1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2011 STRATO. All rights reserved.
4 */
5
6 #include <linux/mm.h>
7 #include <linux/rbtree.h>
8 #include <trace/events/btrfs.h>
9 #include "ctree.h"
10 #include "disk-io.h"
11 #include "backref.h"
12 #include "ulist.h"
13 #include "transaction.h"
14 #include "delayed-ref.h"
15 #include "locking.h"
16
17 /* Just an arbitrary number so we can be sure this happened */
18 #define BACKREF_FOUND_SHARED 6
19
20 struct extent_inode_elem {
21 u64 inum;
22 u64 offset;
23 struct extent_inode_elem *next;
24 };
25
check_extent_in_eb(const struct btrfs_key * key,const struct extent_buffer * eb,const struct btrfs_file_extent_item * fi,u64 extent_item_pos,struct extent_inode_elem ** eie,bool ignore_offset)26 static int check_extent_in_eb(const struct btrfs_key *key,
27 const struct extent_buffer *eb,
28 const struct btrfs_file_extent_item *fi,
29 u64 extent_item_pos,
30 struct extent_inode_elem **eie,
31 bool ignore_offset)
32 {
33 u64 offset = 0;
34 struct extent_inode_elem *e;
35
36 if (!ignore_offset &&
37 !btrfs_file_extent_compression(eb, fi) &&
38 !btrfs_file_extent_encryption(eb, fi) &&
39 !btrfs_file_extent_other_encoding(eb, fi)) {
40 u64 data_offset;
41 u64 data_len;
42
43 data_offset = btrfs_file_extent_offset(eb, fi);
44 data_len = btrfs_file_extent_num_bytes(eb, fi);
45
46 if (extent_item_pos < data_offset ||
47 extent_item_pos >= data_offset + data_len)
48 return 1;
49 offset = extent_item_pos - data_offset;
50 }
51
52 e = kmalloc(sizeof(*e), GFP_NOFS);
53 if (!e)
54 return -ENOMEM;
55
56 e->next = *eie;
57 e->inum = key->objectid;
58 e->offset = key->offset + offset;
59 *eie = e;
60
61 return 0;
62 }
63
free_inode_elem_list(struct extent_inode_elem * eie)64 static void free_inode_elem_list(struct extent_inode_elem *eie)
65 {
66 struct extent_inode_elem *eie_next;
67
68 for (; eie; eie = eie_next) {
69 eie_next = eie->next;
70 kfree(eie);
71 }
72 }
73
find_extent_in_eb(const struct extent_buffer * eb,u64 wanted_disk_byte,u64 extent_item_pos,struct extent_inode_elem ** eie,bool ignore_offset)74 static int find_extent_in_eb(const struct extent_buffer *eb,
75 u64 wanted_disk_byte, u64 extent_item_pos,
76 struct extent_inode_elem **eie,
77 bool ignore_offset)
78 {
79 u64 disk_byte;
80 struct btrfs_key key;
81 struct btrfs_file_extent_item *fi;
82 int slot;
83 int nritems;
84 int extent_type;
85 int ret;
86
87 /*
88 * from the shared data ref, we only have the leaf but we need
89 * the key. thus, we must look into all items and see that we
90 * find one (some) with a reference to our extent item.
91 */
92 nritems = btrfs_header_nritems(eb);
93 for (slot = 0; slot < nritems; ++slot) {
94 btrfs_item_key_to_cpu(eb, &key, slot);
95 if (key.type != BTRFS_EXTENT_DATA_KEY)
96 continue;
97 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
98 extent_type = btrfs_file_extent_type(eb, fi);
99 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
100 continue;
101 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
102 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
103 if (disk_byte != wanted_disk_byte)
104 continue;
105
106 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset);
107 if (ret < 0)
108 return ret;
109 }
110
111 return 0;
112 }
113
114 struct preftree {
115 struct rb_root root;
116 unsigned int count;
117 };
118
119 #define PREFTREE_INIT { .root = RB_ROOT, .count = 0 }
120
121 struct preftrees {
122 struct preftree direct; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
123 struct preftree indirect; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
124 struct preftree indirect_missing_keys;
125 };
126
127 /*
128 * Checks for a shared extent during backref search.
129 *
130 * The share_count tracks prelim_refs (direct and indirect) having a
131 * ref->count >0:
132 * - incremented when a ref->count transitions to >0
133 * - decremented when a ref->count transitions to <1
134 */
135 struct share_check {
136 u64 root_objectid;
137 u64 inum;
138 int share_count;
139 bool have_delayed_delete_refs;
140 };
141
extent_is_shared(struct share_check * sc)142 static inline int extent_is_shared(struct share_check *sc)
143 {
144 return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
145 }
146
147 static struct kmem_cache *btrfs_prelim_ref_cache;
148
btrfs_prelim_ref_init(void)149 int __init btrfs_prelim_ref_init(void)
150 {
151 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
152 sizeof(struct prelim_ref),
153 0,
154 SLAB_MEM_SPREAD,
155 NULL);
156 if (!btrfs_prelim_ref_cache)
157 return -ENOMEM;
158 return 0;
159 }
160
btrfs_prelim_ref_exit(void)161 void __cold btrfs_prelim_ref_exit(void)
162 {
163 kmem_cache_destroy(btrfs_prelim_ref_cache);
164 }
165
free_pref(struct prelim_ref * ref)166 static void free_pref(struct prelim_ref *ref)
167 {
168 kmem_cache_free(btrfs_prelim_ref_cache, ref);
169 }
170
171 /*
172 * Return 0 when both refs are for the same block (and can be merged).
173 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
174 * indicates a 'higher' block.
175 */
prelim_ref_compare(struct prelim_ref * ref1,struct prelim_ref * ref2)176 static int prelim_ref_compare(struct prelim_ref *ref1,
177 struct prelim_ref *ref2)
178 {
179 if (ref1->level < ref2->level)
180 return -1;
181 if (ref1->level > ref2->level)
182 return 1;
183 if (ref1->root_id < ref2->root_id)
184 return -1;
185 if (ref1->root_id > ref2->root_id)
186 return 1;
187 if (ref1->key_for_search.type < ref2->key_for_search.type)
188 return -1;
189 if (ref1->key_for_search.type > ref2->key_for_search.type)
190 return 1;
191 if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
192 return -1;
193 if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
194 return 1;
195 if (ref1->key_for_search.offset < ref2->key_for_search.offset)
196 return -1;
197 if (ref1->key_for_search.offset > ref2->key_for_search.offset)
198 return 1;
199 if (ref1->parent < ref2->parent)
200 return -1;
201 if (ref1->parent > ref2->parent)
202 return 1;
203
204 return 0;
205 }
206
update_share_count(struct share_check * sc,int oldcount,int newcount)207 static void update_share_count(struct share_check *sc, int oldcount,
208 int newcount)
209 {
210 if ((!sc) || (oldcount == 0 && newcount < 1))
211 return;
212
213 if (oldcount > 0 && newcount < 1)
214 sc->share_count--;
215 else if (oldcount < 1 && newcount > 0)
216 sc->share_count++;
217 }
218
219 /*
220 * Add @newref to the @root rbtree, merging identical refs.
221 *
222 * Callers should assume that newref has been freed after calling.
223 */
prelim_ref_insert(const struct btrfs_fs_info * fs_info,struct preftree * preftree,struct prelim_ref * newref,struct share_check * sc)224 static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
225 struct preftree *preftree,
226 struct prelim_ref *newref,
227 struct share_check *sc)
228 {
229 struct rb_root *root;
230 struct rb_node **p;
231 struct rb_node *parent = NULL;
232 struct prelim_ref *ref;
233 int result;
234
235 root = &preftree->root;
236 p = &root->rb_node;
237
238 while (*p) {
239 parent = *p;
240 ref = rb_entry(parent, struct prelim_ref, rbnode);
241 result = prelim_ref_compare(ref, newref);
242 if (result < 0) {
243 p = &(*p)->rb_left;
244 } else if (result > 0) {
245 p = &(*p)->rb_right;
246 } else {
247 /* Identical refs, merge them and free @newref */
248 struct extent_inode_elem *eie = ref->inode_list;
249
250 while (eie && eie->next)
251 eie = eie->next;
252
253 if (!eie)
254 ref->inode_list = newref->inode_list;
255 else
256 eie->next = newref->inode_list;
257 trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
258 preftree->count);
259 /*
260 * A delayed ref can have newref->count < 0.
261 * The ref->count is updated to follow any
262 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
263 */
264 update_share_count(sc, ref->count,
265 ref->count + newref->count);
266 ref->count += newref->count;
267 free_pref(newref);
268 return;
269 }
270 }
271
272 update_share_count(sc, 0, newref->count);
273 preftree->count++;
274 trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
275 rb_link_node(&newref->rbnode, parent, p);
276 rb_insert_color(&newref->rbnode, root);
277 }
278
279 /*
280 * Release the entire tree. We don't care about internal consistency so
281 * just free everything and then reset the tree root.
