1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2008 Red Hat. All rights reserved.
4 */
5
6 #include <linux/pagemap.h>
7 #include <linux/sched.h>
8 #include <linux/sched/signal.h>
9 #include <linux/slab.h>
10 #include <linux/math64.h>
11 #include <linux/ratelimit.h>
12 #include <linux/error-injection.h>
13 #include <linux/sched/mm.h>
14 #include "ctree.h"
15 #include "free-space-cache.h"
16 #include "transaction.h"
17 #include "disk-io.h"
18 #include "extent_io.h"
19 #include "inode-map.h"
20 #include "volumes.h"
21
22 #define BITS_PER_BITMAP (PAGE_SIZE * 8UL)
23 #define MAX_CACHE_BYTES_PER_GIG SZ_32K
24
25 struct btrfs_trim_range {
26 u64 start;
27 u64 bytes;
28 struct list_head list;
29 };
30
31 static int link_free_space(struct btrfs_free_space_ctl *ctl,
32 struct btrfs_free_space *info);
33 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
34 struct btrfs_free_space *info);
35 static int btrfs_wait_cache_io_root(struct btrfs_root *root,
36 struct btrfs_trans_handle *trans,
37 struct btrfs_io_ctl *io_ctl,
38 struct btrfs_path *path);
39
__lookup_free_space_inode(struct btrfs_root * root,struct btrfs_path * path,u64 offset)40 static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
41 struct btrfs_path *path,
42 u64 offset)
43 {
44 struct btrfs_fs_info *fs_info = root->fs_info;
45 struct btrfs_key key;
46 struct btrfs_key location;
47 struct btrfs_disk_key disk_key;
48 struct btrfs_free_space_header *header;
49 struct extent_buffer *leaf;
50 struct inode *inode = NULL;
51 unsigned nofs_flag;
52 int ret;
53
54 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
55 key.offset = offset;
56 key.type = 0;
57
58 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
59 if (ret < 0)
60 return ERR_PTR(ret);
61 if (ret > 0) {
62 btrfs_release_path(path);
63 return ERR_PTR(-ENOENT);
64 }
65
66 leaf = path->nodes[0];
67 header = btrfs_item_ptr(leaf, path->slots[0],
68 struct btrfs_free_space_header);
69 btrfs_free_space_key(leaf, header, &disk_key);
70 btrfs_disk_key_to_cpu(&location, &disk_key);
71 btrfs_release_path(path);
72
73 /*
74 * We are often under a trans handle at this point, so we need to make
75 * sure NOFS is set to keep us from deadlocking.
76 */
77 nofs_flag = memalloc_nofs_save();
78 inode = btrfs_iget_path(fs_info->sb, &location, root, NULL, path);
79 btrfs_release_path(path);
80 memalloc_nofs_restore(nofs_flag);
81 if (IS_ERR(inode))
82 return inode;
83
84 mapping_set_gfp_mask(inode->i_mapping,
85 mapping_gfp_constraint(inode->i_mapping,
86 ~(__GFP_FS | __GFP_HIGHMEM)));
87
88 return inode;
89 }
90
lookup_free_space_inode(struct btrfs_fs_info * fs_info,struct btrfs_block_group_cache * block_group,struct btrfs_path * path)91 struct inode *lookup_free_space_inode(struct btrfs_fs_info *fs_info,
92 struct btrfs_block_group_cache
93 *block_group, struct btrfs_path *path)
94 {
95 struct inode *inode = NULL;
96 u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
97
98 spin_lock(&block_group->lock);
99 if (block_group->inode)
100 inode = igrab(block_group->inode);
101 spin_unlock(&block_group->lock);
102 if (inode)
103 return inode;
104
105 inode = __lookup_free_space_inode(fs_info->tree_root, path,
106 block_group->key.objectid);
107 if (IS_ERR(inode))
108 return inode;
109
110 spin_lock(&block_group->lock);
111 if (!((BTRFS_I(inode)->flags & flags) == flags)) {
112 btrfs_info(fs_info, "Old style space inode found, converting.");
113 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
114 BTRFS_INODE_NODATACOW;
115 block_group->disk_cache_state = BTRFS_DC_CLEAR;
116 }
117
118 if (!block_group->iref) {
119 block_group->inode = igrab(inode);
120 block_group->iref = 1;
121 }
122 spin_unlock(&block_group->lock);
123
124 return inode;
125 }
126
__create_free_space_inode(struct btrfs_root * root,struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 ino,u64 offset)127 static int __create_free_space_inode(struct btrfs_root *root,
128 struct btrfs_trans_handle *trans,
129 struct btrfs_path *path,
130 u64 ino, u64 offset)
131 {
132 struct btrfs_key key;
133 struct btrfs_disk_key disk_key;
134 struct btrfs_free_space_header *header;
135 struct btrfs_inode_item *inode_item;
136 struct extent_buffer *leaf;
137 u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
138 int ret;
139
140 ret = btrfs_insert_empty_inode(trans, root, path, ino);
141 if (ret)
142 return ret;
143
144 /* We inline crc's for the free disk space cache */
145 if (ino != BTRFS_FREE_INO_OBJECTID)
146 flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
147
148 leaf = path->nodes[0];
149 inode_item = btrfs_item_ptr(leaf, path->slots[0],
150 struct btrfs_inode_item);
151 btrfs_item_key(leaf, &disk_key, path->slots[0]);
152 memzero_extent_buffer(leaf, (unsigned long)inode_item,
153 sizeof(*inode_item));
154 btrfs_set_inode_generation(leaf, inode_item, trans->transid);
155 btrfs_set_inode_size(leaf, inode_item, 0);
156 btrfs_set_inode_nbytes(leaf, inode_item, 0);
157 btrfs_set_inode_uid(leaf, inode_item, 0);
158 btrfs_set_inode_gid(leaf, inode_item, 0);
159 btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
160 btrfs_set_inode_flags(leaf, inode_item, flags);
161 btrfs_set_inode_nlink(leaf, inode_item, 1);
162 btrfs_set_inode_transid(leaf, inode_item, trans->transid);
163 btrfs_set_inode_block_group(leaf, inode_item, offset);
164 btrfs_mark_buffer_dirty(leaf);
165 btrfs_release_path(path);
166
167 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
168 key.offset = offset;
169 key.type = 0;
170 ret = btrfs_insert_empty_item(trans, root, path, &key,
171 sizeof(struct btrfs_free_space_header));
172 if (ret < 0) {
173 btrfs_release_path(path);
174 return ret;
175 }
176
177 leaf = path->nodes[0];
178 header = btrfs_item_ptr(leaf, path->slots[0],
179 struct btrfs_free_space_header);
180 memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
181 btrfs_set_free_space_key(leaf, header, &disk_key);
182 btrfs_mark_buffer_dirty(leaf);
183 btrfs_release_path(path);
184
185 return 0;
186 }
187
create_free_space_inode(struct btrfs_fs_info * fs_info,struct btrfs_trans_handle * trans,struct btrfs_block_group_cache * block_group,struct btrfs_path * path)188 int create_free_space_inode(struct btrfs_fs_info *fs_info,
189 struct btrfs_trans_handle *trans,
190 struct btrfs_block_group_cache *block_group,
191 struct btrfs_path *path)
192 {
193 int ret;
194 u64 ino;
195
196 ret = btrfs_find_free_objectid(fs_info->tree_root, &ino);
197 if (ret < 0)
198 return ret;
199
200 return __create_free_space_inode(fs_info->tree_root, trans, path, ino,
201 block_group->key.objectid);
202 }
203
btrfs_check_trunc_cache_free_space(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * rsv)204 int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info,
205 struct btrfs_block_rsv *rsv)
206 {
207 u64 needed_bytes;
208 int ret;
209
210 /* 1 for slack space, 1 for updating the inode */
211 needed_bytes = btrfs_calc_trunc_metadata_size(fs_info, 1) +
212 btrfs_calc_trans_metadata_size(fs_info, 1);
213
214 spin_lock(&rsv->lock);
215 if (rsv->reserved < needed_bytes)
216 ret = -ENOSPC;
217 else
218 ret = 0;
219 spin_unlock(&rsv->lock);
220 return ret;
221 }
222
btrfs_truncate_free_space_cache(struct btrfs_trans_handle * trans,struct btrfs_block_group_cache * block_group,struct inode * inode)223 int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
224 struct btrfs_block_group_cache *block_group,
225 struct inode *inode)
226 {
227 struct btrfs_root *root = BTRFS_I(inode)->root;
228 int ret = 0;
229 bool locked = false;
230
231 if (block_group) {
232 struct btrfs_path *path = btrfs_alloc_path();
233
234 if (!path) {
235 ret = -ENOMEM;
236 goto fail;
237 }
238 locked = true;
239 mutex_lock(&trans->transaction->cache_write_mutex);
240 if (!list_empty(&block_group->io_list)) {
241 list_del_init(&block_group->io_list);
242
243 btrfs_wait_cache_io(trans, block_group, path);
244 btrfs_put_block_group(block_group);
245 }
246
247 /*
248 * now that we've truncated the cache away, its no longer
249 * setup or written
250 */
251 spin_lock(&block_group->lock);
252 block_group->disk_cache_state = BTRFS_DC_CLEAR;
253 spin_unlock(&block_group->lock);
254 btrfs_free_path(path);
255 }
256
257 btrfs_i_size_write(BTRFS_I(inode), 0);
258 truncate_pagecache(inode, 0);
259
260 /*
261 * We skip the throttling logic for free space cache inodes, so we don't
262 * need to check for -EAGAIN.
263 */
264 ret = btrfs_truncate_inode_items(trans, root, inode,
265 0, BTRFS_EXTENT_DATA_KEY);
266 if (ret)
267 goto fail;
268
269 ret = btrfs_update_inode(trans, root, inode);
270
271 fail:
272 if (locked)
273 mutex_unlock(&trans->transaction->cache_write_mutex);
274 if (ret)
275 btrfs_abort_transaction(trans, ret);
276
277 return ret;
278 }
279
readahead_cache(struct inode * inode)280 static void readahead_cache(struct inode *inode)
281 {
282 struct file_ra_state *ra;
283 unsigned long last_index;
284
285 ra = kzalloc(sizeof(*ra), GFP_NOFS);
286 if (!ra)
287 return;
288
289 file_ra_state_init(ra, inode->i_mapping);
290 last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
291
292 page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
293
294 kfree(ra);
295 }
296
io_ctl_init(struct btrfs_io_ctl * io_ctl,struct inode * inode,int write)297 static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
298 int write)
299 {
300 int num_pages;
301 int check_crcs = 0;
302
303 num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
304
305 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FREE_INO_OBJECTID)
306 check_crcs = 1;
307
308 /* Make sure we can fit our crcs and generation into the first page */
309 if (write && check_crcs &&
310 (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE)
311 return -ENOSPC;
312
313 memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
314
315 io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
316 if (!io_ctl->pages)
317 return -ENOMEM;
318
319 io_ctl->num_pages = num_pages;
320 io_ctl->fs_info = btrfs_sb(inode->i_sb);
321 io_ctl->check_crcs = check_crcs;
322 io_ctl->inode = inode;
323
324 return 0;
325 }
326 ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
327
io_ctl_free(struct btrfs_io_ctl * io_ctl)328 static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
329 {
330 kfree(io_ctl->pages);
331 io_ctl->pages = NULL;
332 }
333
io_ctl_unmap_page(struct btrfs_io_ctl * io_ctl)334 static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
335 {
336 if (io_ctl->cur) {
337 io_ctl->cur = NULL;
338 io_ctl->orig = NULL;
339 }
340 }
341
io_ctl_map_page(struct btrfs_io_ctl * io_ctl,int clear)342 static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
343 {
344 ASSERT(io_ctl->index < io_ctl->num_pages);
345 io_ctl->page = io_ctl->pages[io_ctl->index++];
346 io_ctl->cur = page_address(io_ctl->page);
347 io_ctl->orig = io_ctl->cur;
348 io_ctl->size = PAGE_SIZE;
349 if (clear)
350 clear_page(io_ctl->cur);
351 }
352
io_ctl_drop_pages(struct btrfs_io_ctl * io_ctl)353 static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
354 {
355 int i;
356
357 io_ctl_unmap_page(io_ctl);
358
359 for (i = 0; i < io_ctl->num_pages; i++) {
360 if (io_ctl->pages[i]) {
361 ClearPageChecked(io_ctl->pages[i]);
362 unlock_page(io_ctl->pages[i]);
363 put_page(io_ctl->pages[i]);
364 }
365 }
366 }
367
io_ctl_prepare_pages(struct btrfs_io_ctl * io_ctl,struct inode * inode,int uptodate)368 static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, struct inode *inode,
369 int uptodate)
370 {
371 struct page *page;
372 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
373 int i;
374
375 for (i = 0; i < io_ctl->num_pages; i++) {
376 page = find_or_create_page(inode->i_mapping, i, mask);
377 if (!page) {
378 io_ctl_drop_pages(io_ctl);
379 return -ENOMEM;
380 }
381 io_ctl->pages[i] = page;
382 if (uptodate && !PageUptodate(page)) {
383 btrfs_readpage(NULL, page);
384 lock_page(page);
385 if (page->mapping != inode->i_mapping) {
386 btrfs_err(BTRFS_I(inode)->root->fs_info,
387 "free space cache page truncated");
388 io_ctl_drop_pages(io_ctl);
389 return -EIO;
390 }
391 if (!PageUptodate(page)) {
392 btrfs_err(BTRFS_I(inode)->root->fs_info,
393 "error reading free space cache");
394 io_ctl_drop_pages(io_ctl);
395 return -EIO;
396 }
397 }
398 }
399
400 for (i = 0; i < io_ctl->num_pages; i++) {
401 clear_page_dirty_for_io(io_ctl->pages[i]);
402 set_page_extent_mapped(io_ctl->pages[i]);
403 }
404
405 return 0;
406 }
407
io_ctl_set_generation(struct btrfs_io_ctl * io_ctl,u64 generation)408 static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
409 {
410 __le64 *val;
411
412 io_ctl_map_page(io_ctl, 1);
413
414 /*
415 * Skip the csum areas. If we don't check crcs then we just have a
416 * 64bit chunk at the front of the first page.
417 */
418 if (io_ctl->check_crcs) {
419 io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
420 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
421 } else {
422 io_ctl->cur += sizeof(u64);
423 io_ctl->size -= sizeof(u64) * 2;
424 }
425
426 val = io_ctl->cur;
427 *val = cpu_to_le64(generation);
428 io_ctl->cur += sizeof(u64);
429 }
430
io_ctl_check_generation(struct btrfs_io_ctl * io_ctl,u64 generation)431 static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
432 {
433 __le64 *gen;
434
435 /*
436 * Skip the crc area. If we don't check crcs then we just have a 64bit
437 * chunk at the front of the first page.
