1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/buffer_head.h>
9 #include <linux/file.h>
10 #include <linux/fs.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/init.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/writeback.h>
18 #include <linux/compat.h>
19 #include <linux/xattr.h>
20 #include <linux/posix_acl.h>
21 #include <linux/falloc.h>
22 #include <linux/slab.h>
23 #include <linux/ratelimit.h>
24 #include <linux/btrfs.h>
25 #include <linux/blkdev.h>
26 #include <linux/posix_acl_xattr.h>
27 #include <linux/uio.h>
28 #include <linux/magic.h>
29 #include <linux/iversion.h>
30 #include <asm/unaligned.h>
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "print-tree.h"
36 #include "ordered-data.h"
37 #include "xattr.h"
38 #include "tree-log.h"
39 #include "volumes.h"
40 #include "compression.h"
41 #include "locking.h"
42 #include "free-space-cache.h"
43 #include "inode-map.h"
44 #include "backref.h"
45 #include "props.h"
46 #include "qgroup.h"
47 #include "dedupe.h"
48 
49 struct btrfs_iget_args {
50 	struct btrfs_key *location;
51 	struct btrfs_root *root;
52 };
53 
54 struct btrfs_dio_data {
55 	u64 reserve;
56 	u64 unsubmitted_oe_range_start;
57 	u64 unsubmitted_oe_range_end;
58 	int overwrite;
59 };
60 
61 static const struct inode_operations btrfs_dir_inode_operations;
62 static const struct inode_operations btrfs_symlink_inode_operations;
63 static const struct inode_operations btrfs_dir_ro_inode_operations;
64 static const struct inode_operations btrfs_special_inode_operations;
65 static const struct inode_operations btrfs_file_inode_operations;
66 static const struct address_space_operations btrfs_aops;
67 static const struct address_space_operations btrfs_symlink_aops;
68 static const struct file_operations btrfs_dir_file_operations;
69 static const struct extent_io_ops btrfs_extent_io_ops;
70 
71 static struct kmem_cache *btrfs_inode_cachep;
72 struct kmem_cache *btrfs_trans_handle_cachep;
73 struct kmem_cache *btrfs_path_cachep;
74 struct kmem_cache *btrfs_free_space_cachep;
75 struct kmem_cache *btrfs_free_space_bitmap_cachep;
76 
77 #define S_SHIFT 12
78 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
79 	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
80 	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
81 	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
82 	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
83 	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
84 	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
85 	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
86 };
87 
88 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
89 static int btrfs_truncate(struct inode *inode, bool skip_writeback);
90 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
91 static noinline int cow_file_range(struct inode *inode,
92 				   struct page *locked_page,
93 				   u64 start, u64 end, u64 delalloc_end,
94 				   int *page_started, unsigned long *nr_written,
95 				   int unlock, struct btrfs_dedupe_hash *hash);
96 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
97 				       u64 orig_start, u64 block_start,
98 				       u64 block_len, u64 orig_block_len,
99 				       u64 ram_bytes, int compress_type,
100 				       int type);
101 
102 static void __endio_write_update_ordered(struct inode *inode,
103 					 const u64 offset, const u64 bytes,
104 					 const bool uptodate);
105 
106 /*
107  * Cleanup all submitted ordered extents in specified range to handle errors
108  * from the fill_dellaloc() callback.
109  *
110  * NOTE: caller must ensure that when an error happens, it can not call
111  * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
112  * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
113  * to be released, which we want to happen only when finishing the ordered
114  * extent (btrfs_finish_ordered_io()).
115  */
btrfs_cleanup_ordered_extents(struct inode * inode,struct page * locked_page,u64 offset,u64 bytes)116 static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
117 						 struct page *locked_page,
118 						 u64 offset, u64 bytes)
119 {
120 	unsigned long index = offset >> PAGE_SHIFT;
121 	unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
122 	u64 page_start = page_offset(locked_page);
123 	u64 page_end = page_start + PAGE_SIZE - 1;
124 
125 	struct page *page;
126 
127 	while (index <= end_index) {
128 		page = find_get_page(inode->i_mapping, index);
129 		index++;
130 		if (!page)
131 			continue;
132 		ClearPagePrivate2(page);
133 		put_page(page);
134 	}
135 
136 	/*
137 	 * In case this page belongs to the delalloc range being instantiated
138 	 * then skip it, since the first page of a range is going to be
139 	 * properly cleaned up by the caller of run_delalloc_range
140 	 */
141 	if (page_start >= offset && page_end <= (offset + bytes - 1)) {
142 		offset += PAGE_SIZE;
143 		bytes -= PAGE_SIZE;
144 	}
145 
146 	return __endio_write_update_ordered(inode, offset, bytes, false);
147 }
148 
149 static int btrfs_dirty_inode(struct inode *inode);
150 
151 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
btrfs_test_inode_set_ops(struct inode * inode)152 void btrfs_test_inode_set_ops(struct inode *inode)
153 {
154 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
155 }
156 #endif
157 
btrfs_init_inode_security(struct btrfs_trans_handle * trans,struct inode * inode,struct inode * dir,const struct qstr * qstr)158 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
159 				     struct inode *inode,  struct inode *dir,
160 				     const struct qstr *qstr)
161 {
162 	int err;
163 
164 	err = btrfs_init_acl(trans, inode, dir);
165 	if (!err)
166 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
167 	return err;
168 }
169 
170 /*
171  * this does all the hard work for inserting an inline extent into
172  * the btree.  The caller should have done a btrfs_drop_extents so that
173  * no overlapping inline items exist in the btree
174  */
