1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/module.h>
8 #include <linux/fs.h>
9 #include <linux/pagemap.h>
10 #include <linux/highmem.h>
11 #include <linux/time.h>
12 #include <linux/init.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/writeback.h>
18 #include <linux/statfs.h>
19 #include <linux/compat.h>
20 #include <linux/parser.h>
21 #include <linux/ctype.h>
22 #include <linux/namei.h>
23 #include <linux/miscdevice.h>
24 #include <linux/magic.h>
25 #include <linux/slab.h>
26 #include <linux/cleancache.h>
27 #include <linux/ratelimit.h>
28 #include <linux/crc32c.h>
29 #include <linux/btrfs.h>
30 #include "delayed-inode.h"
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "print-tree.h"
36 #include "props.h"
37 #include "xattr.h"
38 #include "volumes.h"
39 #include "export.h"
40 #include "compression.h"
41 #include "rcu-string.h"
42 #include "dev-replace.h"
43 #include "free-space-cache.h"
44 #include "backref.h"
45 #include "tests/btrfs-tests.h"
46 
47 #include "qgroup.h"
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/btrfs.h>
50 
51 static const struct super_operations btrfs_super_ops;
52 
53 /*
54  * Types for mounting the default subvolume and a subvolume explicitly
55  * requested by subvol=/path. That way the callchain is straightforward and we
56  * don't have to play tricks with the mount options and recursive calls to
57  * btrfs_mount.
58  *
59  * The new btrfs_root_fs_type also servers as a tag for the bdev_holder.
60  */
61 static struct file_system_type btrfs_fs_type;
62 static struct file_system_type btrfs_root_fs_type;
63 
64 static int btrfs_remount(struct super_block *sb, int *flags, char *data);
65 
btrfs_decode_error(int errno)66 const char *btrfs_decode_error(int errno)
67 {
68 	char *errstr = "unknown";
69 
70 	switch (errno) {
71 	case -EIO:
72 		errstr = "IO failure";
73 		break;
74 	case -ENOMEM:
75 		errstr = "Out of memory";
76 		break;
77 	case -EROFS:
78 		errstr = "Readonly filesystem";
79 		break;
80 	case -EEXIST:
81 		errstr = "Object already exists";
82 		break;
83 	case -ENOSPC:
84 		errstr = "No space left";
85 		break;
86 	case -ENOENT:
87 		errstr = "No such entry";
88 		break;
89 	}
90 
91 	return errstr;
92 }
93 
94 /*
95  * __btrfs_handle_fs_error decodes expected errors from the caller and
96  * invokes the approciate error response.
97  */
98 __cold
__btrfs_handle_fs_error(struct btrfs_fs_info * fs_info,const char * function,unsigned int line,int errno,const char * fmt,...)99 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
100 		       unsigned int line, int errno, const char *fmt, ...)
101 {
102 	struct super_block *sb = fs_info->sb;
103 #ifdef CONFIG_PRINTK
104 	const char *errstr;
105 #endif
106 
107 	/*
108 	 * Special case: if the error is EROFS, and we're already
109 	 * under SB_RDONLY, then it is safe here.
110 	 */
111 	if (errno == -EROFS && sb_rdonly(sb))
112   		return;
113 
114 #ifdef CONFIG_PRINTK
115 	errstr = btrfs_decode_error(errno);
116 	if (fmt) {
117 		struct va_format vaf;
118 		va_list args;
119 
120 		va_start(args, fmt);
121 		vaf.fmt = fmt;
122 		vaf.va = &args;
123 
124 		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
125 			sb->s_id, function, line, errno, errstr, &vaf);
126 		va_end(args);
127 	} else {
128 		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
129 			sb->s_id, function, line, errno, errstr);
130 	}
131 #endif
132 
133 	/*
134 	 * Today we only save the error info to memory.  Long term we'll
135 	 * also send it down to the disk
136 	 */
137 	set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
138 
139 	/* Don't go through full error handling during mount */
140 	if (!(sb->s_flags & SB_BORN))
141 		return;
142 
143 	if (sb_rdonly(sb))
144 		return;
145 
146 	/* btrfs handle error by forcing the filesystem readonly */
147 	sb->s_flags |= SB_RDONLY;
148 	btrfs_info(fs_info, "forced readonly");
149 	/*
150 	 * Note that a running device replace operation is not canceled here
151 	 * although there is no way to update the progress. It would add the
152 	 * risk of a deadlock, therefore the canceling is omitted. The only
153 	 * penalty is that some I/O remains active until the procedure
154 	 * completes. The next time when the filesystem is mounted writeable
155 	 * again, the device replace operation continues.
156 	 */
157 }
158 
159 #ifdef CONFIG_PRINTK
160 static const char * const logtypes[] = {
161 	"emergency",
162 	"alert",
163 	"critical",
164 	"error",
165 	"warning",
166 	"notice",
167 	"info",
168 	"debug",
169 };
170 
171 
172 /*
173  * Use one ratelimit state per log level so that a flood of less important
174  * messages doesn't cause more important ones to be dropped.
175  */
176 static struct ratelimit_state printk_limits[] = {
177 	RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100),
178 	RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100),
179 	RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100),
180 	RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100),
181 	RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100),
182 	RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100),
183 	RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100),
184 	RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100),
185 };
186 
btrfs_printk(const struct btrfs_fs_info * fs_info,const char * fmt,...)187 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
188 {
189 	char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0";
190 	struct va_format vaf;
191 	va_list args;
192 	int kern_level;
193 	const char *type = logtypes[4];
194 	struct ratelimit_state *ratelimit = &printk_limits[4];
195 
196 	va_start(args, fmt);
197 
198 	while ((kern_level = printk_get_level(fmt)) != 0) {
199 		size_t size = printk_skip_level(fmt) - fmt;
200 
201 		if (kern_level >= '0' && kern_level <= '7') {
202 			memcpy(lvl, fmt,  size);
203 			lvl[size] = '\0';
204 			type = logtypes[kern_level - '0'];
205 			ratelimit = &printk_limits[kern_level - '0'];
206 		}
207 		fmt += size;
208 	}
209 
210 	vaf.fmt = fmt;
211 	vaf.va = &args;
212 
213 	if (__ratelimit(ratelimit))
214 		printk("%sBTRFS %s (device %s): %pV\n", lvl, type,
215 			fs_info ? fs_info->sb->s_id : "<unknown>", &vaf);
216 
217 	va_end(args);
218 }
219 #endif
220 
221 /*
222  * We only mark the transaction aborted and then set the file system read-only.
223  * This will prevent new transactions from starting or trying to join this
224  * one.
225  *
226  * This means that error recovery at the call site is limited to freeing
227  * any local memory allocations and passing the error code up without
228  * further cleanup. The transaction should complete as it normally would
229  * in the call path but will return -EIO.
230  *
231  * We'll complete the cleanup in btrfs_end_transaction and
232  * btrfs_commit_transaction.
233  */
234 __cold
__btrfs_abort_transaction(struct btrfs_trans_handle * trans,const char * function,unsigned int line,int errno)235 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
236 			       const char *function,
237 			       unsigned int line, int errno)
238 {
239 	struct btrfs_fs_info *fs_info = trans->fs_info;
240 
241 	trans->aborted = errno;
242 	/* Nothing used. The other threads that have joined this
243 	 * transaction may be able to continue. */
244 	if (!trans->dirty && list_empty(&trans->new_bgs)) {
245 		const char *errstr;
246 
247 		errstr = btrfs_decode_error(errno);
248 		btrfs_warn(fs_info,
249 		           "%s:%d: Aborting unused transaction(%s).",
250 		           function, line, errstr);
251 		return;
252 	}
253 	WRITE_ONCE(trans->transaction->aborted, errno);
254 	/* Wake up anybody who may be waiting on this transaction */
255 	wake_up(&fs_info->transaction_wait);
256 	wake_up(&fs_info->transaction_blocked_wait);
257 	__btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
258 }
259 /*
260  * __btrfs_panic decodes unexpected, fatal errors from the caller,
261  * issues an alert, and either panics or BUGs, depending on mount options.
262  */
263 __cold
__btrfs_panic(struct btrfs_fs_info * fs_info,const char * function,unsigned int line,int errno,const char * fmt,...)264 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
265 		   unsigned int line, int errno, const char *fmt, ...)
266 {
267 	char *s_id = "<unknown>";
268 	const char *errstr;
269 	struct va_format vaf = { .fmt = fmt };
270 	va_list args;
271 
272 	if (fs_info)
273 		s_id = fs_info->sb->s_id;
274 
275 	va_start(args, fmt);
276 	vaf.va = &args;
277 
278 	errstr = btrfs_decode_error(errno);
279 	if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR)))
280 		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
281 			s_id, function, line, &vaf, errno, errstr);
282 
283 	btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
284 		   function, line, &vaf, errno, errstr);
285 	va_end(args);
286 	/* Caller calls BUG() */
287 }
288 
btrfs_put_super(struct super_block * sb)289 static void btrfs_put_super(struct super_block *sb)
290 {
291 	close_ctree(btrfs_sb(sb));
292 }
293 
294 enum {
295 	Opt_acl, Opt_noacl,
296 	Opt_clear_cache,
297 	Opt_commit_interval,
298 	Opt_compress,
299 	Opt_compress_force,
300 	Opt_compress_force_type,
301 	Opt_compress_type,
302 	Opt_degraded,
303 	Opt_device,
304 	Opt_fatal_errors,
305 	Opt_flushoncommit, Opt_noflushoncommit,
306 	Opt_inode_cache, Opt_noinode_cache,
307 	Opt_max_inline,
308 	Opt_barrier, Opt_nobarrier,
309 	Opt_datacow, Opt_nodatacow,
310 	Opt_datasum, Opt_nodatasum,
311 	Opt_defrag, Opt_nodefrag,
312 	Opt_discard, Opt_nodiscard,
313 	Opt_nologreplay,
314 	Opt_norecovery,
315 	Opt_ratio,
316 	Opt_rescan_uuid_tree,
317 	Opt_skip_balance,
318 	Opt_space_cache, Opt_no_space_cache,
319 	Opt_space_cache_version,
320 	Opt_ssd, Opt_nossd,
321 	Opt_ssd_spread, Opt_nossd_spread,
322 	Opt_subvol,
323 	Opt_subvol_empty,
324 	Opt_subvolid,
325 	Opt_thread_pool,
326 	Opt_treelog, Opt_notreelog,
327 	Opt_usebackuproot,
328 	Opt_user_subvol_rm_allowed,
329 
330 	/* Deprecated options */
331 	Opt_alloc_start,
332 	Opt_recovery,
333 	Opt_subvolrootid,
334 
335 	/* Debugging options */
336 	Opt_check_integrity,
337 	Opt_check_integrity_including_extent_data,
338 	Opt_check_integrity_print_mask,
339 	Opt_enospc_debug, Opt_noenospc_debug,
340 #ifdef CONFIG_BTRFS_DEBUG
341 	Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
342 #endif
343 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
344 	Opt_ref_verify,
345 #endif
346 	Opt_err,
347 };
348 
349 static const match_table_t tokens = {
350 	{Opt_acl, "acl"},
351 	{Opt_noacl, "noacl"},
352 	{Opt_clear_cache, "clear_cache"},
353 	{Opt_commit_interval, "commit=%u"},
354 	{Opt_compress, "compress"},
355 	{Opt_compress_type, "compress=%s"},
356 	{Opt_compress_force, "compress-force"},
357 	{Opt_compress_force_type, "compress-force=%s"},
358 	{Opt_degraded, "degraded"},
359 	{Opt_device, "device=%s"},
360 	{Opt_fatal_errors, "fatal_errors=%s"},
361 	{Opt_flushoncommit, "flushoncommit"},
362 	{Opt_noflushoncommit, "noflushoncommit"},
363 	{Opt_inode_cache, "inode_cache"},
364 	{Opt_noinode_cache, "noinode_cache"},
365 	{Opt_max_inline, "max_inline=%s"},
366 	{Opt_barrier, "barrier"},
367 	{Opt_nobarrier, "nobarrier"},
368 	{Opt_datacow, "datacow"},
369 	{Opt_nodatacow, "nodatacow"},
370 	{Opt_datasum, "datasum"},
371 	{Opt_nodatasum, "nodatasum"},
372 	{Opt_defrag, "autodefrag"},
373 	{Opt_nodefrag, "noautodefrag"},
374 	{Opt_discard, "discard"},
375 	{Opt_nodiscard, "nodiscard"},
376 	{Opt_nologreplay, "nologreplay"},
377 	{Opt_norecovery, "norecovery"},
378 	{Opt_ratio, "metadata_ratio=%u"},
379 	{Opt_rescan_uuid_tree, "rescan_uuid_tree"},
380 	{Opt_skip_balance, "skip_balance"},
381 	{Opt_space_cache, "space_cache"},
382 	{Opt_no_space_cache, "nospace_cache"},
383 	{Opt_space_cache_version, "space_cache=%s"},
384 	{Opt_ssd, "ssd"},
385 	{Opt_nossd, "nossd"},
386 	{Opt_ssd_spread, "ssd_spread"},
387 	{Opt_nossd_spread, "nossd_spread"},
388 	{Opt_subvol, "subvol=%s"},
389 	{Opt_subvol_empty, "subvol="},
390 	{Opt_subvolid, "subvolid=%s"},
391 	{Opt_thread_pool, "thread_pool=%u"},
392 	{Opt_treelog, "treelog"},
393 	{Opt_notreelog, "notreelog"},
394 	{Opt_usebackuproot, "usebackuproot"},
395 	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
396 
397 	/* Deprecated options */
398 	{Opt_alloc_start, "alloc_start=%s"},
399 	{Opt_recovery, "recovery"},
400 	{Opt_subvolrootid, "subvolrootid=%d"},
401 
402 	/* Debugging options */
403 	{Opt_check_integrity, "check_int"},
404 	{Opt_check_integrity_including_extent_data, "check_int_data"},
405 	{Opt_check_integrity_print_mask, "check_int_print_mask=%u"},
406 	{Opt_enospc_debug, "enospc_debug"},
407 	{Opt_noenospc_debug, "noenospc_debug"},
408 #ifdef CONFIG_BTRFS_DEBUG
409 	{Opt_fragment_data, "fragment=data"},
410 	{Opt_fragment_metadata, "fragment=metadata"},
411 	{Opt_fragment_all, "fragment=all"},
412 #endif
413 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
414 	{Opt_ref_verify, "ref_verify"},
415 #endif
416 	{Opt_err, NULL},
417 };
418 
419 /*
420  * Regular mount options parser.  Everything that is needed only when
421  * reading in a new superblock is parsed here.
