 EXPORT_SYMBOL_GPL(blk_queue_max_discard_segments);
350 
351 /**
352  * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
353  * @q:  the request queue for the device
354  * @max_size:  max size of segment in bytes
355  *
356  * Description:
357  *    Enables a low level driver to set an upper limit on the size of a
358  *    coalesced segment
359  **/
blk_queue_max_segment_size(struct request_queue * q,unsigned int max_size)360 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
361 {
362 	if (max_size < PAGE_SIZE) {
363 		max_size = PAGE_SIZE;
364 		printk(KERN_INFO "%s: set to minimum %d\n",
365 		       __func__, max_size);
366 	}
367 
368 	q->limits.max_segment_size = max_size;
369 }
370 EXPORT_SYMBOL(blk_queue_max_segment_size);
371 
372 /**
373  * blk_queue_logical_block_size - set logical block size for the queue
374  * @q:  the request queue for the device
375  * @size:  the logical block size, in bytes
376  *
377  * Description:
378  *   This should be set to the lowest possible block size that the
379  *   storage device can address.  The default of 512 covers most
380  *   hardware.
381  **/
blk_queue_logical_block_size(struct request_queue * q,unsigned int size)382 void blk_queue_logical_block_size(struct request_queue *q, unsigned int size)
383 {
384 	q->limits.logical_block_size = size;
385 
386 	if (q->limits.physical_block_size < size)
387 		q->limits.physical_block_size = size;
388 
389 	if (q->limits.io_min < q->limits.physical_block_size)
390 		q->limits.io_min = q->limits.physical_block_size;
391 }
392 EXPORT_SYMBOL(blk_queue_logical_block_size);
393 
394 /**
395  * blk_queue_physical_block_size - set physical block size for the queue
396  * @q:  the request queue for the device
397  * @size:  the physical block size, in bytes
398  *
399  * Description:
400  *   This should be set to the lowest possible sector size that the
401  *   hardware can operate on without reverting to read-modify-write
402  *   operations.
403  */
blk_queue_physical_block_size(struct request_queue * q,unsigned int size)404 void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
405 {
406 	q->limits.physical_block_size = size;
407 
408 	if (q->limits.physical_block_size < q->limits.logical_block_size)
409 		q->limits.physical_block_size = q->limits.logical_block_size;
410 
411 	if (q->limits.io_min < q->limits.physical_block_size)
412 		q->limits.io_min = q->limits.physical_block_size;
413 }
414 EXPORT_SYMBOL(blk_queue_physical_block_size);
415 
416 /**
417  * blk_queue_alignment_offset - set physical block alignment offset
418  * @q:	the request queue for the device
419  * @offset: alignment offset in bytes
420  *
421  * Description:
422  *   Some devices are naturally misaligned to compensate for things like
423  *   the legacy DOS partition table 63-sector offset.  Low-level drivers
424  *   should call this function for devices whose first sector is not
425  *   naturally aligned.
426  */
blk_queue_alignment_offset(struct request_queue * q,unsigned int offset)427 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
428 {
429 	q->limits.alignment_offset =
430 		offset & (q->limits.physical_block_size - 1);
431 	q->limits.misaligned = 0;
432 }
433 EXPORT_SYMBOL(blk_queue_alignment_offset);
434 
435 /**
436  * blk_limits_io_min - set minimum request size for a device
437  * @limits: the queue limits
438  * @min:  smallest I/O size in bytes
439  *
440  * Description:
441  *   Some devices have an internal block size bigger than the reported
442  *   hardware sector size.  This function can be used to signal the
443  *   smallest I/O the device can perform without incurring a performance
444  *   penalty.
445  */
blk_limits_io_min(struct queue_limits * limits,unsigned int min)446 void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
447 {
448 	limits->io_min = min;
449 
450 	if (limits->io_min < limits->logical_block_size)
451 		limits->io_min = limits->logical_block_size;
452 
453 	if (limits->io_min < limits->physical_block_size)
454 		limits->io_min = limits->physical_block_size;
455 }
456 EXPORT_SYMBOL(blk_limits_io_min);
457 
458 /**
459  * blk_queue_io_min - set minimum request size for the queue
460  * @q:	the request queue for the device
461  * @min:  smallest I/O size in bytes
462  *
463  * Description:
464  *   Storage devices may report a granularity or preferred minimum I/O
465  *   size which is the smallest request the device can perform without
466  *   incurring a performance penalty.  For disk drives this is often the
467  *   physical block size.  For RAID arrays it is often the stripe chunk
468  *   size.  A properly aligned multiple of minimum_io_size is the
469  *   preferred request size for workloads where a high number of I/O
470  *   operations is desired.
