1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/bio.h>
9 #include <linux/slab.h>
10 #include <linux/buffer_head.h>
11 #include <linux/blkdev.h>
12 #include <linux/ratelimit.h>
13 #include <linux/kthread.h>
14 #include <linux/raid/pq.h>
15 #include <linux/semaphore.h>
16 #include <linux/uuid.h>
17 #include <linux/list_sort.h>
18 #include "ctree.h"
19 #include "extent_map.h"
20 #include "disk-io.h"
21 #include "transaction.h"
22 #include "print-tree.h"
23 #include "volumes.h"
24 #include "raid56.h"
25 #include "async-thread.h"
26 #include "check-integrity.h"
27 #include "rcu-string.h"
28 #include "math.h"
29 #include "dev-replace.h"
30 #include "sysfs.h"
31 #include "tree-checker.h"
32
33 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
34 [BTRFS_RAID_RAID10] = {
35 .sub_stripes = 2,
36 .dev_stripes = 1,
37 .devs_max = 0, /* 0 == as many as possible */
38 .devs_min = 4,
39 .tolerated_failures = 1,
40 .devs_increment = 2,
41 .ncopies = 2,
42 .raid_name = "raid10",
43 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
44 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
45 },
46 [BTRFS_RAID_RAID1] = {
47 .sub_stripes = 1,
48 .dev_stripes = 1,
49 .devs_max = 2,
50 .devs_min = 2,
51 .tolerated_failures = 1,
52 .devs_increment = 2,
53 .ncopies = 2,
54 .raid_name = "raid1",
55 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
56 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
57 },
58 [BTRFS_RAID_DUP] = {
59 .sub_stripes = 1,
60 .dev_stripes = 2,
61 .devs_max = 1,
62 .devs_min = 1,
63 .tolerated_failures = 0,
64 .devs_increment = 1,
65 .ncopies = 2,
66 .raid_name = "dup",
67 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
68 .mindev_error = 0,
69 },
70 [BTRFS_RAID_RAID0] = {
71 .sub_stripes = 1,
72 .dev_stripes = 1,
73 .devs_max = 0,
74 .devs_min = 2,
75 .tolerated_failures = 0,
76 .devs_increment = 1,
77 .ncopies = 1,
78 .raid_name = "raid0",
79 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
80 .mindev_error = 0,
81 },
82 [BTRFS_RAID_SINGLE] = {
83 .sub_stripes = 1,
84 .dev_stripes = 1,
85 .devs_max = 1,
86 .devs_min = 1,
87 .tolerated_failures = 0,
88 .devs_increment = 1,
89 .ncopies = 1,
90 .raid_name = "single",
91 .bg_flag = 0,
92 .mindev_error = 0,
93 },
94 [BTRFS_RAID_RAID5] = {
95 .sub_stripes = 1,
96 .dev_stripes = 1,
97 .devs_max = 0,
98 .devs_min = 2,
99 .tolerated_failures = 1,
100 .devs_increment = 1,
101 .ncopies = 1,
102 .raid_name = "raid5",
103 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
104 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
105 },
106 [BTRFS_RAID_RAID6] = {
107 .sub_stripes = 1,
108 .dev_stripes = 1,
109 .devs_max = 0,
110 .devs_min = 3,
111 .tolerated_failures = 2,
112 .devs_increment = 1,
113 .ncopies = 1,
114 .raid_name = "raid6",
115 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
116 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
117 },
118 };
119
get_raid_name(enum btrfs_raid_types type)120 const char *get_raid_name(enum btrfs_raid_types type)
121 {
122 if (type >= BTRFS_NR_RAID_TYPES)
123 return NULL;
124
125 return btrfs_raid_array[type].raid_name;
126 }
127
128 static int init_first_rw_device(struct btrfs_trans_handle *trans,
129 struct btrfs_fs_info *fs_info);
130 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
131 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
132 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
133 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
134 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
135 enum btrfs_map_op op,
136 u64 logical, u64 *length,
137 struct btrfs_bio **bbio_ret,
138 int mirror_num, int need_raid_map);
139
140 /*
141 * Device locking
142 * ==============
143 *
144 * There are several mutexes that protect manipulation of devices and low-level
145 * structures like chunks but not block groups, extents or files
146 *
147 * uuid_mutex (global lock)
148 * ------------------------
149 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
150 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
151 * device) or requested by the device= mount option
152 *
153 * the mutex can be very coarse and can cover long-running operations
154 *
155 * protects: updates to fs_devices counters like missing devices, rw devices,
156 * seeding, structure cloning, openning/closing devices at mount/umount time
157 *
158 * global::fs_devs - add, remove, updates to the global list
159 *
160 * does not protect: manipulation of the fs_devices::devices list in general
161 * but in mount context it could be used to exclude list modifications by eg.
162 * scan ioctl
163 *
164 * btrfs_device::name - renames (write side), read is RCU
165 *
166 * fs_devices::device_list_mutex (per-fs, with RCU)
167 * ------------------------------------------------
168 * protects updates to fs_devices::devices, ie. adding and deleting
169 *
170 * simple list traversal with read-only actions can be done with RCU protection
171 *
172 * may be used to exclude some operations from running concurrently without any
173 * modifications to the list (see write_all_supers)
174 *
175 * Is not required at mount and close times, because our device list is
176 * protected by the uuid_mutex at that point.
177 *
178 * balance_mutex
179 * -------------
180 * protects balance structures (status, state) and context accessed from
181 * several places (internally, ioctl)
182 *
183 * chunk_mutex
184 * -----------
185 * protects chunks, adding or removing during allocation, trim or when a new
186 * device is added/removed
187 *
188 * cleaner_mutex
189 * -------------
190 * a big lock that is held by the cleaner thread and prevents running subvolume
191 * cleaning together with relocation or delayed iputs
192 *
193 *
194 * Lock nesting
195 * ============
196 *
197 * uuid_mutex
198 * volume_mutex
199 * device_list_mutex
200 * chunk_mutex
201 * balance_mutex
202 *
203 *
204 * Exclusive operations, BTRFS_FS_EXCL_OP
205 * ======================================
206 *
207 * Maintains the exclusivity of the following operations that apply to the
208 * whole filesystem and cannot run in parallel.
209 *
210 * - Balance (*)
211 * - Device add
212 * - Device remove
213 * - Device replace (*)
214 * - Resize
215 *
216 * The device operations (as above) can be in one of the following states:
217 *
218 * - Running state
219 * - Paused state
220 * - Completed state
221 *
222 * Only device operations marked with (*) can go into the Paused state for the
223 * following reasons:
224 *
225 * - ioctl (only Balance can be Paused through ioctl)
226 * - filesystem remounted as read-only
227 * - filesystem unmounted and mounted as read-only
228 * - system power-cycle and filesystem mounted as read-only
229 * - filesystem or device errors leading to forced read-only
230 *
231 * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations.
232 * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set.
233 * A device operation in Paused or Running state can be canceled or resumed
234 * either by ioctl (Balance only) or when remounted as read-write.
235 * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or
236 * completed.
237 */
238
239 DEFINE_MUTEX(uuid_mutex);
240 static LIST_HEAD(fs_uuids);
btrfs_get_fs_uuids(void)241 struct list_head *btrfs_get_fs_uuids(void)
242 {
243 return &fs_uuids;
244 }
245
246 /*
247 * alloc_fs_devices - allocate struct btrfs_fs_devices
248 * @fsid: if not NULL, copy the uuid to fs_devices::fsid
249 *
250 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
251 * The returned struct is not linked onto any lists and can be destroyed with
252 * kfree() right away.
253 */
alloc_fs_devices(const u8 * fsid)254 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
255 {
256 struct btrfs_fs_devices *fs_devs;
257
258 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
259 if (!fs_devs)
260 return ERR_PTR(-ENOMEM);
261
262 mutex_init(&fs_devs->device_list_mutex);
263
264 INIT_LIST_HEAD(&fs_devs->devices);
265 INIT_LIST_HEAD(&fs_devs->resized_devices);
266 INIT_LIST_HEAD(&fs_devs->alloc_list);
267 INIT_LIST_HEAD(&fs_devs->fs_list);
268 if (fsid)
269 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
270
271 return fs_devs;
272 }
273
btrfs_free_device(struct btrfs_device * device)274 void btrfs_free_device(struct btrfs_device *device)
275 {
276 rcu_string_free(device->name);
277 bio_put(device->flush_bio);
278 kfree(device);
279 }
280
free_fs_devices(struct btrfs_fs_devices * fs_devices)281 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
282 {
283 struct btrfs_device *device;
284 WARN_ON(fs_devices->opened);
285 while (!list_empty(&fs_devices->devices)) {
286 device = list_entry(fs_devices->devices.next,
287 struct btrfs_device, dev_list);
288 list_del(&device->dev_list);
289 btrfs_free_device(device);
290 }
291 kfree(fs_devices);
292 }
293
btrfs_kobject_uevent(struct block_device * bdev,enum kobject_action action)294 static void btrfs_kobject_uevent(struct block_device *bdev,
295 enum kobject_action action)
296 {
297 int ret;
298
299 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
300 if (ret)
301 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
302 action,
303 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
304 &disk_to_dev(bdev->bd_disk)->kobj);
305 }
306
btrfs_cleanup_fs_uuids(void)307 void __exit btrfs_cleanup_fs_uuids(void)
308 {
309 struct btrfs_fs_devices *fs_devices;
310
311 while (!list_empty(&fs_uuids)) {
312 fs_devices = list_entry(fs_uuids.next,
313 struct btrfs_fs_devices, fs_list);
314 list_del(&fs_devices->fs_list);
315 free_fs_devices(fs_devices);
316 }
317 }
318
319 /*
320 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
321 * Returned struct is not linked onto any lists and must be destroyed using
322 * btrfs_free_device.
323 */
__alloc_device(void)324 static struct btrfs_device *__alloc_device(void)
325 {
326 struct btrfs_device *dev;
327
328 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
329 if (!dev)
330 return ERR_PTR(-ENOMEM);
331
332 /*
333 * Preallocate a bio that's always going to be used for flushing device
334 * barriers and matches the device lifespan
335 */
336 dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
337 if (!dev->flush_bio) {
338 kfree(dev);
339 return ERR_PTR(-ENOMEM);
340 }
341
342 INIT_LIST_HEAD(&dev->dev_list);
343 INIT_LIST_HEAD(&dev->dev_alloc_list);
344 INIT_LIST_HEAD(&dev->resized_list);
345
346 spin_lock_init(&dev->io_lock);
347
348 atomic_set(&dev->reada_in_flight, 0);
349 atomic_set(&dev->dev_stats_ccnt, 0);
350 btrfs_device_data_ordered_init(dev);
351 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
352 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
353
354 return dev;
355 }
356
find_fsid(u8 * fsid)357 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
358 {
359 struct btrfs_fs_devices *fs_devices;
360
361 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
362 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
363 return fs_devices;
364 }
365 return NULL;
366 }
367
368 static int
btrfs_get_bdev_and_sb(const char * device_path,fmode_t flags,void * holder,int flush,struct block_device ** bdev,struct buffer_head ** bh)369 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
370 int flush, struct block_device **bdev,
371 struct buffer_head **bh)
372 {
373 int ret;
374
375 *bdev = blkdev_get_by_path(device_path, flags, holder);
376
377 if (IS_ERR(*bdev)) {
378 ret = PTR_ERR(*bdev);
379 goto error;
380 }
381
382 if (flush)
383 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
384 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
385 if (ret) {
386 blkdev_put(*bdev, flags);
387 goto error;
388 }
389 invalidate_bdev(*bdev);
390 *bh = btrfs_read_dev_super(*bdev);
391 if (IS_ERR(*bh)) {
392 ret = PTR_ERR(*bh);
393 blkdev_put(*bdev, flags);
394 goto error;
395 }
396
397 return 0;
398
399 error:
400 *bdev = NULL;
401 *bh = NULL;
402 return ret;
403 }
404
requeue_list(struct btrfs_pending_bios * pending_bios,struct bio * head,struct bio * tail)405 static void requeue_list(struct btrfs_pending_bios *pending_bios,
406 struct bio *head, struct bio *tail)
407 {
408
409 struct bio *old_head;
410
411 old_head = pending_bios->head;
412 pending_bios->head = head;
413 if (pending_bios->tail)
414 tail->bi_next = old_head;
415 else
416 pending_bios->tail = tail;
417 }
418
419 /*
420 * we try to collect pending bios for a device so we don't get a large
421 * number of procs sending bios down to the same device. This greatly
422 * improves the schedulers ability to collect and merge the bios.
423 *
424 * But, it also turns into a long list of bios to process and that is sure
425 * to eventually make the worker thread block. The solution here is to
426 * make some progress and then put this work struct back at the end of
427 * the list if the block device is congested. This way, multiple devices
428 * can make progress from a single worker thread.
429 */
run_scheduled_bios(struct btrfs_device * device)430 static noinline void run_scheduled_bios(struct btrfs_device *device)
431 {
432 struct btrfs_fs_info *fs_info = device->fs_info;
433 struct bio *pending;
434 struct backing_dev_info *bdi;
435 struct btrfs_pending_bios *pending_bios;
436 struct bio *tail;
437 struct bio *cur;
438 int again = 0;
439 unsigned long num_run;
440 unsigned long batch_run = 0;
441 unsigned long last_waited = 0;
442 int force_reg = 0;
443 int sync_pending = 0;
444 struct blk_plug plug;
445
446 /*
447 * this function runs all the bios we've collected for
448 * a particular device. We don't want to wander off to
449 * another device without first sending all of these down.
450 * So, setup a plug here and finish it off before we return
451 */
452 blk_start_plug(&plug);
453
454 bdi = device->bdev->bd_bdi;
455
456 loop:
457 spin_lock(&device->io_lock);
458
459 loop_lock:
460 num_run = 0;
461
462 /* take all the bios off the list at once and process them
463 * later on (without the lock held). But, remember the
464 * tail and other pointers so the bios can be properly reinserted
465 * into the list if we hit congestion
466 */
467 if (!force_reg && device->pending_sync_bios.head) {
468 pending_bios = &device->pending_sync_bios;
469 force_reg = 1;
470 } else {
471 pending_bios = &device->pending_bios;
472 force_reg = 0;
473 }
474
475 pending = pending_bios->head;
476 tail = pending_bios->tail;
477 WARN_ON(pending && !tail);
478
479 /*
480 * if pending was null this time around, no bios need processing
481 * at all and we can stop. Otherwise it'll loop back up again
482 * and do an additional check so no bios are missed.
483 *
484 * device->running_pending is used to synchronize with the
485 * schedule_bio code.
486 */
487 if (device->pending_sync_bios.head == NULL &&
488 device->pending_bios.head == NULL) {
489 again = 0;
490 device->running_pending = 0;
491 } else {
492 again = 1;
493 device->running_pending = 1;
494 }
495
496 pending_bios->head = NULL;
497 pending_bios->tail = NULL;
498
499 spin_unlock(&device->io_lock);
500
501 while (pending) {
502
503 rmb();
504 /* we want to work on both lists, but do more bios on the
505 * sync list than the regular list
506 */
507 if ((num_run > 32 &&
508 pending_bios != &device->pending_sync_bios &&
509 device->pending_sync_bios.head) ||
510 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
511 device->pending_bios.head)) {
512 spin_lock(&device->io_lock);
513 requeue_list(pending_bios, pending, tail);
514 goto loop_lock;
515 }
516
517 cur = pending;
518 pending = pending->bi_next;
519 cur->bi_next = NULL;
520
521 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
522
523 /*
524 * if we're doing the sync list, record that our
525 * plug has some sync requests on it
526 *
527 * If we're doing the regular list and there are
528 * sync requests sitting around, unplug before
529 * we add more
530 */
531 if (pending_bios == &device->pending_sync_bios) {
532 sync_pending = 1;
533 } else if (sync_pending) {
534 blk_finish_plug(&plug);
535 blk_start_plug(&plug);
536 sync_pending = 0;
537 }
538
539 btrfsic_submit_bio(cur);
540 num_run++;
541 batch_run++;
542
543 cond_resched();
544
545 /*
546 * we made progress, there is more work to do and the bdi
547 * is now congested. Back off and let other work structs
548 * run instead
549 */
550 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
551 fs_info->fs_devices->open_devices > 1) {
552 struct io_context *ioc;
553
554 ioc = current->io_context;
555
556 /*
557 * the main goal here is that we don't want to
558 * block if we're going to be able to submit
559 * more requests without blocking.
560 *
561 * This code does two great things, it pokes into
562 * the elevator code from a filesystem _and_
563 * it makes assumptions about how batching works.
564 */
565 if (ioc && ioc->nr_batch_requests > 0 &&
566 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
567 (last_waited == 0 ||
568 ioc->last_waited == last_waited)) {
569 /*
570 * we want to go through our batch of
571 * requests and stop. So, we copy out
572 * the ioc->last_waited time and test
573 * against it before looping
574 */
575 last_waited = ioc->last_waited;
576 cond_resched();
577 continue;
578 }
579 spin_lock(&device->io_lock);
580 requeue_list(pending_bios, pending, tail);
581 device->running_pending = 1;
582
583 spin_unlock(&device->io_lock);
584 btrfs_queue_work(fs_info->submit_workers,
585 &device->work);
586 goto done;
587 }
588 }
589
590 cond_resched();
591 if (again)
592 goto loop;
593
594 spin_lock(&device->io_lock);
595 if (device->pending_bios.head || device->pending_sync_bios.head)
596 goto loop_lock;
597 spin_unlock(&device->io_lock);
598
599 done:
600 blk_finish_plug(&plug);
601 }
602
pending_bios_fn(struct btrfs_work * work)603 static void pending_bios_fn(struct btrfs_work *work)
604 {
605 struct btrfs_device *device;
606
607 device = container_of(work, struct btrfs_device, work);
608 run_scheduled_bios(device);
609 }
610
611 /*
612 * Search and remove all stale (devices which are not mounted) devices.
613 * When both inputs are NULL, it will search and release all stale devices.
614 * path: Optional. When provided will it release all unmounted devices
615 * matching this path only.
616 * skip_dev: Optional. Will skip this device when searching for the stale
617 * devices.
618 */
btrfs_free_stale_devices(const char * path,struct btrfs_device * skip_device)619 static void btrfs_free_stale_devices(const char *path,
620 struct btrfs_device *skip_device)
621 {
622 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
623 struct btrfs_device *device, *tmp_device;
624
625 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
626 mutex_lock(&fs_devices->device_list_mutex);
627 if (fs_devices->opened) {
628 mutex_unlock(&fs_devices->device_list_mutex);
629 continue;
630 }
631
632 list_for_each_entry_safe(device, tmp_device,
633 &fs_devices->devices, dev_list) {
634 int not_found = 0;
635
636 if (skip_device && skip_device == device)
637 continue;
638 if (path && !device->name)
639 continue;
640
641 rcu_read_lock();
642 if (path)
643 not_found = strcmp(rcu_str_deref(device->name),
644 path);
645 rcu_read_unlock();
646 if (not_found)
647 continue;
648
649 /* delete the stale device */
650 fs_devices->num_devices--;
651 list_del(&device->dev_list);
652 btrfs_free_device(device);
653
654 if (fs_devices->num_devices == 0)
655 break;
656 }
657 mutex_unlock(&fs_devices->device_list_mutex);
658 if (fs_devices->num_devices == 0) {
659 btrfs_sysfs_remove_fsid(fs_devices);
660 list_del(&fs_devices->fs_list);
661 free_fs_devices(fs_devices);
662 }
663 }
664 }
665
666 /*
667 * This is only used on mount, and we are protected from competing things
668 * messing with our fs_devices by the uuid_mutex, thus we do not need the
669 * fs_devices->device_list_mutex here.
670 */
btrfs_open_one_device(struct btrfs_fs_devices * fs_devices,struct btrfs_device * device,fmode_t flags,void * holder)671 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
672 struct btrfs_device *device, fmode_t flags,
673 void *holder)
674 {
675 struct request_queue *q;
676 struct block_device *bdev;
677 struct buffer_head *bh;
678 struct btrfs_super_block *disk_super;
679 u64 devid;
680 int ret;
681
682 if (device->bdev)
683 return -EINVAL;
684 if (!device->name)
685 return -EINVAL;
686
687 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
688 &bdev, &bh);
689 if (ret)
690 return ret;
691
692 disk_super = (struct btrfs_super_block *)bh->b_data;
693 devid = btrfs_stack_device_id(&disk_super->dev_item);
694 if (devid != device->devid)
695 goto error_brelse;
696
697 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
698 goto error_brelse;
699
700 device->generation = btrfs_super_generation(disk_super);
701
702 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
703 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
704 fs_devices->seeding = 1;
705 } else {
706 if (bdev_read_only(bdev))
707 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
708 else
709 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
710 }
711
712 q = bdev_get_queue(bdev);
713 if (!blk_queue_nonrot(q))
714 fs_devices->rotating = 1;
715
716 device->bdev = bdev;
717 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
718 device->mode = flags;
719
720 fs_devices->open_devices++;
721 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
722 device->devid != BTRFS_DEV_REPLACE_DEVID) {
723 fs_devices->rw_devices++;
724 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
725 }
726 brelse(bh);
727
728 return 0;
729
730 error_brelse:
731 brelse(bh);
732 blkdev_put(bdev, flags);
733
734 return -EINVAL;
735 }
736
737 /*
738 * Add new device to list of registered devices
739 *
740 * Returns:
741 * device pointer which was just added or updated when successful
742 * error pointer when failed
743 */
device_list_add(const char * path,struct btrfs_super_block * disk_super,bool * new_device_added)744 static noinline struct btrfs_device *device_list_add(const char *path,
745 struct btrfs_super_block *disk_super,
746 bool *new_device_added)
747 {
748 struct btrfs_device *device;
749 struct btrfs_fs_devices *fs_devices;
750 struct rcu_string *name;
751 u64 found_transid = btrfs_super_generation(disk_super);
752 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
753
754 fs_devices = find_fsid(disk_super->fsid);
755 if (!fs_devices) {
756 fs_devices = alloc_fs_devices(disk_super->fsid);
757 if (IS_ERR(fs_devices))
758 return ERR_CAST(fs_devices);
759
760 mutex_lock(&fs_devices->device_list_mutex);
761 list_add(&fs_devices->fs_list, &fs_uuids);
762
763 device = NULL;
764 } else {
765 mutex_lock(&fs_devices->device_list_mutex);
766 device = btrfs_find_device(fs_devices, devid,
767 disk_super->dev_item.uuid, NULL, false);
768 }
769
770 if (!device) {
771 if (fs_devices->opened) {
772 mutex_unlock(&fs_devices->device_list_mutex);
773 return ERR_PTR(-EBUSY);
774 }
775
776 device = btrfs_alloc_device(NULL, &devid,
777 disk_super->dev_item.uuid);
778 if (IS_ERR(device)) {
779 mutex_unlock(&fs_devices->device_list_mutex);
780 /* we can safely leave the fs_devices entry around */
781 return device;
782 }
783
784 name = rcu_string_strdup(path, GFP_NOFS);
785 if (!name) {
786 btrfs_free_device(device);
787 mutex_unlock(&fs_devices->device_list_mutex);
788 return ERR_PTR(-ENOMEM);
789 }
790 rcu_assign_pointer(device->name, name);
791
792 list_add_rcu(&device->dev_list, &fs_devices->devices);
793 fs_devices->num_devices++;
794
795 device->fs_devices = fs_devices;
796 *new_device_added = true;
797
798 if (disk_super->label[0])
799 pr_info("BTRFS: device label %s devid %llu transid %llu %s\n",
800 disk_super->label, devid, found_transid, path);
801 else
802 pr_info("BTRFS: device fsid %pU devid %llu transid %llu %s\n",
803 disk_super->fsid, devid, found_transid, path);
804
805 } else if (!device->name || strcmp(device->name->str, path)) {
806 /*
807 * When FS is already mounted.
808 * 1. If you are here and if the device->name is NULL that
809 * means this device was missing at time of FS mount.
810 * 2. If you are here and if the device->name is different
811 * from 'path' that means either
812 * a. The same device disappeared and reappeared with
813 * different name. or
814 * b. The missing-disk-which-was-replaced, has
815 * reappeared now.
816 *
817 * We must allow 1 and 2a above. But 2b would be a spurious
818 * and unintentional.
819 *
820 * Further in case of 1 and 2a above, the disk at 'path'
821 * would have missed some transaction when it was away and
822 * in case of 2a the stale bdev has to be updated as well.
823 * 2b must not be allowed at all time.
824 */
825
826 /*
827 * For now, we do allow update to btrfs_fs_device through the
828 * btrfs dev scan cli after FS has been mounted. We're still
829 * tracking a problem where systems fail mount by subvolume id
830 * when we reject replacement on a mounted FS.
831 */
832 if (!fs_devices->opened && found_transid < device->generation) {
833 /*
834 * That is if the FS is _not_ mounted and if you
835 * are here, that means there is more than one
836 * disk with same uuid and devid.We keep the one
837 * with larger generation number or the last-in if
838 * generation are equal.
839 */
840 mutex_unlock(&fs_devices->device_list_mutex);
841 return ERR_PTR(-EEXIST);
842 }
843
844 /*
845 * We are going to replace the device path for a given devid,
846 * make sure it's the same device if the device is mounted
847 */
848 if (device->bdev) {
849 struct block_device *path_bdev;
850
851 path_bdev = lookup_bdev(path);
852 if (IS_ERR(path_bdev)) {
853 mutex_unlock(&fs_devices->device_list_mutex);
854 return ERR_CAST(path_bdev);
855 }
856
857 if (device->bdev != path_bdev) {
858 bdput(path_bdev);
859 mutex_unlock(&fs_devices->device_list_mutex);
860 /*
861 * device->fs_info may not be reliable here, so
862 * pass in a NULL instead. This avoids a
863 * possible use-after-free when the fs_info and
864 * fs_info->sb are already torn down.
865 */
866 btrfs_warn_in_rcu(NULL,
867 "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
868 path, devid, found_transid,
869 current->comm,
870 task_pid_nr(current));
871 return ERR_PTR(-EEXIST);
872 }
873 bdput(path_bdev);
874 btrfs_info_in_rcu(device->fs_info,
875 "devid %llu device path %s changed to %s scanned by %s (%d)",
876 devid, rcu_str_deref(device->name),
877 path, current->comm,
878 task_pid_nr(current));
879 }
880
881 name = rcu_string_strdup(path, GFP_NOFS);
882 if (!name) {
883 mutex_unlock(&fs_devices->device_list_mutex);
884 return ERR_PTR(-ENOMEM);
885 }
886 rcu_string_free(device->name);
887 rcu_assign_pointer(device->name, name);
888 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
889 fs_devices->missing_devices--;
890 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
891 }
892 }
893
894 /*
895 * Unmount does not free the btrfs_device struct but would zero
896 * generation along with most of the other members. So just update
897 * it back. We need it to pick the disk with largest generation
898 * (as above).
899 */
900 if (!fs_devices->opened)
901 device->generation = found_transid;
902
903 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
904
905 mutex_unlock(&fs_devices->device_list_mutex);
906 return device;
907 }
908
clone_fs_devices(struct btrfs_fs_devices * orig)909 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
910 {
911 struct btrfs_fs_devices *fs_devices;
912 struct btrfs_device *device;
913 struct btrfs_device *orig_dev;
914
915 fs_devices = alloc_fs_devices(orig->fsid);
916 if (IS_ERR(fs_devices))
917 return fs_devices;
918
919 mutex_lock(&orig->device_list_mutex);
920 fs_devices->total_devices = orig->total_devices;
921
922 /* We have held the volume lock, it is safe to get the devices. */
923 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
924 struct rcu_string *name;
925
926 device = btrfs_alloc_device(NULL, &orig_dev->devid,
927 orig_dev->uuid);
928 if (IS_ERR(device))
929 goto error;
930
931 /*
932 * This is ok to do without rcu read locked because we hold the
933 * uuid mutex so nothing we touch in here is going to disappear.
934 */
935 if (orig_dev->name) {
936 name = rcu_string_strdup(orig_dev->name->str,
937 GFP_KERNEL);
938 if (!name) {
939 btrfs_free_device(device);
940 goto error;
941 }
942 rcu_assign_pointer(device->name, name);
943 }
944
945 list_add(&device->dev_list, &fs_devices->devices);
946 device->fs_devices = fs_devices;
947 fs_devices->num_devices++;
948 }
949 mutex_unlock(&orig->device_list_mutex);
950 return fs_devices;
951 error:
952 mutex_unlock(&orig->device_list_mutex);
953 free_fs_devices(fs_devices);
954 return ERR_PTR(-ENOMEM);
955 }
956
957 /*
958 * After we have read the system tree and know devids belonging to
959 * this filesystem, remove the device which does not belong there.
960 */
btrfs_free_extra_devids(struct btrfs_fs_devices * fs_devices,int step)961 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
962 {
963 struct btrfs_device *device, *next;
964 struct btrfs_device *latest_dev = NULL;
965
966 mutex_lock(&uuid_mutex);
967 again:
968 /* This is the initialized path, it is safe to release the devices. */
969 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
970 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
971 &device->dev_state)) {
972 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
973 &device->dev_state) &&
974 !test_bit(BTRFS_DEV_STATE_MISSING,
975 &device->dev_state) &&
976 (!latest_dev ||
977 device->generation > latest_dev->generation)) {
978 latest_dev = device;
979 }
980 continue;
981 }
982
983 /*
984 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
985 * in btrfs_init_dev_replace() so just continue.