438 */
439 if (io_ctl->check_crcs) {
440 io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
441 io_ctl->size -= sizeof(u64) +
442 (sizeof(u32) * io_ctl->num_pages);
443 } else {
444 io_ctl->cur += sizeof(u64);
445 io_ctl->size -= sizeof(u64) * 2;
446 }
447
448 gen = io_ctl->cur;
449 if (le64_to_cpu(*gen) != generation) {
450 btrfs_err_rl(io_ctl->fs_info,
451 "space cache generation (%llu) does not match inode (%llu)",
452 *gen, generation);
453 io_ctl_unmap_page(io_ctl);
454 return -EIO;
455 }
456 io_ctl->cur += sizeof(u64);
457 return 0;
458 }
459
io_ctl_set_crc(struct btrfs_io_ctl * io_ctl,int index)460 static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
461 {
462 u32 *tmp;
463 u32 crc = ~(u32)0;
464 unsigned offset = 0;
465
466 if (!io_ctl->check_crcs) {
467 io_ctl_unmap_page(io_ctl);
468 return;
469 }
470
471 if (index == 0)
472 offset = sizeof(u32) * io_ctl->num_pages;
473
474 crc = btrfs_csum_data(io_ctl->orig + offset, crc,
475 PAGE_SIZE - offset);
476 btrfs_csum_final(crc, (u8 *)&crc);
477 io_ctl_unmap_page(io_ctl);
478 tmp = page_address(io_ctl->pages[0]);
479 tmp += index;
480 *tmp = crc;
481 }
482
io_ctl_check_crc(struct btrfs_io_ctl * io_ctl,int index)483 static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
484 {
485 u32 *tmp, val;
486 u32 crc = ~(u32)0;
487 unsigned offset = 0;
488
489 if (!io_ctl->check_crcs) {
490 io_ctl_map_page(io_ctl, 0);
491 return 0;
492 }
493
494 if (index == 0)
495 offset = sizeof(u32) * io_ctl->num_pages;
496
497 tmp = page_address(io_ctl->pages[0]);
498 tmp += index;
499 val = *tmp;
500
501 io_ctl_map_page(io_ctl, 0);
502 crc = btrfs_csum_data(io_ctl->orig + offset, crc,
503 PAGE_SIZE - offset);
504 btrfs_csum_final(crc, (u8 *)&crc);
505 if (val != crc) {
506 btrfs_err_rl(io_ctl->fs_info,
507 "csum mismatch on free space cache");
508 io_ctl_unmap_page(io_ctl);
509 return -EIO;
510 }
511
512 return 0;
513 }
514
io_ctl_add_entry(struct btrfs_io_ctl * io_ctl,u64 offset,u64 bytes,void * bitmap)515 static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
516 void *bitmap)
517 {
518 struct btrfs_free_space_entry *entry;
519
520 if (!io_ctl->cur)
521 return -ENOSPC;
522
523 entry = io_ctl->cur;
524 entry->offset = cpu_to_le64(offset);
525 entry->bytes = cpu_to_le64(bytes);
526 entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
527 BTRFS_FREE_SPACE_EXTENT;
528 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
529 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
530
531 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
532 return 0;
533
534 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
535
536 /* No more pages to map */
537 if (io_ctl->index >= io_ctl->num_pages)
538 return 0;
539
540 /* map the next page */
541 io_ctl_map_page(io_ctl, 1);
542 return 0;
543 }
544
io_ctl_add_bitmap(struct btrfs_io_ctl * io_ctl,void * bitmap)545 static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
546 {
547 if (!io_ctl->cur)
548 return -ENOSPC;
549
550 /*
551 * If we aren't at the start of the current page, unmap this one and
552 * map the next one if there is any left.
553 */
554 if (io_ctl->cur != io_ctl->orig) {
555 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
556 if (io_ctl->index >= io_ctl->num_pages)
557 return -ENOSPC;
558 io_ctl_map_page(io_ctl, 0);
559 }
560
561 copy_page(io_ctl->cur, bitmap);
562 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
563 if (io_ctl->index < io_ctl->num_pages)
564 io_ctl_map_page(io_ctl, 0);
565 return 0;
566 }
567
io_ctl_zero_remaining_pages(struct btrfs_io_ctl * io_ctl)568 static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
569 {
570 /*
571 * If we're not on the boundary we know we've modified the page and we
572 * need to crc the page.
573 */
574 if (io_ctl->cur != io_ctl->orig)
575 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
576 else
577 io_ctl_unmap_page(io_ctl);
578
579 while (io_ctl->index < io_ctl->num_pages) {
580 io_ctl_map_page(io_ctl, 1);
581 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
582 }
583 }
584
io_ctl_read_entry(struct btrfs_io_ctl * io_ctl,struct btrfs_free_space * entry,u8 * type)585 static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
586 struct btrfs_free_space *entry, u8 *type)
587 {
588 struct btrfs_free_space_entry *e;
589 int ret;
590
591 if (!io_ctl->cur) {
592 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
593 if (ret)
594 return ret;
595 }
596
597 e = io_ctl->cur;
598 entry->offset = le64_to_cpu(e->offset);
599 entry->bytes = le64_to_cpu(e->bytes);
600 *type = e->type;
601 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
602 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
603
604 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
605 return 0;
606
607 io_ctl_unmap_page(io_ctl);
608
609 return 0;
610 }
611
io_ctl_read_bitmap(struct btrfs_io_ctl * io_ctl,struct btrfs_free_space * entry)612 static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
613 struct btrfs_free_space *entry)
614 {
615 int ret;
616
617 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
618 if (ret)
619 return ret;
620
621 copy_page(entry->bitmap, io_ctl->cur);
622 io_ctl_unmap_page(io_ctl);
623
624 return 0;
625 }
626
627 /*
628 * Since we attach pinned extents after the fact we can have contiguous sections
629 * of free space that are split up in entries. This poses a problem with the
630 * tree logging stuff since it could have allocated across what appears to be 2
631 * entries since we would have merged the entries when adding the pinned extents
632 * back to the free space cache. So run through the space cache that we just
633 * loaded and merge contiguous entries. This will make the log replay stuff not
634 * blow up and it will make for nicer allocator behavior.
635 */
merge_space_tree(struct btrfs_free_space_ctl * ctl)636 static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
637 {
638 struct btrfs_free_space *e, *prev = NULL;
639 struct rb_node *n;
640
641 again:
642 spin_lock(&ctl->tree_lock);
643 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
644 e = rb_entry(n, struct btrfs_free_space, offset_index);
645 if (!prev)
646 goto next;
647 if (e->bitmap || prev->bitmap)
648 goto next;
649 if (prev->offset + prev->bytes == e->offset) {
650 unlink_free_space(ctl, prev);
651 unlink_free_space(ctl, e);
652 prev->bytes += e->bytes;
653 kmem_cache_free(btrfs_free_space_cachep, e);
654 link_free_space(ctl, prev);
655 prev = NULL;
656 spin_unlock(&ctl->tree_lock);
657 goto again;
658 }
659 next:
660 prev = e;
661 }
662 spin_unlock(&ctl->tree_lock);
663 }
664
__load_free_space_cache(struct btrfs_root * root,struct inode * inode,struct btrfs_free_space_ctl * ctl,struct btrfs_path * path,u64 offset)665 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
666 struct btrfs_free_space_ctl *ctl,
667 struct btrfs_path *path, u64 offset)
668 {
669 struct btrfs_fs_info *fs_info = root->fs_info;
670 struct btrfs_free_space_header *header;
671 struct extent_buffer *leaf;
672 struct btrfs_io_ctl io_ctl;
673 struct btrfs_key key;
674 struct btrfs_free_space *e, *n;
675 LIST_HEAD(bitmaps);
676 u64 num_entries;
677 u64 num_bitmaps;
678 u64 generation;
679 u8 type;
680 int ret = 0;
681
682 /* Nothing in the space cache, goodbye */
683 if (!i_size_read(inode))
684 return 0;
685
686 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
687 key.offset = offset;
688 key.type = 0;
689
690 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
691 if (ret < 0)
692 return 0;
693 else if (ret > 0) {
694 btrfs_release_path(path);
695 return 0;
696 }
697
698 ret = -1;
699
700 leaf = path->nodes[0];
701 header = btrfs_item_ptr(leaf, path->slots[0],
702 struct btrfs_free_space_header);
703 num_entries = btrfs_free_space_entries(leaf, header);
704 num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
705 generation = btrfs_free_space_generation(leaf, header);
706 btrfs_release_path(path);
707
708 if (!BTRFS_I(inode)->generation) {
709 btrfs_info(fs_info,
710 "the free space cache file (%llu) is invalid, skip it",
711 offset);
712 return 0;
713 }
714
715 if (BTRFS_I(inode)->generation != generation) {
716 btrfs_err(fs_info,
717 "free space inode generation (%llu) did not match free space cache generation (%llu)",
718 BTRFS_I(inode)->generation, generation);
719 return 0;
720 }
721
722 if (!num_entries)
723 return 0;
724
725 ret = io_ctl_init(&io_ctl, inode, 0);
726 if (ret)
727 return ret;
728
729 readahead_cache(inode);
730
731 ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
732 if (ret)
733 goto out;
734
735 ret = io_ctl_check_crc(&io_ctl, 0);
736 if (ret)
737 goto free_cache;
738
739 ret = io_ctl_check_generation(&io_ctl, generation);
740 if (ret)
741 goto free_cache;
742
743 while (num_entries) {
744 e = kmem_cache_zalloc(btrfs_free_space_cachep,
745 GFP_NOFS);
746 if (!e) {
747 ret = -ENOMEM;
748 goto free_cache;
749 }
750
751 ret = io_ctl_read_entry(&io_ctl, e, &type);
752 if (ret) {
753 kmem_cache_free(btrfs_free_space_cachep, e);
754 goto free_cache;
755 }
756
757 if (!e->bytes) {
758 ret = -1;
759 kmem_cache_free(btrfs_free_space_cachep, e);
760 goto free_cache;
761 }
762
763 if (type == BTRFS_FREE_SPACE_EXTENT) {
764 spin_lock(&ctl->tree_lock);
765 ret = link_free_space(ctl, e);
766 spin_unlock(&ctl->tree_lock);
767 if (ret) {
768 btrfs_err(fs_info,
769 "Duplicate entries in free space cache, dumping");
770 kmem_cache_free(btrfs_free_space_cachep, e);
771 goto free_cache;
772 }
773 } else {
774 ASSERT(num_bitmaps);
775 num_bitmaps--;
776 e->bitmap = kmem_cache_zalloc(
777 btrfs_free_space_bitmap_cachep, GFP_NOFS);
778 if (!e->bitmap) {
779 ret = -ENOMEM;
780 kmem_cache_free(
781 btrfs_free_space_cachep, e);
782 goto free_cache;
783 }
784 spin_lock(&ctl->tree_lock);
785 ret = link_free_space(ctl, e);
786 if (ret) {
787 spin_unlock(&ctl->tree_lock);
788 btrfs_err(fs_info,
789 "Duplicate entries in free space cache, dumping");
790 kmem_cache_free(btrfs_free_space_cachep, e);
791 goto free_cache;
792 }
793 ctl->total_bitmaps++;
794 ctl->op->recalc_thresholds(ctl);
795 spin_unlock(&ctl->tree_lock);
796 list_add_tail(&e->list, &bitmaps);
797 }
798
799 num_entries--;
800 }
801
802 io_ctl_unmap_page(&io_ctl);
803
804 /*
805 * We add the bitmaps at the end of the entries in order that
806 * the bitmap entries are added to the cache.
807 */
808 list_for_each_entry_safe(e, n, &bitmaps, list) {
809 list_del_init(&e->list);
810 ret = io_ctl_read_bitmap(&io_ctl, e);
811 if (ret)
812 goto free_cache;
813 }
814
815 io_ctl_drop_pages(&io_ctl);
816 merge_space_tree(ctl);
817 ret = 1;
818 out:
819 io_ctl_free(&io_ctl);
820 return ret;
821 free_cache:
822 io_ctl_drop_pages(&io_ctl);
823 __btrfs_remove_free_space_cache(ctl);
824 goto out;
825 }
826
load_free_space_cache(struct btrfs_fs_info * fs_info,struct btrfs_block_group_cache * block_group)827 int load_free_space_cache(struct btrfs_fs_info *fs_info,
828 struct btrfs_block_group_cache *block_group)
829 {
830 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
831 struct inode *inode;
832 struct btrfs_path *path;
833 int ret = 0;
834 bool matched;
835 u64 used = btrfs_block_group_used(&block_group->item);
836
837 /*
838 * If this block group has been marked to be cleared for one reason or
839 * another then we can't trust the on disk cache, so just return.
840 */
841 spin_lock(&block_group->lock);
842 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
843 spin_unlock(&block_group->lock);
844 return 0;
845 }
846 spin_unlock(&block_group->lock);
847
848 path = btrfs_alloc_path();
849 if (!path)
850 return 0;
851 path->search_commit_root = 1;
852 path->skip_locking = 1;
853
854 /*
855 * We must pass a path with search_commit_root set to btrfs_iget in
856 * order to avoid a deadlock when allocating extents for the tree root.
857 *
858 * When we are COWing an extent buffer from the tree root, when looking
859 * for a free extent, at extent-tree.c:find_free_extent(), we can find
860 * block group without its free space cache loaded. When we find one
861 * we must load its space cache which requires reading its free space
862 * cache's inode item from the root tree. If this inode item is located
863 * in the same leaf that we started COWing before, then we end up in
864 * deadlock on the extent buffer (trying to read lock it when we
865 * previously write locked it).
866 *
867 * It's safe to read the inode item using the commit root because
868 * block groups, once loaded, stay in memory forever (until they are
869 * removed) as well as their space caches once loaded. New block groups
870 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so
871 * we will never try to read their inode item while the fs is mounted.
872 */
873 inode = lookup_free_space_inode(fs_info, block_group, path);
874 if (IS_ERR(inode)) {
875 btrfs_free_path(path);
876 return 0;
877 }
878
879 /* We may have converted the inode and made the cache invalid. */
880 spin_lock(&block_group->lock);
881 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
882 spin_unlock(&block_group->lock);
883 btrfs_free_path(path);
884 goto out;
885 }
886 spin_unlock(&block_group->lock);
887
888 ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
889 path, block_group->key.objectid);
890 btrfs_free_path(path);
891 if (ret <= 0)
892 goto out;
893
894 spin_lock(&ctl->tree_lock);
895 matched = (ctl->free_space == (block_group->key.offset - used -
896 block_group->bytes_super));
897 spin_unlock(&ctl->tree_lock);
898
899 if (!matched) {
900 __btrfs_remove_free_space_cache(ctl);
901 btrfs_warn(fs_info,
902 "block group %llu has wrong amount of free space",
903 block_group->key.objectid);
904 ret = -1;
905 }
906 out:
907 if (ret < 0) {
908 /* This cache is bogus, make sure it gets cleared */
909 spin_lock(&block_group->lock);
910 block_group->disk_cache_state = BTRFS_DC_CLEAR;
911 spin_unlock(&block_group->lock);
912 ret = 0;
913
914 btrfs_warn(fs_info,
915 "failed to load free space cache for block group %llu, rebuilding it now",
916 block_group->key.objectid);
917 }
918
919 iput(inode);
920 return ret;
921 }
922
923 static noinline_for_stack
write_cache_extent_entries(struct btrfs_io_ctl * io_ctl,struct btrfs_free_space_ctl * ctl,struct btrfs_block_group_cache * block_group,int * entries,int * bitmaps,struct list_head * bitmap_list)924 int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
925 struct btrfs_free_space_ctl *ctl,
926 struct btrfs_block_group_cache *block_group,
927 int *entries, int *bitmaps,
928 struct list_head *bitmap_list)
929 {
930 int ret;
931 struct btrfs_free_cluster *cluster = NULL;
932 struct btrfs_free_cluster *cluster_locked = NULL;
933 struct rb_node *node = rb_first(&ctl->free_space_offset);
934 struct btrfs_trim_range *trim_entry;
935
936 /* Get the cluster for this block_group if it exists */
937 if (block_group && !list_empty(&block_group->cluster_list)) {
938 cluster = list_entry(block_group->cluster_list.next,
939 struct btrfs_free_cluster,
940 block_group_list);
941 }
942
943 if (!node && cluster) {
944 cluster_locked = cluster;
945 spin_lock(&cluster_locked->lock);
946 node = rb_first(&cluster->root);
947 cluster = NULL;
948 }
949
950 /* Write out the extent entries */
951 while (node) {
952 struct btrfs_free_space *e;
953
954 e = rb_entry(node, struct btrfs_free_space, offset_index);
955 *entries += 1;
956
957 ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
958 e->bitmap);
959 if (ret)
960 goto fail;
961
962 if (e->bitmap) {
963 list_add_tail(&e->list, bitmap_list);
964 *bitmaps += 1;
965 }
966 node = rb_next(node);
967 if (!node && cluster) {
968 node = rb_first(&cluster->root);
969 cluster_locked = cluster;
970 spin_lock(&cluster_locked->lock);
971 cluster = NULL;
972 }
973 }
974 if (cluster_locked) {
975 spin_unlock(&cluster_locked->lock);
976 cluster_locked = NULL;
977 }
978
979 /*
980 * Make sure we don't miss any range that was removed from our rbtree
981 * because trimming is running. Otherwise after a umount+mount (or crash
982 * after committing the transaction) we would leak free space and get
983 * an inconsistent free space cache report from fsck.
