1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/prefetch.h>
15 #include <linux/cleancache.h>
16 #include "extent_io.h"
17 #include "extent_map.h"
18 #include "ctree.h"
19 #include "btrfs_inode.h"
20 #include "volumes.h"
21 #include "check-integrity.h"
22 #include "locking.h"
23 #include "rcu-string.h"
24 #include "backref.h"
25 #include "disk-io.h"
26
27 static struct kmem_cache *extent_state_cache;
28 static struct kmem_cache *extent_buffer_cache;
29 static struct bio_set btrfs_bioset;
30
extent_state_in_tree(const struct extent_state * state)31 static inline bool extent_state_in_tree(const struct extent_state *state)
32 {
33 return !RB_EMPTY_NODE(&state->rb_node);
34 }
35
36 #ifdef CONFIG_BTRFS_DEBUG
37 static LIST_HEAD(buffers);
38 static LIST_HEAD(states);
39
40 static DEFINE_SPINLOCK(leak_lock);
41
42 static inline
btrfs_leak_debug_add(struct list_head * new,struct list_head * head)43 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
44 {
45 unsigned long flags;
46
47 spin_lock_irqsave(&leak_lock, flags);
48 list_add(new, head);
49 spin_unlock_irqrestore(&leak_lock, flags);
50 }
51
52 static inline
btrfs_leak_debug_del(struct list_head * entry)53 void btrfs_leak_debug_del(struct list_head *entry)
54 {
55 unsigned long flags;
56
57 spin_lock_irqsave(&leak_lock, flags);
58 list_del(entry);
59 spin_unlock_irqrestore(&leak_lock, flags);
60 }
61
62 static inline
btrfs_leak_debug_check(void)63 void btrfs_leak_debug_check(void)
64 {
65 struct extent_state *state;
66 struct extent_buffer *eb;
67
68 while (!list_empty(&states)) {
69 state = list_entry(states.next, struct extent_state, leak_list);
70 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
71 state->start, state->end, state->state,
72 extent_state_in_tree(state),
73 refcount_read(&state->refs));
74 list_del(&state->leak_list);
75 kmem_cache_free(extent_state_cache, state);
76 }
77
78 while (!list_empty(&buffers)) {
79 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
80 pr_err("BTRFS: buffer leak start %llu len %lu refs %d bflags %lu\n",
81 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags);
82 list_del(&eb->leak_list);
83 kmem_cache_free(extent_buffer_cache, eb);
84 }
85 }
86
87 #define btrfs_debug_check_extent_io_range(tree, start, end) \
88 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
__btrfs_debug_check_extent_io_range(const char * caller,struct extent_io_tree * tree,u64 start,u64 end)89 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
90 struct extent_io_tree *tree, u64 start, u64 end)
91 {
92 if (tree->ops && tree->ops->check_extent_io_range)
93 tree->ops->check_extent_io_range(tree->private_data, caller,
94 start, end);
95 }
96 #else
97 #define btrfs_leak_debug_add(new, head) do {} while (0)
98 #define btrfs_leak_debug_del(entry) do {} while (0)
99 #define btrfs_leak_debug_check() do {} while (0)
100 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
101 #endif
102
103 #define BUFFER_LRU_MAX 64
104
105 struct tree_entry {
106 u64 start;
107 u64 end;
108 struct rb_node rb_node;
109 };
110
111 struct extent_page_data {
112 struct bio *bio;
113 struct extent_io_tree *tree;
114 /* tells writepage not to lock the state bits for this range
115 * it still does the unlocking
116 */
117 unsigned int extent_locked:1;
118
119 /* tells the submit_bio code to use REQ_SYNC */
120 unsigned int sync_io:1;
121 };
122
add_extent_changeset(struct extent_state * state,unsigned bits,struct extent_changeset * changeset,int set)123 static int add_extent_changeset(struct extent_state *state, unsigned bits,
124 struct extent_changeset *changeset,
125 int set)
126 {
127 int ret;
128
129 if (!changeset)
130 return 0;
131 if (set && (state->state & bits) == bits)
132 return 0;
133 if (!set && (state->state & bits) == 0)
134 return 0;
135 changeset->bytes_changed += state->end - state->start + 1;
136 ret = ulist_add(&changeset->range_changed, state->start, state->end,
137 GFP_ATOMIC);
138 return ret;
139 }
140
submit_one_bio(struct bio * bio,int mirror_num,unsigned long bio_flags)141 static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
142 unsigned long bio_flags)
143 {
144 blk_status_t ret = 0;
145 struct bio_vec *bvec = bio_last_bvec_all(bio);
146 struct page *page = bvec->bv_page;
147 struct extent_io_tree *tree = bio->bi_private;
148 u64 start;
149
150 start = page_offset(page) + bvec->bv_offset;
151
152 bio->bi_private = NULL;
153
154 if (tree->ops)
155 ret = tree->ops->submit_bio_hook(tree->private_data, bio,
156 mirror_num, bio_flags, start);
157 else
158 btrfsic_submit_bio(bio);
159
160 return blk_status_to_errno(ret);
161 }
162
163 /* Cleanup unsubmitted bios */
end_write_bio(struct extent_page_data * epd,int ret)164 static void end_write_bio(struct extent_page_data *epd, int ret)
165 {
166 if (epd->bio) {
167 epd->bio->bi_status = errno_to_blk_status(ret);
168 bio_endio(epd->bio);
169 epd->bio = NULL;
170 }
171 }
172
173 /*
174 * Submit bio from extent page data via submit_one_bio
175 *
176 * Return 0 if everything is OK.
177 * Return <0 for error.
178 */
flush_write_bio(struct extent_page_data * epd)179 static int __must_check flush_write_bio(struct extent_page_data *epd)
180 {
181 int ret = 0;
182
183 if (epd->bio) {
184 ret = submit_one_bio(epd->bio, 0, 0);
185 /*
186 * Clean up of epd->bio is handled by its endio function.
187 * And endio is either triggered by successful bio execution
188 * or the error handler of submit bio hook.
189 * So at this point, no matter what happened, we don't need
190 * to clean up epd->bio.
191 */
192 epd->bio = NULL;
193 }
194 return ret;
195 }
196
extent_io_init(void)197 int __init extent_io_init(void)
198 {
199 extent_state_cache = kmem_cache_create("btrfs_extent_state",
200 sizeof(struct extent_state), 0,
201 SLAB_MEM_SPREAD, NULL);
202 if (!extent_state_cache)
203 return -ENOMEM;
204
205 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
206 sizeof(struct extent_buffer), 0,
207 SLAB_MEM_SPREAD, NULL);
208 if (!extent_buffer_cache)
209 goto free_state_cache;
210
211 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
212 offsetof(struct btrfs_io_bio, bio),
213 BIOSET_NEED_BVECS))
214 goto free_buffer_cache;
215
216 if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
217 goto free_bioset;
218
219 return 0;
220
221 free_bioset:
222 bioset_exit(&btrfs_bioset);
223
224 free_buffer_cache:
225 kmem_cache_destroy(extent_buffer_cache);
226 extent_buffer_cache = NULL;
227
228 free_state_cache:
229 kmem_cache_destroy(extent_state_cache);
230 extent_state_cache = NULL;
231 return -ENOMEM;
232 }
233
extent_io_exit(void)234 void __cold extent_io_exit(void)
235 {
236 btrfs_leak_debug_check();
237
238 /*
239 * Make sure all delayed rcu free are flushed before we
240 * destroy caches.
241 */
242 rcu_barrier();
243 kmem_cache_destroy(extent_state_cache);
244 kmem_cache_destroy(extent_buffer_cache);
245 bioset_exit(&btrfs_bioset);
246 }
247
extent_io_tree_init(struct extent_io_tree * tree,void * private_data)248 void extent_io_tree_init(struct extent_io_tree *tree,
249 void *private_data)
250 {
251 tree->state = RB_ROOT;
252 tree->ops = NULL;
253 tree->dirty_bytes = 0;
254 spin_lock_init(&tree->lock);
255 tree->private_data = private_data;
256 }
257
alloc_extent_state(gfp_t mask)258 static struct extent_state *alloc_extent_state(gfp_t mask)
259 {
260 struct extent_state *state;
261
262 /*
263 * The given mask might be not appropriate for the slab allocator,
264 * drop the unsupported bits
265 */
266 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
267 state = kmem_cache_alloc(extent_state_cache, mask);
268 if (!state)
269 return state;
270 state->state = 0;
271 state->failrec = NULL;
272 RB_CLEAR_NODE(&state->rb_node);
273 btrfs_leak_debug_add(&state->leak_list, &states);
274 refcount_set(&state->refs, 1);
275 init_waitqueue_head(&state->wq);
276 trace_alloc_extent_state(state, mask, _RET_IP_);
277 return state;
278 }
279
free_extent_state(struct extent_state * state)280 void free_extent_state(struct extent_state *state)
281 {
282 if (!state)
283 return;
284 if (refcount_dec_and_test(&state->refs)) {
285 WARN_ON(extent_state_in_tree(state));
286 btrfs_leak_debug_del(&state->leak_list);
287 trace_free_extent_state(state, _RET_IP_);
288 kmem_cache_free(extent_state_cache, state);
289 }
290 }
291
tree_insert(struct rb_root * root,struct rb_node * search_start,u64 offset,struct rb_node * node,struct rb_node *** p_in,struct rb_node ** parent_in)292 static struct rb_node *tree_insert(struct rb_root *root,
293 struct rb_node *search_start,
294 u64 offset,
295 struct rb_node *node,
296 struct rb_node ***p_in,
297 struct rb_node **parent_in)
298 {
299 struct rb_node **p;
300 struct rb_node *parent = NULL;
301 struct tree_entry *entry;
302
303 if (p_in && parent_in) {
304 p = *p_in;
305 parent = *parent_in;
306 goto do_insert;
307 }
308
309 p = search_start ? &search_start : &root->rb_node;
310 while (*p) {
311 parent = *p;
312 entry = rb_entry(parent, struct tree_entry, rb_node);
313
314 if (offset < entry->start)
315 p = &(*p)->rb_left;
316 else if (offset > entry->end)
317 p = &(*p)->rb_right;
318 else
319 return parent;
320 }
321
322 do_insert:
323 rb_link_node(node, parent, p);
324 rb_insert_color(node, root);
325 return NULL;
326 }
327
__etree_search(struct extent_io_tree * tree,u64 offset,struct rb_node ** prev_ret,struct rb_node ** next_ret,struct rb_node *** p_ret,struct rb_node ** parent_ret)328 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
329 struct rb_node **prev_ret,
330 struct rb_node **next_ret,
331 struct rb_node ***p_ret,
332 struct rb_node **parent_ret)
333 {
334 struct rb_root *root = &tree->state;
335 struct rb_node **n = &root->rb_node;
336 struct rb_node *prev = NULL;
337 struct rb_node *orig_prev = NULL;
338 struct tree_entry *entry;
339 struct tree_entry *prev_entry = NULL;
340
341 while (*n) {
342 prev = *n;
343 entry = rb_entry(prev, struct tree_entry, rb_node);
344 prev_entry = entry;
345
346 if (offset < entry->start)
347 n = &(*n)->rb_left;
348 else if (offset > entry->end)
349 n = &(*n)->rb_right;
350 else
351 return *n;
352 }
353
354 if (p_ret)
355 *p_ret = n;
356 if (parent_ret)
357 *parent_ret = prev;
358
359 if (prev_ret) {
360 orig_prev = prev;
361 while (prev && offset > prev_entry->end) {
362 prev = rb_next(prev);
363 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
364 }
365 *prev_ret = prev;
366 prev = orig_prev;
367 }
368
369 if (next_ret) {
370 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
371 while (prev && offset < prev_entry->start) {
372 prev = rb_prev(prev);
373 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
374 }
375 *next_ret = prev;
376 }
377 return NULL;
378 }
379
380 static inline struct rb_node *
tree_search_for_insert(struct extent_io_tree * tree,u64 offset,struct rb_node *** p_ret,struct rb_node ** parent_ret)381 tree_search_for_insert(struct extent_io_tree *tree,
382 u64 offset,
383 struct rb_node ***p_ret,
384 struct rb_node **parent_ret)
385 {
386 struct rb_node *prev = NULL;
387 struct rb_node *ret;
388
389 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
390 if (!ret)
391 return prev;
392 return ret;
393 }
394
tree_search(struct extent_io_tree * tree,u64 offset)395 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
396 u64 offset)
397 {
398 return tree_search_for_insert(tree, offset, NULL, NULL);
399 }
400
merge_cb(struct extent_io_tree * tree,struct extent_state * new,struct extent_state * other)401 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
402 struct extent_state *other)
403 {
404 if (tree->ops && tree->ops->merge_extent_hook)
405 tree->ops->merge_extent_hook(tree->private_data, new, other);
406 }
407
408 /*
409 * utility function to look for merge candidates inside a given range.
410 * Any extents with matching state are merged together into a single
411 * extent in the tree. Extents with EXTENT_IO in their state field
412 * are not merged because the end_io handlers need to be able to do
413 * operations on them without sleeping (or doing allocations/splits).
414 *
415 * This should be called with the tree lock held.
416 */
merge_state(struct extent_io_tree * tree,struct extent_state * state)417 static void merge_state(struct extent_io_tree *tree,
418 struct extent_state *state)
419 {
420 struct extent_state *other;
421 struct rb_node *other_node;
422
423 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
424 return;
425
426 other_node = rb_prev(&state->rb_node);
427 if (other_node) {
428 other = rb_entry(other_node, struct extent_state, rb_node);
429 if (other->end == state->start - 1 &&
430 other->state == state->state) {
431 merge_cb(tree, state, other);
432 state->start = other->start;
433 rb_erase(&other->rb_node, &tree->state);
434 RB_CLEAR_NODE(&other->rb_node);
435 free_extent_state(other);
436 }
437 }
438 other_node = rb_next(&state->rb_node);
439 if (other_node) {
440 other = rb_entry(other_node, struct extent_state, rb_node);
441 if (other->start == state->end + 1 &&
442 other->state == state->state) {
443 merge_cb(tree, state, other);
444 state->end = other->end;
445 rb_erase(&other->rb_node, &tree->state);
446 RB_CLEAR_NODE(&other->rb_node);
447 free_extent_state(other);
448 }
449 }
450 }
451
set_state_cb(struct extent_io_tree * tree,struct extent_state * state,unsigned * bits)452 static void set_state_cb(struct extent_io_tree *tree,
453 struct extent_state *state, unsigned *bits)
454 {
455 if (tree->ops && tree->ops->set_bit_hook)
456 tree->ops->set_bit_hook(tree->private_data, state, bits);
457 }
458
clear_state_cb(struct extent_io_tree * tree,struct extent_state * state,unsigned * bits)459 static void clear_state_cb(struct extent_io_tree *tree,
460 struct extent_state *state, unsigned *bits)
461 {
462 if (tree->ops && tree->ops->clear_bit_hook)
463 tree->ops->clear_bit_hook(tree->private_data, state, bits);
464 }
465
466 static void set_state_bits(struct extent_io_tree *tree,
467 struct extent_state *state, unsigned *bits,
468 struct extent_changeset *changeset);
469
470 /*
471 * insert an extent_state struct into the tree. 'bits' are set on the
472 * struct before it is inserted.
473 *
474 * This may return -EEXIST if the extent is already there, in which case the
475 * state struct is freed.
476 *
477 * The tree lock is not taken internally. This is a utility function and
478 * probably isn't what you want to call (see set/clear_extent_bit).
479 */
insert_state(struct extent_io_tree * tree,struct extent_state * state,u64 start,u64 end,struct rb_node *** p,struct rb_node ** parent,unsigned * bits,struct extent_changeset * changeset)480 static int insert_state(struct extent_io_tree *tree,
481 struct extent_state *state, u64 start, u64 end,
482 struct rb_node ***p,
483 struct rb_node **parent,
484 unsigned *bits, struct extent_changeset *changeset)
485 {
486 struct rb_node *node;
487
488 if (end < start)
489 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
490 end, start);
491 state->start = start;
492 state->end = end;
493
494 set_state_bits(tree, state, bits, changeset);
495
496 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
497 if (node) {
498 struct extent_state *found;
499 found = rb_entry(node, struct extent_state, rb_node);
500 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
501 found->start, found->end, start, end);
502 return -EEXIST;
503 }
504 merge_state(tree, state);
505 return 0;
506 }
507
split_cb(struct extent_io_tree * tree,struct extent_state * orig,u64 split)508 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
509 u64 split)
510 {
511 if (tree->ops && tree->ops->split_extent_hook)
512 tree->ops->split_extent_hook(tree->private_data, orig, split);
513 }
514
515 /*
516 * split a given extent state struct in two, inserting the preallocated
517 * struct 'prealloc' as the newly created second half. 'split' indicates an
518 * offset inside 'orig' where it should be split.
519 *
520 * Before calling,
521 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
522 * are two extent state structs in the tree:
523 * prealloc: [orig->start, split - 1]
524 * orig: [ split, orig->end ]
525 *
526 * The tree locks are not taken by this function. They need to be held
527 * by the caller.
528 */
split_state(struct extent_io_tree * tree,struct extent_state * orig,struct extent_state * prealloc,u64 split)529 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
530 struct extent_state *prealloc, u64 split)
531 {
532 struct rb_node *node;
533
534 split_cb(tree, orig, split);
535
536 prealloc->start = orig->start;
537 prealloc->end = split - 1;
538 prealloc->state = orig->state;
539 orig->start = split;
540
541 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
542 &prealloc->rb_node, NULL, NULL);
543 if (node) {
544 free_extent_state(prealloc);
545 return -EEXIST;
546 }
547 return 0;
548 }
549
next_state(struct extent_state * state)550 static struct extent_state *next_state(struct extent_state *state)
551 {
552 struct rb_node *next = rb_next(&state->rb_node);
553 if (next)
554 return rb_entry(next, struct extent_state, rb_node);
555 else
556 return NULL;
557 }
558
559 /*
560 * utility function to clear some bits in an extent state struct.
561 * it will optionally wake up any one waiting on this state (wake == 1).
562 *
563 * If no bits are set on the state struct after clearing things, the
564 * struct is freed and removed from the tree
565 */
clear_state_bit(struct extent_io_tree * tree,struct extent_state * state,unsigned * bits,int wake,struct extent_changeset * changeset)566 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
567 struct extent_state *state,
568 unsigned *bits, int wake,
569 struct extent_changeset *changeset)
570 {
571 struct extent_state *next;
572 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
573 int ret;
574
575 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
576 u64 range = state->end - state->start + 1;
577 WARN_ON(range > tree->dirty_bytes);
578 tree->dirty_bytes -= range;
579 }
580 clear_state_cb(tree, state, bits);
581 ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
582 BUG_ON(ret < 0);
583 state->state &= ~bits_to_clear;
584 if (wake)
585 wake_up(&state->wq);
586 if (state->state == 0) {
587 next = next_state(state);
588 if (extent_state_in_tree(state)) {
589 rb_erase(&state->rb_node, &tree->state);
590 RB_CLEAR_NODE(&state->rb_node);
591 free_extent_state(state);
592 } else {
593 WARN_ON(1);
594 }
595 } else {
596 merge_state(tree, state);
597 next = next_state(state);
598 }
599 return next;
600 }
601
602 static struct extent_state *
alloc_extent_state_atomic(struct extent_state * prealloc)603 alloc_extent_state_atomic(struct extent_state *prealloc)
604 {
605 if (!prealloc)
606 prealloc = alloc_extent_state(GFP_ATOMIC);
607
608 return prealloc;
609 }
610
extent_io_tree_panic(struct extent_io_tree * tree,int err)611 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
612 {
613 struct inode *inode = tree->private_data;
614
615 btrfs_panic(btrfs_sb(inode->i_sb), err,
616 "locking error: extent tree was modified by another thread while locked");
617 }
618
619 /*
620 * clear some bits on a range in the tree. This may require splitting
621 * or inserting elements in the tree, so the gfp mask is used to
622 * indicate which allocations or sleeping are allowed.
623 *
624 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
625 * the given range from the tree regardless of state (ie for truncate).
626 *
627 * the range [start, end] is inclusive.
628 *
629 * This takes the tree lock, and returns 0 on success and < 0 on error.
630 */
__clear_extent_bit(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits,int wake,int delete,struct extent_state ** cached_state,gfp_t mask,struct extent_changeset * changeset)631 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
632 unsigned bits, int wake, int delete,
633 struct extent_state **cached_state,
634 gfp_t mask, struct extent_changeset *changeset)
635 {
636 struct extent_state *state;
637 struct extent_state *cached;
638 struct extent_state *prealloc = NULL;
639 struct rb_node *node;
640 u64 last_end;
641 int err;
642 int clear = 0;
643
644 btrfs_debug_check_extent_io_range(tree, start, end);
645
646 if (bits & EXTENT_DELALLOC)
647 bits |= EXTENT_NORESERVE;
648
649 if (delete)
650 bits |= ~EXTENT_CTLBITS;
651 bits |= EXTENT_FIRST_DELALLOC;
652
653 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
654 clear = 1;
655 again:
656 if (!prealloc && gfpflags_allow_blocking(mask)) {
657 /*
658 * Don't care for allocation failure here because we might end
659 * up not needing the pre-allocated extent state at all, which
660 * is the case if we only have in the tree extent states that
661 * cover our input range and don't cover too any other range.
662 * If we end up needing a new extent state we allocate it later.
663 */
664 prealloc = alloc_extent_state(mask);
665 }
666
667 spin_lock(&tree->lock);
668 if (cached_state) {
669 cached = *cached_state;
670
671 if (clear) {
672 *cached_state = NULL;
673 cached_state = NULL;
674 }
675
676 if (cached && extent_state_in_tree(cached) &&
677 cached->start <= start && cached->end > start) {
678 if (clear)
679 refcount_dec(&cached->refs);
680 state = cached;
681 goto hit_next;
682 }
683 if (clear)
684 free_extent_state(cached);
685 }
686 /*
687 * this search will find the extents that end after
688 * our range starts
689 */
690 node = tree_search(tree, start);
691 if (!node)
692 goto out;
693 state = rb_entry(node, struct extent_state, rb_node);
694 hit_next:
695 if (state->start > end)
696 goto out;
697 WARN_ON(state->end < start);
698 last_end = state->end;
699
700 /* the state doesn't have the wanted bits, go ahead */
701 if (!(state->state & bits)) {
702 state = next_state(state);
703 goto next;
704 }
705
706 /*
707 * | ---- desired range ---- |
708 * | state | or
709 * | ------------- state -------------- |
710 *
711 * We need to split the extent we found, and may flip
712 * bits on second half.
713 *
714 * If the extent we found extends past our range, we
715 * just split and search again. It'll get split again
716 * the next time though.
717 *
718 * If the extent we found is inside our range, we clear
719 * the desired bit on it.
720 */
721
722 if (state->start < start) {
723 prealloc = alloc_extent_state_atomic(prealloc);
724 BUG_ON(!prealloc);
725 err = split_state(tree, state, prealloc, start);
726 if (err)
727 extent_io_tree_panic(tree, err);
728
729 prealloc = NULL;
730 if (err)
731 goto out;
732 if (state->end <= end) {
733 state = clear_state_bit(tree, state, &bits, wake,
734 changeset);
735 goto next;
736 }
737 goto search_again;
738 }
739 /*
740 * | ---- desired range ---- |
741 * | state |
742 * We need to split the extent, and clear the bit
743 * on the first half
744 */
745 if (state->start <= end && state->end > end) {
746 prealloc = alloc_extent_state_atomic(prealloc);
747 BUG_ON(!prealloc);
748 err = split_state(tree, state, prealloc, end + 1);
749 if (err)
750 extent_io_tree_panic(tree, err);
751
752 if (wake)
753 wake_up(&state->wq);
754
755 clear_state_bit(tree, prealloc, &bits, wake, changeset);
756
757 prealloc = NULL;
758 goto out;
759 }
760
761 state = clear_state_bit(tree, state, &bits, wake, changeset);
762 next:
763 if (last_end == (u64)-1)
764 goto out;
765 start = last_end + 1;
766 if (start <= end && state && !need_resched())
767 goto hit_next;
768
769 search_again:
770 if (start > end)
771 goto out;
772 spin_unlock(&tree->lock);
773 if (gfpflags_allow_blocking(mask))
774 cond_resched();
775 goto again;
776
777 out:
778 spin_unlock(&tree->lock);
779 if (prealloc)
780 free_extent_state(prealloc);
781
782 return 0;
783
784 }
785
wait_on_state(struct extent_io_tree * tree,struct extent_state * state)786 static void wait_on_state(struct extent_io_tree *tree,
787 struct extent_state *state)
788 __releases(tree->lock)
789 __acquires(tree->lock)
790 {
791 DEFINE_WAIT(wait);
792 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
793 spin_unlock(&tree->lock);
794 schedule();
795 spin_lock(&tree->lock);
796 finish_wait(&state->wq, &wait);
797 }
798
799 /*
800 * waits for one or more bits to clear on a range in the state tree.