986 */
987 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
988 continue;
989
990 if (device->bdev) {
991 blkdev_put(device->bdev, device->mode);
992 device->bdev = NULL;
993 fs_devices->open_devices--;
994 }
995 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
996 list_del_init(&device->dev_alloc_list);
997 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
998 fs_devices->rw_devices--;
999 }
1000 list_del_init(&device->dev_list);
1001 fs_devices->num_devices--;
1002 btrfs_free_device(device);
1003 }
1004
1005 if (fs_devices->seed) {
1006 fs_devices = fs_devices->seed;
1007 goto again;
1008 }
1009
1010 fs_devices->latest_bdev = latest_dev->bdev;
1011
1012 mutex_unlock(&uuid_mutex);
1013 }
1014
free_device_rcu(struct rcu_head * head)1015 static void free_device_rcu(struct rcu_head *head)
1016 {
1017 struct btrfs_device *device;
1018
1019 device = container_of(head, struct btrfs_device, rcu);
1020 btrfs_free_device(device);
1021 }
1022
btrfs_close_bdev(struct btrfs_device * device)1023 static void btrfs_close_bdev(struct btrfs_device *device)
1024 {
1025 if (!device->bdev)
1026 return;
1027
1028 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1029 sync_blockdev(device->bdev);
1030 invalidate_bdev(device->bdev);
1031 }
1032
1033 blkdev_put(device->bdev, device->mode);
1034 }
1035
btrfs_close_one_device(struct btrfs_device * device)1036 static void btrfs_close_one_device(struct btrfs_device *device)
1037 {
1038 struct btrfs_fs_devices *fs_devices = device->fs_devices;
1039 struct btrfs_device *new_device;
1040 struct rcu_string *name;
1041
1042 if (device->bdev)
1043 fs_devices->open_devices--;
1044
1045 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1046 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1047 list_del_init(&device->dev_alloc_list);
1048 fs_devices->rw_devices--;
1049 }
1050
1051 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1052 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1053
1054 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1055 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1056 fs_devices->missing_devices--;
1057 }
1058
1059 btrfs_close_bdev(device);
1060
1061 new_device = btrfs_alloc_device(NULL, &device->devid,
1062 device->uuid);
1063 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
1064
1065 /* Safe because we are under uuid_mutex */
1066 if (device->name) {
1067 name = rcu_string_strdup(device->name->str, GFP_NOFS);
1068 BUG_ON(!name); /* -ENOMEM */
1069 rcu_assign_pointer(new_device->name, name);
1070 }
1071
1072 list_replace_rcu(&device->dev_list, &new_device->dev_list);
1073 new_device->fs_devices = device->fs_devices;
1074
1075 call_rcu(&device->rcu, free_device_rcu);
1076 }
1077
close_fs_devices(struct btrfs_fs_devices * fs_devices)1078 static int close_fs_devices(struct btrfs_fs_devices *fs_devices)
1079 {
1080 struct btrfs_device *device, *tmp;
1081
1082 if (--fs_devices->opened > 0)
1083 return 0;
1084
1085 mutex_lock(&fs_devices->device_list_mutex);
1086 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
1087 btrfs_close_one_device(device);
1088 }
1089 mutex_unlock(&fs_devices->device_list_mutex);
1090
1091 WARN_ON(fs_devices->open_devices);
1092 WARN_ON(fs_devices->rw_devices);
1093 fs_devices->opened = 0;
1094 fs_devices->seeding = 0;
1095
1096 return 0;
1097 }
1098
btrfs_close_devices(struct btrfs_fs_devices * fs_devices)1099 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1100 {
1101 struct btrfs_fs_devices *seed_devices = NULL;
1102 int ret;
1103
1104 mutex_lock(&uuid_mutex);
1105 ret = close_fs_devices(fs_devices);
1106 if (!fs_devices->opened) {
1107 seed_devices = fs_devices->seed;
1108 fs_devices->seed = NULL;
1109 }
1110 mutex_unlock(&uuid_mutex);
1111
1112 while (seed_devices) {
1113 fs_devices = seed_devices;
1114 seed_devices = fs_devices->seed;
1115 close_fs_devices(fs_devices);
1116 free_fs_devices(fs_devices);
1117 }
1118 return ret;
1119 }
1120
open_fs_devices(struct btrfs_fs_devices * fs_devices,fmode_t flags,void * holder)1121 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1122 fmode_t flags, void *holder)
1123 {
1124 struct btrfs_device *device;
1125 struct btrfs_device *latest_dev = NULL;
1126 int ret = 0;
1127
1128 flags |= FMODE_EXCL;
1129
1130 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1131 /* Just open everything we can; ignore failures here */
1132 if (btrfs_open_one_device(fs_devices, device, flags, holder))
1133 continue;
1134
1135 if (!latest_dev ||
1136 device->generation > latest_dev->generation)
1137 latest_dev = device;
1138 }
1139 if (fs_devices->open_devices == 0) {
1140 ret = -EINVAL;
1141 goto out;
1142 }
1143 fs_devices->opened = 1;
1144 fs_devices->latest_bdev = latest_dev->bdev;
1145 fs_devices->total_rw_bytes = 0;
1146 out:
1147 return ret;
1148 }
1149
devid_cmp(void * priv,struct list_head * a,struct list_head * b)1150 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1151 {
1152 struct btrfs_device *dev1, *dev2;
1153
1154 dev1 = list_entry(a, struct btrfs_device, dev_list);
1155 dev2 = list_entry(b, struct btrfs_device, dev_list);
1156
1157 if (dev1->devid < dev2->devid)
1158 return -1;
1159 else if (dev1->devid > dev2->devid)
1160 return 1;
1161 return 0;
1162 }
1163
btrfs_open_devices(struct btrfs_fs_devices * fs_devices,fmode_t flags,void * holder)1164 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1165 fmode_t flags, void *holder)
1166 {
1167 int ret;
1168
1169 lockdep_assert_held(&uuid_mutex);
1170 /*
1171 * The device_list_mutex cannot be taken here in case opening the
1172 * underlying device takes further locks like bd_mutex.
1173 *
1174 * We also don't need the lock here as this is called during mount and
1175 * exclusion is provided by uuid_mutex
1176 */
1177
1178 if (fs_devices->opened) {
1179 fs_devices->opened++;
1180 ret = 0;
1181 } else {
1182 list_sort(NULL, &fs_devices->devices, devid_cmp);
1183 ret = open_fs_devices(fs_devices, flags, holder);
1184 }
1185
1186 return ret;
1187 }
1188
btrfs_release_disk_super(struct page * page)1189 static void btrfs_release_disk_super(struct page *page)
1190 {
1191 kunmap(page);
1192 put_page(page);
1193 }
1194
btrfs_read_disk_super(struct block_device * bdev,u64 bytenr,struct page ** page,struct btrfs_super_block ** disk_super)1195 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1196 struct page **page,
1197 struct btrfs_super_block **disk_super)
1198 {
1199 void *p;
1200 pgoff_t index;
1201
1202 /* make sure our super fits in the device */
1203 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1204 return 1;
1205
1206 /* make sure our super fits in the page */
1207 if (sizeof(**disk_super) > PAGE_SIZE)
1208 return 1;
1209
1210 /* make sure our super doesn't straddle pages on disk */
1211 index = bytenr >> PAGE_SHIFT;
1212 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1213 return 1;
1214
1215 /* pull in the page with our super */
1216 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1217 index, GFP_KERNEL);
1218
1219 if (IS_ERR_OR_NULL(*page))
1220 return 1;
1221
1222 p = kmap(*page);
1223
1224 /* align our pointer to the offset of the super block */
1225 *disk_super = p + (bytenr & ~PAGE_MASK);
1226
1227 if (btrfs_super_bytenr(*disk_super) != bytenr ||
1228 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1229 btrfs_release_disk_super(*page);
1230 return 1;
1231 }
1232
1233 if ((*disk_super)->label[0] &&
1234 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1235 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1236
1237 return 0;
1238 }
1239
1240 /*
1241 * Look for a btrfs signature on a device. This may be called out of the mount path
1242 * and we are not allowed to call set_blocksize during the scan. The superblock
1243 * is read via pagecache
1244 */
btrfs_scan_one_device(const char * path,fmode_t flags,void * holder)1245 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1246 void *holder)
1247 {
1248 struct btrfs_super_block *disk_super;
1249 bool new_device_added = false;
1250 struct btrfs_device *device = NULL;
1251 struct block_device *bdev;
1252 struct page *page;
1253 u64 bytenr;
1254
1255 lockdep_assert_held(&uuid_mutex);
1256
1257 /*
1258 * we would like to check all the supers, but that would make
1259 * a btrfs mount succeed after a mkfs from a different FS.
1260 * So, we need to add a special mount option to scan for
1261 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1262 */
1263 bytenr = btrfs_sb_offset(0);
1264 flags |= FMODE_EXCL;
1265
1266 bdev = blkdev_get_by_path(path, flags, holder);
1267 if (IS_ERR(bdev))
1268 return ERR_CAST(bdev);
1269
1270 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) {
1271 device = ERR_PTR(-EINVAL);
1272 goto error_bdev_put;
1273 }
1274
1275 device = device_list_add(path, disk_super, &new_device_added);
1276 if (!IS_ERR(device)) {
1277 if (new_device_added)
1278 btrfs_free_stale_devices(path, device);
1279 }
1280
1281 btrfs_release_disk_super(page);
1282
1283 error_bdev_put:
1284 blkdev_put(bdev, flags);
1285
1286 return device;
1287 }
1288
contains_pending_extent(struct btrfs_transaction * transaction,struct btrfs_device * device,u64 * start,u64 len)1289 static int contains_pending_extent(struct btrfs_transaction *transaction,
1290 struct btrfs_device *device,
1291 u64 *start, u64 len)
1292 {
1293 struct btrfs_fs_info *fs_info = device->fs_info;
1294 struct extent_map *em;
1295 struct list_head *search_list = &fs_info->pinned_chunks;
1296 int ret = 0;
1297 u64 physical_start = *start;
1298
1299 if (transaction)
1300 search_list = &transaction->pending_chunks;
1301 again:
1302 list_for_each_entry(em, search_list, list) {
1303 struct map_lookup *map;
1304 int i;
1305
1306 map = em->map_lookup;
1307 for (i = 0; i < map->num_stripes; i++) {
1308 u64 end;
1309
1310 if (map->stripes[i].dev != device)
1311 continue;
1312 if (map->stripes[i].physical >= physical_start + len ||
1313 map->stripes[i].physical + em->orig_block_len <=
1314 physical_start)
1315 continue;
1316 /*
1317 * Make sure that while processing the pinned list we do
1318 * not override our *start with a lower value, because
1319 * we can have pinned chunks that fall within this
1320 * device hole and that have lower physical addresses
1321 * than the pending chunks we processed before. If we
1322 * do not take this special care we can end up getting
1323 * 2 pending chunks that start at the same physical
1324 * device offsets because the end offset of a pinned
1325 * chunk can be equal to the start offset of some
1326 * pending chunk.
1327 */
1328 end = map->stripes[i].physical + em->orig_block_len;
1329 if (end > *start) {
1330 *start = end;
1331 ret = 1;
1332 }
1333 }
1334 }
1335 if (search_list != &fs_info->pinned_chunks) {
1336 search_list = &fs_info->pinned_chunks;
1337 goto again;
1338 }
1339
1340 return ret;
1341 }
1342
1343
1344 /*
1345 * find_free_dev_extent_start - find free space in the specified device
1346 * @device: the device which we search the free space in
1347 * @num_bytes: the size of the free space that we need
1348 * @search_start: the position from which to begin the search
1349 * @start: store the start of the free space.
1350 * @len: the size of the free space. that we find, or the size
1351 * of the max free space if we don't find suitable free space
1352 *
1353 * this uses a pretty simple search, the expectation is that it is
1354 * called very infrequently and that a given device has a small number
1355 * of extents
1356 *
1357 * @start is used to store the start of the free space if we find. But if we
1358 * don't find suitable free space, it will be used to store the start position
1359 * of the max free space.
1360 *
1361 * @len is used to store the size of the free space that we find.
1362 * But if we don't find suitable free space, it is used to store the size of
1363 * the max free space.
1364 */
find_free_dev_extent_start(struct btrfs_transaction * transaction,struct btrfs_device * device,u64 num_bytes,u64 search_start,u64 * start,u64 * len)1365 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1366 struct btrfs_device *device, u64 num_bytes,
1367 u64 search_start, u64 *start, u64 *len)
1368 {
1369 struct btrfs_fs_info *fs_info = device->fs_info;
1370 struct btrfs_root *root = fs_info->dev_root;
1371 struct btrfs_key key;
1372 struct btrfs_dev_extent *dev_extent;
1373 struct btrfs_path *path;
1374 u64 hole_size;
1375 u64 max_hole_start;
1376 u64 max_hole_size;
1377 u64 extent_end;
1378 u64 search_end = device->total_bytes;
1379 int ret;
1380 int slot;
1381 struct extent_buffer *l;
1382
1383 /*
1384 * We don't want to overwrite the superblock on the drive nor any area
1385 * used by the boot loader (grub for example), so we make sure to start
1386 * at an offset of at least 1MB.
1387 */
1388 search_start = max_t(u64, search_start, SZ_1M);
1389
1390 path = btrfs_alloc_path();
1391 if (!path)
1392 return -ENOMEM;
1393
1394 max_hole_start = search_start;
1395 max_hole_size = 0;
1396
1397 again:
1398 if (search_start >= search_end ||
1399 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1400 ret = -ENOSPC;
1401 goto out;
1402 }
1403
1404 path->reada = READA_FORWARD;
1405 path->search_commit_root = 1;
1406 path->skip_locking = 1;
1407
1408 key.objectid = device->devid;
1409 key.offset = search_start;
1410 key.type = BTRFS_DEV_EXTENT_KEY;
1411
1412 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1413 if (ret < 0)
1414 goto out;
1415 if (ret > 0) {
1416 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1417 if (ret < 0)
1418 goto out;
1419 }
1420
1421 while (search_start < search_end) {
1422 l = path->nodes[0];
1423 slot = path->slots[0];
1424 if (slot >= btrfs_header_nritems(l)) {
1425 ret = btrfs_next_leaf(root, path);
1426 if (ret == 0)
1427 continue;
1428 if (ret < 0)
1429 goto out;
1430
1431 break;
1432 }
1433 btrfs_item_key_to_cpu(l, &key, slot);
1434
1435 if (key.objectid < device->devid)
1436 goto next;
1437
1438 if (key.objectid > device->devid)
1439 break;
1440
1441 if (key.type != BTRFS_DEV_EXTENT_KEY)
1442 goto next;
1443
1444 if (key.offset > search_end)
1445 break;
1446
1447 if (key.offset > search_start) {
1448 hole_size = key.offset - search_start;
1449
1450 /*
1451 * Have to check before we set max_hole_start, otherwise
1452 * we could end up sending back this offset anyway.
1453 */
1454 if (contains_pending_extent(transaction, device,
1455 &search_start,
1456 hole_size)) {
1457 if (key.offset >= search_start) {
1458 hole_size = key.offset - search_start;
1459 } else {
1460 WARN_ON_ONCE(1);
1461 hole_size = 0;
1462 }
1463 }
1464
1465 if (hole_size > max_hole_size) {
1466 max_hole_start = search_start;
1467 max_hole_size = hole_size;
1468 }
1469
1470 /*
1471 * If this free space is greater than which we need,
1472 * it must be the max free space that we have found
1473 * until now, so max_hole_start must point to the start
1474 * of this free space and the length of this free space
1475 * is stored in max_hole_size. Thus, we return
1476 * max_hole_start and max_hole_size and go back to the
1477 * caller.
1478 */
1479 if (hole_size >= num_bytes) {
1480 ret = 0;
1481 goto out;
1482 }
1483 }
1484
1485 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1486 extent_end = key.offset + btrfs_dev_extent_length(l,
1487 dev_extent);
1488 if (extent_end > search_start)
1489 search_start = extent_end;
1490 next:
1491 path->slots[0]++;
1492 cond_resched();
1493 }
1494
1495 /*
1496 * At this point, search_start should be the end of
1497 * allocated dev extents, and when shrinking the device,
1498 * search_end may be smaller than search_start.
1499 */
1500 if (search_end > search_start) {
1501 hole_size = search_end - search_start;
1502
1503 if (contains_pending_extent(transaction, device, &search_start,
1504 hole_size)) {
1505 btrfs_release_path(path);
1506 goto again;
1507 }
1508
1509 if (hole_size > max_hole_size) {
1510 max_hole_start = search_start;
1511 max_hole_size = hole_size;
1512 }
1513 }
1514
1515 /* See above. */
1516 if (max_hole_size < num_bytes)
1517 ret = -ENOSPC;
1518 else
1519 ret = 0;
1520
1521 ASSERT(max_hole_start + max_hole_size <= search_end);
1522 out:
1523 btrfs_free_path(path);
1524 *start = max_hole_start;
1525 if (len)
1526 *len = max_hole_size;
1527 return ret;
1528 }
1529
find_free_dev_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 num_bytes,u64 * start,u64 * len)1530 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1531 struct btrfs_device *device, u64 num_bytes,
1532 u64 *start, u64 *len)
1533 {
1534 /* FIXME use last free of some kind */
1535 return find_free_dev_extent_start(trans->transaction, device,
1536 num_bytes, 0, start, len);
1537 }
1538
btrfs_free_dev_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 start,u64 * dev_extent_len)1539 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1540 struct btrfs_device *device,
1541 u64 start, u64 *dev_extent_len)
1542 {
1543 struct btrfs_fs_info *fs_info = device->fs_info;
1544 struct btrfs_root *root = fs_info->dev_root;
1545 int ret;
1546 struct btrfs_path *path;
1547 struct btrfs_key key;
1548 struct btrfs_key found_key;
1549 struct extent_buffer *leaf = NULL;
1550 struct btrfs_dev_extent *extent = NULL;
1551
1552 path = btrfs_alloc_path();
1553 if (!path)
1554 return -ENOMEM;
1555
1556 key.objectid = device->devid;
1557 key.offset = start;
1558 key.type = BTRFS_DEV_EXTENT_KEY;
1559 again:
1560 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1561 if (ret > 0) {
1562 ret = btrfs_previous_item(root, path, key.objectid,
1563 BTRFS_DEV_EXTENT_KEY);
1564 if (ret)
1565 goto out;
1566 leaf = path->nodes[0];
1567 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1568 extent = btrfs_item_ptr(leaf, path->slots[0],
1569 struct btrfs_dev_extent);
1570 BUG_ON(found_key.offset > start || found_key.offset +
1571 btrfs_dev_extent_length(leaf, extent) < start);
1572 key = found_key;
1573 btrfs_release_path(path);
1574 goto again;
1575 } else if (ret == 0) {
1576 leaf = path->nodes[0];
1577 extent = btrfs_item_ptr(leaf, path->slots[0],
1578 struct btrfs_dev_extent);
1579 } else {
1580 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1581 goto out;
1582 }
1583
1584 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1585
1586 ret = btrfs_del_item(trans, root, path);
1587 if (ret) {
1588 btrfs_handle_fs_error(fs_info, ret,
1589 "Failed to remove dev extent item");
1590 } else {
1591 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1592 }
1593 out:
1594 btrfs_free_path(path);
1595 return ret;
1596 }
1597
btrfs_alloc_dev_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 chunk_offset,u64 start,u64 num_bytes)1598 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1599 struct btrfs_device *device,
1600 u64 chunk_offset, u64 start, u64 num_bytes)
1601 {
1602 int ret;
1603 struct btrfs_path *path;
1604 struct btrfs_fs_info *fs_info = device->fs_info;
1605 struct btrfs_root *root = fs_info->dev_root;
1606 struct btrfs_dev_extent *extent;
1607 struct extent_buffer *leaf;
1608 struct btrfs_key key;
1609
1610 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1611 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1612 path = btrfs_alloc_path();
1613 if (!path)
1614 return -ENOMEM;
1615
1616 key.objectid = device->devid;
1617 key.offset = start;
1618 key.type = BTRFS_DEV_EXTENT_KEY;
1619 ret = btrfs_insert_empty_item(trans, root, path, &key,
1620 sizeof(*extent));
1621 if (ret)
1622 goto out;
1623
1624 leaf = path->nodes[0];
1625 extent = btrfs_item_ptr(leaf, path->slots[0],
1626 struct btrfs_dev_extent);
1627 btrfs_set_dev_extent_chunk_tree(leaf, extent,
1628 BTRFS_CHUNK_TREE_OBJECTID);
1629 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1630 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1631 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1632
1633 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1634 btrfs_mark_buffer_dirty(leaf);
1635 out:
1636 btrfs_free_path(path);
1637 return ret;
1638 }
1639
find_next_chunk(struct btrfs_fs_info * fs_info)1640 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1641 {
1642 struct extent_map_tree *em_tree;
1643 struct extent_map *em;
1644 struct rb_node *n;
1645 u64 ret = 0;
1646
1647 em_tree = &fs_info->mapping_tree.map_tree;
1648 read_lock(&em_tree->lock);
1649 n = rb_last(&em_tree->map);
1650 if (n) {
1651 em = rb_entry(n, struct extent_map, rb_node);
1652 ret = em->start + em->len;
1653 }
1654 read_unlock(&em_tree->lock);
1655
1656 return ret;
1657 }
1658
find_next_devid(struct btrfs_fs_info * fs_info,u64 * devid_ret)1659 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1660 u64 *devid_ret)
1661 {
1662 int ret;
1663 struct btrfs_key key;
1664 struct btrfs_key found_key;
1665 struct btrfs_path *path;
1666
1667 path = btrfs_alloc_path();
1668 if (!path)
1669 return -ENOMEM;
1670
1671 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1672 key.type = BTRFS_DEV_ITEM_KEY;
1673 key.offset = (u64)-1;
1674
1675 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1676 if (ret < 0)
1677 goto error;
1678
1679 BUG_ON(ret == 0); /* Corruption */
1680
1681 ret = btrfs_previous_item(fs_info->chunk_root, path,
1682 BTRFS_DEV_ITEMS_OBJECTID,
1683 BTRFS_DEV_ITEM_KEY);
1684 if (ret) {
1685 *devid_ret = 1;
1686 } else {
1687 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1688 path->slots[0]);
1689 *devid_ret = found_key.offset + 1;
1690 }
1691 ret = 0;
1692 error:
1693 btrfs_free_path(path);
1694 return ret;
1695 }
1696
1697 /*
1698 * the device information is stored in the chunk root
1699 * the btrfs_device struct should be fully filled in
1700 */
btrfs_add_dev_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)1701 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1702 struct btrfs_device *device)
1703 {
1704 int ret;
1705 struct btrfs_path *path;
1706 struct btrfs_dev_item *dev_item;
1707 struct extent_buffer *leaf;
1708 struct btrfs_key key;
1709 unsigned long ptr;
1710
1711 path = btrfs_alloc_path();
1712 if (!path)
1713 return -ENOMEM;
1714
1715 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1716 key.type = BTRFS_DEV_ITEM_KEY;
1717 key.offset = device->devid;
1718
1719 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1720 &key, sizeof(*dev_item));
1721 if (ret)
1722 goto out;
1723
1724 leaf = path->nodes[0];
1725 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1726
1727 btrfs_set_device_id(leaf, dev_item, device->devid);
1728 btrfs_set_device_generation(leaf, dev_item, 0);
1729 btrfs_set_device_type(leaf, dev_item, device->type);
1730 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1731 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1732 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1733 btrfs_set_device_total_bytes(leaf, dev_item,
1734 btrfs_device_get_disk_total_bytes(device));
1735 btrfs_set_device_bytes_used(leaf, dev_item,
1736 btrfs_device_get_bytes_used(device));
1737 btrfs_set_device_group(leaf, dev_item, 0);
1738 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1739 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1740 btrfs_set_device_start_offset(leaf, dev_item, 0);
1741
1742 ptr = btrfs_device_uuid(dev_item);
1743 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1744 ptr = btrfs_device_fsid(dev_item);
1745 write_extent_buffer(leaf, trans->fs_info->fsid, ptr, BTRFS_FSID_SIZE);
1746 btrfs_mark_buffer_dirty(leaf);
1747
1748 ret = 0;
1749 out:
1750 btrfs_free_path(path);
1751 return ret;
1752 }
1753
1754 /*
1755 * Function to update ctime/mtime for a given device path.
1756 * Mainly used for ctime/mtime based probe like libblkid.
1757 */
update_dev_time(const char * path_name)1758 static void update_dev_time(const char *path_name)
1759 {
1760 struct file *filp;
1761
1762 filp = filp_open(path_name, O_RDWR, 0);
1763 if (IS_ERR(filp))
1764 return;
1765 file_update_time(filp);
1766 filp_close(filp, NULL);
1767 }
1768
btrfs_rm_dev_item(struct btrfs_fs_info * fs_info,struct btrfs_device * device)1769 static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
1770 struct btrfs_device *device)
1771 {
1772 struct btrfs_root *root = fs_info->chunk_root;
1773 int ret;
1774 struct btrfs_path *path;
1775 struct btrfs_key key;
1776 struct btrfs_trans_handle *trans;
1777
1778 path = btrfs_alloc_path();
1779 if (!path)
1780 return -ENOMEM;
1781
1782 trans = btrfs_start_transaction(root, 0);
1783 if (IS_ERR(trans)) {
1784 btrfs_free_path(path);
1785 return PTR_ERR(trans);
1786 }
1787 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1788 key.type = BTRFS_DEV_ITEM_KEY;
1789 key.offset = device->devid;
1790
1791 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1792 if (ret) {
1793 if (ret > 0)
1794 ret = -ENOENT;
1795 btrfs_abort_transaction(trans, ret);
1796 btrfs_end_transaction(trans);
1797 goto out;
1798 }
1799
1800 ret = btrfs_del_item(trans, root, path);
1801 if (ret) {
1802 btrfs_abort_transaction(trans, ret);
1803 btrfs_end_transaction(trans);
1804 }
1805
1806 out:
1807 btrfs_free_path(path);
1808 if (!ret)
1809 ret = btrfs_commit_transaction(trans);
1810 return ret;
1811 }
1812
1813 /*
1814 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1815 * filesystem. It's up to the caller to adjust that number regarding eg. device
1816 * replace.
1817 */
btrfs_check_raid_min_devices(struct btrfs_fs_info * fs_info,u64 num_devices)1818 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1819 u64 num_devices)
1820 {
1821 u64 all_avail;
1822 unsigned seq;
1823 int i;
1824
1825 do {
1826 seq = read_seqbegin(&fs_info->profiles_lock);
1827
1828 all_avail = fs_info->avail_data_alloc_bits |
1829 fs_info->avail_system_alloc_bits |
1830 fs_info->avail_metadata_alloc_bits;
1831 } while (read_seqretry(&fs_info->profiles_lock, seq));
1832
1833 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1834 if (!(all_avail & btrfs_raid_array[i].bg_flag))
1835 continue;
1836
1837 if (num_devices < btrfs_raid_array[i].devs_min) {
1838 int ret = btrfs_raid_array[i].mindev_error;
1839
1840 if (ret)
1841 return ret;
1842 }
1843 }
1844
1845 return 0;
1846 }
1847
btrfs_find_next_active_device(struct btrfs_fs_devices * fs_devs,struct btrfs_device * device)1848 static struct btrfs_device * btrfs_find_next_active_device(
1849 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1850 {
1851 struct btrfs_device *next_device;
1852
1853 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1854 if (next_device != device &&
1855 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1856 && next_device->bdev)
1857 return next_device;
1858 }
1859
1860 return NULL;
1861 }
1862
1863 /*
1864 * Helper function to check if the given device is part of s_bdev / latest_bdev
1865 * and replace it with the provided or the next active device, in the context
1866 * where this function called, there should be always be another device (or
1867 * this_dev) which is active.
1868 */
btrfs_assign_next_active_device(struct btrfs_device * device,struct btrfs_device * this_dev)1869 void btrfs_assign_next_active_device(struct btrfs_device *device,
1870 struct btrfs_device *this_dev)
1871 {
1872 struct btrfs_fs_info *fs_info = device->fs_info;
1873 struct btrfs_device *next_device;
1874
1875 if (this_dev)
1876 next_device = this_dev;
1877 else
1878 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1879 device);
1880 ASSERT(next_device);
1881
1882 if (fs_info->sb->s_bdev &&
1883 (fs_info->sb->s_bdev == device->bdev))
1884 fs_info->sb->s_bdev = next_device->bdev;
1885
1886 if (fs_info->fs_devices->latest_bdev == device->bdev)
1887 fs_info->fs_devices->latest_bdev = next_device->bdev;
1888 }
1889
btrfs_rm_device(struct btrfs_fs_info * fs_info,const char * device_path,u64 devid)1890 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
1891 u64 devid)
1892 {
1893 struct btrfs_device *device;
1894 struct btrfs_fs_devices *cur_devices;
1895 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1896 u64 num_devices;
1897 int ret = 0;
1898
1899 mutex_lock(&uuid_mutex);
1900
1901 num_devices = fs_devices->num_devices;
1902 btrfs_dev_replace_read_lock(&fs_info->dev_replace);
1903 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1904 WARN_ON(num_devices < 1);
1905 num_devices--;
1906 }
1907 btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
1908
1909 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
1910 if (ret)
1911 goto out;
1912
1913 ret = btrfs_find_device_by_devspec(fs_info, devid, device_path,
1914 &device);
1915 if (ret)
1916 goto out;
1917
1918 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1919 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1920 goto out;
1921 }
1922
1923 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1924 fs_info->fs_devices->rw_devices == 1) {
1925 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1926 goto out;
1927 }
1928
1929 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1930 mutex_lock(&fs_info->chunk_mutex);
1931 list_del_init(&device->dev_alloc_list);
1932 device->fs_devices->rw_devices--;
1933 mutex_unlock(&fs_info->chunk_mutex);
1934 }
1935
1936 mutex_unlock(&uuid_mutex);
1937 ret = btrfs_shrink_device(device, 0);
1938 mutex_lock(&uuid_mutex);
1939 if (ret)
1940 goto error_undo;
1941
1942 /*
1943 * TODO: the superblock still includes this device in its num_devices
1944 * counter although write_all_supers() is not locked out. This
1945 * could give a filesystem state which requires a degraded mount.