282 */
prelim_release(struct preftree * preftree)283 static void prelim_release(struct preftree *preftree)
284 {
285 struct prelim_ref *ref, *next_ref;
286
287 rbtree_postorder_for_each_entry_safe(ref, next_ref, &preftree->root,
288 rbnode)
289 free_pref(ref);
290
291 preftree->root = RB_ROOT;
292 preftree->count = 0;
293 }
294
295 /*
296 * the rules for all callers of this function are:
297 * - obtaining the parent is the goal
298 * - if you add a key, you must know that it is a correct key
299 * - if you cannot add the parent or a correct key, then we will look into the
300 * block later to set a correct key
301 *
302 * delayed refs
303 * ============
304 * backref type | shared | indirect | shared | indirect
305 * information | tree | tree | data | data
306 * --------------------+--------+----------+--------+----------
307 * parent logical | y | - | - | -
308 * key to resolve | - | y | y | y
309 * tree block logical | - | - | - | -
310 * root for resolving | y | y | y | y
311 *
312 * - column 1: we've the parent -> done
313 * - column 2, 3, 4: we use the key to find the parent
314 *
315 * on disk refs (inline or keyed)
316 * ==============================
317 * backref type | shared | indirect | shared | indirect
318 * information | tree | tree | data | data
319 * --------------------+--------+----------+--------+----------
320 * parent logical | y | - | y | -
321 * key to resolve | - | - | - | y
322 * tree block logical | y | y | y | y
323 * root for resolving | - | y | y | y
324 *
325 * - column 1, 3: we've the parent -> done
326 * - column 2: we take the first key from the block to find the parent
327 * (see add_missing_keys)
328 * - column 4: we use the key to find the parent
329 *
330 * additional information that's available but not required to find the parent
331 * block might help in merging entries to gain some speed.
332 */
add_prelim_ref(const struct btrfs_fs_info * fs_info,struct preftree * preftree,u64 root_id,const struct btrfs_key * key,int level,u64 parent,u64 wanted_disk_byte,int count,struct share_check * sc,gfp_t gfp_mask)333 static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
334 struct preftree *preftree, u64 root_id,
335 const struct btrfs_key *key, int level, u64 parent,
336 u64 wanted_disk_byte, int count,
337 struct share_check *sc, gfp_t gfp_mask)
338 {
339 struct prelim_ref *ref;
340
341 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
342 return 0;
343
344 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
345 if (!ref)
346 return -ENOMEM;
347
348 ref->root_id = root_id;
349 if (key) {
350 ref->key_for_search = *key;
351 /*
352 * We can often find data backrefs with an offset that is too
353 * large (>= LLONG_MAX, maximum allowed file offset) due to
354 * underflows when subtracting a file's offset with the data
355 * offset of its corresponding extent data item. This can
356 * happen for example in the clone ioctl.
357 * So if we detect such case we set the search key's offset to
358 * zero to make sure we will find the matching file extent item
359 * at add_all_parents(), otherwise we will miss it because the
360 * offset taken form the backref is much larger then the offset
361 * of the file extent item. This can make us scan a very large
362 * number of file extent items, but at least it will not make
363 * us miss any.
364 * This is an ugly workaround for a behaviour that should have
365 * never existed, but it does and a fix for the clone ioctl
366 * would touch a lot of places, cause backwards incompatibility
367 * and would not fix the problem for extents cloned with older
368 * kernels.
369 */
370 if (ref->key_for_search.type == BTRFS_EXTENT_DATA_KEY &&
371 ref->key_for_search.offset >= LLONG_MAX)
372 ref->key_for_search.offset = 0;
373 } else {
374 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
375 }
376
377 ref->inode_list = NULL;
378 ref->level = level;
379 ref->count = count;
380 ref->parent = parent;
381 ref->wanted_disk_byte = wanted_disk_byte;
382 prelim_ref_insert(fs_info, preftree, ref, sc);
383 return extent_is_shared(sc);
384 }
385
386 /* direct refs use root == 0, key == NULL */
add_direct_ref(const struct btrfs_fs_info * fs_info,struct preftrees * preftrees,int level,u64 parent,u64 wanted_disk_byte,int count,struct share_check * sc,gfp_t gfp_mask)387 static int add_direct_ref(const struct btrfs_fs_info *fs_info,
388 struct preftrees *preftrees, int level, u64 parent,
389 u64 wanted_disk_byte, int count,
390 struct share_check *sc, gfp_t gfp_mask)
391 {
392 return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
393 parent, wanted_disk_byte, count, sc, gfp_mask);
394 }
395
396 /* indirect refs use parent == 0 */
add_indirect_ref(const struct btrfs_fs_info * fs_info,struct preftrees * preftrees,u64 root_id,const struct btrfs_key * key,int level,u64 wanted_disk_byte,int count,struct share_check * sc,gfp_t gfp_mask)397 static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
398 struct preftrees *preftrees, u64 root_id,
399 const struct btrfs_key *key, int level,
400 u64 wanted_disk_byte, int count,
401 struct share_check *sc, gfp_t gfp_mask)
402 {
403 struct preftree *tree = &preftrees->indirect;
404
405 if (!key)
406 tree = &preftrees->indirect_missing_keys;
407 return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
408 wanted_disk_byte, count, sc, gfp_mask);
409 }
410
add_all_parents(struct btrfs_root * root,struct btrfs_path * path,struct ulist * parents,struct prelim_ref * ref,int level,u64 time_seq,const u64 * extent_item_pos,u64 total_refs,bool ignore_offset)411 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
412 struct ulist *parents, struct prelim_ref *ref,
413 int level, u64 time_seq, const u64 *extent_item_pos,
414 u64 total_refs, bool ignore_offset)
415 {
416 int ret = 0;
417 int slot;
418 struct extent_buffer *eb;
419 struct btrfs_key key;
420 struct btrfs_key *key_for_search = &ref->key_for_search;
421 struct btrfs_file_extent_item *fi;
422 struct extent_inode_elem *eie = NULL, *old = NULL;
423 u64 disk_byte;
424 u64 wanted_disk_byte = ref->wanted_disk_byte;
425 u64 count = 0;
426
427 if (level != 0) {
428 eb = path->nodes[level];
429 ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
430 if (ret < 0)
431 return ret;
432 return 0;
433 }
434
435 /*
436 * We normally enter this function with the path already pointing to
437 * the first item to check. But sometimes, we may enter it with
438 * slot==nritems. In that case, go to the next leaf before we continue.
439 */
440 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
441 if (time_seq == SEQ_LAST)
442 ret = btrfs_next_leaf(root, path);
443 else
444 ret = btrfs_next_old_leaf(root, path, time_seq);
445 }
446
447 while (!ret && count < total_refs) {
448 eb = path->nodes[0];
449 slot = path->slots[0];
450
451 btrfs_item_key_to_cpu(eb, &key, slot);
452
453 if (key.objectid != key_for_search->objectid ||
454 key.type != BTRFS_EXTENT_DATA_KEY)
455 break;
456
457 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
458 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
459
460 if (disk_byte == wanted_disk_byte) {
461 eie = NULL;
462 old = NULL;
463 count++;
464 if (extent_item_pos) {
465 ret = check_extent_in_eb(&key, eb, fi,
466 *extent_item_pos,
467 &eie, ignore_offset);
468 if (ret < 0)
469 break;
470 }
471 if (ret > 0)
472 goto next;
473 ret = ulist_add_merge_ptr(parents, eb->start,
474 eie, (void **)&old, GFP_NOFS);
475 if (ret < 0)
476 break;
477 if (!ret && extent_item_pos) {
478 while (old->next)
479 old = old->next;
480 old->next = eie;
481 }
482 eie = NULL;
483 }
484 next:
485 if (time_seq == SEQ_LAST)
486 ret = btrfs_next_item(root, path);
487 else
488 ret = btrfs_next_old_item(root, path, time_seq);
489 }
490
491 if (ret > 0)
492 ret = 0;
493 else if (ret < 0)
494 free_inode_elem_list(eie);
495 return ret;
496 }
497
498 /*
499 * resolve an indirect backref in the form (root_id, key, level)
500 * to a logical address
501 */
resolve_indirect_ref(struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 time_seq,struct prelim_ref * ref,struct ulist * parents,const u64 * extent_item_pos,u64 total_refs,bool ignore_offset)502 static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
503 struct btrfs_path *path, u64 time_seq,
504 struct prelim_ref *ref, struct ulist *parents,
505 const u64 *extent_item_pos, u64 total_refs,
506 bool ignore_offset)
507 {
508 struct btrfs_root *root;
509 struct btrfs_key root_key;
510 struct extent_buffer *eb;
511 int ret = 0;
512 int root_level;
513 int level = ref->level;
514 int index;
515
516 root_key.objectid = ref->root_id;
517 root_key.type = BTRFS_ROOT_ITEM_KEY;
518 root_key.offset = (u64)-1;
519
520 index = srcu_read_lock(&fs_info->subvol_srcu);
521
522 root = btrfs_get_fs_root(fs_info, &root_key, false);
523 if (IS_ERR(root)) {
524 srcu_read_unlock(&fs_info->subvol_srcu, index);
525 ret = PTR_ERR(root);
526 goto out;
527 }
528
529 if (btrfs_is_testing(fs_info)) {
530 srcu_read_unlock(&fs_info->subvol_srcu, index);
531 ret = -ENOENT;
532 goto out;
533 }
534
535 if (path->search_commit_root)
536 root_level = btrfs_header_level(root->commit_root);
537 else if (time_seq == SEQ_LAST)
538 root_level = btrfs_header_level(root->node);
539 else
540 root_level = btrfs_old_root_level(root, time_seq);
541
542 if (root_level + 1 == level) {
543 srcu_read_unlock(&fs_info->subvol_srcu, index);
544 goto out;
545 }
546
547 path->lowest_level = level;
548 if (time_seq == SEQ_LAST)
549 ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path,
550 0, 0);
551 else
552 ret = btrfs_search_old_slot(root, &ref->key_for_search, path,
553 time_seq);
554
555 /* root node has been locked, we can release @subvol_srcu safely here */
556 srcu_read_unlock(&fs_info->subvol_srcu, index);
557
558 btrfs_debug(fs_info,
559 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
560 ref->root_id, level, ref->count, ret,
561 ref->key_for_search.objectid, ref->key_for_search.type,
562 ref->key_for_search.offset);
563 if (ret < 0)
564 goto out;
565
566 eb = path->nodes[level];
567 while (!eb) {
568 if (WARN_ON(!level)) {
569 ret = 1;
570 goto out;
571 }
572 level--;
573 eb = path->nodes[level];
574 }
575
576 ret = add_all_parents(root, path, parents, ref, level, time_seq,
577 extent_item_pos, total_refs, ignore_offset);
578 out:
579 path->lowest_level = 0;
580 btrfs_release_path(path);
581 return ret;
582 }
583
584 static struct extent_inode_elem *
unode_aux_to_inode_list(struct ulist_node * node)585 unode_aux_to_inode_list(struct ulist_node *node)
586 {
587 if (!node)
588 return NULL;
589 return (struct extent_inode_elem *)(uintptr_t)node->aux;
590 }
591
free_leaf_list(struct ulist * ulist)592 static void free_leaf_list(struct ulist *ulist)
593 {
594 struct ulist_node *node;
595 struct ulist_iterator uiter;
596
597 ULIST_ITER_INIT(&uiter);
598 while ((node = ulist_next(ulist, &uiter)))
599 free_inode_elem_list(unode_aux_to_inode_list(node));
600
601 ulist_free(ulist);
602 }
603
604 /*
605 * We maintain three seperate rbtrees: one for direct refs, one for
606 * indirect refs which have a key, and one for indirect refs which do not
607 * have a key. Each tree does merge on insertion.