984 */
985 list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
986 ret = io_ctl_add_entry(io_ctl, trim_entry->start,
987 trim_entry->bytes, NULL);
988 if (ret)
989 goto fail;
990 *entries += 1;
991 }
992
993 return 0;
994 fail:
995 if (cluster_locked)
996 spin_unlock(&cluster_locked->lock);
997 return -ENOSPC;
998 }
999
1000 static noinline_for_stack int
update_cache_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,struct btrfs_path * path,u64 offset,int entries,int bitmaps)1001 update_cache_item(struct btrfs_trans_handle *trans,
1002 struct btrfs_root *root,
1003 struct inode *inode,
1004 struct btrfs_path *path, u64 offset,
1005 int entries, int bitmaps)
1006 {
1007 struct btrfs_key key;
1008 struct btrfs_free_space_header *header;
1009 struct extent_buffer *leaf;
1010 int ret;
1011
1012 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1013 key.offset = offset;
1014 key.type = 0;
1015
1016 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1017 if (ret < 0) {
1018 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1019 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL);
1020 goto fail;
1021 }
1022 leaf = path->nodes[0];
1023 if (ret > 0) {
1024 struct btrfs_key found_key;
1025 ASSERT(path->slots[0]);
1026 path->slots[0]--;
1027 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1028 if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1029 found_key.offset != offset) {
1030 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1031 inode->i_size - 1,
1032 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0,
1033 NULL);
1034 btrfs_release_path(path);
1035 goto fail;
1036 }
1037 }
1038
1039 BTRFS_I(inode)->generation = trans->transid;
1040 header = btrfs_item_ptr(leaf, path->slots[0],
1041 struct btrfs_free_space_header);
1042 btrfs_set_free_space_entries(leaf, header, entries);
1043 btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1044 btrfs_set_free_space_generation(leaf, header, trans->transid);
1045 btrfs_mark_buffer_dirty(leaf);
1046 btrfs_release_path(path);
1047
1048 return 0;
1049
1050 fail:
1051 return -1;
1052 }
1053
1054 static noinline_for_stack int
write_pinned_extent_entries(struct btrfs_fs_info * fs_info,struct btrfs_block_group_cache * block_group,struct btrfs_io_ctl * io_ctl,int * entries)1055 write_pinned_extent_entries(struct btrfs_fs_info *fs_info,
1056 struct btrfs_block_group_cache *block_group,
1057 struct btrfs_io_ctl *io_ctl,
1058 int *entries)
1059 {
1060 u64 start, extent_start, extent_end, len;
1061 struct extent_io_tree *unpin = NULL;
1062 int ret;
1063
1064 if (!block_group)
1065 return 0;
1066
1067 /*
1068 * We want to add any pinned extents to our free space cache
1069 * so we don't leak the space
1070 *
1071 * We shouldn't have switched the pinned extents yet so this is the
1072 * right one
1073 */
1074 unpin = fs_info->pinned_extents;
1075
1076 start = block_group->key.objectid;
1077
1078 while (start < block_group->key.objectid + block_group->key.offset) {
1079 ret = find_first_extent_bit(unpin, start,
1080 &extent_start, &extent_end,
1081 EXTENT_DIRTY, NULL);
1082 if (ret)
1083 return 0;
1084
1085 /* This pinned extent is out of our range */
1086 if (extent_start >= block_group->key.objectid +
1087 block_group->key.offset)
1088 return 0;
1089
1090 extent_start = max(extent_start, start);
1091 extent_end = min(block_group->key.objectid +
1092 block_group->key.offset, extent_end + 1);
1093 len = extent_end - extent_start;
1094
1095 *entries += 1;
1096 ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1097 if (ret)
1098 return -ENOSPC;
1099
1100 start = extent_end;
1101 }
1102
1103 return 0;
1104 }
1105
1106 static noinline_for_stack int
write_bitmap_entries(struct btrfs_io_ctl * io_ctl,struct list_head * bitmap_list)1107 write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1108 {
1109 struct btrfs_free_space *entry, *next;
1110 int ret;
1111
1112 /* Write out the bitmaps */
1113 list_for_each_entry_safe(entry, next, bitmap_list, list) {
1114 ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1115 if (ret)
1116 return -ENOSPC;
1117 list_del_init(&entry->list);
1118 }
1119
1120 return 0;
1121 }
1122
flush_dirty_cache(struct inode * inode)1123 static int flush_dirty_cache(struct inode *inode)
1124 {
1125 int ret;
1126
1127 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1128 if (ret)
1129 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1130 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL);
1131
1132 return ret;
1133 }
1134
1135 static void noinline_for_stack
cleanup_bitmap_list(struct list_head * bitmap_list)1136 cleanup_bitmap_list(struct list_head *bitmap_list)
1137 {
1138 struct btrfs_free_space *entry, *next;
1139
1140 list_for_each_entry_safe(entry, next, bitmap_list, list)
1141 list_del_init(&entry->list);
1142 }
1143
1144 static void noinline_for_stack
cleanup_write_cache_enospc(struct inode * inode,struct btrfs_io_ctl * io_ctl,struct extent_state ** cached_state)1145 cleanup_write_cache_enospc(struct inode *inode,
1146 struct btrfs_io_ctl *io_ctl,
1147 struct extent_state **cached_state)
1148 {
1149 io_ctl_drop_pages(io_ctl);
1150 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1151 i_size_read(inode) - 1, cached_state);
1152 }
1153
__btrfs_wait_cache_io(struct btrfs_root * root,struct btrfs_trans_handle * trans,struct btrfs_block_group_cache * block_group,struct btrfs_io_ctl * io_ctl,struct btrfs_path * path,u64 offset)1154 static int __btrfs_wait_cache_io(struct btrfs_root *root,
1155 struct btrfs_trans_handle *trans,
1156 struct btrfs_block_group_cache *block_group,
1157 struct btrfs_io_ctl *io_ctl,
1158 struct btrfs_path *path, u64 offset)
1159 {
1160 int ret;
1161 struct inode *inode = io_ctl->inode;
1162
1163 if (!inode)
1164 return 0;
1165
1166 /* Flush the dirty pages in the cache file. */
1167 ret = flush_dirty_cache(inode);
1168 if (ret)
1169 goto out;
1170
1171 /* Update the cache item to tell everyone this cache file is valid. */
1172 ret = update_cache_item(trans, root, inode, path, offset,
1173 io_ctl->entries, io_ctl->bitmaps);
1174 out:
1175 if (ret) {
1176 invalidate_inode_pages2(inode->i_mapping);
1177 BTRFS_I(inode)->generation = 0;
1178 if (block_group) {
1179 #ifdef DEBUG
1180 btrfs_err(root->fs_info,
1181 "failed to write free space cache for block group %llu",
1182 block_group->key.objectid);
1183 #endif
1184 }
1185 }
1186 btrfs_update_inode(trans, root, inode);
1187
1188 if (block_group) {
1189 /* the dirty list is protected by the dirty_bgs_lock */
1190 spin_lock(&trans->transaction->dirty_bgs_lock);
1191
1192 /* the disk_cache_state is protected by the block group lock */
1193 spin_lock(&block_group->lock);
1194
1195 /*
1196 * only mark this as written if we didn't get put back on
1197 * the dirty list while waiting for IO. Otherwise our
1198 * cache state won't be right, and we won't get written again
1199 */
1200 if (!ret && list_empty(&block_group->dirty_list))
1201 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1202 else if (ret)
1203 block_group->disk_cache_state = BTRFS_DC_ERROR;
1204
1205 spin_unlock(&block_group->lock);
1206 spin_unlock(&trans->transaction->dirty_bgs_lock);
1207 io_ctl->inode = NULL;
1208 iput(inode);
1209 }
1210
1211 return ret;
1212
1213 }
1214
btrfs_wait_cache_io_root(struct btrfs_root * root,struct btrfs_trans_handle * trans,struct btrfs_io_ctl * io_ctl,struct btrfs_path * path)1215 static int btrfs_wait_cache_io_root(struct btrfs_root *root,
1216 struct btrfs_trans_handle *trans,
1217 struct btrfs_io_ctl *io_ctl,
1218 struct btrfs_path *path)
1219 {
1220 return __btrfs_wait_cache_io(root, trans, NULL, io_ctl, path, 0);
1221 }
1222
btrfs_wait_cache_io(struct btrfs_trans_handle * trans,struct btrfs_block_group_cache * block_group,struct btrfs_path * path)1223 int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1224 struct btrfs_block_group_cache *block_group,
1225 struct btrfs_path *path)
1226 {
1227 return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
1228 block_group, &block_group->io_ctl,
1229 path, block_group->key.objectid);
1230 }
1231
1232 /**
1233 * __btrfs_write_out_cache - write out cached info to an inode
1234 * @root - the root the inode belongs to
1235 * @ctl - the free space cache we are going to write out
1236 * @block_group - the block_group for this cache if it belongs to a block_group
1237 * @trans - the trans handle
1238 *
1239 * This function writes out a free space cache struct to disk for quick recovery
1240 * on mount. This will return 0 if it was successful in writing the cache out,
1241 * or an errno if it was not.
1242 */
__btrfs_write_out_cache(struct btrfs_root * root,struct inode * inode,struct btrfs_free_space_ctl * ctl,struct btrfs_block_group_cache * block_group,struct btrfs_io_ctl * io_ctl,struct btrfs_trans_handle * trans)1243 static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
1244 struct btrfs_free_space_ctl *ctl,
1245 struct btrfs_block_group_cache *block_group,
1246 struct btrfs_io_ctl *io_ctl,
1247 struct btrfs_trans_handle *trans)
1248 {
1249 struct btrfs_fs_info *fs_info = root->fs_info;
1250 struct extent_state *cached_state = NULL;
1251 LIST_HEAD(bitmap_list);
1252 int entries = 0;
1253 int bitmaps = 0;
1254 int ret;
1255 int must_iput = 0;
1256
1257 if (!i_size_read(inode))
1258 return -EIO;
1259
1260 WARN_ON(io_ctl->pages);
1261 ret = io_ctl_init(io_ctl, inode, 1);
1262 if (ret)
1263 return ret;
1264
1265 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1266 down_write(&block_group->data_rwsem);
1267 spin_lock(&block_group->lock);
1268 if (block_group->delalloc_bytes) {
1269 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1270 spin_unlock(&block_group->lock);
1271 up_write(&block_group->data_rwsem);
1272 BTRFS_I(inode)->generation = 0;
1273 ret = 0;
1274 must_iput = 1;
1275 goto out;
1276 }
1277 spin_unlock(&block_group->lock);
1278 }
1279
1280 /* Lock all pages first so we can lock the extent safely. */
1281 ret = io_ctl_prepare_pages(io_ctl, inode, 0);
1282 if (ret)
1283 goto out_unlock;
1284
1285 lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1286 &cached_state);
1287
1288 io_ctl_set_generation(io_ctl, trans->transid);
1289
1290 mutex_lock(&ctl->cache_writeout_mutex);
1291 /* Write out the extent entries in the free space cache */
1292 spin_lock(&ctl->tree_lock);
1293 ret = write_cache_extent_entries(io_ctl, ctl,
1294 block_group, &entries, &bitmaps,
1295 &bitmap_list);
1296 if (ret)
1297 goto out_nospc_locked;
1298
1299 /*
1300 * Some spaces that are freed in the current transaction are pinned,
1301 * they will be added into free space cache after the transaction is
1302 * committed, we shouldn't lose them.
1303 *
1304 * If this changes while we are working we'll get added back to
1305 * the dirty list and redo it. No locking needed
1306 */
1307 ret = write_pinned_extent_entries(fs_info, block_group,
1308 io_ctl, &entries);
1309 if (ret)
1310 goto out_nospc_locked;
1311
1312 /*
1313 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1314 * locked while doing it because a concurrent trim can be manipulating
1315 * or freeing the bitmap.