1946 */
1947 ret = btrfs_rm_dev_item(fs_info, device);
1948 if (ret)
1949 goto error_undo;
1950
1951 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
1952 btrfs_scrub_cancel_dev(fs_info, device);
1953
1954 /*
1955 * the device list mutex makes sure that we don't change
1956 * the device list while someone else is writing out all
1957 * the device supers. Whoever is writing all supers, should
1958 * lock the device list mutex before getting the number of
1959 * devices in the super block (super_copy). Conversely,
1960 * whoever updates the number of devices in the super block
1961 * (super_copy) should hold the device list mutex.
1962 */
1963
1964 /*
1965 * In normal cases the cur_devices == fs_devices. But in case
1966 * of deleting a seed device, the cur_devices should point to
1967 * its own fs_devices listed under the fs_devices->seed.
1968 */
1969 cur_devices = device->fs_devices;
1970 mutex_lock(&fs_devices->device_list_mutex);
1971 list_del_rcu(&device->dev_list);
1972
1973 cur_devices->num_devices--;
1974 cur_devices->total_devices--;
1975 /* Update total_devices of the parent fs_devices if it's seed */
1976 if (cur_devices != fs_devices)
1977 fs_devices->total_devices--;
1978
1979 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1980 cur_devices->missing_devices--;
1981
1982 btrfs_assign_next_active_device(device, NULL);
1983
1984 if (device->bdev) {
1985 cur_devices->open_devices--;
1986 /* remove sysfs entry */
1987 btrfs_sysfs_rm_device_link(fs_devices, device);
1988 }
1989
1990 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
1991 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
1992 mutex_unlock(&fs_devices->device_list_mutex);
1993
1994 /*
1995 * at this point, the device is zero sized and detached from
1996 * the devices list. All that's left is to zero out the old
1997 * supers and free the device.
1998 */
1999 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2000 btrfs_scratch_superblocks(device->bdev, device->name->str);
2001
2002 btrfs_close_bdev(device);
2003 call_rcu(&device->rcu, free_device_rcu);
2004
2005 if (cur_devices->open_devices == 0) {
2006 while (fs_devices) {
2007 if (fs_devices->seed == cur_devices) {
2008 fs_devices->seed = cur_devices->seed;
2009 break;
2010 }
2011 fs_devices = fs_devices->seed;
2012 }
2013 cur_devices->seed = NULL;
2014 close_fs_devices(cur_devices);
2015 free_fs_devices(cur_devices);
2016 }
2017
2018 out:
2019 mutex_unlock(&uuid_mutex);
2020 return ret;
2021
2022 error_undo:
2023 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2024 mutex_lock(&fs_info->chunk_mutex);
2025 list_add(&device->dev_alloc_list,
2026 &fs_devices->alloc_list);
2027 device->fs_devices->rw_devices++;
2028 mutex_unlock(&fs_info->chunk_mutex);
2029 }
2030 goto out;
2031 }
2032
btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device * srcdev)2033 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2034 {
2035 struct btrfs_fs_devices *fs_devices;
2036
2037 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2038
2039 /*
2040 * in case of fs with no seed, srcdev->fs_devices will point
2041 * to fs_devices of fs_info. However when the dev being replaced is
2042 * a seed dev it will point to the seed's local fs_devices. In short
2043 * srcdev will have its correct fs_devices in both the cases.
2044 */
2045 fs_devices = srcdev->fs_devices;
2046
2047 list_del_rcu(&srcdev->dev_list);
2048 list_del(&srcdev->dev_alloc_list);
2049 fs_devices->num_devices--;
2050 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2051 fs_devices->missing_devices--;
2052
2053 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2054 fs_devices->rw_devices--;
2055
2056 if (srcdev->bdev)
2057 fs_devices->open_devices--;
2058 }
2059
btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info * fs_info,struct btrfs_device * srcdev)2060 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2061 struct btrfs_device *srcdev)
2062 {
2063 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2064
2065 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) {
2066 /* zero out the old super if it is writable */
2067 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2068 }
2069
2070 btrfs_close_bdev(srcdev);
2071 call_rcu(&srcdev->rcu, free_device_rcu);
2072
2073 /* if this is no devs we rather delete the fs_devices */
2074 if (!fs_devices->num_devices) {
2075 struct btrfs_fs_devices *tmp_fs_devices;
2076
2077 /*
2078 * On a mounted FS, num_devices can't be zero unless it's a
2079 * seed. In case of a seed device being replaced, the replace
2080 * target added to the sprout FS, so there will be no more
2081 * device left under the seed FS.
2082 */
2083 ASSERT(fs_devices->seeding);
2084
2085 tmp_fs_devices = fs_info->fs_devices;
2086 while (tmp_fs_devices) {
2087 if (tmp_fs_devices->seed == fs_devices) {
2088 tmp_fs_devices->seed = fs_devices->seed;
2089 break;
2090 }
2091 tmp_fs_devices = tmp_fs_devices->seed;
2092 }
2093 fs_devices->seed = NULL;
2094 close_fs_devices(fs_devices);
2095 free_fs_devices(fs_devices);
2096 }
2097 }
2098
btrfs_destroy_dev_replace_tgtdev(struct btrfs_device * tgtdev)2099 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2100 {
2101 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2102
2103 WARN_ON(!tgtdev);
2104 mutex_lock(&fs_devices->device_list_mutex);
2105
2106 btrfs_sysfs_rm_device_link(fs_devices, tgtdev);
2107
2108 if (tgtdev->bdev)
2109 fs_devices->open_devices--;
2110
2111 fs_devices->num_devices--;
2112
2113 btrfs_assign_next_active_device(tgtdev, NULL);
2114
2115 list_del_rcu(&tgtdev->dev_list);
2116
2117 mutex_unlock(&fs_devices->device_list_mutex);
2118
2119 /*
2120 * The update_dev_time() with in btrfs_scratch_superblocks()
2121 * may lead to a call to btrfs_show_devname() which will try
2122 * to hold device_list_mutex. And here this device
2123 * is already out of device list, so we don't have to hold
2124 * the device_list_mutex lock.
2125 */
2126 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2127
2128 btrfs_close_bdev(tgtdev);
2129 call_rcu(&tgtdev->rcu, free_device_rcu);
2130 }
2131
btrfs_find_device_by_path(struct btrfs_fs_info * fs_info,const char * device_path,struct btrfs_device ** device)2132 static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info,
2133 const char *device_path,
2134 struct btrfs_device **device)
2135 {
2136 int ret = 0;
2137 struct btrfs_super_block *disk_super;
2138 u64 devid;
2139 u8 *dev_uuid;
2140 struct block_device *bdev;
2141 struct buffer_head *bh;
2142
2143 *device = NULL;
2144 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2145 fs_info->bdev_holder, 0, &bdev, &bh);
2146 if (ret)
2147 return ret;
2148 disk_super = (struct btrfs_super_block *)bh->b_data;
2149 devid = btrfs_stack_device_id(&disk_super->dev_item);
2150 dev_uuid = disk_super->dev_item.uuid;
2151 *device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2152 disk_super->fsid, true);
2153 brelse(bh);
2154 if (!*device)
2155 ret = -ENOENT;
2156 blkdev_put(bdev, FMODE_READ);
2157 return ret;
2158 }
2159
btrfs_find_device_missing_or_by_path(struct btrfs_fs_info * fs_info,const char * device_path,struct btrfs_device ** device)2160 int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info,
2161 const char *device_path,
2162 struct btrfs_device **device)
2163 {
2164 *device = NULL;
2165 if (strcmp(device_path, "missing") == 0) {
2166 struct list_head *devices;
2167 struct btrfs_device *tmp;
2168
2169 devices = &fs_info->fs_devices->devices;
2170 list_for_each_entry(tmp, devices, dev_list) {
2171 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2172 &tmp->dev_state) && !tmp->bdev) {
2173 *device = tmp;
2174 break;
2175 }
2176 }
2177
2178 if (!*device)
2179 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2180
2181 return 0;
2182 } else {
2183 return btrfs_find_device_by_path(fs_info, device_path, device);
2184 }
2185 }
2186
2187 /*
2188 * Lookup a device given by device id, or the path if the id is 0.
2189 */
btrfs_find_device_by_devspec(struct btrfs_fs_info * fs_info,u64 devid,const char * devpath,struct btrfs_device ** device)2190 int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid,
2191 const char *devpath,
2192 struct btrfs_device **device)
2193 {
2194 int ret;
2195
2196 if (devid) {
2197 ret = 0;
2198 *device = btrfs_find_device(fs_info->fs_devices, devid,
2199 NULL, NULL, true);
2200 if (!*device)
2201 ret = -ENOENT;
2202 } else {
2203 if (!devpath || !devpath[0])
2204 return -EINVAL;
2205
2206 ret = btrfs_find_device_missing_or_by_path(fs_info, devpath,
2207 device);
2208 }
2209 return ret;
2210 }
2211
2212 /*
2213 * does all the dirty work required for changing file system's UUID.
2214 */
btrfs_prepare_sprout(struct btrfs_fs_info * fs_info)2215 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2216 {
2217 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2218 struct btrfs_fs_devices *old_devices;
2219 struct btrfs_fs_devices *seed_devices;
2220 struct btrfs_super_block *disk_super = fs_info->super_copy;
2221 struct btrfs_device *device;
2222 u64 super_flags;
2223
2224 lockdep_assert_held(&uuid_mutex);
2225 if (!fs_devices->seeding)
2226 return -EINVAL;
2227
2228 seed_devices = alloc_fs_devices(NULL);
2229 if (IS_ERR(seed_devices))
2230 return PTR_ERR(seed_devices);
2231
2232 old_devices = clone_fs_devices(fs_devices);
2233 if (IS_ERR(old_devices)) {
2234 kfree(seed_devices);
2235 return PTR_ERR(old_devices);
2236 }
2237
2238 list_add(&old_devices->fs_list, &fs_uuids);
2239
2240 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2241 seed_devices->opened = 1;
2242 INIT_LIST_HEAD(&seed_devices->devices);
2243 INIT_LIST_HEAD(&seed_devices->alloc_list);
2244 mutex_init(&seed_devices->device_list_mutex);
2245
2246 mutex_lock(&fs_devices->device_list_mutex);
2247 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2248 synchronize_rcu);
2249 list_for_each_entry(device, &seed_devices->devices, dev_list)
2250 device->fs_devices = seed_devices;
2251
2252 mutex_lock(&fs_info->chunk_mutex);
2253 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2254 mutex_unlock(&fs_info->chunk_mutex);
2255
2256 fs_devices->seeding = 0;
2257 fs_devices->num_devices = 0;
2258 fs_devices->open_devices = 0;
2259 fs_devices->missing_devices = 0;
2260 fs_devices->rotating = 0;
2261 fs_devices->seed = seed_devices;
2262
2263 generate_random_uuid(fs_devices->fsid);
2264 memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2265 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2266 mutex_unlock(&fs_devices->device_list_mutex);
2267
2268 super_flags = btrfs_super_flags(disk_super) &
2269 ~BTRFS_SUPER_FLAG_SEEDING;
2270 btrfs_set_super_flags(disk_super, super_flags);
2271
2272 return 0;
2273 }
2274
2275 /*
2276 * Store the expected generation for seed devices in device items.
2277 */
btrfs_finish_sprout(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)2278 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2279 struct btrfs_fs_info *fs_info)
2280 {
2281 struct btrfs_root *root = fs_info->chunk_root;
2282 struct btrfs_path *path;
2283 struct extent_buffer *leaf;
2284 struct btrfs_dev_item *dev_item;
2285 struct btrfs_device *device;
2286 struct btrfs_key key;
2287 u8 fs_uuid[BTRFS_FSID_SIZE];
2288 u8 dev_uuid[BTRFS_UUID_SIZE];
2289 u64 devid;
2290 int ret;
2291
2292 path = btrfs_alloc_path();
2293 if (!path)
2294 return -ENOMEM;
2295
2296 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2297 key.offset = 0;
2298 key.type = BTRFS_DEV_ITEM_KEY;
2299
2300 while (1) {
2301 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2302 if (ret < 0)
2303 goto error;
2304
2305 leaf = path->nodes[0];
2306 next_slot:
2307 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2308 ret = btrfs_next_leaf(root, path);
2309 if (ret > 0)
2310 break;
2311 if (ret < 0)
2312 goto error;
2313 leaf = path->nodes[0];
2314 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2315 btrfs_release_path(path);
2316 continue;
2317 }
2318
2319 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2320 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2321 key.type != BTRFS_DEV_ITEM_KEY)
2322 break;
2323
2324 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2325 struct btrfs_dev_item);
2326 devid = btrfs_device_id(leaf, dev_item);
2327 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2328 BTRFS_UUID_SIZE);
2329 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2330 BTRFS_FSID_SIZE);
2331 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2332 fs_uuid, true);
2333 BUG_ON(!device); /* Logic error */
2334
2335 if (device->fs_devices->seeding) {
2336 btrfs_set_device_generation(leaf, dev_item,
2337 device->generation);
2338 btrfs_mark_buffer_dirty(leaf);
2339 }
2340
2341 path->slots[0]++;
2342 goto next_slot;
2343 }
2344 ret = 0;
2345 error:
2346 btrfs_free_path(path);
2347 return ret;
2348 }
2349
btrfs_init_new_device(struct btrfs_fs_info * fs_info,const char * device_path)2350 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2351 {
2352 struct btrfs_root *root = fs_info->dev_root;
2353 struct request_queue *q;
2354 struct btrfs_trans_handle *trans;
2355 struct btrfs_device *device;
2356 struct block_device *bdev;
2357 struct super_block *sb = fs_info->sb;
2358 struct rcu_string *name;
2359 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2360 u64 orig_super_total_bytes;
2361 u64 orig_super_num_devices;
2362 int seeding_dev = 0;
2363 int ret = 0;
2364 bool unlocked = false;
2365
2366 if (sb_rdonly(sb) && !fs_devices->seeding)
2367 return -EROFS;
2368
2369 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2370 fs_info->bdev_holder);
2371 if (IS_ERR(bdev))
2372 return PTR_ERR(bdev);
2373
2374 if (fs_devices->seeding) {
2375 seeding_dev = 1;
2376 down_write(&sb->s_umount);
2377 mutex_lock(&uuid_mutex);
2378 }
2379
2380 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2381
2382 mutex_lock(&fs_devices->device_list_mutex);
2383 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2384 if (device->bdev == bdev) {
2385 ret = -EEXIST;
2386 mutex_unlock(
2387 &fs_devices->device_list_mutex);
2388 goto error;
2389 }
2390 }
2391 mutex_unlock(&fs_devices->device_list_mutex);
2392
2393 device = btrfs_alloc_device(fs_info, NULL, NULL);
2394 if (IS_ERR(device)) {
2395 /* we can safely leave the fs_devices entry around */
2396 ret = PTR_ERR(device);
2397 goto error;
2398 }
2399
2400 name = rcu_string_strdup(device_path, GFP_KERNEL);
2401 if (!name) {
2402 ret = -ENOMEM;
2403 goto error_free_device;
2404 }
2405 rcu_assign_pointer(device->name, name);
2406
2407 trans = btrfs_start_transaction(root, 0);
2408 if (IS_ERR(trans)) {
2409 ret = PTR_ERR(trans);
2410 goto error_free_device;
2411 }
2412
2413 q = bdev_get_queue(bdev);
2414 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2415 device->generation = trans->transid;
2416 device->io_width = fs_info->sectorsize;
2417 device->io_align = fs_info->sectorsize;
2418 device->sector_size = fs_info->sectorsize;
2419 device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2420 fs_info->sectorsize);
2421 device->disk_total_bytes = device->total_bytes;
2422 device->commit_total_bytes = device->total_bytes;
2423 device->fs_info = fs_info;
2424 device->bdev = bdev;
2425 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2426 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2427 device->mode = FMODE_EXCL;
2428 device->dev_stats_valid = 1;
2429 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2430
2431 if (seeding_dev) {
2432 sb->s_flags &= ~SB_RDONLY;
2433 ret = btrfs_prepare_sprout(fs_info);
2434 if (ret) {
2435 btrfs_abort_transaction(trans, ret);
2436 goto error_trans;
2437 }
2438 }
2439
2440 device->fs_devices = fs_devices;
2441
2442 mutex_lock(&fs_devices->device_list_mutex);
2443 mutex_lock(&fs_info->chunk_mutex);
2444 list_add_rcu(&device->dev_list, &fs_devices->devices);
2445 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2446 fs_devices->num_devices++;
2447 fs_devices->open_devices++;
2448 fs_devices->rw_devices++;
2449 fs_devices->total_devices++;
2450 fs_devices->total_rw_bytes += device->total_bytes;
2451
2452 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2453
2454 if (!blk_queue_nonrot(q))
2455 fs_devices->rotating = 1;
2456
2457 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2458 btrfs_set_super_total_bytes(fs_info->super_copy,
2459 round_down(orig_super_total_bytes + device->total_bytes,
2460 fs_info->sectorsize));
2461
2462 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2463 btrfs_set_super_num_devices(fs_info->super_copy,
2464 orig_super_num_devices + 1);
2465
2466 /*
2467 * we've got more storage, clear any full flags on the space
2468 * infos
2469 */
2470 btrfs_clear_space_info_full(fs_info);
2471
2472 mutex_unlock(&fs_info->chunk_mutex);
2473
2474 /* Add sysfs device entry */
2475 btrfs_sysfs_add_device_link(fs_devices, device);
2476
2477 mutex_unlock(&fs_devices->device_list_mutex);
2478
2479 if (seeding_dev) {
2480 mutex_lock(&fs_info->chunk_mutex);
2481 ret = init_first_rw_device(trans, fs_info);
2482 mutex_unlock(&fs_info->chunk_mutex);
2483 if (ret) {
2484 btrfs_abort_transaction(trans, ret);
2485 goto error_sysfs;
2486 }
2487 }
2488
2489 ret = btrfs_add_dev_item(trans, device);
2490 if (ret) {
2491 btrfs_abort_transaction(trans, ret);
2492 goto error_sysfs;
2493 }
2494
2495 if (seeding_dev) {
2496 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2497
2498 ret = btrfs_finish_sprout(trans, fs_info);
2499 if (ret) {
2500 btrfs_abort_transaction(trans, ret);
2501 goto error_sysfs;
2502 }
2503
2504 /* Sprouting would change fsid of the mounted root,
2505 * so rename the fsid on the sysfs
2506 */
2507 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2508 fs_info->fsid);
2509 if (kobject_rename(&fs_devices->fsid_kobj, fsid_buf))
2510 btrfs_warn(fs_info,
2511 "sysfs: failed to create fsid for sprout");
2512 }
2513
2514 ret = btrfs_commit_transaction(trans);
2515
2516 if (seeding_dev) {
2517 mutex_unlock(&uuid_mutex);
2518 up_write(&sb->s_umount);
2519 unlocked = true;
2520
2521 if (ret) /* transaction commit */
2522 return ret;
2523
2524 ret = btrfs_relocate_sys_chunks(fs_info);
2525 if (ret < 0)
2526 btrfs_handle_fs_error(fs_info, ret,
2527 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2528 trans = btrfs_attach_transaction(root);
2529 if (IS_ERR(trans)) {
2530 if (PTR_ERR(trans) == -ENOENT)
2531 return 0;
2532 ret = PTR_ERR(trans);
2533 trans = NULL;
2534 goto error_sysfs;
2535 }
2536 ret = btrfs_commit_transaction(trans);
2537 }
2538
2539 /* Update ctime/mtime for libblkid */
2540 update_dev_time(device_path);
2541 return ret;
2542
2543 error_sysfs:
2544 btrfs_sysfs_rm_device_link(fs_devices, device);
2545 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2546 mutex_lock(&fs_info->chunk_mutex);
2547 list_del_rcu(&device->dev_list);
2548 list_del(&device->dev_alloc_list);
2549 fs_info->fs_devices->num_devices--;
2550 fs_info->fs_devices->open_devices--;
2551 fs_info->fs_devices->rw_devices--;
2552 fs_info->fs_devices->total_devices--;
2553 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2554 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2555 btrfs_set_super_total_bytes(fs_info->super_copy,
2556 orig_super_total_bytes);
2557 btrfs_set_super_num_devices(fs_info->super_copy,
2558 orig_super_num_devices);
2559 mutex_unlock(&fs_info->chunk_mutex);
2560 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2561 error_trans:
2562 if (seeding_dev)
2563 sb->s_flags |= SB_RDONLY;
2564 if (trans)
2565 btrfs_end_transaction(trans);
2566 error_free_device:
2567 btrfs_free_device(device);
2568 error:
2569 blkdev_put(bdev, FMODE_EXCL);
2570 if (seeding_dev && !unlocked) {
2571 mutex_unlock(&uuid_mutex);
2572 up_write(&sb->s_umount);
2573 }
2574 return ret;
2575 }
2576
btrfs_update_device(struct btrfs_trans_handle * trans,struct btrfs_device * device)2577 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2578 struct btrfs_device *device)
2579 {
2580 int ret;
2581 struct btrfs_path *path;
2582 struct btrfs_root *root = device->fs_info->chunk_root;
2583 struct btrfs_dev_item *dev_item;
2584 struct extent_buffer *leaf;
2585 struct btrfs_key key;
2586
2587 path = btrfs_alloc_path();
2588 if (!path)
2589 return -ENOMEM;
2590
2591 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2592 key.type = BTRFS_DEV_ITEM_KEY;
2593 key.offset = device->devid;
2594
2595 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2596 if (ret < 0)
2597 goto out;
2598
2599 if (ret > 0) {
2600 ret = -ENOENT;
2601 goto out;
2602 }
2603
2604 leaf = path->nodes[0];
2605 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2606
2607 btrfs_set_device_id(leaf, dev_item, device->devid);
2608 btrfs_set_device_type(leaf, dev_item, device->type);
2609 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2610 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2611 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2612 btrfs_set_device_total_bytes(leaf, dev_item,
2613 btrfs_device_get_disk_total_bytes(device));
2614 btrfs_set_device_bytes_used(leaf, dev_item,
2615 btrfs_device_get_bytes_used(device));
2616 btrfs_mark_buffer_dirty(leaf);
2617
2618 out:
2619 btrfs_free_path(path);
2620 return ret;
2621 }
2622
btrfs_grow_device(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 new_size)2623 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2624 struct btrfs_device *device, u64 new_size)
2625 {
2626 struct btrfs_fs_info *fs_info = device->fs_info;
2627 struct btrfs_super_block *super_copy = fs_info->super_copy;
2628 struct btrfs_fs_devices *fs_devices;
2629 u64 old_total;
2630 u64 diff;
2631
2632 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2633 return -EACCES;
2634
2635 new_size = round_down(new_size, fs_info->sectorsize);
2636
2637 mutex_lock(&fs_info->chunk_mutex);
2638 old_total = btrfs_super_total_bytes(super_copy);
2639 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2640
2641 if (new_size <= device->total_bytes ||
2642 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2643 mutex_unlock(&fs_info->chunk_mutex);
2644 return -EINVAL;
2645 }
2646
2647 fs_devices = fs_info->fs_devices;
2648
2649 btrfs_set_super_total_bytes(super_copy,
2650 round_down(old_total + diff, fs_info->sectorsize));
2651 device->fs_devices->total_rw_bytes += diff;
2652
2653 btrfs_device_set_total_bytes(device, new_size);
2654 btrfs_device_set_disk_total_bytes(device, new_size);
2655 btrfs_clear_space_info_full(device->fs_info);
2656 if (list_empty(&device->resized_list))
2657 list_add_tail(&device->resized_list,
2658 &fs_devices->resized_devices);
2659 mutex_unlock(&fs_info->chunk_mutex);
2660
2661 return btrfs_update_device(trans, device);
2662 }
2663
btrfs_free_chunk(struct btrfs_trans_handle * trans,u64 chunk_offset)2664 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2665 {
2666 struct btrfs_fs_info *fs_info = trans->fs_info;
2667 struct btrfs_root *root = fs_info->chunk_root;
2668 int ret;
2669 struct btrfs_path *path;
2670 struct btrfs_key key;
2671
2672 path = btrfs_alloc_path();
2673 if (!path)
2674 return -ENOMEM;
2675
2676 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2677 key.offset = chunk_offset;
2678 key.type = BTRFS_CHUNK_ITEM_KEY;
2679
2680 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2681 if (ret < 0)
2682 goto out;
2683 else if (ret > 0) { /* Logic error or corruption */
2684 btrfs_handle_fs_error(fs_info, -ENOENT,
2685 "Failed lookup while freeing chunk.");
2686 ret = -ENOENT;
2687 goto out;
2688 }
2689
2690 ret = btrfs_del_item(trans, root, path);
2691 if (ret < 0)
2692 btrfs_handle_fs_error(fs_info, ret,
2693 "Failed to delete chunk item.");
2694 out:
2695 btrfs_free_path(path);
2696 return ret;
2697 }
2698
btrfs_del_sys_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)2699 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2700 {
2701 struct btrfs_super_block *super_copy = fs_info->super_copy;
2702 struct btrfs_disk_key *disk_key;
2703 struct btrfs_chunk *chunk;
2704 u8 *ptr;
2705 int ret = 0;
2706 u32 num_stripes;
2707 u32 array_size;
2708 u32 len = 0;
2709 u32 cur;
2710 struct btrfs_key key;
2711
2712 mutex_lock(&fs_info->chunk_mutex);
2713 array_size = btrfs_super_sys_array_size(super_copy);
2714
2715 ptr = super_copy->sys_chunk_array;
2716 cur = 0;
2717
2718 while (cur < array_size) {
2719 disk_key = (struct btrfs_disk_key *)ptr;
2720 btrfs_disk_key_to_cpu(&key, disk_key);
2721
2722 len = sizeof(*disk_key);
2723
2724 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2725 chunk = (struct btrfs_chunk *)(ptr + len);
2726 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2727 len += btrfs_chunk_item_size(num_stripes);
2728 } else {
2729 ret = -EIO;
2730 break;
2731 }
2732 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2733 key.offset == chunk_offset) {
2734 memmove(ptr, ptr + len, array_size - (cur + len));
2735 array_size -= len;
2736 btrfs_set_super_sys_array_size(super_copy, array_size);
2737 } else {
2738 ptr += len;
2739 cur += len;
2740 }
2741 }
2742 mutex_unlock(&fs_info->chunk_mutex);
2743 return ret;
2744 }
2745
get_chunk_map(struct btrfs_fs_info * fs_info,u64 logical,u64 length)2746 static struct extent_map *get_chunk_map(struct btrfs_fs_info *fs_info,
2747 u64 logical, u64 length)
2748 {
2749 struct extent_map_tree *em_tree;
2750 struct extent_map *em;
2751
2752 em_tree = &fs_info->mapping_tree.map_tree;
2753 read_lock(&em_tree->lock);
2754 em = lookup_extent_mapping(em_tree, logical, length);
2755 read_unlock(&em_tree->lock);
2756
2757 if (!em) {
2758 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2759 logical, length);
2760 return ERR_PTR(-EINVAL);
2761 }
2762
2763 if (em->start > logical || em->start + em->len < logical) {
2764 btrfs_crit(fs_info,
2765 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2766 logical, length, em->start, em->start + em->len);
2767 free_extent_map(em);
2768 return ERR_PTR(-EINVAL);
2769 }
2770
2771 /* callers are responsible for dropping em's ref. */
2772 return em;
2773 }
2774
btrfs_remove_chunk(struct btrfs_trans_handle * trans,u64 chunk_offset)2775 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2776 {
2777 struct btrfs_fs_info *fs_info = trans->fs_info;
2778 struct extent_map *em;
2779 struct map_lookup *map;
2780 u64 dev_extent_len = 0;
2781 int i, ret = 0;
2782 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2783
2784 em = get_chunk_map(fs_info, chunk_offset, 1);
2785 if (IS_ERR(em)) {
2786 /*
2787 * This is a logic error, but we don't want to just rely on the
2788 * user having built with ASSERT enabled, so if ASSERT doesn't
2789 * do anything we still error out.
2790 */
2791 ASSERT(0);
2792 return PTR_ERR(em);
2793 }
2794 map = em->map_lookup;
2795 mutex_lock(&fs_info->chunk_mutex);
2796 check_system_chunk(trans, map->type);
2797 mutex_unlock(&fs_info->chunk_mutex);
2798
2799 /*
2800 * Take the device list mutex to prevent races with the final phase of
2801 * a device replace operation that replaces the device object associated
2802 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2803 */
2804 mutex_lock(&fs_devices->device_list_mutex);
2805 for (i = 0; i < map->num_stripes; i++) {
2806 struct btrfs_device *device = map->stripes[i].dev;
2807 ret = btrfs_free_dev_extent(trans, device,
2808 map->stripes[i].physical,
2809 &dev_extent_len);
2810 if (ret) {
2811 mutex_unlock(&fs_devices->device_list_mutex);
2812 btrfs_abort_transaction(trans, ret);
2813 goto out;
2814 }
2815
2816 if (device->bytes_used > 0) {
2817 mutex_lock(&fs_info->chunk_mutex);
2818 btrfs_device_set_bytes_used(device,
2819 device->bytes_used - dev_extent_len);
2820 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2821 btrfs_clear_space_info_full(fs_info);
2822 mutex_unlock(&fs_info->chunk_mutex);
2823 }
2824
2825 if (map->stripes[i].dev) {
2826 ret = btrfs_update_device(trans, map->stripes[i].dev);
2827 if (ret) {
2828 mutex_unlock(&fs_devices->device_list_mutex);
2829 btrfs_abort_transaction(trans, ret);
2830 goto out;
2831 }
2832 }
2833 }
2834 mutex_unlock(&fs_devices->device_list_mutex);
2835
2836 ret = btrfs_free_chunk(trans, chunk_offset);
2837 if (ret) {
2838 btrfs_abort_transaction(trans, ret);
2839 goto out;
2840 }
2841
2842 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2843
2844 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2845 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
2846 if (ret) {
2847 btrfs_abort_transaction(trans, ret);
2848 goto out;
2849 }
2850 }
2851
2852 ret = btrfs_remove_block_group(trans, chunk_offset, em);
2853 if (ret) {
2854 btrfs_abort_transaction(trans, ret);
2855 goto out;
2856 }
2857
2858 out:
2859 /* once for us */
2860 free_extent_map(em);
2861 return ret;
2862 }
2863
btrfs_relocate_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)2864 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2865 {
2866 struct btrfs_root *root = fs_info->chunk_root;
2867 struct btrfs_trans_handle *trans;
2868 int ret;
2869
2870 /*
2871 * Prevent races with automatic removal of unused block groups.