422  * XXX JDM: This needs to be cleaned up for remount.
423  */
btrfs_parse_options(struct btrfs_fs_info * info,char * options,unsigned long new_flags)424 int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
425 			unsigned long new_flags)
426 {
427 	substring_t args[MAX_OPT_ARGS];
428 	char *p, *num;
429 	u64 cache_gen;
430 	int intarg;
431 	int ret = 0;
432 	char *compress_type;
433 	bool compress_force = false;
434 	enum btrfs_compression_type saved_compress_type;
435 	int saved_compress_level;
436 	bool saved_compress_force;
437 	int no_compress = 0;
438 
439 	cache_gen = btrfs_super_cache_generation(info->super_copy);
440 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
441 		btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE);
442 	else if (cache_gen)
443 		btrfs_set_opt(info->mount_opt, SPACE_CACHE);
444 
445 	/*
446 	 * Even the options are empty, we still need to do extra check
447 	 * against new flags
448 	 */
449 	if (!options)
450 		goto check;
451 
452 	while ((p = strsep(&options, ",")) != NULL) {
453 		int token;
454 		if (!*p)
455 			continue;
456 
457 		token = match_token(p, tokens, args);
458 		switch (token) {
459 		case Opt_degraded:
460 			btrfs_info(info, "allowing degraded mounts");
461 			btrfs_set_opt(info->mount_opt, DEGRADED);
462 			break;
463 		case Opt_subvol:
464 		case Opt_subvol_empty:
465 		case Opt_subvolid:
466 		case Opt_subvolrootid:
467 		case Opt_device:
468 			/*
469 			 * These are parsed by btrfs_parse_subvol_options or
470 			 * btrfs_parse_device_options and can be ignored here.
471 			 */
472 			break;
473 		case Opt_nodatasum:
474 			btrfs_set_and_info(info, NODATASUM,
475 					   "setting nodatasum");
476 			break;
477 		case Opt_datasum:
478 			if (btrfs_test_opt(info, NODATASUM)) {
479 				if (btrfs_test_opt(info, NODATACOW))
480 					btrfs_info(info,
481 						   "setting datasum, datacow enabled");
482 				else
483 					btrfs_info(info, "setting datasum");
484 			}
485 			btrfs_clear_opt(info->mount_opt, NODATACOW);
486 			btrfs_clear_opt(info->mount_opt, NODATASUM);
487 			break;
488 		case Opt_nodatacow:
489 			if (!btrfs_test_opt(info, NODATACOW)) {
490 				if (!btrfs_test_opt(info, COMPRESS) ||
491 				    !btrfs_test_opt(info, FORCE_COMPRESS)) {
492 					btrfs_info(info,
493 						   "setting nodatacow, compression disabled");
494 				} else {
495 					btrfs_info(info, "setting nodatacow");
496 				}
497 			}
498 			btrfs_clear_opt(info->mount_opt, COMPRESS);
499 			btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
500 			btrfs_set_opt(info->mount_opt, NODATACOW);
501 			btrfs_set_opt(info->mount_opt, NODATASUM);
502 			break;
503 		case Opt_datacow:
504 			btrfs_clear_and_info(info, NODATACOW,
505 					     "setting datacow");
506 			break;
507 		case Opt_compress_force:
508 		case Opt_compress_force_type:
509 			compress_force = true;
510 			/* Fallthrough */
511 		case Opt_compress:
512 		case Opt_compress_type:
513 			saved_compress_type = btrfs_test_opt(info,
514 							     COMPRESS) ?
515 				info->compress_type : BTRFS_COMPRESS_NONE;
516 			saved_compress_force =
517 				btrfs_test_opt(info, FORCE_COMPRESS);
518 			saved_compress_level = info->compress_level;
519 			if (token == Opt_compress ||
520 			    token == Opt_compress_force ||
521 			    strncmp(args[0].from, "zlib", 4) == 0) {
522 				compress_type = "zlib";
523 
524 				info->compress_type = BTRFS_COMPRESS_ZLIB;
525 				info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
526 				/*
527 				 * args[0] contains uninitialized data since
528 				 * for these tokens we don't expect any
529 				 * parameter.
530 				 */
531 				if (token != Opt_compress &&
532 				    token != Opt_compress_force)
533 					info->compress_level =
534 					  btrfs_compress_str2level(args[0].from);
535 				btrfs_set_opt(info->mount_opt, COMPRESS);
536 				btrfs_clear_opt(info->mount_opt, NODATACOW);
537 				btrfs_clear_opt(info->mount_opt, NODATASUM);
538 				no_compress = 0;
539 			} else if (strncmp(args[0].from, "lzo", 3) == 0) {
540 				compress_type = "lzo";
541 				info->compress_type = BTRFS_COMPRESS_LZO;
542 				info->compress_level = 0;
543 				btrfs_set_opt(info->mount_opt, COMPRESS);
544 				btrfs_clear_opt(info->mount_opt, NODATACOW);
545 				btrfs_clear_opt(info->mount_opt, NODATASUM);
546 				btrfs_set_fs_incompat(info, COMPRESS_LZO);
547 				no_compress = 0;
548 			} else if (strcmp(args[0].from, "zstd") == 0) {
549 				compress_type = "zstd";
550 				info->compress_type = BTRFS_COMPRESS_ZSTD;
551 				btrfs_set_opt(info->mount_opt, COMPRESS);
552 				btrfs_clear_opt(info->mount_opt, NODATACOW);
553 				btrfs_clear_opt(info->mount_opt, NODATASUM);
554 				btrfs_set_fs_incompat(info, COMPRESS_ZSTD);
555 				no_compress = 0;
556 			} else if (strncmp(args[0].from, "no", 2) == 0) {
557 				compress_type = "no";
558 				info->compress_level = 0;
559 				info->compress_type = 0;
560 				btrfs_clear_opt(info->mount_opt, COMPRESS);
561 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
562 				compress_force = false;
563 				no_compress++;
564 			} else {
565 				ret = -EINVAL;
566 				goto out;
567 			}
568 
569 			if (compress_force) {
570 				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
571 			} else {
572 				/*
573 				 * If we remount from compress-force=xxx to
574 				 * compress=xxx, we need clear FORCE_COMPRESS
575 				 * flag, otherwise, there is no way for users
576 				 * to disable forcible compression separately.