801 * The range [start, end] is inclusive.
802 * The tree lock is taken by this function
803 */
wait_extent_bit(struct extent_io_tree * tree,u64 start,u64 end,unsigned long bits)804 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
805 unsigned long bits)
806 {
807 struct extent_state *state;
808 struct rb_node *node;
809
810 btrfs_debug_check_extent_io_range(tree, start, end);
811
812 spin_lock(&tree->lock);
813 again:
814 while (1) {
815 /*
816 * this search will find all the extents that end after
817 * our range starts
818 */
819 node = tree_search(tree, start);
820 process_node:
821 if (!node)
822 break;
823
824 state = rb_entry(node, struct extent_state, rb_node);
825
826 if (state->start > end)
827 goto out;
828
829 if (state->state & bits) {
830 start = state->start;
831 refcount_inc(&state->refs);
832 wait_on_state(tree, state);
833 free_extent_state(state);
834 goto again;
835 }
836 start = state->end + 1;
837
838 if (start > end)
839 break;
840
841 if (!cond_resched_lock(&tree->lock)) {
842 node = rb_next(node);
843 goto process_node;
844 }
845 }
846 out:
847 spin_unlock(&tree->lock);
848 }
849
set_state_bits(struct extent_io_tree * tree,struct extent_state * state,unsigned * bits,struct extent_changeset * changeset)850 static void set_state_bits(struct extent_io_tree *tree,
851 struct extent_state *state,
852 unsigned *bits, struct extent_changeset *changeset)
853 {
854 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
855 int ret;
856
857 set_state_cb(tree, state, bits);
858 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
859 u64 range = state->end - state->start + 1;
860 tree->dirty_bytes += range;
861 }
862 ret = add_extent_changeset(state, bits_to_set, changeset, 1);
863 BUG_ON(ret < 0);
864 state->state |= bits_to_set;
865 }
866
cache_state_if_flags(struct extent_state * state,struct extent_state ** cached_ptr,unsigned flags)867 static void cache_state_if_flags(struct extent_state *state,
868 struct extent_state **cached_ptr,
869 unsigned flags)
870 {
871 if (cached_ptr && !(*cached_ptr)) {
872 if (!flags || (state->state & flags)) {
873 *cached_ptr = state;
874 refcount_inc(&state->refs);
875 }
876 }
877 }
878
cache_state(struct extent_state * state,struct extent_state ** cached_ptr)879 static void cache_state(struct extent_state *state,
880 struct extent_state **cached_ptr)
881 {
882 return cache_state_if_flags(state, cached_ptr,
883 EXTENT_IOBITS | EXTENT_BOUNDARY);
884 }
885
886 /*
887 * set some bits on a range in the tree. This may require allocations or
888 * sleeping, so the gfp mask is used to indicate what is allowed.
889 *
890 * If any of the exclusive bits are set, this will fail with -EEXIST if some
891 * part of the range already has the desired bits set. The start of the
892 * existing range is returned in failed_start in this case.
893 *
894 * [start, end] is inclusive This takes the tree lock.
895 */
896
897 static int __must_check
__set_extent_bit(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits,unsigned exclusive_bits,u64 * failed_start,struct extent_state ** cached_state,gfp_t mask,struct extent_changeset * changeset)898 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
899 unsigned bits, unsigned exclusive_bits,
900 u64 *failed_start, struct extent_state **cached_state,
901 gfp_t mask, struct extent_changeset *changeset)
902 {
903 struct extent_state *state;
904 struct extent_state *prealloc = NULL;
905 struct rb_node *node;
906 struct rb_node **p;
907 struct rb_node *parent;
908 int err = 0;
909 u64 last_start;
910 u64 last_end;
911
912 btrfs_debug_check_extent_io_range(tree, start, end);
913
914 bits |= EXTENT_FIRST_DELALLOC;
915 again:
916 if (!prealloc && gfpflags_allow_blocking(mask)) {
917 /*
918 * Don't care for allocation failure here because we might end
919 * up not needing the pre-allocated extent state at all, which
920 * is the case if we only have in the tree extent states that
921 * cover our input range and don't cover too any other range.
922 * If we end up needing a new extent state we allocate it later.
923 */
924 prealloc = alloc_extent_state(mask);
925 }
926
927 spin_lock(&tree->lock);
928 if (cached_state && *cached_state) {
929 state = *cached_state;
930 if (state->start <= start && state->end > start &&
931 extent_state_in_tree(state)) {
932 node = &state->rb_node;
933 goto hit_next;
934 }
935 }
936 /*
937 * this search will find all the extents that end after
938 * our range starts.
939 */
940 node = tree_search_for_insert(tree, start, &p, &parent);
941 if (!node) {
942 prealloc = alloc_extent_state_atomic(prealloc);
943 BUG_ON(!prealloc);
944 err = insert_state(tree, prealloc, start, end,
945 &p, &parent, &bits, changeset);
946 if (err)
947 extent_io_tree_panic(tree, err);
948
949 cache_state(prealloc, cached_state);
950 prealloc = NULL;
951 goto out;
952 }
953 state = rb_entry(node, struct extent_state, rb_node);
954 hit_next:
955 last_start = state->start;
956 last_end = state->end;
957
958 /*
959 * | ---- desired range ---- |
960 * | state |
961 *
962 * Just lock what we found and keep going
963 */
964 if (state->start == start && state->end <= end) {
965 if (state->state & exclusive_bits) {
966 *failed_start = state->start;
967 err = -EEXIST;
968 goto out;
969 }
970
971 set_state_bits(tree, state, &bits, changeset);
972 cache_state(state, cached_state);
973 merge_state(tree, state);
974 if (last_end == (u64)-1)
975 goto out;
976 start = last_end + 1;
977 state = next_state(state);
978 if (start < end && state && state->start == start &&
979 !need_resched())
980 goto hit_next;
981 goto search_again;
982 }
983
984 /*
985 * | ---- desired range ---- |
986 * | state |
987 * or
988 * | ------------- state -------------- |
989 *
990 * We need to split the extent we found, and may flip bits on
991 * second half.
992 *
993 * If the extent we found extends past our
994 * range, we just split and search again. It'll get split
995 * again the next time though.
996 *
997 * If the extent we found is inside our range, we set the
998 * desired bit on it.
999 */
1000 if (state->start < start) {
1001 if (state->state & exclusive_bits) {
1002 *failed_start = start;
1003 err = -EEXIST;
1004 goto out;
1005 }
1006
1007 prealloc = alloc_extent_state_atomic(prealloc);
1008 BUG_ON(!prealloc);
1009 err = split_state(tree, state, prealloc, start);
1010 if (err)
1011 extent_io_tree_panic(tree, err);
1012
1013 prealloc = NULL;
1014 if (err)
1015 goto out;
1016 if (state->end <= end) {
1017 set_state_bits(tree, state, &bits, changeset);
1018 cache_state(state, cached_state);
1019 merge_state(tree, state);
1020 if (last_end == (u64)-1)
1021 goto out;
1022 start = last_end + 1;
1023 state = next_state(state);
1024 if (start < end && state && state->start == start &&
1025 !need_resched())
1026 goto hit_next;
1027 }
1028 goto search_again;
1029 }
1030 /*
1031 * | ---- desired range ---- |
1032 * | state | or | state |
1033 *
1034 * There's a hole, we need to insert something in it and
1035 * ignore the extent we found.
1036 */
1037 if (state->start > start) {
1038 u64 this_end;
1039 if (end < last_start)
1040 this_end = end;
1041 else
1042 this_end = last_start - 1;
1043
1044 prealloc = alloc_extent_state_atomic(prealloc);
1045 BUG_ON(!prealloc);
1046
1047 /*
1048 * Avoid to free 'prealloc' if it can be merged with
1049 * the later extent.
1050 */
1051 err = insert_state(tree, prealloc, start, this_end,
1052 NULL, NULL, &bits, changeset);
1053 if (err)
1054 extent_io_tree_panic(tree, err);
1055
1056 cache_state(prealloc, cached_state);
1057 prealloc = NULL;
1058 start = this_end + 1;
1059 goto search_again;
1060 }
1061 /*
1062 * | ---- desired range ---- |
1063 * | state |
1064 * We need to split the extent, and set the bit
1065 * on the first half
1066 */
1067 if (state->start <= end && state->end > end) {
1068 if (state->state & exclusive_bits) {
1069 *failed_start = start;
1070 err = -EEXIST;
1071 goto out;
1072 }
1073
1074 prealloc = alloc_extent_state_atomic(prealloc);
1075 BUG_ON(!prealloc);
1076 err = split_state(tree, state, prealloc, end + 1);
1077 if (err)
1078 extent_io_tree_panic(tree, err);
1079
1080 set_state_bits(tree, prealloc, &bits, changeset);
1081 cache_state(prealloc, cached_state);
1082 merge_state(tree, prealloc);
1083 prealloc = NULL;
1084 goto out;
1085 }
1086
1087 search_again:
1088 if (start > end)
1089 goto out;
1090 spin_unlock(&tree->lock);
1091 if (gfpflags_allow_blocking(mask))
1092 cond_resched();
1093 goto again;
1094
1095 out:
1096 spin_unlock(&tree->lock);
1097 if (prealloc)
1098 free_extent_state(prealloc);
1099
1100 return err;
1101
1102 }
1103
set_extent_bit(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits,u64 * failed_start,struct extent_state ** cached_state,gfp_t mask)1104 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1105 unsigned bits, u64 * failed_start,
1106 struct extent_state **cached_state, gfp_t mask)
1107 {
1108 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1109 cached_state, mask, NULL);
1110 }
1111
1112
1113 /**
1114 * convert_extent_bit - convert all bits in a given range from one bit to
1115 * another
1116 * @tree: the io tree to search
1117 * @start: the start offset in bytes
1118 * @end: the end offset in bytes (inclusive)
1119 * @bits: the bits to set in this range
1120 * @clear_bits: the bits to clear in this range
1121 * @cached_state: state that we're going to cache
1122 *
1123 * This will go through and set bits for the given range. If any states exist
1124 * already in this range they are set with the given bit and cleared of the
1125 * clear_bits. This is only meant to be used by things that are mergeable, ie
1126 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1127 * boundary bits like LOCK.
1128 *
1129 * All allocations are done with GFP_NOFS.
1130 */
convert_extent_bit(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits,unsigned clear_bits,struct extent_state ** cached_state)1131 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1132 unsigned bits, unsigned clear_bits,
1133 struct extent_state **cached_state)
1134 {
1135 struct extent_state *state;
1136 struct extent_state *prealloc = NULL;
1137 struct rb_node *node;
1138 struct rb_node **p;
1139 struct rb_node *parent;
1140 int err = 0;
1141 u64 last_start;
1142 u64 last_end;
1143 bool first_iteration = true;
1144
1145 btrfs_debug_check_extent_io_range(tree, start, end);
1146
1147 again:
1148 if (!prealloc) {
1149 /*
1150 * Best effort, don't worry if extent state allocation fails
1151 * here for the first iteration. We might have a cached state
1152 * that matches exactly the target range, in which case no
1153 * extent state allocations are needed. We'll only know this
1154 * after locking the tree.
1155 */
1156 prealloc = alloc_extent_state(GFP_NOFS);
1157 if (!prealloc && !first_iteration)
1158 return -ENOMEM;
1159 }
1160
1161 spin_lock(&tree->lock);
1162 if (cached_state && *cached_state) {
1163 state = *cached_state;
1164 if (state->start <= start && state->end > start &&
1165 extent_state_in_tree(state)) {
1166 node = &state->rb_node;
1167 goto hit_next;
1168 }
1169 }
1170
1171 /*
1172 * this search will find all the extents that end after
1173 * our range starts.
1174 */
1175 node = tree_search_for_insert(tree, start, &p, &parent);
1176 if (!node) {
1177 prealloc = alloc_extent_state_atomic(prealloc);
1178 if (!prealloc) {
1179 err = -ENOMEM;
1180 goto out;
1181 }
1182 err = insert_state(tree, prealloc, start, end,
1183 &p, &parent, &bits, NULL);
1184 if (err)
1185 extent_io_tree_panic(tree, err);
1186 cache_state(prealloc, cached_state);
1187 prealloc = NULL;
1188 goto out;
1189 }
1190 state = rb_entry(node, struct extent_state, rb_node);
1191 hit_next:
1192 last_start = state->start;
1193 last_end = state->end;
1194
1195 /*
1196 * | ---- desired range ---- |
1197 * | state |
1198 *
1199 * Just lock what we found and keep going
1200 */
1201 if (state->start == start && state->end <= end) {
1202 set_state_bits(tree, state, &bits, NULL);
1203 cache_state(state, cached_state);
1204 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1205 if (last_end == (u64)-1)
1206 goto out;
1207 start = last_end + 1;
1208 if (start < end && state && state->start == start &&
1209 !need_resched())
1210 goto hit_next;
1211 goto search_again;
1212 }
1213
1214 /*
1215 * | ---- desired range ---- |
1216 * | state |
1217 * or
1218 * | ------------- state -------------- |
1219 *
1220 * We need to split the extent we found, and may flip bits on
1221 * second half.
1222 *
1223 * If the extent we found extends past our
1224 * range, we just split and search again. It'll get split
1225 * again the next time though.
1226 *
1227 * If the extent we found is inside our range, we set the
1228 * desired bit on it.
1229 */
1230 if (state->start < start) {
1231 prealloc = alloc_extent_state_atomic(prealloc);
1232 if (!prealloc) {
1233 err = -ENOMEM;
1234 goto out;
1235 }
1236 err = split_state(tree, state, prealloc, start);
1237 if (err)
1238 extent_io_tree_panic(tree, err);
1239 prealloc = NULL;
1240 if (err)
1241 goto out;
1242 if (state->end <= end) {
1243 set_state_bits(tree, state, &bits, NULL);
1244 cache_state(state, cached_state);
1245 state = clear_state_bit(tree, state, &clear_bits, 0,
1246 NULL);
1247 if (last_end == (u64)-1)
1248 goto out;
1249 start = last_end + 1;
1250 if (start < end && state && state->start == start &&
1251 !need_resched())
1252 goto hit_next;
1253 }
1254 goto search_again;
1255 }
1256 /*
1257 * | ---- desired range ---- |
1258 * | state | or | state |
1259 *
1260 * There's a hole, we need to insert something in it and
1261 * ignore the extent we found.
1262 */
1263 if (state->start > start) {
1264 u64 this_end;
1265 if (end < last_start)
1266 this_end = end;
1267 else
1268 this_end = last_start - 1;
1269
1270 prealloc = alloc_extent_state_atomic(prealloc);
1271 if (!prealloc) {
1272 err = -ENOMEM;
1273 goto out;
1274 }
1275
1276 /*
1277 * Avoid to free 'prealloc' if it can be merged with
1278 * the later extent.
1279 */
1280 err = insert_state(tree, prealloc, start, this_end,
1281 NULL, NULL, &bits, NULL);
1282 if (err)
1283 extent_io_tree_panic(tree, err);
1284 cache_state(prealloc, cached_state);
1285 prealloc = NULL;
1286 start = this_end + 1;
1287 goto search_again;
1288 }
1289 /*
1290 * | ---- desired range ---- |
1291 * | state |
1292 * We need to split the extent, and set the bit
1293 * on the first half
1294 */
1295 if (state->start <= end && state->end > end) {
1296 prealloc = alloc_extent_state_atomic(prealloc);
1297 if (!prealloc) {
1298 err = -ENOMEM;
1299 goto out;
1300 }
1301
1302 err = split_state(tree, state, prealloc, end + 1);
1303 if (err)
1304 extent_io_tree_panic(tree, err);
1305
1306 set_state_bits(tree, prealloc, &bits, NULL);
1307 cache_state(prealloc, cached_state);
1308 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1309 prealloc = NULL;
1310 goto out;
1311 }
1312
1313 search_again:
1314 if (start > end)
1315 goto out;
1316 spin_unlock(&tree->lock);
1317 cond_resched();
1318 first_iteration = false;
1319 goto again;
1320
1321 out:
1322 spin_unlock(&tree->lock);
1323 if (prealloc)
1324 free_extent_state(prealloc);
1325
1326 return err;
1327 }
1328
1329 /* wrappers around set/clear extent bit */
set_record_extent_bits(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits,struct extent_changeset * changeset)1330 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1331 unsigned bits, struct extent_changeset *changeset)
1332 {
1333 /*
1334 * We don't support EXTENT_LOCKED yet, as current changeset will
1335 * record any bits changed, so for EXTENT_LOCKED case, it will
1336 * either fail with -EEXIST or changeset will record the whole
1337 * range.
1338 */
1339 BUG_ON(bits & EXTENT_LOCKED);
1340
1341 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1342 changeset);
1343 }
1344
clear_extent_bit(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits,int wake,int delete,struct extent_state ** cached)1345 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1346 unsigned bits, int wake, int delete,
1347 struct extent_state **cached)
1348 {
1349 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1350 cached, GFP_NOFS, NULL);
1351 }
1352
clear_record_extent_bits(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits,struct extent_changeset * changeset)1353 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1354 unsigned bits, struct extent_changeset *changeset)
1355 {
1356 /*
1357 * Don't support EXTENT_LOCKED case, same reason as
1358 * set_record_extent_bits().
1359 */
1360 BUG_ON(bits & EXTENT_LOCKED);
1361
1362 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1363 changeset);
1364 }
1365
1366 /*
1367 * either insert or lock state struct between start and end use mask to tell
1368 * us if waiting is desired.
1369 */
lock_extent_bits(struct extent_io_tree * tree,u64 start,u64 end,struct extent_state ** cached_state)1370 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1371 struct extent_state **cached_state)
1372 {
1373 int err;
1374 u64 failed_start;
1375
1376 while (1) {
1377 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1378 EXTENT_LOCKED, &failed_start,
1379 cached_state, GFP_NOFS, NULL);
1380 if (err == -EEXIST) {
1381 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1382 start = failed_start;
1383 } else
1384 break;
1385 WARN_ON(start > end);
1386 }
1387 return err;
1388 }
1389
try_lock_extent(struct extent_io_tree * tree,u64 start,u64 end)1390 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1391 {
1392 int err;
1393 u64 failed_start;
1394
1395 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1396 &failed_start, NULL, GFP_NOFS, NULL);
1397 if (err == -EEXIST) {
1398 if (failed_start > start)
1399 clear_extent_bit(tree, start, failed_start - 1,
1400 EXTENT_LOCKED, 1, 0, NULL);
1401 return 0;
1402 }
1403 return 1;
1404 }
1405
extent_range_clear_dirty_for_io(struct inode * inode,u64 start,u64 end)1406 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1407 {
1408 unsigned long index = start >> PAGE_SHIFT;
1409 unsigned long end_index = end >> PAGE_SHIFT;
1410 struct page *page;
1411
1412 while (index <= end_index) {
1413 page = find_get_page(inode->i_mapping, index);
1414 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1415 clear_page_dirty_for_io(page);
1416 put_page(page);
1417 index++;
1418 }
1419 }
1420
extent_range_redirty_for_io(struct inode * inode,u64 start,u64 end)1421 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1422 {
1423 unsigned long index = start >> PAGE_SHIFT;
1424 unsigned long end_index = end >> PAGE_SHIFT;
1425 struct page *page;
1426
1427 while (index <= end_index) {
1428 page = find_get_page(inode->i_mapping, index);
1429 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1430 __set_page_dirty_nobuffers(page);
1431 account_page_redirty(page);
1432 put_page(page);
1433 index++;
1434 }
1435 }
1436
1437 /* find the first state struct with 'bits' set after 'start', and
1438 * return it. tree->lock must be held. NULL will returned if
1439 * nothing was found after 'start'
1440 */
1441 static struct extent_state *
find_first_extent_bit_state(struct extent_io_tree * tree,u64 start,unsigned bits)1442 find_first_extent_bit_state(struct extent_io_tree *tree,
1443 u64 start, unsigned bits)
1444 {
1445 struct rb_node *node;
1446 struct extent_state *state;
1447
1448 /*
1449 * this search will find all the extents that end after
1450 * our range starts.
1451 */
1452 node = tree_search(tree, start);
1453 if (!node)
1454 goto out;
1455
1456 while (1) {
1457 state = rb_entry(node, struct extent_state, rb_node);
1458 if (state->end >= start && (state->state & bits))
1459 return state;
1460
1461 node = rb_next(node);
1462 if (!node)
1463 break;
1464 }
1465 out:
1466 return NULL;
1467 }
1468
1469 /*
1470 * find the first offset in the io tree with 'bits' set. zero is
1471 * returned if we find something, and *start_ret and *end_ret are
1472 * set to reflect the state struct that was found.
1473 *
1474 * If nothing was found, 1 is returned. If found something, return 0.
1475 */
find_first_extent_bit(struct extent_io_tree * tree,u64 start,u64 * start_ret,u64 * end_ret,unsigned bits,struct extent_state ** cached_state)1476 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1477 u64 *start_ret, u64 *end_ret, unsigned bits,
1478 struct extent_state **cached_state)
1479 {
1480 struct extent_state *state;
1481 struct rb_node *n;
1482 int ret = 1;
1483
1484 spin_lock(&tree->lock);
1485 if (cached_state && *cached_state) {
1486 state = *cached_state;
1487 if (state->end == start - 1 && extent_state_in_tree(state)) {
1488 n = rb_next(&state->rb_node);
1489 while (n) {
1490 state = rb_entry(n, struct extent_state,
1491 rb_node);
1492 if (state->state & bits)
1493 goto got_it;
1494 n = rb_next(n);
1495 }
1496 free_extent_state(*cached_state);
1497 *cached_state = NULL;
1498 goto out;
1499 }
1500 free_extent_state(*cached_state);
1501 *cached_state = NULL;
1502 }
1503
1504 state = find_first_extent_bit_state(tree, start, bits);
1505 got_it:
1506 if (state) {
1507 cache_state_if_flags(state, cached_state, 0);
1508 *start_ret = state->start;
1509 *end_ret = state->end;
1510 ret = 0;
1511 }
1512 out:
1513 spin_unlock(&tree->lock);
1514 return ret;
1515 }
1516
1517 /*
1518 * find a contiguous range of bytes in the file marked as delalloc, not
1519 * more than 'max_bytes'. start and end are used to return the range,
1520 *
1521 * 1 is returned if we find something, 0 if nothing was in the tree
1522 */
find_delalloc_range(struct extent_io_tree * tree,u64 * start,u64 * end,u64 max_bytes,struct extent_state ** cached_state)1523 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1524 u64 *start, u64 *end, u64 max_bytes,
1525 struct extent_state **cached_state)
1526 {
1527 struct rb_node *node;
1528 struct extent_state *state;
1529 u64 cur_start = *start;
1530 u64 found = 0;
1531 u64 total_bytes = 0;
1532
1533 spin_lock(&tree->lock);
1534
1535 /*
1536 * this search will find all the extents that end after
1537 * our range starts.