1316 */
1317 ret = write_bitmap_entries(io_ctl, &bitmap_list);
1318 spin_unlock(&ctl->tree_lock);
1319 mutex_unlock(&ctl->cache_writeout_mutex);
1320 if (ret)
1321 goto out_nospc;
1322
1323 /* Zero out the rest of the pages just to make sure */
1324 io_ctl_zero_remaining_pages(io_ctl);
1325
1326 /* Everything is written out, now we dirty the pages in the file. */
1327 ret = btrfs_dirty_pages(inode, io_ctl->pages, io_ctl->num_pages, 0,
1328 i_size_read(inode), &cached_state);
1329 if (ret)
1330 goto out_nospc;
1331
1332 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1333 up_write(&block_group->data_rwsem);
1334 /*
1335 * Release the pages and unlock the extent, we will flush
1336 * them out later
1337 */
1338 io_ctl_drop_pages(io_ctl);
1339 io_ctl_free(io_ctl);
1340
1341 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1342 i_size_read(inode) - 1, &cached_state);
1343
1344 /*
1345 * at this point the pages are under IO and we're happy,
1346 * The caller is responsible for waiting on them and updating the
1347 * the cache and the inode
1348 */
1349 io_ctl->entries = entries;
1350 io_ctl->bitmaps = bitmaps;
1351
1352 ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1353 if (ret)
1354 goto out;
1355
1356 return 0;
1357
1358 out:
1359 io_ctl->inode = NULL;
1360 io_ctl_free(io_ctl);
1361 if (ret) {
1362 invalidate_inode_pages2(inode->i_mapping);
1363 BTRFS_I(inode)->generation = 0;
1364 }
1365 btrfs_update_inode(trans, root, inode);
1366 if (must_iput)
1367 iput(inode);
1368 return ret;
1369
1370 out_nospc_locked:
1371 cleanup_bitmap_list(&bitmap_list);
1372 spin_unlock(&ctl->tree_lock);
1373 mutex_unlock(&ctl->cache_writeout_mutex);
1374
1375 out_nospc:
1376 cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
1377
1378 out_unlock:
1379 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1380 up_write(&block_group->data_rwsem);
1381
1382 goto out;
1383 }
1384
btrfs_write_out_cache(struct btrfs_fs_info * fs_info,struct btrfs_trans_handle * trans,struct btrfs_block_group_cache * block_group,struct btrfs_path * path)1385 int btrfs_write_out_cache(struct btrfs_fs_info *fs_info,
1386 struct btrfs_trans_handle *trans,
1387 struct btrfs_block_group_cache *block_group,
1388 struct btrfs_path *path)
1389 {
1390 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1391 struct inode *inode;
1392 int ret = 0;
1393
1394 spin_lock(&block_group->lock);
1395 if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1396 spin_unlock(&block_group->lock);
1397 return 0;
1398 }
1399 spin_unlock(&block_group->lock);
1400
1401 inode = lookup_free_space_inode(fs_info, block_group, path);
1402 if (IS_ERR(inode))
1403 return 0;
1404
1405 ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl,
1406 block_group, &block_group->io_ctl, trans);
1407 if (ret) {
1408 #ifdef DEBUG
1409 btrfs_err(fs_info,
1410 "failed to write free space cache for block group %llu",
1411 block_group->key.objectid);
1412 #endif
1413 spin_lock(&block_group->lock);
1414 block_group->disk_cache_state = BTRFS_DC_ERROR;
1415 spin_unlock(&block_group->lock);
1416
1417 block_group->io_ctl.inode = NULL;
1418 iput(inode);
1419 }
1420
1421 /*
1422 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1423 * to wait for IO and put the inode
1424 */
1425
1426 return ret;
1427 }
1428
offset_to_bit(u64 bitmap_start,u32 unit,u64 offset)1429 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1430 u64 offset)
1431 {
1432 ASSERT(offset >= bitmap_start);
1433 offset -= bitmap_start;
1434 return (unsigned long)(div_u64(offset, unit));
1435 }
1436
bytes_to_bits(u64 bytes,u32 unit)1437 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1438 {
1439 return (unsigned long)(div_u64(bytes, unit));
1440 }
1441
offset_to_bitmap(struct btrfs_free_space_ctl * ctl,u64 offset)1442 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1443 u64 offset)
1444 {
1445 u64 bitmap_start;
1446 u64 bytes_per_bitmap;
1447
1448 bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1449 bitmap_start = offset - ctl->start;
1450 bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1451 bitmap_start *= bytes_per_bitmap;
1452 bitmap_start += ctl->start;
1453
1454 return bitmap_start;
1455 }
1456
tree_insert_offset(struct rb_root * root,u64 offset,struct rb_node * node,int bitmap)1457 static int tree_insert_offset(struct rb_root *root, u64 offset,
1458 struct rb_node *node, int bitmap)
1459 {
1460 struct rb_node **p = &root->rb_node;
1461 struct rb_node *parent = NULL;
1462 struct btrfs_free_space *info;
1463
1464 while (*p) {
1465 parent = *p;
1466 info = rb_entry(parent, struct btrfs_free_space, offset_index);
1467
1468 if (offset < info->offset) {
1469 p = &(*p)->rb_left;
1470 } else if (offset > info->offset) {
1471 p = &(*p)->rb_right;
1472 } else {
1473 /*
1474 * we could have a bitmap entry and an extent entry
1475 * share the same offset. If this is the case, we want
1476 * the extent entry to always be found first if we do a
1477 * linear search through the tree, since we want to have
1478 * the quickest allocation time, and allocating from an
1479 * extent is faster than allocating from a bitmap. So
1480 * if we're inserting a bitmap and we find an entry at
1481 * this offset, we want to go right, or after this entry
1482 * logically. If we are inserting an extent and we've
1483 * found a bitmap, we want to go left, or before
1484 * logically.
1485 */
1486 if (bitmap) {
1487 if (info->bitmap) {
1488 WARN_ON_ONCE(1);
1489 return -EEXIST;
1490 }
1491 p = &(*p)->rb_right;
1492 } else {
1493 if (!info->bitmap) {
1494 WARN_ON_ONCE(1);
1495 return -EEXIST;
1496 }
1497 p = &(*p)->rb_left;
1498 }
1499 }
1500 }
1501
1502 rb_link_node(node, parent, p);
1503 rb_insert_color(node, root);
1504
1505 return 0;
1506 }
1507
1508 /*
1509 * searches the tree for the given offset.
1510 *
1511 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1512 * want a section that has at least bytes size and comes at or after the given
1513 * offset.
1514 */
1515 static struct btrfs_free_space *
tree_search_offset(struct btrfs_free_space_ctl * ctl,u64 offset,int bitmap_only,int fuzzy)1516 tree_search_offset(struct btrfs_free_space_ctl *ctl,
1517 u64 offset, int bitmap_only, int fuzzy)
1518 {
1519 struct rb_node *n = ctl->free_space_offset.rb_node;
1520 struct btrfs_free_space *entry, *prev = NULL;
1521
1522 /* find entry that is closest to the 'offset' */
1523 while (1) {
1524 if (!n) {
1525 entry = NULL;
1526 break;
1527 }
1528
1529 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1530 prev = entry;
1531
1532 if (offset < entry->offset)
1533 n = n->rb_left;
1534 else if (offset > entry->offset)
1535 n = n->rb_right;
1536 else
1537 break;
1538 }
1539
1540 if (bitmap_only) {
1541 if (!entry)
1542 return NULL;
1543 if (entry->bitmap)
1544 return entry;
1545
1546 /*
1547 * bitmap entry and extent entry may share same offset,
1548 * in that case, bitmap entry comes after extent entry.
1549 */
1550 n = rb_next(n);
1551 if (!n)
1552 return NULL;
1553 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1554 if (entry->offset != offset)
1555 return NULL;
1556
1557 WARN_ON(!entry->bitmap);
1558 return entry;
1559 } else if (entry) {
1560 if (entry->bitmap) {
1561 /*
1562 * if previous extent entry covers the offset,
1563 * we should return it instead of the bitmap entry
1564 */
1565 n = rb_prev(&entry->offset_index);
1566 if (n) {
1567 prev = rb_entry(n, struct btrfs_free_space,
1568 offset_index);
1569 if (!prev->bitmap &&
1570 prev->offset + prev->bytes > offset)
1571 entry = prev;
1572 }
1573 }
1574 return entry;
1575 }
1576
1577 if (!prev)
1578 return NULL;
1579
1580 /* find last entry before the 'offset' */
1581 entry = prev;
1582 if (entry->offset > offset) {
1583 n = rb_prev(&entry->offset_index);
1584 if (n) {
1585 entry = rb_entry(n, struct btrfs_free_space,
1586 offset_index);
1587 ASSERT(entry->offset <= offset);
1588 } else {
1589 if (fuzzy)
1590 return entry;
1591 else
1592 return NULL;
1593 }
1594 }
1595
1596 if (entry->bitmap) {
1597 n = rb_prev(&entry->offset_index);
1598 if (n) {
1599 prev = rb_entry(n, struct btrfs_free_space,
1600 offset_index);
1601 if (!prev->bitmap &&
1602 prev->offset + prev->bytes > offset)
1603 return prev;
1604 }
1605 if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1606 return entry;
1607 } else if (entry->offset + entry->bytes > offset)
1608 return entry;
1609
1610 if (!fuzzy)
1611 return NULL;
1612
1613 while (1) {
1614 if (entry->bitmap) {
1615 if (entry->offset + BITS_PER_BITMAP *
1616 ctl->unit > offset)
1617 break;
1618 } else {
1619 if (entry->offset + entry->bytes > offset)
1620 break;
1621 }
1622
1623 n = rb_next(&entry->offset_index);
1624 if (!n)
1625 return NULL;
1626 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1627 }
1628 return entry;
1629 }
1630
1631 static inline void
__unlink_free_space(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info)1632 __unlink_free_space(struct btrfs_free_space_ctl *ctl,
1633 struct btrfs_free_space *info)
1634 {
1635 rb_erase(&info->offset_index, &ctl->free_space_offset);
1636 ctl->free_extents--;
1637 }
1638
unlink_free_space(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info)1639 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1640 struct btrfs_free_space *info)
1641 {
1642 __unlink_free_space(ctl, info);
1643 ctl->free_space -= info->bytes;
1644 }
1645
link_free_space(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info)1646 static int link_free_space(struct btrfs_free_space_ctl *ctl,
1647 struct btrfs_free_space *info)
1648 {
1649 int ret = 0;
1650
1651 ASSERT(info->bytes || info->bitmap);
1652 ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1653 &info->offset_index, (info->bitmap != NULL));
1654 if (ret)
1655 return ret;
1656
1657 ctl->free_space += info->bytes;
1658 ctl->free_extents++;
1659 return ret;
1660 }
1661
recalculate_thresholds(struct btrfs_free_space_ctl * ctl)1662 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1663 {
1664 struct btrfs_block_group_cache *block_group = ctl->private;
1665 u64 max_bytes;
1666 u64 bitmap_bytes;
1667 u64 extent_bytes;
1668 u64 size = block_group->key.offset;
1669 u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
1670 u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1671
1672 max_bitmaps = max_t(u64, max_bitmaps, 1);
1673
1674 ASSERT(ctl->total_bitmaps <= max_bitmaps);
1675
1676 /*
1677 * The goal is to keep the total amount of memory used per 1gb of space
1678 * at or below 32k, so we need to adjust how much memory we allow to be
1679 * used by extent based free space tracking
1680 */
1681 if (size < SZ_1G)
1682 max_bytes = MAX_CACHE_BYTES_PER_GIG;
1683 else
1684 max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
1685
1686 /*
1687 * we want to account for 1 more bitmap than what we have so we can make
1688 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1689 * we add more bitmaps.
1690 */
1691 bitmap_bytes = (ctl->total_bitmaps + 1) * ctl->unit;
1692
1693 if (bitmap_bytes >= max_bytes) {
1694 ctl->extents_thresh = 0;
1695 return;
1696 }
1697
1698 /*
1699 * we want the extent entry threshold to always be at most 1/2 the max
1700 * bytes we can have, or whatever is less than that.
1701 */
1702 extent_bytes = max_bytes - bitmap_bytes;
1703 extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
1704
1705 ctl->extents_thresh =
1706 div_u64(extent_bytes, sizeof(struct btrfs_free_space));
1707 }
1708
__bitmap_clear_bits(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,u64 offset,u64 bytes)1709 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1710 struct btrfs_free_space *info,
1711 u64 offset, u64 bytes)
1712 {
1713 unsigned long start, count;
1714
1715 start = offset_to_bit(info->offset, ctl->unit, offset);
1716 count = bytes_to_bits(bytes, ctl->unit);
1717 ASSERT(start + count <= BITS_PER_BITMAP);
1718
1719 bitmap_clear(info->bitmap, start, count);
1720
1721 info->bytes -= bytes;
1722 if (info->max_extent_size > ctl->unit)
1723 info->max_extent_size = 0;
1724 }
1725
bitmap_clear_bits(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,u64 offset,u64 bytes)1726 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1727 struct btrfs_free_space *info, u64 offset,
1728 u64 bytes)
1729 {
1730 __bitmap_clear_bits(ctl, info, offset, bytes);
1731 ctl->free_space -= bytes;
1732 }
1733
bitmap_set_bits(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,u64 offset,u64 bytes)1734 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1735 struct btrfs_free_space *info, u64 offset,
1736 u64 bytes)
1737 {
1738 unsigned long start, count;
1739
1740 start = offset_to_bit(info->offset, ctl->unit, offset);
1741 count = bytes_to_bits(bytes, ctl->unit);
1742 ASSERT(start + count <= BITS_PER_BITMAP);
1743
1744 bitmap_set(info->bitmap, start, count);
1745
1746 info->bytes += bytes;
1747 ctl->free_space += bytes;
1748 }
1749
1750 /*
1751 * If we can not find suitable extent, we will use bytes to record
1752 * the size of the max extent.
1753 */
search_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * bitmap_info,u64 * offset,u64 * bytes,bool for_alloc)1754 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1755 struct btrfs_free_space *bitmap_info, u64 *offset,
1756 u64 *bytes, bool for_alloc)
1757 {
1758 unsigned long found_bits = 0;
1759 unsigned long max_bits = 0;
1760 unsigned long bits, i;
1761 unsigned long next_zero;
1762 unsigned long extent_bits;
1763
1764 /*
1765 * Skip searching the bitmap if we don't have a contiguous section that
1766 * is large enough for this allocation.
1767 */
1768 if (for_alloc &&
1769 bitmap_info->max_extent_size &&
1770 bitmap_info->max_extent_size < *bytes) {
1771 *bytes = bitmap_info->max_extent_size;
1772 return -1;
1773 }
1774
1775 i = offset_to_bit(bitmap_info->offset, ctl->unit,
1776 max_t(u64, *offset, bitmap_info->offset));
1777 bits = bytes_to_bits(*bytes, ctl->unit);
1778
1779 for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1780 if (for_alloc && bits == 1) {
1781 found_bits = 1;
1782 break;
1783 }
1784 next_zero = find_next_zero_bit(bitmap_info->bitmap,
1785 BITS_PER_BITMAP, i);
1786 extent_bits = next_zero - i;
1787 if (extent_bits >= bits) {
1788 found_bits = extent_bits;
1789 break;
1790 } else if (extent_bits > max_bits) {
1791 max_bits = extent_bits;
1792 }
1793 i = next_zero;
1794 }
1795
1796 if (found_bits) {
1797 *offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1798 *bytes = (u64)(found_bits) * ctl->unit;
1799 return 0;
1800 }
1801
1802 *bytes = (u64)(max_bits) * ctl->unit;
1803 bitmap_info->max_extent_size = *bytes;
1804 return -1;
1805 }
1806
get_max_extent_size(struct btrfs_free_space * entry)1807 static inline u64 get_max_extent_size(struct btrfs_free_space *entry)
1808 {
1809 if (entry->bitmap)
1810 return entry->max_extent_size;
1811 return entry->bytes;
1812 }
1813
1814 /* Cache the size of the max extent in bytes */
1815 static struct btrfs_free_space *
find_free_space(struct btrfs_free_space_ctl * ctl,u64 * offset,u64 * bytes,unsigned long align,u64 * max_extent_size)1816 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1817 unsigned long align, u64 *max_extent_size)
1818 {
1819 struct btrfs_free_space *entry;
1820 struct rb_node *node;
1821 u64 tmp;
1822 u64 align_off;
1823 int ret;
1824
1825 if (!ctl->free_space_offset.rb_node)
1826 goto out;
1827
1828 entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1829 if (!entry)
1830 goto out;
1831
1832 for (node = &entry->offset_index; node; node = rb_next(node)) {
1833 entry = rb_entry(node, struct btrfs_free_space, offset_index);
1834 if (entry->bytes < *bytes) {
1835 *max_extent_size = max(get_max_extent_size(entry),
1836 *max_extent_size);
1837 continue;
1838 }
1839
1840 /* make sure the space returned is big enough
1841 * to match our requested alignment
1842 */
1843 if (*bytes >= align) {
1844 tmp = entry->offset - ctl->start + align - 1;
1845 tmp = div64_u64(tmp, align);
1846 tmp = tmp * align + ctl->start;
1847 align_off = tmp - entry->offset;
1848 } else {
1849 align_off = 0;
1850 tmp = entry->offset;
1851 }
1852
1853 if (entry->bytes < *bytes + align_off) {
1854 *max_extent_size = max(get_max_extent_size(entry),
1855 *max_extent_size);
1856 continue;
1857 }
1858
1859 if (entry->bitmap) {
1860 u64 size = *bytes;
1861
1862 ret = search_bitmap(ctl, entry, &tmp, &size, true);
1863 if (!ret) {
1864 *offset = tmp;
1865 *bytes = size;
1866 return entry;
1867 } else {
1868 *max_extent_size =
1869 max(get_max_extent_size(entry),
1870 *max_extent_size);
1871 }
1872 continue;
1873 }
1874
1875 *offset = tmp;
1876 *bytes = entry->bytes - align_off;
1877 return entry;
1878 }
1879 out:
1880 return NULL;
1881 }
1882
add_new_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,u64 offset)1883 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1884 struct btrfs_free_space *info, u64 offset)
1885 {
1886 info->offset = offset_to_bitmap(ctl, offset);
1887 info->bytes = 0;
1888 INIT_LIST_HEAD(&info->list);
1889 link_free_space(ctl, info);
1890 ctl->total_bitmaps++;
1891
1892 ctl->op->recalc_thresholds(ctl);
1893 }
1894
free_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * bitmap_info)1895 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1896 struct btrfs_free_space *bitmap_info)
1897 {
1898 unlink_free_space(ctl, bitmap_info);
1899 kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap);
1900 kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1901 ctl->total_bitmaps--;
1902 ctl->op->recalc_thresholds(ctl);
1903 }
1904
remove_from_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * bitmap_info,u64 * offset,u64 * bytes)1905 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1906 struct btrfs_free_space *bitmap_info,
1907 u64 *offset, u64 *bytes)
1908 {
1909 u64 end;
1910 u64 search_start, search_bytes;
1911 int ret;
1912
1913 again:
1914 end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1915
1916 /*
1917 * We need to search for bits in this bitmap. We could only cover some
1918 * of the extent in this bitmap thanks to how we add space, so we need
1919 * to search for as much as it as we can and clear that amount, and then
1920 * go searching for the next bit.