insert_inline_extent(struct btrfs_trans_handle * trans,struct btrfs_path * path,int extent_inserted,struct btrfs_root * root,struct inode * inode,u64 start,size_t size,size_t compressed_size,int compress_type,struct page ** compressed_pages)175 static int insert_inline_extent(struct btrfs_trans_handle *trans,
176 				struct btrfs_path *path, int extent_inserted,
177 				struct btrfs_root *root, struct inode *inode,
178 				u64 start, size_t size, size_t compressed_size,
179 				int compress_type,
180 				struct page **compressed_pages)
181 {
182 	struct extent_buffer *leaf;
183 	struct page *page = NULL;
184 	char *kaddr;
185 	unsigned long ptr;
186 	struct btrfs_file_extent_item *ei;
187 	int ret;
188 	size_t cur_size = size;
189 	unsigned long offset;
190 
191 	if (compressed_size && compressed_pages)
192 		cur_size = compressed_size;
193 
194 	inode_add_bytes(inode, size);
195 
196 	if (!extent_inserted) {
197 		struct btrfs_key key;
198 		size_t datasize;
199 
200 		key.objectid = btrfs_ino(BTRFS_I(inode));
201 		key.offset = start;
202 		key.type = BTRFS_EXTENT_DATA_KEY;
203 
204 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
205 		path->leave_spinning = 1;
206 		ret = btrfs_insert_empty_item(trans, root, path, &key,
207 					      datasize);
208 		if (ret)
209 			goto fail;
210 	}
211 	leaf = path->nodes[0];
212 	ei = btrfs_item_ptr(leaf, path->slots[0],
213 			    struct btrfs_file_extent_item);
214 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
215 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
216 	btrfs_set_file_extent_encryption(leaf, ei, 0);
217 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
218 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
219 	ptr = btrfs_file_extent_inline_start(ei);
220 
221 	if (compress_type != BTRFS_COMPRESS_NONE) {
222 		struct page *cpage;
223 		int i = 0;
224 		while (compressed_size > 0) {
225 			cpage = compressed_pages[i];
226 			cur_size = min_t(unsigned long, compressed_size,
227 				       PAGE_SIZE);
228 
229 			kaddr = kmap_atomic(cpage);
230 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
231 			kunmap_atomic(kaddr);
232 
233 			i++;
234 			ptr += cur_size;
235 			compressed_size -= cur_size;
236 		}
237 		btrfs_set_file_extent_compression(leaf, ei,
238 						  compress_type);
239 	} else {
240 		page = find_get_page(inode->i_mapping,
241 				     start >> PAGE_SHIFT);
242 		btrfs_set_file_extent_compression(leaf, ei, 0);
243 		kaddr = kmap_atomic(page);
244 		offset = start & (PAGE_SIZE - 1);
245 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
246 		kunmap_atomic(kaddr);
247 		put_page(page);
248 	}
249 	btrfs_mark_buffer_dirty(leaf);
250 	btrfs_release_path(path);
251 
252 	/*
253 	 * we're an inline extent, so nobody can
254 	 * extend the file past i_size without locking
255 	 * a page we already have locked.
256 	 *
257 	 * We must do any isize and inode updates
258 	 * before we unlock the pages.  Otherwise we
259 	 * could end up racing with unlink.
260 	 */
261 	BTRFS_I(inode)->disk_i_size = inode->i_size;
262 	ret = btrfs_update_inode(trans, root, inode);
263 
264 fail:
265 	return ret;
266 }
267 
268 
269 /*
270  * conditionally insert an inline extent into the file.  This
271  * does the checks required to make sure the data is small enough
272  * to fit as an inline extent.
273  */
cow_file_range_inline(struct inode * inode,u64 start,u64 end,size_t compressed_size,int compress_type,struct page ** compressed_pages)274 static noinline int cow_file_range_inline(struct inode *inode, u64 start,
275 					  u64 end, size_t compressed_size,
276 					  int compress_type,
277 					  struct page **compressed_pages)
278 {
279 	struct btrfs_root *root = BTRFS_I(inode)->root;
280 	struct btrfs_fs_info *fs_info = root->fs_info;
281 	struct btrfs_trans_handle *trans;
282 	u64 isize = i_size_read(inode);
283 	u64 actual_end = min(end + 1, isize);
284 	u64 inline_len = actual_end - start;
285 	u64 aligned_end = ALIGN(end, fs_info->sectorsize);
286 	u64 data_len = inline_len;
287 	int ret;
288 	struct btrfs_path *path;
289 	int extent_inserted = 0;
290 	u32 extent_item_size;
291 
292 	if (compressed_size)
293 		data_len = compressed_size;
294 
295 	if (start > 0 ||
296 	    actual_end > fs_info->sectorsize ||
297 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
298 	    (!compressed_size &&
299 	    (actual_end & (fs_info->sectorsize - 1)) == 0) ||
300 	    end + 1 < isize ||
301 	    data_len > fs_info->max_inline) {
302 		return 1;
303 	}
304 
305 	path = btrfs_alloc_path();
306 	if (!path)
307 		return -ENOMEM;
308 
309 	trans = btrfs_join_transaction(root);
310 	if (IS_ERR(trans)) {
311 		btrfs_free_path(path);
312 		return PTR_ERR(trans);
313 	}
314 	trans->block_rsv = &BTRFS_I(inode)->block_rsv;
315 
316 	if (compressed_size && compressed_pages)
317 		extent_item_size = btrfs_file_extent_calc_inline_size(
318 		   compressed_size);
319 	else
320 		extent_item_size = btrfs_file_extent_calc_inline_size(
321 		    inline_len);
322 
323 	ret = __btrfs_drop_extents(trans, root, inode, path,
324 				   start, aligned_end, NULL,
325 				   1, 1, extent_item_size, &extent_inserted);
326 	if (ret) {
327 		btrfs_abort_transaction(trans, ret);
328 		goto out;
329 	}
330 
331 	if (isize > actual_end)
332 		inline_len = min_t(u64, isize, actual_end);
333 	ret = insert_inline_extent(trans, path, extent_inserted,
334 				   root, inode, start,
335 				   inline_len, compressed_size,
336 				   compress_type, compressed_pages);
337 	if (ret && ret != -ENOSPC) {
338 		btrfs_abort_transaction(trans, ret);
339 		goto out;
340 	} else if (ret == -ENOSPC) {
341 		ret = 1;
342 		goto out;
343 	}
344 
345 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
346 	btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
347 out:
348 	/*
349 	 * Don't forget to free the reserved space, as for inlined extent
350 	 * it won't count as data extent, free them directly here.
351 	 * And at reserve time, it's always aligned to page size, so
352 	 * just free one page here.
