1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/blkdev.h>
9 #include <linux/list_sort.h>
10 #include <linux/iversion.h>
11 #include "ctree.h"
12 #include "tree-log.h"
13 #include "disk-io.h"
14 #include "locking.h"
15 #include "print-tree.h"
16 #include "backref.h"
17 #include "compression.h"
18 #include "qgroup.h"
19 #include "inode-map.h"
20 
21 /* magic values for the inode_only field in btrfs_log_inode:
22  *
23  * LOG_INODE_ALL means to log everything
24  * LOG_INODE_EXISTS means to log just enough to recreate the inode
25  * during log replay
26  */
27 #define LOG_INODE_ALL 0
28 #define LOG_INODE_EXISTS 1
29 #define LOG_OTHER_INODE 2
30 
31 /*
32  * directory trouble cases
33  *
34  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
35  * log, we must force a full commit before doing an fsync of the directory
36  * where the unlink was done.
37  * ---> record transid of last unlink/rename per directory
38  *
39  * mkdir foo/some_dir
40  * normal commit
41  * rename foo/some_dir foo2/some_dir
42  * mkdir foo/some_dir
43  * fsync foo/some_dir/some_file
44  *
45  * The fsync above will unlink the original some_dir without recording
46  * it in its new location (foo2).  After a crash, some_dir will be gone
47  * unless the fsync of some_file forces a full commit
48  *
49  * 2) we must log any new names for any file or dir that is in the fsync
50  * log. ---> check inode while renaming/linking.
51  *
52  * 2a) we must log any new names for any file or dir during rename
53  * when the directory they are being removed from was logged.
54  * ---> check inode and old parent dir during rename
55  *
56  *  2a is actually the more important variant.  With the extra logging
57  *  a crash might unlink the old name without recreating the new one
58  *
59  * 3) after a crash, we must go through any directories with a link count
60  * of zero and redo the rm -rf
61  *
62  * mkdir f1/foo
63  * normal commit
64  * rm -rf f1/foo
65  * fsync(f1)
66  *
67  * The directory f1 was fully removed from the FS, but fsync was never
68  * called on f1, only its parent dir.  After a crash the rm -rf must
69  * be replayed.  This must be able to recurse down the entire
70  * directory tree.  The inode link count fixup code takes care of the
71  * ugly details.
72  */
73 
74 /*
75  * stages for the tree walking.  The first
76  * stage (0) is to only pin down the blocks we find
77  * the second stage (1) is to make sure that all the inodes
78  * we find in the log are created in the subvolume.
79  *
80  * The last stage is to deal with directories and links and extents
81  * and all the other fun semantics
82  */
83 #define LOG_WALK_PIN_ONLY 0
84 #define LOG_WALK_REPLAY_INODES 1
85 #define LOG_WALK_REPLAY_DIR_INDEX 2
86 #define LOG_WALK_REPLAY_ALL 3
87 
88 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
89 			   struct btrfs_root *root, struct btrfs_inode *inode,
90 			   int inode_only,
91 			   const loff_t start,
92 			   const loff_t end,
93 			   struct btrfs_log_ctx *ctx);
94 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
95 			     struct btrfs_root *root,
96 			     struct btrfs_path *path, u64 objectid);
97 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
98 				       struct btrfs_root *root,
99 				       struct btrfs_root *log,
100 				       struct btrfs_path *path,
101 				       u64 dirid, int del_all);
102 
103 /*
104  * tree logging is a special write ahead log used to make sure that
105  * fsyncs and O_SYNCs can happen without doing full tree commits.
106  *
107  * Full tree commits are expensive because they require commonly
108  * modified blocks to be recowed, creating many dirty pages in the
109  * extent tree an 4x-6x higher write load than ext3.
110  *
111  * Instead of doing a tree commit on every fsync, we use the
112  * key ranges and transaction ids to find items for a given file or directory
113  * that have changed in this transaction.  Those items are copied into
114  * a special tree (one per subvolume root), that tree is written to disk
115  * and then the fsync is considered complete.
116  *
117  * After a crash, items are copied out of the log-tree back into the
118  * subvolume tree.  Any file data extents found are recorded in the extent
119  * allocation tree, and the log-tree freed.
120  *
121  * The log tree is read three times, once to pin down all the extents it is
122  * using in ram and once, once to create all the inodes logged in the tree
123  * and once to do all the other items.
124  */
125 
126 /*
127  * start a sub transaction and setup the log tree
128  * this increments the log tree writer count to make the people
129  * syncing the tree wait for us to finish
130  */
start_log_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_log_ctx * ctx)131 static int start_log_trans(struct btrfs_trans_handle *trans,
132 			   struct btrfs_root *root,
133 			   struct btrfs_log_ctx *ctx)
134 {
135 	struct btrfs_fs_info *fs_info = root->fs_info;
136 	int ret = 0;
137 
138 	mutex_lock(&root->log_mutex);
139 
140 	if (root->log_root) {
141 		if (btrfs_need_log_full_commit(fs_info, trans)) {
142 			ret = -EAGAIN;
143 			goto out;
144 		}
145 
146 		if (!root->log_start_pid) {
147 			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
148 			root->log_start_pid = current->pid;
149 		} else if (root->log_start_pid != current->pid) {
150 			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
151 		}
152 	} else {
153 		mutex_lock(&fs_info->tree_log_mutex);
154 		if (!fs_info->log_root_tree)
155 			ret = btrfs_init_log_root_tree(trans, fs_info);
156 		mutex_unlock(&fs_info->tree_log_mutex);
157 		if (ret)
158 			goto out;
159 
160 		ret = btrfs_add_log_tree(trans, root);
161 		if (ret)
162 			goto out;
163 
164 		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
165 		root->log_start_pid = current->pid;
166 	}
167 
168 	atomic_inc(&root->log_batch);
169 	atomic_inc(&root->log_writers);
170 	if (ctx) {
171 		int index = root->log_transid % 2;
172 		list_add_tail(&ctx->list, &root->log_ctxs[index]);
173 		ctx->log_transid = root->log_transid;
174 	}
175 
176 out:
177 	mutex_unlock(&root->log_mutex);
178 	return ret;
179 }
180 
181 /*
182  * returns 0 if there was a log transaction running and we were able
183  * to join, or returns -ENOENT if there were not transactions
184  * in progress
185  */
join_running_log_trans(struct btrfs_root * root)186 static int join_running_log_trans(struct btrfs_root *root)
187 {
188 	int ret = -ENOENT;
189 
190 	smp_mb();
191 	if (!root->log_root)
192 		return -ENOENT;
193 
194 	mutex_lock(&root->log_mutex);
195 	if (root->log_root) {
196 		ret = 0;
197 		atomic_inc(&root->log_writers);
198 	}
199 	mutex_unlock(&root->log_mutex);
200 	return ret;
201 }
202 
203 /*
204  * This either makes the current running log transaction wait
205  * until you call btrfs_end_log_trans() or it makes any future
206  * log transactions wait until you call btrfs_end_log_trans()
207  */
btrfs_pin_log_trans(struct btrfs_root * root)208 int btrfs_pin_log_trans(struct btrfs_root *root)
209 {
210 	int ret = -ENOENT;
211 
212 	mutex_lock(&root->log_mutex);
213 	atomic_inc(&root->log_writers);
214 	mutex_unlock(&root->log_mutex);
215 	return ret;
216 }
217 
218 /*
219  * indicate we're done making changes to the log tree
220  * and wake up anyone waiting to do a sync
221  */
btrfs_end_log_trans(struct btrfs_root * root)222 void btrfs_end_log_trans(struct btrfs_root *root)
223 {
224 	if (atomic_dec_and_test(&root->log_writers)) {
225 		/* atomic_dec_and_test implies a barrier */
226 		cond_wake_up_nomb(&root->log_writer_wait);
227 	}
228 }
229 
230 
231 /*
232  * the walk control struct is used to pass state down the chain when
233  * processing the log tree.  The stage field tells us which part
234  * of the log tree processing we are currently doing.  The others
235  * are state fields used for that specific part
236  */
237 struct walk_control {
238 	/* should we free the extent on disk when done?  This is used
239 	 * at transaction commit time while freeing a log tree
240 	 */
241 	int free;
242 
243 	/* should we write out the extent buffer?  This is used
244 	 * while flushing the log tree to disk during a sync
245 	 */
246 	int write;
247 
248 	/* should we wait for the extent buffer io to finish?  Also used
249 	 * while flushing the log tree to disk for a sync
250 	 */
251 	int wait;
252 
253 	/* pin only walk, we record which extents on disk belong to the
254 	 * log trees
255 	 */
256 	int pin;
257 
258 	/* what stage of the replay code we're currently in */
259 	int stage;
260 
261 	/*
262 	 * Ignore any items from the inode currently being processed. Needs
263 	 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
264 	 * the LOG_WALK_REPLAY_INODES stage.
265 	 */
266 	bool ignore_cur_inode;
267 
268 	/* the root we are currently replaying */
269 	struct btrfs_root *replay_dest;
270 
271 	/* the trans handle for the current replay */
272 	struct btrfs_trans_handle *trans;
273 
274 	/* the function that gets used to process blocks we find in the
275 	 * tree.  Note the extent_buffer might not be up to date when it is
276 	 * passed in, and it must be checked or read if you need the data
277 	 * inside it
278 	 */
279 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
280 			    struct walk_control *wc, u64 gen, int level);
281 };
282 
283 /*
284  * process_func used to pin down extents, write them or wait on them
285  */
process_one_buffer(struct btrfs_root * log,struct extent_buffer * eb,struct walk_control * wc,u64 gen,int level)286 static int process_one_buffer(struct btrfs_root *log,
287 			      struct extent_buffer *eb,
288 			      struct walk_control *wc, u64 gen, int level)
289 {
290 	struct btrfs_fs_info *fs_info = log->fs_info;
291 	int ret = 0;
292 
293 	/*
294 	 * If this fs is mixed then we need to be able to process the leaves to
295 	 * pin down any logged extents, so we have to read the block.
296 	 */
297 	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
298 		ret = btrfs_read_buffer(eb, gen, level, NULL);
299 		if (ret)
300 			return ret;
301 	}
302 
303 	if (wc->pin)
304 		ret = btrfs_pin_extent_for_log_replay(fs_info, eb->start,
305 						      eb->len);
306 
307 	if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
308 		if (wc->pin && btrfs_header_level(eb) == 0)
309 			ret = btrfs_exclude_logged_extents(fs_info, eb);
310 		if (wc->write)
311 			btrfs_write_tree_block(eb);
312 		if (wc->wait)
313 			btrfs_wait_tree_block_writeback(eb);
314 	}
315 	return ret;
316 }
317 
318 /*
319  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
320  * to the src data we are copying out.
321  *
322  * root is the tree we are copying into, and path is a scratch
323  * path for use in this function (it should be released on entry and
324  * will be released on exit).
325  *
326  * If the key is already in the destination tree the existing item is
327  * overwritten.  If the existing item isn't big enough, it is extended.
328  * If it is too large, it is truncated.
329  *
330  * If the key isn't in the destination yet, a new item is inserted.
331  */
overwrite_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)332 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
333 				   struct btrfs_root *root,
334 				   struct btrfs_path *path,
335 				   struct extent_buffer *eb, int slot,
336 				   struct btrfs_key *key)
337 {
338 	struct btrfs_fs_info *fs_info = root->fs_info;
339 	int ret;
340 	u32 item_size;
341 	u64 saved_i_size = 0;
342 	int save_old_i_size = 0;
343 	unsigned long src_ptr;
344 	unsigned long dst_ptr;
345 	int overwrite_root = 0;
346 	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
347 
348 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
349 		overwrite_root = 1;
350 
351 	item_size = btrfs_item_size_nr(eb, slot);
352 	src_ptr = btrfs_item_ptr_offset(eb, slot);
353 
354 	/* look for the key in the destination tree */
355 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
356 	if (ret < 0)
357 		return ret;
358 
359 	if (ret == 0) {
360 		char *src_copy;
361 		char *dst_copy;
362 		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
363 						  path->slots[0]);
364 		if (dst_size != item_size)
365 			goto insert;
366 
367 		if (item_size == 0) {
368 			btrfs_release_path(path);
369 			return 0;
370 		}
371 		dst_copy = kmalloc(item_size, GFP_NOFS);
372 		src_copy = kmalloc(item_size, GFP_NOFS);
373 		if (!dst_copy || !src_copy) {
374 			btrfs_release_path(path);
375 			kfree(dst_copy);
376 			kfree(src_copy);
377 			return -ENOMEM;
378 		}
379 
380 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
381 
382 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
383 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
384 				   item_size);
385 		ret = memcmp(dst_copy, src_copy, item_size);
386 
387 		kfree(dst_copy);
388 		kfree(src_copy);
389 		/*
390 		 * they have the same contents, just return, this saves
391 		 * us from cowing blocks in the destination tree and doing
392 		 * extra writes that may not have been done by a previous
393 		 * sync
394 		 */
395 		if (ret == 0) {
396 			btrfs_release_path(path);
397 			return 0;
398 		}
399 
400 		/*
401 		 * We need to load the old nbytes into the inode so when we
402 		 * replay the extents we've logged we get the right nbytes.
403 		 */
404 		if (inode_item) {
405 			struct btrfs_inode_item *item;
406 			u64 nbytes;
407 			u32 mode;
408 
409 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
410 					      struct btrfs_inode_item);
411 			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
412 			item = btrfs_item_ptr(eb, slot,
413 					      struct btrfs_inode_item);
414 			btrfs_set_inode_nbytes(eb, item, nbytes);
415 
416 			/*
417 			 * If this is a directory we need to reset the i_size to
418 			 * 0 so that we can set it up properly when replaying
419 			 * the rest of the items in this log.
420 			 */
421 			mode = btrfs_inode_mode(eb, item);
422 			if (S_ISDIR(mode))
423 				btrfs_set_inode_size(eb, item, 0);
424 		}
425 	} else if (inode_item) {
426 		struct btrfs_inode_item *item;
427 		u32 mode;
428 
429 		/*
430 		 * New inode, set nbytes to 0 so that the nbytes comes out
431 		 * properly when we replay the extents.
432 		 */
433 		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
434 		btrfs_set_inode_nbytes(eb, item, 0);
435 
436 		/*
437 		 * If this is a directory we need to reset the i_size to 0 so
438 		 * that we can set it up properly when replaying the rest of
439 		 * the items in this log.
440 		 */
441 		mode = btrfs_inode_mode(eb, item);
442 		if (S_ISDIR(mode))
443 			btrfs_set_inode_size(eb, item, 0);
444 	}
445 insert:
446 	btrfs_release_path(path);
447 	/* try to insert the key into the destination tree */
448 	path->skip_release_on_error = 1;
449 	ret = btrfs_insert_empty_item(trans, root, path,
450 				      key, item_size);
451 	path->skip_release_on_error = 0;
452 
453 	/* make sure any existing item is the correct size */
454 	if (ret == -EEXIST || ret == -EOVERFLOW) {
455 		u32 found_size;
456 		found_size = btrfs_item_size_nr(path->nodes[0],
457 						path->slots[0]);
458 		if (found_size > item_size)
459 			btrfs_truncate_item(fs_info, path, item_size, 1);
460 		else if (found_size < item_size)
461 			btrfs_extend_item(fs_info, path,
462 					  item_size - found_size);
463 	} else if (ret) {
464 		return ret;
465 	}
466 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
467 					path->slots[0]);
468 
469 	/* don't overwrite an existing inode if the generation number
470 	 * was logged as zero.  This is done when the tree logging code
471 	 * is just logging an inode to make sure it exists after recovery.
472 	 *
473 	 * Also, don't overwrite i_size on directories during replay.
474 	 * log replay inserts and removes directory items based on the
475 	 * state of the tree found in the subvolume, and i_size is modified
476 	 * as it goes
477 	 */
478 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
479 		struct btrfs_inode_item *src_item;
480 		struct btrfs_inode_item *dst_item;
481 
482 		src_item = (struct btrfs_inode_item *)src_ptr;
483 		dst_item = (struct btrfs_inode_item *)dst_ptr;
484 
485 		if (btrfs_inode_generation(eb, src_item) == 0) {
486 			struct extent_buffer *dst_eb = path->nodes[0];
487 			const u64 ino_size = btrfs_inode_size(eb, src_item);
488 
489 			/*
490 			 * For regular files an ino_size == 0 is used only when
491 			 * logging that an inode exists, as part of a directory
492 			 * fsync, and the inode wasn't fsynced before. In this
493 			 * case don't set the size of the inode in the fs/subvol
494 			 * tree, otherwise we would be throwing valid data away.
495 			 */
496 			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
497 			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
498 			    ino_size != 0) {
499 				struct btrfs_map_token token;
500 
501 				btrfs_init_map_token(&token);
502 				btrfs_set_token_inode_size(dst_eb, dst_item,
503 							   ino_size, &token);
504 			}
505 			goto no_copy;
506 		}
507 
508 		if (overwrite_root &&
509 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
510 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
511 			save_old_i_size = 1;
512 			saved_i_size = btrfs_inode_size(path->nodes[0],
513 							dst_item);
514 		}
515 	}
516 
517 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
518 			   src_ptr, item_size);
519 
520 	if (save_old_i_size) {
521 		struct btrfs_inode_item *dst_item;
522 		dst_item = (struct btrfs_inode_item *)dst_ptr;
523 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
524 	}
525 
526 	/* make sure the generation is filled in */
527 	if (key->type == BTRFS_INODE_ITEM_KEY) {
528 		struct btrfs_inode_item *dst_item;
529 		dst_item = (struct btrfs_inode_item *)dst_ptr;
530 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
531 			btrfs_set_inode_generation(path->nodes[0], dst_item,
532 						   trans->transid);
533 		}
534 	}
535 no_copy:
536 	btrfs_mark_buffer_dirty(path->nodes[0]);
537 	btrfs_release_path(path);
538 	return 0;
539 }
540 
541 /*
542  * simple helper to read an inode off the disk from a given root
543  * This can only be called for subvolume roots and not for the log
544  */
read_one_inode(struct btrfs_root * root,u64 objectid)545 static noinline struct inode *read_one_inode(struct btrfs_root *root,
546 					     u64 objectid)
547 {
548 	struct btrfs_key key;
549 	struct inode *inode;
550 
551 	key.objectid = objectid;
552 	key.type = BTRFS_INODE_ITEM_KEY;
553 	key.offset = 0;
554 	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
555 	if (IS_ERR(inode))
556 		inode = NULL;
557 	return inode;
558 }
559 
560 /* replays a single extent in 'eb' at 'slot' with 'key' into the
561  * subvolume 'root'.  path is released on entry and should be released
562  * on exit.
563  *
564  * extents in the log tree have not been allocated out of the extent
565  * tree yet.  So, this completes the allocation, taking a reference
566  * as required if the extent already exists or creating a new extent
567  * if it isn't in the extent allocation tree yet.
568  *
569  * The extent is inserted into the file, dropping any existing extents
570  * from the file that overlap the new one.
571  */
replay_one_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)572 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
573 				      struct btrfs_root *root,
574 				      struct btrfs_path *path,
575 				      struct extent_buffer *eb, int slot,
576 				      struct btrfs_key *key)
577 {
578 	struct btrfs_fs_info *fs_info = root->fs_info;
579 	int found_type;
580 	u64 extent_end;
581 	u64 start = key->offset;
582 	u64 nbytes = 0;
583 	struct btrfs_file_extent_item *item;
584 	struct inode *inode = NULL;
585 	unsigned long size;
586 	int ret = 0;
587 
588 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
589 	found_type = btrfs_file_extent_type(eb, item);
590 
591 	if (found_type == BTRFS_FILE_EXTENT_REG ||
592 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
593 		nbytes = btrfs_file_extent_num_bytes(eb, item);
594 		extent_end = start + nbytes;
595 
596 		/*
597 		 * We don't add to the inodes nbytes if we are prealloc or a
598 		 * hole.
599 		 */
600 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
601 			nbytes = 0;
602 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
603 		size = btrfs_file_extent_ram_bytes(eb, item);
604 		nbytes = btrfs_file_extent_ram_bytes(eb, item);
605 		extent_end = ALIGN(start + size,
606 				   fs_info->sectorsize);
607 	} else {
608 		ret = 0;
609 		goto out;
610 	}
611 
612 	inode = read_one_inode(root, key->objectid);
613 	if (!inode) {
614 		ret = -EIO;
615 		goto out;
616 	}
617 
618 	/*
619 	 * first check to see if we already have this extent in the
620 	 * file.  This must be done before the btrfs_drop_extents run
621 	 * so we don't try to drop this extent.
622 	 */
623 	ret = btrfs_lookup_file_extent(trans, root, path,
624 			btrfs_ino(BTRFS_I(inode)), start, 0);
625 
626 	if (ret == 0 &&
627 	    (found_type == BTRFS_FILE_EXTENT_REG ||
628 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
629 		struct btrfs_file_extent_item cmp1;
630 		struct btrfs_file_extent_item cmp2;
631 		struct btrfs_file_extent_item *existing;
632 		struct extent_buffer *leaf;
633 
634 		leaf = path->nodes[0];
635 		existing = btrfs_item_ptr(leaf, path->slots[0],
636 					  struct btrfs_file_extent_item);
637 
638 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
639 				   sizeof(cmp1));
640 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
641 				   sizeof(cmp2));
642 
643 		/*
644 		 * we already have a pointer to this exact extent,
645 		 * we don't have to do anything
646 		 */
647 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
648 			btrfs_release_path(path);
649 			goto out;
650 		}
651 	}
652 	btrfs_release_path(path);
653 
654 	/* drop any overlapping extents */
655 	ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
656 	if (ret)
657 		goto out;
658 
659 	if (found_type == BTRFS_FILE_EXTENT_REG ||
660 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
661 		u64 offset;
662 		unsigned long dest_offset;
663 		struct btrfs_key ins;
664 
665 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
666 		    btrfs_fs_incompat(fs_info, NO_HOLES))
667 			goto update_inode;
668 
669 		ret = btrfs_insert_empty_item(trans, root, path, key,
670 					      sizeof(*item));
671 		if (ret)
672 			goto out;
673 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
674 						    path->slots[0]);
675 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
676 				(unsigned long)item,  sizeof(*item));
677 
678 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
679 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
680 		ins.type = BTRFS_EXTENT_ITEM_KEY;
681 		offset = key->offset - btrfs_file_extent_offset(eb, item);
682 
683 		/*
684 		 * Manually record dirty extent, as here we did a shallow
685 		 * file extent item copy and skip normal backref update,
686 		 * but modifying extent tree all by ourselves.
687 		 * So need to manually record dirty extent for qgroup,
688 		 * as the owner of the file extent changed from log tree
689 		 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
690 		 */
691 		ret = btrfs_qgroup_trace_extent(trans,
692 				btrfs_file_extent_disk_bytenr(eb, item),
693 				btrfs_file_extent_disk_num_bytes(eb, item),
694 				GFP_NOFS);
695 		if (ret < 0)
696 			goto out;
697 
698 		if (ins.objectid > 0) {
699 			u64 csum_start;
700 			u64 csum_end;
701 			LIST_HEAD(ordered_sums);
702 			/*
703 			 * is this extent already allocated in the extent
704 			 * allocation tree?  If so, just add a reference
705 			 */
706 			ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
707 						ins.offset);
708 			if (ret == 0) {
709 				ret = btrfs_inc_extent_ref(trans, root,
710 						ins.objectid, ins.offset,
711 						0, root->root_key.objectid,
712 						key->objectid, offset);
713 				if (ret)
714 					goto out;
715 			} else {
716 				/*
717 				 * insert the extent pointer in the extent
718 				 * allocation tree
719 				 */
720 				ret = btrfs_alloc_logged_file_extent(trans,
721 						root->root_key.objectid,
722 						key->objectid, offset, &ins);
723 				if (ret)
724 					goto out;
725 			}
726 			btrfs_release_path(path);
727 
728 			if (btrfs_file_extent_compression(eb, item)) {
729 				csum_start = ins.objectid;
730 				csum_end = csum_start + ins.offset;
731 			} else {
732 				csum_start = ins.objectid +
733 					btrfs_file_extent_offset(eb, item);
734 				csum_end = csum_start +
735 					btrfs_file_extent_num_bytes(eb, item);
736 			}
737 
738 			ret = btrfs_lookup_csums_range(root->log_root,
739 						csum_start, csum_end - 1,
740 						&ordered_sums, 0);
741 			if (ret)
742 				goto out;
743 			/*
744 			 * Now delete all existing cums in the csum root that
745 			 * cover our range. We do this because we can have an
746 			 * extent that is completely referenced by one file
747 			 * extent item and partially referenced by another
748 			 * file extent item (like after using the clone or
749 			 * extent_same ioctls). In this case if we end up doing
750 			 * the replay of the one that partially references the
751 			 * extent first, and we do not do the csum deletion
752 			 * below, we can get 2 csum items in the csum tree that
753 			 * overlap each other. For example, imagine our log has
754 			 * the two following file extent items:
755 			 *
756 			 * key (257 EXTENT_DATA 409600)
757 			 *     extent data disk byte 12845056 nr 102400
758 			 *     extent data offset 20480 nr 20480 ram 102400
759 			 *
760 			 * key (257 EXTENT_DATA 819200)
761 			 *     extent data disk byte 12845056 nr 102400
762 			 *     extent data offset 0 nr 102400 ram 102400
763 			 *
764 			 * Where the second one fully references the 100K extent
765 			 * that starts at disk byte 12845056, and the log tree
766 			 * has a single csum item that covers the entire range
767 			 * of the extent:
768 			 *
769 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
770 			 *
771 			 * After the first file extent item is replayed, the
772 			 * csum tree gets the following csum item:
773 			 *
774 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
775 			 *
776 			 * Which covers the 20K sub-range starting at offset 20K
777 			 * of our extent. Now when we replay the second file
778 			 * extent item, if we do not delete existing csum items
779 			 * that cover any of its blocks, we end up getting two
780 			 * csum items in our csum tree that overlap each other:
781 			 *
782 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
783 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
784 			 *
785 			 * Which is a problem, because after this anyone trying
786 			 * to lookup up for the checksum of any block of our
787 			 * extent starting at an offset of 40K or higher, will
788 			 * end up looking at the second csum item only, which
789 			 * does not contain the checksum for any block starting
790 			 * at offset 40K or higher of our extent.