1921 */
1922 search_start = *offset;
1923 search_bytes = ctl->unit;
1924 search_bytes = min(search_bytes, end - search_start + 1);
1925 ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
1926 false);
1927 if (ret < 0 || search_start != *offset)
1928 return -EINVAL;
1929
1930 /* We may have found more bits than what we need */
1931 search_bytes = min(search_bytes, *bytes);
1932
1933 /* Cannot clear past the end of the bitmap */
1934 search_bytes = min(search_bytes, end - search_start + 1);
1935
1936 bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
1937 *offset += search_bytes;
1938 *bytes -= search_bytes;
1939
1940 if (*bytes) {
1941 struct rb_node *next = rb_next(&bitmap_info->offset_index);
1942 if (!bitmap_info->bytes)
1943 free_bitmap(ctl, bitmap_info);
1944
1945 /*
1946 * no entry after this bitmap, but we still have bytes to
1947 * remove, so something has gone wrong.
1948 */
1949 if (!next)
1950 return -EINVAL;
1951
1952 bitmap_info = rb_entry(next, struct btrfs_free_space,
1953 offset_index);
1954
1955 /*
1956 * if the next entry isn't a bitmap we need to return to let the
1957 * extent stuff do its work.
1958 */
1959 if (!bitmap_info->bitmap)
1960 return -EAGAIN;
1961
1962 /*
1963 * Ok the next item is a bitmap, but it may not actually hold
1964 * the information for the rest of this free space stuff, so
1965 * look for it, and if we don't find it return so we can try
1966 * everything over again.
1967 */
1968 search_start = *offset;
1969 search_bytes = ctl->unit;
1970 ret = search_bitmap(ctl, bitmap_info, &search_start,
1971 &search_bytes, false);
1972 if (ret < 0 || search_start != *offset)
1973 return -EAGAIN;
1974
1975 goto again;
1976 } else if (!bitmap_info->bytes)
1977 free_bitmap(ctl, bitmap_info);
1978
1979 return 0;
1980 }
1981
add_bytes_to_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,u64 offset,u64 bytes)1982 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
1983 struct btrfs_free_space *info, u64 offset,
1984 u64 bytes)
1985 {
1986 u64 bytes_to_set = 0;
1987 u64 end;
1988
1989 end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
1990
1991 bytes_to_set = min(end - offset, bytes);
1992
1993 bitmap_set_bits(ctl, info, offset, bytes_to_set);
1994
1995 /*
1996 * We set some bytes, we have no idea what the max extent size is
1997 * anymore.
1998 */
1999 info->max_extent_size = 0;
2000
2001 return bytes_to_set;
2002
2003 }
2004
use_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info)2005 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
2006 struct btrfs_free_space *info)
2007 {
2008 struct btrfs_block_group_cache *block_group = ctl->private;
2009 struct btrfs_fs_info *fs_info = block_group->fs_info;
2010 bool forced = false;
2011
2012 #ifdef CONFIG_BTRFS_DEBUG
2013 if (btrfs_should_fragment_free_space(block_group))
2014 forced = true;
2015 #endif
2016
2017 /*
2018 * If we are below the extents threshold then we can add this as an
2019 * extent, and don't have to deal with the bitmap
2020 */
2021 if (!forced && ctl->free_extents < ctl->extents_thresh) {
2022 /*
2023 * If this block group has some small extents we don't want to
2024 * use up all of our free slots in the cache with them, we want
2025 * to reserve them to larger extents, however if we have plenty
2026 * of cache left then go ahead an dadd them, no sense in adding
2027 * the overhead of a bitmap if we don't have to.
2028 */
2029 if (info->bytes <= fs_info->sectorsize * 4) {
2030 if (ctl->free_extents * 2 <= ctl->extents_thresh)
2031 return false;
2032 } else {
2033 return false;
2034 }
2035 }
2036
2037 /*
2038 * The original block groups from mkfs can be really small, like 8
2039 * megabytes, so don't bother with a bitmap for those entries. However
2040 * some block groups can be smaller than what a bitmap would cover but
2041 * are still large enough that they could overflow the 32k memory limit,
2042 * so allow those block groups to still be allowed to have a bitmap
2043 * entry.
2044 */
2045 if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->key.offset)
2046 return false;
2047
2048 return true;
2049 }
2050
2051 static const struct btrfs_free_space_op free_space_op = {
2052 .recalc_thresholds = recalculate_thresholds,
2053 .use_bitmap = use_bitmap,
2054 };
2055
insert_into_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info)2056 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2057 struct btrfs_free_space *info)
2058 {
2059 struct btrfs_free_space *bitmap_info;
2060 struct btrfs_block_group_cache *block_group = NULL;
2061 int added = 0;
2062 u64 bytes, offset, bytes_added;
2063 int ret;
2064
2065 bytes = info->bytes;
2066 offset = info->offset;
2067
2068 if (!ctl->op->use_bitmap(ctl, info))
2069 return 0;
2070
2071 if (ctl->op == &free_space_op)
2072 block_group = ctl->private;
2073 again:
2074 /*
2075 * Since we link bitmaps right into the cluster we need to see if we
2076 * have a cluster here, and if so and it has our bitmap we need to add
2077 * the free space to that bitmap.
2078 */
2079 if (block_group && !list_empty(&block_group->cluster_list)) {
2080 struct btrfs_free_cluster *cluster;
2081 struct rb_node *node;
2082 struct btrfs_free_space *entry;
2083
2084 cluster = list_entry(block_group->cluster_list.next,
2085 struct btrfs_free_cluster,
2086 block_group_list);
2087 spin_lock(&cluster->lock);
2088 node = rb_first(&cluster->root);
2089 if (!node) {
2090 spin_unlock(&cluster->lock);
2091 goto no_cluster_bitmap;
2092 }
2093
2094 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2095 if (!entry->bitmap) {
2096 spin_unlock(&cluster->lock);
2097 goto no_cluster_bitmap;
2098 }
2099
2100 if (entry->offset == offset_to_bitmap(ctl, offset)) {
2101 bytes_added = add_bytes_to_bitmap(ctl, entry,
2102 offset, bytes);
2103 bytes -= bytes_added;
2104 offset += bytes_added;
2105 }
2106 spin_unlock(&cluster->lock);
2107 if (!bytes) {
2108 ret = 1;
2109 goto out;
2110 }
2111 }
2112
2113 no_cluster_bitmap:
2114 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2115 1, 0);
2116 if (!bitmap_info) {
2117 ASSERT(added == 0);
2118 goto new_bitmap;
2119 }
2120
2121 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
2122 bytes -= bytes_added;
2123 offset += bytes_added;
2124 added = 0;
2125
2126 if (!bytes) {
2127 ret = 1;
2128 goto out;
2129 } else
2130 goto again;
2131
2132 new_bitmap:
2133 if (info && info->bitmap) {
2134 add_new_bitmap(ctl, info, offset);
2135 added = 1;
2136 info = NULL;
2137 goto again;
2138 } else {
2139 spin_unlock(&ctl->tree_lock);
2140
2141 /* no pre-allocated info, allocate a new one */
2142 if (!info) {
2143 info = kmem_cache_zalloc(btrfs_free_space_cachep,
2144 GFP_NOFS);
2145 if (!info) {
2146 spin_lock(&ctl->tree_lock);
2147 ret = -ENOMEM;
2148 goto out;
2149 }
2150 }
2151
2152 /* allocate the bitmap */
2153 info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep,
2154 GFP_NOFS);
2155 spin_lock(&ctl->tree_lock);
2156 if (!info->bitmap) {
2157 ret = -ENOMEM;
2158 goto out;
2159 }
2160 goto again;
2161 }
2162
2163 out:
2164 if (info) {
2165 if (info->bitmap)
2166 kmem_cache_free(btrfs_free_space_bitmap_cachep,
2167 info->bitmap);
2168 kmem_cache_free(btrfs_free_space_cachep, info);
2169 }
2170
2171 return ret;
2172 }
2173
try_merge_free_space(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,bool update_stat)2174 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2175 struct btrfs_free_space *info, bool update_stat)
2176 {
2177 struct btrfs_free_space *left_info = NULL;
2178 struct btrfs_free_space *right_info;
2179 bool merged = false;
2180 u64 offset = info->offset;
2181 u64 bytes = info->bytes;
2182
2183 /*
2184 * first we want to see if there is free space adjacent to the range we
2185 * are adding, if there is remove that struct and add a new one to
2186 * cover the entire range
2187 */
2188 right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2189 if (right_info && rb_prev(&right_info->offset_index))
2190 left_info = rb_entry(rb_prev(&right_info->offset_index),
2191 struct btrfs_free_space, offset_index);
2192 else if (!right_info)
2193 left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2194
2195 if (right_info && !right_info->bitmap) {
2196 if (update_stat)
2197 unlink_free_space(ctl, right_info);
2198 else
2199 __unlink_free_space(ctl, right_info);
2200 info->bytes += right_info->bytes;
2201 kmem_cache_free(btrfs_free_space_cachep, right_info);
2202 merged = true;
2203 }
2204
2205 if (left_info && !left_info->bitmap &&
2206 left_info->offset + left_info->bytes == offset) {
2207 if (update_stat)
2208 unlink_free_space(ctl, left_info);
2209 else
2210 __unlink_free_space(ctl, left_info);
2211 info->offset = left_info->offset;
2212 info->bytes += left_info->bytes;
2213 kmem_cache_free(btrfs_free_space_cachep, left_info);
2214 merged = true;
2215 }
2216
2217 return merged;
2218 }
2219
steal_from_bitmap_to_end(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,bool update_stat)2220 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2221 struct btrfs_free_space *info,
2222 bool update_stat)
2223 {
2224 struct btrfs_free_space *bitmap;
2225 unsigned long i;
2226 unsigned long j;
2227 const u64 end = info->offset + info->bytes;
2228 const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2229 u64 bytes;
2230
2231 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2232 if (!bitmap)
2233 return false;
2234
2235 i = offset_to_bit(bitmap->offset, ctl->unit, end);
2236 j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2237 if (j == i)
2238 return false;
2239 bytes = (j - i) * ctl->unit;
2240 info->bytes += bytes;
2241
2242 if (update_stat)
2243 bitmap_clear_bits(ctl, bitmap, end, bytes);
2244 else
2245 __bitmap_clear_bits(ctl, bitmap, end, bytes);
2246
2247 if (!bitmap->bytes)
2248 free_bitmap(ctl, bitmap);
2249
2250 return true;
2251 }
2252
steal_from_bitmap_to_front(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,bool update_stat)2253 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2254 struct btrfs_free_space *info,
2255 bool update_stat)
2256 {
2257 struct btrfs_free_space *bitmap;
2258 u64 bitmap_offset;
2259 unsigned long i;
2260 unsigned long j;
2261 unsigned long prev_j;
2262 u64 bytes;
2263
2264 bitmap_offset = offset_to_bitmap(ctl, info->offset);
2265 /* If we're on a boundary, try the previous logical bitmap. */
2266 if (bitmap_offset == info->offset) {
2267 if (info->offset == 0)
2268 return false;
2269 bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2270 }
2271
2272 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2273 if (!bitmap)
2274 return false;
2275
2276 i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2277 j = 0;
2278 prev_j = (unsigned long)-1;
2279 for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2280 if (j > i)
2281 break;
2282 prev_j = j;
2283 }
2284 if (prev_j == i)
2285 return false;
2286
2287 if (prev_j == (unsigned long)-1)
2288 bytes = (i + 1) * ctl->unit;
2289 else
2290 bytes = (i - prev_j) * ctl->unit;
2291
2292 info->offset -= bytes;
2293 info->bytes += bytes;
2294
2295 if (update_stat)
2296 bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2297 else
2298 __bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2299
2300 if (!bitmap->bytes)
2301 free_bitmap(ctl, bitmap);
2302
2303 return true;
2304 }
2305
2306 /*
2307 * We prefer always to allocate from extent entries, both for clustered and
2308 * non-clustered allocation requests. So when attempting to add a new extent
2309 * entry, try to see if there's adjacent free space in bitmap entries, and if
2310 * there is, migrate that space from the bitmaps to the extent.
2311 * Like this we get better chances of satisfying space allocation requests
2312 * because we attempt to satisfy them based on a single cache entry, and never
2313 * on 2 or more entries - even if the entries represent a contiguous free space
2314 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2315 * ends).
2316 */
steal_from_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,bool update_stat)2317 static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2318 struct btrfs_free_space *info,
2319 bool update_stat)
2320 {
2321 /*
2322 * Only work with disconnected entries, as we can change their offset,
2323 * and must be extent entries.
2324 */
2325 ASSERT(!info->bitmap);
2326 ASSERT(RB_EMPTY_NODE(&info->offset_index));
2327
2328 if (ctl->total_bitmaps > 0) {
2329 bool stole_end;
2330 bool stole_front = false;
2331
2332 stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2333 if (ctl->total_bitmaps > 0)
2334 stole_front = steal_from_bitmap_to_front(ctl, info,
2335 update_stat);
2336
2337 if (stole_end || stole_front)
2338 try_merge_free_space(ctl, info, update_stat);
2339 }
2340 }
2341
__btrfs_add_free_space(struct btrfs_fs_info * fs_info,struct btrfs_free_space_ctl * ctl,u64 offset,u64 bytes)2342 int __btrfs_add_free_space(struct btrfs_fs_info *fs_info,
2343 struct btrfs_free_space_ctl *ctl,
2344 u64 offset, u64 bytes)
2345 {
2346 struct btrfs_free_space *info;
2347 int ret = 0;
2348
2349 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2350 if (!info)
2351 return -ENOMEM;
2352
2353 info->offset = offset;
2354 info->bytes = bytes;
2355 RB_CLEAR_NODE(&info->offset_index);
2356
2357 spin_lock(&ctl->tree_lock);
2358
2359 if (try_merge_free_space(ctl, info, true))
2360 goto link;
2361
2362 /*
2363 * There was no extent directly to the left or right of this new
2364 * extent then we know we're going to have to allocate a new extent, so
2365 * before we do that see if we need to drop this into a bitmap
2366 */
2367 ret = insert_into_bitmap(ctl, info);
2368 if (ret < 0) {
2369 goto out;
2370 } else if (ret) {
2371 ret = 0;
2372 goto out;
2373 }
2374 link:
2375 /*
2376 * Only steal free space from adjacent bitmaps if we're sure we're not
2377 * going to add the new free space to existing bitmap entries - because
2378 * that would mean unnecessary work that would be reverted. Therefore
2379 * attempt to steal space from bitmaps if we're adding an extent entry.