577 				 */
578 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
579 			}
580 			if (no_compress == 1) {
581 				btrfs_info(info, "use no compression");
582 			} else if ((info->compress_type != saved_compress_type) ||
583 				   (compress_force != saved_compress_force) ||
584 				   (info->compress_level != saved_compress_level)) {
585 				btrfs_info(info, "%s %s compression, level %d",
586 					   (compress_force) ? "force" : "use",
587 					   compress_type, info->compress_level);
588 			}
589 			compress_force = false;
590 			break;
591 		case Opt_ssd:
592 			btrfs_set_and_info(info, SSD,
593 					   "enabling ssd optimizations");
594 			btrfs_clear_opt(info->mount_opt, NOSSD);
595 			break;
596 		case Opt_ssd_spread:
597 			btrfs_set_and_info(info, SSD,
598 					   "enabling ssd optimizations");
599 			btrfs_set_and_info(info, SSD_SPREAD,
600 					   "using spread ssd allocation scheme");
601 			btrfs_clear_opt(info->mount_opt, NOSSD);
602 			break;
603 		case Opt_nossd:
604 			btrfs_set_opt(info->mount_opt, NOSSD);
605 			btrfs_clear_and_info(info, SSD,
606 					     "not using ssd optimizations");
607 			/* Fallthrough */
608 		case Opt_nossd_spread:
609 			btrfs_clear_and_info(info, SSD_SPREAD,
610 					     "not using spread ssd allocation scheme");
611 			break;
612 		case Opt_barrier:
613 			btrfs_clear_and_info(info, NOBARRIER,
614 					     "turning on barriers");
615 			break;
616 		case Opt_nobarrier:
617 			btrfs_set_and_info(info, NOBARRIER,
618 					   "turning off barriers");
619 			break;
620 		case Opt_thread_pool:
621 			ret = match_int(&args[0], &intarg);
622 			if (ret) {
623 				goto out;
624 			} else if (intarg == 0) {
625 				ret = -EINVAL;
626 				goto out;
627 			}
628 			info->thread_pool_size = intarg;
629 			break;
630 		case Opt_max_inline:
631 			num = match_strdup(&args[0]);
632 			if (num) {
633 				info->max_inline = memparse(num, NULL);
634 				kfree(num);
635 
636 				if (info->max_inline) {
637 					info->max_inline = min_t(u64,
638 						info->max_inline,
639 						info->sectorsize);
640 				}
641 				btrfs_info(info, "max_inline at %llu",
642 					   info->max_inline);
643 			} else {
644 				ret = -ENOMEM;
645 				goto out;
646 			}
647 			break;
648 		case Opt_alloc_start:
649 			btrfs_info(info,
650 				"option alloc_start is obsolete, ignored");
651 			break;
652 		case Opt_acl:
653 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
654 			info->sb->s_flags |= SB_POSIXACL;
655 			break;
656 #else
657 			btrfs_err(info, "support for ACL not compiled in!");
658 			ret = -EINVAL;
659 			goto out;
660 #endif
661 		case Opt_noacl:
662 			info->sb->s_flags &= ~SB_POSIXACL;
663 			break;
664 		case Opt_notreelog:
665 			btrfs_set_and_info(info, NOTREELOG,
666 					   "disabling tree log");
667 			break;
668 		case Opt_treelog:
669 			btrfs_clear_and_info(info, NOTREELOG,
670 					     "enabling tree log");
671 			break;
672 		case Opt_norecovery:
673 		case Opt_nologreplay:
674 			btrfs_set_and_info(info, NOLOGREPLAY,
675 					   "disabling log replay at mount time");
676 			break;
677 		case Opt_flushoncommit:
678 			btrfs_set_and_info(info, FLUSHONCOMMIT,
679 					   "turning on flush-on-commit");
680 			break;
681 		case Opt_noflushoncommit:
682 			btrfs_clear_and_info(info, FLUSHONCOMMIT,
683 					     "turning off flush-on-commit");
684 			break;
685 		case Opt_ratio:
686 			ret = match_int(&args[0], &intarg);
687 			if (ret)
688 				goto out;
689 			info->metadata_ratio = intarg;
690 			btrfs_info(info, "metadata ratio %u",
691 				   info->metadata_ratio);
692 			break;
693 		case Opt_discard:
694 			btrfs_set_and_info(info, DISCARD,
695 					   "turning on discard");
696 			break;
697 		case Opt_nodiscard:
698 			btrfs_clear_and_info(info, DISCARD,
699 					     "turning off discard");
700 			break;
701 		case Opt_space_cache:
702 		case Opt_space_cache_version:
703 			if (token == Opt_space_cache ||
704 			    strcmp(args[0].from, "v1") == 0) {
705 				btrfs_clear_opt(info->mount_opt,
706 						FREE_SPACE_TREE);
707 				btrfs_set_and_info(info, SPACE_CACHE,
708 					   "enabling disk space caching");
709 			} else if (strcmp(args[0].from, "v2") == 0) {
710 				btrfs_clear_opt(info->mount_opt,
711 						SPACE_CACHE);
712 				btrfs_set_and_info(info, FREE_SPACE_TREE,
713 						   "enabling free space tree");
714 			} else {
715 				ret = -EINVAL;
716 				goto out;
717 			}
718 			break;
719 		case Opt_rescan_uuid_tree:
720 			btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
721 			break;
722 		case Opt_no_space_cache:
723 			if (btrfs_test_opt(info, SPACE_CACHE)) {
724 				btrfs_clear_and_info(info, SPACE_CACHE,
725 					     "disabling disk space caching");
726 			}
727 			if (btrfs_test_opt(info, FREE_SPACE_TREE)) {
728 				btrfs_clear_and_info(info, FREE_SPACE_TREE,
729 					     "disabling free space tree");
730 			}
731 			break;
732 		case Opt_inode_cache:
733 			btrfs_set_pending_and_info(info, INODE_MAP_CACHE,
734 					   "enabling inode map caching");
735 			break;
736 		case Opt_noinode_cache:
737 			btrfs_clear_pending_and_info(info, INODE_MAP_CACHE,
738 					     "disabling inode map caching");
739 			break;
740 		case Opt_clear_cache:
741 			btrfs_set_and_info(info, CLEAR_CACHE,
742 					   "force clearing of disk cache");
743 			break;
744 		case Opt_user_subvol_rm_allowed:
745 			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
746 			break;
747 		case Opt_enospc_debug:
748 			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
749 			break;
750 		case Opt_noenospc_debug:
751 			btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
752 			break;
753 		case Opt_defrag:
754 			btrfs_set_and_info(info, AUTO_DEFRAG,
755 					   "enabling auto defrag");
756 			break;
757 		case Opt_nodefrag:
758 			btrfs_clear_and_info(info, AUTO_DEFRAG,
759 					     "disabling auto defrag");
760 			break;
761 		case Opt_recovery:
762 			btrfs_warn(info,
763 				   "'recovery' is deprecated, use 'usebackuproot' instead");
764 			/* fall through */
765 		case Opt_usebackuproot:
766 			btrfs_info(info,
767 				   "trying to use backup root at mount time");
768 			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
769 			break;
770 		case Opt_skip_balance:
771 			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
772 			break;
773 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
774 		case Opt_check_integrity_including_extent_data:
775 			btrfs_info(info,
776 				   "enabling check integrity including extent data");
777 			btrfs_set_opt(info->mount_opt,
778 				      CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
779 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
780 			break;
781 		case Opt_check_integrity:
782 			btrfs_info(info, "enabling check integrity");
783 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
784 			break;
785 		case Opt_check_integrity_print_mask:
786 			ret = match_int(&args[0], &intarg);
787 			if (ret)
788 				goto out;
789 			info->check_integrity_print_mask = intarg;
790 			btrfs_info(info, "check_integrity_print_mask 0x%x",
791 				   info->check_integrity_print_mask);
792 			break;
793 #else
794 		case Opt_check_integrity_including_extent_data:
795 		case Opt_check_integrity:
796 		case Opt_check_integrity_print_mask:
797 			btrfs_err(info,
798 				  "support for check_integrity* not compiled in!");
799 			ret = -EINVAL;
800 			goto out;
801 #endif
802 		case Opt_fatal_errors:
803 			if (strcmp(args[0].from, "panic") == 0)
804 				btrfs_set_opt(info->mount_opt,
805 					      PANIC_ON_FATAL_ERROR);
806 			else if (strcmp(args[0].from, "bug") == 0)
807 				btrfs_clear_opt(info->mount_opt,
808 					      PANIC_ON_FATAL_ERROR);
809 			else {
810 				ret = -EINVAL;
811 				goto out;
812 			}
813 			break;
814 		case Opt_commit_interval:
815 			intarg = 0;
816 			ret = match_int(&args[0], &intarg);
817 			if (ret)
818 				goto out;
819 			if (intarg == 0) {
820 				btrfs_info(info,
821 					   "using default commit interval %us",
822 					   BTRFS_DEFAULT_COMMIT_INTERVAL);
823 				intarg = BTRFS_DEFAULT_COMMIT_INTERVAL;
824 			} else if (intarg > 300) {
825 				btrfs_warn(info, "excessive commit interval %d",
826 					   intarg);
827 			}
828 			info->commit_interval = intarg;
829 			break;
830 #ifdef CONFIG_BTRFS_DEBUG
831 		case Opt_fragment_all:
832 			btrfs_info(info, "fragmenting all space");
833 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
834 			btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
835 			break;
836 		case Opt_fragment_metadata:
837 			btrfs_info(info, "fragmenting metadata");
838 			btrfs_set_opt(info->mount_opt,
839 				      FRAGMENT_METADATA);
840 			break;
841 		case Opt_fragment_data:
842 			btrfs_info(info, "fragmenting data");
843 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
844 			break;
845 #endif
846 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
847 		case Opt_ref_verify:
848 			btrfs_info(info, "doing ref verification");
849 			btrfs_set_opt(info->mount_opt, REF_VERIFY);
850 			break;
851 #endif
852 		case Opt_err:
853 			btrfs_info(info, "unrecognized mount option '%s'", p);
854 			ret = -EINVAL;
855 			goto out;
856 		default:
857 			break;
858 		}
859 	}
860 check:
861 	/*
862 	 * Extra check for current option against current flag
863 	 */
864 	if (btrfs_test_opt(info, NOLOGREPLAY) && !(new_flags & SB_RDONLY)) {
865 		btrfs_err(info,
866 			  "nologreplay must be used with ro mount option");
867 		ret = -EINVAL;
868 	}
869 out:
870 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
871 	    !btrfs_test_opt(info, FREE_SPACE_TREE) &&
872 	    !btrfs_test_opt(info, CLEAR_CACHE)) {
873 		btrfs_err(info, "cannot disable free space tree");
874 		ret = -EINVAL;
875 
876 	}
877 	if (!ret && btrfs_test_opt(info, SPACE_CACHE))
878 		btrfs_info(info, "disk space caching is enabled");
879 	if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE))
880 		btrfs_info(info, "using free space tree");
881 	return ret;
882 }
883 
884 /*
885  * Parse mount options that are required early in the mount process.
886  *
887  * All other options will be parsed on much later in the mount process and
888  * only when we need to allocate a new super block.
889  */
btrfs_parse_device_options(const char * options,fmode_t flags,void * holder)890 static int btrfs_parse_device_options(const char *options, fmode_t flags,
891 				      void *holder)
892 {
893 	substring_t args[MAX_OPT_ARGS];
894 	char *device_name, *opts, *orig, *p;
895 	struct btrfs_device *device = NULL;
896 	int error = 0;
897 
898 	lockdep_assert_held(&uuid_mutex);
899 
900 	if (!options)
901 		return 0;
902 
903 	/*
904 	 * strsep changes the string, duplicate it because btrfs_parse_options
905 	 * gets called later
906 	 */
907 	opts = kstrdup(options, GFP_KERNEL);
908 	if (!opts)
909 		return -ENOMEM;
910 	orig = opts;
911 
912 	while ((p = strsep(&opts, ",")) != NULL) {
913 		int token;
914 
915 		if (!*p)
916 			continue;
917 
918 		token = match_token(p, tokens, args);
919 		if (token == Opt_device) {
920 			device_name = match_strdup(&args[0]);
921 			if (!device_name) {
922 				error = -ENOMEM;
923 				goto out;
924 			}
925 			device = btrfs_scan_one_device(device_name, flags,
926 					holder);
927 			kfree(device_name);
928 			if (IS_ERR(device)) {
929 				error = PTR_ERR(device);
930 				goto out;
931 			}
932 		}
933 	}
934 
935 out:
936 	kfree(orig);
937 	return error;
938 }
939 
940 /*
941  * Parse mount options that are related to subvolume id
942  *
943  * The value is later passed to mount_subvol()
944  */
btrfs_parse_subvol_options(const char * options,char ** subvol_name,u64 * subvol_objectid)945 static int btrfs_parse_subvol_options(const char *options, char **subvol_name,
946 		u64 *subvol_objectid)
947 {
948 	substring_t args[MAX_OPT_ARGS];
949 	char *opts, *orig, *p;
950 	int error = 0;
951 	u64 subvolid;
952 
953 	if (!options)
954 		return 0;
955 
956 	/*
957 	 * strsep changes the string, duplicate it because
958 	 * btrfs_parse_device_options gets called later
959 	 */
960 	opts = kstrdup(options, GFP_KERNEL);
961 	if (!opts)
962 		return -ENOMEM;
963 	orig = opts;
964 
965 	while ((p = strsep(&opts, ",")) != NULL) {
966 		int token;
967 		if (!*p)
968 			continue;
969 
970 		token = match_token(p, tokens, args);
971 		switch (token) {
972 		case Opt_subvol:
973 			kfree(*subvol_name);
974 			*subvol_name = match_strdup(&args[0]);
975 			if (!*subvol_name) {
976 				error = -ENOMEM;
977 				goto out;
978 			}
979 			break;
980 		case Opt_subvolid:
981 			error = match_u64(&args[0], &subvolid);
982 			if (error)
983 				goto out;
984 
985 			/* we want the original fs_tree */
986 			if (subvolid == 0)
987 				subvolid = BTRFS_FS_TREE_OBJECTID;
988 
989 			*subvol_objectid = subvolid;
990 			break;
991 		case Opt_subvolrootid:
992 			pr_warn("BTRFS: 'subvolrootid' mount option is deprecated and has no effect\n");
993 			break;
994 		default:
995 			break;
996 		}
997 	}
998 
999 out:
1000 	kfree(orig);
1001 	return error;
1002 }
1003 
btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info * fs_info,u64 subvol_objectid)1004 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
1005 					  u64 subvol_objectid)
1006 {
1007 	struct btrfs_root *root = fs_info->tree_root;
1008 	struct btrfs_root *fs_root;
1009 	struct btrfs_root_ref *root_ref;
1010 	struct btrfs_inode_ref *inode_ref;
1011 	struct btrfs_key key;
1012 	struct btrfs_path *path = NULL;
1013 	char *name = NULL, *ptr;
1014 	u64 dirid;
1015 	int len;
1016 	int ret;
1017 
1018 	path = btrfs_alloc_path();
1019 	if (!path) {
1020 		ret = -ENOMEM;
1021 		goto err;
1022 	}
1023 	path->leave_spinning = 1;
1024 
1025 	name = kmalloc(PATH_MAX, GFP_KERNEL);
1026 	if (!name) {
1027 		ret = -ENOMEM;
1028 		goto err;
1029 	}
1030 	ptr = name + PATH_MAX - 1;
1031 	ptr[0] = '\0';
1032 
1033 	/*
1034 	 * Walk up the subvolume trees in the tree of tree roots by root
1035 	 * backrefs until we hit the top-level subvolume.