471  */
blk_queue_io_min(struct request_queue * q,unsigned int min)472 void blk_queue_io_min(struct request_queue *q, unsigned int min)
473 {
474 	blk_limits_io_min(&q->limits, min);
475 }
476 EXPORT_SYMBOL(blk_queue_io_min);
477 
478 /**
479  * blk_limits_io_opt - set optimal request size for a device
480  * @limits: the queue limits
481  * @opt:  smallest I/O size in bytes
482  *
483  * Description:
484  *   Storage devices may report an optimal I/O size, which is the
485  *   device's preferred unit for sustained I/O.  This is rarely reported
486  *   for disk drives.  For RAID arrays it is usually the stripe width or
487  *   the internal track size.  A properly aligned multiple of
488  *   optimal_io_size is the preferred request size for workloads where
489  *   sustained throughput is desired.
490  */
blk_limits_io_opt(struct queue_limits * limits,unsigned int opt)491 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
492 {
493 	limits->io_opt = opt;
494 }
495 EXPORT_SYMBOL(blk_limits_io_opt);
496 
497 /**
498  * blk_queue_io_opt - set optimal request size for the queue
499  * @q:	the request queue for the device
500  * @opt:  optimal request size in bytes
501  *
502  * Description:
503  *   Storage devices may report an optimal I/O size, which is the
504  *   device's preferred unit for sustained I/O.  This is rarely reported
505  *   for disk drives.  For RAID arrays it is usually the stripe width or
506  *   the internal track size.  A properly aligned multiple of
507  *   optimal_io_size is the preferred request size for workloads where
508  *   sustained throughput is desired.
509  */
blk_queue_io_opt(struct request_queue * q,unsigned int opt)510 void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
511 {
512 	blk_limits_io_opt(&q->limits, opt);
513 }
514 EXPORT_SYMBOL(blk_queue_io_opt);
515 
blk_round_down_sectors(unsigned int sectors,unsigned int lbs)516 static unsigned int blk_round_down_sectors(unsigned int sectors, unsigned int lbs)
517 {
518 	sectors = round_down(sectors, lbs >> SECTOR_SHIFT);
519 	if (sectors < PAGE_SIZE >> SECTOR_SHIFT)
520 		sectors = PAGE_SIZE >> SECTOR_SHIFT;
521 	return sectors;
522 }
523 
524 /**
525  * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
526  * @t:	the stacking driver (top)
527  * @b:  the underlying device (bottom)
528  **/
blk_queue_stack_limits(struct request_queue * t,struct request_queue * b)529 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
530 {
531 	blk_stack_limits(&t->limits, &b->limits, 0);
532 }
533 EXPORT_SYMBOL(blk_queue_stack_limits);
534 
535 /**
536  * blk_stack_limits - adjust queue_limits for stacked devices
537  * @t:	the stacking driver limits (top device)
538  * @b:  the underlying queue limits (bottom, component device)
539  * @start:  first data sector within component device
540  *
541  * Description:
542  *    This function is used by stacking drivers like MD and DM to ensure
543  *    that all component devices have compatible block sizes and
544  *    alignments.  The stacking driver must provide a queue_limits
545  *    struct (top) and then iteratively call the stacking function for
546  *    all component (bottom) devices.  The stacking function will
547  *    attempt to combine the values and ensure proper alignment.
548  *
549  *    Returns 0 if the top and bottom queue_limits are compatible.  The
550  *    top device's block sizes and alignment offsets may be adjusted to
551  *    ensure alignment with the bottom device. If no compatible sizes
552  *    and alignments exist, -1 is returned and the resulting top
553  *    queue_limits will have the misaligned flag set to indicate that
554  *    the alignment_offset is undefined.
555  */
blk_stack_limits(struct queue_limits * t,struct queue_limits * b,sector_t start)556 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
557 		     sector_t start)
558 {
559 	unsigned int top, bottom, alignment, ret = 0;
560 
561 	t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
562 	t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
563 	t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
564 	t->max_write_same_sectors = min(t->max_write_same_sectors,
565 					b->max_write_same_sectors);
566 	t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors,
567 					b->max_write_zeroes_sectors);
568 	t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
569 
570 	t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
571 					    b->seg_boundary_mask);
572 	t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
573 					    b->virt_boundary_mask);
574 
575 	t->max_segments = min_not_zero(t->max_segments, b->max_segments);
576 	t->max_discard_segments = min_not_zero(t->max_discard_segments,
577 					       b->max_discard_segments);
578 	t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
579 						 b->max_integrity_segments);
580 
581 	t->max_segment_size = min_not_zero(t->max_segment_size,
582 					   b->max_segment_size);
583 
584 	t->misaligned |= b->misaligned;
585 
586 	alignment = queue_limit_alignment_offset(b, start);
587 
588 	/* Bottom device has different alignment.  Check that it is
589 	 * compatible with the current top alignment.