1538 */
1539 node = tree_search(tree, cur_start);
1540 if (!node) {
1541 if (!found)
1542 *end = (u64)-1;
1543 goto out;
1544 }
1545
1546 while (1) {
1547 state = rb_entry(node, struct extent_state, rb_node);
1548 if (found && (state->start != cur_start ||
1549 (state->state & EXTENT_BOUNDARY))) {
1550 goto out;
1551 }
1552 if (!(state->state & EXTENT_DELALLOC)) {
1553 if (!found)
1554 *end = state->end;
1555 goto out;
1556 }
1557 if (!found) {
1558 *start = state->start;
1559 *cached_state = state;
1560 refcount_inc(&state->refs);
1561 }
1562 found++;
1563 *end = state->end;
1564 cur_start = state->end + 1;
1565 node = rb_next(node);
1566 total_bytes += state->end - state->start + 1;
1567 if (total_bytes >= max_bytes)
1568 break;
1569 if (!node)
1570 break;
1571 }
1572 out:
1573 spin_unlock(&tree->lock);
1574 return found;
1575 }
1576
1577 static int __process_pages_contig(struct address_space *mapping,
1578 struct page *locked_page,
1579 pgoff_t start_index, pgoff_t end_index,
1580 unsigned long page_ops, pgoff_t *index_ret);
1581
__unlock_for_delalloc(struct inode * inode,struct page * locked_page,u64 start,u64 end)1582 static noinline void __unlock_for_delalloc(struct inode *inode,
1583 struct page *locked_page,
1584 u64 start, u64 end)
1585 {
1586 unsigned long index = start >> PAGE_SHIFT;
1587 unsigned long end_index = end >> PAGE_SHIFT;
1588
1589 ASSERT(locked_page);
1590 if (index == locked_page->index && end_index == index)
1591 return;
1592
1593 __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1594 PAGE_UNLOCK, NULL);
1595 }
1596
lock_delalloc_pages(struct inode * inode,struct page * locked_page,u64 delalloc_start,u64 delalloc_end)1597 static noinline int lock_delalloc_pages(struct inode *inode,
1598 struct page *locked_page,
1599 u64 delalloc_start,
1600 u64 delalloc_end)
1601 {
1602 unsigned long index = delalloc_start >> PAGE_SHIFT;
1603 unsigned long index_ret = index;
1604 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1605 int ret;
1606
1607 ASSERT(locked_page);
1608 if (index == locked_page->index && index == end_index)
1609 return 0;
1610
1611 ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1612 end_index, PAGE_LOCK, &index_ret);
1613 if (ret == -EAGAIN)
1614 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1615 (u64)index_ret << PAGE_SHIFT);
1616 return ret;
1617 }
1618
1619 /*
1620 * find a contiguous range of bytes in the file marked as delalloc, not
1621 * more than 'max_bytes'. start and end are used to return the range,
1622 *
1623 * 1 is returned if we find something, 0 if nothing was in the tree
1624 */
find_lock_delalloc_range(struct inode * inode,struct extent_io_tree * tree,struct page * locked_page,u64 * start,u64 * end,u64 max_bytes)1625 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1626 struct extent_io_tree *tree,
1627 struct page *locked_page, u64 *start,
1628 u64 *end, u64 max_bytes)
1629 {
1630 u64 delalloc_start;
1631 u64 delalloc_end;
1632 u64 found;
1633 struct extent_state *cached_state = NULL;
1634 int ret;
1635 int loops = 0;
1636
1637 again:
1638 /* step one, find a bunch of delalloc bytes starting at start */
1639 delalloc_start = *start;
1640 delalloc_end = 0;
1641 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1642 max_bytes, &cached_state);
1643 if (!found || delalloc_end <= *start) {
1644 *start = delalloc_start;
1645 *end = delalloc_end;
1646 free_extent_state(cached_state);
1647 return 0;
1648 }
1649
1650 /*
1651 * start comes from the offset of locked_page. We have to lock
1652 * pages in order, so we can't process delalloc bytes before
1653 * locked_page
1654 */
1655 if (delalloc_start < *start)
1656 delalloc_start = *start;
1657
1658 /*
1659 * make sure to limit the number of pages we try to lock down
1660 */
1661 if (delalloc_end + 1 - delalloc_start > max_bytes)
1662 delalloc_end = delalloc_start + max_bytes - 1;
1663
1664 /* step two, lock all the pages after the page that has start */
1665 ret = lock_delalloc_pages(inode, locked_page,
1666 delalloc_start, delalloc_end);
1667 if (ret == -EAGAIN) {
1668 /* some of the pages are gone, lets avoid looping by
1669 * shortening the size of the delalloc range we're searching
1670 */
1671 free_extent_state(cached_state);
1672 cached_state = NULL;
1673 if (!loops) {
1674 max_bytes = PAGE_SIZE;
1675 loops = 1;
1676 goto again;
1677 } else {
1678 found = 0;
1679 goto out_failed;
1680 }
1681 }
1682 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1683
1684 /* step three, lock the state bits for the whole range */
1685 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1686
1687 /* then test to make sure it is all still delalloc */
1688 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1689 EXTENT_DELALLOC, 1, cached_state);
1690 if (!ret) {
1691 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1692 &cached_state);
1693 __unlock_for_delalloc(inode, locked_page,
1694 delalloc_start, delalloc_end);
1695 cond_resched();
1696 goto again;
1697 }
1698 free_extent_state(cached_state);
1699 *start = delalloc_start;
1700 *end = delalloc_end;
1701 out_failed:
1702 return found;
1703 }
1704
__process_pages_contig(struct address_space * mapping,struct page * locked_page,pgoff_t start_index,pgoff_t end_index,unsigned long page_ops,pgoff_t * index_ret)1705 static int __process_pages_contig(struct address_space *mapping,
1706 struct page *locked_page,
1707 pgoff_t start_index, pgoff_t end_index,
1708 unsigned long page_ops, pgoff_t *index_ret)
1709 {
1710 unsigned long nr_pages = end_index - start_index + 1;
1711 unsigned long pages_locked = 0;
1712 pgoff_t index = start_index;
1713 struct page *pages[16];
1714 unsigned ret;
1715 int err = 0;
1716 int i;
1717
1718 if (page_ops & PAGE_LOCK) {
1719 ASSERT(page_ops == PAGE_LOCK);
1720 ASSERT(index_ret && *index_ret == start_index);
1721 }
1722
1723 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1724 mapping_set_error(mapping, -EIO);
1725
1726 while (nr_pages > 0) {
1727 ret = find_get_pages_contig(mapping, index,
1728 min_t(unsigned long,
1729 nr_pages, ARRAY_SIZE(pages)), pages);
1730 if (ret == 0) {
1731 /*
1732 * Only if we're going to lock these pages,
1733 * can we find nothing at @index.
1734 */
1735 ASSERT(page_ops & PAGE_LOCK);
1736 err = -EAGAIN;
1737 goto out;
1738 }
1739
1740 for (i = 0; i < ret; i++) {
1741 if (page_ops & PAGE_SET_PRIVATE2)
1742 SetPagePrivate2(pages[i]);
1743
1744 if (pages[i] == locked_page) {
1745 put_page(pages[i]);
1746 pages_locked++;
1747 continue;
1748 }
1749 if (page_ops & PAGE_CLEAR_DIRTY)
1750 clear_page_dirty_for_io(pages[i]);
1751 if (page_ops & PAGE_SET_WRITEBACK)
1752 set_page_writeback(pages[i]);
1753 if (page_ops & PAGE_SET_ERROR)
1754 SetPageError(pages[i]);
1755 if (page_ops & PAGE_END_WRITEBACK)
1756 end_page_writeback(pages[i]);
1757 if (page_ops & PAGE_UNLOCK)
1758 unlock_page(pages[i]);
1759 if (page_ops & PAGE_LOCK) {
1760 lock_page(pages[i]);
1761 if (!PageDirty(pages[i]) ||
1762 pages[i]->mapping != mapping) {
1763 unlock_page(pages[i]);
1764 for (; i < ret; i++)
1765 put_page(pages[i]);
1766 err = -EAGAIN;
1767 goto out;
1768 }
1769 }
1770 put_page(pages[i]);
1771 pages_locked++;
1772 }
1773 nr_pages -= ret;
1774 index += ret;
1775 cond_resched();
1776 }
1777 out:
1778 if (err && index_ret)
1779 *index_ret = start_index + pages_locked - 1;
1780 return err;
1781 }
1782
extent_clear_unlock_delalloc(struct inode * inode,u64 start,u64 end,u64 delalloc_end,struct page * locked_page,unsigned clear_bits,unsigned long page_ops)1783 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1784 u64 delalloc_end, struct page *locked_page,
1785 unsigned clear_bits,
1786 unsigned long page_ops)
1787 {
1788 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
1789 NULL);
1790
1791 __process_pages_contig(inode->i_mapping, locked_page,
1792 start >> PAGE_SHIFT, end >> PAGE_SHIFT,
1793 page_ops, NULL);
1794 }
1795
1796 /*
1797 * count the number of bytes in the tree that have a given bit(s)
1798 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1799 * cached. The total number found is returned.
1800 */
count_range_bits(struct extent_io_tree * tree,u64 * start,u64 search_end,u64 max_bytes,unsigned bits,int contig)1801 u64 count_range_bits(struct extent_io_tree *tree,
1802 u64 *start, u64 search_end, u64 max_bytes,
1803 unsigned bits, int contig)
1804 {
1805 struct rb_node *node;
1806 struct extent_state *state;
1807 u64 cur_start = *start;
1808 u64 total_bytes = 0;
1809 u64 last = 0;
1810 int found = 0;
1811
1812 if (WARN_ON(search_end <= cur_start))
1813 return 0;
1814
1815 spin_lock(&tree->lock);
1816 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1817 total_bytes = tree->dirty_bytes;
1818 goto out;
1819 }
1820 /*
1821 * this search will find all the extents that end after
1822 * our range starts.
1823 */
1824 node = tree_search(tree, cur_start);
1825 if (!node)
1826 goto out;
1827
1828 while (1) {
1829 state = rb_entry(node, struct extent_state, rb_node);
1830 if (state->start > search_end)
1831 break;
1832 if (contig && found && state->start > last + 1)
1833 break;
1834 if (state->end >= cur_start && (state->state & bits) == bits) {
1835 total_bytes += min(search_end, state->end) + 1 -
1836 max(cur_start, state->start);
1837 if (total_bytes >= max_bytes)
1838 break;
1839 if (!found) {
1840 *start = max(cur_start, state->start);
1841 found = 1;
1842 }
1843 last = state->end;
1844 } else if (contig && found) {
1845 break;
1846 }
1847 node = rb_next(node);
1848 if (!node)
1849 break;
1850 }
1851 out:
1852 spin_unlock(&tree->lock);
1853 return total_bytes;
1854 }
1855
1856 /*
1857 * set the private field for a given byte offset in the tree. If there isn't
1858 * an extent_state there already, this does nothing.
1859 */
set_state_failrec(struct extent_io_tree * tree,u64 start,struct io_failure_record * failrec)1860 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
1861 struct io_failure_record *failrec)
1862 {
1863 struct rb_node *node;
1864 struct extent_state *state;
1865 int ret = 0;
1866
1867 spin_lock(&tree->lock);
1868 /*
1869 * this search will find all the extents that end after
1870 * our range starts.
1871 */
1872 node = tree_search(tree, start);
1873 if (!node) {
1874 ret = -ENOENT;
1875 goto out;
1876 }
1877 state = rb_entry(node, struct extent_state, rb_node);
1878 if (state->start != start) {
1879 ret = -ENOENT;
1880 goto out;
1881 }
1882 state->failrec = failrec;
1883 out:
1884 spin_unlock(&tree->lock);
1885 return ret;
1886 }
1887
get_state_failrec(struct extent_io_tree * tree,u64 start,struct io_failure_record ** failrec)1888 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
1889 struct io_failure_record **failrec)
1890 {
1891 struct rb_node *node;
1892 struct extent_state *state;
1893 int ret = 0;
1894
1895 spin_lock(&tree->lock);
1896 /*
1897 * this search will find all the extents that end after
1898 * our range starts.
1899 */
1900 node = tree_search(tree, start);
1901 if (!node) {
1902 ret = -ENOENT;
1903 goto out;
1904 }
1905 state = rb_entry(node, struct extent_state, rb_node);
1906 if (state->start != start) {
1907 ret = -ENOENT;
1908 goto out;
1909 }
1910 *failrec = state->failrec;
1911 out:
1912 spin_unlock(&tree->lock);
1913 return ret;
1914 }
1915
1916 /*
1917 * searches a range in the state tree for a given mask.
1918 * If 'filled' == 1, this returns 1 only if every extent in the tree
1919 * has the bits set. Otherwise, 1 is returned if any bit in the
1920 * range is found set.
1921 */
test_range_bit(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits,int filled,struct extent_state * cached)1922 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1923 unsigned bits, int filled, struct extent_state *cached)
1924 {
1925 struct extent_state *state = NULL;
1926 struct rb_node *node;
1927 int bitset = 0;
1928
1929 spin_lock(&tree->lock);
1930 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1931 cached->end > start)
1932 node = &cached->rb_node;
1933 else
1934 node = tree_search(tree, start);
1935 while (node && start <= end) {
1936 state = rb_entry(node, struct extent_state, rb_node);
1937
1938 if (filled && state->start > start) {
1939 bitset = 0;
1940 break;
1941 }
1942
1943 if (state->start > end)
1944 break;
1945
1946 if (state->state & bits) {
1947 bitset = 1;
1948 if (!filled)
1949 break;
1950 } else if (filled) {
1951 bitset = 0;
1952 break;
1953 }
1954
1955 if (state->end == (u64)-1)
1956 break;
1957
1958 start = state->end + 1;
1959 if (start > end)
1960 break;
1961 node = rb_next(node);
1962 if (!node) {
1963 if (filled)
1964 bitset = 0;
1965 break;
1966 }
1967 }
1968 spin_unlock(&tree->lock);
1969 return bitset;
1970 }
1971
1972 /*
1973 * helper function to set a given page up to date if all the
1974 * extents in the tree for that page are up to date
1975 */
check_page_uptodate(struct extent_io_tree * tree,struct page * page)1976 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1977 {
1978 u64 start = page_offset(page);
1979 u64 end = start + PAGE_SIZE - 1;
1980 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1981 SetPageUptodate(page);
1982 }
1983
free_io_failure(struct extent_io_tree * failure_tree,struct extent_io_tree * io_tree,struct io_failure_record * rec)1984 int free_io_failure(struct extent_io_tree *failure_tree,
1985 struct extent_io_tree *io_tree,
1986 struct io_failure_record *rec)
1987 {
1988 int ret;
1989 int err = 0;
1990
1991 set_state_failrec(failure_tree, rec->start, NULL);
1992 ret = clear_extent_bits(failure_tree, rec->start,
1993 rec->start + rec->len - 1,
1994 EXTENT_LOCKED | EXTENT_DIRTY);
1995 if (ret)
1996 err = ret;
1997
1998 ret = clear_extent_bits(io_tree, rec->start,
1999 rec->start + rec->len - 1,
2000 EXTENT_DAMAGED);
2001 if (ret && !err)
2002 err = ret;
2003
2004 kfree(rec);
2005 return err;
2006 }
2007
2008 /*
2009 * this bypasses the standard btrfs submit functions deliberately, as
2010 * the standard behavior is to write all copies in a raid setup. here we only
2011 * want to write the one bad copy. so we do the mapping for ourselves and issue
2012 * submit_bio directly.
2013 * to avoid any synchronization issues, wait for the data after writing, which
2014 * actually prevents the read that triggered the error from finishing.
2015 * currently, there can be no more than two copies of every data bit. thus,
2016 * exactly one rewrite is required.
2017 */
repair_io_failure(struct btrfs_fs_info * fs_info,u64 ino,u64 start,u64 length,u64 logical,struct page * page,unsigned int pg_offset,int mirror_num)2018 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
2019 u64 length, u64 logical, struct page *page,
2020 unsigned int pg_offset, int mirror_num)
2021 {
2022 struct bio *bio;
2023 struct btrfs_device *dev;
2024 u64 map_length = 0;
2025 u64 sector;
2026 struct btrfs_bio *bbio = NULL;
2027 int ret;
2028
2029 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2030 BUG_ON(!mirror_num);
2031
2032 bio = btrfs_io_bio_alloc(1);
2033 bio->bi_iter.bi_size = 0;
2034 map_length = length;
2035
2036 /*
2037 * Avoid races with device replace and make sure our bbio has devices
2038 * associated to its stripes that don't go away while we are doing the
2039 * read repair operation.
2040 */
2041 btrfs_bio_counter_inc_blocked(fs_info);
2042 if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2043 /*
2044 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2045 * to update all raid stripes, but here we just want to correct
2046 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2047 * stripe's dev and sector.
2048 */
2049 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2050 &map_length, &bbio, 0);
2051 if (ret) {
2052 btrfs_bio_counter_dec(fs_info);
2053 bio_put(bio);
2054 return -EIO;
2055 }
2056 ASSERT(bbio->mirror_num == 1);
2057 } else {
2058 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2059 &map_length, &bbio, mirror_num);
2060 if (ret) {
2061 btrfs_bio_counter_dec(fs_info);
2062 bio_put(bio);
2063 return -EIO;
2064 }
2065 BUG_ON(mirror_num != bbio->mirror_num);
2066 }
2067
2068 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2069 bio->bi_iter.bi_sector = sector;
2070 dev = bbio->stripes[bbio->mirror_num - 1].dev;
2071 btrfs_put_bbio(bbio);
2072 if (!dev || !dev->bdev ||
2073 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2074 btrfs_bio_counter_dec(fs_info);
2075 bio_put(bio);
2076 return -EIO;
2077 }
2078 bio_set_dev(bio, dev->bdev);
2079 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2080 bio_add_page(bio, page, length, pg_offset);
2081
2082 if (btrfsic_submit_bio_wait(bio)) {
2083 /* try to remap that extent elsewhere? */
2084 btrfs_bio_counter_dec(fs_info);
2085 bio_put(bio);
2086 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2087 return -EIO;
2088 }
2089
2090 btrfs_info_rl_in_rcu(fs_info,
2091 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2092 ino, start,
2093 rcu_str_deref(dev->name), sector);
2094 btrfs_bio_counter_dec(fs_info);
2095 bio_put(bio);
2096 return 0;
2097 }
2098
repair_eb_io_failure(struct btrfs_fs_info * fs_info,struct extent_buffer * eb,int mirror_num)2099 int repair_eb_io_failure(struct btrfs_fs_info *fs_info,
2100 struct extent_buffer *eb, int mirror_num)
2101 {
2102 u64 start = eb->start;
2103 int i, num_pages = num_extent_pages(eb);
2104 int ret = 0;
2105
2106 if (sb_rdonly(fs_info->sb))
2107 return -EROFS;
2108
2109 for (i = 0; i < num_pages; i++) {
2110 struct page *p = eb->pages[i];
2111
2112 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2113 start - page_offset(p), mirror_num);
2114 if (ret)
2115 break;
2116 start += PAGE_SIZE;
2117 }
2118
2119 return ret;
2120 }
2121
2122 /*
2123 * each time an IO finishes, we do a fast check in the IO failure tree
2124 * to see if we need to process or clean up an io_failure_record
2125 */
clean_io_failure(struct btrfs_fs_info * fs_info,struct extent_io_tree * failure_tree,struct extent_io_tree * io_tree,u64 start,struct page * page,u64 ino,unsigned int pg_offset)2126 int clean_io_failure(struct btrfs_fs_info *fs_info,
2127 struct extent_io_tree *failure_tree,
2128 struct extent_io_tree *io_tree, u64 start,
2129 struct page *page, u64 ino, unsigned int pg_offset)
2130 {
2131 u64 private;
2132 struct io_failure_record *failrec;
2133 struct extent_state *state;
2134 int num_copies;
2135 int ret;
2136
2137 private = 0;
2138 ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2139 EXTENT_DIRTY, 0);
2140 if (!ret)
2141 return 0;
2142
2143 ret = get_state_failrec(failure_tree, start, &failrec);
2144 if (ret)
2145 return 0;
2146
2147 BUG_ON(!failrec->this_mirror);
2148
2149 if (failrec->in_validation) {
2150 /* there was no real error, just free the record */
2151 btrfs_debug(fs_info,
2152 "clean_io_failure: freeing dummy error at %llu",
2153 failrec->start);
2154 goto out;
2155 }
2156 if (sb_rdonly(fs_info->sb))
2157 goto out;
2158
2159 spin_lock(&io_tree->lock);
2160 state = find_first_extent_bit_state(io_tree,
2161 failrec->start,
2162 EXTENT_LOCKED);
2163 spin_unlock(&io_tree->lock);
2164
2165 if (state && state->start <= failrec->start &&
2166 state->end >= failrec->start + failrec->len - 1) {
2167 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2168 failrec->len);
2169 if (num_copies > 1) {
2170 repair_io_failure(fs_info, ino, start, failrec->len,
2171 failrec->logical, page, pg_offset,
2172 failrec->failed_mirror);
2173 }
2174 }
2175
2176 out:
2177 free_io_failure(failure_tree, io_tree, failrec);
2178
2179 return 0;
2180 }
2181
2182 /*
2183 * Can be called when
2184 * - hold extent lock
2185 * - under ordered extent
2186 * - the inode is freeing
2187 */
btrfs_free_io_failure_record(struct btrfs_inode * inode,u64 start,u64 end)2188 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2189 {
2190 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2191 struct io_failure_record *failrec;
2192 struct extent_state *state, *next;
2193
2194 if (RB_EMPTY_ROOT(&failure_tree->state))
2195 return;
2196
2197 spin_lock(&failure_tree->lock);
2198 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2199 while (state) {
2200 if (state->start > end)
2201 break;
2202
2203 ASSERT(state->end <= end);
2204
2205 next = next_state(state);
2206
2207 failrec = state->failrec;
2208 free_extent_state(state);
2209 kfree(failrec);
2210
2211 state = next;
2212 }
2213 spin_unlock(&failure_tree->lock);
2214 }
2215
btrfs_get_io_failure_record(struct inode * inode,u64 start,u64 end,struct io_failure_record ** failrec_ret)2216 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2217 struct io_failure_record **failrec_ret)
2218 {
2219 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2220 struct io_failure_record *failrec;
2221 struct extent_map *em;
2222 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2223 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2224 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2225 int ret;
2226 u64 logical;
2227
2228 ret = get_state_failrec(failure_tree, start, &failrec);
2229 if (ret) {
2230 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2231 if (!failrec)
2232 return -ENOMEM;
2233
2234 failrec->start = start;
2235 failrec->len = end - start + 1;
2236 failrec->this_mirror = 0;
2237 failrec->bio_flags = 0;
2238 failrec->in_validation = 0;
2239
2240 read_lock(&em_tree->lock);
2241 em = lookup_extent_mapping(em_tree, start, failrec->len);
2242 if (!em) {
2243 read_unlock(&em_tree->lock);
2244 kfree(failrec);
2245 return -EIO;
2246 }
2247
2248 if (em->start > start || em->start + em->len <= start) {
2249 free_extent_map(em);
2250 em = NULL;
2251 }
2252 read_unlock(&em_tree->lock);
2253 if (!em) {
2254 kfree(failrec);
2255 return -EIO;
2256 }
2257
2258 logical = start - em->start;
2259 logical = em->block_start + logical;
2260 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2261 logical = em->block_start;
2262 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2263 extent_set_compress_type(&failrec->bio_flags,
2264 em->compress_type);
2265 }
2266
2267 btrfs_debug(fs_info,
2268 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2269 logical, start, failrec->len);
2270
2271 failrec->logical = logical;
2272 free_extent_map(em);
2273
2274 /* set the bits in the private failure tree */
2275 ret = set_extent_bits(failure_tree, start, end,
2276 EXTENT_LOCKED | EXTENT_DIRTY);
2277 if (ret >= 0)
2278 ret = set_state_failrec(failure_tree, start, failrec);
2279 /* set the bits in the inode's tree */
2280 if (ret >= 0)
2281 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2282 if (ret < 0) {
2283 kfree(failrec);
2284 return ret;
2285 }
2286 } else {
2287 btrfs_debug(fs_info,
2288 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2289 failrec->logical, failrec->start, failrec->len,
2290 failrec->in_validation);
2291 /*
2292 * when data can be on disk more than twice, add to failrec here
2293 * (e.g. with a list for failed_mirror) to make
2294 * clean_io_failure() clean all those errors at once.
2295 */
2296 }
2297
2298 *failrec_ret = failrec;
2299
2300 return 0;
2301 }
2302
btrfs_check_repairable(struct inode * inode,unsigned failed_bio_pages,struct io_failure_record * failrec,int failed_mirror)2303 bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages,
2304 struct io_failure_record *failrec, int failed_mirror)
2305 {
2306 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2307 int num_copies;
2308
2309 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2310 if (num_copies == 1) {
2311 /*
2312 * we only have a single copy of the data, so don't bother with
2313 * all the retry and error correction code that follows. no
2314 * matter what the error is, it is very likely to persist.
2315 */
2316 btrfs_debug(fs_info,
2317 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2318 num_copies, failrec->this_mirror, failed_mirror);
2319 return false;
2320 }
2321
2322 /*
2323 * there are two premises:
2324 * a) deliver good data to the caller
2325 * b) correct the bad sectors on disk
2326 */
2327 if (failed_bio_pages > 1) {
2328 /*
2329 * to fulfill b), we need to know the exact failing sectors, as
2330 * we don't want to rewrite any more than the failed ones. thus,
2331 * we need separate read requests for the failed bio
2332 *
2333 * if the following BUG_ON triggers, our validation request got
2334 * merged. we need separate requests for our algorithm to work.