1036 	 */
1037 	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
1038 		key.objectid = subvol_objectid;
1039 		key.type = BTRFS_ROOT_BACKREF_KEY;
1040 		key.offset = (u64)-1;
1041 
1042 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1043 		if (ret < 0) {
1044 			goto err;
1045 		} else if (ret > 0) {
1046 			ret = btrfs_previous_item(root, path, subvol_objectid,
1047 						  BTRFS_ROOT_BACKREF_KEY);
1048 			if (ret < 0) {
1049 				goto err;
1050 			} else if (ret > 0) {
1051 				ret = -ENOENT;
1052 				goto err;
1053 			}
1054 		}
1055 
1056 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1057 		subvol_objectid = key.offset;
1058 
1059 		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1060 					  struct btrfs_root_ref);
1061 		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
1062 		ptr -= len + 1;
1063 		if (ptr < name) {
1064 			ret = -ENAMETOOLONG;
1065 			goto err;
1066 		}
1067 		read_extent_buffer(path->nodes[0], ptr + 1,
1068 				   (unsigned long)(root_ref + 1), len);
1069 		ptr[0] = '/';
1070 		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
1071 		btrfs_release_path(path);
1072 
1073 		key.objectid = subvol_objectid;
1074 		key.type = BTRFS_ROOT_ITEM_KEY;
1075 		key.offset = (u64)-1;
1076 		fs_root = btrfs_read_fs_root_no_name(fs_info, &key);
1077 		if (IS_ERR(fs_root)) {
1078 			ret = PTR_ERR(fs_root);
1079 			goto err;
1080 		}
1081 
1082 		/*
1083 		 * Walk up the filesystem tree by inode refs until we hit the
1084 		 * root directory.
1085 		 */
1086 		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
1087 			key.objectid = dirid;
1088 			key.type = BTRFS_INODE_REF_KEY;
1089 			key.offset = (u64)-1;
1090 
1091 			ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1092 			if (ret < 0) {
1093 				goto err;
1094 			} else if (ret > 0) {
1095 				ret = btrfs_previous_item(fs_root, path, dirid,
1096 							  BTRFS_INODE_REF_KEY);
1097 				if (ret < 0) {
1098 					goto err;
1099 				} else if (ret > 0) {
1100 					ret = -ENOENT;
1101 					goto err;
1102 				}
1103 			}
1104 
1105 			btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1106 			dirid = key.offset;
1107 
1108 			inode_ref = btrfs_item_ptr(path->nodes[0],
1109 						   path->slots[0],
1110 						   struct btrfs_inode_ref);
1111 			len = btrfs_inode_ref_name_len(path->nodes[0],
1112 						       inode_ref);
1113 			ptr -= len + 1;
1114 			if (ptr < name) {
1115 				ret = -ENAMETOOLONG;
1116 				goto err;
1117 			}
1118 			read_extent_buffer(path->nodes[0], ptr + 1,
1119 					   (unsigned long)(inode_ref + 1), len);
1120 			ptr[0] = '/';
1121 			btrfs_release_path(path);
1122 		}
1123 	}
1124 
1125 	btrfs_free_path(path);
1126 	if (ptr == name + PATH_MAX - 1) {
1127 		name[0] = '/';
1128 		name[1] = '\0';
1129 	} else {
1130 		memmove(name, ptr, name + PATH_MAX - ptr);
1131 	}
1132 	return name;
1133 
1134 err:
1135 	btrfs_free_path(path);
1136 	kfree(name);
1137 	return ERR_PTR(ret);
1138 }
1139 
get_default_subvol_objectid(struct btrfs_fs_info * fs_info,u64 * objectid)1140 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
1141 {
1142 	struct btrfs_root *root = fs_info->tree_root;
1143 	struct btrfs_dir_item *di;
1144 	struct btrfs_path *path;
1145 	struct btrfs_key location;
1146 	u64 dir_id;
1147 
1148 	path = btrfs_alloc_path();
1149 	if (!path)
1150 		return -ENOMEM;
1151 	path->leave_spinning = 1;
1152 
1153 	/*
1154 	 * Find the "default" dir item which points to the root item that we
1155 	 * will mount by default if we haven't been given a specific subvolume
1156 	 * to mount.
1157 	 */
1158 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
1159 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
1160 	if (IS_ERR(di)) {
1161 		btrfs_free_path(path);
1162 		return PTR_ERR(di);
1163 	}
1164 	if (!di) {
1165 		/*
1166 		 * Ok the default dir item isn't there.  This is weird since
1167 		 * it's always been there, but don't freak out, just try and
1168 		 * mount the top-level subvolume.
1169 		 */
1170 		btrfs_free_path(path);
1171 		*objectid = BTRFS_FS_TREE_OBJECTID;
1172 		return 0;
1173 	}
1174 
1175 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1176 	btrfs_free_path(path);
1177 	*objectid = location.objectid;
1178 	return 0;
1179 }
1180 
btrfs_fill_super(struct super_block * sb,struct btrfs_fs_devices * fs_devices,void * data)1181 static int btrfs_fill_super(struct super_block *sb,
1182 			    struct btrfs_fs_devices *fs_devices,
1183 			    void *data)
1184 {
1185 	struct inode *inode;
1186 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1187 	struct btrfs_key key;
1188 	int err;
1189 
1190 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1191 	sb->s_magic = BTRFS_SUPER_MAGIC;
1192 	sb->s_op = &btrfs_super_ops;
1193 	sb->s_d_op = &btrfs_dentry_operations;
1194 	sb->s_export_op = &btrfs_export_ops;
1195 	sb->s_xattr = btrfs_xattr_handlers;
1196 	sb->s_time_gran = 1;
1197 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
1198 	sb->s_flags |= SB_POSIXACL;
1199 #endif
1200 	sb->s_flags |= SB_I_VERSION;
1201 	sb->s_iflags |= SB_I_CGROUPWB;
1202 
1203 	err = super_setup_bdi(sb);
1204 	if (err) {
1205 		btrfs_err(fs_info, "super_setup_bdi failed");
1206 		return err;
1207 	}
1208 
1209 	err = open_ctree(sb, fs_devices, (char *)data);
1210 	if (err) {
1211 		btrfs_err(fs_info, "open_ctree failed");
1212 		return err;
1213 	}
1214 
1215 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
1216 	key.type = BTRFS_INODE_ITEM_KEY;
1217 	key.offset = 0;
1218 	inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
1219 	if (IS_ERR(inode)) {
1220 		err = PTR_ERR(inode);
1221 		goto fail_close;
1222 	}
1223 
1224 	sb->s_root = d_make_root(inode);
1225 	if (!sb->s_root) {
1226 		err = -ENOMEM;
1227 		goto fail_close;
1228 	}
1229 
1230 	cleancache_init_fs(sb);
1231 	sb->s_flags |= SB_ACTIVE;
1232 	return 0;
1233 
1234 fail_close:
1235 	close_ctree(fs_info);
1236 	return err;
1237 }
1238 
btrfs_sync_fs(struct super_block * sb,int wait)1239 int btrfs_sync_fs(struct super_block *sb, int wait)
1240 {
1241 	struct btrfs_trans_handle *trans;
1242 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1243 	struct btrfs_root *root = fs_info->tree_root;
1244 
1245 	trace_btrfs_sync_fs(fs_info, wait);
1246 
1247 	if (!wait) {
1248 		filemap_flush(fs_info->btree_inode->i_mapping);
1249 		return 0;
1250 	}
1251 
1252 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1253 
1254 	trans = btrfs_attach_transaction_barrier(root);
1255 	if (IS_ERR(trans)) {
1256 		/* no transaction, don't bother */
1257 		if (PTR_ERR(trans) == -ENOENT) {
1258 			/*
1259 			 * Exit unless we have some pending changes
1260 			 * that need to go through commit
1261 			 */
1262 			if (fs_info->pending_changes == 0)
1263 				return 0;
1264 			/*
1265 			 * A non-blocking test if the fs is frozen. We must not
1266 			 * start a new transaction here otherwise a deadlock
1267 			 * happens. The pending operations are delayed to the
1268 			 * next commit after thawing.