353 	 */
354 	btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
355 	btrfs_free_path(path);
356 	btrfs_end_transaction(trans);
357 	return ret;
358 }
359 
360 struct async_extent {
361 	u64 start;
362 	u64 ram_size;
363 	u64 compressed_size;
364 	struct page **pages;
365 	unsigned long nr_pages;
366 	int compress_type;
367 	struct list_head list;
368 };
369 
370 struct async_cow {
371 	struct inode *inode;
372 	struct btrfs_root *root;
373 	struct page *locked_page;
374 	u64 start;
375 	u64 end;
376 	unsigned int write_flags;
377 	struct list_head extents;
378 	struct btrfs_work work;
379 };
380 
add_async_extent(struct async_cow * cow,u64 start,u64 ram_size,u64 compressed_size,struct page ** pages,unsigned long nr_pages,int compress_type)381 static noinline int add_async_extent(struct async_cow *cow,
382 				     u64 start, u64 ram_size,
383 				     u64 compressed_size,
384 				     struct page **pages,
385 				     unsigned long nr_pages,
386 				     int compress_type)
387 {
388 	struct async_extent *async_extent;
389 
390 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
391 	BUG_ON(!async_extent); /* -ENOMEM */
392 	async_extent->start = start;
393 	async_extent->ram_size = ram_size;
394 	async_extent->compressed_size = compressed_size;
395 	async_extent->pages = pages;
396 	async_extent->nr_pages = nr_pages;
397 	async_extent->compress_type = compress_type;
398 	list_add_tail(&async_extent->list, &cow->extents);
399 	return 0;
400 }
401 
402 /*
403  * Check if the inode has flags compatible with compression
404  */
inode_can_compress(struct inode * inode)405 static inline bool inode_can_compress(struct inode *inode)
406 {
407 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW ||
408 	    BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
409 		return false;
410 	return true;
411 }
412 
413 /*
414  * Check if the inode needs to be submitted to compression, based on mount
415  * options, defragmentation, properties or heuristics.
416  */
inode_need_compress(struct inode * inode,u64 start,u64 end)417 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end)
418 {
419 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
420 
421 	if (!inode_can_compress(inode)) {
422 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
423 			KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
424 			btrfs_ino(BTRFS_I(inode)));
425 		return 0;
426 	}
427 	/* force compress */
428 	if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
429 		return 1;
430 	/* defrag ioctl */
431 	if (BTRFS_I(inode)->defrag_compress)
432 		return 1;
433 	/* bad compression ratios */
434 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
435 		return 0;
436 	if (btrfs_test_opt(fs_info, COMPRESS) ||
437 	    BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
438 	    BTRFS_I(inode)->prop_compress)
439 		return btrfs_compress_heuristic(inode, start, end);
440 	return 0;
441 }
442 
inode_should_defrag(struct btrfs_inode * inode,u64 start,u64 end,u64 num_bytes,u64 small_write)443 static inline void inode_should_defrag(struct btrfs_inode *inode,
444 		u64 start, u64 end, u64 num_bytes, u64 small_write)
445 {
446 	/* If this is a small write inside eof, kick off a defrag */
447 	if (num_bytes < small_write &&
448 	    (start > 0 || end + 1 < inode->disk_i_size))
449 		btrfs_add_inode_defrag(NULL, inode);
450 }
451 
452 /*
453  * we create compressed extents in two phases.  The first
454  * phase compresses a range of pages that have already been
455  * locked (both pages and state bits are locked).
456  *
457  * This is done inside an ordered work queue, and the compression
458  * is spread across many cpus.  The actual IO submission is step
459  * two, and the ordered work queue takes care of making sure that
460  * happens in the same order things were put onto the queue by
461  * writepages and friends.
462  *
463  * If this code finds it can't get good compression, it puts an
464  * entry onto the work queue to write the uncompressed bytes.  This
465  * makes sure that both compressed inodes and uncompressed inodes
466  * are written in the same order that the flusher thread sent them
467  * down.
468  */
compress_file_range(struct inode * inode,struct page * locked_page,u64 start,u64 end,struct async_cow * async_cow,int * num_added)469 static noinline void compress_file_range(struct inode *inode,
470 					struct page *locked_page,
471 					u64 start, u64 end,
472 					struct async_cow *async_cow,
473 					int *num_added)
474 {
475 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
476 	u64 blocksize = fs_info->sectorsize;
477 	u64 actual_end;
478 	u64 isize = i_size_read(inode);
479 	int ret = 0;
480 	struct page **pages = NULL;
481 	unsigned long nr_pages;
482 	unsigned long total_compressed = 0;
483 	unsigned long total_in = 0;
484 	int i;
485 	int will_compress;
486 	int compress_type = fs_info->compress_type;
487 	int redirty = 0;
488 
489 	inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
490 			SZ_16K);
491 
492 	actual_end = min_t(u64, isize, end + 1);
493 again:
494 	will_compress = 0;
495 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
496 	BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
497 	nr_pages = min_t(unsigned long, nr_pages,
498 			BTRFS_MAX_COMPRESSED / PAGE_SIZE);
499 
500 	/*
501 	 * we don't want to send crud past the end of i_size through
502 	 * compression, that's just a waste of CPU time.  So, if the
503 	 * end of the file is before the start of our current
504 	 * requested range of bytes, we bail out to the uncompressed
505 	 * cleanup code that can deal with all of this.
506 	 *
507 	 * It isn't really the fastest way to fix things, but this is a
508 	 * very uncommon corner.
509 	 */
510 	if (actual_end <= start)
511 		goto cleanup_and_bail_uncompressed;
512 
513 	total_compressed = actual_end - start;
514 
515 	/*
516 	 * skip compression for a small file range(<=blocksize) that
517 	 * isn't an inline extent, since it doesn't save disk space at all.
518 	 */
519 	if (total_compressed <= blocksize &&
520 	   (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
521 		goto cleanup_and_bail_uncompressed;
522 
523 	total_compressed = min_t(unsigned long, total_compressed,
524 			BTRFS_MAX_UNCOMPRESSED);
525 	total_in = 0;
526 	ret = 0;
527 
528 	/*
529 	 * we do compression for mount -o compress and when the
530 	 * inode has not been flagged as nocompress.  This flag can
531 	 * change at any time if we discover bad compression ratios.