590 	 */
591 	if (t->alignment_offset != alignment) {
592 
593 		top = max(t->physical_block_size, t->io_min)
594 			+ t->alignment_offset;
595 		bottom = max(b->physical_block_size, b->io_min) + alignment;
596 
597 		/* Verify that top and bottom intervals line up */
598 		if (max(top, bottom) % min(top, bottom)) {
599 			t->misaligned = 1;
600 			ret = -1;
601 		}
602 	}
603 
604 	t->logical_block_size = max(t->logical_block_size,
605 				    b->logical_block_size);
606 
607 	t->physical_block_size = max(t->physical_block_size,
608 				     b->physical_block_size);
609 
610 	t->io_min = max(t->io_min, b->io_min);
611 	t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
612 
613 	t->cluster &= b->cluster;
614 
615 	/* Physical block size a multiple of the logical block size? */
616 	if (t->physical_block_size & (t->logical_block_size - 1)) {
617 		t->physical_block_size = t->logical_block_size;
618 		t->misaligned = 1;
619 		ret = -1;
620 	}
621 
622 	/* Minimum I/O a multiple of the physical block size? */
623 	if (t->io_min & (t->physical_block_size - 1)) {
624 		t->io_min = t->physical_block_size;
625 		t->misaligned = 1;
626 		ret = -1;
627 	}
628 
629 	/* Optimal I/O a multiple of the physical block size? */
630 	if (t->io_opt & (t->physical_block_size - 1)) {
631 		t->io_opt = 0;
632 		t->misaligned = 1;
633 		ret = -1;
634 	}
635 
636 	t->raid_partial_stripes_expensive =
637 		max(t->raid_partial_stripes_expensive,
638 		    b->raid_partial_stripes_expensive);
639 
640 	/* Find lowest common alignment_offset */
641 	t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
642 		% max(t->physical_block_size, t->io_min);
643 
644 	/* Verify that new alignment_offset is on a logical block boundary */
645 	if (t->alignment_offset & (t->logical_block_size - 1)) {
646 		t->misaligned = 1;
647 		ret = -1;
648 	}
649 
650 	t->max_sectors = blk_round_down_sectors(t->max_sectors, t->logical_block_size);
651 	t->max_hw_sectors = blk_round_down_sectors(t->max_hw_sectors, t->logical_block_size);
652 	t->max_dev_sectors = blk_round_down_sectors(t->max_dev_sectors, t->logical_block_size);
653 
654 	/* Discard alignment and granularity */
655 	if (b->discard_granularity) {
656 		alignment = queue_limit_discard_alignment(b, start);
657 
658 		if (t->discard_granularity != 0 &&
659 		    t->discard_alignment != alignment) {
660 			top = t->discard_granularity + t->discard_alignment;
661 			bottom = b->discard_granularity + alignment;
662 
663 			/* Verify that top and bottom intervals line up */
664 			if ((max(top, bottom) % min(top, bottom)) != 0)
665 				t->discard_misaligned = 1;
666 		}
667 
668 		t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
669 						      b->max_discard_sectors);
670 		t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
671 							 b->max_hw_discard_sectors);
672 		t->discard_granularity = max(t->discard_granularity,
673 					     b->discard_granularity);
674 		t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
675 			t->discard_granularity;
676 	}
677 
678 	if (b->chunk_sectors)
679 		t->chunk_sectors = min_not_zero(t->chunk_sectors,
680 						b->chunk_sectors);
681 
682 	return ret;
683 }
684 EXPORT_SYMBOL(blk_stack_limits);
685 
686 /**
687  * bdev_stack_limits - adjust queue limits for stacked drivers
688  * @t:	the stacking driver limits (top device)
689  * @bdev:  the component block_device (bottom)
690  * @start:  first data sector within component device
691  *
692  * Description:
693  *    Merges queue limits for a top device and a block_device.  Returns
694  *    0 if alignment didn't change.  Returns -1 if adding the bottom
695  *    device caused misalignment.