2872 * After we relocate and before we remove the chunk with offset
2873 * chunk_offset, automatic removal of the block group can kick in,
2874 * resulting in a failure when calling btrfs_remove_chunk() below.
2875 *
2876 * Make sure to acquire this mutex before doing a tree search (dev
2877 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2878 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2879 * we release the path used to search the chunk/dev tree and before
2880 * the current task acquires this mutex and calls us.
2881 */
2882 lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
2883
2884 ret = btrfs_can_relocate(fs_info, chunk_offset);
2885 if (ret)
2886 return -ENOSPC;
2887
2888 /* step one, relocate all the extents inside this chunk */
2889 btrfs_scrub_pause(fs_info);
2890 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2891 btrfs_scrub_continue(fs_info);
2892 if (ret)
2893 return ret;
2894
2895 /*
2896 * We add the kobjects here (and after forcing data chunk creation)
2897 * since relocation is the only place we'll create chunks of a new
2898 * type at runtime. The only place where we'll remove the last
2899 * chunk of a type is the call immediately below this one. Even
2900 * so, we're protected against races with the cleaner thread since
2901 * we're covered by the delete_unused_bgs_mutex.
2902 */
2903 btrfs_add_raid_kobjects(fs_info);
2904
2905 trans = btrfs_start_trans_remove_block_group(root->fs_info,
2906 chunk_offset);
2907 if (IS_ERR(trans)) {
2908 ret = PTR_ERR(trans);
2909 btrfs_handle_fs_error(root->fs_info, ret, NULL);
2910 return ret;
2911 }
2912
2913 /*
2914 * step two, delete the device extents and the
2915 * chunk tree entries
2916 */
2917 ret = btrfs_remove_chunk(trans, chunk_offset);
2918 btrfs_end_transaction(trans);
2919 return ret;
2920 }
2921
btrfs_relocate_sys_chunks(struct btrfs_fs_info * fs_info)2922 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2923 {
2924 struct btrfs_root *chunk_root = fs_info->chunk_root;
2925 struct btrfs_path *path;
2926 struct extent_buffer *leaf;
2927 struct btrfs_chunk *chunk;
2928 struct btrfs_key key;
2929 struct btrfs_key found_key;
2930 u64 chunk_type;
2931 bool retried = false;
2932 int failed = 0;
2933 int ret;
2934
2935 path = btrfs_alloc_path();
2936 if (!path)
2937 return -ENOMEM;
2938
2939 again:
2940 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2941 key.offset = (u64)-1;
2942 key.type = BTRFS_CHUNK_ITEM_KEY;
2943
2944 while (1) {
2945 mutex_lock(&fs_info->delete_unused_bgs_mutex);
2946 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2947 if (ret < 0) {
2948 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2949 goto error;
2950 }
2951 BUG_ON(ret == 0); /* Corruption */
2952
2953 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2954 key.type);
2955 if (ret)
2956 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2957 if (ret < 0)
2958 goto error;
2959 if (ret > 0)
2960 break;
2961
2962 leaf = path->nodes[0];
2963 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2964
2965 chunk = btrfs_item_ptr(leaf, path->slots[0],
2966 struct btrfs_chunk);
2967 chunk_type = btrfs_chunk_type(leaf, chunk);
2968 btrfs_release_path(path);
2969
2970 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2971 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
2972 if (ret == -ENOSPC)
2973 failed++;
2974 else
2975 BUG_ON(ret);
2976 }
2977 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2978
2979 if (found_key.offset == 0)
2980 break;
2981 key.offset = found_key.offset - 1;
2982 }
2983 ret = 0;
2984 if (failed && !retried) {
2985 failed = 0;
2986 retried = true;
2987 goto again;
2988 } else if (WARN_ON(failed && retried)) {
2989 ret = -ENOSPC;
2990 }
2991 error:
2992 btrfs_free_path(path);
2993 return ret;
2994 }
2995
2996 /*
2997 * return 1 : allocate a data chunk successfully,
2998 * return <0: errors during allocating a data chunk,
2999 * return 0 : no need to allocate a data chunk.
3000 */
btrfs_may_alloc_data_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)3001 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3002 u64 chunk_offset)
3003 {
3004 struct btrfs_block_group_cache *cache;
3005 u64 bytes_used;
3006 u64 chunk_type;
3007
3008 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3009 ASSERT(cache);
3010 chunk_type = cache->flags;
3011 btrfs_put_block_group(cache);
3012
3013 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) {
3014 spin_lock(&fs_info->data_sinfo->lock);
3015 bytes_used = fs_info->data_sinfo->bytes_used;
3016 spin_unlock(&fs_info->data_sinfo->lock);
3017
3018 if (!bytes_used) {
3019 struct btrfs_trans_handle *trans;
3020 int ret;
3021
3022 trans = btrfs_join_transaction(fs_info->tree_root);
3023 if (IS_ERR(trans))
3024 return PTR_ERR(trans);
3025
3026 ret = btrfs_force_chunk_alloc(trans,
3027 BTRFS_BLOCK_GROUP_DATA);
3028 btrfs_end_transaction(trans);
3029 if (ret < 0)
3030 return ret;
3031
3032 btrfs_add_raid_kobjects(fs_info);
3033
3034 return 1;
3035 }
3036 }
3037 return 0;
3038 }
3039
insert_balance_item(struct btrfs_fs_info * fs_info,struct btrfs_balance_control * bctl)3040 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3041 struct btrfs_balance_control *bctl)
3042 {
3043 struct btrfs_root *root = fs_info->tree_root;
3044 struct btrfs_trans_handle *trans;
3045 struct btrfs_balance_item *item;
3046 struct btrfs_disk_balance_args disk_bargs;
3047 struct btrfs_path *path;
3048 struct extent_buffer *leaf;
3049 struct btrfs_key key;
3050 int ret, err;
3051
3052 path = btrfs_alloc_path();
3053 if (!path)
3054 return -ENOMEM;
3055
3056 trans = btrfs_start_transaction(root, 0);
3057 if (IS_ERR(trans)) {
3058 btrfs_free_path(path);
3059 return PTR_ERR(trans);
3060 }
3061
3062 key.objectid = BTRFS_BALANCE_OBJECTID;
3063 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3064 key.offset = 0;
3065
3066 ret = btrfs_insert_empty_item(trans, root, path, &key,
3067 sizeof(*item));
3068 if (ret)
3069 goto out;
3070
3071 leaf = path->nodes[0];
3072 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3073
3074 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3075
3076 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3077 btrfs_set_balance_data(leaf, item, &disk_bargs);
3078 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3079 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3080 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3081 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3082
3083 btrfs_set_balance_flags(leaf, item, bctl->flags);
3084
3085 btrfs_mark_buffer_dirty(leaf);
3086 out:
3087 btrfs_free_path(path);
3088 err = btrfs_commit_transaction(trans);
3089 if (err && !ret)
3090 ret = err;
3091 return ret;
3092 }
3093
del_balance_item(struct btrfs_fs_info * fs_info)3094 static int del_balance_item(struct btrfs_fs_info *fs_info)
3095 {
3096 struct btrfs_root *root = fs_info->tree_root;
3097 struct btrfs_trans_handle *trans;
3098 struct btrfs_path *path;
3099 struct btrfs_key key;
3100 int ret, err;
3101
3102 path = btrfs_alloc_path();
3103 if (!path)
3104 return -ENOMEM;
3105
3106 trans = btrfs_start_transaction(root, 0);
3107 if (IS_ERR(trans)) {
3108 btrfs_free_path(path);
3109 return PTR_ERR(trans);
3110 }
3111
3112 key.objectid = BTRFS_BALANCE_OBJECTID;
3113 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3114 key.offset = 0;
3115
3116 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3117 if (ret < 0)
3118 goto out;
3119 if (ret > 0) {
3120 ret = -ENOENT;
3121 goto out;
3122 }
3123
3124 ret = btrfs_del_item(trans, root, path);
3125 out:
3126 btrfs_free_path(path);
3127 err = btrfs_commit_transaction(trans);
3128 if (err && !ret)
3129 ret = err;
3130 return ret;
3131 }
3132
3133 /*
3134 * This is a heuristic used to reduce the number of chunks balanced on
3135 * resume after balance was interrupted.
3136 */
update_balance_args(struct btrfs_balance_control * bctl)3137 static void update_balance_args(struct btrfs_balance_control *bctl)
3138 {
3139 /*
3140 * Turn on soft mode for chunk types that were being converted.
3141 */
3142 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3143 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3144 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3145 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3146 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3147 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3148
3149 /*
3150 * Turn on usage filter if is not already used. The idea is
3151 * that chunks that we have already balanced should be
3152 * reasonably full. Don't do it for chunks that are being
3153 * converted - that will keep us from relocating unconverted
3154 * (albeit full) chunks.
3155 */
3156 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3157 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3158 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3159 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3160 bctl->data.usage = 90;
3161 }
3162 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3163 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3164 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3165 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3166 bctl->sys.usage = 90;
3167 }
3168 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3169 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3170 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3171 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3172 bctl->meta.usage = 90;
3173 }
3174 }
3175
3176 /*
3177 * Clear the balance status in fs_info and delete the balance item from disk.
3178 */
reset_balance_state(struct btrfs_fs_info * fs_info)3179 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3180 {
3181 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3182 int ret;
3183
3184 BUG_ON(!fs_info->balance_ctl);
3185
3186 spin_lock(&fs_info->balance_lock);
3187 fs_info->balance_ctl = NULL;
3188 spin_unlock(&fs_info->balance_lock);
3189
3190 kfree(bctl);
3191 ret = del_balance_item(fs_info);
3192 if (ret)
3193 btrfs_handle_fs_error(fs_info, ret, NULL);
3194 }
3195
3196 /*
3197 * Balance filters. Return 1 if chunk should be filtered out
3198 * (should not be balanced).
3199 */
chunk_profiles_filter(u64 chunk_type,struct btrfs_balance_args * bargs)3200 static int chunk_profiles_filter(u64 chunk_type,
3201 struct btrfs_balance_args *bargs)
3202 {
3203 chunk_type = chunk_to_extended(chunk_type) &
3204 BTRFS_EXTENDED_PROFILE_MASK;
3205
3206 if (bargs->profiles & chunk_type)
3207 return 0;
3208
3209 return 1;
3210 }
3211
chunk_usage_range_filter(struct btrfs_fs_info * fs_info,u64 chunk_offset,struct btrfs_balance_args * bargs)3212 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3213 struct btrfs_balance_args *bargs)
3214 {
3215 struct btrfs_block_group_cache *cache;
3216 u64 chunk_used;
3217 u64 user_thresh_min;
3218 u64 user_thresh_max;
3219 int ret = 1;
3220
3221 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3222 chunk_used = btrfs_block_group_used(&cache->item);
3223
3224 if (bargs->usage_min == 0)
3225 user_thresh_min = 0;
3226 else
3227 user_thresh_min = div_factor_fine(cache->key.offset,
3228 bargs->usage_min);
3229
3230 if (bargs->usage_max == 0)
3231 user_thresh_max = 1;
3232 else if (bargs->usage_max > 100)
3233 user_thresh_max = cache->key.offset;
3234 else
3235 user_thresh_max = div_factor_fine(cache->key.offset,
3236 bargs->usage_max);
3237
3238 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3239 ret = 0;
3240
3241 btrfs_put_block_group(cache);
3242 return ret;
3243 }
3244
chunk_usage_filter(struct btrfs_fs_info * fs_info,u64 chunk_offset,struct btrfs_balance_args * bargs)3245 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3246 u64 chunk_offset, struct btrfs_balance_args *bargs)
3247 {
3248 struct btrfs_block_group_cache *cache;
3249 u64 chunk_used, user_thresh;
3250 int ret = 1;
3251
3252 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3253 chunk_used = btrfs_block_group_used(&cache->item);
3254
3255 if (bargs->usage_min == 0)
3256 user_thresh = 1;
3257 else if (bargs->usage > 100)
3258 user_thresh = cache->key.offset;
3259 else
3260 user_thresh = div_factor_fine(cache->key.offset,
3261 bargs->usage);
3262
3263 if (chunk_used < user_thresh)
3264 ret = 0;
3265
3266 btrfs_put_block_group(cache);
3267 return ret;
3268 }
3269
chunk_devid_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3270 static int chunk_devid_filter(struct extent_buffer *leaf,
3271 struct btrfs_chunk *chunk,
3272 struct btrfs_balance_args *bargs)
3273 {
3274 struct btrfs_stripe *stripe;
3275 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3276 int i;
3277
3278 for (i = 0; i < num_stripes; i++) {
3279 stripe = btrfs_stripe_nr(chunk, i);
3280 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3281 return 0;
3282 }
3283
3284 return 1;
3285 }
3286
3287 /* [pstart, pend) */
chunk_drange_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3288 static int chunk_drange_filter(struct extent_buffer *leaf,
3289 struct btrfs_chunk *chunk,
3290 struct btrfs_balance_args *bargs)
3291 {
3292 struct btrfs_stripe *stripe;
3293 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3294 u64 stripe_offset;
3295 u64 stripe_length;
3296 int factor;
3297 int i;
3298
3299 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3300 return 0;
3301
3302 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3303 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3304 factor = num_stripes / 2;
3305 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3306 factor = num_stripes - 1;
3307 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3308 factor = num_stripes - 2;
3309 } else {
3310 factor = num_stripes;
3311 }
3312
3313 for (i = 0; i < num_stripes; i++) {
3314 stripe = btrfs_stripe_nr(chunk, i);
3315 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3316 continue;
3317
3318 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3319 stripe_length = btrfs_chunk_length(leaf, chunk);
3320 stripe_length = div_u64(stripe_length, factor);
3321
3322 if (stripe_offset < bargs->pend &&
3323 stripe_offset + stripe_length > bargs->pstart)
3324 return 0;
3325 }
3326
3327 return 1;
3328 }
3329
3330 /* [vstart, vend) */
chunk_vrange_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset,struct btrfs_balance_args * bargs)3331 static int chunk_vrange_filter(struct extent_buffer *leaf,
3332 struct btrfs_chunk *chunk,
3333 u64 chunk_offset,
3334 struct btrfs_balance_args *bargs)
3335 {
3336 if (chunk_offset < bargs->vend &&
3337 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3338 /* at least part of the chunk is inside this vrange */
3339 return 0;
3340
3341 return 1;
3342 }
3343
chunk_stripes_range_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3344 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3345 struct btrfs_chunk *chunk,
3346 struct btrfs_balance_args *bargs)
3347 {
3348 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3349
3350 if (bargs->stripes_min <= num_stripes
3351 && num_stripes <= bargs->stripes_max)
3352 return 0;
3353
3354 return 1;
3355 }
3356
chunk_soft_convert_filter(u64 chunk_type,struct btrfs_balance_args * bargs)3357 static int chunk_soft_convert_filter(u64 chunk_type,
3358 struct btrfs_balance_args *bargs)
3359 {
3360 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3361 return 0;
3362
3363 chunk_type = chunk_to_extended(chunk_type) &
3364 BTRFS_EXTENDED_PROFILE_MASK;
3365
3366 if (bargs->target == chunk_type)
3367 return 1;
3368
3369 return 0;
3370 }
3371
should_balance_chunk(struct btrfs_fs_info * fs_info,struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset)3372 static int should_balance_chunk(struct btrfs_fs_info *fs_info,
3373 struct extent_buffer *leaf,
3374 struct btrfs_chunk *chunk, u64 chunk_offset)
3375 {
3376 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3377 struct btrfs_balance_args *bargs = NULL;
3378 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3379
3380 /* type filter */
3381 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3382 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3383 return 0;
3384 }
3385
3386 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3387 bargs = &bctl->data;
3388 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3389 bargs = &bctl->sys;
3390 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3391 bargs = &bctl->meta;
3392
3393 /* profiles filter */
3394 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3395 chunk_profiles_filter(chunk_type, bargs)) {
3396 return 0;
3397 }
3398
3399 /* usage filter */
3400 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3401 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3402 return 0;
3403 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3404 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3405 return 0;
3406 }
3407
3408 /* devid filter */
3409 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3410 chunk_devid_filter(leaf, chunk, bargs)) {
3411 return 0;
3412 }
3413
3414 /* drange filter, makes sense only with devid filter */
3415 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3416 chunk_drange_filter(leaf, chunk, bargs)) {
3417 return 0;
3418 }
3419
3420 /* vrange filter */
3421 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3422 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3423 return 0;
3424 }
3425
3426 /* stripes filter */
3427 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3428 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3429 return 0;
3430 }
3431
3432 /* soft profile changing mode */
3433 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3434 chunk_soft_convert_filter(chunk_type, bargs)) {
3435 return 0;
3436 }
3437
3438 /*
3439 * limited by count, must be the last filter
3440 */
3441 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3442 if (bargs->limit == 0)
3443 return 0;
3444 else
3445 bargs->limit--;
3446 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3447 /*
3448 * Same logic as the 'limit' filter; the minimum cannot be
3449 * determined here because we do not have the global information
3450 * about the count of all chunks that satisfy the filters.
3451 */
3452 if (bargs->limit_max == 0)
3453 return 0;
3454 else
3455 bargs->limit_max--;
3456 }
3457
3458 return 1;
3459 }
3460
__btrfs_balance(struct btrfs_fs_info * fs_info)3461 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3462 {
3463 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3464 struct btrfs_root *chunk_root = fs_info->chunk_root;
3465 struct btrfs_root *dev_root = fs_info->dev_root;
3466 struct list_head *devices;
3467 struct btrfs_device *device;
3468 u64 old_size;
3469 u64 size_to_free;
3470 u64 chunk_type;
3471 struct btrfs_chunk *chunk;
3472 struct btrfs_path *path = NULL;
3473 struct btrfs_key key;
3474 struct btrfs_key found_key;
3475 struct btrfs_trans_handle *trans;
3476 struct extent_buffer *leaf;
3477 int slot;
3478 int ret;
3479 int enospc_errors = 0;
3480 bool counting = true;
3481 /* The single value limit and min/max limits use the same bytes in the */
3482 u64 limit_data = bctl->data.limit;
3483 u64 limit_meta = bctl->meta.limit;
3484 u64 limit_sys = bctl->sys.limit;
3485 u32 count_data = 0;
3486 u32 count_meta = 0;
3487 u32 count_sys = 0;
3488 int chunk_reserved = 0;
3489
3490 /* step one make some room on all the devices */
3491 devices = &fs_info->fs_devices->devices;
3492 list_for_each_entry(device, devices, dev_list) {
3493 old_size = btrfs_device_get_total_bytes(device);
3494 size_to_free = div_factor(old_size, 1);
3495 size_to_free = min_t(u64, size_to_free, SZ_1M);
3496 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) ||
3497 btrfs_device_get_total_bytes(device) -
3498 btrfs_device_get_bytes_used(device) > size_to_free ||
3499 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
3500 continue;
3501
3502 ret = btrfs_shrink_device(device, old_size - size_to_free);
3503 if (ret == -ENOSPC)
3504 break;
3505 if (ret) {
3506 /* btrfs_shrink_device never returns ret > 0 */
3507 WARN_ON(ret > 0);
3508 goto error;
3509 }
3510
3511 trans = btrfs_start_transaction(dev_root, 0);
3512 if (IS_ERR(trans)) {
3513 ret = PTR_ERR(trans);
3514 btrfs_info_in_rcu(fs_info,
3515 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3516 rcu_str_deref(device->name), ret,
3517 old_size, old_size - size_to_free);
3518 goto error;
3519 }
3520
3521 ret = btrfs_grow_device(trans, device, old_size);
3522 if (ret) {
3523 btrfs_end_transaction(trans);
3524 /* btrfs_grow_device never returns ret > 0 */
3525 WARN_ON(ret > 0);
3526 btrfs_info_in_rcu(fs_info,
3527 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3528 rcu_str_deref(device->name), ret,
3529 old_size, old_size - size_to_free);
3530 goto error;
3531 }
3532
3533 btrfs_end_transaction(trans);
3534 }
3535
3536 /* step two, relocate all the chunks */
3537 path = btrfs_alloc_path();
3538 if (!path) {
3539 ret = -ENOMEM;
3540 goto error;
3541 }
3542
3543 /* zero out stat counters */
3544 spin_lock(&fs_info->balance_lock);
3545 memset(&bctl->stat, 0, sizeof(bctl->stat));
3546 spin_unlock(&fs_info->balance_lock);
3547 again:
3548 if (!counting) {
3549 /*
3550 * The single value limit and min/max limits use the same bytes
3551 * in the
3552 */
3553 bctl->data.limit = limit_data;
3554 bctl->meta.limit = limit_meta;
3555 bctl->sys.limit = limit_sys;
3556 }
3557 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3558 key.offset = (u64)-1;
3559 key.type = BTRFS_CHUNK_ITEM_KEY;
3560
3561 while (1) {
3562 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3563 atomic_read(&fs_info->balance_cancel_req)) {
3564 ret = -ECANCELED;
3565 goto error;
3566 }
3567
3568 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3569 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3570 if (ret < 0) {
3571 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3572 goto error;
3573 }
3574
3575 /*
3576 * this shouldn't happen, it means the last relocate
3577 * failed
3578 */
3579 if (ret == 0)
3580 BUG(); /* FIXME break ? */
3581
3582 ret = btrfs_previous_item(chunk_root, path, 0,
3583 BTRFS_CHUNK_ITEM_KEY);
3584 if (ret) {
3585 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3586 ret = 0;
3587 break;
3588 }
3589
3590 leaf = path->nodes[0];
3591 slot = path->slots[0];
3592 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3593
3594 if (found_key.objectid != key.objectid) {
3595 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3596 break;
3597 }
3598
3599 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3600 chunk_type = btrfs_chunk_type(leaf, chunk);
3601
3602 if (!counting) {
3603 spin_lock(&fs_info->balance_lock);
3604 bctl->stat.considered++;
3605 spin_unlock(&fs_info->balance_lock);
3606 }
3607
3608 ret = should_balance_chunk(fs_info, leaf, chunk,
3609 found_key.offset);
3610
3611 btrfs_release_path(path);
3612 if (!ret) {
3613 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3614 goto loop;
3615 }
3616
3617 if (counting) {
3618 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3619 spin_lock(&fs_info->balance_lock);
3620 bctl->stat.expected++;
3621 spin_unlock(&fs_info->balance_lock);
3622
3623 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3624 count_data++;
3625 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3626 count_sys++;
3627 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3628 count_meta++;
3629
3630 goto loop;
3631 }
3632
3633 /*
3634 * Apply limit_min filter, no need to check if the LIMITS
3635 * filter is used, limit_min is 0 by default
3636 */
3637 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3638 count_data < bctl->data.limit_min)
3639 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3640 count_meta < bctl->meta.limit_min)
3641 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3642 count_sys < bctl->sys.limit_min)) {
3643 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3644 goto loop;
3645 }
3646
3647 if (!chunk_reserved) {
3648 /*
3649 * We may be relocating the only data chunk we have,
3650 * which could potentially end up with losing data's
3651 * raid profile, so lets allocate an empty one in
3652 * advance.
3653 */
3654 ret = btrfs_may_alloc_data_chunk(fs_info,
3655 found_key.offset);
3656 if (ret < 0) {
3657 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3658 goto error;
3659 } else if (ret == 1) {
3660 chunk_reserved = 1;
3661 }
3662 }
3663
3664 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3665 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3666 if (ret && ret != -ENOSPC)
3667 goto error;
3668 if (ret == -ENOSPC) {
3669 enospc_errors++;
3670 } else {
3671 spin_lock(&fs_info->balance_lock);
3672 bctl->stat.completed++;
3673 spin_unlock(&fs_info->balance_lock);
3674 }
3675 loop:
3676 if (found_key.offset == 0)
3677 break;
3678 key.offset = found_key.offset - 1;
3679 }
3680
3681 if (counting) {
3682 btrfs_release_path(path);
3683 counting = false;
3684 goto again;
3685 }
3686 error:
3687 btrfs_free_path(path);
3688 if (enospc_errors) {
3689 btrfs_info(fs_info, "%d enospc errors during balance",
3690 enospc_errors);
3691 if (!ret)
3692 ret = -ENOSPC;
3693 }
3694
3695 return ret;
3696 }
3697
3698 /**
3699 * alloc_profile_is_valid - see if a given profile is valid and reduced
3700 * @flags: profile to validate
3701 * @extended: if true @flags is treated as an extended profile
3702 */
alloc_profile_is_valid(u64 flags,int extended)3703 static int alloc_profile_is_valid(u64 flags, int extended)
3704 {
3705 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3706 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3707
3708 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3709
3710 /* 1) check that all other bits are zeroed */
3711 if (flags & ~mask)
3712 return 0;
3713
3714 /* 2) see if profile is reduced */
3715 if (flags == 0)
3716 return !extended; /* "0" is valid for usual profiles */
3717
3718 /* true if exactly one bit set */
3719 return (flags & (flags - 1)) == 0;
3720 }
3721
balance_need_close(struct btrfs_fs_info * fs_info)3722 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3723 {
3724 /* cancel requested || normal exit path */
3725 return atomic_read(&fs_info->balance_cancel_req) ||
3726 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3727 atomic_read(&fs_info->balance_cancel_req) == 0);
3728 }
3729
3730 /* Non-zero return value signifies invalidity */
validate_convert_profile(struct btrfs_balance_args * bctl_arg,u64 allowed)3731 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3732 u64 allowed)
3733 {
3734 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3735 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3736 (bctl_arg->target & ~allowed)));
3737 }
3738
3739 /*
3740 * Should be called with balance mutexe held
3741 */
btrfs_balance(struct btrfs_fs_info * fs_info,struct btrfs_balance_control * bctl,struct btrfs_ioctl_balance_args * bargs)3742 int btrfs_balance(struct btrfs_fs_info *fs_info,
3743 struct btrfs_balance_control *bctl,
3744 struct btrfs_ioctl_balance_args *bargs)
3745 {
3746 u64 meta_target, data_target;
3747 u64 allowed;
3748 int mixed = 0;
3749 int ret;
3750 u64 num_devices;
3751 unsigned seq;
3752 bool reducing_integrity;
3753
3754 if (btrfs_fs_closing(fs_info) ||
3755 atomic_read(&fs_info->balance_pause_req) ||
3756 atomic_read(&fs_info->balance_cancel_req)) {
3757 ret = -EINVAL;
3758 goto out;
3759 }
3760
3761 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3762 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3763 mixed = 1;
3764
3765 /*
3766 * In case of mixed groups both data and meta should be picked,
3767 * and identical options should be given for both of them.