608 *
609 * Once all of the references are located, we iterate over the tree of
610 * indirect refs with missing keys. An appropriate key is located and
611 * the ref is moved onto the tree for indirect refs. After all missing
612 * keys are thus located, we iterate over the indirect ref tree, resolve
613 * each reference, and then insert the resolved reference onto the
614 * direct tree (merging there too).
615 *
616 * New backrefs (i.e., for parent nodes) are added to the appropriate
617 * rbtree as they are encountered. The new backrefs are subsequently
618 * resolved as above.
619 */
resolve_indirect_refs(struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 time_seq,struct preftrees * preftrees,const u64 * extent_item_pos,u64 total_refs,struct share_check * sc,bool ignore_offset)620 static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
621 struct btrfs_path *path, u64 time_seq,
622 struct preftrees *preftrees,
623 const u64 *extent_item_pos, u64 total_refs,
624 struct share_check *sc, bool ignore_offset)
625 {
626 int err;
627 int ret = 0;
628 struct ulist *parents;
629 struct ulist_node *node;
630 struct ulist_iterator uiter;
631 struct rb_node *rnode;
632
633 parents = ulist_alloc(GFP_NOFS);
634 if (!parents)
635 return -ENOMEM;
636
637 /*
638 * We could trade memory usage for performance here by iterating
639 * the tree, allocating new refs for each insertion, and then
640 * freeing the entire indirect tree when we're done. In some test
641 * cases, the tree can grow quite large (~200k objects).
642 */
643 while ((rnode = rb_first(&preftrees->indirect.root))) {
644 struct prelim_ref *ref;
645
646 ref = rb_entry(rnode, struct prelim_ref, rbnode);
647 if (WARN(ref->parent,
648 "BUG: direct ref found in indirect tree")) {
649 ret = -EINVAL;
650 goto out;
651 }
652
653 rb_erase(&ref->rbnode, &preftrees->indirect.root);
654 preftrees->indirect.count--;
655
656 if (ref->count == 0) {
657 free_pref(ref);
658 continue;
659 }
660
661 if (sc && sc->root_objectid &&
662 ref->root_id != sc->root_objectid) {
663 free_pref(ref);
664 ret = BACKREF_FOUND_SHARED;
665 goto out;
666 }
667 err = resolve_indirect_ref(fs_info, path, time_seq, ref,
668 parents, extent_item_pos,
669 total_refs, ignore_offset);
670 /*
671 * we can only tolerate ENOENT,otherwise,we should catch error
672 * and return directly.
673 */
674 if (err == -ENOENT) {
675 prelim_ref_insert(fs_info, &preftrees->direct, ref,
676 NULL);
677 continue;
678 } else if (err) {
679 free_pref(ref);
680 ret = err;
681 goto out;
682 }
683
684 /* we put the first parent into the ref at hand */
685 ULIST_ITER_INIT(&uiter);
686 node = ulist_next(parents, &uiter);
687 ref->parent = node ? node->val : 0;
688 ref->inode_list = unode_aux_to_inode_list(node);
689
690 /* Add a prelim_ref(s) for any other parent(s). */
691 while ((node = ulist_next(parents, &uiter))) {
692 struct prelim_ref *new_ref;
693
694 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
695 GFP_NOFS);
696 if (!new_ref) {
697 free_pref(ref);
698 ret = -ENOMEM;
699 goto out;
700 }
701 memcpy(new_ref, ref, sizeof(*ref));
702 new_ref->parent = node->val;
703 new_ref->inode_list = unode_aux_to_inode_list(node);
704 prelim_ref_insert(fs_info, &preftrees->direct,
705 new_ref, NULL);
706 }
707
708 /*
709 * Now it's a direct ref, put it in the the direct tree. We must
710 * do this last because the ref could be merged/freed here.
711 */
712 prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL);
713
714 ulist_reinit(parents);
715 cond_resched();
716 }
717 out:
718 /*
719 * We may have inode lists attached to refs in the parents ulist, so we
720 * must free them before freeing the ulist and its refs.
721 */
722 free_leaf_list(parents);
723 return ret;
724 }
725
726 /*
727 * read tree blocks and add keys where required.
728 */
add_missing_keys(struct btrfs_fs_info * fs_info,struct preftrees * preftrees,bool lock)729 static int add_missing_keys(struct btrfs_fs_info *fs_info,
730 struct preftrees *preftrees, bool lock)
731 {
732 struct prelim_ref *ref;
733 struct extent_buffer *eb;
734 struct preftree *tree = &preftrees->indirect_missing_keys;
735 struct rb_node *node;
736
737 while ((node = rb_first(&tree->root))) {
738 ref = rb_entry(node, struct prelim_ref, rbnode);
739 rb_erase(node, &tree->root);
740
741 BUG_ON(ref->parent); /* should not be a direct ref */
742 BUG_ON(ref->key_for_search.type);
743 BUG_ON(!ref->wanted_disk_byte);
744
745 eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0,
746 ref->level - 1, NULL);
747 if (IS_ERR(eb)) {
748 free_pref(ref);
749 return PTR_ERR(eb);
750 } else if (!extent_buffer_uptodate(eb)) {
751 free_pref(ref);
752 free_extent_buffer(eb);
753 return -EIO;
754 }
755 if (lock)
756 btrfs_tree_read_lock(eb);
757 if (btrfs_header_level(eb) == 0)
758 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
759 else
760 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
761 if (lock)
762 btrfs_tree_read_unlock(eb);
763 free_extent_buffer(eb);
764 prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
765 cond_resched();
766 }
767 return 0;
768 }
769
770 /*
771 * add all currently queued delayed refs from this head whose seq nr is
772 * smaller or equal that seq to the list
773 */
add_delayed_refs(const struct btrfs_fs_info * fs_info,struct btrfs_delayed_ref_head * head,u64 seq,struct preftrees * preftrees,u64 * total_refs,struct share_check * sc)774 static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
775 struct btrfs_delayed_ref_head *head, u64 seq,
776 struct preftrees *preftrees, u64 *total_refs,
777 struct share_check *sc)
778 {
779 struct btrfs_delayed_ref_node *node;
780 struct btrfs_key key;
781 struct rb_node *n;
782 int count;
783 int ret = 0;
784
785 spin_lock(&head->lock);
786 for (n = rb_first(&head->ref_tree); n; n = rb_next(n)) {
787 node = rb_entry(n, struct btrfs_delayed_ref_node,
788 ref_node);
789 if (node->seq > seq)
790 continue;
791
792 switch (node->action) {
793 case BTRFS_ADD_DELAYED_EXTENT:
794 case BTRFS_UPDATE_DELAYED_HEAD:
795 WARN_ON(1);
796 continue;
797 case BTRFS_ADD_DELAYED_REF:
798 count = node->ref_mod;
799 break;
800 case BTRFS_DROP_DELAYED_REF:
801 count = node->ref_mod * -1;
802 break;
803 default:
804 BUG_ON(1);
805 }
806 *total_refs += count;
807 switch (node->type) {
808 case BTRFS_TREE_BLOCK_REF_KEY: {
809 /* NORMAL INDIRECT METADATA backref */
810 struct btrfs_delayed_tree_ref *ref;
811 struct btrfs_key *key_ptr = NULL;
812
813 if (head->extent_op && head->extent_op->update_key) {
814 btrfs_disk_key_to_cpu(&key, &head->extent_op->key);
815 key_ptr = &key;
816 }
817
818 ref = btrfs_delayed_node_to_tree_ref(node);
819 ret = add_indirect_ref(fs_info, preftrees, ref->root,
820 key_ptr, ref->level + 1,
821 node->bytenr, count, sc,
822 GFP_ATOMIC);
823 break;
824 }
825 case BTRFS_SHARED_BLOCK_REF_KEY: {
826 /* SHARED DIRECT METADATA backref */
827 struct btrfs_delayed_tree_ref *ref;
828
829 ref = btrfs_delayed_node_to_tree_ref(node);
830
831 ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
832 ref->parent, node->bytenr, count,
833 sc, GFP_ATOMIC);
834 break;
835 }
836 case BTRFS_EXTENT_DATA_REF_KEY: {
837 /* NORMAL INDIRECT DATA backref */
838 struct btrfs_delayed_data_ref *ref;
839 ref = btrfs_delayed_node_to_data_ref(node);
840
841 key.objectid = ref->objectid;
842 key.type = BTRFS_EXTENT_DATA_KEY;
843 key.offset = ref->offset;
844
845 /*
846 * If we have a share check context and a reference for
847 * another inode, we can't exit immediately. This is
848 * because even if this is a BTRFS_ADD_DELAYED_REF
849 * reference we may find next a BTRFS_DROP_DELAYED_REF
850 * which cancels out this ADD reference.