532 	 */
533 	if (inode_need_compress(inode, start, end)) {
534 		WARN_ON(pages);
535 		pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
536 		if (!pages) {
537 			/* just bail out to the uncompressed code */
538 			nr_pages = 0;
539 			goto cont;
540 		}
541 
542 		if (BTRFS_I(inode)->defrag_compress)
543 			compress_type = BTRFS_I(inode)->defrag_compress;
544 		else if (BTRFS_I(inode)->prop_compress)
545 			compress_type = BTRFS_I(inode)->prop_compress;
546 
547 		/*
548 		 * we need to call clear_page_dirty_for_io on each
549 		 * page in the range.  Otherwise applications with the file
550 		 * mmap'd can wander in and change the page contents while
551 		 * we are compressing them.
552 		 *
553 		 * If the compression fails for any reason, we set the pages
554 		 * dirty again later on.
555 		 *
556 		 * Note that the remaining part is redirtied, the start pointer
557 		 * has moved, the end is the original one.
558 		 */
559 		if (!redirty) {
560 			extent_range_clear_dirty_for_io(inode, start, end);
561 			redirty = 1;
562 		}
563 
564 		/* Compression level is applied here and only here */
565 		ret = btrfs_compress_pages(
566 			compress_type | (fs_info->compress_level << 4),
567 					   inode->i_mapping, start,
568 					   pages,
569 					   &nr_pages,
570 					   &total_in,
571 					   &total_compressed);
572 
573 		if (!ret) {
574 			unsigned long offset = total_compressed &
575 				(PAGE_SIZE - 1);
576 			struct page *page = pages[nr_pages - 1];
577 			char *kaddr;
578 
579 			/* zero the tail end of the last page, we might be
580 			 * sending it down to disk
581 			 */
582 			if (offset) {
583 				kaddr = kmap_atomic(page);
584 				memset(kaddr + offset, 0,
585 				       PAGE_SIZE - offset);
586 				kunmap_atomic(kaddr);
587 			}
588 			will_compress = 1;
589 		}
590 	}
591 cont:
592 	if (start == 0) {
593 		/* lets try to make an inline extent */
594 		if (ret || total_in < actual_end) {
595 			/* we didn't compress the entire range, try
596 			 * to make an uncompressed inline extent.
597 			 */
598 			ret = cow_file_range_inline(inode, start, end, 0,
599 						    BTRFS_COMPRESS_NONE, NULL);
600 		} else {
601 			/* try making a compressed inline extent */
602 			ret = cow_file_range_inline(inode, start, end,
603 						    total_compressed,
604 						    compress_type, pages);
605 		}
606 		if (ret <= 0) {
607 			unsigned long clear_flags = EXTENT_DELALLOC |
608 				EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
609 				EXTENT_DO_ACCOUNTING;
610 			unsigned long page_error_op;
611 
612 			page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
613 
614 			/*
615 			 * inline extent creation worked or returned error,
616 			 * we don't need to create any more async work items.
617 			 * Unlock and free up our temp pages.
618 			 *
619 			 * We use DO_ACCOUNTING here because we need the
620 			 * delalloc_release_metadata to be done _after_ we drop
621 			 * our outstanding extent for clearing delalloc for this
622 			 * range.
623 			 */
624 			extent_clear_unlock_delalloc(inode, start, end, end,
625 						     NULL, clear_flags,
626 						     PAGE_UNLOCK |
627 						     PAGE_CLEAR_DIRTY |
628 						     PAGE_SET_WRITEBACK |
629 						     page_error_op |
630 						     PAGE_END_WRITEBACK);
631 
632 			/*
633 			 * Ensure we only free the compressed pages if we have
634 			 * them allocated, as we can still reach here with
635 			 * inode_need_compress() == false.
636 			 */
637 			if (pages) {
638 				for (i = 0; i < nr_pages; i++) {
639 					WARN_ON(pages[i]->mapping);
640 					put_page(pages[i]);
641 				}
642 				kfree(pages);
643 			}
644 
645 			return;
646 		}
647 	}
648 
649 	if (will_compress) {
650 		/*
651 		 * we aren't doing an inline extent round the compressed size
652 		 * up to a block size boundary so the allocator does sane
653 		 * things
654 		 */
655 		total_compressed = ALIGN(total_compressed, blocksize);
656 
657 		/*
658 		 * one last check to make sure the compression is really a
659 		 * win, compare the page count read with the blocks on disk,
660 		 * compression must free at least one sector size
661 		 */
662 		total_in = ALIGN(total_in, PAGE_SIZE);
663 		if (total_compressed + blocksize <= total_in) {
664 			*num_added += 1;
665 
666 			/*
667 			 * The async work queues will take care of doing actual
668 			 * allocation on disk for these compressed pages, and
669 			 * will submit them to the elevator.
670 			 */
671 			add_async_extent(async_cow, start, total_in,
672 					total_compressed, pages, nr_pages,
673 					compress_type);
674 
675 			if (start + total_in < end) {
676 				start += total_in;
677 				pages = NULL;
678 				cond_resched();
679 				goto again;
680 			}
681 			return;
682 		}
683 	}
684 	if (pages) {
685 		/*
686 		 * the compression code ran but failed to make things smaller,
687 		 * free any pages it allocated and our page pointer array
688 		 */
689 		for (i = 0; i < nr_pages; i++) {
690 			WARN_ON(pages[i]->mapping);
691 			put_page(pages[i]);
692 		}
693 		kfree(pages);
694 		pages = NULL;
695 		total_compressed = 0;
696 		nr_pages = 0;
697 
698 		/* flag the file so we don't compress in the future */
699 		if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
700 		    !(BTRFS_I(inode)->prop_compress)) {
701 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
702 		}
703 	}
704 cleanup_and_bail_uncompressed:
705 	/*
706 	 * No compression, but we still need to write the pages in the file
707 	 * we've been given so far.  redirty the locked page if it corresponds
708 	 * to our extent and set things up for the async work queue to run
709 	 * cow_file_range to do the normal delalloc dance.