3768 */
3769 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3770 if (mixed && (bctl->flags & allowed)) {
3771 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3772 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3773 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3774 btrfs_err(fs_info,
3775 "balance: mixed groups data and metadata options must be the same");
3776 ret = -EINVAL;
3777 goto out;
3778 }
3779 }
3780
3781 num_devices = fs_info->fs_devices->num_devices;
3782 btrfs_dev_replace_read_lock(&fs_info->dev_replace);
3783 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3784 BUG_ON(num_devices < 1);
3785 num_devices--;
3786 }
3787 btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
3788 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3789 if (num_devices > 1)
3790 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3791 if (num_devices > 2)
3792 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3793 if (num_devices > 3)
3794 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3795 BTRFS_BLOCK_GROUP_RAID6);
3796 if (validate_convert_profile(&bctl->data, allowed)) {
3797 int index = btrfs_bg_flags_to_raid_index(bctl->data.target);
3798
3799 btrfs_err(fs_info,
3800 "balance: invalid convert data profile %s",
3801 get_raid_name(index));
3802 ret = -EINVAL;
3803 goto out;
3804 }
3805 if (validate_convert_profile(&bctl->meta, allowed)) {
3806 int index = btrfs_bg_flags_to_raid_index(bctl->meta.target);
3807
3808 btrfs_err(fs_info,
3809 "balance: invalid convert metadata profile %s",
3810 get_raid_name(index));
3811 ret = -EINVAL;
3812 goto out;
3813 }
3814 if (validate_convert_profile(&bctl->sys, allowed)) {
3815 int index = btrfs_bg_flags_to_raid_index(bctl->sys.target);
3816
3817 btrfs_err(fs_info,
3818 "balance: invalid convert system profile %s",
3819 get_raid_name(index));
3820 ret = -EINVAL;
3821 goto out;
3822 }
3823
3824 /* allow to reduce meta or sys integrity only if force set */
3825 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3826 BTRFS_BLOCK_GROUP_RAID10 |
3827 BTRFS_BLOCK_GROUP_RAID5 |
3828 BTRFS_BLOCK_GROUP_RAID6;
3829 do {
3830 seq = read_seqbegin(&fs_info->profiles_lock);
3831
3832 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3833 (fs_info->avail_system_alloc_bits & allowed) &&
3834 !(bctl->sys.target & allowed)) ||
3835 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3836 (fs_info->avail_metadata_alloc_bits & allowed) &&
3837 !(bctl->meta.target & allowed)))
3838 reducing_integrity = true;
3839 else
3840 reducing_integrity = false;
3841
3842 /* if we're not converting, the target field is uninitialized */
3843 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3844 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
3845 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3846 bctl->data.target : fs_info->avail_data_alloc_bits;
3847 } while (read_seqretry(&fs_info->profiles_lock, seq));
3848
3849 if (reducing_integrity) {
3850 if (bctl->flags & BTRFS_BALANCE_FORCE) {
3851 btrfs_info(fs_info,
3852 "balance: force reducing metadata integrity");
3853 } else {
3854 btrfs_err(fs_info,
3855 "balance: reduces metadata integrity, use --force if you want this");
3856 ret = -EINVAL;
3857 goto out;
3858 }
3859 }
3860
3861 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
3862 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
3863 int meta_index = btrfs_bg_flags_to_raid_index(meta_target);
3864 int data_index = btrfs_bg_flags_to_raid_index(data_target);
3865
3866 btrfs_warn(fs_info,
3867 "balance: metadata profile %s has lower redundancy than data profile %s",
3868 get_raid_name(meta_index), get_raid_name(data_index));
3869 }
3870
3871 ret = insert_balance_item(fs_info, bctl);
3872 if (ret && ret != -EEXIST)
3873 goto out;
3874
3875 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3876 BUG_ON(ret == -EEXIST);
3877 BUG_ON(fs_info->balance_ctl);
3878 spin_lock(&fs_info->balance_lock);
3879 fs_info->balance_ctl = bctl;
3880 spin_unlock(&fs_info->balance_lock);
3881 } else {
3882 BUG_ON(ret != -EEXIST);
3883 spin_lock(&fs_info->balance_lock);
3884 update_balance_args(bctl);
3885 spin_unlock(&fs_info->balance_lock);
3886 }
3887
3888 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
3889 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
3890 mutex_unlock(&fs_info->balance_mutex);
3891
3892 ret = __btrfs_balance(fs_info);
3893
3894 mutex_lock(&fs_info->balance_mutex);
3895 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
3896
3897 if (bargs) {
3898 memset(bargs, 0, sizeof(*bargs));
3899 btrfs_update_ioctl_balance_args(fs_info, bargs);
3900 }
3901
3902 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3903 balance_need_close(fs_info)) {
3904 reset_balance_state(fs_info);
3905 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3906 }
3907
3908 wake_up(&fs_info->balance_wait_q);
3909
3910 return ret;
3911 out:
3912 if (bctl->flags & BTRFS_BALANCE_RESUME)
3913 reset_balance_state(fs_info);
3914 else
3915 kfree(bctl);
3916 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3917
3918 return ret;
3919 }
3920
balance_kthread(void * data)3921 static int balance_kthread(void *data)
3922 {
3923 struct btrfs_fs_info *fs_info = data;
3924 int ret = 0;
3925
3926 mutex_lock(&fs_info->balance_mutex);
3927 if (fs_info->balance_ctl) {
3928 btrfs_info(fs_info, "balance: resuming");
3929 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
3930 }
3931 mutex_unlock(&fs_info->balance_mutex);
3932
3933 return ret;
3934 }
3935
btrfs_resume_balance_async(struct btrfs_fs_info * fs_info)3936 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3937 {
3938 struct task_struct *tsk;
3939
3940 mutex_lock(&fs_info->balance_mutex);
3941 if (!fs_info->balance_ctl) {
3942 mutex_unlock(&fs_info->balance_mutex);
3943 return 0;
3944 }
3945 mutex_unlock(&fs_info->balance_mutex);
3946
3947 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
3948 btrfs_info(fs_info, "balance: resume skipped");
3949 return 0;
3950 }
3951
3952 /*
3953 * A ro->rw remount sequence should continue with the paused balance
3954 * regardless of who pauses it, system or the user as of now, so set
3955 * the resume flag.
3956 */
3957 spin_lock(&fs_info->balance_lock);
3958 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
3959 spin_unlock(&fs_info->balance_lock);
3960
3961 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3962 return PTR_ERR_OR_ZERO(tsk);
3963 }
3964
btrfs_recover_balance(struct btrfs_fs_info * fs_info)3965 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3966 {
3967 struct btrfs_balance_control *bctl;
3968 struct btrfs_balance_item *item;
3969 struct btrfs_disk_balance_args disk_bargs;
3970 struct btrfs_path *path;
3971 struct extent_buffer *leaf;
3972 struct btrfs_key key;
3973 int ret;
3974
3975 path = btrfs_alloc_path();
3976 if (!path)
3977 return -ENOMEM;
3978
3979 key.objectid = BTRFS_BALANCE_OBJECTID;
3980 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3981 key.offset = 0;
3982
3983 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3984 if (ret < 0)
3985 goto out;
3986 if (ret > 0) { /* ret = -ENOENT; */
3987 ret = 0;
3988 goto out;
3989 }
3990
3991 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3992 if (!bctl) {
3993 ret = -ENOMEM;
3994 goto out;
3995 }
3996
3997 leaf = path->nodes[0];
3998 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3999
4000 bctl->flags = btrfs_balance_flags(leaf, item);
4001 bctl->flags |= BTRFS_BALANCE_RESUME;
4002
4003 btrfs_balance_data(leaf, item, &disk_bargs);
4004 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4005 btrfs_balance_meta(leaf, item, &disk_bargs);
4006 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4007 btrfs_balance_sys(leaf, item, &disk_bargs);
4008 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4009
4010 /*
4011 * This should never happen, as the paused balance state is recovered
4012 * during mount without any chance of other exclusive ops to collide.
4013 *
4014 * This gives the exclusive op status to balance and keeps in paused
4015 * state until user intervention (cancel or umount). If the ownership
4016 * cannot be assigned, show a message but do not fail. The balance
4017 * is in a paused state and must have fs_info::balance_ctl properly
4018 * set up.
4019 */
4020 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
4021 btrfs_warn(fs_info,
4022 "balance: cannot set exclusive op status, resume manually");
4023
4024 btrfs_release_path(path);
4025
4026 mutex_lock(&fs_info->balance_mutex);
4027 BUG_ON(fs_info->balance_ctl);
4028 spin_lock(&fs_info->balance_lock);
4029 fs_info->balance_ctl = bctl;
4030 spin_unlock(&fs_info->balance_lock);
4031 mutex_unlock(&fs_info->balance_mutex);
4032 out:
4033 btrfs_free_path(path);
4034 return ret;
4035 }
4036
btrfs_pause_balance(struct btrfs_fs_info * fs_info)4037 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4038 {
4039 int ret = 0;
4040
4041 mutex_lock(&fs_info->balance_mutex);
4042 if (!fs_info->balance_ctl) {
4043 mutex_unlock(&fs_info->balance_mutex);
4044 return -ENOTCONN;
4045 }
4046
4047 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4048 atomic_inc(&fs_info->balance_pause_req);
4049 mutex_unlock(&fs_info->balance_mutex);
4050
4051 wait_event(fs_info->balance_wait_q,
4052 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4053
4054 mutex_lock(&fs_info->balance_mutex);
4055 /* we are good with balance_ctl ripped off from under us */
4056 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4057 atomic_dec(&fs_info->balance_pause_req);
4058 } else {
4059 ret = -ENOTCONN;
4060 }
4061
4062 mutex_unlock(&fs_info->balance_mutex);
4063 return ret;
4064 }
4065
btrfs_cancel_balance(struct btrfs_fs_info * fs_info)4066 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4067 {
4068 mutex_lock(&fs_info->balance_mutex);
4069 if (!fs_info->balance_ctl) {
4070 mutex_unlock(&fs_info->balance_mutex);
4071 return -ENOTCONN;
4072 }
4073
4074 /*
4075 * A paused balance with the item stored on disk can be resumed at
4076 * mount time if the mount is read-write. Otherwise it's still paused
4077 * and we must not allow cancelling as it deletes the item.
4078 */
4079 if (sb_rdonly(fs_info->sb)) {
4080 mutex_unlock(&fs_info->balance_mutex);
4081 return -EROFS;
4082 }
4083
4084 atomic_inc(&fs_info->balance_cancel_req);
4085 /*
4086 * if we are running just wait and return, balance item is
4087 * deleted in btrfs_balance in this case
4088 */
4089 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4090 mutex_unlock(&fs_info->balance_mutex);
4091 wait_event(fs_info->balance_wait_q,
4092 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4093 mutex_lock(&fs_info->balance_mutex);
4094 } else {
4095 mutex_unlock(&fs_info->balance_mutex);
4096 /*
4097 * Lock released to allow other waiters to continue, we'll
4098 * reexamine the status again.
4099 */
4100 mutex_lock(&fs_info->balance_mutex);
4101
4102 if (fs_info->balance_ctl) {
4103 reset_balance_state(fs_info);
4104 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4105 btrfs_info(fs_info, "balance: canceled");
4106 }
4107 }
4108
4109 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4110 atomic_dec(&fs_info->balance_cancel_req);
4111 mutex_unlock(&fs_info->balance_mutex);
4112 return 0;
4113 }
4114
btrfs_uuid_scan_kthread(void * data)4115 static int btrfs_uuid_scan_kthread(void *data)
4116 {
4117 struct btrfs_fs_info *fs_info = data;
4118 struct btrfs_root *root = fs_info->tree_root;
4119 struct btrfs_key key;
4120 struct btrfs_path *path = NULL;
4121 int ret = 0;
4122 struct extent_buffer *eb;
4123 int slot;
4124 struct btrfs_root_item root_item;
4125 u32 item_size;
4126 struct btrfs_trans_handle *trans = NULL;
4127
4128 path = btrfs_alloc_path();
4129 if (!path) {
4130 ret = -ENOMEM;
4131 goto out;
4132 }
4133
4134 key.objectid = 0;
4135 key.type = BTRFS_ROOT_ITEM_KEY;
4136 key.offset = 0;
4137
4138 while (1) {
4139 ret = btrfs_search_forward(root, &key, path,
4140 BTRFS_OLDEST_GENERATION);
4141 if (ret) {
4142 if (ret > 0)
4143 ret = 0;
4144 break;
4145 }
4146
4147 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4148 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4149 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4150 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4151 goto skip;
4152
4153 eb = path->nodes[0];
4154 slot = path->slots[0];
4155 item_size = btrfs_item_size_nr(eb, slot);
4156 if (item_size < sizeof(root_item))
4157 goto skip;
4158
4159 read_extent_buffer(eb, &root_item,
4160 btrfs_item_ptr_offset(eb, slot),
4161 (int)sizeof(root_item));
4162 if (btrfs_root_refs(&root_item) == 0)
4163 goto skip;
4164
4165 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4166 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4167 if (trans)
4168 goto update_tree;
4169
4170 btrfs_release_path(path);
4171 /*
4172 * 1 - subvol uuid item
4173 * 1 - received_subvol uuid item
4174 */
4175 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4176 if (IS_ERR(trans)) {
4177 ret = PTR_ERR(trans);
4178 break;
4179 }
4180 continue;
4181 } else {
4182 goto skip;
4183 }
4184 update_tree:
4185 btrfs_release_path(path);
4186 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4187 ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4188 BTRFS_UUID_KEY_SUBVOL,
4189 key.objectid);
4190 if (ret < 0) {
4191 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4192 ret);
4193 break;
4194 }
4195 }
4196
4197 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4198 ret = btrfs_uuid_tree_add(trans,
4199 root_item.received_uuid,
4200 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4201 key.objectid);
4202 if (ret < 0) {
4203 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4204 ret);
4205 break;
4206 }
4207 }
4208
4209 skip:
4210 btrfs_release_path(path);
4211 if (trans) {
4212 ret = btrfs_end_transaction(trans);
4213 trans = NULL;
4214 if (ret)
4215 break;
4216 }
4217
4218 if (key.offset < (u64)-1) {
4219 key.offset++;
4220 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4221 key.offset = 0;
4222 key.type = BTRFS_ROOT_ITEM_KEY;
4223 } else if (key.objectid < (u64)-1) {
4224 key.offset = 0;
4225 key.type = BTRFS_ROOT_ITEM_KEY;
4226 key.objectid++;
4227 } else {
4228 break;
4229 }
4230 cond_resched();
4231 }
4232
4233 out:
4234 btrfs_free_path(path);
4235 if (trans && !IS_ERR(trans))
4236 btrfs_end_transaction(trans);
4237 if (ret)
4238 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4239 else
4240 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4241 up(&fs_info->uuid_tree_rescan_sem);
4242 return 0;
4243 }
4244
4245 /*
4246 * Callback for btrfs_uuid_tree_iterate().
4247 * returns:
4248 * 0 check succeeded, the entry is not outdated.
4249 * < 0 if an error occurred.
4250 * > 0 if the check failed, which means the caller shall remove the entry.
4251 */
btrfs_check_uuid_tree_entry(struct btrfs_fs_info * fs_info,u8 * uuid,u8 type,u64 subid)4252 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4253 u8 *uuid, u8 type, u64 subid)
4254 {
4255 struct btrfs_key key;
4256 int ret = 0;
4257 struct btrfs_root *subvol_root;
4258
4259 if (type != BTRFS_UUID_KEY_SUBVOL &&
4260 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4261 goto out;
4262
4263 key.objectid = subid;
4264 key.type = BTRFS_ROOT_ITEM_KEY;
4265 key.offset = (u64)-1;
4266 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4267 if (IS_ERR(subvol_root)) {
4268 ret = PTR_ERR(subvol_root);
4269 if (ret == -ENOENT)
4270 ret = 1;
4271 goto out;
4272 }
4273
4274 switch (type) {
4275 case BTRFS_UUID_KEY_SUBVOL:
4276 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4277 ret = 1;
4278 break;
4279 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4280 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4281 BTRFS_UUID_SIZE))
4282 ret = 1;
4283 break;
4284 }
4285
4286 out:
4287 return ret;
4288 }
4289
btrfs_uuid_rescan_kthread(void * data)4290 static int btrfs_uuid_rescan_kthread(void *data)
4291 {
4292 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4293 int ret;
4294
4295 /*
4296 * 1st step is to iterate through the existing UUID tree and
4297 * to delete all entries that contain outdated data.
4298 * 2nd step is to add all missing entries to the UUID tree.
4299 */
4300 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4301 if (ret < 0) {
4302 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4303 up(&fs_info->uuid_tree_rescan_sem);
4304 return ret;
4305 }
4306 return btrfs_uuid_scan_kthread(data);
4307 }
4308
btrfs_create_uuid_tree(struct btrfs_fs_info * fs_info)4309 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4310 {
4311 struct btrfs_trans_handle *trans;
4312 struct btrfs_root *tree_root = fs_info->tree_root;
4313 struct btrfs_root *uuid_root;
4314 struct task_struct *task;
4315 int ret;
4316
4317 /*
4318 * 1 - root node
4319 * 1 - root item
4320 */
4321 trans = btrfs_start_transaction(tree_root, 2);
4322 if (IS_ERR(trans))
4323 return PTR_ERR(trans);
4324
4325 uuid_root = btrfs_create_tree(trans, fs_info,
4326 BTRFS_UUID_TREE_OBJECTID);
4327 if (IS_ERR(uuid_root)) {
4328 ret = PTR_ERR(uuid_root);
4329 btrfs_abort_transaction(trans, ret);
4330 btrfs_end_transaction(trans);
4331 return ret;
4332 }
4333
4334 fs_info->uuid_root = uuid_root;
4335
4336 ret = btrfs_commit_transaction(trans);
4337 if (ret)
4338 return ret;
4339
4340 down(&fs_info->uuid_tree_rescan_sem);
4341 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4342 if (IS_ERR(task)) {
4343 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4344 btrfs_warn(fs_info, "failed to start uuid_scan task");
4345 up(&fs_info->uuid_tree_rescan_sem);
4346 return PTR_ERR(task);
4347 }
4348
4349 return 0;
4350 }
4351
btrfs_check_uuid_tree(struct btrfs_fs_info * fs_info)4352 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4353 {
4354 struct task_struct *task;
4355
4356 down(&fs_info->uuid_tree_rescan_sem);
4357 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4358 if (IS_ERR(task)) {
4359 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4360 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4361 up(&fs_info->uuid_tree_rescan_sem);
4362 return PTR_ERR(task);
4363 }
4364
4365 return 0;
4366 }
4367
4368 /*
4369 * shrinking a device means finding all of the device extents past
4370 * the new size, and then following the back refs to the chunks.
4371 * The chunk relocation code actually frees the device extent
4372 */
btrfs_shrink_device(struct btrfs_device * device,u64 new_size)4373 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4374 {
4375 struct btrfs_fs_info *fs_info = device->fs_info;
4376 struct btrfs_root *root = fs_info->dev_root;
4377 struct btrfs_trans_handle *trans;
4378 struct btrfs_dev_extent *dev_extent = NULL;
4379 struct btrfs_path *path;
4380 u64 length;
4381 u64 chunk_offset;
4382 int ret;
4383 int slot;
4384 int failed = 0;
4385 bool retried = false;
4386 bool checked_pending_chunks = false;
4387 struct extent_buffer *l;
4388 struct btrfs_key key;
4389 struct btrfs_super_block *super_copy = fs_info->super_copy;
4390 u64 old_total = btrfs_super_total_bytes(super_copy);
4391 u64 old_size = btrfs_device_get_total_bytes(device);
4392 u64 diff;
4393
4394 new_size = round_down(new_size, fs_info->sectorsize);
4395 diff = round_down(old_size - new_size, fs_info->sectorsize);
4396
4397 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4398 return -EINVAL;
4399
4400 path = btrfs_alloc_path();
4401 if (!path)
4402 return -ENOMEM;
4403
4404 path->reada = READA_BACK;
4405
4406 mutex_lock(&fs_info->chunk_mutex);
4407
4408 btrfs_device_set_total_bytes(device, new_size);
4409 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4410 device->fs_devices->total_rw_bytes -= diff;
4411 atomic64_sub(diff, &fs_info->free_chunk_space);
4412 }
4413 mutex_unlock(&fs_info->chunk_mutex);
4414
4415 again:
4416 key.objectid = device->devid;
4417 key.offset = (u64)-1;
4418 key.type = BTRFS_DEV_EXTENT_KEY;
4419
4420 do {
4421 mutex_lock(&fs_info->delete_unused_bgs_mutex);
4422 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4423 if (ret < 0) {
4424 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4425 goto done;
4426 }
4427
4428 ret = btrfs_previous_item(root, path, 0, key.type);
4429 if (ret)
4430 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4431 if (ret < 0)
4432 goto done;
4433 if (ret) {
4434 ret = 0;
4435 btrfs_release_path(path);
4436 break;
4437 }
4438
4439 l = path->nodes[0];
4440 slot = path->slots[0];
4441 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4442
4443 if (key.objectid != device->devid) {
4444 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4445 btrfs_release_path(path);
4446 break;
4447 }
4448
4449 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4450 length = btrfs_dev_extent_length(l, dev_extent);
4451
4452 if (key.offset + length <= new_size) {
4453 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4454 btrfs_release_path(path);
4455 break;
4456 }
4457
4458 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4459 btrfs_release_path(path);
4460
4461 /*
4462 * We may be relocating the only data chunk we have,
4463 * which could potentially end up with losing data's
4464 * raid profile, so lets allocate an empty one in
4465 * advance.
4466 */
4467 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4468 if (ret < 0) {
4469 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4470 goto done;
4471 }
4472
4473 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4474 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4475 if (ret && ret != -ENOSPC)
4476 goto done;
4477 if (ret == -ENOSPC)
4478 failed++;
4479 } while (key.offset-- > 0);
4480
4481 if (failed && !retried) {
4482 failed = 0;
4483 retried = true;
4484 goto again;
4485 } else if (failed && retried) {
4486 ret = -ENOSPC;
4487 goto done;
4488 }
4489
4490 /* Shrinking succeeded, else we would be at "done". */
4491 trans = btrfs_start_transaction(root, 0);
4492 if (IS_ERR(trans)) {
4493 ret = PTR_ERR(trans);
4494 goto done;
4495 }
4496
4497 mutex_lock(&fs_info->chunk_mutex);
4498
4499 /*
4500 * We checked in the above loop all device extents that were already in
4501 * the device tree. However before we have updated the device's
4502 * total_bytes to the new size, we might have had chunk allocations that
4503 * have not complete yet (new block groups attached to transaction
4504 * handles), and therefore their device extents were not yet in the
4505 * device tree and we missed them in the loop above. So if we have any
4506 * pending chunk using a device extent that overlaps the device range
4507 * that we can not use anymore, commit the current transaction and
4508 * repeat the search on the device tree - this way we guarantee we will
4509 * not have chunks using device extents that end beyond 'new_size'.
4510 */
4511 if (!checked_pending_chunks) {
4512 u64 start = new_size;
4513 u64 len = old_size - new_size;
4514
4515 if (contains_pending_extent(trans->transaction, device,
4516 &start, len)) {
4517 mutex_unlock(&fs_info->chunk_mutex);
4518 checked_pending_chunks = true;
4519 failed = 0;
4520 retried = false;
4521 ret = btrfs_commit_transaction(trans);
4522 if (ret)
4523 goto done;
4524 goto again;
4525 }
4526 }
4527
4528 btrfs_device_set_disk_total_bytes(device, new_size);
4529 if (list_empty(&device->resized_list))
4530 list_add_tail(&device->resized_list,
4531 &fs_info->fs_devices->resized_devices);
4532
4533 WARN_ON(diff > old_total);
4534 btrfs_set_super_total_bytes(super_copy,
4535 round_down(old_total - diff, fs_info->sectorsize));
4536 mutex_unlock(&fs_info->chunk_mutex);
4537
4538 /* Now btrfs_update_device() will change the on-disk size. */
4539 ret = btrfs_update_device(trans, device);
4540 if (ret < 0) {
4541 btrfs_abort_transaction(trans, ret);
4542 btrfs_end_transaction(trans);
4543 } else {
4544 ret = btrfs_commit_transaction(trans);
4545 }
4546 done:
4547 btrfs_free_path(path);
4548 if (ret) {
4549 mutex_lock(&fs_info->chunk_mutex);
4550 btrfs_device_set_total_bytes(device, old_size);
4551 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4552 device->fs_devices->total_rw_bytes += diff;
4553 atomic64_add(diff, &fs_info->free_chunk_space);
4554 mutex_unlock(&fs_info->chunk_mutex);
4555 }
4556 return ret;
4557 }
4558
btrfs_add_system_chunk(struct btrfs_fs_info * fs_info,struct btrfs_key * key,struct btrfs_chunk * chunk,int item_size)4559 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4560 struct btrfs_key *key,
4561 struct btrfs_chunk *chunk, int item_size)
4562 {
4563 struct btrfs_super_block *super_copy = fs_info->super_copy;
4564 struct btrfs_disk_key disk_key;
4565 u32 array_size;
4566 u8 *ptr;
4567
4568 mutex_lock(&fs_info->chunk_mutex);
4569 array_size = btrfs_super_sys_array_size(super_copy);
4570 if (array_size + item_size + sizeof(disk_key)
4571 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4572 mutex_unlock(&fs_info->chunk_mutex);
4573 return -EFBIG;
4574 }
4575
4576 ptr = super_copy->sys_chunk_array + array_size;
4577 btrfs_cpu_key_to_disk(&disk_key, key);
4578 memcpy(ptr, &disk_key, sizeof(disk_key));
4579 ptr += sizeof(disk_key);
4580 memcpy(ptr, chunk, item_size);
4581 item_size += sizeof(disk_key);
4582 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4583 mutex_unlock(&fs_info->chunk_mutex);
4584
4585 return 0;
4586 }
4587
4588 /*
4589 * sort the devices in descending order by max_avail, total_avail
4590 */
btrfs_cmp_device_info(const void * a,const void * b)4591 static int btrfs_cmp_device_info(const void *a, const void *b)
4592 {
4593 const struct btrfs_device_info *di_a = a;
4594 const struct btrfs_device_info *di_b = b;
4595
4596 if (di_a->max_avail > di_b->max_avail)
4597 return -1;
4598 if (di_a->max_avail < di_b->max_avail)
4599 return 1;
4600 if (di_a->total_avail > di_b->total_avail)
4601 return -1;
4602 if (di_a->total_avail < di_b->total_avail)
4603 return 1;
4604 return 0;
4605 }
4606
check_raid56_incompat_flag(struct btrfs_fs_info * info,u64 type)4607 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4608 {
4609 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4610 return;
4611
4612 btrfs_set_fs_incompat(info, RAID56);
4613 }
4614
__btrfs_alloc_chunk(struct btrfs_trans_handle * trans,u64 start,u64 type)4615 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4616 u64 start, u64 type)
4617 {
4618 struct btrfs_fs_info *info = trans->fs_info;
4619 struct btrfs_fs_devices *fs_devices = info->fs_devices;
4620 struct btrfs_device *device;
4621 struct map_lookup *map = NULL;
4622 struct extent_map_tree *em_tree;
4623 struct extent_map *em;
4624 struct btrfs_device_info *devices_info = NULL;
4625 u64 total_avail;
4626 int num_stripes; /* total number of stripes to allocate */
4627 int data_stripes; /* number of stripes that count for
4628 block group size */
4629 int sub_stripes; /* sub_stripes info for map */
4630 int dev_stripes; /* stripes per dev */
4631 int devs_max; /* max devs to use */
4632 int devs_min; /* min devs needed */
4633 int devs_increment; /* ndevs has to be a multiple of this */
4634 int ncopies; /* how many copies to data has */
4635 int ret;
4636 u64 max_stripe_size;
4637 u64 max_chunk_size;
4638 u64 stripe_size;
4639 u64 num_bytes;
4640 int ndevs;
4641 int i;
4642 int j;
4643 int index;
4644
4645 BUG_ON(!alloc_profile_is_valid(type, 0));
4646
4647 if (list_empty(&fs_devices->alloc_list)) {
4648 if (btrfs_test_opt(info, ENOSPC_DEBUG))
4649 btrfs_debug(info, "%s: no writable device", __func__);
4650 return -ENOSPC;
4651 }
4652
4653 index = btrfs_bg_flags_to_raid_index(type);
4654
4655 sub_stripes = btrfs_raid_array[index].sub_stripes;
4656 dev_stripes = btrfs_raid_array[index].dev_stripes;
4657 devs_max = btrfs_raid_array[index].devs_max;
4658 devs_min = btrfs_raid_array[index].devs_min;
4659 devs_increment = btrfs_raid_array[index].devs_increment;
4660 ncopies = btrfs_raid_array[index].ncopies;
4661
4662 if (type & BTRFS_BLOCK_GROUP_DATA) {
4663 max_stripe_size = SZ_1G;
4664 max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
4665 if (!devs_max)
4666 devs_max = BTRFS_MAX_DEVS(info);
4667 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4668 /* for larger filesystems, use larger metadata chunks */
4669 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4670 max_stripe_size = SZ_1G;
4671 else
4672 max_stripe_size = SZ_256M;
4673 max_chunk_size = max_stripe_size;
4674 if (!devs_max)
4675 devs_max = BTRFS_MAX_DEVS(info);
4676 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4677 max_stripe_size = SZ_32M;
4678 max_chunk_size = 2 * max_stripe_size;
4679 if (!devs_max)
4680 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4681 } else {
4682 btrfs_err(info, "invalid chunk type 0x%llx requested",
4683 type);
4684 BUG_ON(1);
4685 }
4686
4687 /* we don't want a chunk larger than 10% of writeable space */
4688 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4689 max_chunk_size);
4690
4691 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4692 GFP_NOFS);
4693 if (!devices_info)
4694 return -ENOMEM;
4695
4696 /*
4697 * in the first pass through the devices list, we gather information
4698 * about the available holes on each device.
4699 */
4700 ndevs = 0;
4701 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4702 u64 max_avail;
4703 u64 dev_offset;
4704
4705 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4706 WARN(1, KERN_ERR
4707 "BTRFS: read-only device in alloc_list\n");
4708 continue;
4709 }
4710
4711 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
4712 &device->dev_state) ||
4713 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4714 continue;
4715
4716 if (device->total_bytes > device->bytes_used)
4717 total_avail = device->total_bytes - device->bytes_used;
4718 else
4719 total_avail = 0;
4720
4721 /* If there is no space on this device, skip it. */
4722 if (total_avail == 0)
4723 continue;
4724
4725 ret = find_free_dev_extent(trans, device,
4726 max_stripe_size * dev_stripes,
4727 &dev_offset, &max_avail);
4728 if (ret && ret != -ENOSPC)
4729 goto error;
4730
4731 if (ret == 0)
4732 max_avail = max_stripe_size * dev_stripes;
4733
4734 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) {
4735 if (btrfs_test_opt(info, ENOSPC_DEBUG))
4736 btrfs_debug(info,
4737 "%s: devid %llu has no free space, have=%llu want=%u",
4738 __func__, device->devid, max_avail,
4739 BTRFS_STRIPE_LEN * dev_stripes);
4740 continue;
4741 }
4742
4743 if (ndevs == fs_devices->rw_devices) {
4744 WARN(1, "%s: found more than %llu devices\n",
4745 __func__, fs_devices->rw_devices);
4746 break;
4747 }
4748 devices_info[ndevs].dev_offset = dev_offset;
4749 devices_info[ndevs].max_avail = max_avail;
4750 devices_info[ndevs].total_avail = total_avail;
4751 devices_info[ndevs].dev = device;
4752 ++ndevs;
4753 }
4754
4755 /*
4756 * now sort the devices by hole size / available space
4757 */
4758 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4759 btrfs_cmp_device_info, NULL);
4760
4761 /* round down to number of usable stripes */
4762 ndevs = round_down(ndevs, devs_increment);
4763
4764 if (ndevs < devs_min) {
4765 ret = -ENOSPC;
4766 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
4767 btrfs_debug(info,
4768 "%s: not enough devices with free space: have=%d minimum required=%d",
4769 __func__, ndevs, devs_min);
4770 }
4771 goto error;
4772 }
4773
4774 ndevs = min(ndevs, devs_max);
4775
4776 /*
4777 * The primary goal is to maximize the number of stripes, so use as
4778 * many devices as possible, even if the stripes are not maximum sized.
4779 *
4780 * The DUP profile stores more than one stripe per device, the
4781 * max_avail is the total size so we have to adjust.