2335 */
2336 BUG_ON(failrec->in_validation);
2337 failrec->in_validation = 1;
2338 failrec->this_mirror = failed_mirror;
2339 } else {
2340 /*
2341 * we're ready to fulfill a) and b) alongside. get a good copy
2342 * of the failed sector and if we succeed, we have setup
2343 * everything for repair_io_failure to do the rest for us.
2344 */
2345 if (failrec->in_validation) {
2346 BUG_ON(failrec->this_mirror != failed_mirror);
2347 failrec->in_validation = 0;
2348 failrec->this_mirror = 0;
2349 }
2350 failrec->failed_mirror = failed_mirror;
2351 failrec->this_mirror++;
2352 if (failrec->this_mirror == failed_mirror)
2353 failrec->this_mirror++;
2354 }
2355
2356 if (failrec->this_mirror > num_copies) {
2357 btrfs_debug(fs_info,
2358 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2359 num_copies, failrec->this_mirror, failed_mirror);
2360 return false;
2361 }
2362
2363 return true;
2364 }
2365
2366
btrfs_create_repair_bio(struct inode * inode,struct bio * failed_bio,struct io_failure_record * failrec,struct page * page,int pg_offset,int icsum,bio_end_io_t * endio_func,void * data)2367 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2368 struct io_failure_record *failrec,
2369 struct page *page, int pg_offset, int icsum,
2370 bio_end_io_t *endio_func, void *data)
2371 {
2372 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2373 struct bio *bio;
2374 struct btrfs_io_bio *btrfs_failed_bio;
2375 struct btrfs_io_bio *btrfs_bio;
2376
2377 bio = btrfs_io_bio_alloc(1);
2378 bio->bi_end_io = endio_func;
2379 bio->bi_iter.bi_sector = failrec->logical >> 9;
2380 bio_set_dev(bio, fs_info->fs_devices->latest_bdev);
2381 bio->bi_iter.bi_size = 0;
2382 bio->bi_private = data;
2383
2384 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2385 if (btrfs_failed_bio->csum) {
2386 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2387
2388 btrfs_bio = btrfs_io_bio(bio);
2389 btrfs_bio->csum = btrfs_bio->csum_inline;
2390 icsum *= csum_size;
2391 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2392 csum_size);
2393 }
2394
2395 bio_add_page(bio, page, failrec->len, pg_offset);
2396
2397 return bio;
2398 }
2399
2400 /*
2401 * this is a generic handler for readpage errors (default
2402 * readpage_io_failed_hook). if other copies exist, read those and write back
2403 * good data to the failed position. does not investigate in remapping the
2404 * failed extent elsewhere, hoping the device will be smart enough to do this as
2405 * needed
2406 */
2407
bio_readpage_error(struct bio * failed_bio,u64 phy_offset,struct page * page,u64 start,u64 end,int failed_mirror)2408 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2409 struct page *page, u64 start, u64 end,
2410 int failed_mirror)
2411 {
2412 struct io_failure_record *failrec;
2413 struct inode *inode = page->mapping->host;
2414 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2415 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2416 struct bio *bio;
2417 int read_mode = 0;
2418 blk_status_t status;
2419 int ret;
2420 unsigned failed_bio_pages = bio_pages_all(failed_bio);
2421
2422 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2423
2424 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2425 if (ret)
2426 return ret;
2427
2428 if (!btrfs_check_repairable(inode, failed_bio_pages, failrec,
2429 failed_mirror)) {
2430 free_io_failure(failure_tree, tree, failrec);
2431 return -EIO;
2432 }
2433
2434 if (failed_bio_pages > 1)
2435 read_mode |= REQ_FAILFAST_DEV;
2436
2437 phy_offset >>= inode->i_sb->s_blocksize_bits;
2438 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2439 start - page_offset(page),
2440 (int)phy_offset, failed_bio->bi_end_io,
2441 NULL);
2442 bio->bi_opf = REQ_OP_READ | read_mode;
2443
2444 btrfs_debug(btrfs_sb(inode->i_sb),
2445 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2446 read_mode, failrec->this_mirror, failrec->in_validation);
2447
2448 status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
2449 failrec->bio_flags, 0);
2450 if (status) {
2451 free_io_failure(failure_tree, tree, failrec);
2452 bio_put(bio);
2453 ret = blk_status_to_errno(status);
2454 }
2455
2456 return ret;
2457 }
2458
2459 /* lots and lots of room for performance fixes in the end_bio funcs */
2460
end_extent_writepage(struct page * page,int err,u64 start,u64 end)2461 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2462 {
2463 int uptodate = (err == 0);
2464 struct extent_io_tree *tree;
2465 int ret = 0;
2466
2467 tree = &BTRFS_I(page->mapping->host)->io_tree;
2468
2469 if (tree->ops && tree->ops->writepage_end_io_hook)
2470 tree->ops->writepage_end_io_hook(page, start, end, NULL,
2471 uptodate);
2472
2473 if (!uptodate) {
2474 ClearPageUptodate(page);
2475 SetPageError(page);
2476 ret = err < 0 ? err : -EIO;
2477 mapping_set_error(page->mapping, ret);
2478 }
2479 }
2480
2481 /*
2482 * after a writepage IO is done, we need to:
2483 * clear the uptodate bits on error
2484 * clear the writeback bits in the extent tree for this IO
2485 * end_page_writeback if the page has no more pending IO
2486 *
2487 * Scheduling is not allowed, so the extent state tree is expected
2488 * to have one and only one object corresponding to this IO.
2489 */
end_bio_extent_writepage(struct bio * bio)2490 static void end_bio_extent_writepage(struct bio *bio)
2491 {
2492 int error = blk_status_to_errno(bio->bi_status);
2493 struct bio_vec *bvec;
2494 u64 start;
2495 u64 end;
2496 int i;
2497
2498 ASSERT(!bio_flagged(bio, BIO_CLONED));
2499 bio_for_each_segment_all(bvec, bio, i) {
2500 struct page *page = bvec->bv_page;
2501 struct inode *inode = page->mapping->host;
2502 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2503
2504 /* We always issue full-page reads, but if some block
2505 * in a page fails to read, blk_update_request() will
2506 * advance bv_offset and adjust bv_len to compensate.
2507 * Print a warning for nonzero offsets, and an error
2508 * if they don't add up to a full page. */
2509 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2510 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2511 btrfs_err(fs_info,
2512 "partial page write in btrfs with offset %u and length %u",
2513 bvec->bv_offset, bvec->bv_len);
2514 else
2515 btrfs_info(fs_info,
2516 "incomplete page write in btrfs with offset %u and length %u",
2517 bvec->bv_offset, bvec->bv_len);
2518 }
2519
2520 start = page_offset(page);
2521 end = start + bvec->bv_offset + bvec->bv_len - 1;
2522
2523 end_extent_writepage(page, error, start, end);
2524 end_page_writeback(page);
2525 }
2526
2527 bio_put(bio);
2528 }
2529
2530 static void
endio_readpage_release_extent(struct extent_io_tree * tree,u64 start,u64 len,int uptodate)2531 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2532 int uptodate)
2533 {
2534 struct extent_state *cached = NULL;
2535 u64 end = start + len - 1;
2536
2537 if (uptodate && tree->track_uptodate)
2538 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2539 unlock_extent_cached_atomic(tree, start, end, &cached);
2540 }
2541
2542 /*
2543 * after a readpage IO is done, we need to:
2544 * clear the uptodate bits on error
2545 * set the uptodate bits if things worked
2546 * set the page up to date if all extents in the tree are uptodate
2547 * clear the lock bit in the extent tree
2548 * unlock the page if there are no other extents locked for it
2549 *
2550 * Scheduling is not allowed, so the extent state tree is expected
2551 * to have one and only one object corresponding to this IO.
2552 */
end_bio_extent_readpage(struct bio * bio)2553 static void end_bio_extent_readpage(struct bio *bio)
2554 {
2555 struct bio_vec *bvec;
2556 int uptodate = !bio->bi_status;
2557 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2558 struct extent_io_tree *tree, *failure_tree;
2559 u64 offset = 0;
2560 u64 start;
2561 u64 end;
2562 u64 len;
2563 u64 extent_start = 0;
2564 u64 extent_len = 0;
2565 int mirror;
2566 int ret;
2567 int i;
2568
2569 ASSERT(!bio_flagged(bio, BIO_CLONED));
2570 bio_for_each_segment_all(bvec, bio, i) {
2571 struct page *page = bvec->bv_page;
2572 struct inode *inode = page->mapping->host;
2573 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2574
2575 btrfs_debug(fs_info,
2576 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2577 (u64)bio->bi_iter.bi_sector, bio->bi_status,
2578 io_bio->mirror_num);
2579 tree = &BTRFS_I(inode)->io_tree;
2580 failure_tree = &BTRFS_I(inode)->io_failure_tree;
2581
2582 /* We always issue full-page reads, but if some block
2583 * in a page fails to read, blk_update_request() will
2584 * advance bv_offset and adjust bv_len to compensate.
2585 * Print a warning for nonzero offsets, and an error
2586 * if they don't add up to a full page. */
2587 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2588 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2589 btrfs_err(fs_info,
2590 "partial page read in btrfs with offset %u and length %u",
2591 bvec->bv_offset, bvec->bv_len);
2592 else
2593 btrfs_info(fs_info,
2594 "incomplete page read in btrfs with offset %u and length %u",
2595 bvec->bv_offset, bvec->bv_len);
2596 }
2597
2598 start = page_offset(page);
2599 end = start + bvec->bv_offset + bvec->bv_len - 1;
2600 len = bvec->bv_len;
2601
2602 mirror = io_bio->mirror_num;
2603 if (likely(uptodate && tree->ops)) {
2604 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2605 page, start, end,
2606 mirror);
2607 if (ret)
2608 uptodate = 0;
2609 else
2610 clean_io_failure(BTRFS_I(inode)->root->fs_info,
2611 failure_tree, tree, start,
2612 page,
2613 btrfs_ino(BTRFS_I(inode)), 0);
2614 }
2615
2616 if (likely(uptodate))
2617 goto readpage_ok;
2618
2619 if (tree->ops) {
2620 ret = tree->ops->readpage_io_failed_hook(page, mirror);
2621 if (ret == -EAGAIN) {
2622 /*
2623 * Data inode's readpage_io_failed_hook() always
2624 * returns -EAGAIN.
2625 *
2626 * The generic bio_readpage_error handles errors
2627 * the following way: If possible, new read
2628 * requests are created and submitted and will
2629 * end up in end_bio_extent_readpage as well (if
2630 * we're lucky, not in the !uptodate case). In
2631 * that case it returns 0 and we just go on with
2632 * the next page in our bio. If it can't handle
2633 * the error it will return -EIO and we remain
2634 * responsible for that page.
2635 */
2636 ret = bio_readpage_error(bio, offset, page,
2637 start, end, mirror);
2638 if (ret == 0) {
2639 uptodate = !bio->bi_status;
2640 offset += len;
2641 continue;
2642 }
2643 }
2644
2645 /*
2646 * metadata's readpage_io_failed_hook() always returns
2647 * -EIO and fixes nothing. -EIO is also returned if
2648 * data inode error could not be fixed.
2649 */
2650 ASSERT(ret == -EIO);
2651 }
2652 readpage_ok:
2653 if (likely(uptodate)) {
2654 loff_t i_size = i_size_read(inode);
2655 pgoff_t end_index = i_size >> PAGE_SHIFT;
2656 unsigned off;
2657
2658 /* Zero out the end if this page straddles i_size */
2659 off = i_size & (PAGE_SIZE-1);
2660 if (page->index == end_index && off)
2661 zero_user_segment(page, off, PAGE_SIZE);
2662 SetPageUptodate(page);
2663 } else {
2664 ClearPageUptodate(page);
2665 SetPageError(page);
2666 }
2667 unlock_page(page);
2668 offset += len;
2669
2670 if (unlikely(!uptodate)) {
2671 if (extent_len) {
2672 endio_readpage_release_extent(tree,
2673 extent_start,
2674 extent_len, 1);
2675 extent_start = 0;
2676 extent_len = 0;
2677 }
2678 endio_readpage_release_extent(tree, start,
2679 end - start + 1, 0);
2680 } else if (!extent_len) {
2681 extent_start = start;
2682 extent_len = end + 1 - start;
2683 } else if (extent_start + extent_len == start) {
2684 extent_len += end + 1 - start;
2685 } else {
2686 endio_readpage_release_extent(tree, extent_start,
2687 extent_len, uptodate);
2688 extent_start = start;
2689 extent_len = end + 1 - start;
2690 }
2691 }
2692
2693 if (extent_len)
2694 endio_readpage_release_extent(tree, extent_start, extent_len,
2695 uptodate);
2696 if (io_bio->end_io)
2697 io_bio->end_io(io_bio, blk_status_to_errno(bio->bi_status));
2698 bio_put(bio);
2699 }
2700
2701 /*
2702 * Initialize the members up to but not including 'bio'. Use after allocating a
2703 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2704 * 'bio' because use of __GFP_ZERO is not supported.
2705 */
btrfs_io_bio_init(struct btrfs_io_bio * btrfs_bio)2706 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
2707 {
2708 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2709 }
2710
2711 /*
2712 * The following helpers allocate a bio. As it's backed by a bioset, it'll
2713 * never fail. We're returning a bio right now but you can call btrfs_io_bio
2714 * for the appropriate container_of magic
2715 */
btrfs_bio_alloc(struct block_device * bdev,u64 first_byte)2716 struct bio *btrfs_bio_alloc(struct block_device *bdev, u64 first_byte)
2717 {
2718 struct bio *bio;
2719
2720 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
2721 bio_set_dev(bio, bdev);
2722 bio->bi_iter.bi_sector = first_byte >> 9;
2723 btrfs_io_bio_init(btrfs_io_bio(bio));
2724 return bio;
2725 }
2726
btrfs_bio_clone(struct bio * bio)2727 struct bio *btrfs_bio_clone(struct bio *bio)
2728 {
2729 struct btrfs_io_bio *btrfs_bio;
2730 struct bio *new;
2731
2732 /* Bio allocation backed by a bioset does not fail */
2733 new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
2734 btrfs_bio = btrfs_io_bio(new);
2735 btrfs_io_bio_init(btrfs_bio);
2736 btrfs_bio->iter = bio->bi_iter;
2737 return new;
2738 }
2739
btrfs_io_bio_alloc(unsigned int nr_iovecs)2740 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
2741 {
2742 struct bio *bio;
2743
2744 /* Bio allocation backed by a bioset does not fail */
2745 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
2746 btrfs_io_bio_init(btrfs_io_bio(bio));
2747 return bio;
2748 }
2749
btrfs_bio_clone_partial(struct bio * orig,int offset,int size)2750 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2751 {
2752 struct bio *bio;
2753 struct btrfs_io_bio *btrfs_bio;
2754
2755 /* this will never fail when it's backed by a bioset */
2756 bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
2757 ASSERT(bio);
2758
2759 btrfs_bio = btrfs_io_bio(bio);
2760 btrfs_io_bio_init(btrfs_bio);
2761
2762 bio_trim(bio, offset >> 9, size >> 9);
2763 btrfs_bio->iter = bio->bi_iter;
2764 return bio;
2765 }
2766
2767 /*
2768 * @opf: bio REQ_OP_* and REQ_* flags as one value
2769 * @tree: tree so we can call our merge_bio hook
2770 * @wbc: optional writeback control for io accounting
2771 * @page: page to add to the bio
2772 * @pg_offset: offset of the new bio or to check whether we are adding
2773 * a contiguous page to the previous one
2774 * @size: portion of page that we want to write
2775 * @offset: starting offset in the page
2776 * @bdev: attach newly created bios to this bdev
2777 * @bio_ret: must be valid pointer, newly allocated bio will be stored there
2778 * @end_io_func: end_io callback for new bio
2779 * @mirror_num: desired mirror to read/write
2780 * @prev_bio_flags: flags of previous bio to see if we can merge the current one
2781 * @bio_flags: flags of the current bio to see if we can merge them
2782 */
submit_extent_page(unsigned int opf,struct extent_io_tree * tree,struct writeback_control * wbc,struct page * page,u64 offset,size_t size,unsigned long pg_offset,struct block_device * bdev,struct bio ** bio_ret,bio_end_io_t end_io_func,int mirror_num,unsigned long prev_bio_flags,unsigned long bio_flags,bool force_bio_submit)2783 static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree,
2784 struct writeback_control *wbc,
2785 struct page *page, u64 offset,
2786 size_t size, unsigned long pg_offset,
2787 struct block_device *bdev,
2788 struct bio **bio_ret,
2789 bio_end_io_t end_io_func,
2790 int mirror_num,
2791 unsigned long prev_bio_flags,
2792 unsigned long bio_flags,
2793 bool force_bio_submit)
2794 {
2795 int ret = 0;
2796 struct bio *bio;
2797 size_t page_size = min_t(size_t, size, PAGE_SIZE);
2798 sector_t sector = offset >> 9;
2799
2800 ASSERT(bio_ret);
2801
2802 if (*bio_ret) {
2803 bool contig;
2804 bool can_merge = true;
2805
2806 bio = *bio_ret;
2807 if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
2808 contig = bio->bi_iter.bi_sector == sector;
2809 else
2810 contig = bio_end_sector(bio) == sector;
2811
2812 if (tree->ops && btrfs_merge_bio_hook(page, offset, page_size,
2813 bio, bio_flags))
2814 can_merge = false;
2815
2816 if (prev_bio_flags != bio_flags || !contig || !can_merge ||
2817 force_bio_submit ||
2818 bio_add_page(bio, page, page_size, pg_offset) < page_size) {
2819 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2820 if (ret < 0) {
2821 *bio_ret = NULL;
2822 return ret;
2823 }
2824 bio = NULL;
2825 } else {
2826 if (wbc)
2827 wbc_account_io(wbc, page, page_size);
2828 return 0;
2829 }
2830 }
2831
2832 bio = btrfs_bio_alloc(bdev, offset);
2833 bio_add_page(bio, page, page_size, pg_offset);
2834 bio->bi_end_io = end_io_func;
2835 bio->bi_private = tree;
2836 bio->bi_write_hint = page->mapping->host->i_write_hint;
2837 bio->bi_opf = opf;
2838 if (wbc) {
2839 wbc_init_bio(wbc, bio);
2840 wbc_account_io(wbc, page, page_size);
2841 }
2842
2843 *bio_ret = bio;
2844
2845 return ret;
2846 }
2847
attach_extent_buffer_page(struct extent_buffer * eb,struct page * page)2848 static void attach_extent_buffer_page(struct extent_buffer *eb,
2849 struct page *page)
2850 {
2851 if (!PagePrivate(page)) {
2852 SetPagePrivate(page);
2853 get_page(page);
2854 set_page_private(page, (unsigned long)eb);
2855 } else {
2856 WARN_ON(page->private != (unsigned long)eb);
2857 }
2858 }
2859
set_page_extent_mapped(struct page * page)2860 void set_page_extent_mapped(struct page *page)
2861 {
2862 if (!PagePrivate(page)) {
2863 SetPagePrivate(page);
2864 get_page(page);
2865 set_page_private(page, EXTENT_PAGE_PRIVATE);
2866 }
2867 }
2868
2869 static struct extent_map *
__get_extent_map(struct inode * inode,struct page * page,size_t pg_offset,u64 start,u64 len,get_extent_t * get_extent,struct extent_map ** em_cached)2870 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2871 u64 start, u64 len, get_extent_t *get_extent,
2872 struct extent_map **em_cached)
2873 {
2874 struct extent_map *em;
2875
2876 if (em_cached && *em_cached) {
2877 em = *em_cached;
2878 if (extent_map_in_tree(em) && start >= em->start &&
2879 start < extent_map_end(em)) {
2880 refcount_inc(&em->refs);
2881 return em;
2882 }
2883
2884 free_extent_map(em);
2885 *em_cached = NULL;
2886 }
2887
2888 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
2889 if (em_cached && !IS_ERR_OR_NULL(em)) {
2890 BUG_ON(*em_cached);
2891 refcount_inc(&em->refs);
2892 *em_cached = em;
2893 }
2894 return em;
2895 }
2896 /*
2897 * basic readpage implementation. Locked extent state structs are inserted
2898 * into the tree that are removed when the IO is done (by the end_io
2899 * handlers)
2900 * XXX JDM: This needs looking at to ensure proper page locking
2901 * return 0 on success, otherwise return error
2902 */
__do_readpage(struct extent_io_tree * tree,struct page * page,get_extent_t * get_extent,struct extent_map ** em_cached,struct bio ** bio,int mirror_num,unsigned long * bio_flags,unsigned int read_flags,u64 * prev_em_start)2903 static int __do_readpage(struct extent_io_tree *tree,
2904 struct page *page,
2905 get_extent_t *get_extent,
2906 struct extent_map **em_cached,
2907 struct bio **bio, int mirror_num,
2908 unsigned long *bio_flags, unsigned int read_flags,
2909 u64 *prev_em_start)
2910 {
2911 struct inode *inode = page->mapping->host;
2912 u64 start = page_offset(page);
2913 const u64 end = start + PAGE_SIZE - 1;
2914 u64 cur = start;
2915 u64 extent_offset;
2916 u64 last_byte = i_size_read(inode);
2917 u64 block_start;
2918 u64 cur_end;
2919 struct extent_map *em;
2920 struct block_device *bdev;
2921 int ret = 0;
2922 int nr = 0;
2923 size_t pg_offset = 0;
2924 size_t iosize;
2925 size_t disk_io_size;
2926 size_t blocksize = inode->i_sb->s_blocksize;
2927 unsigned long this_bio_flag = 0;
2928
2929 set_page_extent_mapped(page);
2930
2931 if (!PageUptodate(page)) {
2932 if (cleancache_get_page(page) == 0) {
2933 BUG_ON(blocksize != PAGE_SIZE);
2934 unlock_extent(tree, start, end);
2935 goto out;
2936 }
2937 }
2938
2939 if (page->index == last_byte >> PAGE_SHIFT) {
2940 char *userpage;
2941 size_t zero_offset = last_byte & (PAGE_SIZE - 1);
2942
2943 if (zero_offset) {
2944 iosize = PAGE_SIZE - zero_offset;
2945 userpage = kmap_atomic(page);
2946 memset(userpage + zero_offset, 0, iosize);
2947 flush_dcache_page(page);
2948 kunmap_atomic(userpage);
2949 }
2950 }
2951 while (cur <= end) {
2952 bool force_bio_submit = false;
2953 u64 offset;
2954
2955 if (cur >= last_byte) {
2956 char *userpage;
2957 struct extent_state *cached = NULL;
2958
2959 iosize = PAGE_SIZE - pg_offset;
2960 userpage = kmap_atomic(page);
2961 memset(userpage + pg_offset, 0, iosize);
2962 flush_dcache_page(page);
2963 kunmap_atomic(userpage);
2964 set_extent_uptodate(tree, cur, cur + iosize - 1,
2965 &cached, GFP_NOFS);
2966 unlock_extent_cached(tree, cur,
2967 cur + iosize - 1, &cached);
2968 break;
2969 }
2970 em = __get_extent_map(inode, page, pg_offset, cur,
2971 end - cur + 1, get_extent, em_cached);
2972 if (IS_ERR_OR_NULL(em)) {
2973 SetPageError(page);
2974 unlock_extent(tree, cur, end);
2975 break;
2976 }
2977 extent_offset = cur - em->start;
2978 BUG_ON(extent_map_end(em) <= cur);
2979 BUG_ON(end < cur);
2980
2981 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2982 this_bio_flag |= EXTENT_BIO_COMPRESSED;
2983 extent_set_compress_type(&this_bio_flag,
2984 em->compress_type);
2985 }
2986
2987 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2988 cur_end = min(extent_map_end(em) - 1, end);
2989 iosize = ALIGN(iosize, blocksize);
2990 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2991 disk_io_size = em->block_len;
2992 offset = em->block_start;
2993 } else {
2994 offset = em->block_start + extent_offset;
2995 disk_io_size = iosize;
2996 }
2997 bdev = em->bdev;
2998 block_start = em->block_start;
2999 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3000 block_start = EXTENT_MAP_HOLE;
3001
3002 /*
3003 * If we have a file range that points to a compressed extent
3004 * and it's followed by a consecutive file range that points to
3005 * to the same compressed extent (possibly with a different
3006 * offset and/or length, so it either points to the whole extent
3007 * or only part of it), we must make sure we do not submit a
3008 * single bio to populate the pages for the 2 ranges because
3009 * this makes the compressed extent read zero out the pages
3010 * belonging to the 2nd range. Imagine the following scenario:
3011 *
3012 * File layout
3013 * [0 - 8K] [8K - 24K]
3014 * | |
3015 * | |
3016 * points to extent X, points to extent X,
3017 * offset 4K, length of 8K offset 0, length 16K
3018 *
3019 * [extent X, compressed length = 4K uncompressed length = 16K]
3020 *
3021 * If the bio to read the compressed extent covers both ranges,
3022 * it will decompress extent X into the pages belonging to the
3023 * first range and then it will stop, zeroing out the remaining
3024 * pages that belong to the other range that points to extent X.