791 			 */
792 			while (!list_empty(&ordered_sums)) {
793 				struct btrfs_ordered_sum *sums;
794 				sums = list_entry(ordered_sums.next,
795 						struct btrfs_ordered_sum,
796 						list);
797 				if (!ret)
798 					ret = btrfs_del_csums(trans,
799 							      fs_info->csum_root,
800 							      sums->bytenr,
801 							      sums->len);
802 				if (!ret)
803 					ret = btrfs_csum_file_blocks(trans,
804 						fs_info->csum_root, sums);
805 				list_del(&sums->list);
806 				kfree(sums);
807 			}
808 			if (ret)
809 				goto out;
810 		} else {
811 			btrfs_release_path(path);
812 		}
813 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
814 		/* inline extents are easy, we just overwrite them */
815 		ret = overwrite_item(trans, root, path, eb, slot, key);
816 		if (ret)
817 			goto out;
818 	}
819 
820 	inode_add_bytes(inode, nbytes);
821 update_inode:
822 	ret = btrfs_update_inode(trans, root, inode);
823 out:
824 	if (inode)
825 		iput(inode);
826 	return ret;
827 }
828 
829 /*
830  * when cleaning up conflicts between the directory names in the
831  * subvolume, directory names in the log and directory names in the
832  * inode back references, we may have to unlink inodes from directories.
833  *
834  * This is a helper function to do the unlink of a specific directory
835  * item
836  */
drop_one_dir_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_inode * dir,struct btrfs_dir_item * di)837 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
838 				      struct btrfs_root *root,
839 				      struct btrfs_path *path,
840 				      struct btrfs_inode *dir,
841 				      struct btrfs_dir_item *di)
842 {
843 	struct inode *inode;
844 	char *name;
845 	int name_len;
846 	struct extent_buffer *leaf;
847 	struct btrfs_key location;
848 	int ret;
849 
850 	leaf = path->nodes[0];
851 
852 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
853 	name_len = btrfs_dir_name_len(leaf, di);
854 	name = kmalloc(name_len, GFP_NOFS);
855 	if (!name)
856 		return -ENOMEM;
857 
858 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
859 	btrfs_release_path(path);
860 
861 	inode = read_one_inode(root, location.objectid);
862 	if (!inode) {
863 		ret = -EIO;
864 		goto out;
865 	}
866 
867 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
868 	if (ret)
869 		goto out;
870 
871 	ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
872 			name_len);
873 	if (ret)
874 		goto out;
875 	else
876 		ret = btrfs_run_delayed_items(trans);
877 out:
878 	kfree(name);
879 	iput(inode);
880 	return ret;
881 }
882 
883 /*
884  * See if a given name and sequence number found in an inode back reference are
885  * already in a directory and correctly point to this inode.
886  *
887  * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it
888  * exists.
889  */
inode_in_dir(struct btrfs_root * root,struct btrfs_path * path,u64 dirid,u64 objectid,u64 index,const char * name,int name_len)890 static noinline int inode_in_dir(struct btrfs_root *root,
891 				 struct btrfs_path *path,
892 				 u64 dirid, u64 objectid, u64 index,
893 				 const char *name, int name_len)
894 {
895 	struct btrfs_dir_item *di;
896 	struct btrfs_key location;
897 	int ret = 0;
898 
899 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
900 					 index, name, name_len, 0);
901 	if (IS_ERR(di)) {
902 		if (PTR_ERR(di) != -ENOENT)
903 			ret = PTR_ERR(di);
904 		goto out;
905 	} else if (di) {
906 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
907 		if (location.objectid != objectid)
908 			goto out;
909 	} else {
910 		goto out;
911 	}
912 
913 	btrfs_release_path(path);
914 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
915 	if (IS_ERR(di)) {
916 		ret = PTR_ERR(di);
917 		goto out;
918 	} else if (di) {
919 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
920 		if (location.objectid == objectid)
921 			ret = 1;
922 	}
923 out:
924 	btrfs_release_path(path);
925 	return ret;
926 }
927 
928 /*
929  * helper function to check a log tree for a named back reference in
930  * an inode.  This is used to decide if a back reference that is
931  * found in the subvolume conflicts with what we find in the log.
932  *
933  * inode backreferences may have multiple refs in a single item,
934  * during replay we process one reference at a time, and we don't
935  * want to delete valid links to a file from the subvolume if that
936  * link is also in the log.
937  */
backref_in_log(struct btrfs_root * log,struct btrfs_key * key,u64 ref_objectid,const char * name,int namelen)938 static noinline int backref_in_log(struct btrfs_root *log,
939 				   struct btrfs_key *key,
940 				   u64 ref_objectid,
941 				   const char *name, int namelen)
942 {
943 	struct btrfs_path *path;
944 	struct btrfs_inode_ref *ref;
945 	unsigned long ptr;
946 	unsigned long ptr_end;
947 	unsigned long name_ptr;
948 	int found_name_len;
949 	int item_size;
950 	int ret;
951 	int match = 0;
952 
953 	path = btrfs_alloc_path();
954 	if (!path)
955 		return -ENOMEM;
956 
957 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
958 	if (ret != 0)
959 		goto out;
960 
961 	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
962 
963 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
964 		if (btrfs_find_name_in_ext_backref(path->nodes[0],
965 						   path->slots[0],
966 						   ref_objectid,
967 						   name, namelen, NULL))
968 			match = 1;
969 
970 		goto out;
971 	}
972 
973 	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
974 	ptr_end = ptr + item_size;
975 	while (ptr < ptr_end) {
976 		ref = (struct btrfs_inode_ref *)ptr;
977 		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
978 		if (found_name_len == namelen) {
979 			name_ptr = (unsigned long)(ref + 1);
980 			ret = memcmp_extent_buffer(path->nodes[0], name,
981 						   name_ptr, namelen);
982 			if (ret == 0) {
983 				match = 1;
984 				goto out;
985 			}
986 		}
987 		ptr = (unsigned long)(ref + 1) + found_name_len;
988 	}
989 out:
990 	btrfs_free_path(path);
991 	return match;
992 }
993 
__add_inode_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_root * log_root,struct btrfs_inode * dir,struct btrfs_inode * inode,u64 inode_objectid,u64 parent_objectid,u64 ref_index,char * name,int namelen,int * search_done)994 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
995 				  struct btrfs_root *root,
996 				  struct btrfs_path *path,
997 				  struct btrfs_root *log_root,
998 				  struct btrfs_inode *dir,
999 				  struct btrfs_inode *inode,
1000 				  u64 inode_objectid, u64 parent_objectid,
1001 				  u64 ref_index, char *name, int namelen,
1002 				  int *search_done)
1003 {
1004 	int ret;
1005 	char *victim_name;
1006 	int victim_name_len;
1007 	struct extent_buffer *leaf;
1008 	struct btrfs_dir_item *di;
1009 	struct btrfs_key search_key;
1010 	struct btrfs_inode_extref *extref;
1011 
1012 again:
1013 	/* Search old style refs */
1014 	search_key.objectid = inode_objectid;
1015 	search_key.type = BTRFS_INODE_REF_KEY;
1016 	search_key.offset = parent_objectid;
1017 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1018 	if (ret == 0) {
1019 		struct btrfs_inode_ref *victim_ref;
1020 		unsigned long ptr;
1021 		unsigned long ptr_end;
1022 
1023 		leaf = path->nodes[0];
1024 
1025 		/* are we trying to overwrite a back ref for the root directory
1026 		 * if so, just jump out, we're done
1027 		 */
1028 		if (search_key.objectid == search_key.offset)
1029 			return 1;
1030 
1031 		/* check all the names in this back reference to see
1032 		 * if they are in the log.  if so, we allow them to stay
1033 		 * otherwise they must be unlinked as a conflict
1034 		 */
1035 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1036 		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1037 		while (ptr < ptr_end) {
1038 			victim_ref = (struct btrfs_inode_ref *)ptr;
1039 			victim_name_len = btrfs_inode_ref_name_len(leaf,
1040 								   victim_ref);
1041 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1042 			if (!victim_name)
1043 				return -ENOMEM;
1044 
1045 			read_extent_buffer(leaf, victim_name,
1046 					   (unsigned long)(victim_ref + 1),
1047 					   victim_name_len);
1048 
1049 			if (!backref_in_log(log_root, &search_key,
1050 					    parent_objectid,
1051 					    victim_name,
1052 					    victim_name_len)) {
1053 				inc_nlink(&inode->vfs_inode);
1054 				btrfs_release_path(path);
1055 
1056 				ret = btrfs_unlink_inode(trans, root, dir, inode,
1057 						victim_name, victim_name_len);
1058 				kfree(victim_name);
1059 				if (ret)
1060 					return ret;
1061 				ret = btrfs_run_delayed_items(trans);
1062 				if (ret)
1063 					return ret;
1064 				*search_done = 1;
1065 				goto again;
1066 			}
1067 			kfree(victim_name);
1068 
1069 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1070 		}
1071 
1072 		/*
1073 		 * NOTE: we have searched root tree and checked the
1074 		 * corresponding ref, it does not need to check again.
1075 		 */
1076 		*search_done = 1;
1077 	}
1078 	btrfs_release_path(path);
1079 
1080 	/* Same search but for extended refs */
1081 	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1082 					   inode_objectid, parent_objectid, 0,
1083 					   0);
1084 	if (IS_ERR(extref)) {
1085 		return PTR_ERR(extref);
1086 	} else if (extref) {
1087 		u32 item_size;
1088 		u32 cur_offset = 0;
1089 		unsigned long base;
1090 		struct inode *victim_parent;
1091 
1092 		leaf = path->nodes[0];
1093 
1094 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1095 		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1096 
1097 		while (cur_offset < item_size) {
1098 			extref = (struct btrfs_inode_extref *)(base + cur_offset);
1099 
1100 			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1101 
1102 			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1103 				goto next;
1104 
1105 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1106 			if (!victim_name)
1107 				return -ENOMEM;
1108 			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1109 					   victim_name_len);
1110 
1111 			search_key.objectid = inode_objectid;
1112 			search_key.type = BTRFS_INODE_EXTREF_KEY;
1113 			search_key.offset = btrfs_extref_hash(parent_objectid,
1114 							      victim_name,
1115 							      victim_name_len);
1116 			ret = 0;
1117 			if (!backref_in_log(log_root, &search_key,
1118 					    parent_objectid, victim_name,
1119 					    victim_name_len)) {
1120 				ret = -ENOENT;
1121 				victim_parent = read_one_inode(root,
1122 						parent_objectid);
1123 				if (victim_parent) {
1124 					inc_nlink(&inode->vfs_inode);
1125 					btrfs_release_path(path);
1126 
1127 					ret = btrfs_unlink_inode(trans, root,
1128 							BTRFS_I(victim_parent),
1129 							inode,
1130 							victim_name,
1131 							victim_name_len);
1132 					if (!ret)
1133 						ret = btrfs_run_delayed_items(
1134 								  trans);
1135 				}
1136 				iput(victim_parent);
1137 				kfree(victim_name);
1138 				if (ret)
1139 					return ret;
1140 				*search_done = 1;
1141 				goto again;
1142 			}
1143 			kfree(victim_name);
1144 next:
1145 			cur_offset += victim_name_len + sizeof(*extref);
1146 		}
1147 		*search_done = 1;
1148 	}
1149 	btrfs_release_path(path);
1150 
1151 	/* look for a conflicting sequence number */
1152 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1153 					 ref_index, name, namelen, 0);
1154 	if (IS_ERR(di)) {
1155 		if (PTR_ERR(di) != -ENOENT)
1156 			return PTR_ERR(di);
1157 	} else if (di) {
1158 		ret = drop_one_dir_item(trans, root, path, dir, di);
1159 		if (ret)
1160 			return ret;
1161 	}
1162 	btrfs_release_path(path);
1163 
1164 	/* look for a conflicing name */
1165 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1166 				   name, namelen, 0);
1167 	if (IS_ERR(di)) {
1168 		return PTR_ERR(di);
1169 	} else if (di) {
1170 		ret = drop_one_dir_item(trans, root, path, dir, di);
1171 		if (ret)
1172 			return ret;
1173 	}
1174 	btrfs_release_path(path);
1175 
1176 	return 0;
1177 }
1178 
extref_get_fields(struct extent_buffer * eb,unsigned long ref_ptr,u32 * namelen,char ** name,u64 * index,u64 * parent_objectid)1179 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1180 			     u32 *namelen, char **name, u64 *index,
1181 			     u64 *parent_objectid)
1182 {
1183 	struct btrfs_inode_extref *extref;
1184 
1185 	extref = (struct btrfs_inode_extref *)ref_ptr;
1186 
1187 	*namelen = btrfs_inode_extref_name_len(eb, extref);
1188 	*name = kmalloc(*namelen, GFP_NOFS);
1189 	if (*name == NULL)
1190 		return -ENOMEM;
1191 
1192 	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1193 			   *namelen);
1194 
1195 	if (index)
1196 		*index = btrfs_inode_extref_index(eb, extref);
1197 	if (parent_objectid)
1198 		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1199 
1200 	return 0;
1201 }
1202 
ref_get_fields(struct extent_buffer * eb,unsigned long ref_ptr,u32 * namelen,char ** name,u64 * index)1203 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1204 			  u32 *namelen, char **name, u64 *index)
1205 {
1206 	struct btrfs_inode_ref *ref;
1207 
1208 	ref = (struct btrfs_inode_ref *)ref_ptr;
1209 
1210 	*namelen = btrfs_inode_ref_name_len(eb, ref);
1211 	*name = kmalloc(*namelen, GFP_NOFS);
1212 	if (*name == NULL)
1213 		return -ENOMEM;
1214 
1215 	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1216 
1217 	if (index)
1218 		*index = btrfs_inode_ref_index(eb, ref);
1219 
1220 	return 0;
1221 }
1222 
1223 /*
1224  * Take an inode reference item from the log tree and iterate all names from the
1225  * inode reference item in the subvolume tree with the same key (if it exists).
1226  * For any name that is not in the inode reference item from the log tree, do a
1227  * proper unlink of that name (that is, remove its entry from the inode
1228  * reference item and both dir index keys).
1229  */
unlink_old_inode_refs(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_inode * inode,struct extent_buffer * log_eb,int log_slot,struct btrfs_key * key)1230 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1231 				 struct btrfs_root *root,
1232 				 struct btrfs_path *path,
1233 				 struct btrfs_inode *inode,
1234 				 struct extent_buffer *log_eb,
1235 				 int log_slot,
1236 				 struct btrfs_key *key)
1237 {
1238 	int ret;
1239 	unsigned long ref_ptr;
1240 	unsigned long ref_end;
1241 	struct extent_buffer *eb;
1242 
1243 again:
1244 	btrfs_release_path(path);
1245 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1246 	if (ret > 0) {
1247 		ret = 0;
1248 		goto out;
1249 	}
1250 	if (ret < 0)
1251 		goto out;
1252 
1253 	eb = path->nodes[0];
1254 	ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1255 	ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1256 	while (ref_ptr < ref_end) {
1257 		char *name = NULL;
1258 		int namelen;
1259 		u64 parent_id;
1260 
1261 		if (key->type == BTRFS_INODE_EXTREF_KEY) {
1262 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1263 						NULL, &parent_id);
1264 		} else {
1265 			parent_id = key->offset;
1266 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1267 					     NULL);
1268 		}
1269 		if (ret)
1270 			goto out;
1271 
1272 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1273 			ret = btrfs_find_name_in_ext_backref(log_eb, log_slot,
1274 							     parent_id, name,
1275 							     namelen, NULL);
1276 		else
1277 			ret = btrfs_find_name_in_backref(log_eb, log_slot, name,
1278 							 namelen, NULL);
1279 
1280 		if (!ret) {
1281 			struct inode *dir;
1282 
1283 			btrfs_release_path(path);
1284 			dir = read_one_inode(root, parent_id);
1285 			if (!dir) {
1286 				ret = -ENOENT;
1287 				kfree(name);
1288 				goto out;
1289 			}
1290 			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1291 						 inode, name, namelen);
1292 			kfree(name);
1293 			iput(dir);
1294 			/*
1295 			 * Whenever we need to check if a name exists or not, we
1296 			 * check the subvolume tree. So after an unlink we must
1297 			 * run delayed items, so that future checks for a name
1298 			 * during log replay see that the name does not exists
1299 			 * anymore.
1300 			 */
1301 			if (!ret)
1302 				ret = btrfs_run_delayed_items(trans);
1303 			if (ret)
1304 				goto out;
1305 			goto again;
1306 		}
1307 
1308 		kfree(name);
1309 		ref_ptr += namelen;
1310 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1311 			ref_ptr += sizeof(struct btrfs_inode_extref);
1312 		else
1313 			ref_ptr += sizeof(struct btrfs_inode_ref);
1314 	}
1315 	ret = 0;
1316  out:
1317 	btrfs_release_path(path);
1318 	return ret;
1319 }
1320 
btrfs_inode_ref_exists(struct inode * inode,struct inode * dir,const u8 ref_type,const char * name,const int namelen)1321 static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir,
1322 				  const u8 ref_type, const char *name,
1323 				  const int namelen)
1324 {
1325 	struct btrfs_key key;
1326 	struct btrfs_path *path;
1327 	const u64 parent_id = btrfs_ino(BTRFS_I(dir));
1328 	int ret;
1329 
1330 	path = btrfs_alloc_path();
1331 	if (!path)
1332 		return -ENOMEM;
1333 
1334 	key.objectid = btrfs_ino(BTRFS_I(inode));
1335 	key.type = ref_type;
1336 	if (key.type == BTRFS_INODE_REF_KEY)
1337 		key.offset = parent_id;
1338 	else
1339 		key.offset = btrfs_extref_hash(parent_id, name, namelen);
1340 
1341 	ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0);
1342 	if (ret < 0)
1343 		goto out;
1344 	if (ret > 0) {
1345 		ret = 0;
1346 		goto out;
1347 	}
1348 	if (key.type == BTRFS_INODE_EXTREF_KEY)
1349 		ret = btrfs_find_name_in_ext_backref(path->nodes[0],
1350 						     path->slots[0], parent_id,
1351 						     name, namelen, NULL);
1352 	else
1353 		ret = btrfs_find_name_in_backref(path->nodes[0], path->slots[0],
1354 						 name, namelen, NULL);
1355 
1356 out:
1357 	btrfs_free_path(path);
1358 	return ret;
1359 }
1360 
1361 /*
1362  * replay one inode back reference item found in the log tree.
1363  * eb, slot and key refer to the buffer and key found in the log tree.
1364  * root is the destination we are replaying into, and path is for temp
1365  * use by this function.  (it should be released on return).
1366  */
add_inode_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)1367 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1368 				  struct btrfs_root *root,
1369 				  struct btrfs_root *log,
1370 				  struct btrfs_path *path,
1371 				  struct extent_buffer *eb, int slot,
1372 				  struct btrfs_key *key)
1373 {
1374 	struct inode *dir = NULL;
1375 	struct inode *inode = NULL;
1376 	unsigned long ref_ptr;
1377 	unsigned long ref_end;
1378 	char *name = NULL;
1379 	int namelen;
1380 	int ret;
1381 	int search_done = 0;
1382 	int log_ref_ver = 0;
1383 	u64 parent_objectid;
1384 	u64 inode_objectid;
1385 	u64 ref_index = 0;
1386 	int ref_struct_size;
1387 
1388 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1389 	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1390 
1391 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1392 		struct btrfs_inode_extref *r;
1393 
1394 		ref_struct_size = sizeof(struct btrfs_inode_extref);
1395 		log_ref_ver = 1;
1396 		r = (struct btrfs_inode_extref *)ref_ptr;
1397 		parent_objectid = btrfs_inode_extref_parent(eb, r);
1398 	} else {
1399 		ref_struct_size = sizeof(struct btrfs_inode_ref);
1400 		parent_objectid = key->offset;
1401 	}
1402 	inode_objectid = key->objectid;
1403 
1404 	/*
1405 	 * it is possible that we didn't log all the parent directories
1406 	 * for a given inode.  If we don't find the dir, just don't
1407 	 * copy the back ref in.  The link count fixup code will take
1408 	 * care of the rest
1409 	 */
1410 	dir = read_one_inode(root, parent_objectid);
1411 	if (!dir) {
1412 		ret = -ENOENT;
1413 		goto out;
1414 	}
1415 
1416 	inode = read_one_inode(root, inode_objectid);
1417 	if (!inode) {
1418 		ret = -EIO;
1419 		goto out;
1420 	}
1421 
1422 	while (ref_ptr < ref_end) {
1423 		if (log_ref_ver) {
1424 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1425 						&ref_index, &parent_objectid);
1426 			/*
1427 			 * parent object can change from one array
1428 			 * item to another.
1429 			 */
1430 			if (!dir)
1431 				dir = read_one_inode(root, parent_objectid);
1432 			if (!dir) {
1433 				ret = -ENOENT;
1434 				goto out;
1435 			}
1436 		} else {
1437 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1438 					     &ref_index);
1439 		}
1440 		if (ret)
1441 			goto out;
1442 
1443 		ret = inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1444 				   btrfs_ino(BTRFS_I(inode)), ref_index,
1445 				   name, namelen);
1446 		if (ret < 0) {
1447 			goto out;
1448 		} else if (ret == 0) {
1449 			/*
1450 			 * look for a conflicting back reference in the
1451 			 * metadata. if we find one we have to unlink that name
1452 			 * of the file before we add our new link.  Later on, we
1453 			 * overwrite any existing back reference, and we don't
1454 			 * want to create dangling pointers in the directory.
1455 			 */
1456 
1457 			if (!search_done) {
1458 				ret = __add_inode_ref(trans, root, path, log,
1459 						      BTRFS_I(dir),
1460 						      BTRFS_I(inode),
1461 						      inode_objectid,
1462 						      parent_objectid,
1463 						      ref_index, name, namelen,
1464 						      &search_done);
1465 				if (ret) {
1466 					if (ret == 1)
1467 						ret = 0;
1468 					goto out;
1469 				}
1470 			}
1471 
1472 			/*
1473 			 * If a reference item already exists for this inode
1474 			 * with the same parent and name, but different index,
1475 			 * drop it and the corresponding directory index entries
1476 			 * from the parent before adding the new reference item
1477 			 * and dir index entries, otherwise we would fail with
1478 			 * -EEXIST returned from btrfs_add_link() below.
1479 			 */
1480 			ret = btrfs_inode_ref_exists(inode, dir, key->type,
1481 						     name, namelen);
1482 			if (ret > 0) {
1483 				ret = btrfs_unlink_inode(trans, root,
1484 							 BTRFS_I(dir),
1485 							 BTRFS_I(inode),
1486 							 name, namelen);
1487 				/*
1488 				 * If we dropped the link count to 0, bump it so
1489 				 * that later the iput() on the inode will not
1490 				 * free it. We will fixup the link count later.
1491 				 */
1492 				if (!ret && inode->i_nlink == 0)
1493 					inc_nlink(inode);
1494 				/*
1495 				 * Whenever we need to check if a name exists or
1496 				 * not, we check the subvolume tree. So after an
1497 				 * unlink we must run delayed items, so that future
1498 				 * checks for a name during log replay see that the
1499 				 * name does not exists anymore.
1500 				 */
1501 				if (!ret)
1502 					ret = btrfs_run_delayed_items(trans);
1503 			}
1504 			if (ret < 0)
1505 				goto out;
1506 
1507 			/* insert our name */
1508 			ret = btrfs_add_link(trans, BTRFS_I(dir),
1509 					BTRFS_I(inode),
1510 					name, namelen, 0, ref_index);
1511 			if (ret)
1512 				goto out;
1513 
1514 			btrfs_update_inode(trans, root, inode);
1515 		}
1516 		/* Else, ret == 1, we already have a perfect match, we're done. */
1517 
1518 		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1519 		kfree(name);
1520 		name = NULL;
1521 		if (log_ref_ver) {
1522 			iput(dir);
1523 			dir = NULL;
1524 		}
1525 	}
1526 
1527 	/*
1528 	 * Before we overwrite the inode reference item in the subvolume tree
1529 	 * with the item from the log tree, we must unlink all names from the
1530 	 * parent directory that are in the subvolume's tree inode reference
1531 	 * item, otherwise we end up with an inconsistent subvolume tree where
1532 	 * dir index entries exist for a name but there is no inode reference
1533 	 * item with the same name.
1534 	 */
1535 	ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1536 				    key);
1537 	if (ret)
1538 		goto out;
1539 
1540 	/* finally write the back reference in the inode */
1541 	ret = overwrite_item(trans, root, path, eb, slot, key);
1542 out:
1543 	btrfs_release_path(path);
1544 	kfree(name);
1545 	iput(dir);
1546 	iput(inode);
1547 	return ret;
1548 }
1549 
insert_orphan_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 ino)1550 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1551 			      struct btrfs_root *root, u64 ino)
1552 {
1553 	int ret;
1554 
1555 	ret = btrfs_insert_orphan_item(trans, root, ino);
1556 	if (ret == -EEXIST)
1557 		ret = 0;
1558 
1559 	return ret;
1560 }
1561 
count_inode_extrefs(struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path)1562 static int count_inode_extrefs(struct btrfs_root *root,
1563 		struct btrfs_inode *inode, struct btrfs_path *path)
1564 {
1565 	int ret = 0;
1566 	int name_len;
1567 	unsigned int nlink = 0;
1568 	u32 item_size;
1569 	u32 cur_offset = 0;
1570 	u64 inode_objectid = btrfs_ino(inode);
1571 	u64 offset = 0;
1572 	unsigned long ptr;
1573 	struct btrfs_inode_extref *extref;
1574 	struct extent_buffer *leaf;
1575 
1576 	while (1) {
1577 		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1578 					    &extref, &offset);
1579 		if (ret)
1580 			break;
1581 
1582 		leaf = path->nodes[0];
1583 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1584 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1585 		cur_offset = 0;
1586 
1587 		while (cur_offset < item_size) {
1588 			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1589 			name_len = btrfs_inode_extref_name_len(leaf, extref);
1590 
1591 			nlink++;
1592 
1593 			cur_offset += name_len + sizeof(*extref);
1594 		}
1595 
1596 		offset++;
1597 		btrfs_release_path(path);
1598 	}
1599 	btrfs_release_path(path);
1600 
1601 	if (ret < 0 && ret != -ENOENT)
1602 		return ret;
1603 	return nlink;
1604 }
1605 
count_inode_refs(struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path)1606 static int count_inode_refs(struct btrfs_root *root,
1607 			struct btrfs_inode *inode, struct btrfs_path *path)
1608 {
1609 	int ret;
1610 	struct btrfs_key key;
1611 	unsigned int nlink = 0;
1612 	unsigned long ptr;
1613 	unsigned long ptr_end;
1614 	int name_len;
1615 	u64 ino = btrfs_ino(inode);
1616 
1617 	key.objectid = ino;
1618 	key.type = BTRFS_INODE_REF_KEY;
1619 	key.offset = (u64)-1;
1620 
1621 	while (1) {
1622 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1623 		if (ret < 0)
1624 			break;
1625 		if (ret > 0) {
1626 			if (path->slots[0] == 0)
1627 				break;
1628 			path->slots[0]--;
1629 		}
1630 process_slot:
1631 		btrfs_item_key_to_cpu(path->nodes[0], &key,
1632 				      path->slots[0]);
1633 		if (key.objectid != ino ||
1634 		    key.type != BTRFS_INODE_REF_KEY)
1635 			break;
1636 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1637 		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1638 						   path->slots[0]);
1639 		while (ptr < ptr_end) {
1640 			struct btrfs_inode_ref *ref;
1641 
1642 			ref = (struct btrfs_inode_ref *)ptr;
1643 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1644 							    ref);
1645 			ptr = (unsigned long)(ref + 1) + name_len;
1646 			nlink++;
1647 		}
1648 
1649 		if (key.offset == 0)
1650 			break;
1651 		if (path->slots[0] > 0) {
1652 			path->slots[0]--;
1653 			goto process_slot;
1654 		}
1655 		key.offset--;
1656 		btrfs_release_path(path);
1657 	}
1658 	btrfs_release_path(path);
1659 
1660 	return nlink;
1661 }
1662 
1663 /*
1664  * There are a few corners where the link count of the file can't
1665  * be properly maintained during replay.  So, instead of adding
1666  * lots of complexity to the log code, we just scan the backrefs
1667  * for any file that has been through replay.