2380 */
2381 steal_from_bitmap(ctl, info, true);
2382
2383 ret = link_free_space(ctl, info);
2384 if (ret)
2385 kmem_cache_free(btrfs_free_space_cachep, info);
2386 out:
2387 spin_unlock(&ctl->tree_lock);
2388
2389 if (ret) {
2390 btrfs_crit(fs_info, "unable to add free space :%d", ret);
2391 ASSERT(ret != -EEXIST);
2392 }
2393
2394 return ret;
2395 }
2396
btrfs_remove_free_space(struct btrfs_block_group_cache * block_group,u64 offset,u64 bytes)2397 int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
2398 u64 offset, u64 bytes)
2399 {
2400 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2401 struct btrfs_free_space *info;
2402 int ret;
2403 bool re_search = false;
2404
2405 spin_lock(&ctl->tree_lock);
2406
2407 again:
2408 ret = 0;
2409 if (!bytes)
2410 goto out_lock;
2411
2412 info = tree_search_offset(ctl, offset, 0, 0);
2413 if (!info) {
2414 /*
2415 * oops didn't find an extent that matched the space we wanted
2416 * to remove, look for a bitmap instead
2417 */
2418 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2419 1, 0);
2420 if (!info) {
2421 /*
2422 * If we found a partial bit of our free space in a
2423 * bitmap but then couldn't find the other part this may
2424 * be a problem, so WARN about it.
2425 */
2426 WARN_ON(re_search);
2427 goto out_lock;
2428 }
2429 }
2430
2431 re_search = false;
2432 if (!info->bitmap) {
2433 unlink_free_space(ctl, info);
2434 if (offset == info->offset) {
2435 u64 to_free = min(bytes, info->bytes);
2436
2437 info->bytes -= to_free;
2438 info->offset += to_free;
2439 if (info->bytes) {
2440 ret = link_free_space(ctl, info);
2441 WARN_ON(ret);
2442 } else {
2443 kmem_cache_free(btrfs_free_space_cachep, info);
2444 }
2445
2446 offset += to_free;
2447 bytes -= to_free;
2448 goto again;
2449 } else {
2450 u64 old_end = info->bytes + info->offset;
2451
2452 info->bytes = offset - info->offset;
2453 ret = link_free_space(ctl, info);
2454 WARN_ON(ret);
2455 if (ret)
2456 goto out_lock;
2457
2458 /* Not enough bytes in this entry to satisfy us */
2459 if (old_end < offset + bytes) {
2460 bytes -= old_end - offset;
2461 offset = old_end;
2462 goto again;
2463 } else if (old_end == offset + bytes) {
2464 /* all done */
2465 goto out_lock;
2466 }
2467 spin_unlock(&ctl->tree_lock);
2468
2469 ret = btrfs_add_free_space(block_group, offset + bytes,
2470 old_end - (offset + bytes));
2471 WARN_ON(ret);
2472 goto out;
2473 }
2474 }
2475
2476 ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2477 if (ret == -EAGAIN) {
2478 re_search = true;
2479 goto again;
2480 }
2481 out_lock:
2482 spin_unlock(&ctl->tree_lock);
2483 out:
2484 return ret;
2485 }
2486
btrfs_dump_free_space(struct btrfs_block_group_cache * block_group,u64 bytes)2487 void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
2488 u64 bytes)
2489 {
2490 struct btrfs_fs_info *fs_info = block_group->fs_info;
2491 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2492 struct btrfs_free_space *info;
2493 struct rb_node *n;
2494 int count = 0;
2495
2496 spin_lock(&ctl->tree_lock);
2497 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2498 info = rb_entry(n, struct btrfs_free_space, offset_index);
2499 if (info->bytes >= bytes && !block_group->ro)
2500 count++;
2501 btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2502 info->offset, info->bytes,
2503 (info->bitmap) ? "yes" : "no");
2504 }
2505 spin_unlock(&ctl->tree_lock);
2506 btrfs_info(fs_info, "block group has cluster?: %s",
2507 list_empty(&block_group->cluster_list) ? "no" : "yes");
2508 btrfs_info(fs_info,
2509 "%d blocks of free space at or bigger than bytes is", count);
2510 }
2511
btrfs_init_free_space_ctl(struct btrfs_block_group_cache * block_group)2512 void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
2513 {
2514 struct btrfs_fs_info *fs_info = block_group->fs_info;
2515 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2516
2517 spin_lock_init(&ctl->tree_lock);
2518 ctl->unit = fs_info->sectorsize;
2519 ctl->start = block_group->key.objectid;
2520 ctl->private = block_group;
2521 ctl->op = &free_space_op;
2522 INIT_LIST_HEAD(&ctl->trimming_ranges);
2523 mutex_init(&ctl->cache_writeout_mutex);
2524
2525 /*
2526 * we only want to have 32k of ram per block group for keeping
2527 * track of free space, and if we pass 1/2 of that we want to
2528 * start converting things over to using bitmaps
2529 */
2530 ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
2531 }
2532
2533 /*
2534 * for a given cluster, put all of its extents back into the free
2535 * space cache. If the block group passed doesn't match the block group
2536 * pointed to by the cluster, someone else raced in and freed the
2537 * cluster already. In that case, we just return without changing anything
2538 */
2539 static int
__btrfs_return_cluster_to_free_space(struct btrfs_block_group_cache * block_group,struct btrfs_free_cluster * cluster)2540 __btrfs_return_cluster_to_free_space(
2541 struct btrfs_block_group_cache *block_group,
2542 struct btrfs_free_cluster *cluster)
2543 {
2544 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2545 struct btrfs_free_space *entry;
2546 struct rb_node *node;
2547
2548 spin_lock(&cluster->lock);
2549 if (cluster->block_group != block_group)
2550 goto out;
2551
2552 cluster->block_group = NULL;
2553 cluster->window_start = 0;
2554 list_del_init(&cluster->block_group_list);
2555
2556 node = rb_first(&cluster->root);
2557 while (node) {
2558 bool bitmap;
2559
2560 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2561 node = rb_next(&entry->offset_index);
2562 rb_erase(&entry->offset_index, &cluster->root);
2563 RB_CLEAR_NODE(&entry->offset_index);
2564
2565 bitmap = (entry->bitmap != NULL);
2566 if (!bitmap) {
2567 try_merge_free_space(ctl, entry, false);
2568 steal_from_bitmap(ctl, entry, false);
2569 }
2570 tree_insert_offset(&ctl->free_space_offset,
2571 entry->offset, &entry->offset_index, bitmap);
2572 }
2573 cluster->root = RB_ROOT;
2574
2575 out:
2576 spin_unlock(&cluster->lock);
2577 btrfs_put_block_group(block_group);
2578 return 0;
2579 }
2580
__btrfs_remove_free_space_cache_locked(struct btrfs_free_space_ctl * ctl)2581 static void __btrfs_remove_free_space_cache_locked(
2582 struct btrfs_free_space_ctl *ctl)
2583 {
2584 struct btrfs_free_space *info;
2585 struct rb_node *node;
2586
2587 while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2588 info = rb_entry(node, struct btrfs_free_space, offset_index);
2589 if (!info->bitmap) {
2590 unlink_free_space(ctl, info);
2591 kmem_cache_free(btrfs_free_space_cachep, info);
2592 } else {
2593 free_bitmap(ctl, info);
2594 }
2595
2596 cond_resched_lock(&ctl->tree_lock);
2597 }
2598 }
2599
__btrfs_remove_free_space_cache(struct btrfs_free_space_ctl * ctl)2600 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2601 {
2602 spin_lock(&ctl->tree_lock);
2603 __btrfs_remove_free_space_cache_locked(ctl);
2604 spin_unlock(&ctl->tree_lock);
2605 }
2606
btrfs_remove_free_space_cache(struct btrfs_block_group_cache * block_group)2607 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
2608 {
2609 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2610 struct btrfs_free_cluster *cluster;
2611 struct list_head *head;
2612
2613 spin_lock(&ctl->tree_lock);
2614 while ((head = block_group->cluster_list.next) !=
2615 &block_group->cluster_list) {
2616 cluster = list_entry(head, struct btrfs_free_cluster,
2617 block_group_list);
2618
2619 WARN_ON(cluster->block_group != block_group);
2620 __btrfs_return_cluster_to_free_space(block_group, cluster);
2621
2622 cond_resched_lock(&ctl->tree_lock);
2623 }
2624 __btrfs_remove_free_space_cache_locked(ctl);
2625 spin_unlock(&ctl->tree_lock);
2626
2627 }
2628
btrfs_find_space_for_alloc(struct btrfs_block_group_cache * block_group,u64 offset,u64 bytes,u64 empty_size,u64 * max_extent_size)2629 u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
2630 u64 offset, u64 bytes, u64 empty_size,
2631 u64 *max_extent_size)
2632 {
2633 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2634 struct btrfs_free_space *entry = NULL;
2635 u64 bytes_search = bytes + empty_size;
2636 u64 ret = 0;
2637 u64 align_gap = 0;
2638 u64 align_gap_len = 0;
2639
2640 spin_lock(&ctl->tree_lock);
2641 entry = find_free_space(ctl, &offset, &bytes_search,
2642 block_group->full_stripe_len, max_extent_size);
2643 if (!entry)
2644 goto out;
2645
2646 ret = offset;
2647 if (entry->bitmap) {
2648 bitmap_clear_bits(ctl, entry, offset, bytes);
2649 if (!entry->bytes)
2650 free_bitmap(ctl, entry);
2651 } else {
2652 unlink_free_space(ctl, entry);
2653 align_gap_len = offset - entry->offset;
2654 align_gap = entry->offset;
2655
2656 entry->offset = offset + bytes;
2657 WARN_ON(entry->bytes < bytes + align_gap_len);
2658
2659 entry->bytes -= bytes + align_gap_len;
2660 if (!entry->bytes)
2661 kmem_cache_free(btrfs_free_space_cachep, entry);
2662 else
2663 link_free_space(ctl, entry);
2664 }
2665 out:
2666 spin_unlock(&ctl->tree_lock);
2667
2668 if (align_gap_len)
2669 __btrfs_add_free_space(block_group->fs_info, ctl,
2670 align_gap, align_gap_len);
2671 return ret;
2672 }
2673
2674 /*
2675 * given a cluster, put all of its extents back into the free space
2676 * cache. If a block group is passed, this function will only free
2677 * a cluster that belongs to the passed block group.
2678 *
2679 * Otherwise, it'll get a reference on the block group pointed to by the
2680 * cluster and remove the cluster from it.
2681 */
btrfs_return_cluster_to_free_space(struct btrfs_block_group_cache * block_group,struct btrfs_free_cluster * cluster)2682 int btrfs_return_cluster_to_free_space(
2683 struct btrfs_block_group_cache *block_group,
2684 struct btrfs_free_cluster *cluster)
2685 {
2686 struct btrfs_free_space_ctl *ctl;
2687 int ret;
2688
2689 /* first, get a safe pointer to the block group */
2690 spin_lock(&cluster->lock);
2691 if (!block_group) {
2692 block_group = cluster->block_group;
2693 if (!block_group) {
2694 spin_unlock(&cluster->lock);
2695 return 0;
2696 }
2697 } else if (cluster->block_group != block_group) {
2698 /* someone else has already freed it don't redo their work */
2699 spin_unlock(&cluster->lock);
2700 return 0;
2701 }
2702 atomic_inc(&block_group->count);
2703 spin_unlock(&cluster->lock);
2704
2705 ctl = block_group->free_space_ctl;
2706
2707 /* now return any extents the cluster had on it */
2708 spin_lock(&ctl->tree_lock);
2709 ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
2710 spin_unlock(&ctl->tree_lock);
2711
2712 /* finally drop our ref */
2713 btrfs_put_block_group(block_group);
2714 return ret;
2715 }
2716
btrfs_alloc_from_bitmap(struct btrfs_block_group_cache * block_group,struct btrfs_free_cluster * cluster,struct btrfs_free_space * entry,u64 bytes,u64 min_start,u64 * max_extent_size)2717 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
2718 struct btrfs_free_cluster *cluster,
2719 struct btrfs_free_space *entry,
2720 u64 bytes, u64 min_start,
2721 u64 *max_extent_size)
2722 {
2723 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2724 int err;
2725 u64 search_start = cluster->window_start;
2726 u64 search_bytes = bytes;
2727 u64 ret = 0;
2728
2729 search_start = min_start;
2730 search_bytes = bytes;
2731
2732 err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
2733 if (err) {
2734 *max_extent_size = max(get_max_extent_size(entry),
2735 *max_extent_size);
2736 return 0;
2737 }
2738
2739 ret = search_start;
2740 __bitmap_clear_bits(ctl, entry, ret, bytes);
2741
2742 return ret;
2743 }
2744
2745 /*
2746 * given a cluster, try to allocate 'bytes' from it, returns 0
2747 * if it couldn't find anything suitably large, or a logical disk offset
2748 * if things worked out
2749 */
btrfs_alloc_from_cluster(struct btrfs_block_group_cache * block_group,struct btrfs_free_cluster * cluster,u64 bytes,u64 min_start,u64 * max_extent_size)2750 u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
2751 struct btrfs_free_cluster *cluster, u64 bytes,
2752 u64 min_start, u64 *max_extent_size)
2753 {
2754 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2755 struct btrfs_free_space *entry = NULL;
2756 struct rb_node *node;
2757 u64 ret = 0;
2758
2759 spin_lock(&cluster->lock);
2760 if (bytes > cluster->max_size)
2761 goto out;
2762
2763 if (cluster->block_group != block_group)
2764 goto out;
2765
2766 node = rb_first(&cluster->root);
2767 if (!node)
2768 goto out;
2769
2770 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2771 while (1) {
2772 if (entry->bytes < bytes)
2773 *max_extent_size = max(get_max_extent_size(entry),
2774 *max_extent_size);
2775
2776 if (entry->bytes < bytes ||
2777 (!entry->bitmap && entry->offset < min_start)) {
2778 node = rb_next(&entry->offset_index);
2779 if (!node)
2780 break;
2781 entry = rb_entry(node, struct btrfs_free_space,
2782 offset_index);
2783 continue;
2784 }
2785
2786 if (entry->bitmap) {
2787 ret = btrfs_alloc_from_bitmap(block_group,
2788 cluster, entry, bytes,
2789 cluster->window_start,
2790 max_extent_size);
2791 if (ret == 0) {
2792 node = rb_next(&entry->offset_index);
2793 if (!node)
2794 break;
2795 entry = rb_entry(node, struct btrfs_free_space,
2796 offset_index);
2797 continue;
2798 }
2799 cluster->window_start += bytes;
2800 } else {
2801 ret = entry->offset;
2802
2803 entry->offset += bytes;
2804 entry->bytes -= bytes;
2805 }
2806
2807 if (entry->bytes == 0)
2808 rb_erase(&entry->offset_index, &cluster->root);
2809 break;
2810 }
2811 out:
2812 spin_unlock(&cluster->lock);
2813
2814 if (!ret)
2815 return 0;
2816
2817 spin_lock(&ctl->tree_lock);
2818
2819 ctl->free_space -= bytes;
2820 if (entry->bytes == 0) {
2821 ctl->free_extents--;
2822 if (entry->bitmap) {
2823 kmem_cache_free(btrfs_free_space_bitmap_cachep,
2824 entry->bitmap);
2825 ctl->total_bitmaps--;
2826 ctl->op->recalc_thresholds(ctl);
2827 }
2828 kmem_cache_free(btrfs_free_space_cachep, entry);
2829 }
2830
2831 spin_unlock(&ctl->tree_lock);
2832
2833 return ret;
2834 }
2835
btrfs_bitmap_cluster(struct btrfs_block_group_cache * block_group,struct btrfs_free_space * entry,struct btrfs_free_cluster * cluster,u64 offset,u64 bytes,u64 cont1_bytes,u64 min_bytes)2836 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
2837 struct btrfs_free_space *entry,
2838 struct btrfs_free_cluster *cluster,
2839 u64 offset, u64 bytes,
2840 u64 cont1_bytes, u64 min_bytes)
2841 {
2842 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2843 unsigned long next_zero;
2844 unsigned long i;
2845 unsigned long want_bits;
2846 unsigned long min_bits;
2847 unsigned long found_bits;
2848 unsigned long max_bits = 0;
2849 unsigned long start = 0;
2850 unsigned long total_found = 0;
2851 int ret;
2852
2853 i = offset_to_bit(entry->offset, ctl->unit,
2854 max_t(u64, offset, entry->offset));
2855 want_bits = bytes_to_bits(bytes, ctl->unit);
2856 min_bits = bytes_to_bits(min_bytes, ctl->unit);
2857
2858 /*
2859 * Don't bother looking for a cluster in this bitmap if it's heavily
2860 * fragmented.