710 	 */
711 	if (page_offset(locked_page) >= start &&
712 	    page_offset(locked_page) <= end)
713 		__set_page_dirty_nobuffers(locked_page);
714 		/* unlocked later on in the async handlers */
715 
716 	if (redirty)
717 		extent_range_redirty_for_io(inode, start, end);
718 	add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
719 			 BTRFS_COMPRESS_NONE);
720 	*num_added += 1;
721 
722 	return;
723 }
724 
free_async_extent_pages(struct async_extent * async_extent)725 static void free_async_extent_pages(struct async_extent *async_extent)
726 {
727 	int i;
728 
729 	if (!async_extent->pages)
730 		return;
731 
732 	for (i = 0; i < async_extent->nr_pages; i++) {
733 		WARN_ON(async_extent->pages[i]->mapping);
734 		put_page(async_extent->pages[i]);
735 	}
736 	kfree(async_extent->pages);
737 	async_extent->nr_pages = 0;
738 	async_extent->pages = NULL;
739 }
740 
741 /*
742  * phase two of compressed writeback.  This is the ordered portion
743  * of the code, which only gets called in the order the work was
744  * queued.  We walk all the async extents created by compress_file_range
745  * and send them down to the disk.
746  */
submit_compressed_extents(struct inode * inode,struct async_cow * async_cow)747 static noinline void submit_compressed_extents(struct inode *inode,
748 					      struct async_cow *async_cow)
749 {
750 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
751 	struct async_extent *async_extent;
752 	u64 alloc_hint = 0;
753 	struct btrfs_key ins;
754 	struct extent_map *em;
755 	struct btrfs_root *root = BTRFS_I(inode)->root;
756 	struct extent_io_tree *io_tree;
757 	int ret = 0;
758 
759 again:
760 	while (!list_empty(&async_cow->extents)) {
761 		async_extent = list_entry(async_cow->extents.next,
762 					  struct async_extent, list);
763 		list_del(&async_extent->list);
764 
765 		io_tree = &BTRFS_I(inode)->io_tree;
766 
767 retry:
768 		/* did the compression code fall back to uncompressed IO? */
769 		if (!async_extent->pages) {
770 			int page_started = 0;
771 			unsigned long nr_written = 0;
772 
773 			lock_extent(io_tree, async_extent->start,
774 					 async_extent->start +
775 					 async_extent->ram_size - 1);
776 
777 			/* allocate blocks */
778 			ret = cow_file_range(inode, async_cow->locked_page,
779 					     async_extent->start,
780 					     async_extent->start +
781 					     async_extent->ram_size - 1,
782 					     async_extent->start +
783 					     async_extent->ram_size - 1,
784 					     &page_started, &nr_written, 0,
785 					     NULL);
786 
787 			/* JDM XXX */
788 
789 			/*
790 			 * if page_started, cow_file_range inserted an
791 			 * inline extent and took care of all the unlocking
792 			 * and IO for us.  Otherwise, we need to submit
793 			 * all those pages down to the drive.
794 			 */
795 			if (!page_started && !ret)
796 				extent_write_locked_range(inode,
797 						  async_extent->start,
798 						  async_extent->start +
799 						  async_extent->ram_size - 1,
800 						  WB_SYNC_ALL);
801 			else if (ret)
802 				unlock_page(async_cow->locked_page);
803 			kfree(async_extent);
804 			cond_resched();
805 			continue;
806 		}
807 
808 		lock_extent(io_tree, async_extent->start,
809 			    async_extent->start + async_extent->ram_size - 1);
810 
811 		ret = btrfs_reserve_extent(root, async_extent->ram_size,
812 					   async_extent->compressed_size,
813 					   async_extent->compressed_size,
814 					   0, alloc_hint, &ins, 1, 1);
815 		if (ret) {
816 			free_async_extent_pages(async_extent);
817 
818 			if (ret == -ENOSPC) {
819 				unlock_extent(io_tree, async_extent->start,
820 					      async_extent->start +
821 					      async_extent->ram_size - 1);
822 
823 				/*
824 				 * we need to redirty the pages if we decide to
825 				 * fallback to uncompressed IO, otherwise we
826 				 * will not submit these pages down to lower
827 				 * layers.
828 				 */
829 				extent_range_redirty_for_io(inode,
830 						async_extent->start,
831 						async_extent->start +
832 						async_extent->ram_size - 1);
833 
834 				goto retry;
835 			}
836 			goto out_free;
837 		}
838 		/*
839 		 * here we're doing allocation and writeback of the
840 		 * compressed pages
841 		 */
842 		em = create_io_em(inode, async_extent->start,
843 				  async_extent->ram_size, /* len */
844 				  async_extent->start, /* orig_start */
845 				  ins.objectid, /* block_start */
846 				  ins.offset, /* block_len */
847 				  ins.offset, /* orig_block_len */
848 				  async_extent->ram_size, /* ram_bytes */
849 				  async_extent->compress_type,
850 				  BTRFS_ORDERED_COMPRESSED);
851 		if (IS_ERR(em))
852 			/* ret value is not necessary due to void function */
853 			goto out_free_reserve;
854 		free_extent_map(em);
855 
856 		ret = btrfs_add_ordered_extent_compress(inode,
857 						async_extent->start,
858 						ins.objectid,
859 						async_extent->ram_size,
860 						ins.offset,
861 						BTRFS_ORDERED_COMPRESSED,
862 						async_extent->compress_type);
863 		if (ret) {
864 			btrfs_drop_extent_cache(BTRFS_I(inode),
865 						async_extent->start,
866 						async_extent->start +
867 						async_extent->ram_size - 1, 0);
868 			goto out_free_reserve;
869 		}
870 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
871 
872 		/*
873 		 * clear dirty, set writeback and unlock the pages.