851 *
852 * If this is a DROP reference and there was no previous
853 * ADD reference, then we need to signal that when we
854 * process references from the extent tree (through
855 * add_inline_refs() and add_keyed_refs()), we should
856 * not exit early if we find a reference for another
857 * inode, because one of the delayed DROP references
858 * may cancel that reference in the extent tree.
859 */
860 if (sc && count < 0)
861 sc->have_delayed_delete_refs = true;
862
863 ret = add_indirect_ref(fs_info, preftrees, ref->root,
864 &key, 0, node->bytenr, count, sc,
865 GFP_ATOMIC);
866 break;
867 }
868 case BTRFS_SHARED_DATA_REF_KEY: {
869 /* SHARED DIRECT FULL backref */
870 struct btrfs_delayed_data_ref *ref;
871
872 ref = btrfs_delayed_node_to_data_ref(node);
873
874 ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
875 node->bytenr, count, sc,
876 GFP_ATOMIC);
877 break;
878 }
879 default:
880 WARN_ON(1);
881 }
882 /*
883 * We must ignore BACKREF_FOUND_SHARED until all delayed
884 * refs have been checked.
885 */
886 if (ret && (ret != BACKREF_FOUND_SHARED))
887 break;
888 }
889 if (!ret)
890 ret = extent_is_shared(sc);
891
892 spin_unlock(&head->lock);
893 return ret;
894 }
895
896 /*
897 * add all inline backrefs for bytenr to the list
898 *
899 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
900 */
add_inline_refs(const struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 bytenr,int * info_level,struct preftrees * preftrees,u64 * total_refs,struct share_check * sc)901 static int add_inline_refs(const struct btrfs_fs_info *fs_info,
902 struct btrfs_path *path, u64 bytenr,
903 int *info_level, struct preftrees *preftrees,
904 u64 *total_refs, struct share_check *sc)
905 {
906 int ret = 0;
907 int slot;
908 struct extent_buffer *leaf;
909 struct btrfs_key key;
910 struct btrfs_key found_key;
911 unsigned long ptr;
912 unsigned long end;
913 struct btrfs_extent_item *ei;
914 u64 flags;
915 u64 item_size;
916
917 /*
918 * enumerate all inline refs
919 */
920 leaf = path->nodes[0];
921 slot = path->slots[0];
922
923 item_size = btrfs_item_size_nr(leaf, slot);
924 BUG_ON(item_size < sizeof(*ei));
925
926 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
927 flags = btrfs_extent_flags(leaf, ei);
928 *total_refs += btrfs_extent_refs(leaf, ei);
929 btrfs_item_key_to_cpu(leaf, &found_key, slot);
930
931 ptr = (unsigned long)(ei + 1);
932 end = (unsigned long)ei + item_size;
933
934 if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
935 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
936 struct btrfs_tree_block_info *info;
937
938 info = (struct btrfs_tree_block_info *)ptr;
939 *info_level = btrfs_tree_block_level(leaf, info);
940 ptr += sizeof(struct btrfs_tree_block_info);
941 BUG_ON(ptr > end);
942 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
943 *info_level = found_key.offset;
944 } else {
945 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
946 }
947
948 while (ptr < end) {
949 struct btrfs_extent_inline_ref *iref;
950 u64 offset;
951 int type;
952
953 iref = (struct btrfs_extent_inline_ref *)ptr;
954 type = btrfs_get_extent_inline_ref_type(leaf, iref,
955 BTRFS_REF_TYPE_ANY);
956 if (type == BTRFS_REF_TYPE_INVALID)
957 return -EUCLEAN;
958
959 offset = btrfs_extent_inline_ref_offset(leaf, iref);
960
961 switch (type) {
962 case BTRFS_SHARED_BLOCK_REF_KEY:
963 ret = add_direct_ref(fs_info, preftrees,
964 *info_level + 1, offset,
965 bytenr, 1, NULL, GFP_NOFS);
966 break;
967 case BTRFS_SHARED_DATA_REF_KEY: {
968 struct btrfs_shared_data_ref *sdref;
969 int count;
970
971 sdref = (struct btrfs_shared_data_ref *)(iref + 1);
972 count = btrfs_shared_data_ref_count(leaf, sdref);
973
974 ret = add_direct_ref(fs_info, preftrees, 0, offset,
975 bytenr, count, sc, GFP_NOFS);
976 break;
977 }
978 case BTRFS_TREE_BLOCK_REF_KEY:
979 ret = add_indirect_ref(fs_info, preftrees, offset,
980 NULL, *info_level + 1,
981 bytenr, 1, NULL, GFP_NOFS);
982 break;
983 case BTRFS_EXTENT_DATA_REF_KEY: {
984 struct btrfs_extent_data_ref *dref;
985 int count;
986 u64 root;
987
988 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
989 count = btrfs_extent_data_ref_count(leaf, dref);
990 key.objectid = btrfs_extent_data_ref_objectid(leaf,
991 dref);
992 key.type = BTRFS_EXTENT_DATA_KEY;
993 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
994
995 if (sc && sc->inum && key.objectid != sc->inum &&
996 !sc->have_delayed_delete_refs) {
997 ret = BACKREF_FOUND_SHARED;
998 break;
999 }
1000
1001 root = btrfs_extent_data_ref_root(leaf, dref);
1002
1003 ret = add_indirect_ref(fs_info, preftrees, root,
1004 &key, 0, bytenr, count,
1005 sc, GFP_NOFS);
1006
1007 break;
1008 }
1009 default:
1010 WARN_ON(1);
1011 }
1012 if (ret)
1013 return ret;
1014 ptr += btrfs_extent_inline_ref_size(type);
1015 }
1016
1017 return 0;
1018 }
1019
1020 /*
1021 * add all non-inline backrefs for bytenr to the list
1022 *
1023 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1024 */
add_keyed_refs(struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 bytenr,int info_level,struct preftrees * preftrees,struct share_check * sc)1025 static int add_keyed_refs(struct btrfs_fs_info *fs_info,
1026 struct btrfs_path *path, u64 bytenr,
1027 int info_level, struct preftrees *preftrees,
1028 struct share_check *sc)
1029 {
1030 struct btrfs_root *extent_root = fs_info->extent_root;
1031 int ret;
1032 int slot;
1033 struct extent_buffer *leaf;
1034 struct btrfs_key key;
1035
1036 while (1) {
1037 ret = btrfs_next_item(extent_root, path);
1038 if (ret < 0)
1039 break;
1040 if (ret) {
1041 ret = 0;
1042 break;
1043 }
1044
1045 slot = path->slots[0];
1046 leaf = path->nodes[0];
1047 btrfs_item_key_to_cpu(leaf, &key, slot);
1048
1049 if (key.objectid != bytenr)
1050 break;
1051 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1052 continue;
1053 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1054 break;
1055
1056 switch (key.type) {
1057 case BTRFS_SHARED_BLOCK_REF_KEY:
1058 /* SHARED DIRECT METADATA backref */
1059 ret = add_direct_ref(fs_info, preftrees,
1060 info_level + 1, key.offset,
1061 bytenr, 1, NULL, GFP_NOFS);
1062 break;
1063 case BTRFS_SHARED_DATA_REF_KEY: {
1064 /* SHARED DIRECT FULL backref */
1065 struct btrfs_shared_data_ref *sdref;
1066 int count;
1067
1068 sdref = btrfs_item_ptr(leaf, slot,
1069 struct btrfs_shared_data_ref);
1070 count = btrfs_shared_data_ref_count(leaf, sdref);
1071 ret = add_direct_ref(fs_info, preftrees, 0,
1072 key.offset, bytenr, count,
1073 sc, GFP_NOFS);
1074 break;
1075 }
1076 case BTRFS_TREE_BLOCK_REF_KEY:
1077 /* NORMAL INDIRECT METADATA backref */
1078 ret = add_indirect_ref(fs_info, preftrees, key.offset,
1079 NULL, info_level + 1, bytenr,
1080 1, NULL, GFP_NOFS);
1081 break;
1082 case BTRFS_EXTENT_DATA_REF_KEY: {
1083 /* NORMAL INDIRECT DATA backref */
1084 struct btrfs_extent_data_ref *dref;
1085 int count;
1086 u64 root;
1087
1088 dref = btrfs_item_ptr(leaf, slot,
1089 struct btrfs_extent_data_ref);
1090 count = btrfs_extent_data_ref_count(leaf, dref);
1091 key.objectid = btrfs_extent_data_ref_objectid(leaf,
1092 dref);
1093 key.type = BTRFS_EXTENT_DATA_KEY;
1094 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1095
1096 if (sc && sc->inum && key.objectid != sc->inum &&
1097 !sc->have_delayed_delete_refs) {
1098 ret = BACKREF_FOUND_SHARED;
1099 break;
1100 }
1101
1102 root = btrfs_extent_data_ref_root(leaf, dref);
1103 ret = add_indirect_ref(fs_info, preftrees, root,
1104 &key, 0, bytenr, count,
1105 sc, GFP_NOFS);
1106 break;
1107 }
1108 default:
1109 WARN_ON(1);
1110 }
1111 if (ret)
1112 return ret;
1113
1114 }
1115
1116 return ret;
1117 }
1118
1119 /*
1120 * this adds all existing backrefs (inline backrefs, backrefs and delayed
1121 * refs) for the given bytenr to the refs list, merges duplicates and resolves
1122 * indirect refs to their parent bytenr.