1668  *
1669  * The scan will update the link count on the inode to reflect the
1670  * number of back refs found.  If it goes down to zero, the iput
1671  * will free the inode.
1672  */
fixup_inode_link_count(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)1673 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1674 					   struct btrfs_root *root,
1675 					   struct inode *inode)
1676 {
1677 	struct btrfs_path *path;
1678 	int ret;
1679 	u64 nlink = 0;
1680 	u64 ino = btrfs_ino(BTRFS_I(inode));
1681 
1682 	path = btrfs_alloc_path();
1683 	if (!path)
1684 		return -ENOMEM;
1685 
1686 	ret = count_inode_refs(root, BTRFS_I(inode), path);
1687 	if (ret < 0)
1688 		goto out;
1689 
1690 	nlink = ret;
1691 
1692 	ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1693 	if (ret < 0)
1694 		goto out;
1695 
1696 	nlink += ret;
1697 
1698 	ret = 0;
1699 
1700 	if (nlink != inode->i_nlink) {
1701 		set_nlink(inode, nlink);
1702 		btrfs_update_inode(trans, root, inode);
1703 	}
1704 	BTRFS_I(inode)->index_cnt = (u64)-1;
1705 
1706 	if (inode->i_nlink == 0) {
1707 		if (S_ISDIR(inode->i_mode)) {
1708 			ret = replay_dir_deletes(trans, root, NULL, path,
1709 						 ino, 1);
1710 			if (ret)
1711 				goto out;
1712 		}
1713 		ret = insert_orphan_item(trans, root, ino);
1714 	}
1715 
1716 out:
1717 	btrfs_free_path(path);
1718 	return ret;
1719 }
1720 
fixup_inode_link_counts(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path)1721 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1722 					    struct btrfs_root *root,
1723 					    struct btrfs_path *path)
1724 {
1725 	int ret;
1726 	struct btrfs_key key;
1727 	struct inode *inode;
1728 
1729 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1730 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1731 	key.offset = (u64)-1;
1732 	while (1) {
1733 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1734 		if (ret < 0)
1735 			break;
1736 
1737 		if (ret == 1) {
1738 			ret = 0;
1739 			if (path->slots[0] == 0)
1740 				break;
1741 			path->slots[0]--;
1742 		}
1743 
1744 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1745 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1746 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1747 			break;
1748 
1749 		ret = btrfs_del_item(trans, root, path);
1750 		if (ret)
1751 			break;
1752 
1753 		btrfs_release_path(path);
1754 		inode = read_one_inode(root, key.offset);
1755 		if (!inode) {
1756 			ret = -EIO;
1757 			break;
1758 		}
1759 
1760 		ret = fixup_inode_link_count(trans, root, inode);
1761 		iput(inode);
1762 		if (ret)
1763 			break;
1764 
1765 		/*
1766 		 * fixup on a directory may create new entries,
1767 		 * make sure we always look for the highset possible
1768 		 * offset
1769 		 */
1770 		key.offset = (u64)-1;
1771 	}
1772 	btrfs_release_path(path);
1773 	return ret;
1774 }
1775 
1776 
1777 /*
1778  * record a given inode in the fixup dir so we can check its link
1779  * count when replay is done.  The link count is incremented here
1780  * so the inode won't go away until we check it
1781  */
link_to_fixup_dir(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 objectid)1782 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1783 				      struct btrfs_root *root,
1784 				      struct btrfs_path *path,
1785 				      u64 objectid)
1786 {
1787 	struct btrfs_key key;
1788 	int ret = 0;
1789 	struct inode *inode;
1790 
1791 	inode = read_one_inode(root, objectid);
1792 	if (!inode)
1793 		return -EIO;
1794 
1795 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1796 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1797 	key.offset = objectid;
1798 
1799 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1800 
1801 	btrfs_release_path(path);
1802 	if (ret == 0) {
1803 		if (!inode->i_nlink)
1804 			set_nlink(inode, 1);
1805 		else
1806 			inc_nlink(inode);
1807 		ret = btrfs_update_inode(trans, root, inode);
1808 	} else if (ret == -EEXIST) {
1809 		ret = 0;
1810 	}
1811 	iput(inode);
1812 
1813 	return ret;
1814 }
1815 
1816 /*
1817  * when replaying the log for a directory, we only insert names
1818  * for inodes that actually exist.  This means an fsync on a directory
1819  * does not implicitly fsync all the new files in it
1820  */
insert_one_name(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 dirid,u64 index,char * name,int name_len,struct btrfs_key * location)1821 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1822 				    struct btrfs_root *root,
1823 				    u64 dirid, u64 index,
1824 				    char *name, int name_len,
1825 				    struct btrfs_key *location)
1826 {
1827 	struct inode *inode;
1828 	struct inode *dir;
1829 	int ret;
1830 
1831 	inode = read_one_inode(root, location->objectid);
1832 	if (!inode)
1833 		return -ENOENT;
1834 
1835 	dir = read_one_inode(root, dirid);
1836 	if (!dir) {
1837 		iput(inode);
1838 		return -EIO;
1839 	}
1840 
1841 	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1842 			name_len, 1, index);
1843 
1844 	/* FIXME, put inode into FIXUP list */
1845 
1846 	iput(inode);
1847 	iput(dir);
1848 	return ret;
1849 }
1850 
1851 /*
1852  * Return true if an inode reference exists in the log for the given name,
1853  * inode and parent inode.
1854  */
name_in_log_ref(struct btrfs_root * log_root,const char * name,const int name_len,const u64 dirid,const u64 ino)1855 static bool name_in_log_ref(struct btrfs_root *log_root,
1856 			    const char *name, const int name_len,
1857 			    const u64 dirid, const u64 ino)
1858 {
1859 	struct btrfs_key search_key;
1860 
1861 	search_key.objectid = ino;
1862 	search_key.type = BTRFS_INODE_REF_KEY;
1863 	search_key.offset = dirid;
1864 	if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1865 		return true;
1866 
1867 	search_key.type = BTRFS_INODE_EXTREF_KEY;
1868 	search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1869 	if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1870 		return true;
1871 
1872 	return false;
1873 }
1874 
1875 /*
1876  * take a single entry in a log directory item and replay it into
1877  * the subvolume.
1878  *
1879  * if a conflicting item exists in the subdirectory already,
1880  * the inode it points to is unlinked and put into the link count
1881  * fix up tree.
1882  *
1883  * If a name from the log points to a file or directory that does
1884  * not exist in the FS, it is skipped.  fsyncs on directories
1885  * do not force down inodes inside that directory, just changes to the
1886  * names or unlinks in a directory.
1887  *
1888  * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1889  * non-existing inode) and 1 if the name was replayed.
1890  */
replay_one_name(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,struct btrfs_dir_item * di,struct btrfs_key * key)1891 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1892 				    struct btrfs_root *root,
1893 				    struct btrfs_path *path,
1894 				    struct extent_buffer *eb,
1895 				    struct btrfs_dir_item *di,
1896 				    struct btrfs_key *key)
1897 {
1898 	char *name;
1899 	int name_len;
1900 	struct btrfs_dir_item *dst_di;
1901 	struct btrfs_key found_key;
1902 	struct btrfs_key log_key;
1903 	struct inode *dir;
1904 	u8 log_type;
1905 	bool exists;
1906 	int ret;
1907 	bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1908 	bool name_added = false;
1909 
1910 	dir = read_one_inode(root, key->objectid);
1911 	if (!dir)
1912 		return -EIO;
1913 
1914 	name_len = btrfs_dir_name_len(eb, di);
1915 	name = kmalloc(name_len, GFP_NOFS);
1916 	if (!name) {
1917 		ret = -ENOMEM;
1918 		goto out;
1919 	}
1920 
1921 	log_type = btrfs_dir_type(eb, di);
1922 	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1923 		   name_len);
1924 
1925 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1926 	ret = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1927 	btrfs_release_path(path);
1928 	if (ret < 0)
1929 		goto out;
1930 	exists = (ret == 0);
1931 	ret = 0;
1932 
1933 	if (key->type == BTRFS_DIR_ITEM_KEY) {
1934 		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1935 				       name, name_len, 1);
1936 	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1937 		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1938 						     key->objectid,
1939 						     key->offset, name,
1940 						     name_len, 1);
1941 	} else {
1942 		/* Corruption */
1943 		ret = -EINVAL;
1944 		goto out;
1945 	}
1946 
1947 	if (dst_di == ERR_PTR(-ENOENT))
1948 		dst_di = NULL;
1949 
1950 	if (IS_ERR(dst_di)) {
1951 		ret = PTR_ERR(dst_di);
1952 		goto out;
1953 	} else if (!dst_di) {
1954 		/* we need a sequence number to insert, so we only
1955 		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1956 		 */
1957 		if (key->type != BTRFS_DIR_INDEX_KEY)
1958 			goto out;
1959 		goto insert;
1960 	}
1961 
1962 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1963 	/* the existing item matches the logged item */
1964 	if (found_key.objectid == log_key.objectid &&
1965 	    found_key.type == log_key.type &&
1966 	    found_key.offset == log_key.offset &&
1967 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1968 		update_size = false;
1969 		goto out;
1970 	}
1971 
1972 	/*
1973 	 * don't drop the conflicting directory entry if the inode
1974 	 * for the new entry doesn't exist
1975 	 */
1976 	if (!exists)
1977 		goto out;
1978 
1979 	ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
1980 	if (ret)
1981 		goto out;
1982 
1983 	if (key->type == BTRFS_DIR_INDEX_KEY)
1984 		goto insert;
1985 out:
1986 	btrfs_release_path(path);
1987 	if (!ret && update_size) {
1988 		btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
1989 		ret = btrfs_update_inode(trans, root, dir);
1990 	}
1991 	kfree(name);
1992 	iput(dir);
1993 	if (!ret && name_added)
1994 		ret = 1;
1995 	return ret;
1996 
1997 insert:
1998 	if (name_in_log_ref(root->log_root, name, name_len,
1999 			    key->objectid, log_key.objectid)) {
2000 		/* The dentry will be added later. */
2001 		ret = 0;
2002 		update_size = false;
2003 		goto out;
2004 	}
2005 	btrfs_release_path(path);
2006 	ret = insert_one_name(trans, root, key->objectid, key->offset,
2007 			      name, name_len, &log_key);
2008 	if (ret && ret != -ENOENT && ret != -EEXIST)
2009 		goto out;
2010 	if (!ret)
2011 		name_added = true;
2012 	update_size = false;
2013 	ret = 0;
2014 	goto out;
2015 }
2016 
2017 /*
2018  * find all the names in a directory item and reconcile them into
2019  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
2020  * one name in a directory item, but the same code gets used for
2021  * both directory index types
2022  */
replay_one_dir_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)2023 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
2024 					struct btrfs_root *root,
2025 					struct btrfs_path *path,
2026 					struct extent_buffer *eb, int slot,
2027 					struct btrfs_key *key)
2028 {
2029 	int ret = 0;
2030 	u32 item_size = btrfs_item_size_nr(eb, slot);
2031 	struct btrfs_dir_item *di;
2032 	int name_len;
2033 	unsigned long ptr;
2034 	unsigned long ptr_end;
2035 	struct btrfs_path *fixup_path = NULL;
2036 
2037 	ptr = btrfs_item_ptr_offset(eb, slot);
2038 	ptr_end = ptr + item_size;
2039 	while (ptr < ptr_end) {
2040 		di = (struct btrfs_dir_item *)ptr;
2041 		name_len = btrfs_dir_name_len(eb, di);
2042 		ret = replay_one_name(trans, root, path, eb, di, key);
2043 		if (ret < 0)
2044 			break;
2045 		ptr = (unsigned long)(di + 1);
2046 		ptr += name_len;
2047 
2048 		/*
2049 		 * If this entry refers to a non-directory (directories can not
2050 		 * have a link count > 1) and it was added in the transaction
2051 		 * that was not committed, make sure we fixup the link count of
2052 		 * the inode it the entry points to. Otherwise something like
2053 		 * the following would result in a directory pointing to an
2054 		 * inode with a wrong link that does not account for this dir
2055 		 * entry:
2056 		 *
2057 		 * mkdir testdir
2058 		 * touch testdir/foo
2059 		 * touch testdir/bar
2060 		 * sync
2061 		 *
2062 		 * ln testdir/bar testdir/bar_link
2063 		 * ln testdir/foo testdir/foo_link
2064 		 * xfs_io -c "fsync" testdir/bar
2065 		 *
2066 		 * <power failure>
2067 		 *
2068 		 * mount fs, log replay happens
2069 		 *
2070 		 * File foo would remain with a link count of 1 when it has two
2071 		 * entries pointing to it in the directory testdir. This would
2072 		 * make it impossible to ever delete the parent directory has
2073 		 * it would result in stale dentries that can never be deleted.
2074 		 */
2075 		if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2076 			struct btrfs_key di_key;
2077 
2078 			if (!fixup_path) {
2079 				fixup_path = btrfs_alloc_path();
2080 				if (!fixup_path) {
2081 					ret = -ENOMEM;
2082 					break;
2083 				}
2084 			}
2085 
2086 			btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2087 			ret = link_to_fixup_dir(trans, root, fixup_path,
2088 						di_key.objectid);
2089 			if (ret)
2090 				break;
2091 		}
2092 		ret = 0;
2093 	}
2094 	btrfs_free_path(fixup_path);
2095 	return ret;
2096 }
2097 
2098 /*
2099  * directory replay has two parts.  There are the standard directory
2100  * items in the log copied from the subvolume, and range items
2101  * created in the log while the subvolume was logged.
2102  *
2103  * The range items tell us which parts of the key space the log
2104  * is authoritative for.  During replay, if a key in the subvolume
2105  * directory is in a logged range item, but not actually in the log
2106  * that means it was deleted from the directory before the fsync
2107  * and should be removed.
2108  */
find_dir_range(struct btrfs_root * root,struct btrfs_path * path,u64 dirid,int key_type,u64 * start_ret,u64 * end_ret)2109 static noinline int find_dir_range(struct btrfs_root *root,
2110 				   struct btrfs_path *path,
2111 				   u64 dirid, int key_type,
2112 				   u64 *start_ret, u64 *end_ret)
2113 {
2114 	struct btrfs_key key;
2115 	u64 found_end;
2116 	struct btrfs_dir_log_item *item;
2117 	int ret;
2118 	int nritems;
2119 
2120 	if (*start_ret == (u64)-1)
2121 		return 1;
2122 
2123 	key.objectid = dirid;
2124 	key.type = key_type;
2125 	key.offset = *start_ret;
2126 
2127 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2128 	if (ret < 0)
2129 		goto out;
2130 	if (ret > 0) {
2131 		if (path->slots[0] == 0)
2132 			goto out;
2133 		path->slots[0]--;
2134 	}
2135 	if (ret != 0)
2136 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2137 
2138 	if (key.type != key_type || key.objectid != dirid) {
2139 		ret = 1;
2140 		goto next;
2141 	}
2142 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2143 			      struct btrfs_dir_log_item);
2144 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2145 
2146 	if (*start_ret >= key.offset && *start_ret <= found_end) {
2147 		ret = 0;
2148 		*start_ret = key.offset;
2149 		*end_ret = found_end;
2150 		goto out;
2151 	}
2152 	ret = 1;
2153 next:
2154 	/* check the next slot in the tree to see if it is a valid item */
2155 	nritems = btrfs_header_nritems(path->nodes[0]);
2156 	path->slots[0]++;
2157 	if (path->slots[0] >= nritems) {
2158 		ret = btrfs_next_leaf(root, path);
2159 		if (ret)
2160 			goto out;
2161 	}
2162 
2163 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2164 
2165 	if (key.type != key_type || key.objectid != dirid) {
2166 		ret = 1;
2167 		goto out;
2168 	}
2169 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2170 			      struct btrfs_dir_log_item);
2171 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2172 	*start_ret = key.offset;
2173 	*end_ret = found_end;
2174 	ret = 0;
2175 out:
2176 	btrfs_release_path(path);
2177 	return ret;
2178 }
2179 
2180 /*
2181  * this looks for a given directory item in the log.  If the directory
2182  * item is not in the log, the item is removed and the inode it points
2183  * to is unlinked
2184  */
check_item_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,struct btrfs_path * log_path,struct inode * dir,struct btrfs_key * dir_key)2185 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2186 				      struct btrfs_root *root,
2187 				      struct btrfs_root *log,
2188 				      struct btrfs_path *path,
2189 				      struct btrfs_path *log_path,
2190 				      struct inode *dir,
2191 				      struct btrfs_key *dir_key)
2192 {
2193 	int ret;
2194 	struct extent_buffer *eb;
2195 	int slot;
2196 	u32 item_size;
2197 	struct btrfs_dir_item *di;
2198 	struct btrfs_dir_item *log_di;
2199 	int name_len;
2200 	unsigned long ptr;
2201 	unsigned long ptr_end;
2202 	char *name;
2203 	struct inode *inode;
2204 	struct btrfs_key location;
2205 
2206 again:
2207 	eb = path->nodes[0];
2208 	slot = path->slots[0];
2209 	item_size = btrfs_item_size_nr(eb, slot);
2210 	ptr = btrfs_item_ptr_offset(eb, slot);
2211 	ptr_end = ptr + item_size;
2212 	while (ptr < ptr_end) {
2213 		di = (struct btrfs_dir_item *)ptr;
2214 		name_len = btrfs_dir_name_len(eb, di);
2215 		name = kmalloc(name_len, GFP_NOFS);
2216 		if (!name) {
2217 			ret = -ENOMEM;
2218 			goto out;
2219 		}
2220 		read_extent_buffer(eb, name, (unsigned long)(di + 1),
2221 				  name_len);
2222 		log_di = NULL;
2223 		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2224 			log_di = btrfs_lookup_dir_item(trans, log, log_path,
2225 						       dir_key->objectid,
2226 						       name, name_len, 0);
2227 		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2228 			log_di = btrfs_lookup_dir_index_item(trans, log,
2229 						     log_path,
2230 						     dir_key->objectid,
2231 						     dir_key->offset,
2232 						     name, name_len, 0);
2233 		}
2234 		if (!log_di || log_di == ERR_PTR(-ENOENT)) {
2235 			btrfs_dir_item_key_to_cpu(eb, di, &location);
2236 			btrfs_release_path(path);
2237 			btrfs_release_path(log_path);
2238 			inode = read_one_inode(root, location.objectid);
2239 			if (!inode) {
2240 				kfree(name);
2241 				return -EIO;
2242 			}
2243 
2244 			ret = link_to_fixup_dir(trans, root,
2245 						path, location.objectid);
2246 			if (ret) {
2247 				kfree(name);
2248 				iput(inode);
2249 				goto out;
2250 			}
2251 
2252 			inc_nlink(inode);
2253 			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2254 					BTRFS_I(inode), name, name_len);
2255 			if (!ret)
2256 				ret = btrfs_run_delayed_items(trans);
2257 			kfree(name);
2258 			iput(inode);
2259 			if (ret)
2260 				goto out;
2261 
2262 			/* there might still be more names under this key
2263 			 * check and repeat if required
2264 			 */
2265 			ret = btrfs_search_slot(NULL, root, dir_key, path,
2266 						0, 0);
2267 			if (ret == 0)
2268 				goto again;
2269 			ret = 0;
2270 			goto out;
2271 		} else if (IS_ERR(log_di)) {
2272 			kfree(name);
2273 			return PTR_ERR(log_di);
2274 		}
2275 		btrfs_release_path(log_path);
2276 		kfree(name);
2277 
2278 		ptr = (unsigned long)(di + 1);
2279 		ptr += name_len;
2280 	}
2281 	ret = 0;
2282 out:
2283 	btrfs_release_path(path);
2284 	btrfs_release_path(log_path);
2285 	return ret;
2286 }
2287 
replay_xattr_deletes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,const u64 ino)2288 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2289 			      struct btrfs_root *root,
2290 			      struct btrfs_root *log,
2291 			      struct btrfs_path *path,
2292 			      const u64 ino)
2293 {
2294 	struct btrfs_key search_key;
2295 	struct btrfs_path *log_path;
2296 	int i;
2297 	int nritems;
2298 	int ret;
2299 
2300 	log_path = btrfs_alloc_path();
2301 	if (!log_path)
2302 		return -ENOMEM;
2303 
2304 	search_key.objectid = ino;
2305 	search_key.type = BTRFS_XATTR_ITEM_KEY;
2306 	search_key.offset = 0;
2307 again:
2308 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2309 	if (ret < 0)
2310 		goto out;
2311 process_leaf:
2312 	nritems = btrfs_header_nritems(path->nodes[0]);
2313 	for (i = path->slots[0]; i < nritems; i++) {
2314 		struct btrfs_key key;
2315 		struct btrfs_dir_item *di;
2316 		struct btrfs_dir_item *log_di;
2317 		u32 total_size;
2318 		u32 cur;
2319 
2320 		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2321 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2322 			ret = 0;
2323 			goto out;
2324 		}
2325 
2326 		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2327 		total_size = btrfs_item_size_nr(path->nodes[0], i);
2328 		cur = 0;
2329 		while (cur < total_size) {
2330 			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2331 			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2332 			u32 this_len = sizeof(*di) + name_len + data_len;
2333 			char *name;
2334 
2335 			name = kmalloc(name_len, GFP_NOFS);
2336 			if (!name) {
2337 				ret = -ENOMEM;
2338 				goto out;
2339 			}
2340 			read_extent_buffer(path->nodes[0], name,
2341 					   (unsigned long)(di + 1), name_len);
2342 
2343 			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2344 						    name, name_len, 0);
2345 			btrfs_release_path(log_path);
2346 			if (!log_di) {
2347 				/* Doesn't exist in log tree, so delete it. */
2348 				btrfs_release_path(path);
2349 				di = btrfs_lookup_xattr(trans, root, path, ino,
2350 							name, name_len, -1);
2351 				kfree(name);
2352 				if (IS_ERR(di)) {
2353 					ret = PTR_ERR(di);
2354 					goto out;
2355 				}
2356 				ASSERT(di);
2357 				ret = btrfs_delete_one_dir_name(trans, root,
2358 								path, di);
2359 				if (ret)
2360 					goto out;
2361 				btrfs_release_path(path);
2362 				search_key = key;
2363 				goto again;
2364 			}
2365 			kfree(name);
2366 			if (IS_ERR(log_di)) {
2367 				ret = PTR_ERR(log_di);
2368 				goto out;
2369 			}
2370 			cur += this_len;
2371 			di = (struct btrfs_dir_item *)((char *)di + this_len);
2372 		}
2373 	}
2374 	ret = btrfs_next_leaf(root, path);
2375 	if (ret > 0)
2376 		ret = 0;
2377 	else if (ret == 0)
2378 		goto process_leaf;
2379 out:
2380 	btrfs_free_path(log_path);
2381 	btrfs_release_path(path);
2382 	return ret;
2383 }
2384 
2385 
2386 /*
2387  * deletion replay happens before we copy any new directory items
2388  * out of the log or out of backreferences from inodes.  It
2389  * scans the log to find ranges of keys that log is authoritative for,
2390  * and then scans the directory to find items in those ranges that are
2391  * not present in the log.
2392  *
2393  * Anything we don't find in the log is unlinked and removed from the
2394  * directory.
2395  */
replay_dir_deletes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,u64 dirid,int del_all)2396 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2397 				       struct btrfs_root *root,
2398 				       struct btrfs_root *log,
2399 				       struct btrfs_path *path,
2400 				       u64 dirid, int del_all)
2401 {
2402 	u64 range_start;
2403 	u64 range_end;
2404 	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2405 	int ret = 0;
2406 	struct btrfs_key dir_key;
2407 	struct btrfs_key found_key;
2408 	struct btrfs_path *log_path;
2409 	struct inode *dir;
2410 
2411 	dir_key.objectid = dirid;
2412 	dir_key.type = BTRFS_DIR_ITEM_KEY;
2413 	log_path = btrfs_alloc_path();
2414 	if (!log_path)
2415 		return -ENOMEM;
2416 
2417 	dir = read_one_inode(root, dirid);
2418 	/* it isn't an error if the inode isn't there, that can happen
2419 	 * because we replay the deletes before we copy in the inode item
2420 	 * from the log
2421 	 */
2422 	if (!dir) {
2423 		btrfs_free_path(log_path);
2424 		return 0;
2425 	}
2426 again:
2427 	range_start = 0;
2428 	range_end = 0;
2429 	while (1) {
2430 		if (del_all)
2431 			range_end = (u64)-1;
2432 		else {
2433 			ret = find_dir_range(log, path, dirid, key_type,
2434 					     &range_start, &range_end);
2435 			if (ret < 0)
2436 				goto out;
2437 			else if (ret > 0)
2438 				break;
2439 		}
2440 
2441 		dir_key.offset = range_start;
2442 		while (1) {
2443 			int nritems;
2444 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2445 						0, 0);
2446 			if (ret < 0)
2447 				goto out;
2448 
2449 			nritems = btrfs_header_nritems(path->nodes[0]);
2450 			if (path->slots[0] >= nritems) {
2451 				ret = btrfs_next_leaf(root, path);
2452 				if (ret == 1)
2453 					break;
2454 				else if (ret < 0)
2455 					goto out;
2456 			}
2457 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2458 					      path->slots[0]);
2459 			if (found_key.objectid != dirid ||
2460 			    found_key.type != dir_key.type)
2461 				goto next_type;
2462 
2463 			if (found_key.offset > range_end)
2464 				break;
2465 
2466 			ret = check_item_in_log(trans, root, log, path,
2467 						log_path, dir,
2468 						&found_key);
2469 			if (ret)
2470 				goto out;
2471 			if (found_key.offset == (u64)-1)
2472 				break;
2473 			dir_key.offset = found_key.offset + 1;
2474 		}
2475 		btrfs_release_path(path);
2476 		if (range_end == (u64)-1)
2477 			break;
2478 		range_start = range_end + 1;
2479 	}
2480 
2481 next_type:
2482 	ret = 0;
2483 	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2484 		key_type = BTRFS_DIR_LOG_INDEX_KEY;
2485 		dir_key.type = BTRFS_DIR_INDEX_KEY;
2486 		btrfs_release_path(path);
2487 		goto again;
2488 	}
2489 out:
2490 	btrfs_release_path(path);
2491 	btrfs_free_path(log_path);
2492 	iput(dir);
2493 	return ret;
2494 }
2495 
2496 /*
2497  * the process_func used to replay items from the log tree.  This
2498  * gets called in two different stages.  The first stage just looks
2499  * for inodes and makes sure they are all copied into the subvolume.