874 		 */
875 		extent_clear_unlock_delalloc(inode, async_extent->start,
876 				async_extent->start +
877 				async_extent->ram_size - 1,
878 				async_extent->start +
879 				async_extent->ram_size - 1,
880 				NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
881 				PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
882 				PAGE_SET_WRITEBACK);
883 		if (btrfs_submit_compressed_write(inode,
884 				    async_extent->start,
885 				    async_extent->ram_size,
886 				    ins.objectid,
887 				    ins.offset, async_extent->pages,
888 				    async_extent->nr_pages,
889 				    async_cow->write_flags)) {
890 			struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
891 			struct page *p = async_extent->pages[0];
892 			const u64 start = async_extent->start;
893 			const u64 end = start + async_extent->ram_size - 1;
894 
895 			p->mapping = inode->i_mapping;
896 			tree->ops->writepage_end_io_hook(p, start, end,
897 							 NULL, 0);
898 			p->mapping = NULL;
899 			extent_clear_unlock_delalloc(inode, start, end, end,
900 						     NULL, 0,
901 						     PAGE_END_WRITEBACK |
902 						     PAGE_SET_ERROR);
903 			free_async_extent_pages(async_extent);
904 		}
905 		alloc_hint = ins.objectid + ins.offset;
906 		kfree(async_extent);
907 		cond_resched();
908 	}
909 	return;
910 out_free_reserve:
911 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
912 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
913 out_free:
914 	extent_clear_unlock_delalloc(inode, async_extent->start,
915 				     async_extent->start +
916 				     async_extent->ram_size - 1,
917 				     async_extent->start +
918 				     async_extent->ram_size - 1,
919 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
920 				     EXTENT_DELALLOC_NEW |
921 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
922 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
923 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
924 				     PAGE_SET_ERROR);
925 	free_async_extent_pages(async_extent);
926 	kfree(async_extent);
927 	goto again;
928 }
929 
get_extent_allocation_hint(struct inode * inode,u64 start,u64 num_bytes)930 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
931 				      u64 num_bytes)
932 {
933 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
934 	struct extent_map *em;
935 	u64 alloc_hint = 0;
936 
937 	read_lock(&em_tree->lock);
938 	em = search_extent_mapping(em_tree, start, num_bytes);
939 	if (em) {
940 		/*
941 		 * if block start isn't an actual block number then find the
942 		 * first block in this inode and use that as a hint.  If that
943 		 * block is also bogus then just don't worry about it.
944 		 */
945 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
946 			free_extent_map(em);
947 			em = search_extent_mapping(em_tree, 0, 0);
948 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
949 				alloc_hint = em->block_start;
950 			if (em)
951 				free_extent_map(em);
952 		} else {
953 			alloc_hint = em->block_start;
954 			free_extent_map(em);
955 		}
956 	}
957 	read_unlock(&em_tree->lock);
958 
959 	return alloc_hint;
960 }
961 
962 /*
963  * when extent_io.c finds a delayed allocation range in the file,
964  * the call backs end up in this code.  The basic idea is to
965  * allocate extents on disk for the range, and create ordered data structs
966  * in ram to track those extents.
967  *
968  * locked_page is the page that writepage had locked already.  We use
969  * it to make sure we don't do extra locks or unlocks.
970  *
971  * *page_started is set to one if we unlock locked_page and do everything
972  * required to start IO on it.  It may be clean and already done with
973  * IO when we return.
974  */
cow_file_range(struct inode * inode,struct page * locked_page,u64 start,u64 end,u64 delalloc_end,int * page_started,unsigned long * nr_written,int unlock,struct btrfs_dedupe_hash * hash)975 static noinline int cow_file_range(struct inode *inode,
976 				   struct page *locked_page,
977 				   u64 start, u64 end, u64 delalloc_end,
978 				   int *page_started, unsigned long *nr_written,
979 				   int unlock, struct btrfs_dedupe_hash *hash)
980 {
981 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
982 	struct btrfs_root *root = BTRFS_I(inode)->root;
983 	u64 alloc_hint = 0;
984 	u64 num_bytes;
985 	unsigned long ram_size;
986 	u64 cur_alloc_size = 0;
987 	u64 min_alloc_size;
988 	u64 blocksize = fs_info->sectorsize;
989 	struct btrfs_key ins;
990 	struct extent_map *em;
991 	unsigned clear_bits;
992 	unsigned long page_ops;
993 	bool extent_reserved = false;
994 	int ret = 0;
995 
996 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
997 		WARN_ON_ONCE(1);
998 		ret = -EINVAL;
999 		goto out_unlock;
1000 	}
1001 
1002 	num_bytes = ALIGN(end - start + 1, blocksize);
1003 	num_bytes = max(blocksize,  num_bytes);
1004 	ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1005 
1006 	inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
1007 
1008 	if (start == 0) {
1009 		/* lets try to make an inline extent */
1010 		ret = cow_file_range_inline(inode, start, end, 0,
1011 					    BTRFS_COMPRESS_NONE, NULL);
1012 		if (ret == 0) {
1013 			/*
1014 			 * We use DO_ACCOUNTING here because we need the
1015 			 * delalloc_release_metadata to be run _after_ we drop
1016 			 * our outstanding extent for clearing delalloc for this
1017 			 * range.
1018 			 */
1019 			extent_clear_unlock_delalloc(inode, start, end,
1020 				     delalloc_end, NULL,
1021 				     EXTENT_LOCKED | EXTENT_DELALLOC |
1022 				     EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1023 				     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1024 				     PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1025 				     PAGE_END_WRITEBACK);
1026 			*nr_written = *nr_written +
1027 			     (end - start + PAGE_SIZE) / PAGE_SIZE;
1028 			*page_started = 1;
1029 			goto out;
1030 		} else if (ret < 0) {
1031 			goto out_unlock;
1032 		}
1033 	}
1034 
1035 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1036 	btrfs_drop_extent_cache(BTRFS_I(inode), start,
1037 			start + num_bytes - 1, 0);
1038 
1039 	/*
1040 	 * Relocation relies on the relocated extents to have exactly the same
1041 	 * size as the original extents. Normally writeback for relocation data
1042 	 * extents follows a NOCOW path because relocation preallocates the
1043 	 * extents. However, due to an operation such as scrub turning a block
1044 	 * group to RO mode, it may fallback to COW mode, so we must make sure
1045 	 * an extent allocated during COW has exactly the requested size and can
1046 	 * not be split into smaller extents, otherwise relocation breaks and
1047 	 * fails during the stage where it updates the bytenr of file extent
1048 	 * items.