4782 */
4783 stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes);
4784 num_stripes = ndevs * dev_stripes;
4785
4786 /*
4787 * this will have to be fixed for RAID1 and RAID10 over
4788 * more drives
4789 */
4790 data_stripes = num_stripes / ncopies;
4791
4792 if (type & BTRFS_BLOCK_GROUP_RAID5)
4793 data_stripes = num_stripes - 1;
4794
4795 if (type & BTRFS_BLOCK_GROUP_RAID6)
4796 data_stripes = num_stripes - 2;
4797
4798 /*
4799 * Use the number of data stripes to figure out how big this chunk
4800 * is really going to be in terms of logical address space,
4801 * and compare that answer with the max chunk size. If it's higher,
4802 * we try to reduce stripe_size.
4803 */
4804 if (stripe_size * data_stripes > max_chunk_size) {
4805 /*
4806 * Reduce stripe_size, round it up to a 16MB boundary again and
4807 * then use it, unless it ends up being even bigger than the
4808 * previous value we had already.
4809 */
4810 stripe_size = min(round_up(div_u64(max_chunk_size,
4811 data_stripes), SZ_16M),
4812 stripe_size);
4813 }
4814
4815 /* align to BTRFS_STRIPE_LEN */
4816 stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
4817
4818 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4819 if (!map) {
4820 ret = -ENOMEM;
4821 goto error;
4822 }
4823 map->num_stripes = num_stripes;
4824
4825 for (i = 0; i < ndevs; ++i) {
4826 for (j = 0; j < dev_stripes; ++j) {
4827 int s = i * dev_stripes + j;
4828 map->stripes[s].dev = devices_info[i].dev;
4829 map->stripes[s].physical = devices_info[i].dev_offset +
4830 j * stripe_size;
4831 }
4832 }
4833 map->stripe_len = BTRFS_STRIPE_LEN;
4834 map->io_align = BTRFS_STRIPE_LEN;
4835 map->io_width = BTRFS_STRIPE_LEN;
4836 map->type = type;
4837 map->sub_stripes = sub_stripes;
4838
4839 num_bytes = stripe_size * data_stripes;
4840
4841 trace_btrfs_chunk_alloc(info, map, start, num_bytes);
4842
4843 em = alloc_extent_map();
4844 if (!em) {
4845 kfree(map);
4846 ret = -ENOMEM;
4847 goto error;
4848 }
4849 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4850 em->map_lookup = map;
4851 em->start = start;
4852 em->len = num_bytes;
4853 em->block_start = 0;
4854 em->block_len = em->len;
4855 em->orig_block_len = stripe_size;
4856
4857 em_tree = &info->mapping_tree.map_tree;
4858 write_lock(&em_tree->lock);
4859 ret = add_extent_mapping(em_tree, em, 0);
4860 if (ret) {
4861 write_unlock(&em_tree->lock);
4862 free_extent_map(em);
4863 goto error;
4864 }
4865
4866 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4867 refcount_inc(&em->refs);
4868 write_unlock(&em_tree->lock);
4869
4870 ret = btrfs_make_block_group(trans, 0, type, start, num_bytes);
4871 if (ret)
4872 goto error_del_extent;
4873
4874 for (i = 0; i < map->num_stripes; i++) {
4875 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4876 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4877 map->stripes[i].dev->has_pending_chunks = true;
4878 }
4879
4880 atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
4881
4882 free_extent_map(em);
4883 check_raid56_incompat_flag(info, type);
4884
4885 kfree(devices_info);
4886 return 0;
4887
4888 error_del_extent:
4889 write_lock(&em_tree->lock);
4890 remove_extent_mapping(em_tree, em);
4891 write_unlock(&em_tree->lock);
4892
4893 /* One for our allocation */
4894 free_extent_map(em);
4895 /* One for the tree reference */
4896 free_extent_map(em);
4897 /* One for the pending_chunks list reference */
4898 free_extent_map(em);
4899 error:
4900 kfree(devices_info);
4901 return ret;
4902 }
4903
btrfs_finish_chunk_alloc(struct btrfs_trans_handle * trans,u64 chunk_offset,u64 chunk_size)4904 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4905 u64 chunk_offset, u64 chunk_size)
4906 {
4907 struct btrfs_fs_info *fs_info = trans->fs_info;
4908 struct btrfs_root *extent_root = fs_info->extent_root;
4909 struct btrfs_root *chunk_root = fs_info->chunk_root;
4910 struct btrfs_key key;
4911 struct btrfs_device *device;
4912 struct btrfs_chunk *chunk;
4913 struct btrfs_stripe *stripe;
4914 struct extent_map *em;
4915 struct map_lookup *map;
4916 size_t item_size;
4917 u64 dev_offset;
4918 u64 stripe_size;
4919 int i = 0;
4920 int ret = 0;
4921
4922 em = get_chunk_map(fs_info, chunk_offset, chunk_size);
4923 if (IS_ERR(em))
4924 return PTR_ERR(em);
4925
4926 map = em->map_lookup;
4927 item_size = btrfs_chunk_item_size(map->num_stripes);
4928 stripe_size = em->orig_block_len;
4929
4930 chunk = kzalloc(item_size, GFP_NOFS);
4931 if (!chunk) {
4932 ret = -ENOMEM;
4933 goto out;
4934 }
4935
4936 /*
4937 * Take the device list mutex to prevent races with the final phase of
4938 * a device replace operation that replaces the device object associated
4939 * with the map's stripes, because the device object's id can change
4940 * at any time during that final phase of the device replace operation
4941 * (dev-replace.c:btrfs_dev_replace_finishing()).
4942 */
4943 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4944 for (i = 0; i < map->num_stripes; i++) {
4945 device = map->stripes[i].dev;
4946 dev_offset = map->stripes[i].physical;
4947
4948 ret = btrfs_update_device(trans, device);
4949 if (ret)
4950 break;
4951 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
4952 dev_offset, stripe_size);
4953 if (ret)
4954 break;
4955 }
4956 if (ret) {
4957 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4958 goto out;
4959 }
4960
4961 stripe = &chunk->stripe;
4962 for (i = 0; i < map->num_stripes; i++) {
4963 device = map->stripes[i].dev;
4964 dev_offset = map->stripes[i].physical;
4965
4966 btrfs_set_stack_stripe_devid(stripe, device->devid);
4967 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4968 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4969 stripe++;
4970 }
4971 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4972
4973 btrfs_set_stack_chunk_length(chunk, chunk_size);
4974 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4975 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4976 btrfs_set_stack_chunk_type(chunk, map->type);
4977 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4978 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4979 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4980 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
4981 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4982
4983 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4984 key.type = BTRFS_CHUNK_ITEM_KEY;
4985 key.offset = chunk_offset;
4986
4987 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4988 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4989 /*
4990 * TODO: Cleanup of inserted chunk root in case of
4991 * failure.
4992 */
4993 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
4994 }
4995
4996 out:
4997 kfree(chunk);
4998 free_extent_map(em);
4999 return ret;
5000 }
5001
5002 /*
5003 * Chunk allocation falls into two parts. The first part does works
5004 * that make the new allocated chunk useable, but not do any operation
5005 * that modifies the chunk tree. The second part does the works that
5006 * require modifying the chunk tree. This division is important for the
5007 * bootstrap process of adding storage to a seed btrfs.
5008 */
btrfs_alloc_chunk(struct btrfs_trans_handle * trans,u64 type)5009 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
5010 {
5011 u64 chunk_offset;
5012
5013 lockdep_assert_held(&trans->fs_info->chunk_mutex);
5014 chunk_offset = find_next_chunk(trans->fs_info);
5015 return __btrfs_alloc_chunk(trans, chunk_offset, type);
5016 }
5017
init_first_rw_device(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)5018 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
5019 struct btrfs_fs_info *fs_info)
5020 {
5021 u64 chunk_offset;
5022 u64 sys_chunk_offset;
5023 u64 alloc_profile;
5024 int ret;
5025
5026 chunk_offset = find_next_chunk(fs_info);
5027 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5028 ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
5029 if (ret)
5030 return ret;
5031
5032 sys_chunk_offset = find_next_chunk(fs_info);
5033 alloc_profile = btrfs_system_alloc_profile(fs_info);
5034 ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
5035 return ret;
5036 }
5037
btrfs_chunk_max_errors(struct map_lookup * map)5038 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5039 {
5040 int max_errors;
5041
5042 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5043 BTRFS_BLOCK_GROUP_RAID10 |
5044 BTRFS_BLOCK_GROUP_RAID5)) {
5045 max_errors = 1;
5046 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5047 max_errors = 2;
5048 } else {
5049 max_errors = 0;
5050 }
5051
5052 return max_errors;
5053 }
5054
btrfs_chunk_readonly(struct btrfs_fs_info * fs_info,u64 chunk_offset)5055 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5056 {
5057 struct extent_map *em;
5058 struct map_lookup *map;
5059 int readonly = 0;
5060 int miss_ndevs = 0;
5061 int i;
5062
5063 em = get_chunk_map(fs_info, chunk_offset, 1);
5064 if (IS_ERR(em))
5065 return 1;
5066
5067 map = em->map_lookup;
5068 for (i = 0; i < map->num_stripes; i++) {
5069 if (test_bit(BTRFS_DEV_STATE_MISSING,
5070 &map->stripes[i].dev->dev_state)) {
5071 miss_ndevs++;
5072 continue;
5073 }
5074 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5075 &map->stripes[i].dev->dev_state)) {
5076 readonly = 1;
5077 goto end;
5078 }
5079 }
5080
5081 /*
5082 * If the number of missing devices is larger than max errors,
5083 * we can not write the data into that chunk successfully, so
5084 * set it readonly.
5085 */
5086 if (miss_ndevs > btrfs_chunk_max_errors(map))
5087 readonly = 1;
5088 end:
5089 free_extent_map(em);
5090 return readonly;
5091 }
5092
btrfs_mapping_init(struct btrfs_mapping_tree * tree)5093 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5094 {
5095 extent_map_tree_init(&tree->map_tree);
5096 }
5097
btrfs_mapping_tree_free(struct btrfs_mapping_tree * tree)5098 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5099 {
5100 struct extent_map *em;
5101
5102 while (1) {
5103 write_lock(&tree->map_tree.lock);
5104 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5105 if (em)
5106 remove_extent_mapping(&tree->map_tree, em);
5107 write_unlock(&tree->map_tree.lock);
5108 if (!em)
5109 break;
5110 /* once for us */
5111 free_extent_map(em);
5112 /* once for the tree */
5113 free_extent_map(em);
5114 }
5115 }
5116
btrfs_num_copies(struct btrfs_fs_info * fs_info,u64 logical,u64 len)5117 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5118 {
5119 struct extent_map *em;
5120 struct map_lookup *map;
5121 int ret;
5122
5123 em = get_chunk_map(fs_info, logical, len);
5124 if (IS_ERR(em))
5125 /*
5126 * We could return errors for these cases, but that could get
5127 * ugly and we'd probably do the same thing which is just not do
5128 * anything else and exit, so return 1 so the callers don't try
5129 * to use other copies.
5130 */
5131 return 1;
5132
5133 map = em->map_lookup;
5134 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5135 ret = map->num_stripes;
5136 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5137 ret = map->sub_stripes;
5138 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5139 ret = 2;
5140 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5141 /*
5142 * There could be two corrupted data stripes, we need
5143 * to loop retry in order to rebuild the correct data.
5144 *
5145 * Fail a stripe at a time on every retry except the
5146 * stripe under reconstruction.
5147 */
5148 ret = map->num_stripes;
5149 else
5150 ret = 1;
5151 free_extent_map(em);
5152
5153 btrfs_dev_replace_read_lock(&fs_info->dev_replace);
5154 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5155 fs_info->dev_replace.tgtdev)
5156 ret++;
5157 btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
5158
5159 return ret;
5160 }
5161
btrfs_full_stripe_len(struct btrfs_fs_info * fs_info,u64 logical)5162 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5163 u64 logical)
5164 {
5165 struct extent_map *em;
5166 struct map_lookup *map;
5167 unsigned long len = fs_info->sectorsize;
5168
5169 em = get_chunk_map(fs_info, logical, len);
5170
5171 if (!WARN_ON(IS_ERR(em))) {
5172 map = em->map_lookup;
5173 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5174 len = map->stripe_len * nr_data_stripes(map);
5175 free_extent_map(em);
5176 }
5177 return len;
5178 }
5179
btrfs_is_parity_mirror(struct btrfs_fs_info * fs_info,u64 logical,u64 len)5180 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5181 {
5182 struct extent_map *em;
5183 struct map_lookup *map;
5184 int ret = 0;
5185
5186 em = get_chunk_map(fs_info, logical, len);
5187
5188 if(!WARN_ON(IS_ERR(em))) {
5189 map = em->map_lookup;
5190 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5191 ret = 1;
5192 free_extent_map(em);
5193 }
5194 return ret;
5195 }
5196
find_live_mirror(struct btrfs_fs_info * fs_info,struct map_lookup * map,int first,int dev_replace_is_ongoing)5197 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5198 struct map_lookup *map, int first,
5199 int dev_replace_is_ongoing)
5200 {
5201 int i;
5202 int num_stripes;
5203 int preferred_mirror;
5204 int tolerance;
5205 struct btrfs_device *srcdev;
5206
5207 ASSERT((map->type &
5208 (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)));
5209
5210 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5211 num_stripes = map->sub_stripes;
5212 else
5213 num_stripes = map->num_stripes;
5214
5215 preferred_mirror = first + current->pid % num_stripes;
5216
5217 if (dev_replace_is_ongoing &&
5218 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5219 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5220 srcdev = fs_info->dev_replace.srcdev;
5221 else
5222 srcdev = NULL;
5223
5224 /*
5225 * try to avoid the drive that is the source drive for a
5226 * dev-replace procedure, only choose it if no other non-missing
5227 * mirror is available
5228 */
5229 for (tolerance = 0; tolerance < 2; tolerance++) {
5230 if (map->stripes[preferred_mirror].dev->bdev &&
5231 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5232 return preferred_mirror;
5233 for (i = first; i < first + num_stripes; i++) {
5234 if (map->stripes[i].dev->bdev &&
5235 (tolerance || map->stripes[i].dev != srcdev))
5236 return i;
5237 }
5238 }
5239
5240 /* we couldn't find one that doesn't fail. Just return something
5241 * and the io error handling code will clean up eventually
5242 */
5243 return preferred_mirror;
5244 }
5245
parity_smaller(u64 a,u64 b)5246 static inline int parity_smaller(u64 a, u64 b)
5247 {
5248 return a > b;
5249 }
5250
5251 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
sort_parity_stripes(struct btrfs_bio * bbio,int num_stripes)5252 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5253 {
5254 struct btrfs_bio_stripe s;
5255 int i;
5256 u64 l;
5257 int again = 1;
5258
5259 while (again) {
5260 again = 0;
5261 for (i = 0; i < num_stripes - 1; i++) {
5262 if (parity_smaller(bbio->raid_map[i],
5263 bbio->raid_map[i+1])) {
5264 s = bbio->stripes[i];
5265 l = bbio->raid_map[i];
5266 bbio->stripes[i] = bbio->stripes[i+1];
5267 bbio->raid_map[i] = bbio->raid_map[i+1];
5268 bbio->stripes[i+1] = s;
5269 bbio->raid_map[i+1] = l;
5270
5271 again = 1;
5272 }
5273 }
5274 }
5275 }
5276
alloc_btrfs_bio(int total_stripes,int real_stripes)5277 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5278 {
5279 struct btrfs_bio *bbio = kzalloc(
5280 /* the size of the btrfs_bio */
5281 sizeof(struct btrfs_bio) +
5282 /* plus the variable array for the stripes */
5283 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5284 /* plus the variable array for the tgt dev */
5285 sizeof(int) * (real_stripes) +
5286 /*
5287 * plus the raid_map, which includes both the tgt dev
5288 * and the stripes
5289 */
5290 sizeof(u64) * (total_stripes),
5291 GFP_NOFS|__GFP_NOFAIL);
5292
5293 atomic_set(&bbio->error, 0);
5294 refcount_set(&bbio->refs, 1);
5295
5296 return bbio;
5297 }
5298
btrfs_get_bbio(struct btrfs_bio * bbio)5299 void btrfs_get_bbio(struct btrfs_bio *bbio)
5300 {
5301 WARN_ON(!refcount_read(&bbio->refs));
5302 refcount_inc(&bbio->refs);
5303 }
5304
btrfs_put_bbio(struct btrfs_bio * bbio)5305 void btrfs_put_bbio(struct btrfs_bio *bbio)
5306 {
5307 if (!bbio)
5308 return;
5309 if (refcount_dec_and_test(&bbio->refs))
5310 kfree(bbio);
5311 }
5312
5313 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5314 /*
5315 * Please note that, discard won't be sent to target device of device
5316 * replace.
5317 */
__btrfs_map_block_for_discard(struct btrfs_fs_info * fs_info,u64 logical,u64 length,struct btrfs_bio ** bbio_ret)5318 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5319 u64 logical, u64 length,
5320 struct btrfs_bio **bbio_ret)
5321 {
5322 struct extent_map *em;
5323 struct map_lookup *map;
5324 struct btrfs_bio *bbio;
5325 u64 offset;
5326 u64 stripe_nr;
5327 u64 stripe_nr_end;
5328 u64 stripe_end_offset;
5329 u64 stripe_cnt;
5330 u64 stripe_len;
5331 u64 stripe_offset;
5332 u64 num_stripes;
5333 u32 stripe_index;
5334 u32 factor = 0;
5335 u32 sub_stripes = 0;
5336 u64 stripes_per_dev = 0;
5337 u32 remaining_stripes = 0;
5338 u32 last_stripe = 0;
5339 int ret = 0;
5340 int i;
5341
5342 /* discard always return a bbio */
5343 ASSERT(bbio_ret);
5344
5345 em = get_chunk_map(fs_info, logical, length);
5346 if (IS_ERR(em))
5347 return PTR_ERR(em);
5348
5349 map = em->map_lookup;
5350 /* we don't discard raid56 yet */
5351 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5352 ret = -EOPNOTSUPP;
5353 goto out;
5354 }
5355
5356 offset = logical - em->start;
5357 length = min_t(u64, em->len - offset, length);
5358
5359 stripe_len = map->stripe_len;
5360 /*
5361 * stripe_nr counts the total number of stripes we have to stride
5362 * to get to this block
5363 */
5364 stripe_nr = div64_u64(offset, stripe_len);
5365
5366 /* stripe_offset is the offset of this block in its stripe */
5367 stripe_offset = offset - stripe_nr * stripe_len;
5368
5369 stripe_nr_end = round_up(offset + length, map->stripe_len);
5370 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5371 stripe_cnt = stripe_nr_end - stripe_nr;
5372 stripe_end_offset = stripe_nr_end * map->stripe_len -
5373 (offset + length);
5374 /*
5375 * after this, stripe_nr is the number of stripes on this
5376 * device we have to walk to find the data, and stripe_index is
5377 * the number of our device in the stripe array
5378 */
5379 num_stripes = 1;
5380 stripe_index = 0;
5381 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5382 BTRFS_BLOCK_GROUP_RAID10)) {
5383 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5384 sub_stripes = 1;
5385 else
5386 sub_stripes = map->sub_stripes;
5387
5388 factor = map->num_stripes / sub_stripes;
5389 num_stripes = min_t(u64, map->num_stripes,
5390 sub_stripes * stripe_cnt);
5391 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5392 stripe_index *= sub_stripes;
5393 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5394 &remaining_stripes);
5395 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5396 last_stripe *= sub_stripes;
5397 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5398 BTRFS_BLOCK_GROUP_DUP)) {
5399 num_stripes = map->num_stripes;
5400 } else {
5401 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5402 &stripe_index);
5403 }
5404
5405 bbio = alloc_btrfs_bio(num_stripes, 0);
5406 if (!bbio) {
5407 ret = -ENOMEM;
5408 goto out;
5409 }
5410
5411 for (i = 0; i < num_stripes; i++) {
5412 bbio->stripes[i].physical =
5413 map->stripes[stripe_index].physical +
5414 stripe_offset + stripe_nr * map->stripe_len;
5415 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5416
5417 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5418 BTRFS_BLOCK_GROUP_RAID10)) {
5419 bbio->stripes[i].length = stripes_per_dev *
5420 map->stripe_len;
5421
5422 if (i / sub_stripes < remaining_stripes)
5423 bbio->stripes[i].length +=
5424 map->stripe_len;
5425
5426 /*
5427 * Special for the first stripe and
5428 * the last stripe:
5429 *
5430 * |-------|...|-------|
5431 * |----------|
5432 * off end_off
5433 */
5434 if (i < sub_stripes)
5435 bbio->stripes[i].length -=
5436 stripe_offset;
5437
5438 if (stripe_index >= last_stripe &&
5439 stripe_index <= (last_stripe +
5440 sub_stripes - 1))
5441 bbio->stripes[i].length -=
5442 stripe_end_offset;
5443
5444 if (i == sub_stripes - 1)
5445 stripe_offset = 0;
5446 } else {
5447 bbio->stripes[i].length = length;
5448 }
5449
5450 stripe_index++;
5451 if (stripe_index == map->num_stripes) {
5452 stripe_index = 0;
5453 stripe_nr++;
5454 }
5455 }
5456
5457 *bbio_ret = bbio;
5458 bbio->map_type = map->type;
5459 bbio->num_stripes = num_stripes;
5460 out:
5461 free_extent_map(em);
5462 return ret;
5463 }
5464
5465 /*
5466 * In dev-replace case, for repair case (that's the only case where the mirror
5467 * is selected explicitly when calling btrfs_map_block), blocks left of the
5468 * left cursor can also be read from the target drive.
5469 *
5470 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5471 * array of stripes.
5472 * For READ, it also needs to be supported using the same mirror number.
5473 *
5474 * If the requested block is not left of the left cursor, EIO is returned. This
5475 * can happen because btrfs_num_copies() returns one more in the dev-replace
5476 * case.
5477 */
get_extra_mirror_from_replace(struct btrfs_fs_info * fs_info,u64 logical,u64 length,u64 srcdev_devid,int * mirror_num,u64 * physical)5478 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5479 u64 logical, u64 length,
5480 u64 srcdev_devid, int *mirror_num,
5481 u64 *physical)
5482 {
5483 struct btrfs_bio *bbio = NULL;
5484 int num_stripes;
5485 int index_srcdev = 0;
5486 int found = 0;
5487 u64 physical_of_found = 0;
5488 int i;
5489 int ret = 0;
5490
5491 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5492 logical, &length, &bbio, 0, 0);
5493 if (ret) {
5494 ASSERT(bbio == NULL);
5495 return ret;
5496 }
5497
5498 num_stripes = bbio->num_stripes;
5499 if (*mirror_num > num_stripes) {
5500 /*
5501 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5502 * that means that the requested area is not left of the left
5503 * cursor
5504 */
5505 btrfs_put_bbio(bbio);
5506 return -EIO;
5507 }
5508
5509 /*
5510 * process the rest of the function using the mirror_num of the source
5511 * drive. Therefore look it up first. At the end, patch the device
5512 * pointer to the one of the target drive.
5513 */
5514 for (i = 0; i < num_stripes; i++) {
5515 if (bbio->stripes[i].dev->devid != srcdev_devid)
5516 continue;
5517
5518 /*
5519 * In case of DUP, in order to keep it simple, only add the
5520 * mirror with the lowest physical address
5521 */
5522 if (found &&
5523 physical_of_found <= bbio->stripes[i].physical)
5524 continue;
5525
5526 index_srcdev = i;
5527 found = 1;
5528 physical_of_found = bbio->stripes[i].physical;
5529 }
5530
5531 btrfs_put_bbio(bbio);
5532
5533 ASSERT(found);
5534 if (!found)
5535 return -EIO;
5536
5537 *mirror_num = index_srcdev + 1;
5538 *physical = physical_of_found;
5539 return ret;
5540 }
5541
handle_ops_on_dev_replace(enum btrfs_map_op op,struct btrfs_bio ** bbio_ret,struct btrfs_dev_replace * dev_replace,int * num_stripes_ret,int * max_errors_ret)5542 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5543 struct btrfs_bio **bbio_ret,
5544 struct btrfs_dev_replace *dev_replace,
5545 int *num_stripes_ret, int *max_errors_ret)
5546 {
5547 struct btrfs_bio *bbio = *bbio_ret;
5548 u64 srcdev_devid = dev_replace->srcdev->devid;
5549 int tgtdev_indexes = 0;
5550 int num_stripes = *num_stripes_ret;
5551 int max_errors = *max_errors_ret;
5552 int i;
5553
5554 if (op == BTRFS_MAP_WRITE) {
5555 int index_where_to_add;
5556
5557 /*
5558 * duplicate the write operations while the dev replace
5559 * procedure is running. Since the copying of the old disk to
5560 * the new disk takes place at run time while the filesystem is
5561 * mounted writable, the regular write operations to the old
5562 * disk have to be duplicated to go to the new disk as well.
5563 *
5564 * Note that device->missing is handled by the caller, and that
5565 * the write to the old disk is already set up in the stripes
5566 * array.
5567 */
5568 index_where_to_add = num_stripes;
5569 for (i = 0; i < num_stripes; i++) {
5570 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5571 /* write to new disk, too */
5572 struct btrfs_bio_stripe *new =
5573 bbio->stripes + index_where_to_add;
5574 struct btrfs_bio_stripe *old =
5575 bbio->stripes + i;
5576
5577 new->physical = old->physical;
5578 new->length = old->length;
5579 new->dev = dev_replace->tgtdev;
5580 bbio->tgtdev_map[i] = index_where_to_add;
5581 index_where_to_add++;
5582 max_errors++;
5583 tgtdev_indexes++;
5584 }
5585 }
5586 num_stripes = index_where_to_add;
5587 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5588 int index_srcdev = 0;
5589 int found = 0;
5590 u64 physical_of_found = 0;
5591
5592 /*
5593 * During the dev-replace procedure, the target drive can also
5594 * be used to read data in case it is needed to repair a corrupt
5595 * block elsewhere. This is possible if the requested area is
5596 * left of the left cursor. In this area, the target drive is a
5597 * full copy of the source drive.
5598 */
5599 for (i = 0; i < num_stripes; i++) {
5600 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5601 /*
5602 * In case of DUP, in order to keep it simple,
5603 * only add the mirror with the lowest physical
5604 * address
5605 */
5606 if (found &&
5607 physical_of_found <=
5608 bbio->stripes[i].physical)
5609 continue;
5610 index_srcdev = i;
5611 found = 1;
5612 physical_of_found = bbio->stripes[i].physical;
5613 }
5614 }
5615 if (found) {
5616 struct btrfs_bio_stripe *tgtdev_stripe =
5617 bbio->stripes + num_stripes;
5618
5619 tgtdev_stripe->physical = physical_of_found;
5620 tgtdev_stripe->length =
5621 bbio->stripes[index_srcdev].length;
5622 tgtdev_stripe->dev = dev_replace->tgtdev;
5623 bbio->tgtdev_map[index_srcdev] = num_stripes;
5624
5625 tgtdev_indexes++;
5626 num_stripes++;
5627 }
5628 }
5629
5630 *num_stripes_ret = num_stripes;
5631 *max_errors_ret = max_errors;
5632 bbio->num_tgtdevs = tgtdev_indexes;
5633 *bbio_ret = bbio;
5634 }
5635
need_full_stripe(enum btrfs_map_op op)5636 static bool need_full_stripe(enum btrfs_map_op op)
5637 {
5638 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5639 }
5640
__btrfs_map_block(struct btrfs_fs_info * fs_info,enum btrfs_map_op op,u64 logical,u64 * length,struct btrfs_bio ** bbio_ret,int mirror_num,int need_raid_map)5641 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5642 enum btrfs_map_op op,
5643 u64 logical, u64 *length,
5644 struct btrfs_bio **bbio_ret,
5645 int mirror_num, int need_raid_map)
5646 {
5647 struct extent_map *em;
5648 struct map_lookup *map;
5649 u64 offset;
5650 u64 stripe_offset;
5651 u64 stripe_nr;
5652 u64 stripe_len;
5653 u32 stripe_index;
5654 int i;
5655 int ret = 0;
5656 int num_stripes;
5657 int max_errors = 0;
5658 int tgtdev_indexes = 0;
5659 struct btrfs_bio *bbio = NULL;
5660 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5661 int dev_replace_is_ongoing = 0;
5662 int num_alloc_stripes;
5663 int patch_the_first_stripe_for_dev_replace = 0;
5664 u64 physical_to_patch_in_first_stripe = 0;
5665 u64 raid56_full_stripe_start = (u64)-1;
5666
5667 if (op == BTRFS_MAP_DISCARD)
5668 return __btrfs_map_block_for_discard(fs_info, logical,
5669 *length, bbio_ret);
5670
5671 em = get_chunk_map(fs_info, logical, *length);
5672 if (IS_ERR(em))
5673 return PTR_ERR(em);
5674
5675 map = em->map_lookup;
5676 offset = logical - em->start;
5677
5678 stripe_len = map->stripe_len;
5679 stripe_nr = offset;
5680 /*
5681 * stripe_nr counts the total number of stripes we have to stride
5682 * to get to this block
5683 */
5684 stripe_nr = div64_u64(stripe_nr, stripe_len);
5685
5686 stripe_offset = stripe_nr * stripe_len;
5687 if (offset < stripe_offset) {
5688 btrfs_crit(fs_info,
5689 "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5690 stripe_offset, offset, em->start, logical,
5691 stripe_len);
5692 free_extent_map(em);
5693 return -EINVAL;
5694 }
5695
5696 /* stripe_offset is the offset of this block in its stripe*/
5697 stripe_offset = offset - stripe_offset;
5698
5699 /* if we're here for raid56, we need to know the stripe aligned start */
5700 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5701 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5702 raid56_full_stripe_start = offset;
5703
5704 /* allow a write of a full stripe, but make sure we don't
5705 * allow straddling of stripes
5706 */
5707 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5708 full_stripe_len);
5709 raid56_full_stripe_start *= full_stripe_len;
5710 }
5711
5712 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5713 u64 max_len;
5714 /* For writes to RAID[56], allow a full stripeset across all disks.