1269 			 */
1270 			if (sb_start_write_trylock(sb))
1271 				sb_end_write(sb);
1272 			else
1273 				return 0;
1274 			trans = btrfs_start_transaction(root, 0);
1275 		}
1276 		if (IS_ERR(trans))
1277 			return PTR_ERR(trans);
1278 	}
1279 	return btrfs_commit_transaction(trans);
1280 }
1281 
btrfs_show_options(struct seq_file * seq,struct dentry * dentry)1282 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1283 {
1284 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1285 	const char *compress_type;
1286 	const char *subvol_name;
1287 
1288 	if (btrfs_test_opt(info, DEGRADED))
1289 		seq_puts(seq, ",degraded");
1290 	if (btrfs_test_opt(info, NODATASUM))
1291 		seq_puts(seq, ",nodatasum");
1292 	if (btrfs_test_opt(info, NODATACOW))
1293 		seq_puts(seq, ",nodatacow");
1294 	if (btrfs_test_opt(info, NOBARRIER))
1295 		seq_puts(seq, ",nobarrier");
1296 	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1297 		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1298 	if (info->thread_pool_size !=  min_t(unsigned long,
1299 					     num_online_cpus() + 2, 8))
1300 		seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1301 	if (btrfs_test_opt(info, COMPRESS)) {
1302 		compress_type = btrfs_compress_type2str(info->compress_type);
1303 		if (btrfs_test_opt(info, FORCE_COMPRESS))
1304 			seq_printf(seq, ",compress-force=%s", compress_type);
1305 		else
1306 			seq_printf(seq, ",compress=%s", compress_type);
1307 		if (info->compress_level)
1308 			seq_printf(seq, ":%d", info->compress_level);
1309 	}
1310 	if (btrfs_test_opt(info, NOSSD))
1311 		seq_puts(seq, ",nossd");
1312 	if (btrfs_test_opt(info, SSD_SPREAD))
1313 		seq_puts(seq, ",ssd_spread");
1314 	else if (btrfs_test_opt(info, SSD))
1315 		seq_puts(seq, ",ssd");
1316 	if (btrfs_test_opt(info, NOTREELOG))
1317 		seq_puts(seq, ",notreelog");
1318 	if (btrfs_test_opt(info, NOLOGREPLAY))
1319 		seq_puts(seq, ",nologreplay");
1320 	if (btrfs_test_opt(info, FLUSHONCOMMIT))
1321 		seq_puts(seq, ",flushoncommit");
1322 	if (btrfs_test_opt(info, DISCARD))
1323 		seq_puts(seq, ",discard");
1324 	if (!(info->sb->s_flags & SB_POSIXACL))
1325 		seq_puts(seq, ",noacl");
1326 	if (btrfs_test_opt(info, SPACE_CACHE))
1327 		seq_puts(seq, ",space_cache");
1328 	else if (btrfs_test_opt(info, FREE_SPACE_TREE))
1329 		seq_puts(seq, ",space_cache=v2");
1330 	else
1331 		seq_puts(seq, ",nospace_cache");
1332 	if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1333 		seq_puts(seq, ",rescan_uuid_tree");
1334 	if (btrfs_test_opt(info, CLEAR_CACHE))
1335 		seq_puts(seq, ",clear_cache");
1336 	if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1337 		seq_puts(seq, ",user_subvol_rm_allowed");
1338 	if (btrfs_test_opt(info, ENOSPC_DEBUG))
1339 		seq_puts(seq, ",enospc_debug");
1340 	if (btrfs_test_opt(info, AUTO_DEFRAG))
1341 		seq_puts(seq, ",autodefrag");
1342 	if (btrfs_test_opt(info, INODE_MAP_CACHE))
1343 		seq_puts(seq, ",inode_cache");
1344 	if (btrfs_test_opt(info, SKIP_BALANCE))
1345 		seq_puts(seq, ",skip_balance");
1346 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1347 	if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1348 		seq_puts(seq, ",check_int_data");
1349 	else if (btrfs_test_opt(info, CHECK_INTEGRITY))
1350 		seq_puts(seq, ",check_int");
1351 	if (info->check_integrity_print_mask)
1352 		seq_printf(seq, ",check_int_print_mask=%d",
1353 				info->check_integrity_print_mask);
1354 #endif
1355 	if (info->metadata_ratio)
1356 		seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1357 	if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1358 		seq_puts(seq, ",fatal_errors=panic");
1359 	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1360 		seq_printf(seq, ",commit=%u", info->commit_interval);
1361 #ifdef CONFIG_BTRFS_DEBUG
1362 	if (btrfs_test_opt(info, FRAGMENT_DATA))
1363 		seq_puts(seq, ",fragment=data");
1364 	if (btrfs_test_opt(info, FRAGMENT_METADATA))
1365 		seq_puts(seq, ",fragment=metadata");
1366 #endif
1367 	if (btrfs_test_opt(info, REF_VERIFY))
1368 		seq_puts(seq, ",ref_verify");
1369 	seq_printf(seq, ",subvolid=%llu",
1370 		  BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1371 	subvol_name = btrfs_get_subvol_name_from_objectid(info,
1372 			BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1373 	if (!IS_ERR(subvol_name)) {
1374 		seq_puts(seq, ",subvol=");
1375 		seq_escape(seq, subvol_name, " \t\n\\");
1376 		kfree(subvol_name);
1377 	}
1378 	return 0;
1379 }
1380 
btrfs_test_super(struct super_block * s,void * data)1381 static int btrfs_test_super(struct super_block *s, void *data)
1382 {
1383 	struct btrfs_fs_info *p = data;
1384 	struct btrfs_fs_info *fs_info = btrfs_sb(s);
1385 
1386 	return fs_info->fs_devices == p->fs_devices;
1387 }
1388 
btrfs_set_super(struct super_block * s,void * data)1389 static int btrfs_set_super(struct super_block *s, void *data)
1390 {
1391 	int err = set_anon_super(s, data);
1392 	if (!err)
1393 		s->s_fs_info = data;
1394 	return err;
1395 }
1396 
1397 /*
1398  * subvolumes are identified by ino 256
1399  */
is_subvolume_inode(struct inode * inode)1400 static inline int is_subvolume_inode(struct inode *inode)
1401 {
1402 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1403 		return 1;
1404 	return 0;
1405 }
1406 
mount_subvol(const char * subvol_name,u64 subvol_objectid,const char * device_name,struct vfsmount * mnt)1407 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1408 				   const char *device_name, struct vfsmount *mnt)
1409 {
1410 	struct dentry *root;
1411 	int ret;
1412 
1413 	if (!subvol_name) {
1414 		if (!subvol_objectid) {
1415 			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1416 							  &subvol_objectid);
1417 			if (ret) {
1418 				root = ERR_PTR(ret);
1419 				goto out;
1420 			}
1421 		}
1422 		subvol_name = btrfs_get_subvol_name_from_objectid(
1423 					btrfs_sb(mnt->mnt_sb), subvol_objectid);
1424 		if (IS_ERR(subvol_name)) {
1425 			root = ERR_CAST(subvol_name);
1426 			subvol_name = NULL;
1427 			goto out;
1428 		}
1429 
1430 	}
1431 
1432 	root = mount_subtree(mnt, subvol_name);
1433 	/* mount_subtree() drops our reference on the vfsmount. */
1434 	mnt = NULL;
1435 
1436 	if (!IS_ERR(root)) {
1437 		struct super_block *s = root->d_sb;
1438 		struct btrfs_fs_info *fs_info = btrfs_sb(s);
1439 		struct inode *root_inode = d_inode(root);
1440 		u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1441 
1442 		ret = 0;
1443 		if (!is_subvolume_inode(root_inode)) {
1444 			btrfs_err(fs_info, "'%s' is not a valid subvolume",
1445 			       subvol_name);
1446 			ret = -EINVAL;
1447 		}
1448 		if (subvol_objectid && root_objectid != subvol_objectid) {
1449 			/*
1450 			 * This will also catch a race condition where a
1451 			 * subvolume which was passed by ID is renamed and
1452 			 * another subvolume is renamed over the old location.
1453 			 */
1454 			btrfs_err(fs_info,
1455 				  "subvol '%s' does not match subvolid %llu",
1456 				  subvol_name, subvol_objectid);
1457 			ret = -EINVAL;
1458 		}
1459 		if (ret) {
1460 			dput(root);
1461 			root = ERR_PTR(ret);
1462 			deactivate_locked_super(s);
1463 		}
1464 	}
1465 
1466 out:
1467 	mntput(mnt);
1468 	kfree(subvol_name);
1469 	return root;
1470 }
1471 
parse_security_options(char * orig_opts,struct security_mnt_opts * sec_opts)1472 static int parse_security_options(char *orig_opts,
1473 				  struct security_mnt_opts *sec_opts)
1474 {
1475 	char *secdata = NULL;
1476 	int ret = 0;
1477 
1478 	secdata = alloc_secdata();
1479 	if (!secdata)
1480 		return -ENOMEM;
1481 	ret = security_sb_copy_data(orig_opts, secdata);
1482 	if (ret) {
1483 		free_secdata(secdata);
1484 		return ret;
1485 	}
1486 	ret = security_sb_parse_opts_str(secdata, sec_opts);
1487 	free_secdata(secdata);
1488 	return ret;
1489 }
1490 
setup_security_options(struct btrfs_fs_info * fs_info,struct super_block * sb,struct security_mnt_opts * sec_opts)1491 static int setup_security_options(struct btrfs_fs_info *fs_info,
1492 				  struct super_block *sb,
1493 				  struct security_mnt_opts *sec_opts)
1494 {
1495 	int ret = 0;
1496 
1497 	/*
1498 	 * Call security_sb_set_mnt_opts() to check whether new sec_opts
1499 	 * is valid.
1500 	 */
1501 	ret = security_sb_set_mnt_opts(sb, sec_opts, 0, NULL);
1502 	if (ret)
1503 		return ret;
1504 
1505 #ifdef CONFIG_SECURITY
1506 	if (!fs_info->security_opts.num_mnt_opts) {
1507 		/* first time security setup, copy sec_opts to fs_info */
1508 		memcpy(&fs_info->security_opts, sec_opts, sizeof(*sec_opts));
1509 	} else {
1510 		/*
1511 		 * Since SELinux (the only one supporting security_mnt_opts)
1512 		 * does NOT support changing context during remount/mount of
1513 		 * the same sb, this must be the same or part of the same
1514 		 * security options, just free it.
1515 		 */
1516 		security_free_mnt_opts(sec_opts);
1517 	}
1518 #endif
1519 	return ret;
1520 }
1521 
1522 /*
1523  * Find a superblock for the given device / mount point.
1524  *
1525  * Note: This is based on mount_bdev from fs/super.c with a few additions
1526  *       for multiple device setup.  Make sure to keep it in sync.
1527  */
btrfs_mount_root(struct file_system_type * fs_type,int flags,const char * device_name,void * data)1528 static struct dentry *btrfs_mount_root(struct file_system_type *fs_type,
1529 		int flags, const char *device_name, void *data)
1530 {
1531 	struct block_device *bdev = NULL;
1532 	struct super_block *s;
1533 	struct btrfs_device *device = NULL;
1534 	struct btrfs_fs_devices *fs_devices = NULL;
1535 	struct btrfs_fs_info *fs_info = NULL;
1536 	struct security_mnt_opts new_sec_opts;
1537 	fmode_t mode = FMODE_READ;
1538 	int error = 0;
1539 
1540 	if (!(flags & SB_RDONLY))
1541 		mode |= FMODE_WRITE;
1542 
1543 	security_init_mnt_opts(&new_sec_opts);
1544 	if (data) {
1545 		error = parse_security_options(data, &new_sec_opts);
1546 		if (error)
1547 			return ERR_PTR(error);
1548 	}
1549 
1550 	/*
1551 	 * Setup a dummy root and fs_info for test/set super.  This is because
1552 	 * we don't actually fill this stuff out until open_ctree, but we need
1553 	 * it for searching for existing supers, so this lets us do that and
1554 	 * then open_ctree will properly initialize everything later.