3025 * So here we make sure we submit 2 bios, one for the first
3026 * range and another one for the third range. Both will target
3027 * the same physical extent from disk, but we can't currently
3028 * make the compressed bio endio callback populate the pages
3029 * for both ranges because each compressed bio is tightly
3030 * coupled with a single extent map, and each range can have
3031 * an extent map with a different offset value relative to the
3032 * uncompressed data of our extent and different lengths. This
3033 * is a corner case so we prioritize correctness over
3034 * non-optimal behavior (submitting 2 bios for the same extent).
3035 */
3036 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3037 prev_em_start && *prev_em_start != (u64)-1 &&
3038 *prev_em_start != em->start)
3039 force_bio_submit = true;
3040
3041 if (prev_em_start)
3042 *prev_em_start = em->start;
3043
3044 free_extent_map(em);
3045 em = NULL;
3046
3047 /* we've found a hole, just zero and go on */
3048 if (block_start == EXTENT_MAP_HOLE) {
3049 char *userpage;
3050 struct extent_state *cached = NULL;
3051
3052 userpage = kmap_atomic(page);
3053 memset(userpage + pg_offset, 0, iosize);
3054 flush_dcache_page(page);
3055 kunmap_atomic(userpage);
3056
3057 set_extent_uptodate(tree, cur, cur + iosize - 1,
3058 &cached, GFP_NOFS);
3059 unlock_extent_cached(tree, cur,
3060 cur + iosize - 1, &cached);
3061 cur = cur + iosize;
3062 pg_offset += iosize;
3063 continue;
3064 }
3065 /* the get_extent function already copied into the page */
3066 if (test_range_bit(tree, cur, cur_end,
3067 EXTENT_UPTODATE, 1, NULL)) {
3068 check_page_uptodate(tree, page);
3069 unlock_extent(tree, cur, cur + iosize - 1);
3070 cur = cur + iosize;
3071 pg_offset += iosize;
3072 continue;
3073 }
3074 /* we have an inline extent but it didn't get marked up
3075 * to date. Error out
3076 */
3077 if (block_start == EXTENT_MAP_INLINE) {
3078 SetPageError(page);
3079 unlock_extent(tree, cur, cur + iosize - 1);
3080 cur = cur + iosize;
3081 pg_offset += iosize;
3082 continue;
3083 }
3084
3085 ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL,
3086 page, offset, disk_io_size,
3087 pg_offset, bdev, bio,
3088 end_bio_extent_readpage, mirror_num,
3089 *bio_flags,
3090 this_bio_flag,
3091 force_bio_submit);
3092 if (!ret) {
3093 nr++;
3094 *bio_flags = this_bio_flag;
3095 } else {
3096 SetPageError(page);
3097 unlock_extent(tree, cur, cur + iosize - 1);
3098 goto out;
3099 }
3100 cur = cur + iosize;
3101 pg_offset += iosize;
3102 }
3103 out:
3104 if (!nr) {
3105 if (!PageError(page))
3106 SetPageUptodate(page);
3107 unlock_page(page);
3108 }
3109 return ret;
3110 }
3111
__do_contiguous_readpages(struct extent_io_tree * tree,struct page * pages[],int nr_pages,u64 start,u64 end,struct extent_map ** em_cached,struct bio ** bio,unsigned long * bio_flags,u64 * prev_em_start)3112 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3113 struct page *pages[], int nr_pages,
3114 u64 start, u64 end,
3115 struct extent_map **em_cached,
3116 struct bio **bio,
3117 unsigned long *bio_flags,
3118 u64 *prev_em_start)
3119 {
3120 struct inode *inode;
3121 struct btrfs_ordered_extent *ordered;
3122 int index;
3123
3124 inode = pages[0]->mapping->host;
3125 while (1) {
3126 lock_extent(tree, start, end);
3127 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3128 end - start + 1);
3129 if (!ordered)
3130 break;
3131 unlock_extent(tree, start, end);
3132 btrfs_start_ordered_extent(inode, ordered, 1);
3133 btrfs_put_ordered_extent(ordered);
3134 }
3135
3136 for (index = 0; index < nr_pages; index++) {
3137 __do_readpage(tree, pages[index], btrfs_get_extent, em_cached,
3138 bio, 0, bio_flags, REQ_RAHEAD, prev_em_start);
3139 put_page(pages[index]);
3140 }
3141 }
3142
__extent_readpages(struct extent_io_tree * tree,struct page * pages[],int nr_pages,struct extent_map ** em_cached,struct bio ** bio,unsigned long * bio_flags,u64 * prev_em_start)3143 static void __extent_readpages(struct extent_io_tree *tree,
3144 struct page *pages[],
3145 int nr_pages,
3146 struct extent_map **em_cached,
3147 struct bio **bio, unsigned long *bio_flags,
3148 u64 *prev_em_start)
3149 {
3150 u64 start = 0;
3151 u64 end = 0;
3152 u64 page_start;
3153 int index;
3154 int first_index = 0;
3155
3156 for (index = 0; index < nr_pages; index++) {
3157 page_start = page_offset(pages[index]);
3158 if (!end) {
3159 start = page_start;
3160 end = start + PAGE_SIZE - 1;
3161 first_index = index;
3162 } else if (end + 1 == page_start) {
3163 end += PAGE_SIZE;
3164 } else {
3165 __do_contiguous_readpages(tree, &pages[first_index],
3166 index - first_index, start,
3167 end, em_cached,
3168 bio, bio_flags,
3169 prev_em_start);
3170 start = page_start;
3171 end = start + PAGE_SIZE - 1;
3172 first_index = index;
3173 }
3174 }
3175
3176 if (end)
3177 __do_contiguous_readpages(tree, &pages[first_index],
3178 index - first_index, start,
3179 end, em_cached, bio,
3180 bio_flags, prev_em_start);
3181 }
3182
__extent_read_full_page(struct extent_io_tree * tree,struct page * page,get_extent_t * get_extent,struct bio ** bio,int mirror_num,unsigned long * bio_flags,unsigned int read_flags)3183 static int __extent_read_full_page(struct extent_io_tree *tree,
3184 struct page *page,
3185 get_extent_t *get_extent,
3186 struct bio **bio, int mirror_num,
3187 unsigned long *bio_flags,
3188 unsigned int read_flags)
3189 {
3190 struct inode *inode = page->mapping->host;
3191 struct btrfs_ordered_extent *ordered;
3192 u64 start = page_offset(page);
3193 u64 end = start + PAGE_SIZE - 1;
3194 int ret;
3195
3196 while (1) {
3197 lock_extent(tree, start, end);
3198 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3199 PAGE_SIZE);
3200 if (!ordered)
3201 break;
3202 unlock_extent(tree, start, end);
3203 btrfs_start_ordered_extent(inode, ordered, 1);
3204 btrfs_put_ordered_extent(ordered);
3205 }
3206
3207 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3208 bio_flags, read_flags, NULL);
3209 return ret;
3210 }
3211
extent_read_full_page(struct extent_io_tree * tree,struct page * page,get_extent_t * get_extent,int mirror_num)3212 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3213 get_extent_t *get_extent, int mirror_num)
3214 {
3215 struct bio *bio = NULL;
3216 unsigned long bio_flags = 0;
3217 int ret;
3218
3219 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3220 &bio_flags, 0);
3221 if (bio)
3222 ret = submit_one_bio(bio, mirror_num, bio_flags);
3223 return ret;
3224 }
3225
update_nr_written(struct writeback_control * wbc,unsigned long nr_written)3226 static void update_nr_written(struct writeback_control *wbc,
3227 unsigned long nr_written)
3228 {
3229 wbc->nr_to_write -= nr_written;
3230 }
3231
3232 /*
3233 * helper for __extent_writepage, doing all of the delayed allocation setup.
3234 *
3235 * This returns 1 if btrfs_run_delalloc_range function did all the work required
3236 * to write the page (copy into inline extent). In this case the IO has
3237 * been started and the page is already unlocked.
3238 *
3239 * This returns 0 if all went well (page still locked)
3240 * This returns < 0 if there were errors (page still locked)
3241 */
writepage_delalloc(struct inode * inode,struct page * page,struct writeback_control * wbc,struct extent_page_data * epd,u64 delalloc_start,unsigned long * nr_written)3242 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3243 struct page *page, struct writeback_control *wbc,
3244 struct extent_page_data *epd,
3245 u64 delalloc_start,
3246 unsigned long *nr_written)
3247 {
3248 struct extent_io_tree *tree = epd->tree;
3249 u64 page_end = delalloc_start + PAGE_SIZE - 1;
3250 u64 nr_delalloc;
3251 u64 delalloc_to_write = 0;
3252 u64 delalloc_end = 0;
3253 int ret;
3254 int page_started = 0;
3255
3256 if (epd->extent_locked)
3257 return 0;
3258
3259 while (delalloc_end < page_end) {
3260 nr_delalloc = find_lock_delalloc_range(inode, tree,
3261 page,
3262 &delalloc_start,
3263 &delalloc_end,
3264 BTRFS_MAX_EXTENT_SIZE);
3265 if (nr_delalloc == 0) {
3266 delalloc_start = delalloc_end + 1;
3267 continue;
3268 }
3269 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3270 delalloc_end, &page_started, nr_written, wbc);
3271 /* File system has been set read-only */
3272 if (ret) {
3273 SetPageError(page);
3274 /*
3275 * btrfs_run_delalloc_range should return < 0 for error
3276 * but just in case, we use > 0 here meaning the IO is
3277 * started, so we don't want to return > 0 unless
3278 * things are going well.
3279 */
3280 ret = ret < 0 ? ret : -EIO;
3281 goto done;
3282 }
3283 /*
3284 * delalloc_end is already one less than the total length, so
3285 * we don't subtract one from PAGE_SIZE
3286 */
3287 delalloc_to_write += (delalloc_end - delalloc_start +
3288 PAGE_SIZE) >> PAGE_SHIFT;
3289 delalloc_start = delalloc_end + 1;
3290 }
3291 if (wbc->nr_to_write < delalloc_to_write) {
3292 int thresh = 8192;
3293
3294 if (delalloc_to_write < thresh * 2)
3295 thresh = delalloc_to_write;
3296 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3297 thresh);
3298 }
3299
3300 /* did the fill delalloc function already unlock and start
3301 * the IO?
3302 */
3303 if (page_started) {
3304 /*
3305 * we've unlocked the page, so we can't update
3306 * the mapping's writeback index, just update
3307 * nr_to_write.
3308 */
3309 wbc->nr_to_write -= *nr_written;
3310 return 1;
3311 }
3312
3313 ret = 0;
3314
3315 done:
3316 return ret;
3317 }
3318
3319 /*
3320 * helper for __extent_writepage. This calls the writepage start hooks,
3321 * and does the loop to map the page into extents and bios.
3322 *
3323 * We return 1 if the IO is started and the page is unlocked,
3324 * 0 if all went well (page still locked)
3325 * < 0 if there were errors (page still locked)
3326 */
__extent_writepage_io(struct inode * inode,struct page * page,struct writeback_control * wbc,struct extent_page_data * epd,loff_t i_size,unsigned long nr_written,unsigned int write_flags,int * nr_ret)3327 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3328 struct page *page,
3329 struct writeback_control *wbc,
3330 struct extent_page_data *epd,
3331 loff_t i_size,
3332 unsigned long nr_written,
3333 unsigned int write_flags, int *nr_ret)
3334 {
3335 struct extent_io_tree *tree = epd->tree;
3336 u64 start = page_offset(page);
3337 u64 page_end = start + PAGE_SIZE - 1;
3338 u64 end;
3339 u64 cur = start;
3340 u64 extent_offset;
3341 u64 block_start;
3342 u64 iosize;
3343 struct extent_map *em;
3344 struct block_device *bdev;
3345 size_t pg_offset = 0;
3346 size_t blocksize;
3347 int ret = 0;
3348 int nr = 0;
3349 bool compressed;
3350
3351 if (tree->ops && tree->ops->writepage_start_hook) {
3352 ret = tree->ops->writepage_start_hook(page, start,
3353 page_end);
3354 if (ret) {
3355 /* Fixup worker will requeue */
3356 if (ret == -EBUSY)
3357 wbc->pages_skipped++;
3358 else
3359 redirty_page_for_writepage(wbc, page);
3360
3361 update_nr_written(wbc, nr_written);
3362 unlock_page(page);
3363 return 1;
3364 }
3365 }
3366
3367 /*
3368 * we don't want to touch the inode after unlocking the page,
3369 * so we update the mapping writeback index now
3370 */
3371 update_nr_written(wbc, nr_written + 1);
3372
3373 end = page_end;
3374 if (i_size <= start) {
3375 if (tree->ops && tree->ops->writepage_end_io_hook)
3376 tree->ops->writepage_end_io_hook(page, start,
3377 page_end, NULL, 1);
3378 goto done;
3379 }
3380
3381 blocksize = inode->i_sb->s_blocksize;
3382
3383 while (cur <= end) {
3384 u64 em_end;
3385 u64 offset;
3386
3387 if (cur >= i_size) {
3388 if (tree->ops && tree->ops->writepage_end_io_hook)
3389 tree->ops->writepage_end_io_hook(page, cur,
3390 page_end, NULL, 1);
3391 break;
3392 }
3393 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, cur,
3394 end - cur + 1, 1);
3395 if (IS_ERR_OR_NULL(em)) {
3396 SetPageError(page);
3397 ret = PTR_ERR_OR_ZERO(em);
3398 break;
3399 }
3400
3401 extent_offset = cur - em->start;
3402 em_end = extent_map_end(em);
3403 BUG_ON(em_end <= cur);
3404 BUG_ON(end < cur);
3405 iosize = min(em_end - cur, end - cur + 1);
3406 iosize = ALIGN(iosize, blocksize);
3407 offset = em->block_start + extent_offset;
3408 bdev = em->bdev;
3409 block_start = em->block_start;
3410 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3411 free_extent_map(em);
3412 em = NULL;
3413
3414 /*
3415 * compressed and inline extents are written through other
3416 * paths in the FS
3417 */
3418 if (compressed || block_start == EXTENT_MAP_HOLE ||
3419 block_start == EXTENT_MAP_INLINE) {
3420 /*
3421 * end_io notification does not happen here for
3422 * compressed extents
3423 */
3424 if (!compressed && tree->ops &&
3425 tree->ops->writepage_end_io_hook)
3426 tree->ops->writepage_end_io_hook(page, cur,
3427 cur + iosize - 1,
3428 NULL, 1);
3429 else if (compressed) {
3430 /* we don't want to end_page_writeback on
3431 * a compressed extent. this happens
3432 * elsewhere
3433 */
3434 nr++;
3435 }
3436
3437 cur += iosize;
3438 pg_offset += iosize;
3439 continue;
3440 }
3441
3442 btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
3443 if (!PageWriteback(page)) {
3444 btrfs_err(BTRFS_I(inode)->root->fs_info,
3445 "page %lu not writeback, cur %llu end %llu",
3446 page->index, cur, end);
3447 }
3448
3449 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3450 page, offset, iosize, pg_offset,
3451 bdev, &epd->bio,
3452 end_bio_extent_writepage,
3453 0, 0, 0, false);
3454 if (ret) {
3455 SetPageError(page);
3456 if (PageWriteback(page))
3457 end_page_writeback(page);
3458 }
3459
3460 cur = cur + iosize;
3461 pg_offset += iosize;
3462 nr++;
3463 }
3464 done:
3465 *nr_ret = nr;
3466 return ret;
3467 }
3468
3469 /*
3470 * the writepage semantics are similar to regular writepage. extent
3471 * records are inserted to lock ranges in the tree, and as dirty areas
3472 * are found, they are marked writeback. Then the lock bits are removed
3473 * and the end_io handler clears the writeback ranges
3474 *
3475 * Return 0 if everything goes well.
3476 * Return <0 for error.
3477 */
__extent_writepage(struct page * page,struct writeback_control * wbc,struct extent_page_data * epd)3478 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3479 struct extent_page_data *epd)
3480 {
3481 struct inode *inode = page->mapping->host;
3482 u64 start = page_offset(page);
3483 u64 page_end = start + PAGE_SIZE - 1;
3484 int ret;
3485 int nr = 0;
3486 size_t pg_offset = 0;
3487 loff_t i_size = i_size_read(inode);
3488 unsigned long end_index = i_size >> PAGE_SHIFT;
3489 unsigned int write_flags = 0;
3490 unsigned long nr_written = 0;
3491
3492 write_flags = wbc_to_write_flags(wbc);
3493
3494 trace___extent_writepage(page, inode, wbc);
3495
3496 WARN_ON(!PageLocked(page));
3497
3498 ClearPageError(page);
3499
3500 pg_offset = i_size & (PAGE_SIZE - 1);
3501 if (page->index > end_index ||
3502 (page->index == end_index && !pg_offset)) {
3503 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3504 unlock_page(page);
3505 return 0;
3506 }
3507
3508 if (page->index == end_index) {
3509 char *userpage;
3510
3511 userpage = kmap_atomic(page);
3512 memset(userpage + pg_offset, 0,
3513 PAGE_SIZE - pg_offset);
3514 kunmap_atomic(userpage);
3515 flush_dcache_page(page);
3516 }
3517
3518 pg_offset = 0;
3519
3520 set_page_extent_mapped(page);
3521
3522 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3523 if (ret == 1)
3524 goto done_unlocked;
3525 if (ret)
3526 goto done;
3527
3528 ret = __extent_writepage_io(inode, page, wbc, epd,
3529 i_size, nr_written, write_flags, &nr);
3530 if (ret == 1)
3531 goto done_unlocked;
3532
3533 done:
3534 if (nr == 0) {
3535 /* make sure the mapping tag for page dirty gets cleared */
3536 set_page_writeback(page);
3537 end_page_writeback(page);
3538 }
3539 if (PageError(page)) {
3540 ret = ret < 0 ? ret : -EIO;
3541 end_extent_writepage(page, ret, start, page_end);
3542 }
3543 unlock_page(page);
3544 ASSERT(ret <= 0);
3545 return ret;
3546
3547 done_unlocked:
3548 return 0;
3549 }
3550
wait_on_extent_buffer_writeback(struct extent_buffer * eb)3551 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3552 {
3553 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3554 TASK_UNINTERRUPTIBLE);
3555 }
3556
end_extent_buffer_writeback(struct extent_buffer * eb)3557 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3558 {
3559 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3560 smp_mb__after_atomic();
3561 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3562 }
3563
3564 /*
3565 * Lock eb pages and flush the bio if we can't the locks
3566 *
3567 * Return 0 if nothing went wrong
3568 * Return >0 is same as 0, except bio is not submitted
3569 * Return <0 if something went wrong, no page is locked
3570 */
3571 static noinline_for_stack int
lock_extent_buffer_for_io(struct extent_buffer * eb,struct btrfs_fs_info * fs_info,struct extent_page_data * epd)3572 lock_extent_buffer_for_io(struct extent_buffer *eb,
3573 struct btrfs_fs_info *fs_info,
3574 struct extent_page_data *epd)
3575 {
3576 int i, num_pages, failed_page_nr;
3577 int flush = 0;
3578 int ret = 0;
3579
3580 if (!btrfs_try_tree_write_lock(eb)) {
3581 ret = flush_write_bio(epd);
3582 if (ret < 0)
3583 return ret;
3584 flush = 1;
3585 btrfs_tree_lock(eb);
3586 }
3587
3588 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3589 btrfs_tree_unlock(eb);
3590 if (!epd->sync_io)
3591 return 0;
3592 if (!flush) {
3593 ret = flush_write_bio(epd);
3594 if (ret < 0)
3595 return ret;
3596 flush = 1;
3597 }
3598 while (1) {
3599 wait_on_extent_buffer_writeback(eb);
3600 btrfs_tree_lock(eb);
3601 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3602 break;
3603 btrfs_tree_unlock(eb);
3604 }
3605 }
3606
3607 /*
3608 * We need to do this to prevent races in people who check if the eb is
3609 * under IO since we can end up having no IO bits set for a short period
3610 * of time.
3611 */
3612 spin_lock(&eb->refs_lock);
3613 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3614 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3615 spin_unlock(&eb->refs_lock);
3616 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3617 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3618 -eb->len,
3619 fs_info->dirty_metadata_batch);
3620 ret = 1;
3621 } else {
3622 spin_unlock(&eb->refs_lock);
3623 }
3624
3625 btrfs_tree_unlock(eb);
3626
3627 if (!ret)
3628 return ret;
3629
3630 num_pages = num_extent_pages(eb);
3631 for (i = 0; i < num_pages; i++) {
3632 struct page *p = eb->pages[i];
3633
3634 if (!trylock_page(p)) {
3635 if (!flush) {
3636 int err;
3637
3638 err = flush_write_bio(epd);
3639 if (err < 0) {
3640 ret = err;
3641 failed_page_nr = i;
3642 goto err_unlock;
3643 }
3644 flush = 1;
3645 }
3646 lock_page(p);
3647 }
3648 }
3649
3650 return ret;
3651 err_unlock:
3652 /* Unlock already locked pages */
3653 for (i = 0; i < failed_page_nr; i++)
3654 unlock_page(eb->pages[i]);
3655 /*
3656 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
3657 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
3658 * be made and undo everything done before.
3659 */
3660 btrfs_tree_lock(eb);
3661 spin_lock(&eb->refs_lock);
3662 set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3663 end_extent_buffer_writeback(eb);
3664 spin_unlock(&eb->refs_lock);
3665 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
3666 fs_info->dirty_metadata_batch);
3667 btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3668 btrfs_tree_unlock(eb);
3669 return ret;
3670 }
3671
set_btree_ioerr(struct page * page)3672 static void set_btree_ioerr(struct page *page)
3673 {
3674 struct extent_buffer *eb = (struct extent_buffer *)page->private;
3675
3676 SetPageError(page);
3677 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3678 return;
3679
3680 /*
3681 * If writeback for a btree extent that doesn't belong to a log tree
3682 * failed, increment the counter transaction->eb_write_errors.
3683 * We do this because while the transaction is running and before it's
3684 * committing (when we call filemap_fdata[write|wait]_range against
3685 * the btree inode), we might have
3686 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3687 * returns an error or an error happens during writeback, when we're
3688 * committing the transaction we wouldn't know about it, since the pages
3689 * can be no longer dirty nor marked anymore for writeback (if a
3690 * subsequent modification to the extent buffer didn't happen before the
3691 * transaction commit), which makes filemap_fdata[write|wait]_range not
3692 * able to find the pages tagged with SetPageError at transaction
3693 * commit time. So if this happens we must abort the transaction,
3694 * otherwise we commit a super block with btree roots that point to
3695 * btree nodes/leafs whose content on disk is invalid - either garbage
3696 * or the content of some node/leaf from a past generation that got
3697 * cowed or deleted and is no longer valid.
3698 *
3699 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3700 * not be enough - we need to distinguish between log tree extents vs
3701 * non-log tree extents, and the next filemap_fdatawait_range() call
3702 * will catch and clear such errors in the mapping - and that call might
3703 * be from a log sync and not from a transaction commit. Also, checking
3704 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3705 * not done and would not be reliable - the eb might have been released
3706 * from memory and reading it back again means that flag would not be
3707 * set (since it's a runtime flag, not persisted on disk).
3708 *
3709 * Using the flags below in the btree inode also makes us achieve the
3710 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3711 * writeback for all dirty pages and before filemap_fdatawait_range()
3712 * is called, the writeback for all dirty pages had already finished
3713 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3714 * filemap_fdatawait_range() would return success, as it could not know
3715 * that writeback errors happened (the pages were no longer tagged for
3716 * writeback).