696  */
bdev_stack_limits(struct queue_limits * t,struct block_device * bdev,sector_t start)697 int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
698 		      sector_t start)
699 {
700 	struct request_queue *bq = bdev_get_queue(bdev);
701 
702 	start += get_start_sect(bdev);
703 
704 	return blk_stack_limits(t, &bq->limits, start);
705 }
706 EXPORT_SYMBOL(bdev_stack_limits);
707 
708 /**
709  * disk_stack_limits - adjust queue limits for stacked drivers
710  * @disk:  MD/DM gendisk (top)
711  * @bdev:  the underlying block device (bottom)
712  * @offset:  offset to beginning of data within component device
713  *
714  * Description:
715  *    Merges the limits for a top level gendisk and a bottom level
716  *    block_device.
717  */
disk_stack_limits(struct gendisk * disk,struct block_device * bdev,sector_t offset)718 void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
719 		       sector_t offset)
720 {
721 	struct request_queue *t = disk->queue;
722 
723 	if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) {
724 		char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
725 
726 		disk_name(disk, 0, top);
727 		bdevname(bdev, bottom);
728 
729 		printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
730 		       top, bottom);
731 	}
732 
733 	t->backing_dev_info->io_pages =
734 		t->limits.max_sectors >> (PAGE_SHIFT - 9);
735 }
736 EXPORT_SYMBOL(disk_stack_limits);
737 
738 /**
739  * blk_queue_dma_pad - set pad mask
740  * @q:     the request queue for the device
741  * @mask:  pad mask
742  *
743  * Set dma pad mask.
744  *
745  * Appending pad buffer to a request modifies the last entry of a
746  * scatter list such that it includes the pad buffer.
747  **/
blk_queue_dma_pad(struct request_queue * q,unsigned int mask)748 void blk_queue_dma_pad(struct request_queue *q, unsigned int mask)
749 {
750 	q->dma_pad_mask = mask;
751 }
752 EXPORT_SYMBOL(blk_queue_dma_pad);
753 
754 /**
755  * blk_queue_update_dma_pad - update pad mask
756  * @q:     the request queue for the device
757  * @mask:  pad mask
758  *
759  * Update dma pad mask.
760  *
761  * Appending pad buffer to a request modifies the last entry of a
762  * scatter list such that it includes the pad buffer.
763  **/
blk_queue_update_dma_pad(struct request_queue * q,unsigned int mask)764 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
765 {
766 	if (mask > q->dma_pad_mask)
767 		q->dma_pad_mask = mask;
768 }
769 EXPORT_SYMBOL(blk_queue_update_dma_pad);
770 
771 /**
772  * blk_queue_dma_drain - Set up a drain buffer for excess dma.
773  * @q:  the request queue for the device
774  * @dma_drain_needed: fn which returns non-zero if drain is necessary
775  * @buf:	physically contiguous buffer
776  * @size:	size of the buffer in bytes
777  *
778  * Some devices have excess DMA problems and can't simply discard (or
779  * zero fill) the unwanted piece of the transfer.  They have to have a
780  * real area of memory to transfer it into.  The use case for this is
781  * ATAPI devices in DMA mode.  If the packet command causes a transfer
782  * bigger than the transfer size some HBAs will lock up if there
783  * aren't DMA elements to contain the excess transfer.  What this API
784  * does is adjust the queue so that the buf is always appended
785  * silently to the scatterlist.
786  *
787  * Note: This routine adjusts max_hw_segments to make room for appending
788  * the drain buffer.  If you call blk_queue_max_segments() after calling
789  * this routine, you must set the limit to one fewer than your device
790  * can support otherwise there won't be room for the drain buffer.
791  */
blk_queue_dma_drain(struct request_queue * q,dma_drain_needed_fn * dma_drain_needed,void * buf,unsigned int size)792 int blk_queue_dma_drain(struct request_queue *q,
793 			       dma_drain_needed_fn *dma_drain_needed,
794 			       void *buf, unsigned int size)
795 {
796 	if (queue_max_segments(q) < 2)
797 		return -EINVAL;
798 	/* make room for appending the drain */
799 	blk_queue_max_segments(q, queue_max_segments(q) - 1);
800 	q->dma_drain_needed = dma_drain_needed;
801 	q->dma_drain_buffer = buf;
802 	q->dma_drain_size = size;
803 
804 	return 0;
805 }
806 EXPORT_SYMBOL_GPL(blk_queue_dma_drain);
807 
808 /**
809  * blk_queue_segment_boundary - set boundary rules for segment merging
810  * @q:  the request queue for the device
811  * @mask:  the memory boundary mask
812  **/
blk_queue_segment_boundary(struct request_queue * q,unsigned long mask)813 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
814 {
815 	if (mask < PAGE_SIZE - 1) {
816 		mask = PAGE_SIZE - 1;
817 		printk(KERN_INFO "%s: set to minimum %lx\n",
818 		       __func__, mask);
819 	}
820 
821 	q->limits.seg_boundary_mask = mask;
822 }
823 EXPORT_SYMBOL(blk_queue_segment_boundary);
824 
825 /**
826  * blk_queue_virt_boundary - set boundary rules for bio merging
827  * @q:  the request queue for the device
828  * @mask:  the memory boundary mask
829  **/
blk_queue_virt_boundary(struct request_queue * q,unsigned long mask)830 void blk_queue_virt_boundary(struct request_queue *q, unsigned long mask)
831 {
832 	q->limits.virt_boundary_mask = mask;
833 }
834 EXPORT_SYMBOL(blk_queue_virt_boundary);
835 
836 /**
837  * blk_queue_dma_alignment - set dma length and memory alignment
838  * @q:     the request queue for the device
839  * @mask:  alignment mask
840  *
841  * description:
842  *    set required memory and length alignment for direct dma transactions.