2500  *
2501  * The second stage copies all the other item types from the log into
2502  * the subvolume.  The two stage approach is slower, but gets rid of
2503  * lots of complexity around inodes referencing other inodes that exist
2504  * only in the log (references come from either directory items or inode
2505  * back refs).
2506  */
replay_one_buffer(struct btrfs_root * log,struct extent_buffer * eb,struct walk_control * wc,u64 gen,int level)2507 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2508 			     struct walk_control *wc, u64 gen, int level)
2509 {
2510 	int nritems;
2511 	struct btrfs_path *path;
2512 	struct btrfs_root *root = wc->replay_dest;
2513 	struct btrfs_key key;
2514 	int i;
2515 	int ret;
2516 
2517 	ret = btrfs_read_buffer(eb, gen, level, NULL);
2518 	if (ret)
2519 		return ret;
2520 
2521 	level = btrfs_header_level(eb);
2522 
2523 	if (level != 0)
2524 		return 0;
2525 
2526 	path = btrfs_alloc_path();
2527 	if (!path)
2528 		return -ENOMEM;
2529 
2530 	nritems = btrfs_header_nritems(eb);
2531 	for (i = 0; i < nritems; i++) {
2532 		btrfs_item_key_to_cpu(eb, &key, i);
2533 
2534 		/* inode keys are done during the first stage */
2535 		if (key.type == BTRFS_INODE_ITEM_KEY &&
2536 		    wc->stage == LOG_WALK_REPLAY_INODES) {
2537 			struct btrfs_inode_item *inode_item;
2538 			u32 mode;
2539 
2540 			inode_item = btrfs_item_ptr(eb, i,
2541 					    struct btrfs_inode_item);
2542 			/*
2543 			 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2544 			 * and never got linked before the fsync, skip it, as
2545 			 * replaying it is pointless since it would be deleted
2546 			 * later. We skip logging tmpfiles, but it's always
2547 			 * possible we are replaying a log created with a kernel
2548 			 * that used to log tmpfiles.
2549 			 */
2550 			if (btrfs_inode_nlink(eb, inode_item) == 0) {
2551 				wc->ignore_cur_inode = true;
2552 				continue;
2553 			} else {
2554 				wc->ignore_cur_inode = false;
2555 			}
2556 			ret = replay_xattr_deletes(wc->trans, root, log,
2557 						   path, key.objectid);
2558 			if (ret)
2559 				break;
2560 			mode = btrfs_inode_mode(eb, inode_item);
2561 			if (S_ISDIR(mode)) {
2562 				ret = replay_dir_deletes(wc->trans,
2563 					 root, log, path, key.objectid, 0);
2564 				if (ret)
2565 					break;
2566 			}
2567 			ret = overwrite_item(wc->trans, root, path,
2568 					     eb, i, &key);
2569 			if (ret)
2570 				break;
2571 
2572 			/*
2573 			 * Before replaying extents, truncate the inode to its
2574 			 * size. We need to do it now and not after log replay
2575 			 * because before an fsync we can have prealloc extents
2576 			 * added beyond the inode's i_size. If we did it after,
2577 			 * through orphan cleanup for example, we would drop
2578 			 * those prealloc extents just after replaying them.
2579 			 */
2580 			if (S_ISREG(mode)) {
2581 				struct inode *inode;
2582 				u64 from;
2583 
2584 				inode = read_one_inode(root, key.objectid);
2585 				if (!inode) {
2586 					ret = -EIO;
2587 					break;
2588 				}
2589 				from = ALIGN(i_size_read(inode),
2590 					     root->fs_info->sectorsize);
2591 				ret = btrfs_drop_extents(wc->trans, root, inode,
2592 							 from, (u64)-1, 1);
2593 				if (!ret) {
2594 					/* Update the inode's nbytes. */
2595 					ret = btrfs_update_inode(wc->trans,
2596 								 root, inode);
2597 				}
2598 				iput(inode);
2599 				if (ret)
2600 					break;
2601 			}
2602 
2603 			ret = link_to_fixup_dir(wc->trans, root,
2604 						path, key.objectid);
2605 			if (ret)
2606 				break;
2607 		}
2608 
2609 		if (wc->ignore_cur_inode)
2610 			continue;
2611 
2612 		if (key.type == BTRFS_DIR_INDEX_KEY &&
2613 		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2614 			ret = replay_one_dir_item(wc->trans, root, path,
2615 						  eb, i, &key);
2616 			if (ret)
2617 				break;
2618 		}
2619 
2620 		if (wc->stage < LOG_WALK_REPLAY_ALL)
2621 			continue;
2622 
2623 		/* these keys are simply copied */
2624 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2625 			ret = overwrite_item(wc->trans, root, path,
2626 					     eb, i, &key);
2627 			if (ret)
2628 				break;
2629 		} else if (key.type == BTRFS_INODE_REF_KEY ||
2630 			   key.type == BTRFS_INODE_EXTREF_KEY) {
2631 			ret = add_inode_ref(wc->trans, root, log, path,
2632 					    eb, i, &key);
2633 			if (ret && ret != -ENOENT)
2634 				break;
2635 			ret = 0;
2636 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2637 			ret = replay_one_extent(wc->trans, root, path,
2638 						eb, i, &key);
2639 			if (ret)
2640 				break;
2641 		} else if (key.type == BTRFS_DIR_ITEM_KEY) {
2642 			ret = replay_one_dir_item(wc->trans, root, path,
2643 						  eb, i, &key);
2644 			if (ret)
2645 				break;
2646 		}
2647 	}
2648 	btrfs_free_path(path);
2649 	return ret;
2650 }
2651 
walk_down_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int * level,struct walk_control * wc)2652 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2653 				   struct btrfs_root *root,
2654 				   struct btrfs_path *path, int *level,
2655 				   struct walk_control *wc)
2656 {
2657 	struct btrfs_fs_info *fs_info = root->fs_info;
2658 	u64 root_owner;
2659 	u64 bytenr;
2660 	u64 ptr_gen;
2661 	struct extent_buffer *next;
2662 	struct extent_buffer *cur;
2663 	struct extent_buffer *parent;
2664 	u32 blocksize;
2665 	int ret = 0;
2666 
2667 	WARN_ON(*level < 0);
2668 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2669 
2670 	while (*level > 0) {
2671 		struct btrfs_key first_key;
2672 
2673 		WARN_ON(*level < 0);
2674 		WARN_ON(*level >= BTRFS_MAX_LEVEL);
2675 		cur = path->nodes[*level];
2676 
2677 		WARN_ON(btrfs_header_level(cur) != *level);
2678 
2679 		if (path->slots[*level] >=
2680 		    btrfs_header_nritems(cur))
2681 			break;
2682 
2683 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2684 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2685 		btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
2686 		blocksize = fs_info->nodesize;
2687 
2688 		parent = path->nodes[*level];
2689 		root_owner = btrfs_header_owner(parent);
2690 
2691 		next = btrfs_find_create_tree_block(fs_info, bytenr);
2692 		if (IS_ERR(next))
2693 			return PTR_ERR(next);
2694 
2695 		if (*level == 1) {
2696 			ret = wc->process_func(root, next, wc, ptr_gen,
2697 					       *level - 1);
2698 			if (ret) {
2699 				free_extent_buffer(next);
2700 				return ret;
2701 			}
2702 
2703 			path->slots[*level]++;
2704 			if (wc->free) {
2705 				ret = btrfs_read_buffer(next, ptr_gen,
2706 							*level - 1, &first_key);
2707 				if (ret) {
2708 					free_extent_buffer(next);
2709 					return ret;
2710 				}
2711 
2712 				if (trans) {
2713 					btrfs_tree_lock(next);
2714 					btrfs_set_lock_blocking(next);
2715 					clean_tree_block(fs_info, next);
2716 					btrfs_wait_tree_block_writeback(next);
2717 					btrfs_tree_unlock(next);
2718 				} else {
2719 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2720 						clear_extent_buffer_dirty(next);
2721 				}
2722 
2723 				WARN_ON(root_owner !=
2724 					BTRFS_TREE_LOG_OBJECTID);
2725 				ret = btrfs_free_and_pin_reserved_extent(
2726 							fs_info, bytenr,
2727 							blocksize);
2728 				if (ret) {
2729 					free_extent_buffer(next);
2730 					return ret;
2731 				}
2732 			}
2733 			free_extent_buffer(next);
2734 			continue;
2735 		}
2736 		ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
2737 		if (ret) {
2738 			free_extent_buffer(next);
2739 			return ret;
2740 		}
2741 
2742 		WARN_ON(*level <= 0);
2743 		if (path->nodes[*level-1])
2744 			free_extent_buffer(path->nodes[*level-1]);
2745 		path->nodes[*level-1] = next;
2746 		*level = btrfs_header_level(next);
2747 		path->slots[*level] = 0;
2748 		cond_resched();
2749 	}
2750 	WARN_ON(*level < 0);
2751 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2752 
2753 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2754 
2755 	cond_resched();
2756 	return 0;
2757 }
2758 
walk_up_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int * level,struct walk_control * wc)2759 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2760 				 struct btrfs_root *root,
2761 				 struct btrfs_path *path, int *level,
2762 				 struct walk_control *wc)
2763 {
2764 	struct btrfs_fs_info *fs_info = root->fs_info;
2765 	u64 root_owner;
2766 	int i;
2767 	int slot;
2768 	int ret;
2769 
2770 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2771 		slot = path->slots[i];
2772 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2773 			path->slots[i]++;
2774 			*level = i;
2775 			WARN_ON(*level == 0);
2776 			return 0;
2777 		} else {
2778 			struct extent_buffer *parent;
2779 			if (path->nodes[*level] == root->node)
2780 				parent = path->nodes[*level];
2781 			else
2782 				parent = path->nodes[*level + 1];
2783 
2784 			root_owner = btrfs_header_owner(parent);
2785 			ret = wc->process_func(root, path->nodes[*level], wc,
2786 				 btrfs_header_generation(path->nodes[*level]),
2787 				 *level);
2788 			if (ret)
2789 				return ret;
2790 
2791 			if (wc->free) {
2792 				struct extent_buffer *next;
2793 
2794 				next = path->nodes[*level];
2795 
2796 				if (trans) {
2797 					btrfs_tree_lock(next);
2798 					btrfs_set_lock_blocking(next);
2799 					clean_tree_block(fs_info, next);
2800 					btrfs_wait_tree_block_writeback(next);
2801 					btrfs_tree_unlock(next);
2802 				} else {
2803 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2804 						clear_extent_buffer_dirty(next);
2805 				}
2806 
2807 				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2808 				ret = btrfs_free_and_pin_reserved_extent(
2809 						fs_info,
2810 						path->nodes[*level]->start,
2811 						path->nodes[*level]->len);
2812 				if (ret)
2813 					return ret;
2814 			}
2815 			free_extent_buffer(path->nodes[*level]);
2816 			path->nodes[*level] = NULL;
2817 			*level = i + 1;
2818 		}
2819 	}
2820 	return 1;
2821 }
2822 
2823 /*
2824  * drop the reference count on the tree rooted at 'snap'.  This traverses
2825  * the tree freeing any blocks that have a ref count of zero after being
2826  * decremented.
2827  */
walk_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct walk_control * wc)2828 static int walk_log_tree(struct btrfs_trans_handle *trans,
2829 			 struct btrfs_root *log, struct walk_control *wc)
2830 {
2831 	struct btrfs_fs_info *fs_info = log->fs_info;
2832 	int ret = 0;
2833 	int wret;
2834 	int level;
2835 	struct btrfs_path *path;
2836 	int orig_level;
2837 
2838 	path = btrfs_alloc_path();
2839 	if (!path)
2840 		return -ENOMEM;
2841 
2842 	level = btrfs_header_level(log->node);
2843 	orig_level = level;
2844 	path->nodes[level] = log->node;
2845 	extent_buffer_get(log->node);
2846 	path->slots[level] = 0;
2847 
2848 	while (1) {
2849 		wret = walk_down_log_tree(trans, log, path, &level, wc);
2850 		if (wret > 0)
2851 			break;
2852 		if (wret < 0) {
2853 			ret = wret;
2854 			goto out;
2855 		}
2856 
2857 		wret = walk_up_log_tree(trans, log, path, &level, wc);
2858 		if (wret > 0)
2859 			break;
2860 		if (wret < 0) {
2861 			ret = wret;
2862 			goto out;
2863 		}
2864 	}
2865 
2866 	/* was the root node processed? if not, catch it here */
2867 	if (path->nodes[orig_level]) {
2868 		ret = wc->process_func(log, path->nodes[orig_level], wc,
2869 			 btrfs_header_generation(path->nodes[orig_level]),
2870 			 orig_level);
2871 		if (ret)
2872 			goto out;
2873 		if (wc->free) {
2874 			struct extent_buffer *next;
2875 
2876 			next = path->nodes[orig_level];
2877 
2878 			if (trans) {
2879 				btrfs_tree_lock(next);
2880 				btrfs_set_lock_blocking(next);
2881 				clean_tree_block(fs_info, next);
2882 				btrfs_wait_tree_block_writeback(next);
2883 				btrfs_tree_unlock(next);
2884 			} else {
2885 				if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2886 					clear_extent_buffer_dirty(next);
2887 			}
2888 
2889 			WARN_ON(log->root_key.objectid !=
2890 				BTRFS_TREE_LOG_OBJECTID);
2891 			ret = btrfs_free_and_pin_reserved_extent(fs_info,
2892 							next->start, next->len);
2893 			if (ret)
2894 				goto out;
2895 		}
2896 	}
2897 
2898 out:
2899 	btrfs_free_path(path);
2900 	return ret;
2901 }
2902 
2903 /*
2904  * helper function to update the item for a given subvolumes log root
2905  * in the tree of log roots
2906  */
update_log_root(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_root_item * root_item)2907 static int update_log_root(struct btrfs_trans_handle *trans,
2908 			   struct btrfs_root *log,
2909 			   struct btrfs_root_item *root_item)
2910 {
2911 	struct btrfs_fs_info *fs_info = log->fs_info;
2912 	int ret;
2913 
2914 	if (log->log_transid == 1) {
2915 		/* insert root item on the first sync */
2916 		ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2917 				&log->root_key, root_item);
2918 	} else {
2919 		ret = btrfs_update_root(trans, fs_info->log_root_tree,
2920 				&log->root_key, root_item);
2921 	}
2922 	return ret;
2923 }
2924 
wait_log_commit(struct btrfs_root * root,int transid)2925 static void wait_log_commit(struct btrfs_root *root, int transid)
2926 {
2927 	DEFINE_WAIT(wait);
2928 	int index = transid % 2;
2929 
2930 	/*
2931 	 * we only allow two pending log transactions at a time,
2932 	 * so we know that if ours is more than 2 older than the
2933 	 * current transaction, we're done
2934 	 */
2935 	for (;;) {
2936 		prepare_to_wait(&root->log_commit_wait[index],
2937 				&wait, TASK_UNINTERRUPTIBLE);
2938 
2939 		if (!(root->log_transid_committed < transid &&
2940 		      atomic_read(&root->log_commit[index])))
2941 			break;
2942 
2943 		mutex_unlock(&root->log_mutex);
2944 		schedule();
2945 		mutex_lock(&root->log_mutex);
2946 	}
2947 	finish_wait(&root->log_commit_wait[index], &wait);
2948 }
2949 
wait_for_writer(struct btrfs_root * root)2950 static void wait_for_writer(struct btrfs_root *root)
2951 {
2952 	DEFINE_WAIT(wait);
2953 
2954 	for (;;) {
2955 		prepare_to_wait(&root->log_writer_wait, &wait,
2956 				TASK_UNINTERRUPTIBLE);
2957 		if (!atomic_read(&root->log_writers))
2958 			break;
2959 
2960 		mutex_unlock(&root->log_mutex);
2961 		schedule();
2962 		mutex_lock(&root->log_mutex);
2963 	}
2964 	finish_wait(&root->log_writer_wait, &wait);
2965 }
2966 
btrfs_remove_log_ctx(struct btrfs_root * root,struct btrfs_log_ctx * ctx)2967 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2968 					struct btrfs_log_ctx *ctx)
2969 {
2970 	if (!ctx)
2971 		return;
2972 
2973 	mutex_lock(&root->log_mutex);
2974 	list_del_init(&ctx->list);
2975 	mutex_unlock(&root->log_mutex);
2976 }
2977 
2978 /*
2979  * Invoked in log mutex context, or be sure there is no other task which
2980  * can access the list.
2981  */
btrfs_remove_all_log_ctxs(struct btrfs_root * root,int index,int error)2982 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2983 					     int index, int error)
2984 {
2985 	struct btrfs_log_ctx *ctx;
2986 	struct btrfs_log_ctx *safe;
2987 
2988 	list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2989 		list_del_init(&ctx->list);
2990 		ctx->log_ret = error;
2991 	}
2992 
2993 	INIT_LIST_HEAD(&root->log_ctxs[index]);
2994 }
2995 
2996 /*
2997  * btrfs_sync_log does sends a given tree log down to the disk and
2998  * updates the super blocks to record it.  When this call is done,
2999  * you know that any inodes previously logged are safely on disk only
3000  * if it returns 0.
3001  *
3002  * Any other return value means you need to call btrfs_commit_transaction.
3003  * Some of the edge cases for fsyncing directories that have had unlinks
3004  * or renames done in the past mean that sometimes the only safe
3005  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
3006  * that has happened.
3007  */
btrfs_sync_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_log_ctx * ctx)3008 int btrfs_sync_log(struct btrfs_trans_handle *trans,
3009 		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
3010 {
3011 	int index1;
3012 	int index2;
3013 	int mark;
3014 	int ret;
3015 	struct btrfs_fs_info *fs_info = root->fs_info;
3016 	struct btrfs_root *log = root->log_root;
3017 	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
3018 	struct btrfs_root_item new_root_item;
3019 	int log_transid = 0;
3020 	struct btrfs_log_ctx root_log_ctx;
3021 	struct blk_plug plug;
3022 
3023 	mutex_lock(&root->log_mutex);
3024 	log_transid = ctx->log_transid;
3025 	if (root->log_transid_committed >= log_transid) {
3026 		mutex_unlock(&root->log_mutex);
3027 		return ctx->log_ret;
3028 	}
3029 
3030 	index1 = log_transid % 2;
3031 	if (atomic_read(&root->log_commit[index1])) {
3032 		wait_log_commit(root, log_transid);
3033 		mutex_unlock(&root->log_mutex);
3034 		return ctx->log_ret;
3035 	}
3036 	ASSERT(log_transid == root->log_transid);
3037 	atomic_set(&root->log_commit[index1], 1);
3038 
3039 	/* wait for previous tree log sync to complete */
3040 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
3041 		wait_log_commit(root, log_transid - 1);
3042 
3043 	while (1) {
3044 		int batch = atomic_read(&root->log_batch);
3045 		/* when we're on an ssd, just kick the log commit out */
3046 		if (!btrfs_test_opt(fs_info, SSD) &&
3047 		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
3048 			mutex_unlock(&root->log_mutex);
3049 			schedule_timeout_uninterruptible(1);
3050 			mutex_lock(&root->log_mutex);
3051 		}
3052 		wait_for_writer(root);
3053 		if (batch == atomic_read(&root->log_batch))
3054 			break;
3055 	}
3056 
3057 	/* bail out if we need to do a full commit */
3058 	if (btrfs_need_log_full_commit(fs_info, trans)) {
3059 		ret = -EAGAIN;
3060 		mutex_unlock(&root->log_mutex);
3061 		goto out;
3062 	}
3063 
3064 	if (log_transid % 2 == 0)
3065 		mark = EXTENT_DIRTY;
3066 	else
3067 		mark = EXTENT_NEW;
3068 
3069 	/* we start IO on  all the marked extents here, but we don't actually
3070 	 * wait for them until later.
3071 	 */
3072 	blk_start_plug(&plug);
3073 	ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
3074 	if (ret) {
3075 		blk_finish_plug(&plug);
3076 		btrfs_abort_transaction(trans, ret);
3077 		btrfs_set_log_full_commit(fs_info, trans);
3078 		mutex_unlock(&root->log_mutex);
3079 		goto out;
3080 	}
3081 
3082 	/*
3083 	 * We _must_ update under the root->log_mutex in order to make sure we
3084 	 * have a consistent view of the log root we are trying to commit at
3085 	 * this moment.
3086 	 *
3087 	 * We _must_ copy this into a local copy, because we are not holding the
3088 	 * log_root_tree->log_mutex yet.  This is important because when we
3089 	 * commit the log_root_tree we must have a consistent view of the
3090 	 * log_root_tree when we update the super block to point at the
3091 	 * log_root_tree bytenr.  If we update the log_root_tree here we'll race
3092 	 * with the commit and possibly point at the new block which we may not
3093 	 * have written out.
3094 	 */
3095 	btrfs_set_root_node(&log->root_item, log->node);
3096 	memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3097 
3098 	root->log_transid++;
3099 	log->log_transid = root->log_transid;
3100 	root->log_start_pid = 0;
3101 	/*
3102 	 * IO has been started, blocks of the log tree have WRITTEN flag set
3103 	 * in their headers. new modifications of the log will be written to
3104 	 * new positions. so it's safe to allow log writers to go in.
3105 	 */
3106 	mutex_unlock(&root->log_mutex);
3107 
3108 	btrfs_init_log_ctx(&root_log_ctx, NULL);
3109 
3110 	mutex_lock(&log_root_tree->log_mutex);
3111 	atomic_inc(&log_root_tree->log_batch);
3112 	atomic_inc(&log_root_tree->log_writers);
3113 
3114 	index2 = log_root_tree->log_transid % 2;
3115 	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3116 	root_log_ctx.log_transid = log_root_tree->log_transid;
3117 
3118 	mutex_unlock(&log_root_tree->log_mutex);
3119 
3120 	mutex_lock(&log_root_tree->log_mutex);
3121 
3122 	/*
3123 	 * Now we are safe to update the log_root_tree because we're under the
3124 	 * log_mutex, and we're a current writer so we're holding the commit
3125 	 * open until we drop the log_mutex.
3126 	 */
3127 	ret = update_log_root(trans, log, &new_root_item);
3128 
3129 	if (atomic_dec_and_test(&log_root_tree->log_writers)) {
3130 		/* atomic_dec_and_test implies a barrier */
3131 		cond_wake_up_nomb(&log_root_tree->log_writer_wait);
3132 	}
3133 
3134 	if (ret) {
3135 		if (!list_empty(&root_log_ctx.list))
3136 			list_del_init(&root_log_ctx.list);
3137 
3138 		blk_finish_plug(&plug);
3139 		btrfs_set_log_full_commit(fs_info, trans);
3140 
3141 		if (ret != -ENOSPC) {
3142 			btrfs_abort_transaction(trans, ret);
3143 			mutex_unlock(&log_root_tree->log_mutex);
3144 			goto out;
3145 		}
3146 		btrfs_wait_tree_log_extents(log, mark);
3147 		mutex_unlock(&log_root_tree->log_mutex);
3148 		ret = -EAGAIN;
3149 		goto out;
3150 	}
3151 
3152 	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3153 		blk_finish_plug(&plug);
3154 		list_del_init(&root_log_ctx.list);
3155 		mutex_unlock(&log_root_tree->log_mutex);
3156 		ret = root_log_ctx.log_ret;
3157 		goto out;
3158 	}
3159 
3160 	index2 = root_log_ctx.log_transid % 2;
3161 	if (atomic_read(&log_root_tree->log_commit[index2])) {
3162 		blk_finish_plug(&plug);
3163 		ret = btrfs_wait_tree_log_extents(log, mark);
3164 		wait_log_commit(log_root_tree,
3165 				root_log_ctx.log_transid);
3166 		mutex_unlock(&log_root_tree->log_mutex);
3167 		if (!ret)
3168 			ret = root_log_ctx.log_ret;
3169 		goto out;
3170 	}
3171 	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3172 	atomic_set(&log_root_tree->log_commit[index2], 1);
3173 
3174 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3175 		wait_log_commit(log_root_tree,
3176 				root_log_ctx.log_transid - 1);
3177 	}
3178 
3179 	wait_for_writer(log_root_tree);
3180 
3181 	/*
3182 	 * now that we've moved on to the tree of log tree roots,
3183 	 * check the full commit flag again
3184 	 */
3185 	if (btrfs_need_log_full_commit(fs_info, trans)) {
3186 		blk_finish_plug(&plug);
3187 		btrfs_wait_tree_log_extents(log, mark);
3188 		mutex_unlock(&log_root_tree->log_mutex);
3189 		ret = -EAGAIN;
3190 		goto out_wake_log_root;
3191 	}
3192 
3193 	ret = btrfs_write_marked_extents(fs_info,
3194 					 &log_root_tree->dirty_log_pages,
3195 					 EXTENT_DIRTY | EXTENT_NEW);
3196 	blk_finish_plug(&plug);
3197 	if (ret) {
3198 		btrfs_set_log_full_commit(fs_info, trans);
3199 		btrfs_abort_transaction(trans, ret);
3200 		mutex_unlock(&log_root_tree->log_mutex);
3201 		goto out_wake_log_root;
3202 	}
3203 	ret = btrfs_wait_tree_log_extents(log, mark);
3204 	if (!ret)
3205 		ret = btrfs_wait_tree_log_extents(log_root_tree,
3206 						  EXTENT_NEW | EXTENT_DIRTY);
3207 	if (ret) {
3208 		btrfs_set_log_full_commit(fs_info, trans);
3209 		mutex_unlock(&log_root_tree->log_mutex);
3210 		goto out_wake_log_root;
3211 	}
3212 
3213 	btrfs_set_super_log_root(fs_info->super_for_commit,
3214 				 log_root_tree->node->start);
3215 	btrfs_set_super_log_root_level(fs_info->super_for_commit,
3216 				       btrfs_header_level(log_root_tree->node));
3217 
3218 	log_root_tree->log_transid++;
3219 	mutex_unlock(&log_root_tree->log_mutex);
3220 
3221 	/*
3222 	 * nobody else is going to jump in and write the the ctree
3223 	 * super here because the log_commit atomic below is protecting
3224 	 * us.  We must be called with a transaction handle pinning
3225 	 * the running transaction open, so a full commit can't hop
3226 	 * in and cause problems either.