3717 */
3718 switch (eb->log_index) {
3719 case -1:
3720 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3721 break;
3722 case 0:
3723 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3724 break;
3725 case 1:
3726 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3727 break;
3728 default:
3729 BUG(); /* unexpected, logic error */
3730 }
3731 }
3732
end_bio_extent_buffer_writepage(struct bio * bio)3733 static void end_bio_extent_buffer_writepage(struct bio *bio)
3734 {
3735 struct bio_vec *bvec;
3736 struct extent_buffer *eb;
3737 int i, done;
3738
3739 ASSERT(!bio_flagged(bio, BIO_CLONED));
3740 bio_for_each_segment_all(bvec, bio, i) {
3741 struct page *page = bvec->bv_page;
3742
3743 eb = (struct extent_buffer *)page->private;
3744 BUG_ON(!eb);
3745 done = atomic_dec_and_test(&eb->io_pages);
3746
3747 if (bio->bi_status ||
3748 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3749 ClearPageUptodate(page);
3750 set_btree_ioerr(page);
3751 }
3752
3753 end_page_writeback(page);
3754
3755 if (!done)
3756 continue;
3757
3758 end_extent_buffer_writeback(eb);
3759 }
3760
3761 bio_put(bio);
3762 }
3763
write_one_eb(struct extent_buffer * eb,struct btrfs_fs_info * fs_info,struct writeback_control * wbc,struct extent_page_data * epd)3764 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3765 struct btrfs_fs_info *fs_info,
3766 struct writeback_control *wbc,
3767 struct extent_page_data *epd)
3768 {
3769 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3770 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3771 u64 offset = eb->start;
3772 u32 nritems;
3773 int i, num_pages;
3774 unsigned long start, end;
3775 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
3776 int ret = 0;
3777
3778 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3779 num_pages = num_extent_pages(eb);
3780 atomic_set(&eb->io_pages, num_pages);
3781
3782 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3783 nritems = btrfs_header_nritems(eb);
3784 if (btrfs_header_level(eb) > 0) {
3785 end = btrfs_node_key_ptr_offset(nritems);
3786
3787 memzero_extent_buffer(eb, end, eb->len - end);
3788 } else {
3789 /*
3790 * leaf:
3791 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3792 */
3793 start = btrfs_item_nr_offset(nritems);
3794 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, eb);
3795 memzero_extent_buffer(eb, start, end - start);
3796 }
3797
3798 for (i = 0; i < num_pages; i++) {
3799 struct page *p = eb->pages[i];
3800
3801 clear_page_dirty_for_io(p);
3802 set_page_writeback(p);
3803 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3804 p, offset, PAGE_SIZE, 0, bdev,
3805 &epd->bio,
3806 end_bio_extent_buffer_writepage,
3807 0, 0, 0, false);
3808 if (ret) {
3809 set_btree_ioerr(p);
3810 if (PageWriteback(p))
3811 end_page_writeback(p);
3812 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3813 end_extent_buffer_writeback(eb);
3814 ret = -EIO;
3815 break;
3816 }
3817 offset += PAGE_SIZE;
3818 update_nr_written(wbc, 1);
3819 unlock_page(p);
3820 }
3821
3822 if (unlikely(ret)) {
3823 for (; i < num_pages; i++) {
3824 struct page *p = eb->pages[i];
3825 clear_page_dirty_for_io(p);
3826 unlock_page(p);
3827 }
3828 }
3829
3830 return ret;
3831 }
3832
btree_write_cache_pages(struct address_space * mapping,struct writeback_control * wbc)3833 int btree_write_cache_pages(struct address_space *mapping,
3834 struct writeback_control *wbc)
3835 {
3836 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3837 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3838 struct extent_buffer *eb, *prev_eb = NULL;
3839 struct extent_page_data epd = {
3840 .bio = NULL,
3841 .tree = tree,
3842 .extent_locked = 0,
3843 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3844 };
3845 int ret = 0;
3846 int done = 0;
3847 int nr_to_write_done = 0;
3848 struct pagevec pvec;
3849 int nr_pages;
3850 pgoff_t index;
3851 pgoff_t end; /* Inclusive */
3852 int scanned = 0;
3853 int tag;
3854
3855 pagevec_init(&pvec);
3856 if (wbc->range_cyclic) {
3857 index = mapping->writeback_index; /* Start from prev offset */
3858 end = -1;
3859 } else {
3860 index = wbc->range_start >> PAGE_SHIFT;
3861 end = wbc->range_end >> PAGE_SHIFT;
3862 scanned = 1;
3863 }
3864 if (wbc->sync_mode == WB_SYNC_ALL)
3865 tag = PAGECACHE_TAG_TOWRITE;
3866 else
3867 tag = PAGECACHE_TAG_DIRTY;
3868 retry:
3869 if (wbc->sync_mode == WB_SYNC_ALL)
3870 tag_pages_for_writeback(mapping, index, end);
3871 while (!done && !nr_to_write_done && (index <= end) &&
3872 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
3873 tag))) {
3874 unsigned i;
3875
3876 scanned = 1;
3877 for (i = 0; i < nr_pages; i++) {
3878 struct page *page = pvec.pages[i];
3879
3880 if (!PagePrivate(page))
3881 continue;
3882
3883 spin_lock(&mapping->private_lock);
3884 if (!PagePrivate(page)) {
3885 spin_unlock(&mapping->private_lock);
3886 continue;
3887 }
3888
3889 eb = (struct extent_buffer *)page->private;
3890
3891 /*
3892 * Shouldn't happen and normally this would be a BUG_ON
3893 * but no sense in crashing the users box for something
3894 * we can survive anyway.
3895 */
3896 if (WARN_ON(!eb)) {
3897 spin_unlock(&mapping->private_lock);
3898 continue;
3899 }
3900
3901 if (eb == prev_eb) {
3902 spin_unlock(&mapping->private_lock);
3903 continue;
3904 }
3905
3906 ret = atomic_inc_not_zero(&eb->refs);
3907 spin_unlock(&mapping->private_lock);
3908 if (!ret)
3909 continue;
3910
3911 prev_eb = eb;
3912 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3913 if (!ret) {
3914 free_extent_buffer(eb);
3915 continue;
3916 } else if (ret < 0) {
3917 done = 1;
3918 free_extent_buffer(eb);
3919 break;
3920 }
3921
3922 ret = write_one_eb(eb, fs_info, wbc, &epd);
3923 if (ret) {
3924 done = 1;
3925 free_extent_buffer(eb);
3926 break;
3927 }
3928 free_extent_buffer(eb);
3929
3930 /*
3931 * The filesystem may choose to bump up nr_to_write.
3932 * We have to make sure to honor the new nr_to_write
3933 * at any time.
3934 */
3935 nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE &&
3936 wbc->nr_to_write <= 0);
3937 }
3938 pagevec_release(&pvec);
3939 cond_resched();
3940 }
3941 if (!scanned && !done) {
3942 /*
3943 * We hit the last page and there is more work to be done: wrap
3944 * back to the start of the file
3945 */
3946 scanned = 1;
3947 index = 0;
3948 goto retry;
3949 }
3950 ASSERT(ret <= 0);
3951 if (ret < 0) {
3952 end_write_bio(&epd, ret);
3953 return ret;
3954 }
3955 /*
3956 * If something went wrong, don't allow any metadata write bio to be
3957 * submitted.
3958 *
3959 * This would prevent use-after-free if we had dirty pages not
3960 * cleaned up, which can still happen by fuzzed images.
3961 *
3962 * - Bad extent tree
3963 * Allowing existing tree block to be allocated for other trees.
3964 *
3965 * - Log tree operations
3966 * Exiting tree blocks get allocated to log tree, bumps its
3967 * generation, then get cleaned in tree re-balance.
3968 * Such tree block will not be written back, since it's clean,
3969 * thus no WRITTEN flag set.
3970 * And after log writes back, this tree block is not traced by
3971 * any dirty extent_io_tree.
3972 *
3973 * - Offending tree block gets re-dirtied from its original owner
3974 * Since it has bumped generation, no WRITTEN flag, it can be
3975 * reused without COWing. This tree block will not be traced
3976 * by btrfs_transaction::dirty_pages.
3977 *
3978 * Now such dirty tree block will not be cleaned by any dirty
3979 * extent io tree. Thus we don't want to submit such wild eb
3980 * if the fs already has error.
3981 */
3982 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3983 ret = flush_write_bio(&epd);
3984 } else {
3985 ret = -EUCLEAN;
3986 end_write_bio(&epd, ret);
3987 }
3988 return ret;
3989 }
3990
3991 /**
3992 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3993 * @mapping: address space structure to write
3994 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3995 * @data: data passed to __extent_writepage function
3996 *
3997 * If a page is already under I/O, write_cache_pages() skips it, even
3998 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3999 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
4000 * and msync() need to guarantee that all the data which was dirty at the time
4001 * the call was made get new I/O started against them. If wbc->sync_mode is
4002 * WB_SYNC_ALL then we were called for data integrity and we must wait for
4003 * existing IO to complete.
4004 */
extent_write_cache_pages(struct address_space * mapping,struct writeback_control * wbc,struct extent_page_data * epd)4005 static int extent_write_cache_pages(struct address_space *mapping,
4006 struct writeback_control *wbc,
4007 struct extent_page_data *epd)
4008 {
4009 struct inode *inode = mapping->host;
4010 int ret = 0;
4011 int done = 0;
4012 int nr_to_write_done = 0;
4013 struct pagevec pvec;
4014 int nr_pages;
4015 pgoff_t index;
4016 pgoff_t end; /* Inclusive */
4017 pgoff_t done_index;
4018 int range_whole = 0;
4019 int scanned = 0;
4020 int tag;
4021
4022 /*
4023 * We have to hold onto the inode so that ordered extents can do their
4024 * work when the IO finishes. The alternative to this is failing to add
4025 * an ordered extent if the igrab() fails there and that is a huge pain
4026 * to deal with, so instead just hold onto the inode throughout the
4027 * writepages operation. If it fails here we are freeing up the inode
4028 * anyway and we'd rather not waste our time writing out stuff that is
4029 * going to be truncated anyway.
4030 */
4031 if (!igrab(inode))
4032 return 0;
4033
4034 pagevec_init(&pvec);
4035 if (wbc->range_cyclic) {
4036 index = mapping->writeback_index; /* Start from prev offset */
4037 end = -1;
4038 } else {
4039 index = wbc->range_start >> PAGE_SHIFT;
4040 end = wbc->range_end >> PAGE_SHIFT;
4041 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
4042 range_whole = 1;
4043 scanned = 1;
4044 }
4045
4046 /*
4047 * We do the tagged writepage as long as the snapshot flush bit is set
4048 * and we are the first one who do the filemap_flush() on this inode.
4049 *
4050 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
4051 * not race in and drop the bit.
4052 */
4053 if (range_whole && wbc->nr_to_write == LONG_MAX &&
4054 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
4055 &BTRFS_I(inode)->runtime_flags))
4056 wbc->tagged_writepages = 1;
4057
4058 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4059 tag = PAGECACHE_TAG_TOWRITE;
4060 else
4061 tag = PAGECACHE_TAG_DIRTY;
4062 retry:
4063 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4064 tag_pages_for_writeback(mapping, index, end);
4065 done_index = index;
4066 while (!done && !nr_to_write_done && (index <= end) &&
4067 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
4068 &index, end, tag))) {
4069 unsigned i;
4070
4071 scanned = 1;
4072 for (i = 0; i < nr_pages; i++) {
4073 struct page *page = pvec.pages[i];
4074
4075 done_index = page->index + 1;
4076 /*
4077 * At this point we hold neither the i_pages lock nor
4078 * the page lock: the page may be truncated or
4079 * invalidated (changing page->mapping to NULL),
4080 * or even swizzled back from swapper_space to
4081 * tmpfs file mapping
4082 */
4083 if (!trylock_page(page)) {
4084 ret = flush_write_bio(epd);
4085 BUG_ON(ret < 0);
4086 lock_page(page);
4087 }
4088
4089 if (unlikely(page->mapping != mapping)) {
4090 unlock_page(page);
4091 continue;
4092 }
4093
4094 if (wbc->sync_mode != WB_SYNC_NONE) {
4095 if (PageWriteback(page)) {
4096 ret = flush_write_bio(epd);
4097 BUG_ON(ret < 0);
4098 }
4099 wait_on_page_writeback(page);
4100 }
4101
4102 if (PageWriteback(page) ||
4103 !clear_page_dirty_for_io(page)) {
4104 unlock_page(page);
4105 continue;
4106 }
4107
4108 ret = __extent_writepage(page, wbc, epd);
4109
4110 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4111 unlock_page(page);
4112 ret = 0;
4113 }
4114 if (ret < 0) {
4115 done = 1;
4116 break;
4117 }
4118
4119 /*
4120 * the filesystem may choose to bump up nr_to_write.
4121 * We have to make sure to honor the new nr_to_write
4122 * at any time
4123 */
4124 nr_to_write_done = wbc->nr_to_write <= 0;
4125 }
4126 pagevec_release(&pvec);
4127 cond_resched();
4128 }
4129 if (!scanned && !done) {
4130 /*
4131 * We hit the last page and there is more work to be done: wrap
4132 * back to the start of the file
4133 */
4134 scanned = 1;
4135 index = 0;
4136
4137 /*
4138 * If we're looping we could run into a page that is locked by a
4139 * writer and that writer could be waiting on writeback for a
4140 * page in our current bio, and thus deadlock, so flush the
4141 * write bio here.
4142 */
4143 ret = flush_write_bio(epd);
4144 if (!ret)
4145 goto retry;
4146 }
4147
4148 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4149 mapping->writeback_index = done_index;
4150
4151 btrfs_add_delayed_iput(inode);
4152 return ret;
4153 }
4154
extent_write_full_page(struct page * page,struct writeback_control * wbc)4155 int extent_write_full_page(struct page *page, struct writeback_control *wbc)
4156 {
4157 int ret;
4158 struct extent_page_data epd = {
4159 .bio = NULL,
4160 .tree = &BTRFS_I(page->mapping->host)->io_tree,
4161 .extent_locked = 0,
4162 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4163 };
4164
4165 ret = __extent_writepage(page, wbc, &epd);
4166 ASSERT(ret <= 0);
4167 if (ret < 0) {
4168 end_write_bio(&epd, ret);
4169 return ret;
4170 }
4171
4172 ret = flush_write_bio(&epd);
4173 ASSERT(ret <= 0);
4174 return ret;
4175 }
4176
extent_write_locked_range(struct inode * inode,u64 start,u64 end,int mode)4177 int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4178 int mode)
4179 {
4180 int ret = 0;
4181 int flush_ret;
4182 struct address_space *mapping = inode->i_mapping;
4183 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
4184 struct page *page;
4185 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4186 PAGE_SHIFT;
4187
4188 struct extent_page_data epd = {
4189 .bio = NULL,
4190 .tree = tree,
4191 .extent_locked = 1,
4192 .sync_io = mode == WB_SYNC_ALL,
4193 };
4194 struct writeback_control wbc_writepages = {
4195 .sync_mode = mode,
4196 .nr_to_write = nr_pages * 2,
4197 .range_start = start,
4198 .range_end = end + 1,
4199 };
4200
4201 while (start <= end) {
4202 page = find_get_page(mapping, start >> PAGE_SHIFT);
4203 if (clear_page_dirty_for_io(page))
4204 ret = __extent_writepage(page, &wbc_writepages, &epd);
4205 else {
4206 if (tree->ops && tree->ops->writepage_end_io_hook)
4207 tree->ops->writepage_end_io_hook(page, start,
4208 start + PAGE_SIZE - 1,
4209 NULL, 1);
4210 unlock_page(page);
4211 }
4212 put_page(page);
4213 start += PAGE_SIZE;
4214 }
4215
4216 flush_ret = flush_write_bio(&epd);
4217 BUG_ON(flush_ret < 0);
4218 return ret;
4219 }
4220
extent_writepages(struct address_space * mapping,struct writeback_control * wbc)4221 int extent_writepages(struct address_space *mapping,
4222 struct writeback_control *wbc)
4223 {
4224 int ret = 0;
4225 int flush_ret;
4226 struct extent_page_data epd = {
4227 .bio = NULL,
4228 .tree = &BTRFS_I(mapping->host)->io_tree,
4229 .extent_locked = 0,
4230 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4231 };
4232
4233 ret = extent_write_cache_pages(mapping, wbc, &epd);
4234 flush_ret = flush_write_bio(&epd);
4235 BUG_ON(flush_ret < 0);
4236 return ret;
4237 }
4238
extent_readpages(struct address_space * mapping,struct list_head * pages,unsigned nr_pages)4239 int extent_readpages(struct address_space *mapping, struct list_head *pages,
4240 unsigned nr_pages)
4241 {
4242 struct bio *bio = NULL;
4243 unsigned page_idx;
4244 unsigned long bio_flags = 0;
4245 struct page *pagepool[16];
4246 struct page *page;
4247 struct extent_map *em_cached = NULL;
4248 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
4249 int nr = 0;
4250 u64 prev_em_start = (u64)-1;
4251
4252 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4253 page = list_entry(pages->prev, struct page, lru);
4254
4255 prefetchw(&page->flags);
4256 list_del(&page->lru);
4257 if (add_to_page_cache_lru(page, mapping,
4258 page->index,
4259 readahead_gfp_mask(mapping))) {
4260 put_page(page);
4261 continue;
4262 }
4263
4264 pagepool[nr++] = page;
4265 if (nr < ARRAY_SIZE(pagepool))
4266 continue;
4267 __extent_readpages(tree, pagepool, nr, &em_cached, &bio,
4268 &bio_flags, &prev_em_start);
4269 nr = 0;
4270 }
4271 if (nr)
4272 __extent_readpages(tree, pagepool, nr, &em_cached, &bio,
4273 &bio_flags, &prev_em_start);
4274
4275 if (em_cached)
4276 free_extent_map(em_cached);
4277
4278 BUG_ON(!list_empty(pages));
4279 if (bio)
4280 return submit_one_bio(bio, 0, bio_flags);
4281 return 0;
4282 }
4283
4284 /*
4285 * basic invalidatepage code, this waits on any locked or writeback
4286 * ranges corresponding to the page, and then deletes any extent state
4287 * records from the tree
4288 */
extent_invalidatepage(struct extent_io_tree * tree,struct page * page,unsigned long offset)4289 int extent_invalidatepage(struct extent_io_tree *tree,
4290 struct page *page, unsigned long offset)
4291 {
4292 struct extent_state *cached_state = NULL;
4293 u64 start = page_offset(page);
4294 u64 end = start + PAGE_SIZE - 1;
4295 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4296
4297 start += ALIGN(offset, blocksize);
4298 if (start > end)
4299 return 0;
4300
4301 lock_extent_bits(tree, start, end, &cached_state);
4302 wait_on_page_writeback(page);
4303 clear_extent_bit(tree, start, end,
4304 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4305 EXTENT_DO_ACCOUNTING,
4306 1, 1, &cached_state);
4307 return 0;
4308 }
4309
4310 /*
4311 * a helper for releasepage, this tests for areas of the page that
4312 * are locked or under IO and drops the related state bits if it is safe
4313 * to drop the page.
4314 */
try_release_extent_state(struct extent_io_tree * tree,struct page * page,gfp_t mask)4315 static int try_release_extent_state(struct extent_io_tree *tree,
4316 struct page *page, gfp_t mask)
4317 {
4318 u64 start = page_offset(page);
4319 u64 end = start + PAGE_SIZE - 1;
4320 int ret = 1;
4321
4322 if (test_range_bit(tree, start, end,
4323 EXTENT_IOBITS, 0, NULL))
4324 ret = 0;
4325 else {
4326 /*
4327 * at this point we can safely clear everything except the
4328 * locked bit and the nodatasum bit
4329 */
4330 ret = __clear_extent_bit(tree, start, end,
4331 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4332 0, 0, NULL, mask, NULL);
4333
4334 /* if clear_extent_bit failed for enomem reasons,
4335 * we can't allow the release to continue.
4336 */
4337 if (ret < 0)
4338 ret = 0;
4339 else
4340 ret = 1;
4341 }
4342 return ret;
4343 }
4344
4345 /*
4346 * a helper for releasepage. As long as there are no locked extents
4347 * in the range corresponding to the page, both state records and extent
4348 * map records are removed
4349 */
try_release_extent_mapping(struct page * page,gfp_t mask)4350 int try_release_extent_mapping(struct page *page, gfp_t mask)
4351 {
4352 struct extent_map *em;
4353 u64 start = page_offset(page);
4354 u64 end = start + PAGE_SIZE - 1;
4355 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
4356 struct extent_io_tree *tree = &btrfs_inode->io_tree;
4357 struct extent_map_tree *map = &btrfs_inode->extent_tree;
4358
4359 if (gfpflags_allow_blocking(mask) &&
4360 page->mapping->host->i_size > SZ_16M) {
4361 u64 len;
4362 while (start <= end) {
4363 len = end - start + 1;
4364 write_lock(&map->lock);
4365 em = lookup_extent_mapping(map, start, len);
4366 if (!em) {
4367 write_unlock(&map->lock);
4368 break;
4369 }
4370 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4371 em->start != start) {
4372 write_unlock(&map->lock);
4373 free_extent_map(em);
4374 break;
4375 }
4376 if (!test_range_bit(tree, em->start,
4377 extent_map_end(em) - 1,
4378 EXTENT_LOCKED | EXTENT_WRITEBACK,
4379 0, NULL)) {
4380 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4381 &btrfs_inode->runtime_flags);
4382 remove_extent_mapping(map, em);
4383 /* once for the rb tree */
4384 free_extent_map(em);
4385 }
4386 start = extent_map_end(em);
4387 write_unlock(&map->lock);
4388
4389 /* once for us */
4390 free_extent_map(em);
4391
4392 cond_resched(); /* Allow large-extent preemption. */
4393 }
4394 }
4395 return try_release_extent_state(tree, page, mask);
4396 }
4397
4398 /*
4399 * helper function for fiemap, which doesn't want to see any holes.
4400 * This maps until we find something past 'last'
4401 */
get_extent_skip_holes(struct inode * inode,u64 offset,u64 last)4402 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4403 u64 offset, u64 last)
4404 {
4405 u64 sectorsize = btrfs_inode_sectorsize(inode);
4406 struct extent_map *em;
4407 u64 len;
4408
4409 if (offset >= last)
4410 return NULL;
4411
4412 while (1) {
4413 len = last - offset;
4414 if (len == 0)
4415 break;
4416 len = ALIGN(len, sectorsize);
4417 em = btrfs_get_extent_fiemap(BTRFS_I(inode), NULL, 0, offset,
4418 len, 0);
4419 if (IS_ERR_OR_NULL(em))
4420 return em;
4421
4422 /* if this isn't a hole return it */
4423 if (em->block_start != EXTENT_MAP_HOLE)
4424 return em;
4425
4426 /* this is a hole, advance to the next extent */
4427 offset = extent_map_end(em);
4428 free_extent_map(em);
4429 if (offset >= last)
4430 break;
4431 }
4432 return NULL;
4433 }
4434
4435 /*
4436 * To cache previous fiemap extent
4437 *
4438 * Will be used for merging fiemap extent
4439 */
4440 struct fiemap_cache {
4441 u64 offset;
4442 u64 phys;
4443 u64 len;
4444 u32 flags;
4445 bool cached;
4446 };
4447
4448 /*
4449 * Helper to submit fiemap extent.
4450 *
4451 * Will try to merge current fiemap extent specified by @offset, @phys,
4452 * @len and @flags with cached one.
4453 * And only when we fails to merge, cached one will be submitted as
4454 * fiemap extent.
4455 *
4456 * Return value is the same as fiemap_fill_next_extent().
4457 */
emit_fiemap_extent(struct fiemap_extent_info * fieinfo,struct fiemap_cache * cache,u64 offset,u64 phys,u64 len,u32 flags)4458 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4459 struct fiemap_cache *cache,
4460 u64 offset, u64 phys, u64 len, u32 flags)
4461 {
4462 int ret = 0;
4463
4464 if (!cache->cached)
4465 goto assign;
4466
4467 /*
4468 * Sanity check, extent_fiemap() should have ensured that new
4469 * fiemap extent won't overlap with cahced one.
4470 * Not recoverable.
4471 *
4472 * NOTE: Physical address can overlap, due to compression
4473 */
4474 if (cache->offset + cache->len > offset) {
4475 WARN_ON(1);
4476 return -EINVAL;
4477 }
4478
4479 /*
4480 * Only merges fiemap extents if
4481 * 1) Their logical addresses are continuous
4482 *
4483 * 2) Their physical addresses are continuous
4484 * So truly compressed (physical size smaller than logical size)
4485 * extents won't get merged with each other
4486 *
4487 * 3) Share same flags except FIEMAP_EXTENT_LAST
4488 * So regular extent won't get merged with prealloc extent
4489 */
4490 if (cache->offset + cache->len == offset &&
4491 cache->phys + cache->len == phys &&
4492 (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4493 (flags & ~FIEMAP_EXTENT_LAST)) {
4494 cache->len += len;
4495 cache->flags |= flags;
4496 goto try_submit_last;
4497 }
4498
4499 /* Not mergeable, need to submit cached one */
4500 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4501 cache->len, cache->flags);
4502 cache->cached = false;
4503 if (ret)
4504 return ret;
4505 assign:
4506 cache->cached = true;
4507 cache->offset = offset;
4508 cache->phys = phys;
4509 cache->len = len;
4510 cache->flags = flags;
4511 try_submit_last:
4512 if (cache->flags & FIEMAP_EXTENT_LAST) {
4513 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4514 cache->phys, cache->len, cache->flags);
4515 cache->cached = false;
4516 }
4517 return ret;
4518 }
4519
4520 /*
4521 * Emit last fiemap cache
4522 *
4523 * The last fiemap cache may still be cached in the following case:
4524 * 0 4k 8k
4525 * |<- Fiemap range ->|
4526 * |<------------ First extent ----------->|
4527 *
4528 * In this case, the first extent range will be cached but not emitted.