2861 */
2862 if (entry->max_extent_size &&
2863 entry->max_extent_size < cont1_bytes)
2864 return -ENOSPC;
2865 again:
2866 found_bits = 0;
2867 for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
2868 next_zero = find_next_zero_bit(entry->bitmap,
2869 BITS_PER_BITMAP, i);
2870 if (next_zero - i >= min_bits) {
2871 found_bits = next_zero - i;
2872 if (found_bits > max_bits)
2873 max_bits = found_bits;
2874 break;
2875 }
2876 if (next_zero - i > max_bits)
2877 max_bits = next_zero - i;
2878 i = next_zero;
2879 }
2880
2881 if (!found_bits) {
2882 entry->max_extent_size = (u64)max_bits * ctl->unit;
2883 return -ENOSPC;
2884 }
2885
2886 if (!total_found) {
2887 start = i;
2888 cluster->max_size = 0;
2889 }
2890
2891 total_found += found_bits;
2892
2893 if (cluster->max_size < found_bits * ctl->unit)
2894 cluster->max_size = found_bits * ctl->unit;
2895
2896 if (total_found < want_bits || cluster->max_size < cont1_bytes) {
2897 i = next_zero + 1;
2898 goto again;
2899 }
2900
2901 cluster->window_start = start * ctl->unit + entry->offset;
2902 rb_erase(&entry->offset_index, &ctl->free_space_offset);
2903 ret = tree_insert_offset(&cluster->root, entry->offset,
2904 &entry->offset_index, 1);
2905 ASSERT(!ret); /* -EEXIST; Logic error */
2906
2907 trace_btrfs_setup_cluster(block_group, cluster,
2908 total_found * ctl->unit, 1);
2909 return 0;
2910 }
2911
2912 /*
2913 * This searches the block group for just extents to fill the cluster with.
2914 * Try to find a cluster with at least bytes total bytes, at least one
2915 * extent of cont1_bytes, and other clusters of at least min_bytes.
2916 */
2917 static noinline int
setup_cluster_no_bitmap(struct btrfs_block_group_cache * block_group,struct btrfs_free_cluster * cluster,struct list_head * bitmaps,u64 offset,u64 bytes,u64 cont1_bytes,u64 min_bytes)2918 setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
2919 struct btrfs_free_cluster *cluster,
2920 struct list_head *bitmaps, u64 offset, u64 bytes,
2921 u64 cont1_bytes, u64 min_bytes)
2922 {
2923 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2924 struct btrfs_free_space *first = NULL;
2925 struct btrfs_free_space *entry = NULL;
2926 struct btrfs_free_space *last;
2927 struct rb_node *node;
2928 u64 window_free;
2929 u64 max_extent;
2930 u64 total_size = 0;
2931
2932 entry = tree_search_offset(ctl, offset, 0, 1);
2933 if (!entry)
2934 return -ENOSPC;
2935
2936 /*
2937 * We don't want bitmaps, so just move along until we find a normal
2938 * extent entry.
2939 */
2940 while (entry->bitmap || entry->bytes < min_bytes) {
2941 if (entry->bitmap && list_empty(&entry->list))
2942 list_add_tail(&entry->list, bitmaps);
2943 node = rb_next(&entry->offset_index);
2944 if (!node)
2945 return -ENOSPC;
2946 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2947 }
2948
2949 window_free = entry->bytes;
2950 max_extent = entry->bytes;
2951 first = entry;
2952 last = entry;
2953
2954 for (node = rb_next(&entry->offset_index); node;
2955 node = rb_next(&entry->offset_index)) {
2956 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2957
2958 if (entry->bitmap) {
2959 if (list_empty(&entry->list))
2960 list_add_tail(&entry->list, bitmaps);
2961 continue;
2962 }
2963
2964 if (entry->bytes < min_bytes)
2965 continue;
2966
2967 last = entry;
2968 window_free += entry->bytes;
2969 if (entry->bytes > max_extent)
2970 max_extent = entry->bytes;
2971 }
2972
2973 if (window_free < bytes || max_extent < cont1_bytes)
2974 return -ENOSPC;
2975
2976 cluster->window_start = first->offset;
2977
2978 node = &first->offset_index;
2979
2980 /*
2981 * now we've found our entries, pull them out of the free space
2982 * cache and put them into the cluster rbtree
2983 */
2984 do {
2985 int ret;
2986
2987 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2988 node = rb_next(&entry->offset_index);
2989 if (entry->bitmap || entry->bytes < min_bytes)
2990 continue;
2991
2992 rb_erase(&entry->offset_index, &ctl->free_space_offset);
2993 ret = tree_insert_offset(&cluster->root, entry->offset,
2994 &entry->offset_index, 0);
2995 total_size += entry->bytes;
2996 ASSERT(!ret); /* -EEXIST; Logic error */
2997 } while (node && entry != last);
2998
2999 cluster->max_size = max_extent;
3000 trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
3001 return 0;
3002 }
3003
3004 /*
3005 * This specifically looks for bitmaps that may work in the cluster, we assume
3006 * that we have already failed to find extents that will work.
3007 */
3008 static noinline int
setup_cluster_bitmap(struct btrfs_block_group_cache * block_group,struct btrfs_free_cluster * cluster,struct list_head * bitmaps,u64 offset,u64 bytes,u64 cont1_bytes,u64 min_bytes)3009 setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
3010 struct btrfs_free_cluster *cluster,
3011 struct list_head *bitmaps, u64 offset, u64 bytes,
3012 u64 cont1_bytes, u64 min_bytes)
3013 {
3014 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3015 struct btrfs_free_space *entry = NULL;
3016 int ret = -ENOSPC;
3017 u64 bitmap_offset = offset_to_bitmap(ctl, offset);
3018
3019 if (ctl->total_bitmaps == 0)
3020 return -ENOSPC;
3021
3022 /*
3023 * The bitmap that covers offset won't be in the list unless offset
3024 * is just its start offset.
3025 */
3026 if (!list_empty(bitmaps))
3027 entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
3028
3029 if (!entry || entry->offset != bitmap_offset) {
3030 entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
3031 if (entry && list_empty(&entry->list))
3032 list_add(&entry->list, bitmaps);
3033 }
3034
3035 list_for_each_entry(entry, bitmaps, list) {
3036 if (entry->bytes < bytes)
3037 continue;
3038 ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
3039 bytes, cont1_bytes, min_bytes);
3040 if (!ret)
3041 return 0;
3042 }
3043
3044 /*
3045 * The bitmaps list has all the bitmaps that record free space
3046 * starting after offset, so no more search is required.
3047 */
3048 return -ENOSPC;
3049 }
3050
3051 /*
3052 * here we try to find a cluster of blocks in a block group. The goal
3053 * is to find at least bytes+empty_size.
3054 * We might not find them all in one contiguous area.
3055 *
3056 * returns zero and sets up cluster if things worked out, otherwise
3057 * it returns -enospc
3058 */
btrfs_find_space_cluster(struct btrfs_fs_info * fs_info,struct btrfs_block_group_cache * block_group,struct btrfs_free_cluster * cluster,u64 offset,u64 bytes,u64 empty_size)3059 int btrfs_find_space_cluster(struct btrfs_fs_info *fs_info,
3060 struct btrfs_block_group_cache *block_group,
3061 struct btrfs_free_cluster *cluster,
3062 u64 offset, u64 bytes, u64 empty_size)
3063 {
3064 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3065 struct btrfs_free_space *entry, *tmp;
3066 LIST_HEAD(bitmaps);
3067 u64 min_bytes;
3068 u64 cont1_bytes;
3069 int ret;
3070
3071 /*
3072 * Choose the minimum extent size we'll require for this
3073 * cluster. For SSD_SPREAD, don't allow any fragmentation.
3074 * For metadata, allow allocates with smaller extents. For
3075 * data, keep it dense.
3076 */
3077 if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3078 cont1_bytes = min_bytes = bytes + empty_size;
3079 } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3080 cont1_bytes = bytes;
3081 min_bytes = fs_info->sectorsize;
3082 } else {
3083 cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3084 min_bytes = fs_info->sectorsize;
3085 }
3086
3087 spin_lock(&ctl->tree_lock);
3088
3089 /*
3090 * If we know we don't have enough space to make a cluster don't even
3091 * bother doing all the work to try and find one.
3092 */
3093 if (ctl->free_space < bytes) {
3094 spin_unlock(&ctl->tree_lock);
3095 return -ENOSPC;
3096 }
3097
3098 spin_lock(&cluster->lock);
3099
3100 /* someone already found a cluster, hooray */
3101 if (cluster->block_group) {
3102 ret = 0;
3103 goto out;
3104 }
3105
3106 trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3107 min_bytes);
3108
3109 ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3110 bytes + empty_size,
3111 cont1_bytes, min_bytes);
3112 if (ret)
3113 ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3114 offset, bytes + empty_size,
3115 cont1_bytes, min_bytes);
3116
3117 /* Clear our temporary list */
3118 list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3119 list_del_init(&entry->list);
3120
3121 if (!ret) {
3122 atomic_inc(&block_group->count);
3123 list_add_tail(&cluster->block_group_list,
3124 &block_group->cluster_list);
3125 cluster->block_group = block_group;
3126 } else {
3127 trace_btrfs_failed_cluster_setup(block_group);
3128 }
3129 out:
3130 spin_unlock(&cluster->lock);
3131 spin_unlock(&ctl->tree_lock);
3132
3133 return ret;
3134 }
3135
3136 /*
3137 * simple code to zero out a cluster
3138 */
btrfs_init_free_cluster(struct btrfs_free_cluster * cluster)3139 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3140 {
3141 spin_lock_init(&cluster->lock);
3142 spin_lock_init(&cluster->refill_lock);
3143 cluster->root = RB_ROOT;
3144 cluster->max_size = 0;
3145 cluster->fragmented = false;
3146 INIT_LIST_HEAD(&cluster->block_group_list);
3147 cluster->block_group = NULL;
3148 }
3149
do_trimming(struct btrfs_block_group_cache * block_group,u64 * total_trimmed,u64 start,u64 bytes,u64 reserved_start,u64 reserved_bytes,struct btrfs_trim_range * trim_entry)3150 static int do_trimming(struct btrfs_block_group_cache *block_group,
3151 u64 *total_trimmed, u64 start, u64 bytes,
3152 u64 reserved_start, u64 reserved_bytes,
3153 struct btrfs_trim_range *trim_entry)
3154 {
3155 struct btrfs_space_info *space_info = block_group->space_info;
3156 struct btrfs_fs_info *fs_info = block_group->fs_info;
3157 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3158 int ret;
3159 int update = 0;
3160 u64 trimmed = 0;
3161
3162 spin_lock(&space_info->lock);
3163 spin_lock(&block_group->lock);
3164 if (!block_group->ro) {
3165 block_group->reserved += reserved_bytes;
3166 space_info->bytes_reserved += reserved_bytes;
3167 update = 1;
3168 }
3169 spin_unlock(&block_group->lock);
3170 spin_unlock(&space_info->lock);
3171
3172 ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3173 if (!ret)
3174 *total_trimmed += trimmed;
3175
3176 mutex_lock(&ctl->cache_writeout_mutex);
3177 btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
3178 list_del(&trim_entry->list);
3179 mutex_unlock(&ctl->cache_writeout_mutex);
3180
3181 if (update) {
3182 spin_lock(&space_info->lock);
3183 spin_lock(&block_group->lock);
3184 if (block_group->ro)
3185 space_info->bytes_readonly += reserved_bytes;
3186 block_group->reserved -= reserved_bytes;
3187 space_info->bytes_reserved -= reserved_bytes;
3188 spin_unlock(&space_info->lock);
3189 spin_unlock(&block_group->lock);
3190 }
3191
3192 return ret;
3193 }
3194
trim_no_bitmap(struct btrfs_block_group_cache * block_group,u64 * total_trimmed,u64 start,u64 end,u64 minlen)3195 static int trim_no_bitmap(struct btrfs_block_group_cache *block_group,
3196 u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3197 {
3198 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3199 struct btrfs_free_space *entry;
3200 struct rb_node *node;
3201 int ret = 0;
3202 u64 extent_start;
3203 u64 extent_bytes;
3204 u64 bytes;
3205
3206 while (start < end) {
3207 struct btrfs_trim_range trim_entry;
3208
3209 mutex_lock(&ctl->cache_writeout_mutex);
3210 spin_lock(&ctl->tree_lock);
3211
3212 if (ctl->free_space < minlen) {
3213 spin_unlock(&ctl->tree_lock);
3214 mutex_unlock(&ctl->cache_writeout_mutex);
3215 break;
3216 }
3217
3218 entry = tree_search_offset(ctl, start, 0, 1);
3219 if (!entry) {
3220 spin_unlock(&ctl->tree_lock);
3221 mutex_unlock(&ctl->cache_writeout_mutex);
3222 break;
3223 }
3224
3225 /* skip bitmaps */
3226 while (entry->bitmap) {
3227 node = rb_next(&entry->offset_index);
3228 if (!node) {
3229 spin_unlock(&ctl->tree_lock);
3230 mutex_unlock(&ctl->cache_writeout_mutex);
3231 goto out;
3232 }
3233 entry = rb_entry(node, struct btrfs_free_space,
3234 offset_index);
3235 }
3236
3237 if (entry->offset >= end) {
3238 spin_unlock(&ctl->tree_lock);
3239 mutex_unlock(&ctl->cache_writeout_mutex);
3240 break;
3241 }
3242
3243 extent_start = entry->offset;
3244 extent_bytes = entry->bytes;
3245 start = max(start, extent_start);
3246 bytes = min(extent_start + extent_bytes, end) - start;
3247 if (bytes < minlen) {
3248 spin_unlock(&ctl->tree_lock);
3249 mutex_unlock(&ctl->cache_writeout_mutex);
3250 goto next;
3251 }
3252
3253 unlink_free_space(ctl, entry);
3254 kmem_cache_free(btrfs_free_space_cachep, entry);
3255
3256 spin_unlock(&ctl->tree_lock);
3257 trim_entry.start = extent_start;
3258 trim_entry.bytes = extent_bytes;
3259 list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3260 mutex_unlock(&ctl->cache_writeout_mutex);
3261
3262 ret = do_trimming(block_group, total_trimmed, start, bytes,
3263 extent_start, extent_bytes, &trim_entry);
3264 if (ret)
3265 break;
3266 next:
3267 start += bytes;
3268
3269 if (fatal_signal_pending(current)) {
3270 ret = -ERESTARTSYS;
3271 break;
3272 }
3273
3274 cond_resched();
3275 }
3276 out:
3277 return ret;
3278 }
3279
trim_bitmaps(struct btrfs_block_group_cache * block_group,u64 * total_trimmed,u64 start,u64 end,u64 minlen)3280 static int trim_bitmaps(struct btrfs_block_group_cache *block_group,
3281 u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3282 {
3283 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3284 struct btrfs_free_space *entry;
3285 int ret = 0;
3286 int ret2;
3287 u64 bytes;
3288 u64 offset = offset_to_bitmap(ctl, start);
3289
3290 while (offset < end) {
3291 bool next_bitmap = false;
3292 struct btrfs_trim_range trim_entry;
3293
3294 mutex_lock(&ctl->cache_writeout_mutex);
3295 spin_lock(&ctl->tree_lock);
3296
3297 if (ctl->free_space < minlen) {
3298 spin_unlock(&ctl->tree_lock);
3299 mutex_unlock(&ctl->cache_writeout_mutex);
3300 break;
3301 }
3302
3303 entry = tree_search_offset(ctl, offset, 1, 0);
3304 if (!entry) {
3305 spin_unlock(&ctl->tree_lock);
3306 mutex_unlock(&ctl->cache_writeout_mutex);
3307 next_bitmap = true;
3308 goto next;
3309 }
3310
3311 bytes = minlen;
3312 ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3313 if (ret2 || start >= end) {
3314 spin_unlock(&ctl->tree_lock);
3315 mutex_unlock(&ctl->cache_writeout_mutex);
3316 next_bitmap = true;
3317 goto next;
3318 }
3319
3320 bytes = min(bytes, end - start);
3321 if (bytes < minlen) {
3322 spin_unlock(&ctl->tree_lock);
3323 mutex_unlock(&ctl->cache_writeout_mutex);
3324 goto next;
3325 }
3326
3327 bitmap_clear_bits(ctl, entry, start, bytes);
3328 if (entry->bytes == 0)
3329 free_bitmap(ctl, entry);
3330
3331 spin_unlock(&ctl->tree_lock);
3332 trim_entry.start = start;
3333 trim_entry.bytes = bytes;
3334 list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3335 mutex_unlock(&ctl->cache_writeout_mutex);
3336
3337 ret = do_trimming(block_group, total_trimmed, start, bytes,
3338 start, bytes, &trim_entry);
3339 if (ret)
3340 break;
3341 next:
3342 if (next_bitmap) {
3343 offset += BITS_PER_BITMAP * ctl->unit;
3344 } else {
3345 start += bytes;
3346 if (start >= offset + BITS_PER_BITMAP * ctl->unit)
3347 offset += BITS_PER_BITMAP * ctl->unit;
3348 }
3349
3350 if (fatal_signal_pending(current)) {
3351 ret = -ERESTARTSYS;
3352 break;
3353 }
3354
3355 cond_resched();
3356 }
3357
3358 return ret;
3359 }
3360
btrfs_get_block_group_trimming(struct btrfs_block_group_cache * cache)3361 void btrfs_get_block_group_trimming(struct btrfs_block_group_cache *cache)
3362 {
3363 atomic_inc(&cache->trimming);
3364 }
3365
btrfs_put_block_group_trimming(struct btrfs_block_group_cache * block_group)3366 void btrfs_put_block_group_trimming(struct btrfs_block_group_cache *block_group)
3367 {
3368 struct btrfs_fs_info *fs_info = block_group->fs_info;
3369 struct extent_map_tree *em_tree;
3370 struct extent_map *em;
3371 bool cleanup;
3372
3373 spin_lock(&block_group->lock);
3374 cleanup = (atomic_dec_and_test(&block_group->trimming) &&
3375 block_group->removed);
3376 spin_unlock(&block_group->lock);
3377
3378 if (cleanup) {
3379 mutex_lock(&fs_info->chunk_mutex);
3380 em_tree = &fs_info->mapping_tree.map_tree;
3381 write_lock(&em_tree->lock);
3382 em = lookup_extent_mapping(em_tree, block_group->key.objectid,
3383 1);
3384 BUG_ON(!em); /* logic error, can't happen */
3385 /*
3386 * remove_extent_mapping() will delete us from the pinned_chunks
3387 * list, which is protected by the chunk mutex.