3227 	 */
3228 	ret = write_all_supers(fs_info, 1);
3229 	if (ret) {
3230 		btrfs_set_log_full_commit(fs_info, trans);
3231 		btrfs_abort_transaction(trans, ret);
3232 		goto out_wake_log_root;
3233 	}
3234 
3235 	mutex_lock(&root->log_mutex);
3236 	if (root->last_log_commit < log_transid)
3237 		root->last_log_commit = log_transid;
3238 	mutex_unlock(&root->log_mutex);
3239 
3240 out_wake_log_root:
3241 	mutex_lock(&log_root_tree->log_mutex);
3242 	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3243 
3244 	log_root_tree->log_transid_committed++;
3245 	atomic_set(&log_root_tree->log_commit[index2], 0);
3246 	mutex_unlock(&log_root_tree->log_mutex);
3247 
3248 	/*
3249 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3250 	 * all the updates above are seen by the woken threads. It might not be
3251 	 * necessary, but proving that seems to be hard.
3252 	 */
3253 	cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3254 out:
3255 	mutex_lock(&root->log_mutex);
3256 	btrfs_remove_all_log_ctxs(root, index1, ret);
3257 	root->log_transid_committed++;
3258 	atomic_set(&root->log_commit[index1], 0);
3259 	mutex_unlock(&root->log_mutex);
3260 
3261 	/*
3262 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3263 	 * all the updates above are seen by the woken threads. It might not be
3264 	 * necessary, but proving that seems to be hard.
3265 	 */
3266 	cond_wake_up(&root->log_commit_wait[index1]);
3267 	return ret;
3268 }
3269 
free_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * log)3270 static void free_log_tree(struct btrfs_trans_handle *trans,
3271 			  struct btrfs_root *log)
3272 {
3273 	int ret;
3274 	u64 start;
3275 	u64 end;
3276 	struct walk_control wc = {
3277 		.free = 1,
3278 		.process_func = process_one_buffer
3279 	};
3280 
3281 	ret = walk_log_tree(trans, log, &wc);
3282 	if (ret) {
3283 		if (trans)
3284 			btrfs_abort_transaction(trans, ret);
3285 		else
3286 			btrfs_handle_fs_error(log->fs_info, ret, NULL);
3287 	}
3288 
3289 	while (1) {
3290 		ret = find_first_extent_bit(&log->dirty_log_pages,
3291 				0, &start, &end,
3292 				EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT,
3293 				NULL);
3294 		if (ret)
3295 			break;
3296 
3297 		clear_extent_bits(&log->dirty_log_pages, start, end,
3298 				  EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3299 	}
3300 
3301 	free_extent_buffer(log->node);
3302 	kfree(log);
3303 }
3304 
3305 /*
3306  * free all the extents used by the tree log.  This should be called
3307  * at commit time of the full transaction
3308  */
btrfs_free_log(struct btrfs_trans_handle * trans,struct btrfs_root * root)3309 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3310 {
3311 	if (root->log_root) {
3312 		free_log_tree(trans, root->log_root);
3313 		root->log_root = NULL;
3314 	}
3315 	return 0;
3316 }
3317 
btrfs_free_log_root_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)3318 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3319 			     struct btrfs_fs_info *fs_info)
3320 {
3321 	if (fs_info->log_root_tree) {
3322 		free_log_tree(trans, fs_info->log_root_tree);
3323 		fs_info->log_root_tree = NULL;
3324 	}
3325 	return 0;
3326 }
3327 
3328 /*
3329  * Check if an inode was logged in the current transaction. We can't always rely
3330  * on an inode's logged_trans value, because it's an in-memory only field and
3331  * therefore not persisted. This means that its value is lost if the inode gets
3332  * evicted and loaded again from disk (in which case it has a value of 0, and
3333  * certainly it is smaller then any possible transaction ID), when that happens
3334  * the full_sync flag is set in the inode's runtime flags, so on that case we
3335  * assume eviction happened and ignore the logged_trans value, assuming the
3336  * worst case, that the inode was logged before in the current transaction.
3337  */
inode_logged(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3338 static bool inode_logged(struct btrfs_trans_handle *trans,
3339 			 struct btrfs_inode *inode)
3340 {
3341 	if (inode->logged_trans == trans->transid)
3342 		return true;
3343 
3344 	if (inode->last_trans == trans->transid &&
3345 	    test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) &&
3346 	    !test_bit(BTRFS_FS_LOG_RECOVERING, &trans->fs_info->flags))
3347 		return true;
3348 
3349 	return false;
3350 }
3351 
3352 /*
3353  * If both a file and directory are logged, and unlinks or renames are
3354  * mixed in, we have a few interesting corners:
3355  *
3356  * create file X in dir Y
3357  * link file X to X.link in dir Y
3358  * fsync file X
3359  * unlink file X but leave X.link
3360  * fsync dir Y
3361  *
3362  * After a crash we would expect only X.link to exist.  But file X
3363  * didn't get fsync'd again so the log has back refs for X and X.link.
3364  *
3365  * We solve this by removing directory entries and inode backrefs from the
3366  * log when a file that was logged in the current transaction is
3367  * unlinked.  Any later fsync will include the updated log entries, and
3368  * we'll be able to reconstruct the proper directory items from backrefs.
3369  *
3370  * This optimizations allows us to avoid relogging the entire inode
3371  * or the entire directory.
3372  */
btrfs_del_dir_entries_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,const char * name,int name_len,struct btrfs_inode * dir,u64 index)3373 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3374 				 struct btrfs_root *root,
3375 				 const char *name, int name_len,
3376 				 struct btrfs_inode *dir, u64 index)
3377 {
3378 	struct btrfs_root *log;
3379 	struct btrfs_dir_item *di;
3380 	struct btrfs_path *path;
3381 	int ret;
3382 	int err = 0;
3383 	int bytes_del = 0;
3384 	u64 dir_ino = btrfs_ino(dir);
3385 
3386 	if (!inode_logged(trans, dir))
3387 		return 0;
3388 
3389 	ret = join_running_log_trans(root);
3390 	if (ret)
3391 		return 0;
3392 
3393 	mutex_lock(&dir->log_mutex);
3394 
3395 	log = root->log_root;
3396 	path = btrfs_alloc_path();
3397 	if (!path) {
3398 		err = -ENOMEM;
3399 		goto out_unlock;
3400 	}
3401 
3402 	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3403 				   name, name_len, -1);
3404 	if (IS_ERR(di)) {
3405 		err = PTR_ERR(di);
3406 		goto fail;
3407 	}
3408 	if (di) {
3409 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3410 		bytes_del += name_len;
3411 		if (ret) {
3412 			err = ret;
3413 			goto fail;
3414 		}
3415 	}
3416 	btrfs_release_path(path);
3417 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3418 					 index, name, name_len, -1);
3419 	if (IS_ERR(di)) {
3420 		err = PTR_ERR(di);
3421 		goto fail;
3422 	}
3423 	if (di) {
3424 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3425 		bytes_del += name_len;
3426 		if (ret) {
3427 			err = ret;
3428 			goto fail;
3429 		}
3430 	}
3431 
3432 	/* update the directory size in the log to reflect the names
3433 	 * we have removed
3434 	 */
3435 	if (bytes_del) {
3436 		struct btrfs_key key;
3437 
3438 		key.objectid = dir_ino;
3439 		key.offset = 0;
3440 		key.type = BTRFS_INODE_ITEM_KEY;
3441 		btrfs_release_path(path);
3442 
3443 		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3444 		if (ret < 0) {
3445 			err = ret;
3446 			goto fail;
3447 		}
3448 		if (ret == 0) {
3449 			struct btrfs_inode_item *item;
3450 			u64 i_size;
3451 
3452 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3453 					      struct btrfs_inode_item);
3454 			i_size = btrfs_inode_size(path->nodes[0], item);
3455 			if (i_size > bytes_del)
3456 				i_size -= bytes_del;
3457 			else
3458 				i_size = 0;
3459 			btrfs_set_inode_size(path->nodes[0], item, i_size);
3460 			btrfs_mark_buffer_dirty(path->nodes[0]);
3461 		} else
3462 			ret = 0;
3463 		btrfs_release_path(path);
3464 	}
3465 fail:
3466 	btrfs_free_path(path);
3467 out_unlock:
3468 	mutex_unlock(&dir->log_mutex);
3469 	if (err == -ENOSPC) {
3470 		btrfs_set_log_full_commit(root->fs_info, trans);
3471 		err = 0;
3472 	} else if (err < 0 && err != -ENOENT) {
3473 		/* ENOENT can be returned if the entry hasn't been fsynced yet */
3474 		btrfs_abort_transaction(trans, err);
3475 	}
3476 
3477 	btrfs_end_log_trans(root);
3478 
3479 	return err;
3480 }
3481 
3482 /* see comments for btrfs_del_dir_entries_in_log */
btrfs_del_inode_ref_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,const char * name,int name_len,struct btrfs_inode * inode,u64 dirid)3483 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3484 			       struct btrfs_root *root,
3485 			       const char *name, int name_len,
3486 			       struct btrfs_inode *inode, u64 dirid)
3487 {
3488 	struct btrfs_fs_info *fs_info = root->fs_info;
3489 	struct btrfs_root *log;
3490 	u64 index;
3491 	int ret;
3492 
3493 	if (!inode_logged(trans, inode))
3494 		return 0;
3495 
3496 	ret = join_running_log_trans(root);
3497 	if (ret)
3498 		return 0;
3499 	log = root->log_root;
3500 	mutex_lock(&inode->log_mutex);
3501 
3502 	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3503 				  dirid, &index);
3504 	mutex_unlock(&inode->log_mutex);
3505 	if (ret == -ENOSPC) {
3506 		btrfs_set_log_full_commit(fs_info, trans);
3507 		ret = 0;
3508 	} else if (ret < 0 && ret != -ENOENT)
3509 		btrfs_abort_transaction(trans, ret);
3510 	btrfs_end_log_trans(root);
3511 
3512 	return ret;
3513 }
3514 
3515 /*
3516  * creates a range item in the log for 'dirid'.  first_offset and
3517  * last_offset tell us which parts of the key space the log should
3518  * be considered authoritative for.
3519  */
insert_dir_log_key(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,int key_type,u64 dirid,u64 first_offset,u64 last_offset)3520 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3521 				       struct btrfs_root *log,
3522 				       struct btrfs_path *path,
3523 				       int key_type, u64 dirid,
3524 				       u64 first_offset, u64 last_offset)
3525 {
3526 	int ret;
3527 	struct btrfs_key key;
3528 	struct btrfs_dir_log_item *item;
3529 
3530 	key.objectid = dirid;
3531 	key.offset = first_offset;
3532 	if (key_type == BTRFS_DIR_ITEM_KEY)
3533 		key.type = BTRFS_DIR_LOG_ITEM_KEY;
3534 	else
3535 		key.type = BTRFS_DIR_LOG_INDEX_KEY;
3536 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3537 	if (ret)
3538 		return ret;
3539 
3540 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3541 			      struct btrfs_dir_log_item);
3542 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3543 	btrfs_mark_buffer_dirty(path->nodes[0]);
3544 	btrfs_release_path(path);
3545 	return 0;
3546 }
3547 
3548 /*
3549  * log all the items included in the current transaction for a given
3550  * directory.  This also creates the range items in the log tree required
3551  * to replay anything deleted before the fsync
3552  */
log_dir_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,int key_type,struct btrfs_log_ctx * ctx,u64 min_offset,u64 * last_offset_ret)3553 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3554 			  struct btrfs_root *root, struct btrfs_inode *inode,
3555 			  struct btrfs_path *path,
3556 			  struct btrfs_path *dst_path, int key_type,
3557 			  struct btrfs_log_ctx *ctx,
3558 			  u64 min_offset, u64 *last_offset_ret)
3559 {
3560 	struct btrfs_key min_key;
3561 	struct btrfs_root *log = root->log_root;
3562 	struct extent_buffer *src;
3563 	int err = 0;
3564 	int ret;
3565 	int i;
3566 	int nritems;
3567 	u64 first_offset = min_offset;
3568 	u64 last_offset = (u64)-1;
3569 	u64 ino = btrfs_ino(inode);
3570 
3571 	log = root->log_root;
3572 
3573 	min_key.objectid = ino;
3574 	min_key.type = key_type;
3575 	min_key.offset = min_offset;
3576 
3577 	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3578 
3579 	/*
3580 	 * we didn't find anything from this transaction, see if there
3581 	 * is anything at all
3582 	 */
3583 	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3584 		min_key.objectid = ino;
3585 		min_key.type = key_type;
3586 		min_key.offset = (u64)-1;
3587 		btrfs_release_path(path);
3588 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3589 		if (ret < 0) {
3590 			btrfs_release_path(path);
3591 			return ret;
3592 		}
3593 		ret = btrfs_previous_item(root, path, ino, key_type);
3594 
3595 		/* if ret == 0 there are items for this type,
3596 		 * create a range to tell us the last key of this type.
3597 		 * otherwise, there are no items in this directory after
3598 		 * *min_offset, and we create a range to indicate that.
3599 		 */
3600 		if (ret == 0) {
3601 			struct btrfs_key tmp;
3602 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3603 					      path->slots[0]);
3604 			if (key_type == tmp.type)
3605 				first_offset = max(min_offset, tmp.offset) + 1;
3606 		}
3607 		goto done;
3608 	}
3609 
3610 	/* go backward to find any previous key */
3611 	ret = btrfs_previous_item(root, path, ino, key_type);
3612 	if (ret == 0) {
3613 		struct btrfs_key tmp;
3614 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3615 		if (key_type == tmp.type) {
3616 			first_offset = tmp.offset;
3617 			ret = overwrite_item(trans, log, dst_path,
3618 					     path->nodes[0], path->slots[0],
3619 					     &tmp);
3620 			if (ret) {
3621 				err = ret;
3622 				goto done;
3623 			}
3624 		}
3625 	}
3626 	btrfs_release_path(path);
3627 
3628 	/*
3629 	 * Find the first key from this transaction again.  See the note for
3630 	 * log_new_dir_dentries, if we're logging a directory recursively we
3631 	 * won't be holding its i_mutex, which means we can modify the directory
3632 	 * while we're logging it.  If we remove an entry between our first
3633 	 * search and this search we'll not find the key again and can just
3634 	 * bail.
3635 	 */
3636 search:
3637 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3638 	if (ret != 0)
3639 		goto done;
3640 
3641 	/*
3642 	 * we have a block from this transaction, log every item in it
3643 	 * from our directory
3644 	 */
3645 	while (1) {
3646 		struct btrfs_key tmp;
3647 		src = path->nodes[0];
3648 		nritems = btrfs_header_nritems(src);
3649 		for (i = path->slots[0]; i < nritems; i++) {
3650 			struct btrfs_dir_item *di;
3651 
3652 			btrfs_item_key_to_cpu(src, &min_key, i);
3653 
3654 			if (min_key.objectid != ino || min_key.type != key_type)
3655 				goto done;
3656 
3657 			if (need_resched()) {
3658 				btrfs_release_path(path);
3659 				cond_resched();
3660 				goto search;
3661 			}
3662 
3663 			ret = overwrite_item(trans, log, dst_path, src, i,
3664 					     &min_key);
3665 			if (ret) {
3666 				err = ret;
3667 				goto done;
3668 			}
3669 
3670 			/*
3671 			 * We must make sure that when we log a directory entry,
3672 			 * the corresponding inode, after log replay, has a
3673 			 * matching link count. For example:
3674 			 *
3675 			 * touch foo
3676 			 * mkdir mydir
3677 			 * sync
3678 			 * ln foo mydir/bar
3679 			 * xfs_io -c "fsync" mydir
3680 			 * <crash>
3681 			 * <mount fs and log replay>
3682 			 *
3683 			 * Would result in a fsync log that when replayed, our
3684 			 * file inode would have a link count of 1, but we get
3685 			 * two directory entries pointing to the same inode.
3686 			 * After removing one of the names, it would not be
3687 			 * possible to remove the other name, which resulted
3688 			 * always in stale file handle errors, and would not
3689 			 * be possible to rmdir the parent directory, since
3690 			 * its i_size could never decrement to the value
3691 			 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3692 			 */
3693 			di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3694 			btrfs_dir_item_key_to_cpu(src, di, &tmp);
3695 			if (ctx &&
3696 			    (btrfs_dir_transid(src, di) == trans->transid ||
3697 			     btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3698 			    tmp.type != BTRFS_ROOT_ITEM_KEY)
3699 				ctx->log_new_dentries = true;
3700 		}
3701 		path->slots[0] = nritems;
3702 
3703 		/*
3704 		 * look ahead to the next item and see if it is also
3705 		 * from this directory and from this transaction
3706 		 */
3707 		ret = btrfs_next_leaf(root, path);
3708 		if (ret) {
3709 			if (ret == 1)
3710 				last_offset = (u64)-1;
3711 			else
3712 				err = ret;
3713 			goto done;
3714 		}
3715 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3716 		if (tmp.objectid != ino || tmp.type != key_type) {
3717 			last_offset = (u64)-1;
3718 			goto done;
3719 		}
3720 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3721 			ret = overwrite_item(trans, log, dst_path,
3722 					     path->nodes[0], path->slots[0],
3723 					     &tmp);
3724 			if (ret)
3725 				err = ret;
3726 			else
3727 				last_offset = tmp.offset;
3728 			goto done;
3729 		}
3730 	}
3731 done:
3732 	btrfs_release_path(path);
3733 	btrfs_release_path(dst_path);
3734 
3735 	if (err == 0) {
3736 		*last_offset_ret = last_offset;
3737 		/*
3738 		 * insert the log range keys to indicate where the log
3739 		 * is valid
3740 		 */
3741 		ret = insert_dir_log_key(trans, log, path, key_type,
3742 					 ino, first_offset, last_offset);
3743 		if (ret)
3744 			err = ret;
3745 	}
3746 	return err;
3747 }
3748 
3749 /*
3750  * logging directories is very similar to logging inodes, We find all the items
3751  * from the current transaction and write them to the log.
3752  *
3753  * The recovery code scans the directory in the subvolume, and if it finds a
3754  * key in the range logged that is not present in the log tree, then it means
3755  * that dir entry was unlinked during the transaction.
3756  *
3757  * In order for that scan to work, we must include one key smaller than
3758  * the smallest logged by this transaction and one key larger than the largest
3759  * key logged by this transaction.
3760  */
log_directory_changes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,struct btrfs_log_ctx * ctx)3761 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3762 			  struct btrfs_root *root, struct btrfs_inode *inode,
3763 			  struct btrfs_path *path,
3764 			  struct btrfs_path *dst_path,
3765 			  struct btrfs_log_ctx *ctx)
3766 {
3767 	u64 min_key;
3768 	u64 max_key;
3769 	int ret;
3770 	int key_type = BTRFS_DIR_ITEM_KEY;
3771 
3772 again:
3773 	min_key = 0;
3774 	max_key = 0;
3775 	while (1) {
3776 		ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3777 				ctx, min_key, &max_key);
3778 		if (ret)
3779 			return ret;
3780 		if (max_key == (u64)-1)
3781 			break;
3782 		min_key = max_key + 1;
3783 	}
3784 
3785 	if (key_type == BTRFS_DIR_ITEM_KEY) {
3786 		key_type = BTRFS_DIR_INDEX_KEY;
3787 		goto again;
3788 	}
3789 	return 0;
3790 }
3791 
3792 /*
3793  * a helper function to drop items from the log before we relog an
3794  * inode.  max_key_type indicates the highest item type to remove.
3795  * This cannot be run for file data extents because it does not
3796  * free the extents they point to.
3797  */
drop_objectid_items(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,u64 objectid,int max_key_type)3798 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3799 				  struct btrfs_root *log,
3800 				  struct btrfs_path *path,
3801 				  u64 objectid, int max_key_type)
3802 {
3803 	int ret;
3804 	struct btrfs_key key;
3805 	struct btrfs_key found_key;
3806 	int start_slot;
3807 
3808 	key.objectid = objectid;
3809 	key.type = max_key_type;
3810 	key.offset = (u64)-1;
3811 
3812 	while (1) {
3813 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3814 		BUG_ON(ret == 0); /* Logic error */
3815 		if (ret < 0)
3816 			break;
3817 
3818 		if (path->slots[0] == 0)
3819 			break;
3820 
3821 		path->slots[0]--;
3822 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3823 				      path->slots[0]);
3824 
3825 		if (found_key.objectid != objectid)
3826 			break;
3827 
3828 		found_key.offset = 0;
3829 		found_key.type = 0;
3830 		ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3831 				       &start_slot);
3832 
3833 		ret = btrfs_del_items(trans, log, path, start_slot,
3834 				      path->slots[0] - start_slot + 1);
3835 		/*
3836 		 * If start slot isn't 0 then we don't need to re-search, we've
3837 		 * found the last guy with the objectid in this tree.
3838 		 */
3839 		if (ret || start_slot != 0)
3840 			break;
3841 		btrfs_release_path(path);
3842 	}
3843 	btrfs_release_path(path);
3844 	if (ret > 0)
3845 		ret = 0;
3846 	return ret;
3847 }
3848 
fill_inode_item(struct btrfs_trans_handle * trans,struct extent_buffer * leaf,struct btrfs_inode_item * item,struct inode * inode,int log_inode_only,u64 logged_isize)3849 static void fill_inode_item(struct btrfs_trans_handle *trans,
3850 			    struct extent_buffer *leaf,
3851 			    struct btrfs_inode_item *item,
3852 			    struct inode *inode, int log_inode_only,
3853 			    u64 logged_isize)
3854 {
3855 	struct btrfs_map_token token;
3856 
3857 	btrfs_init_map_token(&token);
3858 
3859 	if (log_inode_only) {
3860 		/* set the generation to zero so the recover code
3861 		 * can tell the difference between an logging
3862 		 * just to say 'this inode exists' and a logging
3863 		 * to say 'update this inode with these values'
3864 		 */
3865 		btrfs_set_token_inode_generation(leaf, item, 0, &token);
3866 		btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
3867 	} else {
3868 		btrfs_set_token_inode_generation(leaf, item,
3869 						 BTRFS_I(inode)->generation,
3870 						 &token);
3871 		btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3872 	}
3873 
3874 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3875 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3876 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3877 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3878 
3879 	btrfs_set_token_timespec_sec(leaf, &item->atime,
3880 				     inode->i_atime.tv_sec, &token);
3881 	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3882 				      inode->i_atime.tv_nsec, &token);
3883 
3884 	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3885 				     inode->i_mtime.tv_sec, &token);
3886 	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3887 				      inode->i_mtime.tv_nsec, &token);
3888 
3889 	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3890 				     inode->i_ctime.tv_sec, &token);
3891 	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3892 				      inode->i_ctime.tv_nsec, &token);
3893 
3894 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3895 				     &token);
3896 
3897 	btrfs_set_token_inode_sequence(leaf, item,
3898 				       inode_peek_iversion(inode), &token);
3899 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3900 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3901 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3902 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3903 }
3904 
log_inode_item(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,struct btrfs_inode * inode)3905 static int log_inode_item(struct btrfs_trans_handle *trans,
3906 			  struct btrfs_root *log, struct btrfs_path *path,
3907 			  struct btrfs_inode *inode)
3908 {
3909 	struct btrfs_inode_item *inode_item;
3910 	int ret;
3911 
3912 	ret = btrfs_insert_empty_item(trans, log, path,
3913 				      &inode->location, sizeof(*inode_item));
3914 	if (ret && ret != -EEXIST)
3915 		return ret;
3916 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3917 				    struct btrfs_inode_item);
3918 	fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
3919 			0, 0);
3920 	btrfs_release_path(path);
3921 	return 0;
3922 }
3923 
log_csums(struct btrfs_trans_handle * trans,struct btrfs_root * log_root,struct btrfs_ordered_sum * sums)3924 static int log_csums(struct btrfs_trans_handle *trans,
3925 		     struct btrfs_root *log_root,
3926 		     struct btrfs_ordered_sum *sums)
3927 {
3928 	int ret;
3929 
3930 	/*
3931 	 * Due to extent cloning, we might have logged a csum item that covers a
3932 	 * subrange of a cloned extent, and later we can end up logging a csum
3933 	 * item for a larger subrange of the same extent or the entire range.
3934 	 * This would leave csum items in the log tree that cover the same range
3935 	 * and break the searches for checksums in the log tree, resulting in
3936 	 * some checksums missing in the fs/subvolume tree. So just delete (or
3937 	 * trim and adjust) any existing csum items in the log for this range.