1555 	 */
1556 	fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
1557 	if (!fs_info) {
1558 		error = -ENOMEM;
1559 		goto error_sec_opts;
1560 	}
1561 
1562 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1563 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1564 	security_init_mnt_opts(&fs_info->security_opts);
1565 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1566 		error = -ENOMEM;
1567 		goto error_fs_info;
1568 	}
1569 
1570 	mutex_lock(&uuid_mutex);
1571 	error = btrfs_parse_device_options(data, mode, fs_type);
1572 	if (error) {
1573 		mutex_unlock(&uuid_mutex);
1574 		goto error_fs_info;
1575 	}
1576 
1577 	device = btrfs_scan_one_device(device_name, mode, fs_type);
1578 	if (IS_ERR(device)) {
1579 		mutex_unlock(&uuid_mutex);
1580 		error = PTR_ERR(device);
1581 		goto error_fs_info;
1582 	}
1583 
1584 	fs_devices = device->fs_devices;
1585 	fs_info->fs_devices = fs_devices;
1586 
1587 	error = btrfs_open_devices(fs_devices, mode, fs_type);
1588 	mutex_unlock(&uuid_mutex);
1589 	if (error)
1590 		goto error_fs_info;
1591 
1592 	if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1593 		error = -EACCES;
1594 		goto error_close_devices;
1595 	}
1596 
1597 	bdev = fs_devices->latest_bdev;
1598 	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC,
1599 		 fs_info);
1600 	if (IS_ERR(s)) {
1601 		error = PTR_ERR(s);
1602 		goto error_close_devices;
1603 	}
1604 
1605 	if (s->s_root) {
1606 		btrfs_close_devices(fs_devices);
1607 		free_fs_info(fs_info);
1608 		if ((flags ^ s->s_flags) & SB_RDONLY)
1609 			error = -EBUSY;
1610 	} else {
1611 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1612 		btrfs_sb(s)->bdev_holder = fs_type;
1613 		error = btrfs_fill_super(s, fs_devices, data);
1614 	}
1615 	if (error) {
1616 		deactivate_locked_super(s);
1617 		goto error_sec_opts;
1618 	}
1619 
1620 	fs_info = btrfs_sb(s);
1621 	error = setup_security_options(fs_info, s, &new_sec_opts);
1622 	if (error) {
1623 		deactivate_locked_super(s);
1624 		goto error_sec_opts;
1625 	}
1626 
1627 	return dget(s->s_root);
1628 
1629 error_close_devices:
1630 	btrfs_close_devices(fs_devices);
1631 error_fs_info:
1632 	free_fs_info(fs_info);
1633 error_sec_opts:
1634 	security_free_mnt_opts(&new_sec_opts);
1635 	return ERR_PTR(error);
1636 }
1637 
1638 /*
1639  * Mount function which is called by VFS layer.
1640  *
1641  * In order to allow mounting a subvolume directly, btrfs uses mount_subtree()
1642  * which needs vfsmount* of device's root (/).  This means device's root has to
1643  * be mounted internally in any case.
1644  *
1645  * Operation flow:
1646  *   1. Parse subvol id related options for later use in mount_subvol().
1647  *
1648  *   2. Mount device's root (/) by calling vfs_kern_mount().
1649  *
1650  *      NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the
1651  *      first place. In order to avoid calling btrfs_mount() again, we use
1652  *      different file_system_type which is not registered to VFS by
1653  *      register_filesystem() (btrfs_root_fs_type). As a result,
1654  *      btrfs_mount_root() is called. The return value will be used by
1655  *      mount_subtree() in mount_subvol().
1656  *
1657  *   3. Call mount_subvol() to get the dentry of subvolume. Since there is
1658  *      "btrfs subvolume set-default", mount_subvol() is called always.
1659  */
btrfs_mount(struct file_system_type * fs_type,int flags,const char * device_name,void * data)1660 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1661 		const char *device_name, void *data)
1662 {
1663 	struct vfsmount *mnt_root;
1664 	struct dentry *root;
1665 	fmode_t mode = FMODE_READ;
1666 	char *subvol_name = NULL;
1667 	u64 subvol_objectid = 0;
1668 	int error = 0;
1669 
1670 	if (!(flags & SB_RDONLY))
1671 		mode |= FMODE_WRITE;
1672 
1673 	error = btrfs_parse_subvol_options(data, &subvol_name,
1674 					&subvol_objectid);
1675 	if (error) {
1676 		kfree(subvol_name);
1677 		return ERR_PTR(error);
1678 	}
1679 
1680 	/* mount device's root (/) */
1681 	mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data);
1682 	if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) {
1683 		if (flags & SB_RDONLY) {
1684 			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1685 				flags & ~SB_RDONLY, device_name, data);
1686 		} else {
1687 			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1688 				flags | SB_RDONLY, device_name, data);
1689 			if (IS_ERR(mnt_root)) {
1690 				root = ERR_CAST(mnt_root);
1691 				kfree(subvol_name);
1692 				goto out;
1693 			}
1694 
1695 			down_write(&mnt_root->mnt_sb->s_umount);
1696 			error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL);
1697 			up_write(&mnt_root->mnt_sb->s_umount);
1698 			if (error < 0) {
1699 				root = ERR_PTR(error);
1700 				mntput(mnt_root);
1701 				kfree(subvol_name);
1702 				goto out;
1703 			}
1704 		}
1705 	}
1706 	if (IS_ERR(mnt_root)) {
1707 		root = ERR_CAST(mnt_root);
1708 		kfree(subvol_name);
1709 		goto out;
1710 	}
1711 
1712 	/* mount_subvol() will free subvol_name and mnt_root */
1713 	root = mount_subvol(subvol_name, subvol_objectid, device_name, mnt_root);
1714 
1715 out:
1716 	return root;
1717 }
1718 
btrfs_resize_thread_pool(struct btrfs_fs_info * fs_info,u32 new_pool_size,u32 old_pool_size)1719 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1720 				     u32 new_pool_size, u32 old_pool_size)
1721 {
1722 	if (new_pool_size == old_pool_size)
1723 		return;
1724 
1725 	fs_info->thread_pool_size = new_pool_size;
1726 
1727 	btrfs_info(fs_info, "resize thread pool %d -> %d",
1728 	       old_pool_size, new_pool_size);
1729 
1730 	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1731 	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1732 	btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size);
1733 	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1734 	btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1735 	btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1736 	btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1737 				new_pool_size);
1738 	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1739 	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1740 	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1741 	btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1742 	btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1743 				new_pool_size);
1744 }
1745 
btrfs_remount_prepare(struct btrfs_fs_info * fs_info)1746 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1747 {
1748 	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1749 }
1750 
btrfs_remount_begin(struct btrfs_fs_info * fs_info,unsigned long old_opts,int flags)1751 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1752 				       unsigned long old_opts, int flags)
1753 {
1754 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1755 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1756 	     (flags & SB_RDONLY))) {
1757 		/* wait for any defraggers to finish */
1758 		wait_event(fs_info->transaction_wait,
1759 			   (atomic_read(&fs_info->defrag_running) == 0));
1760 		if (flags & SB_RDONLY)
1761 			sync_filesystem(fs_info->sb);
1762 	}
1763 }
1764 
btrfs_remount_cleanup(struct btrfs_fs_info * fs_info,unsigned long old_opts)1765 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1766 					 unsigned long old_opts)
1767 {
1768 	/*
1769 	 * We need to cleanup all defragable inodes if the autodefragment is
1770 	 * close or the filesystem is read only.
1771 	 */
1772 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1773 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1774 		btrfs_cleanup_defrag_inodes(fs_info);
1775 	}
1776 
1777 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1778 }
1779 
btrfs_remount(struct super_block * sb,int * flags,char * data)1780 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1781 {
1782 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1783 	struct btrfs_root *root = fs_info->tree_root;
1784 	unsigned old_flags = sb->s_flags;
1785 	unsigned long old_opts = fs_info->mount_opt;
1786 	unsigned long old_compress_type = fs_info->compress_type;
1787 	u64 old_max_inline = fs_info->max_inline;
1788 	u32 old_thread_pool_size = fs_info->thread_pool_size;
1789 	u32 old_metadata_ratio = fs_info->metadata_ratio;
1790 	int ret;
1791 
1792 	sync_filesystem(sb);
1793 	btrfs_remount_prepare(fs_info);
1794 
1795 	if (data) {
1796 		struct security_mnt_opts new_sec_opts;
1797 
1798 		security_init_mnt_opts(&new_sec_opts);
1799 		ret = parse_security_options(data, &new_sec_opts);
1800 		if (ret)
1801 			goto restore;
1802 		ret = setup_security_options(fs_info, sb,
1803 					     &new_sec_opts);
1804 		if (ret) {
1805 			security_free_mnt_opts(&new_sec_opts);
1806 			goto restore;
1807 		}
1808 	}
1809 
1810 	ret = btrfs_parse_options(fs_info, data, *flags);
1811 	if (ret)
1812 		goto restore;
1813 
1814 	btrfs_remount_begin(fs_info, old_opts, *flags);
1815 	btrfs_resize_thread_pool(fs_info,
1816 		fs_info->thread_pool_size, old_thread_pool_size);
1817 
1818 	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1819 		goto out;
1820 
1821 	if (*flags & SB_RDONLY) {
1822 		/*
1823 		 * this also happens on 'umount -rf' or on shutdown, when
1824 		 * the filesystem is busy.
1825 		 */
1826 		cancel_work_sync(&fs_info->async_reclaim_work);
1827 
1828 		/* wait for the uuid_scan task to finish */
1829 		down(&fs_info->uuid_tree_rescan_sem);
1830 		/* avoid complains from lockdep et al. */
1831 		up(&fs_info->uuid_tree_rescan_sem);
1832 
1833 		sb->s_flags |= SB_RDONLY;
1834 
1835 		/*
1836 		 * Setting SB_RDONLY will put the cleaner thread to
1837 		 * sleep at the next loop if it's already active.
1838 		 * If it's already asleep, we'll leave unused block
1839 		 * groups on disk until we're mounted read-write again
1840 		 * unless we clean them up here.
1841 		 */
1842 		btrfs_delete_unused_bgs(fs_info);
1843 
1844 		btrfs_dev_replace_suspend_for_unmount(fs_info);
1845 		btrfs_scrub_cancel(fs_info);
1846 		btrfs_pause_balance(fs_info);
1847 
1848 		/*
1849 		 * Pause the qgroup rescan worker if it is running. We don't want
1850 		 * it to be still running after we are in RO mode, as after that,
1851 		 * by the time we unmount, it might have left a transaction open,
1852 		 * so we would leak the transaction and/or crash.