1123 * When roots are found, they're added to the roots list
1124 *
1125 * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave
1126 * much like trans == NULL case, the difference only lies in it will not
1127 * commit root.
1128 * The special case is for qgroup to search roots in commit_transaction().
1129 *
1130 * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a
1131 * shared extent is detected.
1132 *
1133 * Otherwise this returns 0 for success and <0 for an error.
1134 *
1135 * If ignore_offset is set to false, only extent refs whose offsets match
1136 * extent_item_pos are returned. If true, every extent ref is returned
1137 * and extent_item_pos is ignored.
1138 *
1139 * FIXME some caching might speed things up
1140 */
find_parent_nodes(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,u64 bytenr,u64 time_seq,struct ulist * refs,struct ulist * roots,const u64 * extent_item_pos,struct share_check * sc,bool ignore_offset)1141 static int find_parent_nodes(struct btrfs_trans_handle *trans,
1142 struct btrfs_fs_info *fs_info, u64 bytenr,
1143 u64 time_seq, struct ulist *refs,
1144 struct ulist *roots, const u64 *extent_item_pos,
1145 struct share_check *sc, bool ignore_offset)
1146 {
1147 struct btrfs_key key;
1148 struct btrfs_path *path;
1149 struct btrfs_delayed_ref_root *delayed_refs = NULL;
1150 struct btrfs_delayed_ref_head *head;
1151 int info_level = 0;
1152 int ret;
1153 struct prelim_ref *ref;
1154 struct rb_node *node;
1155 struct extent_inode_elem *eie = NULL;
1156 /* total of both direct AND indirect refs! */
1157 u64 total_refs = 0;
1158 struct preftrees preftrees = {
1159 .direct = PREFTREE_INIT,
1160 .indirect = PREFTREE_INIT,
1161 .indirect_missing_keys = PREFTREE_INIT
1162 };
1163
1164 key.objectid = bytenr;
1165 key.offset = (u64)-1;
1166 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1167 key.type = BTRFS_METADATA_ITEM_KEY;
1168 else
1169 key.type = BTRFS_EXTENT_ITEM_KEY;
1170
1171 path = btrfs_alloc_path();
1172 if (!path)
1173 return -ENOMEM;
1174 if (!trans) {
1175 path->search_commit_root = 1;
1176 path->skip_locking = 1;
1177 }
1178
1179 if (time_seq == SEQ_LAST)
1180 path->skip_locking = 1;
1181
1182 /*
1183 * grab both a lock on the path and a lock on the delayed ref head.
1184 * We need both to get a consistent picture of how the refs look
1185 * at a specified point in time
1186 */
1187 again:
1188 head = NULL;
1189
1190 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
1191 if (ret < 0)
1192 goto out;
1193 if (ret == 0) {
1194 /* This shouldn't happen, indicates a bug or fs corruption. */
1195 ASSERT(ret != 0);
1196 ret = -EUCLEAN;
1197 goto out;
1198 }
1199
1200 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1201 if (trans && likely(trans->type != __TRANS_DUMMY) &&
1202 time_seq != SEQ_LAST) {
1203 #else
1204 if (trans && time_seq != SEQ_LAST) {
1205 #endif
1206 /*
1207 * look if there are updates for this ref queued and lock the
1208 * head
1209 */
1210 delayed_refs = &trans->transaction->delayed_refs;
1211 spin_lock(&delayed_refs->lock);
1212 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1213 if (head) {
1214 if (!mutex_trylock(&head->mutex)) {
1215 refcount_inc(&head->refs);
1216 spin_unlock(&delayed_refs->lock);
1217
1218 btrfs_release_path(path);
1219
1220 /*
1221 * Mutex was contended, block until it's
1222 * released and try again
1223 */
1224 mutex_lock(&head->mutex);
1225 mutex_unlock(&head->mutex);
1226 btrfs_put_delayed_ref_head(head);
1227 goto again;
1228 }
1229 spin_unlock(&delayed_refs->lock);
1230 ret = add_delayed_refs(fs_info, head, time_seq,
1231 &preftrees, &total_refs, sc);
1232 mutex_unlock(&head->mutex);
1233 if (ret)
1234 goto out;
1235 } else {
1236 spin_unlock(&delayed_refs->lock);
1237 }
1238 }
1239
1240 if (path->slots[0]) {
1241 struct extent_buffer *leaf;
1242 int slot;
1243
1244 path->slots[0]--;
1245 leaf = path->nodes[0];
1246 slot = path->slots[0];
1247 btrfs_item_key_to_cpu(leaf, &key, slot);
1248 if (key.objectid == bytenr &&
1249 (key.type == BTRFS_EXTENT_ITEM_KEY ||
1250 key.type == BTRFS_METADATA_ITEM_KEY)) {
1251 ret = add_inline_refs(fs_info, path, bytenr,
1252 &info_level, &preftrees,
1253 &total_refs, sc);
1254 if (ret)
1255 goto out;
1256 ret = add_keyed_refs(fs_info, path, bytenr, info_level,
1257 &preftrees, sc);
1258 if (ret)
1259 goto out;
1260 }
1261 }
1262
1263 btrfs_release_path(path);
1264
1265 ret = add_missing_keys(fs_info, &preftrees, path->skip_locking == 0);
1266 if (ret)
1267 goto out;
1268
1269 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root));
1270
1271 ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees,
1272 extent_item_pos, total_refs, sc, ignore_offset);
1273 if (ret)
1274 goto out;
1275
1276 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root));
1277
1278 /*
1279 * This walks the tree of merged and resolved refs. Tree blocks are
1280 * read in as needed. Unique entries are added to the ulist, and
1281 * the list of found roots is updated.
1282 *
1283 * We release the entire tree in one go before returning.
1284 */
1285 node = rb_first(&preftrees.direct.root);
1286 while (node) {
1287 ref = rb_entry(node, struct prelim_ref, rbnode);
1288 node = rb_next(&ref->rbnode);
1289 /*
1290 * ref->count < 0 can happen here if there are delayed
1291 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1292 * prelim_ref_insert() relies on this when merging
1293 * identical refs to keep the overall count correct.
1294 * prelim_ref_insert() will merge only those refs
1295 * which compare identically. Any refs having
1296 * e.g. different offsets would not be merged,
1297 * and would retain their original ref->count < 0.
1298 */
1299 if (roots && ref->count && ref->root_id && ref->parent == 0) {
1300 if (sc && sc->root_objectid &&
1301 ref->root_id != sc->root_objectid) {
1302 ret = BACKREF_FOUND_SHARED;
1303 goto out;
1304 }
1305
1306 /* no parent == root of tree */
1307 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1308 if (ret < 0)
1309 goto out;
1310 }
1311 if (ref->count && ref->parent) {
1312 if (extent_item_pos && !ref->inode_list &&
1313 ref->level == 0) {
1314 struct extent_buffer *eb;
1315
1316 eb = read_tree_block(fs_info, ref->parent, 0,
1317 ref->level, NULL);
1318 if (IS_ERR(eb)) {
1319 ret = PTR_ERR(eb);
1320 goto out;
1321 } else if (!extent_buffer_uptodate(eb)) {
1322 free_extent_buffer(eb);
1323 ret = -EIO;
1324 goto out;
1325 }
1326 if (!path->skip_locking) {
1327 btrfs_tree_read_lock(eb);
1328 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1329 }
1330 ret = find_extent_in_eb(eb, bytenr,
1331 *extent_item_pos, &eie, ignore_offset);
1332 if (!path->skip_locking)
1333 btrfs_tree_read_unlock_blocking(eb);
1334 free_extent_buffer(eb);
1335 if (ret < 0)
1336 goto out;
1337 ref->inode_list = eie;
1338 }
1339 ret = ulist_add_merge_ptr(refs, ref->parent,
1340 ref->inode_list,
1341 (void **)&eie, GFP_NOFS);
1342 if (ret < 0)
1343 goto out;
1344 if (!ret && extent_item_pos) {
1345 /*
1346 * We've recorded that parent, so we must extend
1347 * its inode list here.
1348 *
1349 * However if there was corruption we may not
1350 * have found an eie, return an error in this
1351 * case.
1352 */
1353 ASSERT(eie);
1354 if (!eie) {
1355 ret = -EUCLEAN;
1356 goto out;
1357 }
1358 while (eie->next)
1359 eie = eie->next;
1360 eie->next = ref->inode_list;
1361 }
1362 eie = NULL;
1363 }
1364 cond_resched();
1365 }
1366
1367 out:
1368 btrfs_free_path(path);
1369
1370 prelim_release(&preftrees.direct);
1371 prelim_release(&preftrees.indirect);
1372 prelim_release(&preftrees.indirect_missing_keys);
1373
1374 if (ret < 0)
1375 free_inode_elem_list(eie);
1376 return ret;
1377 }
1378
1379 /*
1380 * Finds all leafs with a reference to the specified combination of bytenr and
1381 * offset. key_list_head will point to a list of corresponding keys (caller must
1382 * free each list element). The leafs will be stored in the leafs ulist, which
1383 * must be freed with ulist_free.