5715 For other RAID types and for RAID[56] reads, just allow a single
5716 stripe (on a single disk). */
5717 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5718 (op == BTRFS_MAP_WRITE)) {
5719 max_len = stripe_len * nr_data_stripes(map) -
5720 (offset - raid56_full_stripe_start);
5721 } else {
5722 /* we limit the length of each bio to what fits in a stripe */
5723 max_len = stripe_len - stripe_offset;
5724 }
5725 *length = min_t(u64, em->len - offset, max_len);
5726 } else {
5727 *length = em->len - offset;
5728 }
5729
5730 /* This is for when we're called from btrfs_merge_bio_hook() and all
5731 it cares about is the length */
5732 if (!bbio_ret)
5733 goto out;
5734
5735 btrfs_dev_replace_read_lock(dev_replace);
5736 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5737 if (!dev_replace_is_ongoing)
5738 btrfs_dev_replace_read_unlock(dev_replace);
5739 else
5740 btrfs_dev_replace_set_lock_blocking(dev_replace);
5741
5742 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5743 !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5744 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
5745 dev_replace->srcdev->devid,
5746 &mirror_num,
5747 &physical_to_patch_in_first_stripe);
5748 if (ret)
5749 goto out;
5750 else
5751 patch_the_first_stripe_for_dev_replace = 1;
5752 } else if (mirror_num > map->num_stripes) {
5753 mirror_num = 0;
5754 }
5755
5756 num_stripes = 1;
5757 stripe_index = 0;
5758 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5759 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5760 &stripe_index);
5761 if (!need_full_stripe(op))
5762 mirror_num = 1;
5763 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5764 if (need_full_stripe(op))
5765 num_stripes = map->num_stripes;
5766 else if (mirror_num)
5767 stripe_index = mirror_num - 1;
5768 else {
5769 stripe_index = find_live_mirror(fs_info, map, 0,
5770 dev_replace_is_ongoing);
5771 mirror_num = stripe_index + 1;
5772 }
5773
5774 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5775 if (need_full_stripe(op)) {
5776 num_stripes = map->num_stripes;
5777 } else if (mirror_num) {
5778 stripe_index = mirror_num - 1;
5779 } else {
5780 mirror_num = 1;
5781 }
5782
5783 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5784 u32 factor = map->num_stripes / map->sub_stripes;
5785
5786 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5787 stripe_index *= map->sub_stripes;
5788
5789 if (need_full_stripe(op))
5790 num_stripes = map->sub_stripes;
5791 else if (mirror_num)
5792 stripe_index += mirror_num - 1;
5793 else {
5794 int old_stripe_index = stripe_index;
5795 stripe_index = find_live_mirror(fs_info, map,
5796 stripe_index,
5797 dev_replace_is_ongoing);
5798 mirror_num = stripe_index - old_stripe_index + 1;
5799 }
5800
5801 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5802 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
5803 /* push stripe_nr back to the start of the full stripe */
5804 stripe_nr = div64_u64(raid56_full_stripe_start,
5805 stripe_len * nr_data_stripes(map));
5806
5807 /* RAID[56] write or recovery. Return all stripes */
5808 num_stripes = map->num_stripes;
5809 max_errors = nr_parity_stripes(map);
5810
5811 *length = map->stripe_len;
5812 stripe_index = 0;
5813 stripe_offset = 0;
5814 } else {
5815 /*
5816 * Mirror #0 or #1 means the original data block.
5817 * Mirror #2 is RAID5 parity block.
5818 * Mirror #3 is RAID6 Q block.
5819 */
5820 stripe_nr = div_u64_rem(stripe_nr,
5821 nr_data_stripes(map), &stripe_index);
5822 if (mirror_num > 1)
5823 stripe_index = nr_data_stripes(map) +
5824 mirror_num - 2;
5825
5826 /* We distribute the parity blocks across stripes */
5827 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5828 &stripe_index);
5829 if (!need_full_stripe(op) && mirror_num <= 1)
5830 mirror_num = 1;
5831 }
5832 } else {
5833 /*
5834 * after this, stripe_nr is the number of stripes on this
5835 * device we have to walk to find the data, and stripe_index is
5836 * the number of our device in the stripe array
5837 */
5838 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5839 &stripe_index);
5840 mirror_num = stripe_index + 1;
5841 }
5842 if (stripe_index >= map->num_stripes) {
5843 btrfs_crit(fs_info,
5844 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5845 stripe_index, map->num_stripes);
5846 ret = -EINVAL;
5847 goto out;
5848 }
5849
5850 num_alloc_stripes = num_stripes;
5851 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
5852 if (op == BTRFS_MAP_WRITE)
5853 num_alloc_stripes <<= 1;
5854 if (op == BTRFS_MAP_GET_READ_MIRRORS)
5855 num_alloc_stripes++;
5856 tgtdev_indexes = num_stripes;
5857 }
5858
5859 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5860 if (!bbio) {
5861 ret = -ENOMEM;
5862 goto out;
5863 }
5864 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
5865 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5866
5867 /* build raid_map */
5868 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
5869 (need_full_stripe(op) || mirror_num > 1)) {
5870 u64 tmp;
5871 unsigned rot;
5872
5873 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5874 sizeof(struct btrfs_bio_stripe) *
5875 num_alloc_stripes +
5876 sizeof(int) * tgtdev_indexes);
5877
5878 /* Work out the disk rotation on this stripe-set */
5879 div_u64_rem(stripe_nr, num_stripes, &rot);
5880
5881 /* Fill in the logical address of each stripe */
5882 tmp = stripe_nr * nr_data_stripes(map);
5883 for (i = 0; i < nr_data_stripes(map); i++)
5884 bbio->raid_map[(i+rot) % num_stripes] =
5885 em->start + (tmp + i) * map->stripe_len;
5886
5887 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5888 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5889 bbio->raid_map[(i+rot+1) % num_stripes] =
5890 RAID6_Q_STRIPE;
5891 }
5892
5893
5894 for (i = 0; i < num_stripes; i++) {
5895 bbio->stripes[i].physical =
5896 map->stripes[stripe_index].physical +
5897 stripe_offset +
5898 stripe_nr * map->stripe_len;
5899 bbio->stripes[i].dev =
5900 map->stripes[stripe_index].dev;
5901 stripe_index++;
5902 }
5903
5904 if (need_full_stripe(op))
5905 max_errors = btrfs_chunk_max_errors(map);
5906
5907 if (bbio->raid_map)
5908 sort_parity_stripes(bbio, num_stripes);
5909
5910 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
5911 need_full_stripe(op)) {
5912 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
5913 &max_errors);
5914 }
5915
5916 *bbio_ret = bbio;
5917 bbio->map_type = map->type;
5918 bbio->num_stripes = num_stripes;
5919 bbio->max_errors = max_errors;
5920 bbio->mirror_num = mirror_num;
5921
5922 /*
5923 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5924 * mirror_num == num_stripes + 1 && dev_replace target drive is
5925 * available as a mirror
5926 */
5927 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5928 WARN_ON(num_stripes > 1);
5929 bbio->stripes[0].dev = dev_replace->tgtdev;
5930 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5931 bbio->mirror_num = map->num_stripes + 1;
5932 }
5933 out:
5934 if (dev_replace_is_ongoing) {
5935 btrfs_dev_replace_clear_lock_blocking(dev_replace);
5936 btrfs_dev_replace_read_unlock(dev_replace);
5937 }
5938 free_extent_map(em);
5939 return ret;
5940 }
5941
btrfs_map_block(struct btrfs_fs_info * fs_info,enum btrfs_map_op op,u64 logical,u64 * length,struct btrfs_bio ** bbio_ret,int mirror_num)5942 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5943 u64 logical, u64 *length,
5944 struct btrfs_bio **bbio_ret, int mirror_num)
5945 {
5946 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5947 mirror_num, 0);
5948 }
5949
5950 /* For Scrub/replace */
btrfs_map_sblock(struct btrfs_fs_info * fs_info,enum btrfs_map_op op,u64 logical,u64 * length,struct btrfs_bio ** bbio_ret)5951 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5952 u64 logical, u64 *length,
5953 struct btrfs_bio **bbio_ret)
5954 {
5955 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
5956 }
5957
btrfs_rmap_block(struct btrfs_fs_info * fs_info,u64 chunk_start,u64 physical,u64 ** logical,int * naddrs,int * stripe_len)5958 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
5959 u64 physical, u64 **logical, int *naddrs, int *stripe_len)
5960 {
5961 struct extent_map *em;
5962 struct map_lookup *map;
5963 u64 *buf;
5964 u64 bytenr;
5965 u64 length;
5966 u64 stripe_nr;
5967 u64 rmap_len;
5968 int i, j, nr = 0;
5969
5970 em = get_chunk_map(fs_info, chunk_start, 1);
5971 if (IS_ERR(em))
5972 return -EIO;
5973
5974 map = em->map_lookup;
5975 length = em->len;
5976 rmap_len = map->stripe_len;
5977
5978 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5979 length = div_u64(length, map->num_stripes / map->sub_stripes);
5980 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5981 length = div_u64(length, map->num_stripes);
5982 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5983 length = div_u64(length, nr_data_stripes(map));
5984 rmap_len = map->stripe_len * nr_data_stripes(map);
5985 }
5986
5987 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5988 BUG_ON(!buf); /* -ENOMEM */
5989
5990 for (i = 0; i < map->num_stripes; i++) {
5991 if (map->stripes[i].physical > physical ||
5992 map->stripes[i].physical + length <= physical)
5993 continue;
5994
5995 stripe_nr = physical - map->stripes[i].physical;
5996 stripe_nr = div64_u64(stripe_nr, map->stripe_len);
5997
5998 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5999 stripe_nr = stripe_nr * map->num_stripes + i;
6000 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
6001 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6002 stripe_nr = stripe_nr * map->num_stripes + i;
6003 } /* else if RAID[56], multiply by nr_data_stripes().
6004 * Alternatively, just use rmap_len below instead of
6005 * map->stripe_len */
6006
6007 bytenr = chunk_start + stripe_nr * rmap_len;
6008 WARN_ON(nr >= map->num_stripes);
6009 for (j = 0; j < nr; j++) {
6010 if (buf[j] == bytenr)
6011 break;
6012 }
6013 if (j == nr) {
6014 WARN_ON(nr >= map->num_stripes);
6015 buf[nr++] = bytenr;
6016 }
6017 }
6018
6019 *logical = buf;
6020 *naddrs = nr;
6021 *stripe_len = rmap_len;
6022
6023 free_extent_map(em);
6024 return 0;
6025 }
6026
btrfs_end_bbio(struct btrfs_bio * bbio,struct bio * bio)6027 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6028 {
6029 bio->bi_private = bbio->private;
6030 bio->bi_end_io = bbio->end_io;
6031 bio_endio(bio);
6032
6033 btrfs_put_bbio(bbio);
6034 }
6035
btrfs_end_bio(struct bio * bio)6036 static void btrfs_end_bio(struct bio *bio)
6037 {
6038 struct btrfs_bio *bbio = bio->bi_private;
6039 int is_orig_bio = 0;
6040
6041 if (bio->bi_status) {
6042 atomic_inc(&bbio->error);
6043 if (bio->bi_status == BLK_STS_IOERR ||
6044 bio->bi_status == BLK_STS_TARGET) {
6045 unsigned int stripe_index =
6046 btrfs_io_bio(bio)->stripe_index;
6047 struct btrfs_device *dev;
6048
6049 BUG_ON(stripe_index >= bbio->num_stripes);
6050 dev = bbio->stripes[stripe_index].dev;
6051 if (dev->bdev) {
6052 if (bio_op(bio) == REQ_OP_WRITE)
6053 btrfs_dev_stat_inc_and_print(dev,
6054 BTRFS_DEV_STAT_WRITE_ERRS);
6055 else if (!(bio->bi_opf & REQ_RAHEAD))
6056 btrfs_dev_stat_inc_and_print(dev,
6057 BTRFS_DEV_STAT_READ_ERRS);
6058 if (bio->bi_opf & REQ_PREFLUSH)
6059 btrfs_dev_stat_inc_and_print(dev,
6060 BTRFS_DEV_STAT_FLUSH_ERRS);
6061 }
6062 }
6063 }
6064
6065 if (bio == bbio->orig_bio)
6066 is_orig_bio = 1;
6067
6068 btrfs_bio_counter_dec(bbio->fs_info);
6069
6070 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6071 if (!is_orig_bio) {
6072 bio_put(bio);
6073 bio = bbio->orig_bio;
6074 }
6075
6076 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6077 /* only send an error to the higher layers if it is
6078 * beyond the tolerance of the btrfs bio
6079 */
6080 if (atomic_read(&bbio->error) > bbio->max_errors) {
6081 bio->bi_status = BLK_STS_IOERR;
6082 } else {
6083 /*
6084 * this bio is actually up to date, we didn't
6085 * go over the max number of errors
6086 */
6087 bio->bi_status = BLK_STS_OK;
6088 }
6089
6090 btrfs_end_bbio(bbio, bio);
6091 } else if (!is_orig_bio) {
6092 bio_put(bio);
6093 }
6094 }
6095
6096 /*
6097 * see run_scheduled_bios for a description of why bios are collected for
6098 * async submit.
6099 *
6100 * This will add one bio to the pending list for a device and make sure
6101 * the work struct is scheduled.
6102 */
btrfs_schedule_bio(struct btrfs_device * device,struct bio * bio)6103 static noinline void btrfs_schedule_bio(struct btrfs_device *device,
6104 struct bio *bio)
6105 {
6106 struct btrfs_fs_info *fs_info = device->fs_info;
6107 int should_queue = 1;
6108 struct btrfs_pending_bios *pending_bios;
6109
6110 /* don't bother with additional async steps for reads, right now */
6111 if (bio_op(bio) == REQ_OP_READ) {
6112 btrfsic_submit_bio(bio);
6113 return;
6114 }
6115
6116 WARN_ON(bio->bi_next);
6117 bio->bi_next = NULL;
6118
6119 spin_lock(&device->io_lock);
6120 if (op_is_sync(bio->bi_opf))
6121 pending_bios = &device->pending_sync_bios;
6122 else
6123 pending_bios = &device->pending_bios;
6124
6125 if (pending_bios->tail)
6126 pending_bios->tail->bi_next = bio;
6127
6128 pending_bios->tail = bio;
6129 if (!pending_bios->head)
6130 pending_bios->head = bio;
6131 if (device->running_pending)
6132 should_queue = 0;
6133
6134 spin_unlock(&device->io_lock);
6135
6136 if (should_queue)
6137 btrfs_queue_work(fs_info->submit_workers, &device->work);
6138 }
6139
submit_stripe_bio(struct btrfs_bio * bbio,struct bio * bio,u64 physical,int dev_nr,int async)6140 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6141 u64 physical, int dev_nr, int async)
6142 {
6143 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6144 struct btrfs_fs_info *fs_info = bbio->fs_info;
6145
6146 bio->bi_private = bbio;
6147 btrfs_io_bio(bio)->stripe_index = dev_nr;
6148 bio->bi_end_io = btrfs_end_bio;
6149 bio->bi_iter.bi_sector = physical >> 9;
6150 btrfs_debug_in_rcu(fs_info,
6151 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6152 bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector,
6153 (u_long)dev->bdev->bd_dev, rcu_str_deref(dev->name), dev->devid,
6154 bio->bi_iter.bi_size);
6155 bio_set_dev(bio, dev->bdev);
6156
6157 btrfs_bio_counter_inc_noblocked(fs_info);
6158
6159 if (async)
6160 btrfs_schedule_bio(dev, bio);
6161 else
6162 btrfsic_submit_bio(bio);
6163 }
6164
bbio_error(struct btrfs_bio * bbio,struct bio * bio,u64 logical)6165 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6166 {
6167 atomic_inc(&bbio->error);
6168 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6169 /* Should be the original bio. */
6170 WARN_ON(bio != bbio->orig_bio);
6171
6172 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6173 bio->bi_iter.bi_sector = logical >> 9;
6174 if (atomic_read(&bbio->error) > bbio->max_errors)
6175 bio->bi_status = BLK_STS_IOERR;
6176 else
6177 bio->bi_status = BLK_STS_OK;
6178 btrfs_end_bbio(bbio, bio);
6179 }
6180 }
6181
btrfs_map_bio(struct btrfs_fs_info * fs_info,struct bio * bio,int mirror_num,int async_submit)6182 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6183 int mirror_num, int async_submit)
6184 {
6185 struct btrfs_device *dev;
6186 struct bio *first_bio = bio;
6187 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6188 u64 length = 0;
6189 u64 map_length;
6190 int ret;
6191 int dev_nr;
6192 int total_devs;
6193 struct btrfs_bio *bbio = NULL;
6194
6195 length = bio->bi_iter.bi_size;
6196 map_length = length;
6197
6198 btrfs_bio_counter_inc_blocked(fs_info);
6199 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6200 &map_length, &bbio, mirror_num, 1);
6201 if (ret) {
6202 btrfs_bio_counter_dec(fs_info);
6203 return errno_to_blk_status(ret);
6204 }
6205
6206 total_devs = bbio->num_stripes;
6207 bbio->orig_bio = first_bio;
6208 bbio->private = first_bio->bi_private;
6209 bbio->end_io = first_bio->bi_end_io;
6210 bbio->fs_info = fs_info;
6211 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6212
6213 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6214 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6215 /* In this case, map_length has been set to the length of
6216 a single stripe; not the whole write */
6217 if (bio_op(bio) == REQ_OP_WRITE) {
6218 ret = raid56_parity_write(fs_info, bio, bbio,
6219 map_length);
6220 } else {
6221 ret = raid56_parity_recover(fs_info, bio, bbio,
6222 map_length, mirror_num, 1);
6223 }
6224
6225 btrfs_bio_counter_dec(fs_info);
6226 return errno_to_blk_status(ret);
6227 }
6228
6229 if (map_length < length) {
6230 btrfs_crit(fs_info,
6231 "mapping failed logical %llu bio len %llu len %llu",
6232 logical, length, map_length);
6233 BUG();
6234 }
6235
6236 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6237 dev = bbio->stripes[dev_nr].dev;
6238 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6239 &dev->dev_state) ||
6240 (bio_op(first_bio) == REQ_OP_WRITE &&
6241 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6242 bbio_error(bbio, first_bio, logical);
6243 continue;
6244 }
6245
6246 if (dev_nr < total_devs - 1)
6247 bio = btrfs_bio_clone(first_bio);
6248 else
6249 bio = first_bio;
6250
6251 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6252 dev_nr, async_submit);
6253 }
6254 btrfs_bio_counter_dec(fs_info);
6255 return BLK_STS_OK;
6256 }
6257
6258 /*
6259 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6260 * return NULL.
6261 *
6262 * If devid and uuid are both specified, the match must be exact, otherwise
6263 * only devid is used.
6264 *
6265 * If @seed is true, traverse through the seed devices.
6266 */
btrfs_find_device(struct btrfs_fs_devices * fs_devices,u64 devid,u8 * uuid,u8 * fsid,bool seed)6267 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
6268 u64 devid, u8 *uuid, u8 *fsid,
6269 bool seed)
6270 {
6271 struct btrfs_device *device;
6272
6273 while (fs_devices) {
6274 if (!fsid ||
6275 !memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE)) {
6276 list_for_each_entry(device, &fs_devices->devices,
6277 dev_list) {
6278 if (device->devid == devid &&
6279 (!uuid || memcmp(device->uuid, uuid,
6280 BTRFS_UUID_SIZE) == 0))
6281 return device;
6282 }
6283 }
6284 if (seed)
6285 fs_devices = fs_devices->seed;
6286 else
6287 return NULL;
6288 }
6289 return NULL;
6290 }
6291
add_missing_dev(struct btrfs_fs_devices * fs_devices,u64 devid,u8 * dev_uuid)6292 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6293 u64 devid, u8 *dev_uuid)
6294 {
6295 struct btrfs_device *device;
6296 unsigned int nofs_flag;
6297
6298 /*
6299 * We call this under the chunk_mutex, so we want to use NOFS for this
6300 * allocation, however we don't want to change btrfs_alloc_device() to
6301 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6302 * places.
6303 */
6304 nofs_flag = memalloc_nofs_save();
6305 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6306 memalloc_nofs_restore(nofs_flag);
6307 if (IS_ERR(device))
6308 return device;
6309
6310 list_add(&device->dev_list, &fs_devices->devices);
6311 device->fs_devices = fs_devices;
6312 fs_devices->num_devices++;
6313
6314 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6315 fs_devices->missing_devices++;
6316
6317 return device;
6318 }
6319
6320 /**
6321 * btrfs_alloc_device - allocate struct btrfs_device
6322 * @fs_info: used only for generating a new devid, can be NULL if
6323 * devid is provided (i.e. @devid != NULL).
6324 * @devid: a pointer to devid for this device. If NULL a new devid
6325 * is generated.
6326 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6327 * is generated.
6328 *
6329 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6330 * on error. Returned struct is not linked onto any lists and must be
6331 * destroyed with btrfs_free_device.
6332 */
btrfs_alloc_device(struct btrfs_fs_info * fs_info,const u64 * devid,const u8 * uuid)6333 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6334 const u64 *devid,
6335 const u8 *uuid)
6336 {
6337 struct btrfs_device *dev;
6338 u64 tmp;
6339
6340 if (WARN_ON(!devid && !fs_info))
6341 return ERR_PTR(-EINVAL);
6342
6343 dev = __alloc_device();
6344 if (IS_ERR(dev))
6345 return dev;
6346
6347 if (devid)
6348 tmp = *devid;
6349 else {
6350 int ret;
6351
6352 ret = find_next_devid(fs_info, &tmp);
6353 if (ret) {
6354 btrfs_free_device(dev);
6355 return ERR_PTR(ret);
6356 }
6357 }
6358 dev->devid = tmp;
6359
6360 if (uuid)
6361 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6362 else
6363 generate_random_uuid(dev->uuid);
6364
6365 btrfs_init_work(&dev->work, btrfs_submit_helper,
6366 pending_bios_fn, NULL, NULL);
6367
6368 return dev;
6369 }
6370
btrfs_report_missing_device(struct btrfs_fs_info * fs_info,u64 devid,u8 * uuid,bool error)6371 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6372 u64 devid, u8 *uuid, bool error)
6373 {
6374 if (error)
6375 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6376 devid, uuid);
6377 else
6378 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6379 devid, uuid);
6380 }
6381
read_one_chunk(struct btrfs_fs_info * fs_info,struct btrfs_key * key,struct extent_buffer * leaf,struct btrfs_chunk * chunk)6382 static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
6383 struct extent_buffer *leaf,
6384 struct btrfs_chunk *chunk)
6385 {
6386 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6387 struct map_lookup *map;
6388 struct extent_map *em;
6389 u64 logical;
6390 u64 length;
6391 u64 devid;
6392 u8 uuid[BTRFS_UUID_SIZE];
6393 int num_stripes;
6394 int ret;
6395 int i;
6396
6397 logical = key->offset;
6398 length = btrfs_chunk_length(leaf, chunk);
6399 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6400
6401 /*
6402 * Only need to verify chunk item if we're reading from sys chunk array,
6403 * as chunk item in tree block is already verified by tree-checker.
6404 */
6405 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6406 ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical);
6407 if (ret)
6408 return ret;
6409 }
6410
6411 read_lock(&map_tree->map_tree.lock);
6412 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6413 read_unlock(&map_tree->map_tree.lock);
6414
6415 /* already mapped? */
6416 if (em && em->start <= logical && em->start + em->len > logical) {
6417 free_extent_map(em);
6418 return 0;
6419 } else if (em) {
6420 free_extent_map(em);
6421 }
6422
6423 em = alloc_extent_map();
6424 if (!em)
6425 return -ENOMEM;
6426 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6427 if (!map) {
6428 free_extent_map(em);
6429 return -ENOMEM;
6430 }
6431
6432 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6433 em->map_lookup = map;
6434 em->start = logical;
6435 em->len = length;
6436 em->orig_start = 0;
6437 em->block_start = 0;
6438 em->block_len = em->len;
6439
6440 map->num_stripes = num_stripes;
6441 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6442 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6443 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6444 map->type = btrfs_chunk_type(leaf, chunk);
6445 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6446 map->verified_stripes = 0;
6447 for (i = 0; i < num_stripes; i++) {
6448 map->stripes[i].physical =
6449 btrfs_stripe_offset_nr(leaf, chunk, i);
6450 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6451 read_extent_buffer(leaf, uuid, (unsigned long)
6452 btrfs_stripe_dev_uuid_nr(chunk, i),
6453 BTRFS_UUID_SIZE);
6454 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
6455 devid, uuid, NULL, true);
6456 if (!map->stripes[i].dev &&
6457 !btrfs_test_opt(fs_info, DEGRADED)) {
6458 free_extent_map(em);
6459 btrfs_report_missing_device(fs_info, devid, uuid, true);
6460 return -ENOENT;
6461 }
6462 if (!map->stripes[i].dev) {
6463 map->stripes[i].dev =
6464 add_missing_dev(fs_info->fs_devices, devid,
6465 uuid);
6466 if (IS_ERR(map->stripes[i].dev)) {
6467 free_extent_map(em);
6468 btrfs_err(fs_info,
6469 "failed to init missing dev %llu: %ld",
6470 devid, PTR_ERR(map->stripes[i].dev));
6471 return PTR_ERR(map->stripes[i].dev);
6472 }
6473 btrfs_report_missing_device(fs_info, devid, uuid, false);
6474 }
6475 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6476 &(map->stripes[i].dev->dev_state));
6477
6478 }
6479
6480 write_lock(&map_tree->map_tree.lock);
6481 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6482 write_unlock(&map_tree->map_tree.lock);
6483 if (ret < 0) {
6484 btrfs_err(fs_info,
6485 "failed to add chunk map, start=%llu len=%llu: %d",
6486 em->start, em->len, ret);
6487 }
6488 free_extent_map(em);
6489
6490 return ret;
6491 }
6492
fill_device_from_item(struct extent_buffer * leaf,struct btrfs_dev_item * dev_item,struct btrfs_device * device)6493 static void fill_device_from_item(struct extent_buffer *leaf,
6494 struct btrfs_dev_item *dev_item,
6495 struct btrfs_device *device)
6496 {
6497 unsigned long ptr;
6498
6499 device->devid = btrfs_device_id(leaf, dev_item);
6500 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6501 device->total_bytes = device->disk_total_bytes;
6502 device->commit_total_bytes = device->disk_total_bytes;
6503 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6504 device->commit_bytes_used = device->bytes_used;
6505 device->type = btrfs_device_type(leaf, dev_item);
6506 device->io_align = btrfs_device_io_align(leaf, dev_item);
6507 device->io_width = btrfs_device_io_width(leaf, dev_item);
6508 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6509 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6510 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6511
6512 ptr = btrfs_device_uuid(dev_item);
6513 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6514 }
6515
open_seed_devices(struct btrfs_fs_info * fs_info,u8 * fsid)6516 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6517 u8 *fsid)
6518 {
6519 struct btrfs_fs_devices *fs_devices;
6520 int ret;
6521
6522 lockdep_assert_held(&uuid_mutex);
6523 ASSERT(fsid);
6524
6525 fs_devices = fs_info->fs_devices->seed;
6526 while (fs_devices) {
6527 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6528 return fs_devices;
6529
6530 fs_devices = fs_devices->seed;
6531 }
6532
6533 fs_devices = find_fsid(fsid);
6534 if (!fs_devices) {
6535 if (!btrfs_test_opt(fs_info, DEGRADED))
6536 return ERR_PTR(-ENOENT);
6537
6538 fs_devices = alloc_fs_devices(fsid);
6539 if (IS_ERR(fs_devices))
6540 return fs_devices;
6541
6542 fs_devices->seeding = 1;
6543 fs_devices->opened = 1;
6544 return fs_devices;
6545 }
6546
6547 fs_devices = clone_fs_devices(fs_devices);
6548 if (IS_ERR(fs_devices))
6549 return fs_devices;
6550
6551 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
6552 if (ret) {
6553 free_fs_devices(fs_devices);
6554 fs_devices = ERR_PTR(ret);
6555 goto out;
6556 }
6557
6558 if (!fs_devices->seeding) {
6559 close_fs_devices(fs_devices);
6560 free_fs_devices(fs_devices);
6561 fs_devices = ERR_PTR(-EINVAL);
6562 goto out;
6563 }
6564
6565 fs_devices->seed = fs_info->fs_devices->seed;
6566 fs_info->fs_devices->seed = fs_devices;
6567 out:
6568 return fs_devices;
6569 }
6570
read_one_dev(struct btrfs_fs_info * fs_info,struct extent_buffer * leaf,struct btrfs_dev_item * dev_item)6571 static int read_one_dev(struct btrfs_fs_info *fs_info,
6572 struct extent_buffer *leaf,
6573 struct btrfs_dev_item *dev_item)
6574 {
6575 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6576 struct btrfs_device *device;
6577 u64 devid;
6578 int ret;
6579 u8 fs_uuid[BTRFS_FSID_SIZE];
6580 u8 dev_uuid[BTRFS_UUID_SIZE];
6581
6582 devid = btrfs_device_id(leaf, dev_item);
6583 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6584 BTRFS_UUID_SIZE);
6585 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6586 BTRFS_FSID_SIZE);
6587
6588 if (memcmp(fs_uuid, fs_info->fsid, BTRFS_FSID_SIZE)) {
6589 fs_devices = open_seed_devices(fs_info, fs_uuid);
6590 if (IS_ERR(fs_devices))
6591 return PTR_ERR(fs_devices);
6592 }
6593
6594 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
6595 fs_uuid, true);
6596 if (!device) {
6597 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6598 btrfs_report_missing_device(fs_info, devid,
6599 dev_uuid, true);
6600 return -ENOENT;
6601 }
6602
6603 device = add_missing_dev(fs_devices, devid, dev_uuid);
6604 if (IS_ERR(device)) {
6605 btrfs_err(fs_info,
6606 "failed to add missing dev %llu: %ld",
6607 devid, PTR_ERR(device));
6608 return PTR_ERR(device);
6609 }
6610 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6611 } else {
6612 if (!device->bdev) {
6613 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6614 btrfs_report_missing_device(fs_info,
6615 devid, dev_uuid, true);
6616 return -ENOENT;
6617 }
6618 btrfs_report_missing_device(fs_info, devid,
6619 dev_uuid, false);
6620 }
6621
6622 if (!device->bdev &&
6623 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6624 /*
6625 * this happens when a device that was properly setup
6626 * in the device info lists suddenly goes bad.