4529 * So we must emit it before ending extent_fiemap().
4530 */
emit_last_fiemap_cache(struct btrfs_fs_info * fs_info,struct fiemap_extent_info * fieinfo,struct fiemap_cache * cache)4531 static int emit_last_fiemap_cache(struct btrfs_fs_info *fs_info,
4532 struct fiemap_extent_info *fieinfo,
4533 struct fiemap_cache *cache)
4534 {
4535 int ret;
4536
4537 if (!cache->cached)
4538 return 0;
4539
4540 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4541 cache->len, cache->flags);
4542 cache->cached = false;
4543 if (ret > 0)
4544 ret = 0;
4545 return ret;
4546 }
4547
extent_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,__u64 start,__u64 len)4548 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4549 __u64 start, __u64 len)
4550 {
4551 int ret = 0;
4552 u64 off = start;
4553 u64 max = start + len;
4554 u32 flags = 0;
4555 u32 found_type;
4556 u64 last;
4557 u64 last_for_get_extent = 0;
4558 u64 disko = 0;
4559 u64 isize = i_size_read(inode);
4560 struct btrfs_key found_key;
4561 struct extent_map *em = NULL;
4562 struct extent_state *cached_state = NULL;
4563 struct btrfs_path *path;
4564 struct btrfs_root *root = BTRFS_I(inode)->root;
4565 struct fiemap_cache cache = { 0 };
4566 int end = 0;
4567 u64 em_start = 0;
4568 u64 em_len = 0;
4569 u64 em_end = 0;
4570
4571 if (len == 0)
4572 return -EINVAL;
4573
4574 path = btrfs_alloc_path();
4575 if (!path)
4576 return -ENOMEM;
4577 path->leave_spinning = 1;
4578
4579 start = round_down(start, btrfs_inode_sectorsize(inode));
4580 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4581
4582 /*
4583 * lookup the last file extent. We're not using i_size here
4584 * because there might be preallocation past i_size
4585 */
4586 ret = btrfs_lookup_file_extent(NULL, root, path,
4587 btrfs_ino(BTRFS_I(inode)), -1, 0);
4588 if (ret < 0) {
4589 btrfs_free_path(path);
4590 return ret;
4591 } else {
4592 WARN_ON(!ret);
4593 if (ret == 1)
4594 ret = 0;
4595 }
4596
4597 path->slots[0]--;
4598 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4599 found_type = found_key.type;
4600
4601 /* No extents, but there might be delalloc bits */
4602 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
4603 found_type != BTRFS_EXTENT_DATA_KEY) {
4604 /* have to trust i_size as the end */
4605 last = (u64)-1;
4606 last_for_get_extent = isize;
4607 } else {
4608 /*
4609 * remember the start of the last extent. There are a
4610 * bunch of different factors that go into the length of the
4611 * extent, so its much less complex to remember where it started
4612 */
4613 last = found_key.offset;
4614 last_for_get_extent = last + 1;
4615 }
4616 btrfs_release_path(path);
4617
4618 /*
4619 * we might have some extents allocated but more delalloc past those
4620 * extents. so, we trust isize unless the start of the last extent is
4621 * beyond isize
4622 */
4623 if (last < isize) {
4624 last = (u64)-1;
4625 last_for_get_extent = isize;
4626 }
4627
4628 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4629 &cached_state);
4630
4631 em = get_extent_skip_holes(inode, start, last_for_get_extent);
4632 if (!em)
4633 goto out;
4634 if (IS_ERR(em)) {
4635 ret = PTR_ERR(em);
4636 goto out;
4637 }
4638
4639 while (!end) {
4640 u64 offset_in_extent = 0;
4641
4642 /* break if the extent we found is outside the range */
4643 if (em->start >= max || extent_map_end(em) < off)
4644 break;
4645
4646 /*
4647 * get_extent may return an extent that starts before our
4648 * requested range. We have to make sure the ranges
4649 * we return to fiemap always move forward and don't
4650 * overlap, so adjust the offsets here
4651 */
4652 em_start = max(em->start, off);
4653
4654 /*
4655 * record the offset from the start of the extent
4656 * for adjusting the disk offset below. Only do this if the
4657 * extent isn't compressed since our in ram offset may be past
4658 * what we have actually allocated on disk.
4659 */
4660 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4661 offset_in_extent = em_start - em->start;
4662 em_end = extent_map_end(em);
4663 em_len = em_end - em_start;
4664 flags = 0;
4665 if (em->block_start < EXTENT_MAP_LAST_BYTE)
4666 disko = em->block_start + offset_in_extent;
4667 else
4668 disko = 0;
4669
4670 /*
4671 * bump off for our next call to get_extent
4672 */
4673 off = extent_map_end(em);
4674 if (off >= max)
4675 end = 1;
4676
4677 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4678 end = 1;
4679 flags |= FIEMAP_EXTENT_LAST;
4680 } else if (em->block_start == EXTENT_MAP_INLINE) {
4681 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4682 FIEMAP_EXTENT_NOT_ALIGNED);
4683 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4684 flags |= (FIEMAP_EXTENT_DELALLOC |
4685 FIEMAP_EXTENT_UNKNOWN);
4686 } else if (fieinfo->fi_extents_max) {
4687 u64 bytenr = em->block_start -
4688 (em->start - em->orig_start);
4689
4690 /*
4691 * As btrfs supports shared space, this information
4692 * can be exported to userspace tools via
4693 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4694 * then we're just getting a count and we can skip the
4695 * lookup stuff.
4696 */
4697 ret = btrfs_check_shared(root,
4698 btrfs_ino(BTRFS_I(inode)),
4699 bytenr);
4700 if (ret < 0)
4701 goto out_free;
4702 if (ret)
4703 flags |= FIEMAP_EXTENT_SHARED;
4704 ret = 0;
4705 }
4706 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4707 flags |= FIEMAP_EXTENT_ENCODED;
4708 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4709 flags |= FIEMAP_EXTENT_UNWRITTEN;
4710
4711 free_extent_map(em);
4712 em = NULL;
4713 if ((em_start >= last) || em_len == (u64)-1 ||
4714 (last == (u64)-1 && isize <= em_end)) {
4715 flags |= FIEMAP_EXTENT_LAST;
4716 end = 1;
4717 }
4718
4719 /* now scan forward to see if this is really the last extent. */
4720 em = get_extent_skip_holes(inode, off, last_for_get_extent);
4721 if (IS_ERR(em)) {
4722 ret = PTR_ERR(em);
4723 goto out;
4724 }
4725 if (!em) {
4726 flags |= FIEMAP_EXTENT_LAST;
4727 end = 1;
4728 }
4729 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4730 em_len, flags);
4731 if (ret) {
4732 if (ret == 1)
4733 ret = 0;
4734 goto out_free;
4735 }
4736 }
4737 out_free:
4738 if (!ret)
4739 ret = emit_last_fiemap_cache(root->fs_info, fieinfo, &cache);
4740 free_extent_map(em);
4741 out:
4742 btrfs_free_path(path);
4743 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4744 &cached_state);
4745 return ret;
4746 }
4747
__free_extent_buffer(struct extent_buffer * eb)4748 static void __free_extent_buffer(struct extent_buffer *eb)
4749 {
4750 btrfs_leak_debug_del(&eb->leak_list);
4751 kmem_cache_free(extent_buffer_cache, eb);
4752 }
4753
extent_buffer_under_io(struct extent_buffer * eb)4754 int extent_buffer_under_io(struct extent_buffer *eb)
4755 {
4756 return (atomic_read(&eb->io_pages) ||
4757 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4758 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4759 }
4760
4761 /*
4762 * Release all pages attached to the extent buffer.
4763 */
btrfs_release_extent_buffer_pages(struct extent_buffer * eb)4764 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
4765 {
4766 int i;
4767 int num_pages;
4768 int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4769
4770 BUG_ON(extent_buffer_under_io(eb));
4771
4772 num_pages = num_extent_pages(eb);
4773 for (i = 0; i < num_pages; i++) {
4774 struct page *page = eb->pages[i];
4775
4776 if (!page)
4777 continue;
4778 if (mapped)
4779 spin_lock(&page->mapping->private_lock);
4780 /*
4781 * We do this since we'll remove the pages after we've
4782 * removed the eb from the radix tree, so we could race
4783 * and have this page now attached to the new eb. So
4784 * only clear page_private if it's still connected to
4785 * this eb.
4786 */
4787 if (PagePrivate(page) &&
4788 page->private == (unsigned long)eb) {
4789 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4790 BUG_ON(PageDirty(page));
4791 BUG_ON(PageWriteback(page));
4792 /*
4793 * We need to make sure we haven't be attached
4794 * to a new eb.
4795 */
4796 ClearPagePrivate(page);
4797 set_page_private(page, 0);
4798 /* One for the page private */
4799 put_page(page);
4800 }
4801
4802 if (mapped)
4803 spin_unlock(&page->mapping->private_lock);
4804
4805 /* One for when we allocated the page */
4806 put_page(page);
4807 }
4808 }
4809
4810 /*
4811 * Helper for releasing the extent buffer.
4812 */
btrfs_release_extent_buffer(struct extent_buffer * eb)4813 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4814 {
4815 btrfs_release_extent_buffer_pages(eb);
4816 __free_extent_buffer(eb);
4817 }
4818
4819 static struct extent_buffer *
__alloc_extent_buffer(struct btrfs_fs_info * fs_info,u64 start,unsigned long len)4820 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4821 unsigned long len)
4822 {
4823 struct extent_buffer *eb = NULL;
4824
4825 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4826 eb->start = start;
4827 eb->len = len;
4828 eb->fs_info = fs_info;
4829 eb->bflags = 0;
4830 rwlock_init(&eb->lock);
4831 atomic_set(&eb->write_locks, 0);
4832 atomic_set(&eb->read_locks, 0);
4833 atomic_set(&eb->blocking_readers, 0);
4834 atomic_set(&eb->blocking_writers, 0);
4835 atomic_set(&eb->spinning_readers, 0);
4836 atomic_set(&eb->spinning_writers, 0);
4837 eb->lock_nested = 0;
4838 init_waitqueue_head(&eb->write_lock_wq);
4839 init_waitqueue_head(&eb->read_lock_wq);
4840
4841 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4842
4843 spin_lock_init(&eb->refs_lock);
4844 atomic_set(&eb->refs, 1);
4845 atomic_set(&eb->io_pages, 0);
4846
4847 /*
4848 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4849 */
4850 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4851 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4852 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4853
4854 return eb;
4855 }
4856
btrfs_clone_extent_buffer(struct extent_buffer * src)4857 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4858 {
4859 int i;
4860 struct page *p;
4861 struct extent_buffer *new;
4862 int num_pages = num_extent_pages(src);
4863
4864 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4865 if (new == NULL)
4866 return NULL;
4867
4868 for (i = 0; i < num_pages; i++) {
4869 p = alloc_page(GFP_NOFS);
4870 if (!p) {
4871 btrfs_release_extent_buffer(new);
4872 return NULL;
4873 }
4874 attach_extent_buffer_page(new, p);
4875 WARN_ON(PageDirty(p));
4876 SetPageUptodate(p);
4877 new->pages[i] = p;
4878 copy_page(page_address(p), page_address(src->pages[i]));
4879 }
4880
4881 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4882 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
4883
4884 return new;
4885 }
4886
__alloc_dummy_extent_buffer(struct btrfs_fs_info * fs_info,u64 start,unsigned long len)4887 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4888 u64 start, unsigned long len)
4889 {
4890 struct extent_buffer *eb;
4891 int num_pages;
4892 int i;
4893
4894 eb = __alloc_extent_buffer(fs_info, start, len);
4895 if (!eb)
4896 return NULL;
4897
4898 num_pages = num_extent_pages(eb);
4899 for (i = 0; i < num_pages; i++) {
4900 eb->pages[i] = alloc_page(GFP_NOFS);
4901 if (!eb->pages[i])
4902 goto err;
4903 }
4904 set_extent_buffer_uptodate(eb);
4905 btrfs_set_header_nritems(eb, 0);
4906 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4907
4908 return eb;
4909 err:
4910 for (; i > 0; i--)
4911 __free_page(eb->pages[i - 1]);
4912 __free_extent_buffer(eb);
4913 return NULL;
4914 }
4915
alloc_dummy_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)4916 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4917 u64 start)
4918 {
4919 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
4920 }
4921
check_buffer_tree_ref(struct extent_buffer * eb)4922 static void check_buffer_tree_ref(struct extent_buffer *eb)
4923 {
4924 int refs;
4925 /*
4926 * The TREE_REF bit is first set when the extent_buffer is added
4927 * to the radix tree. It is also reset, if unset, when a new reference
4928 * is created by find_extent_buffer.
4929 *
4930 * It is only cleared in two cases: freeing the last non-tree
4931 * reference to the extent_buffer when its STALE bit is set or
4932 * calling releasepage when the tree reference is the only reference.
4933 *
4934 * In both cases, care is taken to ensure that the extent_buffer's
4935 * pages are not under io. However, releasepage can be concurrently
4936 * called with creating new references, which is prone to race
4937 * conditions between the calls to check_buffer_tree_ref in those
4938 * codepaths and clearing TREE_REF in try_release_extent_buffer.
4939 *
4940 * The actual lifetime of the extent_buffer in the radix tree is
4941 * adequately protected by the refcount, but the TREE_REF bit and
4942 * its corresponding reference are not. To protect against this
4943 * class of races, we call check_buffer_tree_ref from the codepaths
4944 * which trigger io after they set eb->io_pages. Note that once io is
4945 * initiated, TREE_REF can no longer be cleared, so that is the
4946 * moment at which any such race is best fixed.
4947 */
4948 refs = atomic_read(&eb->refs);
4949 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4950 return;
4951
4952 spin_lock(&eb->refs_lock);
4953 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4954 atomic_inc(&eb->refs);
4955 spin_unlock(&eb->refs_lock);
4956 }
4957
mark_extent_buffer_accessed(struct extent_buffer * eb,struct page * accessed)4958 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4959 struct page *accessed)
4960 {
4961 int num_pages, i;
4962
4963 check_buffer_tree_ref(eb);
4964
4965 num_pages = num_extent_pages(eb);
4966 for (i = 0; i < num_pages; i++) {
4967 struct page *p = eb->pages[i];
4968
4969 if (p != accessed)
4970 mark_page_accessed(p);
4971 }
4972 }
4973
find_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)4974 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4975 u64 start)
4976 {
4977 struct extent_buffer *eb;
4978
4979 rcu_read_lock();
4980 eb = radix_tree_lookup(&fs_info->buffer_radix,
4981 start >> PAGE_SHIFT);
4982 if (eb && atomic_inc_not_zero(&eb->refs)) {
4983 rcu_read_unlock();
4984 /*
4985 * Lock our eb's refs_lock to avoid races with
4986 * free_extent_buffer. When we get our eb it might be flagged
4987 * with EXTENT_BUFFER_STALE and another task running
4988 * free_extent_buffer might have seen that flag set,
4989 * eb->refs == 2, that the buffer isn't under IO (dirty and
4990 * writeback flags not set) and it's still in the tree (flag
4991 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4992 * of decrementing the extent buffer's reference count twice.
4993 * So here we could race and increment the eb's reference count,
4994 * clear its stale flag, mark it as dirty and drop our reference
4995 * before the other task finishes executing free_extent_buffer,
4996 * which would later result in an attempt to free an extent
4997 * buffer that is dirty.
4998 */
4999 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
5000 spin_lock(&eb->refs_lock);
5001 spin_unlock(&eb->refs_lock);
5002 }
5003 mark_extent_buffer_accessed(eb, NULL);
5004 return eb;
5005 }
5006 rcu_read_unlock();
5007
5008 return NULL;
5009 }
5010
5011 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
alloc_test_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)5012 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
5013 u64 start)
5014 {
5015 struct extent_buffer *eb, *exists = NULL;
5016 int ret;
5017
5018 eb = find_extent_buffer(fs_info, start);
5019 if (eb)
5020 return eb;
5021 eb = alloc_dummy_extent_buffer(fs_info, start);
5022 if (!eb)
5023 return ERR_PTR(-ENOMEM);
5024 eb->fs_info = fs_info;
5025 again:
5026 ret = radix_tree_preload(GFP_NOFS);
5027 if (ret) {
5028 exists = ERR_PTR(ret);
5029 goto free_eb;
5030 }
5031 spin_lock(&fs_info->buffer_lock);
5032 ret = radix_tree_insert(&fs_info->buffer_radix,
5033 start >> PAGE_SHIFT, eb);
5034 spin_unlock(&fs_info->buffer_lock);
5035 radix_tree_preload_end();
5036 if (ret == -EEXIST) {
5037 exists = find_extent_buffer(fs_info, start);
5038 if (exists)
5039 goto free_eb;
5040 else
5041 goto again;
5042 }
5043 check_buffer_tree_ref(eb);
5044 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5045
5046 /*
5047 * We will free dummy extent buffer's if they come into
5048 * free_extent_buffer with a ref count of 2, but if we are using this we
5049 * want the buffers to stay in memory until we're done with them, so
5050 * bump the ref count again.
5051 */
5052 atomic_inc(&eb->refs);
5053 return eb;
5054 free_eb:
5055 btrfs_release_extent_buffer(eb);
5056 return exists;
5057 }
5058 #endif
5059
alloc_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)5060 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
5061 u64 start)
5062 {
5063 unsigned long len = fs_info->nodesize;
5064 int num_pages;
5065 int i;
5066 unsigned long index = start >> PAGE_SHIFT;
5067 struct extent_buffer *eb;
5068 struct extent_buffer *exists = NULL;
5069 struct page *p;
5070 struct address_space *mapping = fs_info->btree_inode->i_mapping;
5071 int uptodate = 1;
5072 int ret;
5073
5074 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
5075 btrfs_err(fs_info, "bad tree block start %llu", start);
5076 return ERR_PTR(-EINVAL);
5077 }
5078
5079 eb = find_extent_buffer(fs_info, start);
5080 if (eb)
5081 return eb;
5082
5083 eb = __alloc_extent_buffer(fs_info, start, len);
5084 if (!eb)
5085 return ERR_PTR(-ENOMEM);
5086
5087 num_pages = num_extent_pages(eb);
5088 for (i = 0; i < num_pages; i++, index++) {
5089 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
5090 if (!p) {
5091 exists = ERR_PTR(-ENOMEM);
5092 goto free_eb;
5093 }
5094
5095 spin_lock(&mapping->private_lock);
5096 if (PagePrivate(p)) {
5097 /*
5098 * We could have already allocated an eb for this page
5099 * and attached one so lets see if we can get a ref on
5100 * the existing eb, and if we can we know it's good and
5101 * we can just return that one, else we know we can just
5102 * overwrite page->private.
5103 */
5104 exists = (struct extent_buffer *)p->private;
5105 if (atomic_inc_not_zero(&exists->refs)) {
5106 spin_unlock(&mapping->private_lock);
5107 unlock_page(p);
5108 put_page(p);
5109 mark_extent_buffer_accessed(exists, p);
5110 goto free_eb;
5111 }
5112 exists = NULL;
5113
5114 /*
5115 * Do this so attach doesn't complain and we need to
5116 * drop the ref the old guy had.
5117 */
5118 ClearPagePrivate(p);
5119 WARN_ON(PageDirty(p));
5120 put_page(p);
5121 }
5122 attach_extent_buffer_page(eb, p);
5123 spin_unlock(&mapping->private_lock);
5124 WARN_ON(PageDirty(p));
5125 eb->pages[i] = p;
5126 if (!PageUptodate(p))
5127 uptodate = 0;
5128
5129 /*
5130 * We can't unlock the pages just yet since the extent buffer
5131 * hasn't been properly inserted in the radix tree, this
5132 * opens a race with btree_releasepage which can free a page
5133 * while we are still filling in all pages for the buffer and
5134 * we could crash.
5135 */
5136 }
5137 if (uptodate)
5138 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5139 again:
5140 ret = radix_tree_preload(GFP_NOFS);
5141 if (ret) {
5142 exists = ERR_PTR(ret);
5143 goto free_eb;
5144 }
5145
5146 spin_lock(&fs_info->buffer_lock);
5147 ret = radix_tree_insert(&fs_info->buffer_radix,
5148 start >> PAGE_SHIFT, eb);
5149 spin_unlock(&fs_info->buffer_lock);
5150 radix_tree_preload_end();
5151 if (ret == -EEXIST) {
5152 exists = find_extent_buffer(fs_info, start);
5153 if (exists)
5154 goto free_eb;
5155 else
5156 goto again;
5157 }
5158 /* add one reference for the tree */
5159 check_buffer_tree_ref(eb);
5160 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5161
5162 /*
5163 * Now it's safe to unlock the pages because any calls to
5164 * btree_releasepage will correctly detect that a page belongs to a
5165 * live buffer and won't free them prematurely.
5166 */
5167 for (i = 0; i < num_pages; i++)
5168 unlock_page(eb->pages[i]);
5169 return eb;
5170
5171 free_eb:
5172 WARN_ON(!atomic_dec_and_test(&eb->refs));
5173 for (i = 0; i < num_pages; i++) {
5174 if (eb->pages[i])
5175 unlock_page(eb->pages[i]);
5176 }
5177
5178 btrfs_release_extent_buffer(eb);
5179 return exists;
5180 }
5181
btrfs_release_extent_buffer_rcu(struct rcu_head * head)5182 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5183 {
5184 struct extent_buffer *eb =
5185 container_of(head, struct extent_buffer, rcu_head);
5186
5187 __free_extent_buffer(eb);
5188 }
5189
release_extent_buffer(struct extent_buffer * eb)5190 static int release_extent_buffer(struct extent_buffer *eb)
5191 {
5192 lockdep_assert_held(&eb->refs_lock);
5193
5194 WARN_ON(atomic_read(&eb->refs) == 0);
5195 if (atomic_dec_and_test(&eb->refs)) {
5196 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5197 struct btrfs_fs_info *fs_info = eb->fs_info;
5198
5199 spin_unlock(&eb->refs_lock);
5200
5201 spin_lock(&fs_info->buffer_lock);
5202 radix_tree_delete(&fs_info->buffer_radix,
5203 eb->start >> PAGE_SHIFT);
5204 spin_unlock(&fs_info->buffer_lock);
5205 } else {
5206 spin_unlock(&eb->refs_lock);
5207 }
5208
5209 /* Should be safe to release our pages at this point */
5210 btrfs_release_extent_buffer_pages(eb);
5211 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5212 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
5213 __free_extent_buffer(eb);
5214 return 1;
5215 }
5216 #endif
5217 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5218 return 1;
5219 }
5220 spin_unlock(&eb->refs_lock);
5221
5222 return 0;
5223 }
5224
free_extent_buffer(struct extent_buffer * eb)5225 void free_extent_buffer(struct extent_buffer *eb)
5226 {
5227 int refs;
5228 int old;
5229 if (!eb)
5230 return;
5231
5232 while (1) {
5233 refs = atomic_read(&eb->refs);
5234 if (refs <= 3)
5235 break;
5236 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5237 if (old == refs)
5238 return;
5239 }
5240
5241 spin_lock(&eb->refs_lock);
5242 if (atomic_read(&eb->refs) == 2 &&
5243 test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))
5244 atomic_dec(&eb->refs);
5245
5246 if (atomic_read(&eb->refs) == 2 &&
5247 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5248 !extent_buffer_under_io(eb) &&
5249 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5250 atomic_dec(&eb->refs);
5251
5252 /*
5253 * I know this is terrible, but it's temporary until we stop tracking
5254 * the uptodate bits and such for the extent buffers.