1853 		 */
1854 		btrfs_qgroup_wait_for_completion(fs_info, false);
1855 
1856 		ret = btrfs_commit_super(fs_info);
1857 		if (ret)
1858 			goto restore;
1859 	} else {
1860 		if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1861 			btrfs_err(fs_info,
1862 				"Remounting read-write after error is not allowed");
1863 			ret = -EINVAL;
1864 			goto restore;
1865 		}
1866 		if (fs_info->fs_devices->rw_devices == 0) {
1867 			ret = -EACCES;
1868 			goto restore;
1869 		}
1870 
1871 		if (!btrfs_check_rw_degradable(fs_info, NULL)) {
1872 			btrfs_warn(fs_info,
1873 				"too many missing devices, writeable remount is not allowed");
1874 			ret = -EACCES;
1875 			goto restore;
1876 		}
1877 
1878 		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1879 			btrfs_warn(fs_info,
1880 		"mount required to replay tree-log, cannot remount read-write");
1881 			ret = -EINVAL;
1882 			goto restore;
1883 		}
1884 
1885 		ret = btrfs_cleanup_fs_roots(fs_info);
1886 		if (ret)
1887 			goto restore;
1888 
1889 		/* recover relocation */
1890 		mutex_lock(&fs_info->cleaner_mutex);
1891 		ret = btrfs_recover_relocation(root);
1892 		mutex_unlock(&fs_info->cleaner_mutex);
1893 		if (ret)
1894 			goto restore;
1895 
1896 		ret = btrfs_resume_balance_async(fs_info);
1897 		if (ret)
1898 			goto restore;
1899 
1900 		ret = btrfs_resume_dev_replace_async(fs_info);
1901 		if (ret) {
1902 			btrfs_warn(fs_info, "failed to resume dev_replace");
1903 			goto restore;
1904 		}
1905 
1906 		btrfs_qgroup_rescan_resume(fs_info);
1907 
1908 		if (!fs_info->uuid_root) {
1909 			btrfs_info(fs_info, "creating UUID tree");
1910 			ret = btrfs_create_uuid_tree(fs_info);
1911 			if (ret) {
1912 				btrfs_warn(fs_info,
1913 					   "failed to create the UUID tree %d",
1914 					   ret);
1915 				goto restore;
1916 			}
1917 		}
1918 		sb->s_flags &= ~SB_RDONLY;
1919 
1920 		set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1921 	}
1922 out:
1923 	wake_up_process(fs_info->transaction_kthread);
1924 	btrfs_remount_cleanup(fs_info, old_opts);
1925 	return 0;
1926 
1927 restore:
1928 	/* We've hit an error - don't reset SB_RDONLY */
1929 	if (sb_rdonly(sb))
1930 		old_flags |= SB_RDONLY;
1931 	sb->s_flags = old_flags;
1932 	fs_info->mount_opt = old_opts;
1933 	fs_info->compress_type = old_compress_type;
1934 	fs_info->max_inline = old_max_inline;
1935 	btrfs_resize_thread_pool(fs_info,
1936 		old_thread_pool_size, fs_info->thread_pool_size);
1937 	fs_info->metadata_ratio = old_metadata_ratio;
1938 	btrfs_remount_cleanup(fs_info, old_opts);
1939 	return ret;
1940 }
1941 
1942 /* Used to sort the devices by max_avail(descending sort) */
btrfs_cmp_device_free_bytes(const void * dev_info1,const void * dev_info2)1943 static inline int btrfs_cmp_device_free_bytes(const void *dev_info1,
1944 				       const void *dev_info2)
1945 {
1946 	if (((struct btrfs_device_info *)dev_info1)->max_avail >
1947 	    ((struct btrfs_device_info *)dev_info2)->max_avail)
1948 		return -1;
1949 	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1950 		 ((struct btrfs_device_info *)dev_info2)->max_avail)
1951 		return 1;
1952 	else
1953 	return 0;
1954 }
1955 
1956 /*
1957  * sort the devices by max_avail, in which max free extent size of each device
1958  * is stored.(Descending Sort)
1959  */
btrfs_descending_sort_devices(struct btrfs_device_info * devices,size_t nr_devices)1960 static inline void btrfs_descending_sort_devices(
1961 					struct btrfs_device_info *devices,
1962 					size_t nr_devices)
1963 {
1964 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1965 	     btrfs_cmp_device_free_bytes, NULL);
1966 }
1967 
1968 /*
1969  * The helper to calc the free space on the devices that can be used to store
1970  * file data.
1971  */
btrfs_calc_avail_data_space(struct btrfs_fs_info * fs_info,u64 * free_bytes)1972 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1973 					      u64 *free_bytes)
1974 {
1975 	struct btrfs_device_info *devices_info;
1976 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1977 	struct btrfs_device *device;
1978 	u64 skip_space;
1979 	u64 type;
1980 	u64 avail_space;
1981 	u64 min_stripe_size;
1982 	int min_stripes = 1, num_stripes = 1;
1983 	int i = 0, nr_devices;
1984 
1985 	/*
1986 	 * We aren't under the device list lock, so this is racy-ish, but good
1987 	 * enough for our purposes.
1988 	 */
1989 	nr_devices = fs_info->fs_devices->open_devices;
1990 	if (!nr_devices) {
1991 		smp_mb();
1992 		nr_devices = fs_info->fs_devices->open_devices;
1993 		ASSERT(nr_devices);
1994 		if (!nr_devices) {
1995 			*free_bytes = 0;
1996 			return 0;
1997 		}
1998 	}
1999 
2000 	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
2001 			       GFP_KERNEL);
2002 	if (!devices_info)
2003 		return -ENOMEM;
2004 
2005 	/* calc min stripe number for data space allocation */
2006 	type = btrfs_data_alloc_profile(fs_info);
2007 	if (type & BTRFS_BLOCK_GROUP_RAID0) {
2008 		min_stripes = 2;
2009 		num_stripes = nr_devices;
2010 	} else if (type & BTRFS_BLOCK_GROUP_RAID1) {
2011 		min_stripes = 2;
2012 		num_stripes = 2;
2013 	} else if (type & BTRFS_BLOCK_GROUP_RAID10) {
2014 		min_stripes = 4;
2015 		num_stripes = 4;
2016 	}
2017 
2018 	if (type & BTRFS_BLOCK_GROUP_DUP)
2019 		min_stripe_size = 2 * BTRFS_STRIPE_LEN;
2020 	else
2021 		min_stripe_size = BTRFS_STRIPE_LEN;
2022 
2023 	rcu_read_lock();
2024 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2025 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2026 						&device->dev_state) ||
2027 		    !device->bdev ||
2028 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2029 			continue;
2030 
2031 		if (i >= nr_devices)
2032 			break;
2033 
2034 		avail_space = device->total_bytes - device->bytes_used;
2035 
2036 		/* align with stripe_len */
2037 		avail_space = div_u64(avail_space, BTRFS_STRIPE_LEN);
2038 		avail_space *= BTRFS_STRIPE_LEN;
2039 
2040 		/*
2041 		 * In order to avoid overwriting the superblock on the drive,
2042 		 * btrfs starts at an offset of at least 1MB when doing chunk
2043 		 * allocation.
2044 		 */
2045 		skip_space = SZ_1M;
2046 
2047 		/*
2048 		 * we can use the free space in [0, skip_space - 1], subtract
2049 		 * it from the total.
2050 		 */
2051 		if (avail_space && avail_space >= skip_space)
2052 			avail_space -= skip_space;
2053 		else
2054 			avail_space = 0;
2055 
2056 		if (avail_space < min_stripe_size)
2057 			continue;
2058 
2059 		devices_info[i].dev = device;
2060 		devices_info[i].max_avail = avail_space;
2061 
2062 		i++;
2063 	}
2064 	rcu_read_unlock();
2065 
2066 	nr_devices = i;
2067 
2068 	btrfs_descending_sort_devices(devices_info, nr_devices);
2069 
2070 	i = nr_devices - 1;
2071 	avail_space = 0;
2072 	while (nr_devices >= min_stripes) {
2073 		if (num_stripes > nr_devices)
2074 			num_stripes = nr_devices;
2075 
2076 		if (devices_info[i].max_avail >= min_stripe_size) {
2077 			int j;
2078 			u64 alloc_size;
2079 
2080 			avail_space += devices_info[i].max_avail * num_stripes;
2081 			alloc_size = devices_info[i].max_avail;
2082 			for (j = i + 1 - num_stripes; j <= i; j++)
2083 				devices_info[j].max_avail -= alloc_size;
2084 		}
2085 		i--;
2086 		nr_devices--;
2087 	}
2088 
2089 	kfree(devices_info);
2090 	*free_bytes = avail_space;
2091 	return 0;
2092 }
2093 
2094 /*
2095  * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2096  *
2097  * If there's a redundant raid level at DATA block groups, use the respective
2098  * multiplier to scale the sizes.
2099  *
2100  * Unused device space usage is based on simulating the chunk allocator
2101  * algorithm that respects the device sizes and order of allocations.  This is
2102  * a close approximation of the actual use but there are other factors that may
2103  * change the result (like a new metadata chunk).
2104  *
2105  * If metadata is exhausted, f_bavail will be 0.
2106  */
btrfs_statfs(struct dentry * dentry,struct kstatfs * buf)2107 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
2108 {
2109 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
2110 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2111 	struct list_head *head = &fs_info->space_info;
2112 	struct btrfs_space_info *found;
2113 	u64 total_used = 0;
2114 	u64 total_free_data = 0;
2115 	u64 total_free_meta = 0;
2116 	int bits = dentry->d_sb->s_blocksize_bits;
2117 	__be32 *fsid = (__be32 *)fs_info->fsid;
2118 	unsigned factor = 1;
2119 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
2120 	int ret;
2121 	u64 thresh = 0;
2122 	int mixed = 0;
2123 
2124 	rcu_read_lock();
2125 	list_for_each_entry_rcu(found, head, list) {
2126 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
2127 			int i;
2128 
2129 			total_free_data += found->disk_total - found->disk_used;
2130 			total_free_data -=
2131 				btrfs_account_ro_block_groups_free_space(found);
2132 
2133 			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2134 				if (!list_empty(&found->block_groups[i]))
2135 					factor = btrfs_bg_type_to_factor(
2136 						btrfs_raid_array[i].bg_flag);
2137 			}
2138 		}
2139 
2140 		/*
2141 		 * Metadata in mixed block goup profiles are accounted in data
2142 		 */
2143 		if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
2144 			if (found->flags & BTRFS_BLOCK_GROUP_DATA)
2145 				mixed = 1;
2146 			else
2147 				total_free_meta += found->disk_total -
2148 					found->disk_used;
2149 		}
2150 
2151 		total_used += found->disk_used;
2152 	}
2153 
2154 	rcu_read_unlock();
2155 
2156 	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2157 	buf->f_blocks >>= bits;
2158 	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2159 
2160 	/* Account global block reserve as used, it's in logical size already */
2161 	spin_lock(&block_rsv->lock);
2162 	/* Mixed block groups accounting is not byte-accurate, avoid overflow */
2163 	if (buf->f_bfree >= block_rsv->size >> bits)
2164 		buf->f_bfree -= block_rsv->size >> bits;
2165 	else
2166 		buf->f_bfree = 0;
2167 	spin_unlock(&block_rsv->lock);
2168 
2169 	buf->f_bavail = div_u64(total_free_data, factor);
2170 	ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
2171 	if (ret)
2172 		return ret;
2173 	buf->f_bavail += div_u64(total_free_data, factor);
2174 	buf->f_bavail = buf->f_bavail >> bits;
2175 
2176 	/*
2177 	 * We calculate the remaining metadata space minus global reserve. If
2178 	 * this is (supposedly) smaller than zero, there's no space. But this
2179 	 * does not hold in practice, the exhausted state happens where's still
2180 	 * some positive delta. So we apply some guesswork and compare the
2181 	 * delta to a 4M threshold.  (Practically observed delta was ~2M.)
2182 	 *
2183 	 * We probably cannot calculate the exact threshold value because this
2184 	 * depends on the internal reservations requested by various
2185 	 * operations, so some operations that consume a few metadata will
2186 	 * succeed even if the Avail is zero. But this is better than the other
2187 	 * way around.
2188 	 */
2189 	thresh = SZ_4M;
2190 
2191 	/*
2192 	 * We only want to claim there's no available space if we can no longer
2193 	 * allocate chunks for our metadata profile and our global reserve will
2194 	 * not fit in the free metadata space.  If we aren't ->full then we
2195 	 * still can allocate chunks and thus are fine using the currently
2196 	 * calculated f_bavail.