1384 *
1385 * returns 0 on success, <0 on error
1386 */
1387 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1388 struct btrfs_fs_info *fs_info, u64 bytenr,
1389 u64 time_seq, struct ulist **leafs,
1390 const u64 *extent_item_pos, bool ignore_offset)
1391 {
1392 int ret;
1393
1394 *leafs = ulist_alloc(GFP_NOFS);
1395 if (!*leafs)
1396 return -ENOMEM;
1397
1398 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1399 *leafs, NULL, extent_item_pos, NULL, ignore_offset);
1400 if (ret < 0 && ret != -ENOENT) {
1401 free_leaf_list(*leafs);
1402 return ret;
1403 }
1404
1405 return 0;
1406 }
1407
1408 /*
1409 * walk all backrefs for a given extent to find all roots that reference this
1410 * extent. Walking a backref means finding all extents that reference this
1411 * extent and in turn walk the backrefs of those, too. Naturally this is a
1412 * recursive process, but here it is implemented in an iterative fashion: We
1413 * find all referencing extents for the extent in question and put them on a
1414 * list. In turn, we find all referencing extents for those, further appending
1415 * to the list. The way we iterate the list allows adding more elements after
1416 * the current while iterating. The process stops when we reach the end of the
1417 * list. Found roots are added to the roots list.
1418 *
1419 * returns 0 on success, < 0 on error.
1420 */
1421 static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
1422 struct btrfs_fs_info *fs_info, u64 bytenr,
1423 u64 time_seq, struct ulist **roots,
1424 bool ignore_offset)
1425 {
1426 struct ulist *tmp;
1427 struct ulist_node *node = NULL;
1428 struct ulist_iterator uiter;
1429 int ret;
1430
1431 tmp = ulist_alloc(GFP_NOFS);
1432 if (!tmp)
1433 return -ENOMEM;
1434 *roots = ulist_alloc(GFP_NOFS);
1435 if (!*roots) {
1436 ulist_free(tmp);
1437 return -ENOMEM;
1438 }
1439
1440 ULIST_ITER_INIT(&uiter);
1441 while (1) {
1442 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1443 tmp, *roots, NULL, NULL, ignore_offset);
1444 if (ret < 0 && ret != -ENOENT) {
1445 ulist_free(tmp);
1446 ulist_free(*roots);
1447 *roots = NULL;
1448 return ret;
1449 }
1450 node = ulist_next(tmp, &uiter);
1451 if (!node)
1452 break;
1453 bytenr = node->val;
1454 cond_resched();
1455 }
1456
1457 ulist_free(tmp);
1458 return 0;
1459 }
1460
1461 int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1462 struct btrfs_fs_info *fs_info, u64 bytenr,
1463 u64 time_seq, struct ulist **roots,
1464 bool ignore_offset)
1465 {
1466 int ret;
1467
1468 if (!trans)
1469 down_read(&fs_info->commit_root_sem);
1470 ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
1471 time_seq, roots, ignore_offset);
1472 if (!trans)
1473 up_read(&fs_info->commit_root_sem);
1474 return ret;
1475 }
1476
1477 /**
1478 * btrfs_check_shared - tell us whether an extent is shared
1479 *
1480 * btrfs_check_shared uses the backref walking code but will short
1481 * circuit as soon as it finds a root or inode that doesn't match the
1482 * one passed in. This provides a significant performance benefit for
1483 * callers (such as fiemap) which want to know whether the extent is
1484 * shared but do not need a ref count.
1485 *
1486 * This attempts to attach to the running transaction in order to account for
1487 * delayed refs, but continues on even when no running transaction exists.
1488 *
1489 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1490 */
1491 int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr)
1492 {
1493 struct btrfs_fs_info *fs_info = root->fs_info;
1494 struct btrfs_trans_handle *trans;
1495 struct ulist *tmp = NULL;
1496 struct ulist *roots = NULL;
1497 struct ulist_iterator uiter;
1498 struct ulist_node *node;
1499 struct seq_list elem = SEQ_LIST_INIT(elem);
1500 int ret = 0;
1501 struct share_check shared = {
1502 .root_objectid = root->objectid,
1503 .inum = inum,
1504 .share_count = 0,
1505 .have_delayed_delete_refs = false,
1506 };
1507
1508 tmp = ulist_alloc(GFP_NOFS);
1509 roots = ulist_alloc(GFP_NOFS);
1510 if (!tmp || !roots) {
1511 ret = -ENOMEM;
1512 goto out;
1513 }
1514
1515 trans = btrfs_join_transaction_nostart(root);
1516 if (IS_ERR(trans)) {
1517 if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) {
1518 ret = PTR_ERR(trans);
1519 goto out;
1520 }
1521 trans = NULL;
1522 down_read(&fs_info->commit_root_sem);
1523 } else {
1524 btrfs_get_tree_mod_seq(fs_info, &elem);
1525 }
1526
1527 ULIST_ITER_INIT(&uiter);
1528 while (1) {
1529 ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1530 roots, NULL, &shared, false);
1531 if (ret == BACKREF_FOUND_SHARED) {
1532 /* this is the only condition under which we return 1 */
1533 ret = 1;
1534 break;
1535 }
1536 if (ret < 0 && ret != -ENOENT)
1537 break;
1538 ret = 0;
1539 node = ulist_next(tmp, &uiter);
1540 if (!node)
1541 break;
1542 bytenr = node->val;
1543 shared.share_count = 0;
1544 shared.have_delayed_delete_refs = false;
1545 cond_resched();
1546 }
1547
1548 if (trans) {
1549 btrfs_put_tree_mod_seq(fs_info, &elem);
1550 btrfs_end_transaction(trans);
1551 } else {
1552 up_read(&fs_info->commit_root_sem);
1553 }
1554 out:
1555 ulist_free(tmp);
1556 ulist_free(roots);
1557 return ret;
1558 }
1559
1560 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1561 u64 start_off, struct btrfs_path *path,
1562 struct btrfs_inode_extref **ret_extref,
1563 u64 *found_off)
1564 {
1565 int ret, slot;
1566 struct btrfs_key key;
1567 struct btrfs_key found_key;
1568 struct btrfs_inode_extref *extref;
1569 const struct extent_buffer *leaf;
1570 unsigned long ptr;
1571
1572 key.objectid = inode_objectid;
1573 key.type = BTRFS_INODE_EXTREF_KEY;
1574 key.offset = start_off;
1575
1576 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1577 if (ret < 0)
1578 return ret;
1579
1580 while (1) {
1581 leaf = path->nodes[0];
1582 slot = path->slots[0];
1583 if (slot >= btrfs_header_nritems(leaf)) {
1584 /*
1585 * If the item at offset is not found,
1586 * btrfs_search_slot will point us to the slot
1587 * where it should be inserted. In our case
1588 * that will be the slot directly before the
1589 * next INODE_REF_KEY_V2 item. In the case
1590 * that we're pointing to the last slot in a
1591 * leaf, we must move one leaf over.
1592 */
1593 ret = btrfs_next_leaf(root, path);
1594 if (ret) {
1595 if (ret >= 1)
1596 ret = -ENOENT;
1597 break;
1598 }
1599 continue;
1600 }
1601
1602 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1603
1604 /*
1605 * Check that we're still looking at an extended ref key for
1606 * this particular objectid. If we have different
1607 * objectid or type then there are no more to be found
1608 * in the tree and we can exit.
1609 */
1610 ret = -ENOENT;
1611 if (found_key.objectid != inode_objectid)
1612 break;
1613 if (found_key.type != BTRFS_INODE_EXTREF_KEY)
1614 break;
1615
1616 ret = 0;
1617 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1618 extref = (struct btrfs_inode_extref *)ptr;
1619 *ret_extref = extref;
1620 if (found_off)
1621 *found_off = found_key.offset;
1622 break;
1623 }
1624
1625 return ret;
1626 }
1627
1628 /*
1629 * this iterates to turn a name (from iref/extref) into a full filesystem path.
1630 * Elements of the path are separated by '/' and the path is guaranteed to be
1631 * 0-terminated. the path is only given within the current file system.
1632 * Therefore, it never starts with a '/'. the caller is responsible to provide
1633 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1634 * the start point of the resulting string is returned. this pointer is within
1635 * dest, normally.
1636 * in case the path buffer would overflow, the pointer is decremented further
1637 * as if output was written to the buffer, though no more output is actually
1638 * generated. that way, the caller can determine how much space would be
1639 * required for the path to fit into the buffer. in that case, the returned
1640 * value will be smaller than dest. callers must check this!