1049 	 */
1050 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1051 		min_alloc_size = num_bytes;
1052 	else
1053 		min_alloc_size = fs_info->sectorsize;
1054 
1055 	while (num_bytes > 0) {
1056 		cur_alloc_size = num_bytes;
1057 		ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1058 					   min_alloc_size, 0, alloc_hint,
1059 					   &ins, 1, 1);
1060 		if (ret < 0)
1061 			goto out_unlock;
1062 		cur_alloc_size = ins.offset;
1063 		extent_reserved = true;
1064 
1065 		ram_size = ins.offset;
1066 		em = create_io_em(inode, start, ins.offset, /* len */
1067 				  start, /* orig_start */
1068 				  ins.objectid, /* block_start */
1069 				  ins.offset, /* block_len */
1070 				  ins.offset, /* orig_block_len */
1071 				  ram_size, /* ram_bytes */
1072 				  BTRFS_COMPRESS_NONE, /* compress_type */
1073 				  BTRFS_ORDERED_REGULAR /* type */);
1074 		if (IS_ERR(em)) {
1075 			ret = PTR_ERR(em);
1076 			goto out_reserve;
1077 		}
1078 		free_extent_map(em);
1079 
1080 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1081 					       ram_size, cur_alloc_size, 0);
1082 		if (ret)
1083 			goto out_drop_extent_cache;
1084 
1085 		if (root->root_key.objectid ==
1086 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1087 			ret = btrfs_reloc_clone_csums(inode, start,
1088 						      cur_alloc_size);
1089 			/*
1090 			 * Only drop cache here, and process as normal.
1091 			 *
1092 			 * We must not allow extent_clear_unlock_delalloc()
1093 			 * at out_unlock label to free meta of this ordered
1094 			 * extent, as its meta should be freed by
1095 			 * btrfs_finish_ordered_io().
1096 			 *
1097 			 * So we must continue until @start is increased to
1098 			 * skip current ordered extent.
1099 			 */
1100 			if (ret)
1101 				btrfs_drop_extent_cache(BTRFS_I(inode), start,
1102 						start + ram_size - 1, 0);
1103 		}
1104 
1105 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1106 
1107 		/* we're not doing compressed IO, don't unlock the first
1108 		 * page (which the caller expects to stay locked), don't
1109 		 * clear any dirty bits and don't set any writeback bits
1110 		 *
1111 		 * Do set the Private2 bit so we know this page was properly
1112 		 * setup for writepage
1113 		 */
1114 		page_ops = unlock ? PAGE_UNLOCK : 0;
1115 		page_ops |= PAGE_SET_PRIVATE2;
1116 
1117 		extent_clear_unlock_delalloc(inode, start,
1118 					     start + ram_size - 1,
1119 					     delalloc_end, locked_page,
1120 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1121 					     page_ops);
1122 		if (num_bytes < cur_alloc_size)
1123 			num_bytes = 0;
1124 		else
1125 			num_bytes -= cur_alloc_size;
1126 		alloc_hint = ins.objectid + ins.offset;
1127 		start += cur_alloc_size;
1128 		extent_reserved = false;
1129 
1130 		/*
1131 		 * btrfs_reloc_clone_csums() error, since start is increased
1132 		 * extent_clear_unlock_delalloc() at out_unlock label won't
1133 		 * free metadata of current ordered extent, we're OK to exit.
1134 		 */
1135 		if (ret)
1136 			goto out_unlock;
1137 	}
1138 out:
1139 	return ret;
1140 
1141 out_drop_extent_cache:
1142 	btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
1143 out_reserve:
1144 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1145 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1146 out_unlock:
1147 	clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1148 		EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1149 	page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1150 		PAGE_END_WRITEBACK;
1151 	/*
1152 	 * If we reserved an extent for our delalloc range (or a subrange) and
1153 	 * failed to create the respective ordered extent, then it means that
1154 	 * when we reserved the extent we decremented the extent's size from
1155 	 * the data space_info's bytes_may_use counter and incremented the
1156 	 * space_info's bytes_reserved counter by the same amount. We must make
1157 	 * sure extent_clear_unlock_delalloc() does not try to decrement again
1158 	 * the data space_info's bytes_may_use counter, therefore we do not pass
1159 	 * it the flag EXTENT_CLEAR_DATA_RESV.
1160 	 */
1161 	if (extent_reserved) {
1162 		extent_clear_unlock_delalloc(inode, start,
1163 					     start + cur_alloc_size - 1,
1164 					     start + cur_alloc_size - 1,
1165 					     locked_page,
1166 					     clear_bits,
1167 					     page_ops);
1168 		start += cur_alloc_size;
1169 		if (start >= end)
1170 			goto out;
1171 	}
1172 	extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1173 				     locked_page,
1174 				     clear_bits | EXTENT_CLEAR_DATA_RESV,
1175 				     page_ops);
1176 	goto out;
1177 }
1178 
1179 /*
1180  * work queue call back to started compression on a file and pages
1181  */
async_cow_start(struct btrfs_work * work)1182 static noinline void async_cow_start(struct btrfs_work *work)
1183 {
1184 	struct async_cow *async_cow;
1185 	int num_added = 0;
1186 	async_cow = container_of(work, struct async_cow, work);
1187 
1188 	compress_file_range(async_cow->inode, async_cow->locked_page,
1189 			    async_cow->start, async_cow->end, async_cow,
1190 			    &num_added);
1191 	if (num_added == 0) {
1192 		btrfs_add_delayed_iput(async_cow->inode);
1193 		async_cow->inode = NULL;
1194 	}
1195 }
1196 
1197 /*
1198  * work queue call back to submit previously compressed pages
1199  */
async_cow_submit(struct btrfs_work * work)1200 static noinline void async_cow_submit(struct btrfs_work *work)
1201 {
1202 	struct btrfs_fs_info *fs_info;
1203 	struct async_cow *async_cow;
1204 	struct btrfs_root *root;
1205 	unsigned long nr_pages;
1206 
1207 	async_cow = container_of(work, struct async_cow, work);
1208 
1209 	root = async_cow->root;
1210 	fs_info = root->fs_info;
1211 	nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1212 		PAGE_SHIFT;
1213 
1214 	/* atomic_sub_return implies a barrier */
1215 	if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1216 	    5 * SZ_1M)
1217 		cond_wake_up_nomb(&fs_info->async_submit_wait);
1218 
1219 	if (async_cow->inode)
1220 		submit_compressed_extents(async_cow->inode, async_cow);
1221 }
1222 
async_cow_free(struct btrfs_work * work)1223 static noinline void async_cow_free(struct btrfs_work *work)
1224 {
1225 	struct async_cow *async_cow;
1226 	async_cow = container_of(work, struct async_cow, work);