2197 	 */
2198 	if (!mixed && block_rsv->space_info->full &&
2199 	    (total_free_meta < thresh || total_free_meta - thresh < block_rsv->size))
2200 		buf->f_bavail = 0;
2201 
2202 	buf->f_type = BTRFS_SUPER_MAGIC;
2203 	buf->f_bsize = dentry->d_sb->s_blocksize;
2204 	buf->f_namelen = BTRFS_NAME_LEN;
2205 
2206 	/* We treat it as constant endianness (it doesn't matter _which_)
2207 	   because we want the fsid to come out the same whether mounted
2208 	   on a big-endian or little-endian host */
2209 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2210 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2211 	/* Mask in the root object ID too, to disambiguate subvols */
2212 	buf->f_fsid.val[0] ^= BTRFS_I(d_inode(dentry))->root->objectid >> 32;
2213 	buf->f_fsid.val[1] ^= BTRFS_I(d_inode(dentry))->root->objectid;
2214 
2215 	return 0;
2216 }
2217 
btrfs_kill_super(struct super_block * sb)2218 static void btrfs_kill_super(struct super_block *sb)
2219 {
2220 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2221 	kill_anon_super(sb);
2222 	free_fs_info(fs_info);
2223 }
2224 
2225 static struct file_system_type btrfs_fs_type = {
2226 	.owner		= THIS_MODULE,
2227 	.name		= "btrfs",
2228 	.mount		= btrfs_mount,
2229 	.kill_sb	= btrfs_kill_super,
2230 	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2231 };
2232 
2233 static struct file_system_type btrfs_root_fs_type = {
2234 	.owner		= THIS_MODULE,
2235 	.name		= "btrfs",
2236 	.mount		= btrfs_mount_root,
2237 	.kill_sb	= btrfs_kill_super,
2238 	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2239 };
2240 
2241 MODULE_ALIAS_FS("btrfs");
2242 
btrfs_control_open(struct inode * inode,struct file * file)2243 static int btrfs_control_open(struct inode *inode, struct file *file)
2244 {
2245 	/*
2246 	 * The control file's private_data is used to hold the
2247 	 * transaction when it is started and is used to keep
2248 	 * track of whether a transaction is already in progress.
2249 	 */
2250 	file->private_data = NULL;
2251 	return 0;
2252 }
2253 
2254 /*
2255  * used by btrfsctl to scan devices when no FS is mounted
2256  */
btrfs_control_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2257 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2258 				unsigned long arg)
2259 {
2260 	struct btrfs_ioctl_vol_args *vol;
2261 	struct btrfs_device *device = NULL;
2262 	int ret = -ENOTTY;
2263 
2264 	if (!capable(CAP_SYS_ADMIN))
2265 		return -EPERM;
2266 
2267 	vol = memdup_user((void __user *)arg, sizeof(*vol));
2268 	if (IS_ERR(vol))
2269 		return PTR_ERR(vol);
2270 	vol->name[BTRFS_PATH_NAME_MAX] = '\0';
2271 
2272 	switch (cmd) {
2273 	case BTRFS_IOC_SCAN_DEV:
2274 		mutex_lock(&uuid_mutex);
2275 		device = btrfs_scan_one_device(vol->name, FMODE_READ,
2276 					       &btrfs_root_fs_type);
2277 		ret = PTR_ERR_OR_ZERO(device);
2278 		mutex_unlock(&uuid_mutex);
2279 		break;
2280 	case BTRFS_IOC_DEVICES_READY:
2281 		mutex_lock(&uuid_mutex);
2282 		device = btrfs_scan_one_device(vol->name, FMODE_READ,
2283 					       &btrfs_root_fs_type);
2284 		if (IS_ERR(device)) {
2285 			mutex_unlock(&uuid_mutex);
2286 			ret = PTR_ERR(device);
2287 			break;
2288 		}
2289 		ret = !(device->fs_devices->num_devices ==
2290 			device->fs_devices->total_devices);
2291 		mutex_unlock(&uuid_mutex);
2292 		break;
2293 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2294 		ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2295 		break;
2296 	}
2297 
2298 	kfree(vol);
2299 	return ret;
2300 }
2301 
btrfs_freeze(struct super_block * sb)2302 static int btrfs_freeze(struct super_block *sb)
2303 {
2304 	struct btrfs_trans_handle *trans;
2305 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2306 	struct btrfs_root *root = fs_info->tree_root;
2307 
2308 	set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2309 	/*
2310 	 * We don't need a barrier here, we'll wait for any transaction that
2311 	 * could be in progress on other threads (and do delayed iputs that
2312 	 * we want to avoid on a frozen filesystem), or do the commit
2313 	 * ourselves.
2314 	 */
2315 	trans = btrfs_attach_transaction_barrier(root);
2316 	if (IS_ERR(trans)) {
2317 		/* no transaction, don't bother */
2318 		if (PTR_ERR(trans) == -ENOENT)
2319 			return 0;
2320 		return PTR_ERR(trans);
2321 	}
2322 	return btrfs_commit_transaction(trans);
2323 }
2324 
btrfs_unfreeze(struct super_block * sb)2325 static int btrfs_unfreeze(struct super_block *sb)
2326 {
2327 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2328 
2329 	clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2330 	return 0;
2331 }
2332 
btrfs_show_devname(struct seq_file * m,struct dentry * root)2333 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2334 {
2335 	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2336 	struct btrfs_device *dev, *first_dev = NULL;
2337 
2338 	/*
2339 	 * Lightweight locking of the devices. We should not need
2340 	 * device_list_mutex here as we only read the device data and the list
2341 	 * is protected by RCU.  Even if a device is deleted during the list
2342 	 * traversals, we'll get valid data, the freeing callback will wait at
2343 	 * least until until the rcu_read_unlock.
2344 	 */
2345 	rcu_read_lock();
2346 	list_for_each_entry_rcu(dev, &fs_info->fs_devices->devices, dev_list) {
2347 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
2348 			continue;
2349 		if (!dev->name)
2350 			continue;
2351 		if (!first_dev || dev->devid < first_dev->devid)
2352 			first_dev = dev;
2353 	}
2354 
2355 	if (first_dev)
2356 		seq_escape(m, rcu_str_deref(first_dev->name), " \t\n\\");
2357 	else
2358 		WARN_ON(1);
2359 	rcu_read_unlock();
2360 	return 0;
2361 }
2362 
2363 static const struct super_operations btrfs_super_ops = {
2364 	.drop_inode	= btrfs_drop_inode,
2365 	.evict_inode	= btrfs_evict_inode,
2366 	.put_super	= btrfs_put_super,
2367 	.sync_fs	= btrfs_sync_fs,
2368 	.show_options	= btrfs_show_options,
2369 	.show_devname	= btrfs_show_devname,
2370 	.alloc_inode	= btrfs_alloc_inode,
2371 	.destroy_inode	= btrfs_destroy_inode,
2372 	.statfs		= btrfs_statfs,
2373 	.remount_fs	= btrfs_remount,
2374 	.freeze_fs	= btrfs_freeze,
2375 	.unfreeze_fs	= btrfs_unfreeze,
2376 };
2377 
2378 static const struct file_operations btrfs_ctl_fops = {
2379 	.open = btrfs_control_open,
2380 	.unlocked_ioctl	 = btrfs_control_ioctl,
2381 	.compat_ioctl = btrfs_control_ioctl,
2382 	.owner	 = THIS_MODULE,
2383 	.llseek = noop_llseek,
2384 };
2385 
2386 static struct miscdevice btrfs_misc = {
2387 	.minor		= BTRFS_MINOR,
2388 	.name		= "btrfs-control",
2389 	.fops		= &btrfs_ctl_fops
2390 };
2391 
2392 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2393 MODULE_ALIAS("devname:btrfs-control");
2394 
btrfs_interface_init(void)2395 static int __init btrfs_interface_init(void)
2396 {
2397 	return misc_register(&btrfs_misc);
2398 }
2399 
btrfs_interface_exit(void)2400 static __cold void btrfs_interface_exit(void)
2401 {
2402 	misc_deregister(&btrfs_misc);
2403 }
2404 
btrfs_print_mod_info(void)2405 static void __init btrfs_print_mod_info(void)
2406 {
2407 	static const char options[] = ""
2408 #ifdef CONFIG_BTRFS_DEBUG
2409 			", debug=on"
2410 #endif
2411 #ifdef CONFIG_BTRFS_ASSERT
2412 			", assert=on"
2413 #endif
2414 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2415 			", integrity-checker=on"
2416 #endif
2417 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
2418 			", ref-verify=on"
2419 #endif
2420 			;
2421 	pr_info("Btrfs loaded, crc32c=%s%s\n", crc32c_impl(), options);
2422 }
2423 
init_btrfs_fs(void)2424 static int __init init_btrfs_fs(void)
2425 {
2426 	int err;
2427 
2428 	btrfs_props_init();
2429 
2430 	err = btrfs_init_sysfs();
2431 	if (err)
2432 		return err;
2433 
2434 	btrfs_init_compress();
2435 
2436 	err = btrfs_init_cachep();
2437 	if (err)
2438 		goto free_compress;
2439 
2440 	err = extent_io_init();
2441 	if (err)
2442 		goto free_cachep;
2443 
2444 	err = extent_map_init();
2445 	if (err)
2446 		goto free_extent_io;
2447 
2448 	err = ordered_data_init();
2449 	if (err)
2450 		goto free_extent_map;
2451 
2452 	err = btrfs_delayed_inode_init();
2453 	if (err)
2454 		goto free_ordered_data;
2455 
2456 	err = btrfs_auto_defrag_init();
2457 	if (err)
2458 		goto free_delayed_inode;
2459 
2460 	err = btrfs_delayed_ref_init();
2461 	if (err)
2462 		goto free_auto_defrag;
2463 
2464 	err = btrfs_prelim_ref_init();
2465 	if (err)
2466 		goto free_delayed_ref;
2467 
2468 	err = btrfs_end_io_wq_init();
2469 	if (err)
2470 		goto free_prelim_ref;
2471 
2472 	err = btrfs_interface_init();
2473 	if (err)
2474 		goto free_end_io_wq;
2475 
2476 	btrfs_init_lockdep();
2477 
2478 	btrfs_print_mod_info();
2479 
2480 	err = btrfs_run_sanity_tests();
2481 	if (err)
2482 		goto unregister_ioctl;
2483 
2484 	err = register_filesystem(&btrfs_fs_type);
2485 	if (err)
2486 		goto unregister_ioctl;
2487 
2488 	return 0;
2489 
2490 unregister_ioctl:
2491 	btrfs_interface_exit();
2492 free_end_io_wq:
2493 	btrfs_end_io_wq_exit();
2494 free_prelim_ref:
2495 	btrfs_prelim_ref_exit();
2496 free_delayed_ref:
2497 	btrfs_delayed_ref_exit();
2498 free_auto_defrag:
2499 	btrfs_auto_defrag_exit();
2500 free_delayed_inode:
2501 	btrfs_delayed_inode_exit();
2502 free_ordered_data:
2503 	ordered_data_exit();
2504 free_extent_map:
2505 	extent_map_exit();
2506 free_extent_io:
2507 	extent_io_exit();
2508 free_cachep:
2509 	btrfs_destroy_cachep();
2510 free_compress:
2511 	btrfs_exit_compress();
2512 	btrfs_exit_sysfs();
2513 
2514 	return err;
2515 }
2516 
exit_btrfs_fs(void)2517 static void __exit exit_btrfs_fs(void)
2518 {
2519 	btrfs_destroy_cachep();
2520 	btrfs_delayed_ref_exit();
2521 	btrfs_auto_defrag_exit();
2522 	btrfs_delayed_inode_exit();
2523 	btrfs_prelim_ref_exit();
2524 	ordered_data_exit();
2525 	extent_map_exit();
2526 	extent_io_exit();
2527 	btrfs_interface_exit();
2528 	btrfs_end_io_wq_exit();
2529 	unregister_filesystem(&btrfs_fs_type);
2530 	btrfs_exit_sysfs();
2531 	btrfs_cleanup_fs_uuids();
2532 	btrfs_exit_compress();
2533 }
2534 
2535 late_initcall(init_btrfs_fs);
2536 module_exit(exit_btrfs_fs)
2537 
2538 MODULE_LICENSE("GPL");
2539