1641 */
1642 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1643 u32 name_len, unsigned long name_off,
1644 struct extent_buffer *eb_in, u64 parent,
1645 char *dest, u32 size)
1646 {
1647 int slot;
1648 u64 next_inum;
1649 int ret;
1650 s64 bytes_left = ((s64)size) - 1;
1651 struct extent_buffer *eb = eb_in;
1652 struct btrfs_key found_key;
1653 int leave_spinning = path->leave_spinning;
1654 struct btrfs_inode_ref *iref;
1655
1656 if (bytes_left >= 0)
1657 dest[bytes_left] = '\0';
1658
1659 path->leave_spinning = 1;
1660 while (1) {
1661 bytes_left -= name_len;
1662 if (bytes_left >= 0)
1663 read_extent_buffer(eb, dest + bytes_left,
1664 name_off, name_len);
1665 if (eb != eb_in) {
1666 if (!path->skip_locking)
1667 btrfs_tree_read_unlock_blocking(eb);
1668 free_extent_buffer(eb);
1669 }
1670 ret = btrfs_find_item(fs_root, path, parent, 0,
1671 BTRFS_INODE_REF_KEY, &found_key);
1672 if (ret > 0)
1673 ret = -ENOENT;
1674 if (ret)
1675 break;
1676
1677 next_inum = found_key.offset;
1678
1679 /* regular exit ahead */
1680 if (parent == next_inum)
1681 break;
1682
1683 slot = path->slots[0];
1684 eb = path->nodes[0];
1685 /* make sure we can use eb after releasing the path */
1686 if (eb != eb_in) {
1687 if (!path->skip_locking)
1688 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1689 path->nodes[0] = NULL;
1690 path->locks[0] = 0;
1691 }
1692 btrfs_release_path(path);
1693 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1694
1695 name_len = btrfs_inode_ref_name_len(eb, iref);
1696 name_off = (unsigned long)(iref + 1);
1697
1698 parent = next_inum;
1699 --bytes_left;
1700 if (bytes_left >= 0)
1701 dest[bytes_left] = '/';
1702 }
1703
1704 btrfs_release_path(path);
1705 path->leave_spinning = leave_spinning;
1706
1707 if (ret)
1708 return ERR_PTR(ret);
1709
1710 return dest + bytes_left;
1711 }
1712
1713 /*
1714 * this makes the path point to (logical EXTENT_ITEM *)
1715 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1716 * tree blocks and <0 on error.
1717 */
1718 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1719 struct btrfs_path *path, struct btrfs_key *found_key,
1720 u64 *flags_ret)
1721 {
1722 int ret;
1723 u64 flags;
1724 u64 size = 0;
1725 u32 item_size;
1726 const struct extent_buffer *eb;
1727 struct btrfs_extent_item *ei;
1728 struct btrfs_key key;
1729
1730 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1731 key.type = BTRFS_METADATA_ITEM_KEY;
1732 else
1733 key.type = BTRFS_EXTENT_ITEM_KEY;
1734 key.objectid = logical;
1735 key.offset = (u64)-1;
1736
1737 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1738 if (ret < 0)
1739 return ret;
1740
1741 ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1742 if (ret) {
1743 if (ret > 0)
1744 ret = -ENOENT;
1745 return ret;
1746 }
1747 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1748 if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1749 size = fs_info->nodesize;
1750 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1751 size = found_key->offset;
1752
1753 if (found_key->objectid > logical ||
1754 found_key->objectid + size <= logical) {
1755 btrfs_debug(fs_info,
1756 "logical %llu is not within any extent", logical);
1757 return -ENOENT;
1758 }
1759
1760 eb = path->nodes[0];
1761 item_size = btrfs_item_size_nr(eb, path->slots[0]);
1762 BUG_ON(item_size < sizeof(*ei));
1763
1764 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1765 flags = btrfs_extent_flags(eb, ei);
1766
1767 btrfs_debug(fs_info,
1768 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
1769 logical, logical - found_key->objectid, found_key->objectid,
1770 found_key->offset, flags, item_size);
1771
1772 WARN_ON(!flags_ret);
1773 if (flags_ret) {
1774 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1775 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1776 else if (flags & BTRFS_EXTENT_FLAG_DATA)
1777 *flags_ret = BTRFS_EXTENT_FLAG_DATA;
1778 else
1779 BUG_ON(1);
1780 return 0;
1781 }
1782
1783 return -EIO;
1784 }
1785
1786 /*
1787 * helper function to iterate extent inline refs. ptr must point to a 0 value
1788 * for the first call and may be modified. it is used to track state.
1789 * if more refs exist, 0 is returned and the next call to
1790 * get_extent_inline_ref must pass the modified ptr parameter to get the
1791 * next ref. after the last ref was processed, 1 is returned.
1792 * returns <0 on error
1793 */
1794 static int get_extent_inline_ref(unsigned long *ptr,
1795 const struct extent_buffer *eb,
1796 const struct btrfs_key *key,
1797 const struct btrfs_extent_item *ei,
1798 u32 item_size,
1799 struct btrfs_extent_inline_ref **out_eiref,
1800 int *out_type)
1801 {
1802 unsigned long end;
1803 u64 flags;
1804 struct btrfs_tree_block_info *info;
1805
1806 if (!*ptr) {
1807 /* first call */
1808 flags = btrfs_extent_flags(eb, ei);
1809 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1810 if (key->type == BTRFS_METADATA_ITEM_KEY) {
1811 /* a skinny metadata extent */
1812 *out_eiref =
1813 (struct btrfs_extent_inline_ref *)(ei + 1);
1814 } else {
1815 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1816 info = (struct btrfs_tree_block_info *)(ei + 1);
1817 *out_eiref =
1818 (struct btrfs_extent_inline_ref *)(info + 1);
1819 }
1820 } else {
1821 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1822 }
1823 *ptr = (unsigned long)*out_eiref;
1824 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1825 return -ENOENT;
1826 }
1827
1828 end = (unsigned long)ei + item_size;
1829 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1830 *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
1831 BTRFS_REF_TYPE_ANY);
1832 if (*out_type == BTRFS_REF_TYPE_INVALID)
1833 return -EUCLEAN;
1834
1835 *ptr += btrfs_extent_inline_ref_size(*out_type);
1836 WARN_ON(*ptr > end);
1837 if (*ptr == end)
1838 return 1; /* last */
1839
1840 return 0;
1841 }
1842
1843 /*
1844 * reads the tree block backref for an extent. tree level and root are returned
1845 * through out_level and out_root. ptr must point to a 0 value for the first
1846 * call and may be modified (see get_extent_inline_ref comment).
1847 * returns 0 if data was provided, 1 if there was no more data to provide or
1848 * <0 on error.
1849 */
1850 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1851 struct btrfs_key *key, struct btrfs_extent_item *ei,
1852 u32 item_size, u64 *out_root, u8 *out_level)
1853 {
1854 int ret;
1855 int type;
1856 struct btrfs_extent_inline_ref *eiref;
1857
1858 if (*ptr == (unsigned long)-1)
1859 return 1;
1860
1861 while (1) {
1862 ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
1863 &eiref, &type);
1864 if (ret < 0)
1865 return ret;
1866
1867 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1868 type == BTRFS_SHARED_BLOCK_REF_KEY)
1869 break;
1870
1871 if (ret == 1)
1872 return 1;
1873 }
1874
1875 /* we can treat both ref types equally here */
1876 *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1877
1878 if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1879 struct btrfs_tree_block_info *info;
1880
1881 info = (struct btrfs_tree_block_info *)(ei + 1);
1882 *out_level = btrfs_tree_block_level(eb, info);
1883 } else {
1884 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1885 *out_level = (u8)key->offset;
1886 }
1887
1888 if (ret == 1)
1889 *ptr = (unsigned long)-1;
1890
1891 return 0;
1892 }
1893
1894 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
1895 struct extent_inode_elem *inode_list,
1896 u64 root, u64 extent_item_objectid,
1897 iterate_extent_inodes_t *iterate, void *ctx)
1898 {
1899 struct extent_inode_elem *eie;
1900 int ret = 0;
1901
1902 for (eie = inode_list; eie; eie = eie->next) {
1903 btrfs_debug(fs_info,
1904 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
1905 extent_item_objectid, eie->inum,
1906 eie->offset, root);
1907 ret = iterate(eie->inum, eie->offset, root, ctx);
1908 if (ret) {
1909 btrfs_debug(fs_info,
1910 "stopping iteration for %llu due to ret=%d",
1911 extent_item_objectid, ret);
1912 break;
1913 }
1914 }
1915
1916 return ret;
1917 }
1918
1919 /*
1920 * calls iterate() for every inode that references the extent identified by
1921 * the given parameters.
1922 * when the iterator function returns a non-zero value, iteration stops.