5255 */
5256 release_extent_buffer(eb);
5257 }
5258
free_extent_buffer_stale(struct extent_buffer * eb)5259 void free_extent_buffer_stale(struct extent_buffer *eb)
5260 {
5261 if (!eb)
5262 return;
5263
5264 spin_lock(&eb->refs_lock);
5265 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5266
5267 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5268 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5269 atomic_dec(&eb->refs);
5270 release_extent_buffer(eb);
5271 }
5272
clear_extent_buffer_dirty(struct extent_buffer * eb)5273 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5274 {
5275 int i;
5276 int num_pages;
5277 struct page *page;
5278
5279 num_pages = num_extent_pages(eb);
5280
5281 for (i = 0; i < num_pages; i++) {
5282 page = eb->pages[i];
5283 if (!PageDirty(page))
5284 continue;
5285
5286 lock_page(page);
5287 WARN_ON(!PagePrivate(page));
5288
5289 clear_page_dirty_for_io(page);
5290 xa_lock_irq(&page->mapping->i_pages);
5291 if (!PageDirty(page)) {
5292 radix_tree_tag_clear(&page->mapping->i_pages,
5293 page_index(page),
5294 PAGECACHE_TAG_DIRTY);
5295 }
5296 xa_unlock_irq(&page->mapping->i_pages);
5297 ClearPageError(page);
5298 unlock_page(page);
5299 }
5300 WARN_ON(atomic_read(&eb->refs) == 0);
5301 }
5302
set_extent_buffer_dirty(struct extent_buffer * eb)5303 int set_extent_buffer_dirty(struct extent_buffer *eb)
5304 {
5305 int i;
5306 int num_pages;
5307 int was_dirty = 0;
5308
5309 check_buffer_tree_ref(eb);
5310
5311 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5312
5313 num_pages = num_extent_pages(eb);
5314 WARN_ON(atomic_read(&eb->refs) == 0);
5315 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5316
5317 for (i = 0; i < num_pages; i++)
5318 set_page_dirty(eb->pages[i]);
5319 return was_dirty;
5320 }
5321
clear_extent_buffer_uptodate(struct extent_buffer * eb)5322 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5323 {
5324 int i;
5325 struct page *page;
5326 int num_pages;
5327
5328 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5329 num_pages = num_extent_pages(eb);
5330 for (i = 0; i < num_pages; i++) {
5331 page = eb->pages[i];
5332 if (page)
5333 ClearPageUptodate(page);
5334 }
5335 }
5336
set_extent_buffer_uptodate(struct extent_buffer * eb)5337 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5338 {
5339 int i;
5340 struct page *page;
5341 int num_pages;
5342
5343 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5344 num_pages = num_extent_pages(eb);
5345 for (i = 0; i < num_pages; i++) {
5346 page = eb->pages[i];
5347 SetPageUptodate(page);
5348 }
5349 }
5350
read_extent_buffer_pages(struct extent_io_tree * tree,struct extent_buffer * eb,int wait,int mirror_num)5351 int read_extent_buffer_pages(struct extent_io_tree *tree,
5352 struct extent_buffer *eb, int wait, int mirror_num)
5353 {
5354 int i;
5355 struct page *page;
5356 int err;
5357 int ret = 0;
5358 int locked_pages = 0;
5359 int all_uptodate = 1;
5360 int num_pages;
5361 unsigned long num_reads = 0;
5362 struct bio *bio = NULL;
5363 unsigned long bio_flags = 0;
5364
5365 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5366 return 0;
5367
5368 num_pages = num_extent_pages(eb);
5369 for (i = 0; i < num_pages; i++) {
5370 page = eb->pages[i];
5371 if (wait == WAIT_NONE) {
5372 if (!trylock_page(page))
5373 goto unlock_exit;
5374 } else {
5375 lock_page(page);
5376 }
5377 locked_pages++;
5378 }
5379 /*
5380 * We need to firstly lock all pages to make sure that
5381 * the uptodate bit of our pages won't be affected by
5382 * clear_extent_buffer_uptodate().
5383 */
5384 for (i = 0; i < num_pages; i++) {
5385 page = eb->pages[i];
5386 if (!PageUptodate(page)) {
5387 num_reads++;
5388 all_uptodate = 0;
5389 }
5390 }
5391
5392 if (all_uptodate) {
5393 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5394 goto unlock_exit;
5395 }
5396
5397 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5398 eb->read_mirror = 0;
5399 atomic_set(&eb->io_pages, num_reads);
5400 /*
5401 * It is possible for releasepage to clear the TREE_REF bit before we
5402 * set io_pages. See check_buffer_tree_ref for a more detailed comment.
5403 */
5404 check_buffer_tree_ref(eb);
5405 for (i = 0; i < num_pages; i++) {
5406 page = eb->pages[i];
5407
5408 if (!PageUptodate(page)) {
5409 if (ret) {
5410 atomic_dec(&eb->io_pages);
5411 unlock_page(page);
5412 continue;
5413 }
5414
5415 ClearPageError(page);
5416 err = __extent_read_full_page(tree, page,
5417 btree_get_extent, &bio,
5418 mirror_num, &bio_flags,
5419 REQ_META);
5420 if (err) {
5421 ret = err;
5422 /*
5423 * We use &bio in above __extent_read_full_page,
5424 * so we ensure that if it returns error, the
5425 * current page fails to add itself to bio and
5426 * it's been unlocked.
5427 *
5428 * We must dec io_pages by ourselves.
5429 */
5430 atomic_dec(&eb->io_pages);
5431 }
5432 } else {
5433 unlock_page(page);
5434 }
5435 }
5436
5437 if (bio) {
5438 err = submit_one_bio(bio, mirror_num, bio_flags);
5439 if (err)
5440 return err;
5441 }
5442
5443 if (ret || wait != WAIT_COMPLETE)
5444 return ret;
5445
5446 for (i = 0; i < num_pages; i++) {
5447 page = eb->pages[i];
5448 wait_on_page_locked(page);
5449 if (!PageUptodate(page))
5450 ret = -EIO;
5451 }
5452
5453 return ret;
5454
5455 unlock_exit:
5456 while (locked_pages > 0) {
5457 locked_pages--;
5458 page = eb->pages[locked_pages];
5459 unlock_page(page);
5460 }
5461 return ret;
5462 }
5463
read_extent_buffer(const struct extent_buffer * eb,void * dstv,unsigned long start,unsigned long len)5464 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5465 unsigned long start, unsigned long len)
5466 {
5467 size_t cur;
5468 size_t offset;
5469 struct page *page;
5470 char *kaddr;
5471 char *dst = (char *)dstv;
5472 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5473 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5474
5475 if (start + len > eb->len) {
5476 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5477 eb->start, eb->len, start, len);
5478 memset(dst, 0, len);
5479 return;
5480 }
5481
5482 offset = (start_offset + start) & (PAGE_SIZE - 1);
5483
5484 while (len > 0) {
5485 page = eb->pages[i];
5486
5487 cur = min(len, (PAGE_SIZE - offset));
5488 kaddr = page_address(page);
5489 memcpy(dst, kaddr + offset, cur);
5490
5491 dst += cur;
5492 len -= cur;
5493 offset = 0;
5494 i++;
5495 }
5496 }
5497
read_extent_buffer_to_user_nofault(const struct extent_buffer * eb,void __user * dstv,unsigned long start,unsigned long len)5498 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
5499 void __user *dstv,
5500 unsigned long start, unsigned long len)
5501 {
5502 size_t cur;
5503 size_t offset;
5504 struct page *page;
5505 char *kaddr;
5506 char __user *dst = (char __user *)dstv;
5507 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5508 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5509 int ret = 0;
5510
5511 WARN_ON(start > eb->len);
5512 WARN_ON(start + len > eb->start + eb->len);
5513
5514 offset = (start_offset + start) & (PAGE_SIZE - 1);
5515
5516 while (len > 0) {
5517 page = eb->pages[i];
5518
5519 cur = min(len, (PAGE_SIZE - offset));
5520 kaddr = page_address(page);
5521 if (probe_user_write(dst, kaddr + offset, cur)) {
5522 ret = -EFAULT;
5523 break;
5524 }
5525
5526 dst += cur;
5527 len -= cur;
5528 offset = 0;
5529 i++;
5530 }
5531
5532 return ret;
5533 }
5534
5535 /*
5536 * return 0 if the item is found within a page.
5537 * return 1 if the item spans two pages.
5538 * return -EINVAL otherwise.
5539 */
map_private_extent_buffer(const struct extent_buffer * eb,unsigned long start,unsigned long min_len,char ** map,unsigned long * map_start,unsigned long * map_len)5540 int map_private_extent_buffer(const struct extent_buffer *eb,
5541 unsigned long start, unsigned long min_len,
5542 char **map, unsigned long *map_start,
5543 unsigned long *map_len)
5544 {
5545 size_t offset = start & (PAGE_SIZE - 1);
5546 char *kaddr;
5547 struct page *p;
5548 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5549 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5550 unsigned long end_i = (start_offset + start + min_len - 1) >>
5551 PAGE_SHIFT;
5552
5553 if (start + min_len > eb->len) {
5554 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5555 eb->start, eb->len, start, min_len);
5556 return -EINVAL;
5557 }
5558
5559 if (i != end_i)
5560 return 1;
5561
5562 if (i == 0) {
5563 offset = start_offset;
5564 *map_start = 0;
5565 } else {
5566 offset = 0;
5567 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5568 }
5569
5570 p = eb->pages[i];
5571 kaddr = page_address(p);
5572 *map = kaddr + offset;
5573 *map_len = PAGE_SIZE - offset;
5574 return 0;
5575 }
5576
memcmp_extent_buffer(const struct extent_buffer * eb,const void * ptrv,unsigned long start,unsigned long len)5577 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5578 unsigned long start, unsigned long len)
5579 {
5580 size_t cur;
5581 size_t offset;
5582 struct page *page;
5583 char *kaddr;
5584 char *ptr = (char *)ptrv;
5585 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5586 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5587 int ret = 0;
5588
5589 WARN_ON(start > eb->len);
5590 WARN_ON(start + len > eb->start + eb->len);
5591
5592 offset = (start_offset + start) & (PAGE_SIZE - 1);
5593
5594 while (len > 0) {
5595 page = eb->pages[i];
5596
5597 cur = min(len, (PAGE_SIZE - offset));
5598
5599 kaddr = page_address(page);
5600 ret = memcmp(ptr, kaddr + offset, cur);
5601 if (ret)
5602 break;
5603
5604 ptr += cur;
5605 len -= cur;
5606 offset = 0;
5607 i++;
5608 }
5609 return ret;
5610 }
5611
write_extent_buffer_chunk_tree_uuid(struct extent_buffer * eb,const void * srcv)5612 void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5613 const void *srcv)
5614 {
5615 char *kaddr;
5616
5617 WARN_ON(!PageUptodate(eb->pages[0]));
5618 kaddr = page_address(eb->pages[0]);
5619 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5620 BTRFS_FSID_SIZE);
5621 }
5622
write_extent_buffer_fsid(struct extent_buffer * eb,const void * srcv)5623 void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5624 {
5625 char *kaddr;
5626
5627 WARN_ON(!PageUptodate(eb->pages[0]));
5628 kaddr = page_address(eb->pages[0]);
5629 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5630 BTRFS_FSID_SIZE);
5631 }
5632
write_extent_buffer(struct extent_buffer * eb,const void * srcv,unsigned long start,unsigned long len)5633 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5634 unsigned long start, unsigned long len)
5635 {
5636 size_t cur;
5637 size_t offset;
5638 struct page *page;
5639 char *kaddr;
5640 char *src = (char *)srcv;
5641 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5642 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5643
5644 WARN_ON(start > eb->len);
5645 WARN_ON(start + len > eb->start + eb->len);
5646
5647 offset = (start_offset + start) & (PAGE_SIZE - 1);
5648
5649 while (len > 0) {
5650 page = eb->pages[i];
5651 WARN_ON(!PageUptodate(page));
5652
5653 cur = min(len, PAGE_SIZE - offset);
5654 kaddr = page_address(page);
5655 memcpy(kaddr + offset, src, cur);
5656
5657 src += cur;
5658 len -= cur;
5659 offset = 0;
5660 i++;
5661 }
5662 }
5663
memzero_extent_buffer(struct extent_buffer * eb,unsigned long start,unsigned long len)5664 void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5665 unsigned long len)
5666 {
5667 size_t cur;
5668 size_t offset;
5669 struct page *page;
5670 char *kaddr;
5671 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5672 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5673
5674 WARN_ON(start > eb->len);
5675 WARN_ON(start + len > eb->start + eb->len);
5676
5677 offset = (start_offset + start) & (PAGE_SIZE - 1);
5678
5679 while (len > 0) {
5680 page = eb->pages[i];
5681 WARN_ON(!PageUptodate(page));
5682
5683 cur = min(len, PAGE_SIZE - offset);
5684 kaddr = page_address(page);
5685 memset(kaddr + offset, 0, cur);
5686
5687 len -= cur;
5688 offset = 0;
5689 i++;
5690 }
5691 }
5692
copy_extent_buffer_full(struct extent_buffer * dst,struct extent_buffer * src)5693 void copy_extent_buffer_full(struct extent_buffer *dst,
5694 struct extent_buffer *src)
5695 {
5696 int i;
5697 int num_pages;
5698
5699 ASSERT(dst->len == src->len);
5700
5701 num_pages = num_extent_pages(dst);
5702 for (i = 0; i < num_pages; i++)
5703 copy_page(page_address(dst->pages[i]),
5704 page_address(src->pages[i]));
5705 }
5706
copy_extent_buffer(struct extent_buffer * dst,struct extent_buffer * src,unsigned long dst_offset,unsigned long src_offset,unsigned long len)5707 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5708 unsigned long dst_offset, unsigned long src_offset,
5709 unsigned long len)
5710 {
5711 u64 dst_len = dst->len;
5712 size_t cur;
5713 size_t offset;
5714 struct page *page;
5715 char *kaddr;
5716 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5717 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5718
5719 WARN_ON(src->len != dst_len);
5720
5721 offset = (start_offset + dst_offset) &
5722 (PAGE_SIZE - 1);
5723
5724 while (len > 0) {
5725 page = dst->pages[i];
5726 WARN_ON(!PageUptodate(page));
5727
5728 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5729
5730 kaddr = page_address(page);
5731 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5732
5733 src_offset += cur;
5734 len -= cur;
5735 offset = 0;
5736 i++;
5737 }
5738 }
5739
5740 /*
5741 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5742 * given bit number
5743 * @eb: the extent buffer
5744 * @start: offset of the bitmap item in the extent buffer
5745 * @nr: bit number
5746 * @page_index: return index of the page in the extent buffer that contains the
5747 * given bit number
5748 * @page_offset: return offset into the page given by page_index
5749 *
5750 * This helper hides the ugliness of finding the byte in an extent buffer which
5751 * contains a given bit.
5752 */
eb_bitmap_offset(struct extent_buffer * eb,unsigned long start,unsigned long nr,unsigned long * page_index,size_t * page_offset)5753 static inline void eb_bitmap_offset(struct extent_buffer *eb,
5754 unsigned long start, unsigned long nr,
5755 unsigned long *page_index,
5756 size_t *page_offset)
5757 {
5758 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5759 size_t byte_offset = BIT_BYTE(nr);
5760 size_t offset;
5761
5762 /*
5763 * The byte we want is the offset of the extent buffer + the offset of
5764 * the bitmap item in the extent buffer + the offset of the byte in the
5765 * bitmap item.
5766 */
5767 offset = start_offset + start + byte_offset;
5768
5769 *page_index = offset >> PAGE_SHIFT;
5770 *page_offset = offset & (PAGE_SIZE - 1);
5771 }
5772
5773 /**
5774 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5775 * @eb: the extent buffer
5776 * @start: offset of the bitmap item in the extent buffer
5777 * @nr: bit number to test
5778 */
extent_buffer_test_bit(struct extent_buffer * eb,unsigned long start,unsigned long nr)5779 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5780 unsigned long nr)
5781 {
5782 u8 *kaddr;
5783 struct page *page;
5784 unsigned long i;
5785 size_t offset;
5786
5787 eb_bitmap_offset(eb, start, nr, &i, &offset);
5788 page = eb->pages[i];
5789 WARN_ON(!PageUptodate(page));
5790 kaddr = page_address(page);
5791 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5792 }
5793
5794 /**
5795 * extent_buffer_bitmap_set - set an area of a bitmap
5796 * @eb: the extent buffer
5797 * @start: offset of the bitmap item in the extent buffer
5798 * @pos: bit number of the first bit
5799 * @len: number of bits to set
5800 */
extent_buffer_bitmap_set(struct extent_buffer * eb,unsigned long start,unsigned long pos,unsigned long len)5801 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5802 unsigned long pos, unsigned long len)
5803 {
5804 u8 *kaddr;
5805 struct page *page;
5806 unsigned long i;
5807 size_t offset;
5808 const unsigned int size = pos + len;
5809 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5810 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5811
5812 eb_bitmap_offset(eb, start, pos, &i, &offset);
5813 page = eb->pages[i];
5814 WARN_ON(!PageUptodate(page));
5815 kaddr = page_address(page);
5816
5817 while (len >= bits_to_set) {
5818 kaddr[offset] |= mask_to_set;
5819 len -= bits_to_set;
5820 bits_to_set = BITS_PER_BYTE;
5821 mask_to_set = ~0;
5822 if (++offset >= PAGE_SIZE && len > 0) {
5823 offset = 0;
5824 page = eb->pages[++i];
5825 WARN_ON(!PageUptodate(page));
5826 kaddr = page_address(page);
5827 }
5828 }
5829 if (len) {
5830 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5831 kaddr[offset] |= mask_to_set;
5832 }
5833 }
5834
5835
5836 /**
5837 * extent_buffer_bitmap_clear - clear an area of a bitmap
5838 * @eb: the extent buffer
5839 * @start: offset of the bitmap item in the extent buffer
5840 * @pos: bit number of the first bit
5841 * @len: number of bits to clear
5842 */
extent_buffer_bitmap_clear(struct extent_buffer * eb,unsigned long start,unsigned long pos,unsigned long len)5843 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5844 unsigned long pos, unsigned long len)
5845 {
5846 u8 *kaddr;
5847 struct page *page;
5848 unsigned long i;
5849 size_t offset;
5850 const unsigned int size = pos + len;
5851 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5852 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5853
5854 eb_bitmap_offset(eb, start, pos, &i, &offset);
5855 page = eb->pages[i];
5856 WARN_ON(!PageUptodate(page));
5857 kaddr = page_address(page);
5858
5859 while (len >= bits_to_clear) {
5860 kaddr[offset] &= ~mask_to_clear;
5861 len -= bits_to_clear;
5862 bits_to_clear = BITS_PER_BYTE;
5863 mask_to_clear = ~0;
5864 if (++offset >= PAGE_SIZE && len > 0) {
5865 offset = 0;
5866 page = eb->pages[++i];
5867 WARN_ON(!PageUptodate(page));
5868 kaddr = page_address(page);
5869 }
5870 }
5871 if (len) {
5872 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5873 kaddr[offset] &= ~mask_to_clear;
5874 }
5875 }
5876
areas_overlap(unsigned long src,unsigned long dst,unsigned long len)5877 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5878 {
5879 unsigned long distance = (src > dst) ? src - dst : dst - src;
5880 return distance < len;
5881 }
5882
copy_pages(struct page * dst_page,struct page * src_page,unsigned long dst_off,unsigned long src_off,unsigned long len)5883 static void copy_pages(struct page *dst_page, struct page *src_page,
5884 unsigned long dst_off, unsigned long src_off,
5885 unsigned long len)
5886 {
5887 char *dst_kaddr = page_address(dst_page);
5888 char *src_kaddr;
5889 int must_memmove = 0;
5890
5891 if (dst_page != src_page) {
5892 src_kaddr = page_address(src_page);
5893 } else {
5894 src_kaddr = dst_kaddr;
5895 if (areas_overlap(src_off, dst_off, len))
5896 must_memmove = 1;
5897 }
5898
5899 if (must_memmove)
5900 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5901 else
5902 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5903 }
5904
memcpy_extent_buffer(struct extent_buffer * dst,unsigned long dst_offset,unsigned long src_offset,unsigned long len)5905 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5906 unsigned long src_offset, unsigned long len)
5907 {
5908 struct btrfs_fs_info *fs_info = dst->fs_info;
5909 size_t cur;
5910 size_t dst_off_in_page;
5911 size_t src_off_in_page;
5912 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5913 unsigned long dst_i;
5914 unsigned long src_i;
5915
5916 if (src_offset + len > dst->len) {
5917 btrfs_err(fs_info,
5918 "memmove bogus src_offset %lu move len %lu dst len %lu",
5919 src_offset, len, dst->len);
5920 BUG_ON(1);
5921 }
5922 if (dst_offset + len > dst->len) {
5923 btrfs_err(fs_info,
5924 "memmove bogus dst_offset %lu move len %lu dst len %lu",
5925 dst_offset, len, dst->len);
5926 BUG_ON(1);
5927 }
5928
5929 while (len > 0) {
5930 dst_off_in_page = (start_offset + dst_offset) &
5931 (PAGE_SIZE - 1);
5932 src_off_in_page = (start_offset + src_offset) &
5933 (PAGE_SIZE - 1);
5934
5935 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5936 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5937
5938 cur = min(len, (unsigned long)(PAGE_SIZE -
5939 src_off_in_page));
5940 cur = min_t(unsigned long, cur,
5941 (unsigned long)(PAGE_SIZE - dst_off_in_page));
5942
5943 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5944 dst_off_in_page, src_off_in_page, cur);
5945
5946 src_offset += cur;
5947 dst_offset += cur;
5948 len -= cur;
5949 }
5950 }
5951
memmove_extent_buffer(struct extent_buffer * dst,unsigned long dst_offset,unsigned long src_offset,unsigned long len)5952 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5953 unsigned long src_offset, unsigned long len)
5954 {
5955 struct btrfs_fs_info *fs_info = dst->fs_info;
5956 size_t cur;
5957 size_t dst_off_in_page;
5958 size_t src_off_in_page;
5959 unsigned long dst_end = dst_offset + len - 1;
5960 unsigned long src_end = src_offset + len - 1;
5961 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5962 unsigned long dst_i;
5963 unsigned long src_i;
5964
5965 if (src_offset + len > dst->len) {
5966 btrfs_err(fs_info,
5967 "memmove bogus src_offset %lu move len %lu len %lu",
5968 src_offset, len, dst->len);
5969 BUG_ON(1);
5970 }
5971 if (dst_offset + len > dst->len) {
5972 btrfs_err(fs_info,
5973 "memmove bogus dst_offset %lu move len %lu len %lu",
5974 dst_offset, len, dst->len);
5975 BUG_ON(1);
5976 }
5977 if (dst_offset < src_offset) {
5978 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5979 return;
5980 }
5981 while (len > 0) {
5982 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5983 src_i = (start_offset + src_end) >> PAGE_SHIFT;
5984
5985 dst_off_in_page = (start_offset + dst_end) &
5986 (PAGE_SIZE - 1);
5987 src_off_in_page = (start_offset + src_end) &
5988 (PAGE_SIZE - 1);
5989
5990 cur = min_t(unsigned long, len, src_off_in_page + 1);
5991 cur = min(cur, dst_off_in_page + 1);
5992 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5993 dst_off_in_page - cur + 1,
5994 src_off_in_page - cur + 1, cur);
5995
5996 dst_end -= cur;
5997 src_end -= cur;
5998 len -= cur;
5999 }
6000 }
6001
try_release_extent_buffer(struct page * page)6002 int try_release_extent_buffer(struct page *page)
6003 {
6004 struct extent_buffer *eb;
6005
6006 /*
6007 * We need to make sure nobody is attaching this page to an eb right
6008 * now.
6009 */
6010 spin_lock(&page->mapping->private_lock);
6011 if (!PagePrivate(page)) {
6012 spin_unlock(&page->mapping->private_lock);
6013 return 1;
6014 }
6015
6016 eb = (struct extent_buffer *)page->private;
6017 BUG_ON(!eb);
6018
6019 /*
6020 * This is a little awful but should be ok, we need to make sure that
6021 * the eb doesn't disappear out from under us while we're looking at
6022 * this page.
6023 */
6024 spin_lock(&eb->refs_lock);
6025 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
6026 spin_unlock(&eb->refs_lock);
6027 spin_unlock(&page->mapping->private_lock);
6028 return 0;
6029 }
6030 spin_unlock(&page->mapping->private_lock);
6031
6032 /*
6033 * If tree ref isn't set then we know the ref on this eb is a real ref,
6034 * so just return, this page will likely be freed soon anyway.
6035 */
6036 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
6037 spin_unlock(&eb->refs_lock);
6038 return 0;
6039 }
6040
6041 return release_extent_buffer(eb);
6042 }
6043