6627 * device->bdev is NULL, and so we have to set
6628 * device->missing to one here
6629 */
6630 device->fs_devices->missing_devices++;
6631 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6632 }
6633
6634 /* Move the device to its own fs_devices */
6635 if (device->fs_devices != fs_devices) {
6636 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6637 &device->dev_state));
6638
6639 list_move(&device->dev_list, &fs_devices->devices);
6640 device->fs_devices->num_devices--;
6641 fs_devices->num_devices++;
6642
6643 device->fs_devices->missing_devices--;
6644 fs_devices->missing_devices++;
6645
6646 device->fs_devices = fs_devices;
6647 }
6648 }
6649
6650 if (device->fs_devices != fs_info->fs_devices) {
6651 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
6652 if (device->generation !=
6653 btrfs_device_generation(leaf, dev_item))
6654 return -EINVAL;
6655 }
6656
6657 fill_device_from_item(leaf, dev_item, device);
6658 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
6659 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
6660 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6661 device->fs_devices->total_rw_bytes += device->total_bytes;
6662 atomic64_add(device->total_bytes - device->bytes_used,
6663 &fs_info->free_chunk_space);
6664 }
6665 ret = 0;
6666 return ret;
6667 }
6668
btrfs_read_sys_array(struct btrfs_fs_info * fs_info)6669 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6670 {
6671 struct btrfs_root *root = fs_info->tree_root;
6672 struct btrfs_super_block *super_copy = fs_info->super_copy;
6673 struct extent_buffer *sb;
6674 struct btrfs_disk_key *disk_key;
6675 struct btrfs_chunk *chunk;
6676 u8 *array_ptr;
6677 unsigned long sb_array_offset;
6678 int ret = 0;
6679 u32 num_stripes;
6680 u32 array_size;
6681 u32 len = 0;
6682 u32 cur_offset;
6683 u64 type;
6684 struct btrfs_key key;
6685
6686 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6687 /*
6688 * This will create extent buffer of nodesize, superblock size is
6689 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6690 * overallocate but we can keep it as-is, only the first page is used.
6691 */
6692 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6693 if (IS_ERR(sb))
6694 return PTR_ERR(sb);
6695 set_extent_buffer_uptodate(sb);
6696 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6697 /*
6698 * The sb extent buffer is artificial and just used to read the system array.
6699 * set_extent_buffer_uptodate() call does not properly mark all it's
6700 * pages up-to-date when the page is larger: extent does not cover the
6701 * whole page and consequently check_page_uptodate does not find all
6702 * the page's extents up-to-date (the hole beyond sb),
6703 * write_extent_buffer then triggers a WARN_ON.
6704 *
6705 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6706 * but sb spans only this function. Add an explicit SetPageUptodate call
6707 * to silence the warning eg. on PowerPC 64.
6708 */
6709 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6710 SetPageUptodate(sb->pages[0]);
6711
6712 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6713 array_size = btrfs_super_sys_array_size(super_copy);
6714
6715 array_ptr = super_copy->sys_chunk_array;
6716 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6717 cur_offset = 0;
6718
6719 while (cur_offset < array_size) {
6720 disk_key = (struct btrfs_disk_key *)array_ptr;
6721 len = sizeof(*disk_key);
6722 if (cur_offset + len > array_size)
6723 goto out_short_read;
6724
6725 btrfs_disk_key_to_cpu(&key, disk_key);
6726
6727 array_ptr += len;
6728 sb_array_offset += len;
6729 cur_offset += len;
6730
6731 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6732 chunk = (struct btrfs_chunk *)sb_array_offset;
6733 /*
6734 * At least one btrfs_chunk with one stripe must be
6735 * present, exact stripe count check comes afterwards
6736 */
6737 len = btrfs_chunk_item_size(1);
6738 if (cur_offset + len > array_size)
6739 goto out_short_read;
6740
6741 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6742 if (!num_stripes) {
6743 btrfs_err(fs_info,
6744 "invalid number of stripes %u in sys_array at offset %u",
6745 num_stripes, cur_offset);
6746 ret = -EIO;
6747 break;
6748 }
6749
6750 type = btrfs_chunk_type(sb, chunk);
6751 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6752 btrfs_err(fs_info,
6753 "invalid chunk type %llu in sys_array at offset %u",
6754 type, cur_offset);
6755 ret = -EIO;
6756 break;
6757 }
6758
6759 len = btrfs_chunk_item_size(num_stripes);
6760 if (cur_offset + len > array_size)
6761 goto out_short_read;
6762
6763 ret = read_one_chunk(fs_info, &key, sb, chunk);
6764 if (ret)
6765 break;
6766 } else {
6767 btrfs_err(fs_info,
6768 "unexpected item type %u in sys_array at offset %u",
6769 (u32)key.type, cur_offset);
6770 ret = -EIO;
6771 break;
6772 }
6773 array_ptr += len;
6774 sb_array_offset += len;
6775 cur_offset += len;
6776 }
6777 clear_extent_buffer_uptodate(sb);
6778 free_extent_buffer_stale(sb);
6779 return ret;
6780
6781 out_short_read:
6782 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6783 len, cur_offset);
6784 clear_extent_buffer_uptodate(sb);
6785 free_extent_buffer_stale(sb);
6786 return -EIO;
6787 }
6788
6789 /*
6790 * Check if all chunks in the fs are OK for read-write degraded mount
6791 *
6792 * If the @failing_dev is specified, it's accounted as missing.
6793 *
6794 * Return true if all chunks meet the minimal RW mount requirements.
6795 * Return false if any chunk doesn't meet the minimal RW mount requirements.
6796 */
btrfs_check_rw_degradable(struct btrfs_fs_info * fs_info,struct btrfs_device * failing_dev)6797 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
6798 struct btrfs_device *failing_dev)
6799 {
6800 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6801 struct extent_map *em;
6802 u64 next_start = 0;
6803 bool ret = true;
6804
6805 read_lock(&map_tree->map_tree.lock);
6806 em = lookup_extent_mapping(&map_tree->map_tree, 0, (u64)-1);
6807 read_unlock(&map_tree->map_tree.lock);
6808 /* No chunk at all? Return false anyway */
6809 if (!em) {
6810 ret = false;
6811 goto out;
6812 }
6813 while (em) {
6814 struct map_lookup *map;
6815 int missing = 0;
6816 int max_tolerated;
6817 int i;
6818
6819 map = em->map_lookup;
6820 max_tolerated =
6821 btrfs_get_num_tolerated_disk_barrier_failures(
6822 map->type);
6823 for (i = 0; i < map->num_stripes; i++) {
6824 struct btrfs_device *dev = map->stripes[i].dev;
6825
6826 if (!dev || !dev->bdev ||
6827 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
6828 dev->last_flush_error)
6829 missing++;
6830 else if (failing_dev && failing_dev == dev)
6831 missing++;
6832 }
6833 if (missing > max_tolerated) {
6834 if (!failing_dev)
6835 btrfs_warn(fs_info,
6836 "chunk %llu missing %d devices, max tolerance is %d for writeable mount",
6837 em->start, missing, max_tolerated);
6838 free_extent_map(em);
6839 ret = false;
6840 goto out;
6841 }
6842 next_start = extent_map_end(em);
6843 free_extent_map(em);
6844
6845 read_lock(&map_tree->map_tree.lock);
6846 em = lookup_extent_mapping(&map_tree->map_tree, next_start,
6847 (u64)(-1) - next_start);
6848 read_unlock(&map_tree->map_tree.lock);
6849 }
6850 out:
6851 return ret;
6852 }
6853
btrfs_read_chunk_tree(struct btrfs_fs_info * fs_info)6854 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
6855 {
6856 struct btrfs_root *root = fs_info->chunk_root;
6857 struct btrfs_path *path;
6858 struct extent_buffer *leaf;
6859 struct btrfs_key key;
6860 struct btrfs_key found_key;
6861 int ret;
6862 int slot;
6863 u64 total_dev = 0;
6864
6865 path = btrfs_alloc_path();
6866 if (!path)
6867 return -ENOMEM;
6868
6869 /*
6870 * uuid_mutex is needed only if we are mounting a sprout FS
6871 * otherwise we don't need it.
6872 */
6873 mutex_lock(&uuid_mutex);
6874 mutex_lock(&fs_info->chunk_mutex);
6875
6876 /*
6877 * It is possible for mount and umount to race in such a way that
6878 * we execute this code path, but open_fs_devices failed to clear
6879 * total_rw_bytes. We certainly want it cleared before reading the
6880 * device items, so clear it here.
6881 */
6882 fs_info->fs_devices->total_rw_bytes = 0;
6883
6884 /*
6885 * Read all device items, and then all the chunk items. All
6886 * device items are found before any chunk item (their object id
6887 * is smaller than the lowest possible object id for a chunk
6888 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6889 */
6890 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6891 key.offset = 0;
6892 key.type = 0;
6893 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6894 if (ret < 0)
6895 goto error;
6896 while (1) {
6897 leaf = path->nodes[0];
6898 slot = path->slots[0];
6899 if (slot >= btrfs_header_nritems(leaf)) {
6900 ret = btrfs_next_leaf(root, path);
6901 if (ret == 0)
6902 continue;
6903 if (ret < 0)
6904 goto error;
6905 break;
6906 }
6907 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6908 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6909 struct btrfs_dev_item *dev_item;
6910 dev_item = btrfs_item_ptr(leaf, slot,
6911 struct btrfs_dev_item);
6912 ret = read_one_dev(fs_info, leaf, dev_item);
6913 if (ret)
6914 goto error;
6915 total_dev++;
6916 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6917 struct btrfs_chunk *chunk;
6918 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6919 ret = read_one_chunk(fs_info, &found_key, leaf, chunk);
6920 if (ret)
6921 goto error;
6922 }
6923 path->slots[0]++;
6924 }
6925
6926 /*
6927 * After loading chunk tree, we've got all device information,
6928 * do another round of validation checks.
6929 */
6930 if (total_dev != fs_info->fs_devices->total_devices) {
6931 btrfs_warn(fs_info,
6932 "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
6933 btrfs_super_num_devices(fs_info->super_copy),
6934 total_dev);
6935 fs_info->fs_devices->total_devices = total_dev;
6936 btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
6937 }
6938 if (btrfs_super_total_bytes(fs_info->super_copy) <
6939 fs_info->fs_devices->total_rw_bytes) {
6940 btrfs_err(fs_info,
6941 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
6942 btrfs_super_total_bytes(fs_info->super_copy),
6943 fs_info->fs_devices->total_rw_bytes);
6944 ret = -EINVAL;
6945 goto error;
6946 }
6947 ret = 0;
6948 error:
6949 mutex_unlock(&fs_info->chunk_mutex);
6950 mutex_unlock(&uuid_mutex);
6951
6952 btrfs_free_path(path);
6953 return ret;
6954 }
6955
btrfs_init_devices_late(struct btrfs_fs_info * fs_info)6956 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6957 {
6958 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6959 struct btrfs_device *device;
6960
6961 while (fs_devices) {
6962 mutex_lock(&fs_devices->device_list_mutex);
6963 list_for_each_entry(device, &fs_devices->devices, dev_list)
6964 device->fs_info = fs_info;
6965 mutex_unlock(&fs_devices->device_list_mutex);
6966
6967 fs_devices = fs_devices->seed;
6968 }
6969 }
6970
__btrfs_reset_dev_stats(struct btrfs_device * dev)6971 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6972 {
6973 int i;
6974
6975 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6976 btrfs_dev_stat_reset(dev, i);
6977 }
6978
btrfs_init_dev_stats(struct btrfs_fs_info * fs_info)6979 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6980 {
6981 struct btrfs_key key;
6982 struct btrfs_key found_key;
6983 struct btrfs_root *dev_root = fs_info->dev_root;
6984 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6985 struct extent_buffer *eb;
6986 int slot;
6987 int ret = 0;
6988 struct btrfs_device *device;
6989 struct btrfs_path *path = NULL;
6990 int i;
6991
6992 path = btrfs_alloc_path();
6993 if (!path) {
6994 ret = -ENOMEM;
6995 goto out;
6996 }
6997
6998 mutex_lock(&fs_devices->device_list_mutex);
6999 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7000 int item_size;
7001 struct btrfs_dev_stats_item *ptr;
7002
7003 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7004 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7005 key.offset = device->devid;
7006 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
7007 if (ret) {
7008 __btrfs_reset_dev_stats(device);
7009 device->dev_stats_valid = 1;
7010 btrfs_release_path(path);
7011 continue;
7012 }
7013 slot = path->slots[0];
7014 eb = path->nodes[0];
7015 btrfs_item_key_to_cpu(eb, &found_key, slot);
7016 item_size = btrfs_item_size_nr(eb, slot);
7017
7018 ptr = btrfs_item_ptr(eb, slot,
7019 struct btrfs_dev_stats_item);
7020
7021 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7022 if (item_size >= (1 + i) * sizeof(__le64))
7023 btrfs_dev_stat_set(device, i,
7024 btrfs_dev_stats_value(eb, ptr, i));
7025 else
7026 btrfs_dev_stat_reset(device, i);
7027 }
7028
7029 device->dev_stats_valid = 1;
7030 btrfs_dev_stat_print_on_load(device);
7031 btrfs_release_path(path);
7032 }
7033 mutex_unlock(&fs_devices->device_list_mutex);
7034
7035 out:
7036 btrfs_free_path(path);
7037 return ret < 0 ? ret : 0;
7038 }
7039
update_dev_stat_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)7040 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7041 struct btrfs_device *device)
7042 {
7043 struct btrfs_fs_info *fs_info = trans->fs_info;
7044 struct btrfs_root *dev_root = fs_info->dev_root;
7045 struct btrfs_path *path;
7046 struct btrfs_key key;
7047 struct extent_buffer *eb;
7048 struct btrfs_dev_stats_item *ptr;
7049 int ret;
7050 int i;
7051
7052 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7053 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7054 key.offset = device->devid;
7055
7056 path = btrfs_alloc_path();
7057 if (!path)
7058 return -ENOMEM;
7059 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7060 if (ret < 0) {
7061 btrfs_warn_in_rcu(fs_info,
7062 "error %d while searching for dev_stats item for device %s",
7063 ret, rcu_str_deref(device->name));
7064 goto out;
7065 }
7066
7067 if (ret == 0 &&
7068 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7069 /* need to delete old one and insert a new one */
7070 ret = btrfs_del_item(trans, dev_root, path);
7071 if (ret != 0) {
7072 btrfs_warn_in_rcu(fs_info,
7073 "delete too small dev_stats item for device %s failed %d",
7074 rcu_str_deref(device->name), ret);
7075 goto out;
7076 }
7077 ret = 1;
7078 }
7079
7080 if (ret == 1) {
7081 /* need to insert a new item */
7082 btrfs_release_path(path);
7083 ret = btrfs_insert_empty_item(trans, dev_root, path,
7084 &key, sizeof(*ptr));
7085 if (ret < 0) {
7086 btrfs_warn_in_rcu(fs_info,
7087 "insert dev_stats item for device %s failed %d",
7088 rcu_str_deref(device->name), ret);
7089 goto out;
7090 }
7091 }
7092
7093 eb = path->nodes[0];
7094 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7095 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7096 btrfs_set_dev_stats_value(eb, ptr, i,
7097 btrfs_dev_stat_read(device, i));
7098 btrfs_mark_buffer_dirty(eb);
7099
7100 out:
7101 btrfs_free_path(path);
7102 return ret;
7103 }
7104
7105 /*
7106 * called from commit_transaction. Writes all changed device stats to disk.
7107 */
btrfs_run_dev_stats(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)7108 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7109 struct btrfs_fs_info *fs_info)
7110 {
7111 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7112 struct btrfs_device *device;
7113 int stats_cnt;
7114 int ret = 0;
7115
7116 mutex_lock(&fs_devices->device_list_mutex);
7117 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7118 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7119 if (!device->dev_stats_valid || stats_cnt == 0)
7120 continue;
7121
7122
7123 /*
7124 * There is a LOAD-LOAD control dependency between the value of
7125 * dev_stats_ccnt and updating the on-disk values which requires
7126 * reading the in-memory counters. Such control dependencies
7127 * require explicit read memory barriers.
7128 *
7129 * This memory barriers pairs with smp_mb__before_atomic in
7130 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7131 * barrier implied by atomic_xchg in
7132 * btrfs_dev_stats_read_and_reset
7133 */
7134 smp_rmb();
7135
7136 ret = update_dev_stat_item(trans, device);
7137 if (!ret)
7138 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7139 }
7140 mutex_unlock(&fs_devices->device_list_mutex);
7141
7142 return ret;
7143 }
7144
btrfs_dev_stat_inc_and_print(struct btrfs_device * dev,int index)7145 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7146 {
7147 btrfs_dev_stat_inc(dev, index);
7148 btrfs_dev_stat_print_on_error(dev);
7149 }
7150
btrfs_dev_stat_print_on_error(struct btrfs_device * dev)7151 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7152 {
7153 if (!dev->dev_stats_valid)
7154 return;
7155 btrfs_err_rl_in_rcu(dev->fs_info,
7156 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7157 rcu_str_deref(dev->name),
7158 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7159 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7160 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7161 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7162 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7163 }
7164
btrfs_dev_stat_print_on_load(struct btrfs_device * dev)7165 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7166 {
7167 int i;
7168
7169 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7170 if (btrfs_dev_stat_read(dev, i) != 0)
7171 break;
7172 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7173 return; /* all values == 0, suppress message */
7174
7175 btrfs_info_in_rcu(dev->fs_info,
7176 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7177 rcu_str_deref(dev->name),
7178 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7179 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7180 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7181 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7182 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7183 }
7184
btrfs_get_dev_stats(struct btrfs_fs_info * fs_info,struct btrfs_ioctl_get_dev_stats * stats)7185 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7186 struct btrfs_ioctl_get_dev_stats *stats)
7187 {
7188 struct btrfs_device *dev;
7189 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7190 int i;
7191
7192 mutex_lock(&fs_devices->device_list_mutex);
7193 dev = btrfs_find_device(fs_info->fs_devices, stats->devid,
7194 NULL, NULL, true);
7195 mutex_unlock(&fs_devices->device_list_mutex);
7196
7197 if (!dev) {
7198 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7199 return -ENODEV;
7200 } else if (!dev->dev_stats_valid) {
7201 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7202 return -ENODEV;
7203 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7204 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7205 if (stats->nr_items > i)
7206 stats->values[i] =
7207 btrfs_dev_stat_read_and_reset(dev, i);
7208 else
7209 btrfs_dev_stat_reset(dev, i);
7210 }
7211 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7212 current->comm, task_pid_nr(current));
7213 } else {
7214 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7215 if (stats->nr_items > i)
7216 stats->values[i] = btrfs_dev_stat_read(dev, i);
7217 }
7218 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7219 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7220 return 0;
7221 }
7222
btrfs_scratch_superblocks(struct block_device * bdev,const char * device_path)7223 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
7224 {
7225 struct buffer_head *bh;
7226 struct btrfs_super_block *disk_super;
7227 int copy_num;
7228
7229 if (!bdev)
7230 return;
7231
7232 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7233 copy_num++) {
7234
7235 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7236 continue;
7237
7238 disk_super = (struct btrfs_super_block *)bh->b_data;
7239
7240 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7241 set_buffer_dirty(bh);
7242 sync_dirty_buffer(bh);
7243 brelse(bh);
7244 }
7245
7246 /* Notify udev that device has changed */
7247 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7248
7249 /* Update ctime/mtime for device path for libblkid */
7250 update_dev_time(device_path);
7251 }
7252
7253 /*
7254 * Update the size of all devices, which is used for writing out the
7255 * super blocks.
7256 */
btrfs_update_commit_device_size(struct btrfs_fs_info * fs_info)7257 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7258 {
7259 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7260 struct btrfs_device *curr, *next;
7261
7262 if (list_empty(&fs_devices->resized_devices))
7263 return;
7264
7265 mutex_lock(&fs_devices->device_list_mutex);
7266 mutex_lock(&fs_info->chunk_mutex);
7267 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7268 resized_list) {
7269 list_del_init(&curr->resized_list);
7270 curr->commit_total_bytes = curr->disk_total_bytes;
7271 }
7272 mutex_unlock(&fs_info->chunk_mutex);
7273 mutex_unlock(&fs_devices->device_list_mutex);
7274 }
7275
7276 /* Must be invoked during the transaction commit */
btrfs_update_commit_device_bytes_used(struct btrfs_transaction * trans)7277 void btrfs_update_commit_device_bytes_used(struct btrfs_transaction *trans)
7278 {
7279 struct btrfs_fs_info *fs_info = trans->fs_info;
7280 struct extent_map *em;
7281 struct map_lookup *map;
7282 struct btrfs_device *dev;
7283 int i;
7284
7285 if (list_empty(&trans->pending_chunks))
7286 return;
7287
7288 /* In order to kick the device replace finish process */
7289 mutex_lock(&fs_info->chunk_mutex);
7290 list_for_each_entry(em, &trans->pending_chunks, list) {
7291 map = em->map_lookup;
7292
7293 for (i = 0; i < map->num_stripes; i++) {
7294 dev = map->stripes[i].dev;
7295 dev->commit_bytes_used = dev->bytes_used;
7296 dev->has_pending_chunks = false;
7297 }
7298 }
7299 mutex_unlock(&fs_info->chunk_mutex);
7300 }
7301
btrfs_set_fs_info_ptr(struct btrfs_fs_info * fs_info)7302 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7303 {
7304 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7305 while (fs_devices) {
7306 fs_devices->fs_info = fs_info;
7307 fs_devices = fs_devices->seed;
7308 }
7309 }
7310
btrfs_reset_fs_info_ptr(struct btrfs_fs_info * fs_info)7311 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7312 {
7313 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7314 while (fs_devices) {
7315 fs_devices->fs_info = NULL;
7316 fs_devices = fs_devices->seed;
7317 }
7318 }
7319
7320 /*
7321 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7322 */
btrfs_bg_type_to_factor(u64 flags)7323 int btrfs_bg_type_to_factor(u64 flags)
7324 {
7325 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
7326 BTRFS_BLOCK_GROUP_RAID10))
7327 return 2;
7328 return 1;
7329 }
7330
7331
calc_stripe_length(u64 type,u64 chunk_len,int num_stripes)7332 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
7333 {
7334 int index = btrfs_bg_flags_to_raid_index(type);
7335 int ncopies = btrfs_raid_array[index].ncopies;
7336 int data_stripes;
7337
7338 switch (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
7339 case BTRFS_BLOCK_GROUP_RAID5:
7340 data_stripes = num_stripes - 1;
7341 break;
7342 case BTRFS_BLOCK_GROUP_RAID6:
7343 data_stripes = num_stripes - 2;
7344 break;
7345 default:
7346 data_stripes = num_stripes / ncopies;
7347 break;
7348 }
7349 return div_u64(chunk_len, data_stripes);
7350 }
7351
verify_one_dev_extent(struct btrfs_fs_info * fs_info,u64 chunk_offset,u64 devid,u64 physical_offset,u64 physical_len)7352 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7353 u64 chunk_offset, u64 devid,
7354 u64 physical_offset, u64 physical_len)
7355 {
7356 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
7357 struct extent_map *em;
7358 struct map_lookup *map;
7359 struct btrfs_device *dev;
7360 u64 stripe_len;
7361 bool found = false;
7362 int ret = 0;
7363 int i;
7364
7365 read_lock(&em_tree->lock);
7366 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7367 read_unlock(&em_tree->lock);
7368
7369 if (!em) {
7370 btrfs_err(fs_info,
7371 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7372 physical_offset, devid);
7373 ret = -EUCLEAN;
7374 goto out;
7375 }
7376
7377 map = em->map_lookup;
7378 stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7379 if (physical_len != stripe_len) {
7380 btrfs_err(fs_info,
7381 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7382 physical_offset, devid, em->start, physical_len,
7383 stripe_len);
7384 ret = -EUCLEAN;
7385 goto out;
7386 }
7387
7388 for (i = 0; i < map->num_stripes; i++) {
7389 if (map->stripes[i].dev->devid == devid &&
7390 map->stripes[i].physical == physical_offset) {
7391 found = true;
7392 if (map->verified_stripes >= map->num_stripes) {
7393 btrfs_err(fs_info,
7394 "too many dev extents for chunk %llu found",
7395 em->start);
7396 ret = -EUCLEAN;
7397 goto out;
7398 }
7399 map->verified_stripes++;
7400 break;
7401 }
7402 }
7403 if (!found) {
7404 btrfs_err(fs_info,
7405 "dev extent physical offset %llu devid %llu has no corresponding chunk",
7406 physical_offset, devid);
7407 ret = -EUCLEAN;
7408 }
7409
7410 /* Make sure no dev extent is beyond device bondary */
7411 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
7412 if (!dev) {
7413 btrfs_err(fs_info, "failed to find devid %llu", devid);
7414 ret = -EUCLEAN;
7415 goto out;
7416 }
7417
7418 /* It's possible this device is a dummy for seed device */
7419 if (dev->disk_total_bytes == 0) {
7420 dev = btrfs_find_device(fs_info->fs_devices->seed, devid,
7421 NULL, NULL, false);
7422 if (!dev) {
7423 btrfs_err(fs_info, "failed to find seed devid %llu",
7424 devid);
7425 ret = -EUCLEAN;
7426 goto out;
7427 }
7428 }
7429
7430 if (physical_offset + physical_len > dev->disk_total_bytes) {
7431 btrfs_err(fs_info,
7432 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7433 devid, physical_offset, physical_len,
7434 dev->disk_total_bytes);
7435 ret = -EUCLEAN;
7436 goto out;
7437 }
7438 out:
7439 free_extent_map(em);
7440 return ret;
7441 }
7442
verify_chunk_dev_extent_mapping(struct btrfs_fs_info * fs_info)7443 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7444 {
7445 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
7446 struct extent_map *em;
7447 struct rb_node *node;
7448 int ret = 0;
7449
7450 read_lock(&em_tree->lock);
7451 for (node = rb_first(&em_tree->map); node; node = rb_next(node)) {
7452 em = rb_entry(node, struct extent_map, rb_node);
7453 if (em->map_lookup->num_stripes !=
7454 em->map_lookup->verified_stripes) {
7455 btrfs_err(fs_info,
7456 "chunk %llu has missing dev extent, have %d expect %d",
7457 em->start, em->map_lookup->verified_stripes,
7458 em->map_lookup->num_stripes);
7459 ret = -EUCLEAN;
7460 goto out;
7461 }
7462 }
7463 out:
7464 read_unlock(&em_tree->lock);
7465 return ret;
7466 }
7467
7468 /*
7469 * Ensure that all dev extents are mapped to correct chunk, otherwise
7470 * later chunk allocation/free would cause unexpected behavior.
7471 *
7472 * NOTE: This will iterate through the whole device tree, which should be of
7473 * the same size level as the chunk tree. This slightly increases mount time.
7474 */
btrfs_verify_dev_extents(struct btrfs_fs_info * fs_info)7475 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7476 {
7477 struct btrfs_path *path;
7478 struct btrfs_root *root = fs_info->dev_root;
7479 struct btrfs_key key;
7480 u64 prev_devid = 0;
7481 u64 prev_dev_ext_end = 0;
7482 int ret = 0;
7483
7484 key.objectid = 1;
7485 key.type = BTRFS_DEV_EXTENT_KEY;
7486 key.offset = 0;
7487
7488 path = btrfs_alloc_path();
7489 if (!path)
7490 return -ENOMEM;
7491
7492 path->reada = READA_FORWARD;
7493 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7494 if (ret < 0)
7495 goto out;
7496
7497 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7498 ret = btrfs_next_item(root, path);
7499 if (ret < 0)
7500 goto out;
7501 /* No dev extents at all? Not good */
7502 if (ret > 0) {
7503 ret = -EUCLEAN;
7504 goto out;
7505 }
7506 }
7507 while (1) {
7508 struct extent_buffer *leaf = path->nodes[0];
7509 struct btrfs_dev_extent *dext;
7510 int slot = path->slots[0];
7511 u64 chunk_offset;
7512 u64 physical_offset;
7513 u64 physical_len;
7514 u64 devid;
7515
7516 btrfs_item_key_to_cpu(leaf, &key, slot);
7517 if (key.type != BTRFS_DEV_EXTENT_KEY)
7518 break;
7519 devid = key.objectid;
7520 physical_offset = key.offset;
7521
7522 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7523 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7524 physical_len = btrfs_dev_extent_length(leaf, dext);
7525
7526 /* Check if this dev extent overlaps with the previous one */
7527 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
7528 btrfs_err(fs_info,
7529 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7530 devid, physical_offset, prev_dev_ext_end);
7531 ret = -EUCLEAN;
7532 goto out;
7533 }
7534
7535 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7536 physical_offset, physical_len);
7537 if (ret < 0)
7538 goto out;
7539 prev_devid = devid;
7540 prev_dev_ext_end = physical_offset + physical_len;
7541
7542 ret = btrfs_next_item(root, path);
7543 if (ret < 0)
7544 goto out;
7545 if (ret > 0) {
7546 ret = 0;
7547 break;
7548 }
7549 }
7550
7551 /* Ensure all chunks have corresponding dev extents */
7552 ret = verify_chunk_dev_extent_mapping(fs_info);
7553 out:
7554 btrfs_free_path(path);
7555 return ret;
7556 }
7557