1923 */
1924 int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1925 u64 extent_item_objectid, u64 extent_item_pos,
1926 int search_commit_root,
1927 iterate_extent_inodes_t *iterate, void *ctx,
1928 bool ignore_offset)
1929 {
1930 int ret;
1931 struct btrfs_trans_handle *trans = NULL;
1932 struct ulist *refs = NULL;
1933 struct ulist *roots = NULL;
1934 struct ulist_node *ref_node = NULL;
1935 struct ulist_node *root_node = NULL;
1936 struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
1937 struct ulist_iterator ref_uiter;
1938 struct ulist_iterator root_uiter;
1939
1940 btrfs_debug(fs_info, "resolving all inodes for extent %llu",
1941 extent_item_objectid);
1942
1943 if (!search_commit_root) {
1944 trans = btrfs_attach_transaction(fs_info->extent_root);
1945 if (IS_ERR(trans)) {
1946 if (PTR_ERR(trans) != -ENOENT &&
1947 PTR_ERR(trans) != -EROFS)
1948 return PTR_ERR(trans);
1949 trans = NULL;
1950 }
1951 }
1952
1953 if (trans)
1954 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1955 else
1956 down_read(&fs_info->commit_root_sem);
1957
1958 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1959 tree_mod_seq_elem.seq, &refs,
1960 &extent_item_pos, ignore_offset);
1961 if (ret)
1962 goto out;
1963
1964 ULIST_ITER_INIT(&ref_uiter);
1965 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1966 ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
1967 tree_mod_seq_elem.seq, &roots,
1968 ignore_offset);
1969 if (ret)
1970 break;
1971 ULIST_ITER_INIT(&root_uiter);
1972 while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1973 btrfs_debug(fs_info,
1974 "root %llu references leaf %llu, data list %#llx",
1975 root_node->val, ref_node->val,
1976 ref_node->aux);
1977 ret = iterate_leaf_refs(fs_info,
1978 (struct extent_inode_elem *)
1979 (uintptr_t)ref_node->aux,
1980 root_node->val,
1981 extent_item_objectid,
1982 iterate, ctx);
1983 }
1984 ulist_free(roots);
1985 }
1986
1987 free_leaf_list(refs);
1988 out:
1989 if (trans) {
1990 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1991 btrfs_end_transaction(trans);
1992 } else {
1993 up_read(&fs_info->commit_root_sem);
1994 }
1995
1996 return ret;
1997 }
1998
1999 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
2000 struct btrfs_path *path,
2001 iterate_extent_inodes_t *iterate, void *ctx,
2002 bool ignore_offset)
2003 {
2004 int ret;
2005 u64 extent_item_pos;
2006 u64 flags = 0;
2007 struct btrfs_key found_key;
2008 int search_commit_root = path->search_commit_root;
2009
2010 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
2011 btrfs_release_path(path);
2012 if (ret < 0)
2013 return ret;
2014 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2015 return -EINVAL;
2016
2017 extent_item_pos = logical - found_key.objectid;
2018 ret = iterate_extent_inodes(fs_info, found_key.objectid,
2019 extent_item_pos, search_commit_root,
2020 iterate, ctx, ignore_offset);
2021
2022 return ret;
2023 }
2024
2025 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
2026 struct extent_buffer *eb, void *ctx);
2027
2028 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
2029 struct btrfs_path *path,
2030 iterate_irefs_t *iterate, void *ctx)
2031 {
2032 int ret = 0;
2033 int slot;
2034 u32 cur;
2035 u32 len;
2036 u32 name_len;
2037 u64 parent = 0;
2038 int found = 0;
2039 struct extent_buffer *eb;
2040 struct btrfs_item *item;
2041 struct btrfs_inode_ref *iref;
2042 struct btrfs_key found_key;
2043
2044 while (!ret) {
2045 ret = btrfs_find_item(fs_root, path, inum,
2046 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2047 &found_key);
2048
2049 if (ret < 0)
2050 break;
2051 if (ret) {
2052 ret = found ? 0 : -ENOENT;
2053 break;
2054 }
2055 ++found;
2056
2057 parent = found_key.offset;
2058 slot = path->slots[0];
2059 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2060 if (!eb) {
2061 ret = -ENOMEM;
2062 break;
2063 }
2064 extent_buffer_get(eb);
2065 btrfs_tree_read_lock(eb);
2066 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
2067 btrfs_release_path(path);
2068
2069 item = btrfs_item_nr(slot);
2070 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2071
2072 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
2073 name_len = btrfs_inode_ref_name_len(eb, iref);
2074 /* path must be released before calling iterate()! */
2075 btrfs_debug(fs_root->fs_info,
2076 "following ref at offset %u for inode %llu in tree %llu",
2077 cur, found_key.objectid, fs_root->objectid);
2078 ret = iterate(parent, name_len,
2079 (unsigned long)(iref + 1), eb, ctx);
2080 if (ret)
2081 break;
2082 len = sizeof(*iref) + name_len;
2083 iref = (struct btrfs_inode_ref *)((char *)iref + len);
2084 }
2085 btrfs_tree_read_unlock_blocking(eb);
2086 free_extent_buffer(eb);
2087 }
2088
2089 btrfs_release_path(path);
2090
2091 return ret;
2092 }
2093
2094 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
2095 struct btrfs_path *path,
2096 iterate_irefs_t *iterate, void *ctx)
2097 {
2098 int ret;
2099 int slot;
2100 u64 offset = 0;
2101 u64 parent;
2102 int found = 0;
2103 struct extent_buffer *eb;
2104 struct btrfs_inode_extref *extref;
2105 u32 item_size;
2106 u32 cur_offset;
2107 unsigned long ptr;
2108
2109 while (1) {
2110 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2111 &offset);
2112 if (ret < 0)
2113 break;
2114 if (ret) {
2115 ret = found ? 0 : -ENOENT;
2116 break;
2117 }
2118 ++found;
2119
2120 slot = path->slots[0];
2121 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2122 if (!eb) {
2123 ret = -ENOMEM;
2124 break;
2125 }
2126 extent_buffer_get(eb);
2127
2128 btrfs_tree_read_lock(eb);
2129 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
2130 btrfs_release_path(path);
2131
2132 item_size = btrfs_item_size_nr(eb, slot);
2133 ptr = btrfs_item_ptr_offset(eb, slot);
2134 cur_offset = 0;
2135
2136 while (cur_offset < item_size) {
2137 u32 name_len;
2138
2139 extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2140 parent = btrfs_inode_extref_parent(eb, extref);
2141 name_len = btrfs_inode_extref_name_len(eb, extref);
2142 ret = iterate(parent, name_len,
2143 (unsigned long)&extref->name, eb, ctx);
2144 if (ret)
2145 break;
2146
2147 cur_offset += btrfs_inode_extref_name_len(eb, extref);
2148 cur_offset += sizeof(*extref);
2149 }
2150 btrfs_tree_read_unlock_blocking(eb);
2151 free_extent_buffer(eb);
2152
2153 offset++;
2154 }
2155
2156 btrfs_release_path(path);
2157
2158 return ret;
2159 }
2160
2161 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
2162 struct btrfs_path *path, iterate_irefs_t *iterate,
2163 void *ctx)
2164 {
2165 int ret;
2166 int found_refs = 0;
2167
2168 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
2169 if (!ret)
2170 ++found_refs;
2171 else if (ret != -ENOENT)
2172 return ret;
2173
2174 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
2175 if (ret == -ENOENT && found_refs)
2176 return 0;
2177
2178 return ret;
2179 }
2180
2181 /*
2182 * returns 0 if the path could be dumped (probably truncated)
2183 * returns <0 in case of an error
2184 */
2185 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2186 struct extent_buffer *eb, void *ctx)
2187 {
2188 struct inode_fs_paths *ipath = ctx;
2189 char *fspath;
2190 char *fspath_min;
2191 int i = ipath->fspath->elem_cnt;
2192 const int s_ptr = sizeof(char *);
2193 u32 bytes_left;
2194
2195 bytes_left = ipath->fspath->bytes_left > s_ptr ?
2196 ipath->fspath->bytes_left - s_ptr : 0;
2197
2198 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2199 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2200 name_off, eb, inum, fspath_min, bytes_left);
2201 if (IS_ERR(fspath))
2202 return PTR_ERR(fspath);
2203
2204 if (fspath > fspath_min) {
2205 ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2206 ++ipath->fspath->elem_cnt;
2207 ipath->fspath->bytes_left = fspath - fspath_min;
2208 } else {
2209 ++ipath->fspath->elem_missed;
2210 ipath->fspath->bytes_missing += fspath_min - fspath;
2211 ipath->fspath->bytes_left = 0;
2212 }
2213
2214 return 0;
2215 }
2216
2217 /*
2218 * this dumps all file system paths to the inode into the ipath struct, provided
2219 * is has been created large enough. each path is zero-terminated and accessed
2220 * from ipath->fspath->val[i].
2221 * when it returns, there are ipath->fspath->elem_cnt number of paths available
2222 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2223 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2224 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2225 * have been needed to return all paths.
2226 */
2227 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2228 {
2229 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
2230 inode_to_path, ipath);
2231 }
2232
2233 struct btrfs_data_container *init_data_container(u32 total_bytes)
2234 {
2235 struct btrfs_data_container *data;
2236 size_t alloc_bytes;
2237
2238 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2239 data = kvmalloc(alloc_bytes, GFP_KERNEL);
2240 if (!data)
2241 return ERR_PTR(-ENOMEM);
2242
2243 if (total_bytes >= sizeof(*data)) {
2244 data->bytes_left = total_bytes - sizeof(*data);
2245 data->bytes_missing = 0;
2246 } else {
2247 data->bytes_missing = sizeof(*data) - total_bytes;
2248 data->bytes_left = 0;
2249 }
2250
2251 data->elem_cnt = 0;
2252 data->elem_missed = 0;
2253
2254 return data;
2255 }
2256
2257 /*
2258 * allocates space to return multiple file system paths for an inode.
2259 * total_bytes to allocate are passed, note that space usable for actual path
2260 * information will be total_bytes - sizeof(struct inode_fs_paths).
2261 * the returned pointer must be freed with free_ipath() in the end.
2262 */
2263 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2264 struct btrfs_path *path)
2265 {
2266 struct inode_fs_paths *ifp;
2267 struct btrfs_data_container *fspath;
2268
2269 fspath = init_data_container(total_bytes);
2270 if (IS_ERR(fspath))
2271 return ERR_CAST(fspath);
2272
2273 ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2274 if (!ifp) {
2275 kvfree(fspath);
2276 return ERR_PTR(-ENOMEM);
2277 }
2278
2279 ifp->btrfs_path = path;
2280 ifp->fspath = fspath;
2281 ifp->fs_root = fs_root;
2282
2283 return ifp;
2284 }
2285
2286 void free_ipath(struct inode_fs_paths *ipath)
2287 {
2288 if (!ipath)
2289 return;
2290 kvfree(ipath->fspath);
2291 kfree(ipath);
2292 }
2293