3938 	 */
3939 	ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len);
3940 	if (ret)
3941 		return ret;
3942 
3943 	return btrfs_csum_file_blocks(trans, log_root, sums);
3944 }
3945 
copy_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * dst_path,struct btrfs_path * src_path,int start_slot,int nr,int inode_only,u64 logged_isize)3946 static noinline int copy_items(struct btrfs_trans_handle *trans,
3947 			       struct btrfs_inode *inode,
3948 			       struct btrfs_path *dst_path,
3949 			       struct btrfs_path *src_path,
3950 			       int start_slot, int nr, int inode_only,
3951 			       u64 logged_isize)
3952 {
3953 	struct btrfs_fs_info *fs_info = trans->fs_info;
3954 	unsigned long src_offset;
3955 	unsigned long dst_offset;
3956 	struct btrfs_root *log = inode->root->log_root;
3957 	struct btrfs_file_extent_item *extent;
3958 	struct btrfs_inode_item *inode_item;
3959 	struct extent_buffer *src = src_path->nodes[0];
3960 	int ret;
3961 	struct btrfs_key *ins_keys;
3962 	u32 *ins_sizes;
3963 	char *ins_data;
3964 	int i;
3965 	struct list_head ordered_sums;
3966 	int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
3967 
3968 	INIT_LIST_HEAD(&ordered_sums);
3969 
3970 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3971 			   nr * sizeof(u32), GFP_NOFS);
3972 	if (!ins_data)
3973 		return -ENOMEM;
3974 
3975 	ins_sizes = (u32 *)ins_data;
3976 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3977 
3978 	for (i = 0; i < nr; i++) {
3979 		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3980 		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3981 	}
3982 	ret = btrfs_insert_empty_items(trans, log, dst_path,
3983 				       ins_keys, ins_sizes, nr);
3984 	if (ret) {
3985 		kfree(ins_data);
3986 		return ret;
3987 	}
3988 
3989 	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3990 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3991 						   dst_path->slots[0]);
3992 
3993 		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3994 
3995 		if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3996 			inode_item = btrfs_item_ptr(dst_path->nodes[0],
3997 						    dst_path->slots[0],
3998 						    struct btrfs_inode_item);
3999 			fill_inode_item(trans, dst_path->nodes[0], inode_item,
4000 					&inode->vfs_inode,
4001 					inode_only == LOG_INODE_EXISTS,
4002 					logged_isize);
4003 		} else {
4004 			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4005 					   src_offset, ins_sizes[i]);
4006 		}
4007 
4008 		/* take a reference on file data extents so that truncates
4009 		 * or deletes of this inode don't have to relog the inode
4010 		 * again
4011 		 */
4012 		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
4013 		    !skip_csum) {
4014 			int found_type;
4015 			extent = btrfs_item_ptr(src, start_slot + i,
4016 						struct btrfs_file_extent_item);
4017 
4018 			if (btrfs_file_extent_generation(src, extent) < trans->transid)
4019 				continue;
4020 
4021 			found_type = btrfs_file_extent_type(src, extent);
4022 			if (found_type == BTRFS_FILE_EXTENT_REG) {
4023 				u64 ds, dl, cs, cl;
4024 				ds = btrfs_file_extent_disk_bytenr(src,
4025 								extent);
4026 				/* ds == 0 is a hole */
4027 				if (ds == 0)
4028 					continue;
4029 
4030 				dl = btrfs_file_extent_disk_num_bytes(src,
4031 								extent);
4032 				cs = btrfs_file_extent_offset(src, extent);
4033 				cl = btrfs_file_extent_num_bytes(src,
4034 								extent);
4035 				if (btrfs_file_extent_compression(src,
4036 								  extent)) {
4037 					cs = 0;
4038 					cl = dl;
4039 				}
4040 
4041 				ret = btrfs_lookup_csums_range(
4042 						fs_info->csum_root,
4043 						ds + cs, ds + cs + cl - 1,
4044 						&ordered_sums, 0);
4045 				if (ret)
4046 					break;
4047 			}
4048 		}
4049 	}
4050 
4051 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
4052 	btrfs_release_path(dst_path);
4053 	kfree(ins_data);
4054 
4055 	/*
4056 	 * we have to do this after the loop above to avoid changing the
4057 	 * log tree while trying to change the log tree.
4058 	 */
4059 	while (!list_empty(&ordered_sums)) {
4060 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4061 						   struct btrfs_ordered_sum,
4062 						   list);
4063 		if (!ret)
4064 			ret = log_csums(trans, log, sums);
4065 		list_del(&sums->list);
4066 		kfree(sums);
4067 	}
4068 
4069 	return ret;
4070 }
4071 
extent_cmp(void * priv,struct list_head * a,struct list_head * b)4072 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
4073 {
4074 	struct extent_map *em1, *em2;
4075 
4076 	em1 = list_entry(a, struct extent_map, list);
4077 	em2 = list_entry(b, struct extent_map, list);
4078 
4079 	if (em1->start < em2->start)
4080 		return -1;
4081 	else if (em1->start > em2->start)
4082 		return 1;
4083 	return 0;
4084 }
4085 
log_extent_csums(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_root * log_root,const struct extent_map * em)4086 static int log_extent_csums(struct btrfs_trans_handle *trans,
4087 			    struct btrfs_inode *inode,
4088 			    struct btrfs_root *log_root,
4089 			    const struct extent_map *em)
4090 {
4091 	u64 csum_offset;
4092 	u64 csum_len;
4093 	LIST_HEAD(ordered_sums);
4094 	int ret = 0;
4095 
4096 	if (inode->flags & BTRFS_INODE_NODATASUM ||
4097 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4098 	    em->block_start == EXTENT_MAP_HOLE)
4099 		return 0;
4100 
4101 	/* If we're compressed we have to save the entire range of csums. */
4102 	if (em->compress_type) {
4103 		csum_offset = 0;
4104 		csum_len = max(em->block_len, em->orig_block_len);
4105 	} else {
4106 		csum_offset = em->mod_start - em->start;
4107 		csum_len = em->mod_len;
4108 	}
4109 
4110 	/* block start is already adjusted for the file extent offset. */
4111 	ret = btrfs_lookup_csums_range(trans->fs_info->csum_root,
4112 				       em->block_start + csum_offset,
4113 				       em->block_start + csum_offset +
4114 				       csum_len - 1, &ordered_sums, 0);
4115 	if (ret)
4116 		return ret;
4117 
4118 	while (!list_empty(&ordered_sums)) {
4119 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4120 						   struct btrfs_ordered_sum,
4121 						   list);
4122 		if (!ret)
4123 			ret = log_csums(trans, log_root, sums);
4124 		list_del(&sums->list);
4125 		kfree(sums);
4126 	}
4127 
4128 	return ret;
4129 }
4130 
log_one_extent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_root * root,const struct extent_map * em,struct btrfs_path * path,struct btrfs_log_ctx * ctx)4131 static int log_one_extent(struct btrfs_trans_handle *trans,
4132 			  struct btrfs_inode *inode, struct btrfs_root *root,
4133 			  const struct extent_map *em,
4134 			  struct btrfs_path *path,
4135 			  struct btrfs_log_ctx *ctx)
4136 {
4137 	struct btrfs_root *log = root->log_root;
4138 	struct btrfs_file_extent_item *fi;
4139 	struct extent_buffer *leaf;
4140 	struct btrfs_map_token token;
4141 	struct btrfs_key key;
4142 	u64 extent_offset = em->start - em->orig_start;
4143 	u64 block_len;
4144 	int ret;
4145 	int extent_inserted = 0;
4146 
4147 	ret = log_extent_csums(trans, inode, log, em);
4148 	if (ret)
4149 		return ret;
4150 
4151 	btrfs_init_map_token(&token);
4152 
4153 	ret = __btrfs_drop_extents(trans, log, &inode->vfs_inode, path, em->start,
4154 				   em->start + em->len, NULL, 0, 1,
4155 				   sizeof(*fi), &extent_inserted);
4156 	if (ret)
4157 		return ret;
4158 
4159 	if (!extent_inserted) {
4160 		key.objectid = btrfs_ino(inode);
4161 		key.type = BTRFS_EXTENT_DATA_KEY;
4162 		key.offset = em->start;
4163 
4164 		ret = btrfs_insert_empty_item(trans, log, path, &key,
4165 					      sizeof(*fi));
4166 		if (ret)
4167 			return ret;
4168 	}
4169 	leaf = path->nodes[0];
4170 	fi = btrfs_item_ptr(leaf, path->slots[0],
4171 			    struct btrfs_file_extent_item);
4172 
4173 	btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
4174 					       &token);
4175 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4176 		btrfs_set_token_file_extent_type(leaf, fi,
4177 						 BTRFS_FILE_EXTENT_PREALLOC,
4178 						 &token);
4179 	else
4180 		btrfs_set_token_file_extent_type(leaf, fi,
4181 						 BTRFS_FILE_EXTENT_REG,
4182 						 &token);
4183 
4184 	block_len = max(em->block_len, em->orig_block_len);
4185 	if (em->compress_type != BTRFS_COMPRESS_NONE) {
4186 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4187 							em->block_start,
4188 							&token);
4189 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4190 							   &token);
4191 	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4192 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4193 							em->block_start -
4194 							extent_offset, &token);
4195 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4196 							   &token);
4197 	} else {
4198 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4199 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4200 							   &token);
4201 	}
4202 
4203 	btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4204 	btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4205 	btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4206 	btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4207 						&token);
4208 	btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4209 	btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4210 	btrfs_mark_buffer_dirty(leaf);
4211 
4212 	btrfs_release_path(path);
4213 
4214 	return ret;
4215 }
4216 
4217 /*
4218  * Log all prealloc extents beyond the inode's i_size to make sure we do not
4219  * lose them after doing a fast fsync and replaying the log. We scan the
4220  * subvolume's root instead of iterating the inode's extent map tree because
4221  * otherwise we can log incorrect extent items based on extent map conversion.
4222  * That can happen due to the fact that extent maps are merged when they
4223  * are not in the extent map tree's list of modified extents.
4224  */
btrfs_log_prealloc_extents(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path)4225 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4226 				      struct btrfs_inode *inode,
4227 				      struct btrfs_path *path)
4228 {
4229 	struct btrfs_root *root = inode->root;
4230 	struct btrfs_key key;
4231 	const u64 i_size = i_size_read(&inode->vfs_inode);
4232 	const u64 ino = btrfs_ino(inode);
4233 	struct btrfs_path *dst_path = NULL;
4234 	bool dropped_extents = false;
4235 	u64 truncate_offset = i_size;
4236 	struct extent_buffer *leaf;
4237 	int slot;
4238 	int ins_nr = 0;
4239 	int start_slot;
4240 	int ret;
4241 
4242 	if (!(inode->flags & BTRFS_INODE_PREALLOC))
4243 		return 0;
4244 
4245 	key.objectid = ino;
4246 	key.type = BTRFS_EXTENT_DATA_KEY;
4247 	key.offset = i_size;
4248 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4249 	if (ret < 0)
4250 		goto out;
4251 
4252 	/*
4253 	 * We must check if there is a prealloc extent that starts before the
4254 	 * i_size and crosses the i_size boundary. This is to ensure later we
4255 	 * truncate down to the end of that extent and not to the i_size, as
4256 	 * otherwise we end up losing part of the prealloc extent after a log
4257 	 * replay and with an implicit hole if there is another prealloc extent
4258 	 * that starts at an offset beyond i_size.
4259 	 */
4260 	ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4261 	if (ret < 0)
4262 		goto out;
4263 
4264 	if (ret == 0) {
4265 		struct btrfs_file_extent_item *ei;
4266 
4267 		leaf = path->nodes[0];
4268 		slot = path->slots[0];
4269 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4270 
4271 		if (btrfs_file_extent_type(leaf, ei) ==
4272 		    BTRFS_FILE_EXTENT_PREALLOC) {
4273 			u64 extent_end;
4274 
4275 			btrfs_item_key_to_cpu(leaf, &key, slot);
4276 			extent_end = key.offset +
4277 				btrfs_file_extent_num_bytes(leaf, ei);
4278 
4279 			if (extent_end > i_size)
4280 				truncate_offset = extent_end;
4281 		}
4282 	} else {
4283 		ret = 0;
4284 	}
4285 
4286 	while (true) {
4287 		leaf = path->nodes[0];
4288 		slot = path->slots[0];
4289 
4290 		if (slot >= btrfs_header_nritems(leaf)) {
4291 			if (ins_nr > 0) {
4292 				ret = copy_items(trans, inode, dst_path, path,
4293 						 start_slot, ins_nr, 1, 0);
4294 				if (ret < 0)
4295 					goto out;
4296 				ins_nr = 0;
4297 			}
4298 			ret = btrfs_next_leaf(root, path);
4299 			if (ret < 0)
4300 				goto out;
4301 			if (ret > 0) {
4302 				ret = 0;
4303 				break;
4304 			}
4305 			continue;
4306 		}
4307 
4308 		btrfs_item_key_to_cpu(leaf, &key, slot);
4309 		if (key.objectid > ino)
4310 			break;
4311 		if (WARN_ON_ONCE(key.objectid < ino) ||
4312 		    key.type < BTRFS_EXTENT_DATA_KEY ||
4313 		    key.offset < i_size) {
4314 			path->slots[0]++;
4315 			continue;
4316 		}
4317 		if (!dropped_extents) {
4318 			/*
4319 			 * Avoid logging extent items logged in past fsync calls
4320 			 * and leading to duplicate keys in the log tree.
4321 			 */
4322 			do {
4323 				ret = btrfs_truncate_inode_items(trans,
4324 							 root->log_root,
4325 							 &inode->vfs_inode,
4326 							 truncate_offset,
4327 							 BTRFS_EXTENT_DATA_KEY);
4328 			} while (ret == -EAGAIN);
4329 			if (ret)
4330 				goto out;
4331 			dropped_extents = true;
4332 		}
4333 		if (ins_nr == 0)
4334 			start_slot = slot;
4335 		ins_nr++;
4336 		path->slots[0]++;
4337 		if (!dst_path) {
4338 			dst_path = btrfs_alloc_path();
4339 			if (!dst_path) {
4340 				ret = -ENOMEM;
4341 				goto out;
4342 			}
4343 		}
4344 	}
4345 	if (ins_nr > 0) {
4346 		ret = copy_items(trans, inode, dst_path, path,
4347 				 start_slot, ins_nr, 1, 0);
4348 		if (ret > 0)
4349 			ret = 0;
4350 	}
4351 out:
4352 	btrfs_release_path(path);
4353 	btrfs_free_path(dst_path);
4354 	return ret;
4355 }
4356 
btrfs_log_changed_extents(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_log_ctx * ctx,const u64 start,const u64 end)4357 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4358 				     struct btrfs_root *root,
4359 				     struct btrfs_inode *inode,
4360 				     struct btrfs_path *path,
4361 				     struct btrfs_log_ctx *ctx,
4362 				     const u64 start,
4363 				     const u64 end)
4364 {
4365 	struct extent_map *em, *n;
4366 	struct list_head extents;
4367 	struct extent_map_tree *tree = &inode->extent_tree;
4368 	u64 logged_start, logged_end;
4369 	u64 test_gen;
4370 	int ret = 0;
4371 	int num = 0;
4372 
4373 	INIT_LIST_HEAD(&extents);
4374 
4375 	write_lock(&tree->lock);
4376 	test_gen = root->fs_info->last_trans_committed;
4377 	logged_start = start;
4378 	logged_end = end;
4379 
4380 	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4381 		/*
4382 		 * Skip extents outside our logging range. It's important to do
4383 		 * it for correctness because if we don't ignore them, we may
4384 		 * log them before their ordered extent completes, and therefore
4385 		 * we could log them without logging their respective checksums
4386 		 * (the checksum items are added to the csum tree at the very
4387 		 * end of btrfs_finish_ordered_io()). Also leave such extents
4388 		 * outside of our range in the list, since we may have another
4389 		 * ranged fsync in the near future that needs them. If an extent
4390 		 * outside our range corresponds to a hole, log it to avoid
4391 		 * leaving gaps between extents (fsck will complain when we are
4392 		 * not using the NO_HOLES feature).
4393 		 */
4394 		if ((em->start > end || em->start + em->len <= start) &&
4395 		    em->block_start != EXTENT_MAP_HOLE)
4396 			continue;
4397 
4398 		list_del_init(&em->list);
4399 		/*
4400 		 * Just an arbitrary number, this can be really CPU intensive
4401 		 * once we start getting a lot of extents, and really once we
4402 		 * have a bunch of extents we just want to commit since it will
4403 		 * be faster.
4404 		 */
4405 		if (++num > 32768) {
4406 			list_del_init(&tree->modified_extents);
4407 			ret = -EFBIG;
4408 			goto process;
4409 		}
4410 
4411 		if (em->generation <= test_gen)
4412 			continue;
4413 
4414 		/* We log prealloc extents beyond eof later. */
4415 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4416 		    em->start >= i_size_read(&inode->vfs_inode))
4417 			continue;
4418 
4419 		if (em->start < logged_start)
4420 			logged_start = em->start;
4421 		if ((em->start + em->len - 1) > logged_end)
4422 			logged_end = em->start + em->len - 1;
4423 
4424 		/* Need a ref to keep it from getting evicted from cache */
4425 		refcount_inc(&em->refs);
4426 		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4427 		list_add_tail(&em->list, &extents);
4428 		num++;
4429 	}
4430 
4431 	list_sort(NULL, &extents, extent_cmp);
4432 process:
4433 	while (!list_empty(&extents)) {
4434 		em = list_entry(extents.next, struct extent_map, list);
4435 
4436 		list_del_init(&em->list);
4437 
4438 		/*
4439 		 * If we had an error we just need to delete everybody from our
4440 		 * private list.
4441 		 */
4442 		if (ret) {
4443 			clear_em_logging(tree, em);
4444 			free_extent_map(em);
4445 			continue;
4446 		}
4447 
4448 		write_unlock(&tree->lock);
4449 
4450 		ret = log_one_extent(trans, inode, root, em, path, ctx);
4451 		write_lock(&tree->lock);
4452 		clear_em_logging(tree, em);
4453 		free_extent_map(em);
4454 	}
4455 	WARN_ON(!list_empty(&extents));
4456 	write_unlock(&tree->lock);
4457 
4458 	btrfs_release_path(path);
4459 	if (!ret)
4460 		ret = btrfs_log_prealloc_extents(trans, inode, path);
4461 
4462 	return ret;
4463 }
4464 
logged_inode_size(struct btrfs_root * log,struct btrfs_inode * inode,struct btrfs_path * path,u64 * size_ret)4465 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4466 			     struct btrfs_path *path, u64 *size_ret)
4467 {
4468 	struct btrfs_key key;
4469 	int ret;
4470 
4471 	key.objectid = btrfs_ino(inode);
4472 	key.type = BTRFS_INODE_ITEM_KEY;
4473 	key.offset = 0;
4474 
4475 	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4476 	if (ret < 0) {
4477 		return ret;
4478 	} else if (ret > 0) {
4479 		*size_ret = 0;
4480 	} else {
4481 		struct btrfs_inode_item *item;
4482 
4483 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4484 				      struct btrfs_inode_item);
4485 		*size_ret = btrfs_inode_size(path->nodes[0], item);
4486 		/*
4487 		 * If the in-memory inode's i_size is smaller then the inode
4488 		 * size stored in the btree, return the inode's i_size, so
4489 		 * that we get a correct inode size after replaying the log
4490 		 * when before a power failure we had a shrinking truncate
4491 		 * followed by addition of a new name (rename / new hard link).
4492 		 * Otherwise return the inode size from the btree, to avoid
4493 		 * data loss when replaying a log due to previously doing a
4494 		 * write that expands the inode's size and logging a new name
4495 		 * immediately after.
4496 		 */
4497 		if (*size_ret > inode->vfs_inode.i_size)
4498 			*size_ret = inode->vfs_inode.i_size;
4499 	}
4500 
4501 	btrfs_release_path(path);
4502 	return 0;
4503 }
4504 
4505 /*
4506  * At the moment we always log all xattrs. This is to figure out at log replay
4507  * time which xattrs must have their deletion replayed. If a xattr is missing
4508  * in the log tree and exists in the fs/subvol tree, we delete it. This is
4509  * because if a xattr is deleted, the inode is fsynced and a power failure
4510  * happens, causing the log to be replayed the next time the fs is mounted,
4511  * we want the xattr to not exist anymore (same behaviour as other filesystems
4512  * with a journal, ext3/4, xfs, f2fs, etc).
4513  */
btrfs_log_all_xattrs(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path)4514 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4515 				struct btrfs_root *root,
4516 				struct btrfs_inode *inode,
4517 				struct btrfs_path *path,
4518 				struct btrfs_path *dst_path)
4519 {
4520 	int ret;
4521 	struct btrfs_key key;
4522 	const u64 ino = btrfs_ino(inode);
4523 	int ins_nr = 0;
4524 	int start_slot = 0;
4525 
4526 	key.objectid = ino;
4527 	key.type = BTRFS_XATTR_ITEM_KEY;
4528 	key.offset = 0;
4529 
4530 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4531 	if (ret < 0)
4532 		return ret;
4533 
4534 	while (true) {
4535 		int slot = path->slots[0];
4536 		struct extent_buffer *leaf = path->nodes[0];
4537 		int nritems = btrfs_header_nritems(leaf);
4538 
4539 		if (slot >= nritems) {
4540 			if (ins_nr > 0) {
4541 				ret = copy_items(trans, inode, dst_path, path,
4542 						 start_slot, ins_nr, 1, 0);
4543 				if (ret < 0)
4544 					return ret;
4545 				ins_nr = 0;
4546 			}
4547 			ret = btrfs_next_leaf(root, path);
4548 			if (ret < 0)
4549 				return ret;
4550 			else if (ret > 0)
4551 				break;
4552 			continue;
4553 		}
4554 
4555 		btrfs_item_key_to_cpu(leaf, &key, slot);
4556 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4557 			break;
4558 
4559 		if (ins_nr == 0)
4560 			start_slot = slot;
4561 		ins_nr++;
4562 		path->slots[0]++;
4563 		cond_resched();
4564 	}
4565 	if (ins_nr > 0) {
4566 		ret = copy_items(trans, inode, dst_path, path,
4567 				 start_slot, ins_nr, 1, 0);
4568 		if (ret < 0)
4569 			return ret;
4570 	}
4571 
4572 	return 0;
4573 }
4574 
4575 /*
4576  * When using the NO_HOLES feature if we punched a hole that causes the
4577  * deletion of entire leafs or all the extent items of the first leaf (the one
4578  * that contains the inode item and references) we may end up not processing
4579  * any extents, because there are no leafs with a generation matching the
4580  * current transaction that have extent items for our inode. So we need to find
4581  * if any holes exist and then log them. We also need to log holes after any
4582  * truncate operation that changes the inode's size.
4583  */
btrfs_log_holes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path)4584 static int btrfs_log_holes(struct btrfs_trans_handle *trans,
4585 			   struct btrfs_root *root,
4586 			   struct btrfs_inode *inode,
4587 			   struct btrfs_path *path)
4588 {
4589 	struct btrfs_fs_info *fs_info = root->fs_info;
4590 	struct btrfs_key key;
4591 	const u64 ino = btrfs_ino(inode);
4592 	const u64 i_size = i_size_read(&inode->vfs_inode);
4593 	u64 prev_extent_end = 0;
4594 	int ret;
4595 
4596 	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
4597 		return 0;
4598 
4599 	key.objectid = ino;
4600 	key.type = BTRFS_EXTENT_DATA_KEY;
4601 	key.offset = 0;
4602 
4603 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4604 	if (ret < 0)
4605 		return ret;
4606 
4607 	while (true) {
4608 		struct btrfs_file_extent_item *extent;
4609 		struct extent_buffer *leaf = path->nodes[0];
4610 		u64 len;
4611 
4612 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
4613 			ret = btrfs_next_leaf(root, path);
4614 			if (ret < 0)
4615 				return ret;
4616 			if (ret > 0) {
4617 				ret = 0;
4618 				break;
4619 			}
4620 			leaf = path->nodes[0];
4621 		}
4622 
4623 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4624 		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
4625 			break;
4626 
4627 		/* We have a hole, log it. */
4628 		if (prev_extent_end < key.offset) {
4629 			const u64 hole_len = key.offset - prev_extent_end;
4630 
4631 			/*
4632 			 * Release the path to avoid deadlocks with other code
4633 			 * paths that search the root while holding locks on
4634 			 * leafs from the log root.
4635 			 */
4636 			btrfs_release_path(path);
4637 			ret = btrfs_insert_file_extent(trans, root->log_root,
4638 						       ino, prev_extent_end, 0,
4639 						       0, hole_len, 0, hole_len,
4640 						       0, 0, 0);
4641 			if (ret < 0)
4642 				return ret;
4643 
4644 			/*
4645 			 * Search for the same key again in the root. Since it's
4646 			 * an extent item and we are holding the inode lock, the
4647 			 * key must still exist. If it doesn't just emit warning
4648 			 * and return an error to fall back to a transaction
4649 			 * commit.
4650 			 */
4651 			ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4652 			if (ret < 0)
4653 				return ret;
4654 			if (WARN_ON(ret > 0))
4655 				return -ENOENT;
4656 			leaf = path->nodes[0];
4657 		}
4658 
4659 		extent = btrfs_item_ptr(leaf, path->slots[0],
4660 					struct btrfs_file_extent_item);
4661 		if (btrfs_file_extent_type(leaf, extent) ==
4662 		    BTRFS_FILE_EXTENT_INLINE) {
4663 			len = btrfs_file_extent_ram_bytes(leaf, extent);
4664 			prev_extent_end = ALIGN(key.offset + len,
4665 						fs_info->sectorsize);
4666 		} else {
4667 			len = btrfs_file_extent_num_bytes(leaf, extent);
4668 			prev_extent_end = key.offset + len;
4669 		}
4670 
4671 		path->slots[0]++;
4672 		cond_resched();
4673 	}
4674 
4675 	if (prev_extent_end < i_size) {
4676 		u64 hole_len;
4677 
4678 		btrfs_release_path(path);
4679 		hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
4680 		ret = btrfs_insert_file_extent(trans, root->log_root,
4681 					       ino, prev_extent_end, 0, 0,
4682 					       hole_len, 0, hole_len,
4683 					       0, 0, 0);
4684 		if (ret < 0)
4685 			return ret;
4686 	}
4687 
4688 	return 0;
4689 }
4690 
4691 /*
4692  * When we are logging a new inode X, check if it doesn't have a reference that
4693  * matches the reference from some other inode Y created in a past transaction
4694  * and that was renamed in the current transaction. If we don't do this, then at
4695  * log replay time we can lose inode Y (and all its files if it's a directory):
4696  *
4697  * mkdir /mnt/x
4698  * echo "hello world" > /mnt/x/foobar
4699  * sync
4700  * mv /mnt/x /mnt/y
4701  * mkdir /mnt/x                 # or touch /mnt/x
4702  * xfs_io -c fsync /mnt/x
4703  * <power fail>
4704  * mount fs, trigger log replay
4705  *
4706  * After the log replay procedure, we would lose the first directory and all its
4707  * files (file foobar).
4708  * For the case where inode Y is not a directory we simply end up losing it:
4709  *
4710  * echo "123" > /mnt/foo
4711  * sync
4712  * mv /mnt/foo /mnt/bar
4713  * echo "abc" > /mnt/foo
4714  * xfs_io -c fsync /mnt/foo
4715  * <power fail>
4716  *
4717  * We also need this for cases where a snapshot entry is replaced by some other
4718  * entry (file or directory) otherwise we end up with an unreplayable log due to
4719  * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4720  * if it were a regular entry:
4721  *
4722  * mkdir /mnt/x
4723  * btrfs subvolume snapshot /mnt /mnt/x/snap
4724  * btrfs subvolume delete /mnt/x/snap
4725  * rmdir /mnt/x
4726  * mkdir /mnt/x
4727  * fsync /mnt/x or fsync some new file inside it
4728  * <power fail>
4729  *
4730  * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4731  * the same transaction.