843  *    this is used when building direct io requests for the queue.
844  *
845  **/
blk_queue_dma_alignment(struct request_queue * q,int mask)846 void blk_queue_dma_alignment(struct request_queue *q, int mask)
847 {
848 	q->dma_alignment = mask;
849 }
850 EXPORT_SYMBOL(blk_queue_dma_alignment);
851 
852 /**
853  * blk_queue_update_dma_alignment - update dma length and memory alignment
854  * @q:     the request queue for the device
855  * @mask:  alignment mask
856  *
857  * description:
858  *    update required memory and length alignment for direct dma transactions.
859  *    If the requested alignment is larger than the current alignment, then
860  *    the current queue alignment is updated to the new value, otherwise it
861  *    is left alone.  The design of this is to allow multiple objects
862  *    (driver, device, transport etc) to set their respective
863  *    alignments without having them interfere.
864  *
865  **/
blk_queue_update_dma_alignment(struct request_queue * q,int mask)866 void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
867 {
868 	BUG_ON(mask > PAGE_SIZE);
869 
870 	if (mask > q->dma_alignment)
871 		q->dma_alignment = mask;
872 }
873 EXPORT_SYMBOL(blk_queue_update_dma_alignment);
874 
blk_queue_flush_queueable(struct request_queue * q,bool queueable)875 void blk_queue_flush_queueable(struct request_queue *q, bool queueable)
876 {
877 	if (queueable)
878 		blk_queue_flag_clear(QUEUE_FLAG_FLUSH_NQ, q);
879 	else
880 		blk_queue_flag_set(QUEUE_FLAG_FLUSH_NQ, q);
881 }
882 EXPORT_SYMBOL_GPL(blk_queue_flush_queueable);
883 
884 /**
885  * blk_set_queue_depth - tell the block layer about the device queue depth
886  * @q:		the request queue for the device
887  * @depth:		queue depth
888  *
889  */
blk_set_queue_depth(struct request_queue * q,unsigned int depth)890 void blk_set_queue_depth(struct request_queue *q, unsigned int depth)
891 {
892 	q->queue_depth = depth;
893 	wbt_set_queue_depth(q, depth);
894 }
895 EXPORT_SYMBOL(blk_set_queue_depth);
896 
897 /**
898  * blk_queue_write_cache - configure queue's write cache
899  * @q:		the request queue for the device
900  * @wc:		write back cache on or off
901  * @fua:	device supports FUA writes, if true
902  *
903  * Tell the block layer about the write cache of @q.
904  */
blk_queue_write_cache(struct request_queue * q,bool wc,bool fua)905 void blk_queue_write_cache(struct request_queue *q, bool wc, bool fua)
906 {
907 	spin_lock_irq(q->queue_lock);
908 	if (wc)
909 		queue_flag_set(QUEUE_FLAG_WC, q);
910 	else
911 		queue_flag_clear(QUEUE_FLAG_WC, q);
912 	if (fua)
913 		queue_flag_set(QUEUE_FLAG_FUA, q);
914 	else
915 		queue_flag_clear(QUEUE_FLAG_FUA, q);
916 	spin_unlock_irq(q->queue_lock);
917 
918 	wbt_set_write_cache(q, test_bit(QUEUE_FLAG_WC, &q->queue_flags));
919 }
920 EXPORT_SYMBOL_GPL(blk_queue_write_cache);
921 
blk_settings_init(void)922 static int __init blk_settings_init(void)
923 {
924 	blk_max_low_pfn = max_low_pfn - 1;
925 	blk_max_pfn = max_pfn - 1;
926 	return 0;
927 }
928 subsys_initcall(blk_settings_init);
929