3388 */
3389 remove_extent_mapping(em_tree, em);
3390 write_unlock(&em_tree->lock);
3391 mutex_unlock(&fs_info->chunk_mutex);
3392
3393 /* once for us and once for the tree */
3394 free_extent_map(em);
3395 free_extent_map(em);
3396
3397 /*
3398 * We've left one free space entry and other tasks trimming
3399 * this block group have left 1 entry each one. Free them.
3400 */
3401 __btrfs_remove_free_space_cache(block_group->free_space_ctl);
3402 }
3403 }
3404
btrfs_trim_block_group(struct btrfs_block_group_cache * block_group,u64 * trimmed,u64 start,u64 end,u64 minlen)3405 int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
3406 u64 *trimmed, u64 start, u64 end, u64 minlen)
3407 {
3408 int ret;
3409
3410 *trimmed = 0;
3411
3412 spin_lock(&block_group->lock);
3413 if (block_group->removed) {
3414 spin_unlock(&block_group->lock);
3415 return 0;
3416 }
3417 btrfs_get_block_group_trimming(block_group);
3418 spin_unlock(&block_group->lock);
3419
3420 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
3421 if (ret)
3422 goto out;
3423
3424 ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
3425 out:
3426 btrfs_put_block_group_trimming(block_group);
3427 return ret;
3428 }
3429
3430 /*
3431 * Find the left-most item in the cache tree, and then return the
3432 * smallest inode number in the item.
3433 *
3434 * Note: the returned inode number may not be the smallest one in
3435 * the tree, if the left-most item is a bitmap.
3436 */
btrfs_find_ino_for_alloc(struct btrfs_root * fs_root)3437 u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
3438 {
3439 struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
3440 struct btrfs_free_space *entry = NULL;
3441 u64 ino = 0;
3442
3443 spin_lock(&ctl->tree_lock);
3444
3445 if (RB_EMPTY_ROOT(&ctl->free_space_offset))
3446 goto out;
3447
3448 entry = rb_entry(rb_first(&ctl->free_space_offset),
3449 struct btrfs_free_space, offset_index);
3450
3451 if (!entry->bitmap) {
3452 ino = entry->offset;
3453
3454 unlink_free_space(ctl, entry);
3455 entry->offset++;
3456 entry->bytes--;
3457 if (!entry->bytes)
3458 kmem_cache_free(btrfs_free_space_cachep, entry);
3459 else
3460 link_free_space(ctl, entry);
3461 } else {
3462 u64 offset = 0;
3463 u64 count = 1;
3464 int ret;
3465
3466 ret = search_bitmap(ctl, entry, &offset, &count, true);
3467 /* Logic error; Should be empty if it can't find anything */
3468 ASSERT(!ret);
3469
3470 ino = offset;
3471 bitmap_clear_bits(ctl, entry, offset, 1);
3472 if (entry->bytes == 0)
3473 free_bitmap(ctl, entry);
3474 }
3475 out:
3476 spin_unlock(&ctl->tree_lock);
3477
3478 return ino;
3479 }
3480
lookup_free_ino_inode(struct btrfs_root * root,struct btrfs_path * path)3481 struct inode *lookup_free_ino_inode(struct btrfs_root *root,
3482 struct btrfs_path *path)
3483 {
3484 struct inode *inode = NULL;
3485
3486 spin_lock(&root->ino_cache_lock);
3487 if (root->ino_cache_inode)
3488 inode = igrab(root->ino_cache_inode);
3489 spin_unlock(&root->ino_cache_lock);
3490 if (inode)
3491 return inode;
3492
3493 inode = __lookup_free_space_inode(root, path, 0);
3494 if (IS_ERR(inode))
3495 return inode;
3496
3497 spin_lock(&root->ino_cache_lock);
3498 if (!btrfs_fs_closing(root->fs_info))
3499 root->ino_cache_inode = igrab(inode);
3500 spin_unlock(&root->ino_cache_lock);
3501
3502 return inode;
3503 }
3504
create_free_ino_inode(struct btrfs_root * root,struct btrfs_trans_handle * trans,struct btrfs_path * path)3505 int create_free_ino_inode(struct btrfs_root *root,
3506 struct btrfs_trans_handle *trans,
3507 struct btrfs_path *path)
3508 {
3509 return __create_free_space_inode(root, trans, path,
3510 BTRFS_FREE_INO_OBJECTID, 0);
3511 }
3512
load_free_ino_cache(struct btrfs_fs_info * fs_info,struct btrfs_root * root)3513 int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3514 {
3515 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3516 struct btrfs_path *path;
3517 struct inode *inode;
3518 int ret = 0;
3519 u64 root_gen = btrfs_root_generation(&root->root_item);
3520
3521 if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
3522 return 0;
3523
3524 /*
3525 * If we're unmounting then just return, since this does a search on the
3526 * normal root and not the commit root and we could deadlock.
3527 */
3528 if (btrfs_fs_closing(fs_info))
3529 return 0;
3530
3531 path = btrfs_alloc_path();
3532 if (!path)
3533 return 0;
3534
3535 inode = lookup_free_ino_inode(root, path);
3536 if (IS_ERR(inode))
3537 goto out;
3538
3539 if (root_gen != BTRFS_I(inode)->generation)
3540 goto out_put;
3541
3542 ret = __load_free_space_cache(root, inode, ctl, path, 0);
3543
3544 if (ret < 0)
3545 btrfs_err(fs_info,
3546 "failed to load free ino cache for root %llu",
3547 root->root_key.objectid);
3548 out_put:
3549 iput(inode);
3550 out:
3551 btrfs_free_path(path);
3552 return ret;
3553 }
3554
btrfs_write_out_ino_cache(struct btrfs_root * root,struct btrfs_trans_handle * trans,struct btrfs_path * path,struct inode * inode)3555 int btrfs_write_out_ino_cache(struct btrfs_root *root,
3556 struct btrfs_trans_handle *trans,
3557 struct btrfs_path *path,
3558 struct inode *inode)
3559 {
3560 struct btrfs_fs_info *fs_info = root->fs_info;
3561 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3562 int ret;
3563 struct btrfs_io_ctl io_ctl;
3564 bool release_metadata = true;
3565
3566 if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
3567 return 0;
3568
3569 memset(&io_ctl, 0, sizeof(io_ctl));
3570 ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl, trans);
3571 if (!ret) {
3572 /*
3573 * At this point writepages() didn't error out, so our metadata
3574 * reservation is released when the writeback finishes, at
3575 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing
3576 * with or without an error.
3577 */
3578 release_metadata = false;
3579 ret = btrfs_wait_cache_io_root(root, trans, &io_ctl, path);
3580 }
3581
3582 if (ret) {
3583 if (release_metadata)
3584 btrfs_delalloc_release_metadata(BTRFS_I(inode),
3585 inode->i_size, true);
3586 #ifdef DEBUG
3587 btrfs_err(fs_info,
3588 "failed to write free ino cache for root %llu",
3589 root->root_key.objectid);
3590 #endif
3591 }
3592
3593 return ret;
3594 }
3595
3596 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3597 /*
3598 * Use this if you need to make a bitmap or extent entry specifically, it
3599 * doesn't do any of the merging that add_free_space does, this acts a lot like
3600 * how the free space cache loading stuff works, so you can get really weird
3601 * configurations.
3602 */
test_add_free_space_entry(struct btrfs_block_group_cache * cache,u64 offset,u64 bytes,bool bitmap)3603 int test_add_free_space_entry(struct btrfs_block_group_cache *cache,
3604 u64 offset, u64 bytes, bool bitmap)
3605 {
3606 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3607 struct btrfs_free_space *info = NULL, *bitmap_info;
3608 void *map = NULL;
3609 u64 bytes_added;
3610 int ret;
3611
3612 again:
3613 if (!info) {
3614 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
3615 if (!info)
3616 return -ENOMEM;
3617 }
3618
3619 if (!bitmap) {
3620 spin_lock(&ctl->tree_lock);
3621 info->offset = offset;
3622 info->bytes = bytes;
3623 info->max_extent_size = 0;
3624 ret = link_free_space(ctl, info);
3625 spin_unlock(&ctl->tree_lock);
3626 if (ret)
3627 kmem_cache_free(btrfs_free_space_cachep, info);
3628 return ret;
3629 }
3630
3631 if (!map) {
3632 map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS);
3633 if (!map) {
3634 kmem_cache_free(btrfs_free_space_cachep, info);
3635 return -ENOMEM;
3636 }
3637 }
3638
3639 spin_lock(&ctl->tree_lock);
3640 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3641 1, 0);
3642 if (!bitmap_info) {
3643 info->bitmap = map;
3644 map = NULL;
3645 add_new_bitmap(ctl, info, offset);
3646 bitmap_info = info;
3647 info = NULL;
3648 }
3649
3650 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
3651
3652 bytes -= bytes_added;
3653 offset += bytes_added;
3654 spin_unlock(&ctl->tree_lock);
3655
3656 if (bytes)
3657 goto again;
3658
3659 if (info)
3660 kmem_cache_free(btrfs_free_space_cachep, info);
3661 if (map)
3662 kmem_cache_free(btrfs_free_space_bitmap_cachep, map);
3663 return 0;
3664 }
3665
3666 /*
3667 * Checks to see if the given range is in the free space cache. This is really
3668 * just used to check the absence of space, so if there is free space in the
3669 * range at all we will return 1.
3670 */
test_check_exists(struct btrfs_block_group_cache * cache,u64 offset,u64 bytes)3671 int test_check_exists(struct btrfs_block_group_cache *cache,
3672 u64 offset, u64 bytes)
3673 {
3674 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3675 struct btrfs_free_space *info;
3676 int ret = 0;
3677
3678 spin_lock(&ctl->tree_lock);
3679 info = tree_search_offset(ctl, offset, 0, 0);
3680 if (!info) {
3681 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3682 1, 0);
3683 if (!info)
3684 goto out;
3685 }
3686
3687 have_info:
3688 if (info->bitmap) {
3689 u64 bit_off, bit_bytes;
3690 struct rb_node *n;
3691 struct btrfs_free_space *tmp;
3692
3693 bit_off = offset;
3694 bit_bytes = ctl->unit;
3695 ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
3696 if (!ret) {
3697 if (bit_off == offset) {
3698 ret = 1;
3699 goto out;
3700 } else if (bit_off > offset &&
3701 offset + bytes > bit_off) {
3702 ret = 1;
3703 goto out;
3704 }
3705 }
3706
3707 n = rb_prev(&info->offset_index);
3708 while (n) {
3709 tmp = rb_entry(n, struct btrfs_free_space,
3710 offset_index);
3711 if (tmp->offset + tmp->bytes < offset)
3712 break;
3713 if (offset + bytes < tmp->offset) {
3714 n = rb_prev(&tmp->offset_index);
3715 continue;
3716 }
3717 info = tmp;
3718 goto have_info;
3719 }
3720
3721 n = rb_next(&info->offset_index);
3722 while (n) {
3723 tmp = rb_entry(n, struct btrfs_free_space,
3724 offset_index);
3725 if (offset + bytes < tmp->offset)
3726 break;
3727 if (tmp->offset + tmp->bytes < offset) {
3728 n = rb_next(&tmp->offset_index);
3729 continue;
3730 }
3731 info = tmp;
3732 goto have_info;
3733 }
3734
3735 ret = 0;
3736 goto out;
3737 }
3738
3739 if (info->offset == offset) {
3740 ret = 1;
3741 goto out;
3742 }
3743
3744 if (offset > info->offset && offset < info->offset + info->bytes)
3745 ret = 1;
3746 out:
3747 spin_unlock(&ctl->tree_lock);
3748 return ret;
3749 }
3750 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */
3751