4732  */
btrfs_check_ref_name_override(struct extent_buffer * eb,const int slot,const struct btrfs_key * key,struct btrfs_inode * inode,u64 * other_ino)4733 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4734 					 const int slot,
4735 					 const struct btrfs_key *key,
4736 					 struct btrfs_inode *inode,
4737 					 u64 *other_ino)
4738 {
4739 	int ret;
4740 	struct btrfs_path *search_path;
4741 	char *name = NULL;
4742 	u32 name_len = 0;
4743 	u32 item_size = btrfs_item_size_nr(eb, slot);
4744 	u32 cur_offset = 0;
4745 	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4746 
4747 	search_path = btrfs_alloc_path();
4748 	if (!search_path)
4749 		return -ENOMEM;
4750 	search_path->search_commit_root = 1;
4751 	search_path->skip_locking = 1;
4752 
4753 	while (cur_offset < item_size) {
4754 		u64 parent;
4755 		u32 this_name_len;
4756 		u32 this_len;
4757 		unsigned long name_ptr;
4758 		struct btrfs_dir_item *di;
4759 
4760 		if (key->type == BTRFS_INODE_REF_KEY) {
4761 			struct btrfs_inode_ref *iref;
4762 
4763 			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4764 			parent = key->offset;
4765 			this_name_len = btrfs_inode_ref_name_len(eb, iref);
4766 			name_ptr = (unsigned long)(iref + 1);
4767 			this_len = sizeof(*iref) + this_name_len;
4768 		} else {
4769 			struct btrfs_inode_extref *extref;
4770 
4771 			extref = (struct btrfs_inode_extref *)(ptr +
4772 							       cur_offset);
4773 			parent = btrfs_inode_extref_parent(eb, extref);
4774 			this_name_len = btrfs_inode_extref_name_len(eb, extref);
4775 			name_ptr = (unsigned long)&extref->name;
4776 			this_len = sizeof(*extref) + this_name_len;
4777 		}
4778 
4779 		if (this_name_len > name_len) {
4780 			char *new_name;
4781 
4782 			new_name = krealloc(name, this_name_len, GFP_NOFS);
4783 			if (!new_name) {
4784 				ret = -ENOMEM;
4785 				goto out;
4786 			}
4787 			name_len = this_name_len;
4788 			name = new_name;
4789 		}
4790 
4791 		read_extent_buffer(eb, name, name_ptr, this_name_len);
4792 		di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4793 				parent, name, this_name_len, 0);
4794 		if (di && !IS_ERR(di)) {
4795 			struct btrfs_key di_key;
4796 
4797 			btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4798 						  di, &di_key);
4799 			if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4800 				ret = 1;
4801 				*other_ino = di_key.objectid;
4802 			} else {
4803 				ret = -EAGAIN;
4804 			}
4805 			goto out;
4806 		} else if (IS_ERR(di)) {
4807 			ret = PTR_ERR(di);
4808 			goto out;
4809 		}
4810 		btrfs_release_path(search_path);
4811 
4812 		cur_offset += this_len;
4813 	}
4814 	ret = 0;
4815 out:
4816 	btrfs_free_path(search_path);
4817 	kfree(name);
4818 	return ret;
4819 }
4820 
4821 /* log a single inode in the tree log.
4822  * At least one parent directory for this inode must exist in the tree
4823  * or be logged already.
4824  *
4825  * Any items from this inode changed by the current transaction are copied
4826  * to the log tree.  An extra reference is taken on any extents in this
4827  * file, allowing us to avoid a whole pile of corner cases around logging
4828  * blocks that have been removed from the tree.
4829  *
4830  * See LOG_INODE_ALL and related defines for a description of what inode_only
4831  * does.
4832  *
4833  * This handles both files and directories.
4834  */
btrfs_log_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,int inode_only,const loff_t start,const loff_t end,struct btrfs_log_ctx * ctx)4835 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
4836 			   struct btrfs_root *root, struct btrfs_inode *inode,
4837 			   int inode_only,
4838 			   const loff_t start,
4839 			   const loff_t end,
4840 			   struct btrfs_log_ctx *ctx)
4841 {
4842 	struct btrfs_fs_info *fs_info = root->fs_info;
4843 	struct btrfs_path *path;
4844 	struct btrfs_path *dst_path;
4845 	struct btrfs_key min_key;
4846 	struct btrfs_key max_key;
4847 	struct btrfs_root *log = root->log_root;
4848 	int err = 0;
4849 	int ret;
4850 	int nritems;
4851 	int ins_start_slot = 0;
4852 	int ins_nr;
4853 	bool fast_search = false;
4854 	u64 ino = btrfs_ino(inode);
4855 	struct extent_map_tree *em_tree = &inode->extent_tree;
4856 	u64 logged_isize = 0;
4857 	bool need_log_inode_item = true;
4858 	bool xattrs_logged = false;
4859 
4860 	path = btrfs_alloc_path();
4861 	if (!path)
4862 		return -ENOMEM;
4863 	dst_path = btrfs_alloc_path();
4864 	if (!dst_path) {
4865 		btrfs_free_path(path);
4866 		return -ENOMEM;
4867 	}
4868 
4869 	min_key.objectid = ino;
4870 	min_key.type = BTRFS_INODE_ITEM_KEY;
4871 	min_key.offset = 0;
4872 
4873 	max_key.objectid = ino;
4874 
4875 
4876 	/* today the code can only do partial logging of directories */
4877 	if (S_ISDIR(inode->vfs_inode.i_mode) ||
4878 	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4879 		       &inode->runtime_flags) &&
4880 	     inode_only >= LOG_INODE_EXISTS))
4881 		max_key.type = BTRFS_XATTR_ITEM_KEY;
4882 	else
4883 		max_key.type = (u8)-1;
4884 	max_key.offset = (u64)-1;
4885 
4886 	/*
4887 	 * Only run delayed items if we are a dir or a new file.
4888 	 * Otherwise commit the delayed inode only, which is needed in
4889 	 * order for the log replay code to mark inodes for link count
4890 	 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
4891 	 */
4892 	if (S_ISDIR(inode->vfs_inode.i_mode) ||
4893 	    inode->generation > fs_info->last_trans_committed)
4894 		ret = btrfs_commit_inode_delayed_items(trans, inode);
4895 	else
4896 		ret = btrfs_commit_inode_delayed_inode(inode);
4897 
4898 	if (ret) {
4899 		btrfs_free_path(path);
4900 		btrfs_free_path(dst_path);
4901 		return ret;
4902 	}
4903 
4904 	if (inode_only == LOG_OTHER_INODE) {
4905 		inode_only = LOG_INODE_EXISTS;
4906 		mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
4907 	} else {
4908 		mutex_lock(&inode->log_mutex);
4909 	}
4910 
4911 	/*
4912 	 * For symlinks, we must always log their content, which is stored in an
4913 	 * inline extent, otherwise we could end up with an empty symlink after
4914 	 * log replay, which is invalid on linux (symlink(2) returns -ENOENT if
4915 	 * one attempts to create an empty symlink).
4916 	 * We don't need to worry about flushing delalloc, because when we create
4917 	 * the inline extent when the symlink is created (we never have delalloc
4918 	 * for symlinks).
4919 	 */
4920 	if (S_ISLNK(inode->vfs_inode.i_mode))
4921 		inode_only = LOG_INODE_ALL;
4922 
4923 	/*
4924 	 * a brute force approach to making sure we get the most uptodate
4925 	 * copies of everything.
4926 	 */
4927 	if (S_ISDIR(inode->vfs_inode.i_mode)) {
4928 		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
4929 
4930 		if (inode_only == LOG_INODE_EXISTS)
4931 			max_key_type = BTRFS_XATTR_ITEM_KEY;
4932 		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
4933 	} else {
4934 		if (inode_only == LOG_INODE_EXISTS) {
4935 			/*
4936 			 * Make sure the new inode item we write to the log has
4937 			 * the same isize as the current one (if it exists).
4938 			 * This is necessary to prevent data loss after log
4939 			 * replay, and also to prevent doing a wrong expanding
4940 			 * truncate - for e.g. create file, write 4K into offset
4941 			 * 0, fsync, write 4K into offset 4096, add hard link,
4942 			 * fsync some other file (to sync log), power fail - if
4943 			 * we use the inode's current i_size, after log replay
4944 			 * we get a 8Kb file, with the last 4Kb extent as a hole
4945 			 * (zeroes), as if an expanding truncate happened,
4946 			 * instead of getting a file of 4Kb only.
4947 			 */
4948 			err = logged_inode_size(log, inode, path, &logged_isize);
4949 			if (err)
4950 				goto out_unlock;
4951 		}
4952 		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4953 			     &inode->runtime_flags)) {
4954 			if (inode_only == LOG_INODE_EXISTS) {
4955 				max_key.type = BTRFS_XATTR_ITEM_KEY;
4956 				ret = drop_objectid_items(trans, log, path, ino,
4957 							  max_key.type);
4958 			} else {
4959 				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4960 					  &inode->runtime_flags);
4961 				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4962 					  &inode->runtime_flags);
4963 				while(1) {
4964 					ret = btrfs_truncate_inode_items(trans,
4965 						log, &inode->vfs_inode, 0, 0);
4966 					if (ret != -EAGAIN)
4967 						break;
4968 				}
4969 			}
4970 		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4971 					      &inode->runtime_flags) ||
4972 			   inode_only == LOG_INODE_EXISTS) {
4973 			if (inode_only == LOG_INODE_ALL)
4974 				fast_search = true;
4975 			max_key.type = BTRFS_XATTR_ITEM_KEY;
4976 			ret = drop_objectid_items(trans, log, path, ino,
4977 						  max_key.type);
4978 		} else {
4979 			if (inode_only == LOG_INODE_ALL)
4980 				fast_search = true;
4981 			goto log_extents;
4982 		}
4983 
4984 	}
4985 	if (ret) {
4986 		err = ret;
4987 		goto out_unlock;
4988 	}
4989 
4990 	while (1) {
4991 		ins_nr = 0;
4992 		ret = btrfs_search_forward(root, &min_key,
4993 					   path, trans->transid);
4994 		if (ret < 0) {
4995 			err = ret;
4996 			goto out_unlock;
4997 		}
4998 		if (ret != 0)
4999 			break;
5000 again:
5001 		/* note, ins_nr might be > 0 here, cleanup outside the loop */
5002 		if (min_key.objectid != ino)
5003 			break;
5004 		if (min_key.type > max_key.type)
5005 			break;
5006 
5007 		if (min_key.type == BTRFS_INODE_ITEM_KEY)
5008 			need_log_inode_item = false;
5009 
5010 		if ((min_key.type == BTRFS_INODE_REF_KEY ||
5011 		     min_key.type == BTRFS_INODE_EXTREF_KEY) &&
5012 		    inode->generation == trans->transid) {
5013 			u64 other_ino = 0;
5014 
5015 			ret = btrfs_check_ref_name_override(path->nodes[0],
5016 					path->slots[0], &min_key, inode,
5017 					&other_ino);
5018 			if (ret < 0) {
5019 				err = ret;
5020 				goto out_unlock;
5021 			} else if (ret > 0 && ctx &&
5022 				   other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5023 				struct btrfs_key inode_key;
5024 				struct inode *other_inode;
5025 
5026 				if (ins_nr > 0) {
5027 					ins_nr++;
5028 				} else {
5029 					ins_nr = 1;
5030 					ins_start_slot = path->slots[0];
5031 				}
5032 				ret = copy_items(trans, inode, dst_path, path,
5033 						 ins_start_slot,
5034 						 ins_nr, inode_only,
5035 						 logged_isize);
5036 				if (ret < 0) {
5037 					err = ret;
5038 					goto out_unlock;
5039 				}
5040 				ins_nr = 0;
5041 				btrfs_release_path(path);
5042 				inode_key.objectid = other_ino;
5043 				inode_key.type = BTRFS_INODE_ITEM_KEY;
5044 				inode_key.offset = 0;
5045 				other_inode = btrfs_iget(fs_info->sb,
5046 							 &inode_key, root,
5047 							 NULL);
5048 				/*
5049 				 * If the other inode that had a conflicting dir
5050 				 * entry was deleted in the current transaction,
5051 				 * we don't need to do more work nor fallback to
5052 				 * a transaction commit.
5053 				 */
5054 				if (other_inode == ERR_PTR(-ENOENT)) {
5055 					goto next_key;
5056 				} else if (IS_ERR(other_inode)) {
5057 					err = PTR_ERR(other_inode);
5058 					goto out_unlock;
5059 				}
5060 				/*
5061 				 * We are safe logging the other inode without
5062 				 * acquiring its i_mutex as long as we log with
5063 				 * the LOG_INODE_EXISTS mode. We're safe against
5064 				 * concurrent renames of the other inode as well
5065 				 * because during a rename we pin the log and
5066 				 * update the log with the new name before we
5067 				 * unpin it.
5068 				 */
5069 				err = btrfs_log_inode(trans, root,
5070 						BTRFS_I(other_inode),
5071 						LOG_OTHER_INODE, 0, LLONG_MAX,
5072 						ctx);
5073 				btrfs_add_delayed_iput(other_inode);
5074 				if (err)
5075 					goto out_unlock;
5076 				else
5077 					goto next_key;
5078 			}
5079 		}
5080 
5081 		/* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
5082 		if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
5083 			if (ins_nr == 0)
5084 				goto next_slot;
5085 			ret = copy_items(trans, inode, dst_path, path,
5086 					 ins_start_slot,
5087 					 ins_nr, inode_only, logged_isize);
5088 			if (ret < 0) {
5089 				err = ret;
5090 				goto out_unlock;
5091 			}
5092 			ins_nr = 0;
5093 			goto next_slot;
5094 		}
5095 
5096 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5097 			ins_nr++;
5098 			goto next_slot;
5099 		} else if (!ins_nr) {
5100 			ins_start_slot = path->slots[0];
5101 			ins_nr = 1;
5102 			goto next_slot;
5103 		}
5104 
5105 		ret = copy_items(trans, inode, dst_path, path,
5106 				 ins_start_slot, ins_nr, inode_only,
5107 				 logged_isize);
5108 		if (ret < 0) {
5109 			err = ret;
5110 			goto out_unlock;
5111 		}
5112 		ins_nr = 1;
5113 		ins_start_slot = path->slots[0];
5114 next_slot:
5115 
5116 		nritems = btrfs_header_nritems(path->nodes[0]);
5117 		path->slots[0]++;
5118 		if (path->slots[0] < nritems) {
5119 			btrfs_item_key_to_cpu(path->nodes[0], &min_key,
5120 					      path->slots[0]);
5121 			goto again;
5122 		}
5123 		if (ins_nr) {
5124 			ret = copy_items(trans, inode, dst_path, path,
5125 					 ins_start_slot,
5126 					 ins_nr, inode_only, logged_isize);
5127 			if (ret < 0) {
5128 				err = ret;
5129 				goto out_unlock;
5130 			}
5131 			ins_nr = 0;
5132 		}
5133 		btrfs_release_path(path);
5134 next_key:
5135 		if (min_key.offset < (u64)-1) {
5136 			min_key.offset++;
5137 		} else if (min_key.type < max_key.type) {
5138 			min_key.type++;
5139 			min_key.offset = 0;
5140 		} else {
5141 			break;
5142 		}
5143 	}
5144 	if (ins_nr) {
5145 		ret = copy_items(trans, inode, dst_path, path,
5146 				 ins_start_slot, ins_nr, inode_only,
5147 				 logged_isize);
5148 		if (ret < 0) {
5149 			err = ret;
5150 			goto out_unlock;
5151 		}
5152 		ins_nr = 0;
5153 	}
5154 
5155 	btrfs_release_path(path);
5156 	btrfs_release_path(dst_path);
5157 	err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
5158 	if (err)
5159 		goto out_unlock;
5160 	xattrs_logged = true;
5161 	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5162 		btrfs_release_path(path);
5163 		btrfs_release_path(dst_path);
5164 		err = btrfs_log_holes(trans, root, inode, path);
5165 		if (err)
5166 			goto out_unlock;
5167 	}
5168 log_extents:
5169 	btrfs_release_path(path);
5170 	btrfs_release_path(dst_path);
5171 	if (need_log_inode_item) {
5172 		err = log_inode_item(trans, log, dst_path, inode);
5173 		if (!err && !xattrs_logged) {
5174 			err = btrfs_log_all_xattrs(trans, root, inode, path,
5175 						   dst_path);
5176 			btrfs_release_path(path);
5177 		}
5178 		if (err)
5179 			goto out_unlock;
5180 	}
5181 	if (fast_search) {
5182 		ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
5183 						ctx, start, end);
5184 		if (ret) {
5185 			err = ret;
5186 			goto out_unlock;
5187 		}
5188 	} else if (inode_only == LOG_INODE_ALL) {
5189 		struct extent_map *em, *n;
5190 
5191 		write_lock(&em_tree->lock);
5192 		/*
5193 		 * We can't just remove every em if we're called for a ranged
5194 		 * fsync - that is, one that doesn't cover the whole possible
5195 		 * file range (0 to LLONG_MAX). This is because we can have
5196 		 * em's that fall outside the range we're logging and therefore
5197 		 * their ordered operations haven't completed yet
5198 		 * (btrfs_finish_ordered_io() not invoked yet). This means we
5199 		 * didn't get their respective file extent item in the fs/subvol
5200 		 * tree yet, and need to let the next fast fsync (one which
5201 		 * consults the list of modified extent maps) find the em so
5202 		 * that it logs a matching file extent item and waits for the
5203 		 * respective ordered operation to complete (if it's still
5204 		 * running).
5205 		 *
5206 		 * Removing every em outside the range we're logging would make
5207 		 * the next fast fsync not log their matching file extent items,
5208 		 * therefore making us lose data after a log replay.
5209 		 */
5210 		list_for_each_entry_safe(em, n, &em_tree->modified_extents,
5211 					 list) {
5212 			const u64 mod_end = em->mod_start + em->mod_len - 1;
5213 
5214 			if (em->mod_start >= start && mod_end <= end)
5215 				list_del_init(&em->list);
5216 		}
5217 		write_unlock(&em_tree->lock);
5218 	}
5219 
5220 	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5221 		ret = log_directory_changes(trans, root, inode, path, dst_path,
5222 					ctx);
5223 		if (ret) {
5224 			err = ret;
5225 			goto out_unlock;
5226 		}
5227 	}
5228 
5229 	/*
5230 	 * Don't update last_log_commit if we logged that an inode exists after
5231 	 * it was loaded to memory (full_sync bit set).
5232 	 * This is to prevent data loss when we do a write to the inode, then
5233 	 * the inode gets evicted after all delalloc was flushed, then we log
5234 	 * it exists (due to a rename for example) and then fsync it. This last
5235 	 * fsync would do nothing (not logging the extents previously written).
5236 	 */
5237 	spin_lock(&inode->lock);
5238 	inode->logged_trans = trans->transid;
5239 	if (inode_only != LOG_INODE_EXISTS ||
5240 	    !test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags))
5241 		inode->last_log_commit = inode->last_sub_trans;
5242 	spin_unlock(&inode->lock);
5243 out_unlock:
5244 	mutex_unlock(&inode->log_mutex);
5245 
5246 	btrfs_free_path(path);
5247 	btrfs_free_path(dst_path);
5248 	return err;
5249 }
5250 
5251 /*
5252  * Check if we must fallback to a transaction commit when logging an inode.
5253  * This must be called after logging the inode and is used only in the context
5254  * when fsyncing an inode requires the need to log some other inode - in which
5255  * case we can't lock the i_mutex of each other inode we need to log as that
5256  * can lead to deadlocks with concurrent fsync against other inodes (as we can
5257  * log inodes up or down in the hierarchy) or rename operations for example. So
5258  * we take the log_mutex of the inode after we have logged it and then check for
5259  * its last_unlink_trans value - this is safe because any task setting
5260  * last_unlink_trans must take the log_mutex and it must do this before it does
5261  * the actual unlink operation, so if we do this check before a concurrent task
5262  * sets last_unlink_trans it means we've logged a consistent version/state of
5263  * all the inode items, otherwise we are not sure and must do a transaction
5264  * commit (the concurrent task might have only updated last_unlink_trans before
5265  * we logged the inode or it might have also done the unlink).
5266  */
btrfs_must_commit_transaction(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)5267 static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
5268 					  struct btrfs_inode *inode)
5269 {
5270 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
5271 	bool ret = false;
5272 
5273 	mutex_lock(&inode->log_mutex);
5274 	if (inode->last_unlink_trans > fs_info->last_trans_committed) {
5275 		/*
5276 		 * Make sure any commits to the log are forced to be full
5277 		 * commits.
5278 		 */
5279 		btrfs_set_log_full_commit(fs_info, trans);
5280 		ret = true;
5281 	}
5282 	mutex_unlock(&inode->log_mutex);
5283 
5284 	return ret;
5285 }
5286 
5287 /*
5288  * follow the dentry parent pointers up the chain and see if any
5289  * of the directories in it require a full commit before they can
5290  * be logged.  Returns zero if nothing special needs to be done or 1 if
5291  * a full commit is required.
5292  */
check_parent_dirs_for_sync(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct dentry * parent,struct super_block * sb,u64 last_committed)5293 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
5294 					       struct btrfs_inode *inode,
5295 					       struct dentry *parent,
5296 					       struct super_block *sb,
5297 					       u64 last_committed)
5298 {
5299 	int ret = 0;
5300 	struct dentry *old_parent = NULL;
5301 
5302 	/*
5303 	 * for regular files, if its inode is already on disk, we don't
5304 	 * have to worry about the parents at all.  This is because
5305 	 * we can use the last_unlink_trans field to record renames
5306 	 * and other fun in this file.
5307 	 */
5308 	if (S_ISREG(inode->vfs_inode.i_mode) &&
5309 	    inode->generation <= last_committed &&
5310 	    inode->last_unlink_trans <= last_committed)
5311 		goto out;
5312 
5313 	if (!S_ISDIR(inode->vfs_inode.i_mode)) {
5314 		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5315 			goto out;
5316 		inode = BTRFS_I(d_inode(parent));
5317 	}
5318 
5319 	while (1) {
5320 		if (btrfs_must_commit_transaction(trans, inode)) {
5321 			ret = 1;
5322 			break;
5323 		}
5324 
5325 		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5326 			break;
5327 
5328 		if (IS_ROOT(parent)) {
5329 			inode = BTRFS_I(d_inode(parent));
5330 			if (btrfs_must_commit_transaction(trans, inode))
5331 				ret = 1;
5332 			break;
5333 		}
5334 
5335 		parent = dget_parent(parent);
5336 		dput(old_parent);
5337 		old_parent = parent;
5338 		inode = BTRFS_I(d_inode(parent));
5339 
5340 	}
5341 	dput(old_parent);
5342 out:
5343 	return ret;
5344 }
5345 
5346 struct btrfs_dir_list {
5347 	u64 ino;
5348 	struct list_head list;
5349 };
5350 
5351 /*
5352  * Log the inodes of the new dentries of a directory. See log_dir_items() for
5353  * details about the why it is needed.
5354  * This is a recursive operation - if an existing dentry corresponds to a
5355  * directory, that directory's new entries are logged too (same behaviour as
5356  * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5357  * the dentries point to we do not lock their i_mutex, otherwise lockdep
5358  * complains about the following circular lock dependency / possible deadlock:
5359  *
5360  *        CPU0                                        CPU1
5361  *        ----                                        ----
5362  * lock(&type->i_mutex_dir_key#3/2);
5363  *                                            lock(sb_internal#2);
5364  *                                            lock(&type->i_mutex_dir_key#3/2);
5365  * lock(&sb->s_type->i_mutex_key#14);
5366  *
5367  * Where sb_internal is the lock (a counter that works as a lock) acquired by
5368  * sb_start_intwrite() in btrfs_start_transaction().
5369  * Not locking i_mutex of the inodes is still safe because:
5370  *
5371  * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5372  *    that while logging the inode new references (names) are added or removed
5373  *    from the inode, leaving the logged inode item with a link count that does
5374  *    not match the number of logged inode reference items. This is fine because
5375  *    at log replay time we compute the real number of links and correct the
5376  *    link count in the inode item (see replay_one_buffer() and
5377  *    link_to_fixup_dir());
5378  *
5379  * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5380  *    while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5381  *    BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5382  *    has a size that doesn't match the sum of the lengths of all the logged
5383  *    names. This does not result in a problem because if a dir_item key is
5384  *    logged but its matching dir_index key is not logged, at log replay time we
5385  *    don't use it to replay the respective name (see replay_one_name()). On the
5386  *    other hand if only the dir_index key ends up being logged, the respective
5387  *    name is added to the fs/subvol tree with both the dir_item and dir_index
5388  *    keys created (see replay_one_name()).
5389  *    The directory's inode item with a wrong i_size is not a problem as well,
5390  *    since we don't use it at log replay time to set the i_size in the inode
5391  *    item of the fs/subvol tree (see overwrite_item()).
5392  */
log_new_dir_dentries(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * start_inode,struct btrfs_log_ctx * ctx)5393 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5394 				struct btrfs_root *root,
5395 				struct btrfs_inode *start_inode,
5396 				struct btrfs_log_ctx *ctx)
5397 {
5398 	struct btrfs_fs_info *fs_info = root->fs_info;
5399 	struct btrfs_root *log = root->log_root;
5400 	struct btrfs_path *path;
5401 	LIST_HEAD(dir_list);
5402 	struct btrfs_dir_list *dir_elem;
5403 	int ret = 0;
5404 
5405 	path = btrfs_alloc_path();
5406 	if (!path)
5407 		return -ENOMEM;
5408 
5409 	dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5410 	if (!dir_elem) {
5411 		btrfs_free_path(path);
5412 		return -ENOMEM;
5413 	}
5414 	dir_elem->ino = btrfs_ino(start_inode);
5415 	list_add_tail(&dir_elem->list, &dir_list);
5416 
5417 	while (!list_empty(&dir_list)) {
5418 		struct extent_buffer *leaf;
5419 		struct btrfs_key min_key;
5420 		int nritems;
5421 		int i;
5422 
5423 		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5424 					    list);
5425 		if (ret)
5426 			goto next_dir_inode;
5427 
5428 		min_key.objectid = dir_elem->ino;
5429 		min_key.type = BTRFS_DIR_ITEM_KEY;
5430 		min_key.offset = 0;
5431 again:
5432 		btrfs_release_path(path);
5433 		ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5434 		if (ret < 0) {
5435 			goto next_dir_inode;
5436 		} else if (ret > 0) {
5437 			ret = 0;
5438 			goto next_dir_inode;
5439 		}
5440 
5441 process_leaf:
5442 		leaf = path->nodes[0];
5443 		nritems = btrfs_header_nritems(leaf);
5444 		for (i = path->slots[0]; i < nritems; i++) {
5445 			struct btrfs_dir_item *di;
5446 			struct btrfs_key di_key;
5447 			struct inode *di_inode;
5448 			struct btrfs_dir_list *new_dir_elem;
5449 			int log_mode = LOG_INODE_EXISTS;
5450 			int type;
5451 
5452 			btrfs_item_key_to_cpu(leaf, &min_key, i);
5453 			if (min_key.objectid != dir_elem->ino ||
5454 			    min_key.type != BTRFS_DIR_ITEM_KEY)
5455 				goto next_dir_inode;
5456 
5457 			di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5458 			type = btrfs_dir_type(leaf, di);
5459 			if (btrfs_dir_transid(leaf, di) < trans->transid &&
5460 			    type != BTRFS_FT_DIR)
5461 				continue;
5462 			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5463 			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5464 				continue;
5465 
5466 			btrfs_release_path(path);
5467 			di_inode = btrfs_iget(fs_info->sb, &di_key, root, NULL);
5468 			if (IS_ERR(di_inode)) {
5469 				ret = PTR_ERR(di_inode);
5470 				goto next_dir_inode;
5471 			}
5472 
5473 			if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) {
5474 				btrfs_add_delayed_iput(di_inode);
5475 				break;
5476 			}
5477 
5478 			ctx->log_new_dentries = false;
5479 			if (type == BTRFS_FT_DIR)
5480 				log_mode = LOG_INODE_ALL;
5481 			ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
5482 					      log_mode, 0, LLONG_MAX, ctx);
5483 			if (!ret &&
5484 			    btrfs_must_commit_transaction(trans, BTRFS_I(di_inode)))
5485 				ret = 1;
5486 			btrfs_add_delayed_iput(di_inode);
5487 			if (ret)
5488 				goto next_dir_inode;
5489 			if (ctx->log_new_dentries) {
5490 				new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5491 						       GFP_NOFS);
5492 				if (!new_dir_elem) {
5493 					ret = -ENOMEM;
5494 					goto next_dir_inode;
5495 				}
5496 				new_dir_elem->ino = di_key.objectid;
5497 				list_add_tail(&new_dir_elem->list, &dir_list);
5498 			}
5499 			break;
5500 		}
5501 		if (i == nritems) {
5502 			ret = btrfs_next_leaf(log, path);
5503 			if (ret < 0) {
5504 				goto next_dir_inode;
5505 			} else if (ret > 0) {
5506 				ret = 0;
5507 				goto next_dir_inode;
5508 			}
5509 			goto process_leaf;
5510 		}
5511 		if (min_key.offset < (u64)-1) {
5512 			min_key.offset++;
5513 			goto again;
5514 		}
5515 next_dir_inode:
5516 		list_del(&dir_elem->list);
5517 		kfree(dir_elem);
5518 	}
5519 
5520 	btrfs_free_path(path);
5521 	return ret;
5522 }
5523 
btrfs_log_all_parents(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_log_ctx * ctx)5524 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5525 				 struct btrfs_inode *inode,
5526 				 struct btrfs_log_ctx *ctx)
5527 {
5528 	struct btrfs_fs_info *fs_info = trans->fs_info;
5529 	int ret;
5530 	struct btrfs_path *path;
5531 	struct btrfs_key key;
5532 	struct btrfs_root *root = inode->root;
5533 	const u64 ino = btrfs_ino(inode);
5534 
5535 	path = btrfs_alloc_path();
5536 	if (!path)
5537 		return -ENOMEM;
5538 	path->skip_locking = 1;
5539 	path->search_commit_root = 1;
5540 
5541 	key.objectid = ino;
5542 	key.type = BTRFS_INODE_REF_KEY;
5543 	key.offset = 0;
5544 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5545 	if (ret < 0)
5546 		goto out;
5547 
5548 	while (true) {
5549 		struct extent_buffer *leaf = path->nodes[0];
5550 		int slot = path->slots[0];
5551 		u32 cur_offset = 0;
5552 		u32 item_size;
5553 		unsigned long ptr;
5554 
5555 		if (slot >= btrfs_header_nritems(leaf)) {
5556 			ret = btrfs_next_leaf(root, path);
5557 			if (ret < 0)
5558 				goto out;
5559 			else if (ret > 0)
5560 				break;
5561 			continue;
5562 		}
5563 
5564 		btrfs_item_key_to_cpu(leaf, &key, slot);
5565 		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5566 		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5567 			break;
5568 
5569 		item_size = btrfs_item_size_nr(leaf, slot);
5570 		ptr = btrfs_item_ptr_offset(leaf, slot);
5571 		while (cur_offset < item_size) {
5572 			struct btrfs_key inode_key;
5573 			struct inode *dir_inode;
5574 
5575 			inode_key.type = BTRFS_INODE_ITEM_KEY;
5576 			inode_key.offset = 0;
5577 
5578 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
5579 				struct btrfs_inode_extref *extref;
5580 
5581 				extref = (struct btrfs_inode_extref *)
5582 					(ptr + cur_offset);
5583 				inode_key.objectid = btrfs_inode_extref_parent(
5584 					leaf, extref);
5585 				cur_offset += sizeof(*extref);
5586 				cur_offset += btrfs_inode_extref_name_len(leaf,
5587 					extref);
5588 			} else {
5589 				inode_key.objectid = key.offset;
5590 				cur_offset = item_size;
5591 			}
5592 
5593 			dir_inode = btrfs_iget(fs_info->sb, &inode_key,
5594 					       root, NULL);
5595 			/*
5596 			 * If the parent inode was deleted, return an error to
5597 			 * fallback to a transaction commit. This is to prevent
5598 			 * getting an inode that was moved from one parent A to
5599 			 * a parent B, got its former parent A deleted and then
5600 			 * it got fsync'ed, from existing at both parents after
5601 			 * a log replay (and the old parent still existing).
5602 			 * Example:
5603 			 *
5604 			 * mkdir /mnt/A
5605 			 * mkdir /mnt/B
5606 			 * touch /mnt/B/bar
5607 			 * sync
5608 			 * mv /mnt/B/bar /mnt/A/bar
5609 			 * mv -T /mnt/A /mnt/B
5610 			 * fsync /mnt/B/bar
5611 			 * <power fail>
5612 			 *
5613 			 * If we ignore the old parent B which got deleted,
5614 			 * after a log replay we would have file bar linked
5615 			 * at both parents and the old parent B would still
5616 			 * exist.
5617 			 */
5618 			if (IS_ERR(dir_inode)) {
5619 				ret = PTR_ERR(dir_inode);
5620 				goto out;
5621 			}
5622 
5623 			if (ctx)
5624 				ctx->log_new_dentries = false;
5625 			ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
5626 					      LOG_INODE_ALL, 0, LLONG_MAX, ctx);
5627 			if (!ret &&
5628 			    btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode)))
5629 				ret = 1;
5630 			if (!ret && ctx && ctx->log_new_dentries)
5631 				ret = log_new_dir_dentries(trans, root,
5632 						   BTRFS_I(dir_inode), ctx);
5633 			btrfs_add_delayed_iput(dir_inode);
5634 			if (ret)
5635 				goto out;
5636 		}
5637 		path->slots[0]++;
5638 	}
5639 	ret = 0;
5640 out:
5641 	btrfs_free_path(path);
5642 	return ret;
5643 }
5644 
5645 /*
5646  * helper function around btrfs_log_inode to make sure newly created
5647  * parent directories also end up in the log.  A minimal inode and backref
5648  * only logging is done of any parent directories that are older than
5649  * the last committed transaction
5650  */
btrfs_log_inode_parent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct dentry * parent,const loff_t start,const loff_t end,int inode_only,struct btrfs_log_ctx * ctx)5651 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
5652 				  struct btrfs_inode *inode,
5653 				  struct dentry *parent,
5654 				  const loff_t start,
5655 				  const loff_t end,
5656 				  int inode_only,
5657 				  struct btrfs_log_ctx *ctx)
5658 {
5659 	struct btrfs_root *root = inode->root;
5660 	struct btrfs_fs_info *fs_info = root->fs_info;
5661 	struct super_block *sb;
5662 	struct dentry *old_parent = NULL;
5663 	int ret = 0;
5664 	u64 last_committed = fs_info->last_trans_committed;
5665 	bool log_dentries = false;
5666 	struct btrfs_inode *orig_inode = inode;
5667 
5668 	sb = inode->vfs_inode.i_sb;
5669 
5670 	if (btrfs_test_opt(fs_info, NOTREELOG)) {
5671 		ret = 1;
5672 		goto end_no_trans;
5673 	}
5674 
5675 	/*
5676 	 * The prev transaction commit doesn't complete, we need do
5677 	 * full commit by ourselves.
5678 	 */
5679 	if (fs_info->last_trans_log_full_commit >
5680 	    fs_info->last_trans_committed) {
5681 		ret = 1;
5682 		goto end_no_trans;
5683 	}
5684 
5685 	if (btrfs_root_refs(&root->root_item) == 0) {
5686 		ret = 1;
5687 		goto end_no_trans;
5688 	}
5689 
5690 	ret = check_parent_dirs_for_sync(trans, inode, parent, sb,
5691 			last_committed);
5692 	if (ret)
5693 		goto end_no_trans;
5694 
5695 	/*
5696 	 * Skip already logged inodes or inodes corresponding to tmpfiles
5697 	 * (since logging them is pointless, a link count of 0 means they
5698 	 * will never be accessible).
5699 	 */
5700 	if (btrfs_inode_in_log(inode, trans->transid) ||
5701 	    inode->vfs_inode.i_nlink == 0) {
5702 		ret = BTRFS_NO_LOG_SYNC;
5703 		goto end_no_trans;
5704 	}
5705 
5706 	ret = start_log_trans(trans, root, ctx);
5707 	if (ret)
5708 		goto end_no_trans;
5709 
5710 	ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
5711 	if (ret)
5712 		goto end_trans;
5713 
5714 	/*
5715 	 * for regular files, if its inode is already on disk, we don't
5716 	 * have to worry about the parents at all.  This is because
5717 	 * we can use the last_unlink_trans field to record renames
5718 	 * and other fun in this file.
5719 	 */
5720 	if (S_ISREG(inode->vfs_inode.i_mode) &&
5721 	    inode->generation <= last_committed &&
5722 	    inode->last_unlink_trans <= last_committed) {
5723 		ret = 0;
5724 		goto end_trans;
5725 	}
5726 
5727 	if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
5728 		log_dentries = true;
5729 
5730 	/*
5731 	 * On unlink we must make sure all our current and old parent directory
5732 	 * inodes are fully logged. This is to prevent leaving dangling
5733 	 * directory index entries in directories that were our parents but are
5734 	 * not anymore. Not doing this results in old parent directory being
5735 	 * impossible to delete after log replay (rmdir will always fail with
5736 	 * error -ENOTEMPTY).
5737 	 *
5738 	 * Example 1:
5739 	 *
5740 	 * mkdir testdir
5741 	 * touch testdir/foo
5742 	 * ln testdir/foo testdir/bar
5743 	 * sync
5744 	 * unlink testdir/bar
5745 	 * xfs_io -c fsync testdir/foo
5746 	 * <power failure>
5747 	 * mount fs, triggers log replay
5748 	 *
5749 	 * If we don't log the parent directory (testdir), after log replay the
5750 	 * directory still has an entry pointing to the file inode using the bar
5751 	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
5752 	 * the file inode has a link count of 1.
5753 	 *
5754 	 * Example 2:
5755 	 *
5756 	 * mkdir testdir
5757 	 * touch foo
5758 	 * ln foo testdir/foo2
5759 	 * ln foo testdir/foo3
5760 	 * sync
5761 	 * unlink testdir/foo3
5762 	 * xfs_io -c fsync foo
5763 	 * <power failure>
5764 	 * mount fs, triggers log replay
5765 	 *
5766 	 * Similar as the first example, after log replay the parent directory
5767 	 * testdir still has an entry pointing to the inode file with name foo3
5768 	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
5769 	 * and has a link count of 2.
5770 	 */
5771 	if (inode->last_unlink_trans > last_committed) {
5772 		ret = btrfs_log_all_parents(trans, orig_inode, ctx);
5773 		if (ret)
5774 			goto end_trans;
5775 	}
5776 
5777 	/*
5778 	 * If a new hard link was added to the inode in the current transaction
5779 	 * and its link count is now greater than 1, we need to fallback to a
5780 	 * transaction commit, otherwise we can end up not logging all its new
5781 	 * parents for all the hard links. Here just from the dentry used to
5782 	 * fsync, we can not visit the ancestor inodes for all the other hard
5783 	 * links to figure out if any is new, so we fallback to a transaction
5784 	 * commit (instead of adding a lot of complexity of scanning a btree,
5785 	 * since this scenario is not a common use case).
5786 	 */
5787 	if (inode->vfs_inode.i_nlink > 1 &&
5788 	    inode->last_link_trans > last_committed) {
5789 		ret = -EMLINK;
5790 		goto end_trans;
5791 	}
5792 
5793 	while (1) {
5794 		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5795 			break;
5796 
5797 		inode = BTRFS_I(d_inode(parent));
5798 		if (root != inode->root)
5799 			break;
5800 
5801 		if (inode->generation > last_committed) {
5802 			ret = btrfs_log_inode(trans, root, inode,
5803 					LOG_INODE_EXISTS, 0, LLONG_MAX, ctx);
5804 			if (ret)
5805 				goto end_trans;
5806 		}
5807 		if (IS_ROOT(parent))
5808 			break;
5809 
5810 		parent = dget_parent(parent);
5811 		dput(old_parent);
5812 		old_parent = parent;
5813 	}
5814 	if (log_dentries)
5815 		ret = log_new_dir_dentries(trans, root, orig_inode, ctx);
5816 	else
5817 		ret = 0;
5818 end_trans:
5819 	dput(old_parent);
5820 	if (ret < 0) {
5821 		btrfs_set_log_full_commit(fs_info, trans);
5822 		ret = 1;
5823 	}
5824 
5825 	if (ret)
5826 		btrfs_remove_log_ctx(root, ctx);
5827 	btrfs_end_log_trans(root);
5828 end_no_trans:
5829 	return ret;
5830 }
5831 
5832 /*
5833  * it is not safe to log dentry if the chunk root has added new
5834  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
5835  * If this returns 1, you must commit the transaction to safely get your
5836  * data on disk.
5837  */
btrfs_log_dentry_safe(struct btrfs_trans_handle * trans,struct dentry * dentry,const loff_t start,const loff_t end,struct btrfs_log_ctx * ctx)5838 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
5839 			  struct dentry *dentry,
5840 			  const loff_t start,
5841 			  const loff_t end,
5842 			  struct btrfs_log_ctx *ctx)
5843 {
5844 	struct dentry *parent = dget_parent(dentry);
5845 	int ret;
5846 
5847 	ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
5848 				     start, end, LOG_INODE_ALL, ctx);
5849 	dput(parent);
5850 
5851 	return ret;
5852 }
5853 
5854 /*
5855  * should be called during mount to recover any replay any log trees
5856  * from the FS
5857  */
btrfs_recover_log_trees(struct btrfs_root * log_root_tree)5858 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
5859 {
5860 	int ret;
5861 	struct btrfs_path *path;
5862 	struct btrfs_trans_handle *trans;
5863 	struct btrfs_key key;
5864 	struct btrfs_key found_key;
5865 	struct btrfs_key tmp_key;
5866 	struct btrfs_root *log;
5867 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
5868 	struct walk_control wc = {
5869 		.process_func = process_one_buffer,
5870 		.stage = 0,
5871 	};
5872 
5873 	path = btrfs_alloc_path();
5874 	if (!path)
5875 		return -ENOMEM;
5876 
5877 	set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
5878 
5879 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
5880 	if (IS_ERR(trans)) {
5881 		ret = PTR_ERR(trans);
5882 		goto error;
5883 	}
5884 
5885 	wc.trans = trans;
5886 	wc.pin = 1;
5887 
5888 	ret = walk_log_tree(trans, log_root_tree, &wc);
5889 	if (ret) {
5890 		btrfs_handle_fs_error(fs_info, ret,
5891 			"Failed to pin buffers while recovering log root tree.");
5892 		goto error;
5893 	}
5894 
5895 again:
5896 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
5897 	key.offset = (u64)-1;
5898 	key.type = BTRFS_ROOT_ITEM_KEY;
5899 
5900 	while (1) {
5901 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
5902 
5903 		if (ret < 0) {
5904 			btrfs_handle_fs_error(fs_info, ret,
5905 				    "Couldn't find tree log root.");
5906 			goto error;
5907 		}
5908 		if (ret > 0) {
5909 			if (path->slots[0] == 0)
5910 				break;
5911 			path->slots[0]--;
5912 		}
5913 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
5914 				      path->slots[0]);
5915 		btrfs_release_path(path);
5916 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
5917 			break;
5918 
5919 		log = btrfs_read_fs_root(log_root_tree, &found_key);
5920 		if (IS_ERR(log)) {
5921 			ret = PTR_ERR(log);
5922 			btrfs_handle_fs_error(fs_info, ret,
5923 				    "Couldn't read tree log root.");
5924 			goto error;
5925 		}
5926 
5927 		tmp_key.objectid = found_key.offset;
5928 		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
5929 		tmp_key.offset = (u64)-1;
5930 
5931 		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
5932 		if (IS_ERR(wc.replay_dest)) {
5933 			ret = PTR_ERR(wc.replay_dest);
5934 
5935 			/*
5936 			 * We didn't find the subvol, likely because it was
5937 			 * deleted.  This is ok, simply skip this log and go to
5938 			 * the next one.
5939 			 *
5940 			 * We need to exclude the root because we can't have
5941 			 * other log replays overwriting this log as we'll read
5942 			 * it back in a few more times.  This will keep our
5943 			 * block from being modified, and we'll just bail for
5944 			 * each subsequent pass.
5945 			 */
5946 			if (ret == -ENOENT)
5947 				ret = btrfs_pin_extent_for_log_replay(fs_info,
5948 							log->node->start,
5949 							log->node->len);
5950 			free_extent_buffer(log->node);
5951 			free_extent_buffer(log->commit_root);
5952 			kfree(log);
5953 
5954 			if (!ret)
5955 				goto next;
5956 			btrfs_handle_fs_error(fs_info, ret,
5957 				"Couldn't read target root for tree log recovery.");
5958 			goto error;
5959 		}
5960 
5961 		wc.replay_dest->log_root = log;
5962 		btrfs_record_root_in_trans(trans, wc.replay_dest);
5963 		ret = walk_log_tree(trans, log, &wc);
5964 
5965 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
5966 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
5967 						      path);
5968 		}
5969 
5970 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
5971 			struct btrfs_root *root = wc.replay_dest;
5972 
5973 			btrfs_release_path(path);
5974 
5975 			/*
5976 			 * We have just replayed everything, and the highest
5977 			 * objectid of fs roots probably has changed in case
5978 			 * some inode_item's got replayed.
5979 			 *
5980 			 * root->objectid_mutex is not acquired as log replay
5981 			 * could only happen during mount.
5982 			 */
5983 			ret = btrfs_find_highest_objectid(root,
5984 						  &root->highest_objectid);
5985 		}
5986 
5987 		wc.replay_dest->log_root = NULL;
5988 		free_extent_buffer(log->node);
5989 		free_extent_buffer(log->commit_root);
5990 		kfree(log);
5991 
5992 		if (ret)
5993 			goto error;
5994 next:
5995 		if (found_key.offset == 0)
5996 			break;
5997 		key.offset = found_key.offset - 1;
5998 	}
5999 	btrfs_release_path(path);
6000 
6001 	/* step one is to pin it all, step two is to replay just inodes */
6002 	if (wc.pin) {
6003 		wc.pin = 0;
6004 		wc.process_func = replay_one_buffer;
6005 		wc.stage = LOG_WALK_REPLAY_INODES;
6006 		goto again;
6007 	}
6008 	/* step three is to replay everything */
6009 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
6010 		wc.stage++;
6011 		goto again;
6012 	}
6013 
6014 	btrfs_free_path(path);
6015 
6016 	/* step 4: commit the transaction, which also unpins the blocks */
6017 	ret = btrfs_commit_transaction(trans);
6018 	if (ret)
6019 		return ret;
6020 
6021 	free_extent_buffer(log_root_tree->node);
6022 	log_root_tree->log_root = NULL;
6023 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6024 	kfree(log_root_tree);
6025 
6026 	return 0;
6027 error:
6028 	if (wc.trans)
6029 		btrfs_end_transaction(wc.trans);
6030 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6031 	btrfs_free_path(path);
6032 	return ret;
6033 }
6034 
6035 /*
6036  * there are some corner cases where we want to force a full
6037  * commit instead of allowing a directory to be logged.
6038  *
6039  * They revolve around files there were unlinked from the directory, and
6040  * this function updates the parent directory so that a full commit is
6041  * properly done if it is fsync'd later after the unlinks are done.
6042  *
6043  * Must be called before the unlink operations (updates to the subvolume tree,
6044  * inodes, etc) are done.
6045  */
btrfs_record_unlink_dir(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_inode * inode,int for_rename)6046 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
6047 			     struct btrfs_inode *dir, struct btrfs_inode *inode,
6048 			     int for_rename)
6049 {
6050 	/*
6051 	 * when we're logging a file, if it hasn't been renamed
6052 	 * or unlinked, and its inode is fully committed on disk,
6053 	 * we don't have to worry about walking up the directory chain
6054 	 * to log its parents.
6055 	 *
6056 	 * So, we use the last_unlink_trans field to put this transid
6057 	 * into the file.  When the file is logged we check it and
6058 	 * don't log the parents if the file is fully on disk.
6059 	 */
6060 	mutex_lock(&inode->log_mutex);
6061 	inode->last_unlink_trans = trans->transid;
6062 	mutex_unlock(&inode->log_mutex);
6063 
6064 	/*
6065 	 * if this directory was already logged any new
6066 	 * names for this file/dir will get recorded
6067 	 */
6068 	if (dir->logged_trans == trans->transid)
6069 		return;
6070 
6071 	/*
6072 	 * if the inode we're about to unlink was logged,
6073 	 * the log will be properly updated for any new names
6074 	 */
6075 	if (inode->logged_trans == trans->transid)
6076 		return;
6077 
6078 	/*
6079 	 * when renaming files across directories, if the directory
6080 	 * there we're unlinking from gets fsync'd later on, there's
6081 	 * no way to find the destination directory later and fsync it
6082 	 * properly.  So, we have to be conservative and force commits
6083 	 * so the new name gets discovered.
6084 	 */
6085 	if (for_rename)
6086 		goto record;
6087 
6088 	/* we can safely do the unlink without any special recording */
6089 	return;
6090 
6091 record:
6092 	mutex_lock(&dir->log_mutex);
6093 	dir->last_unlink_trans = trans->transid;
6094 	mutex_unlock(&dir->log_mutex);
6095 }
6096 
6097 /*
6098  * Make sure that if someone attempts to fsync the parent directory of a deleted
6099  * snapshot, it ends up triggering a transaction commit. This is to guarantee
6100  * that after replaying the log tree of the parent directory's root we will not
6101  * see the snapshot anymore and at log replay time we will not see any log tree
6102  * corresponding to the deleted snapshot's root, which could lead to replaying
6103  * it after replaying the log tree of the parent directory (which would replay
6104  * the snapshot delete operation).
6105  *
6106  * Must be called before the actual snapshot destroy operation (updates to the
6107  * parent root and tree of tree roots trees, etc) are done.
6108  */
btrfs_record_snapshot_destroy(struct btrfs_trans_handle * trans,struct btrfs_inode * dir)6109 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
6110 				   struct btrfs_inode *dir)
6111 {
6112 	mutex_lock(&dir->log_mutex);
6113 	dir->last_unlink_trans = trans->transid;
6114 	mutex_unlock(&dir->log_mutex);
6115 }
6116 
6117 /*
6118  * Call this after adding a new name for a file and it will properly
6119  * update the log to reflect the new name.
6120  *
6121  * @ctx can not be NULL when @sync_log is false, and should be NULL when it's
6122  * true (because it's not used).
6123  *
6124  * Return value depends on whether @sync_log is true or false.
6125  * When true: returns BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6126  *            committed by the caller, and BTRFS_DONT_NEED_TRANS_COMMIT
6127  *            otherwise.
6128  * When false: returns BTRFS_DONT_NEED_LOG_SYNC if the caller does not need to
6129  *             to sync the log, BTRFS_NEED_LOG_SYNC if it needs to sync the log,
6130  *             or BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6131  *             committed (without attempting to sync the log).
6132  */
btrfs_log_new_name(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_inode * old_dir,struct dentry * parent,bool sync_log,struct btrfs_log_ctx * ctx)6133 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
6134 			struct btrfs_inode *inode, struct btrfs_inode *old_dir,
6135 			struct dentry *parent,
6136 			bool sync_log, struct btrfs_log_ctx *ctx)
6137 {
6138 	struct btrfs_fs_info *fs_info = trans->fs_info;
6139 	int ret;
6140 
6141 	/*
6142 	 * this will force the logging code to walk the dentry chain
6143 	 * up for the file
6144 	 */
6145 	if (!S_ISDIR(inode->vfs_inode.i_mode))
6146 		inode->last_unlink_trans = trans->transid;
6147 
6148 	/*
6149 	 * if this inode hasn't been logged and directory we're renaming it
6150 	 * from hasn't been logged, we don't need to log it
6151 	 */
6152 	if (inode->logged_trans <= fs_info->last_trans_committed &&
6153 	    (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed))
6154 		return sync_log ? BTRFS_DONT_NEED_TRANS_COMMIT :
6155 			BTRFS_DONT_NEED_LOG_SYNC;
6156 
6157 	if (sync_log) {
6158 		struct btrfs_log_ctx ctx2;
6159 
6160 		btrfs_init_log_ctx(&ctx2, &inode->vfs_inode);
6161 		ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6162 					     LOG_INODE_EXISTS, &ctx2);
6163 		if (ret == BTRFS_NO_LOG_SYNC)
6164 			return BTRFS_DONT_NEED_TRANS_COMMIT;
6165 		else if (ret)
6166 			return BTRFS_NEED_TRANS_COMMIT;
6167 
6168 		ret = btrfs_sync_log(trans, inode->root, &ctx2);
6169 		if (ret)
6170 			return BTRFS_NEED_TRANS_COMMIT;
6171 		return BTRFS_DONT_NEED_TRANS_COMMIT;
6172 	}
6173 
6174 	ASSERT(ctx);
6175 	ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6176 				     LOG_INODE_EXISTS, ctx);
6177 	if (ret == BTRFS_NO_LOG_SYNC)
6178 		return BTRFS_DONT_NEED_LOG_SYNC;
6179 	else if (ret)
6180 		return BTRFS_NEED_TRANS_COMMIT;
6181 
6182 	return BTRFS_NEED_LOG_SYNC;
6183 }
6184 
6185