1227 	if (async_cow->inode)
1228 		btrfs_add_delayed_iput(async_cow->inode);
1229 	kfree(async_cow);
1230 }
1231 
cow_file_range_async(struct inode * inode,struct page * locked_page,u64 start,u64 end,int * page_started,unsigned long * nr_written,unsigned int write_flags)1232 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1233 				u64 start, u64 end, int *page_started,
1234 				unsigned long *nr_written,
1235 				unsigned int write_flags)
1236 {
1237 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1238 	struct async_cow *async_cow;
1239 	struct btrfs_root *root = BTRFS_I(inode)->root;
1240 	unsigned long nr_pages;
1241 	u64 cur_end;
1242 
1243 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1244 			 1, 0, NULL);
1245 	while (start < end) {
1246 		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1247 		BUG_ON(!async_cow); /* -ENOMEM */
1248 		async_cow->inode = igrab(inode);
1249 		async_cow->root = root;
1250 		async_cow->locked_page = locked_page;
1251 		async_cow->start = start;
1252 		async_cow->write_flags = write_flags;
1253 
1254 		if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1255 		    !btrfs_test_opt(fs_info, FORCE_COMPRESS))
1256 			cur_end = end;
1257 		else
1258 			cur_end = min(end, start + SZ_512K - 1);
1259 
1260 		async_cow->end = cur_end;
1261 		INIT_LIST_HEAD(&async_cow->extents);
1262 
1263 		btrfs_init_work(&async_cow->work,
1264 				btrfs_delalloc_helper,
1265 				async_cow_start, async_cow_submit,
1266 				async_cow_free);
1267 
1268 		nr_pages = (cur_end - start + PAGE_SIZE) >>
1269 			PAGE_SHIFT;
1270 		atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1271 
1272 		btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work);
1273 
1274 		*nr_written += nr_pages;
1275 		start = cur_end + 1;
1276 	}
1277 	*page_started = 1;
1278 	return 0;
1279 }
1280 
csum_exist_in_range(struct btrfs_fs_info * fs_info,u64 bytenr,u64 num_bytes)1281 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1282 					u64 bytenr, u64 num_bytes)
1283 {
1284 	int ret;
1285 	struct btrfs_ordered_sum *sums;
1286 	LIST_HEAD(list);
1287 
1288 	ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1289 				       bytenr + num_bytes - 1, &list, 0);
1290 	if (ret == 0 && list_empty(&list))
1291 		return 0;
1292 
1293 	while (!list_empty(&list)) {
1294 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1295 		list_del(&sums->list);
1296 		kfree(sums);
1297 	}
1298 	if (ret < 0)
1299 		return ret;
1300 	return 1;
1301 }
1302 
1303 /*
1304  * when nowcow writeback call back.  This checks for snapshots or COW copies
1305  * of the extents that exist in the file, and COWs the file as required.
1306  *
1307  * If no cow copies or snapshots exist, we write directly to the existing
1308  * blocks on disk
1309  */
run_delalloc_nocow(struct inode * inode,struct page * locked_page,u64 start,u64 end,int * page_started,int force,unsigned long * nr_written)1310 static noinline int run_delalloc_nocow(struct inode *inode,
1311 				       struct page *locked_page,
1312 			      u64 start, u64 end, int *page_started, int force,
1313 			      unsigned long *nr_written)
1314 {
1315 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1316 	struct btrfs_root *root = BTRFS_I(inode)->root;
1317 	struct extent_buffer *leaf;
1318 	struct btrfs_path *path;
1319 	struct btrfs_file_extent_item *fi;
1320 	struct btrfs_key found_key;
1321 	struct extent_map *em;
1322 	u64 cow_start;
1323 	u64 cur_offset;
1324 	u64 extent_end;
1325 	u64 extent_offset;
1326 	u64 disk_bytenr;
1327 	u64 num_bytes;
1328 	u64 disk_num_bytes;
1329 	u64 ram_bytes;
1330 	int extent_type;
1331 	int ret;
1332 	int type;
1333 	int nocow;
1334 	int check_prev = 1;
1335 	bool nolock;
1336 	u64 ino = btrfs_ino(BTRFS_I(inode));
1337 
1338 	path = btrfs_alloc_path();
1339 	if (!path) {
1340 		extent_clear_unlock_delalloc(inode, start, end, end,
1341 					     locked_page,
1342 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1343 					     EXTENT_DO_ACCOUNTING |
1344 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1345 					     PAGE_CLEAR_DIRTY |
1346 					     PAGE_SET_WRITEBACK |
1347 					     PAGE_END_WRITEBACK);
1348 		return -ENOMEM;
1349 	}
1350 
1351 	nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
1352 
1353 	cow_start = (u64)-1;
1354 	cur_offset = start;
1355 	while (1) {
1356 		ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1357 					       cur_offset, 0);
1358 		if (ret < 0)
1359 			goto error;
1360 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1361 			leaf = path->nodes[0];
1362 			btrfs_item_key_to_cpu(leaf, &found_key,
1363 					      path->slots[0] - 1);
1364 			if (found_key.objectid == ino &&
1365 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1366 				path->slots[0]--;
1367 		}
1368 		check_prev = 0;
1369 next_slot:
1370 		leaf = path->nodes[0];
1371 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1372 			ret = btrfs_next_leaf(root, path);
1373 			if (ret < 0) {
1374 				if (cow_start != (u64)-1)
1375 					cur_offset = cow_start;
1376 				goto error;
1377 			}
1378 			if (ret > 0)
1379 				break;
1380 			leaf = path->nodes[0];
1381 		}
1382 
1383 		nocow = 0;
1384 		disk_bytenr = 0;
1385 		num_bytes = 0;
1386 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1387 
1388 		if (found_key.objectid > ino)
1389 			break;
1390 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
1391 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
1392 			path->slots[0]++;
1393 			goto next_slot;
1394 		}
1395 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1396 		    found_key.offset > end)
1397 			break;
1398 
1399 		if (found_key.offset > cur_offset) {
1400 			extent_end = found_key.offset;
1401 			extent_type = 0;
1402 			goto out_check;
1403 		}
1404 
1405 		fi = btrfs_item_ptr(leaf, path->slots[0],
1406 				    struct btrfs_file_extent_item);
1407 		extent_type = btrfs_file_extent_type(leaf, fi);
1408 
1409 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1410 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1411 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1412 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1413 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1414 			extent_end = found_key.offset +
1415 				btrfs_file_extent_num_bytes(leaf, fi);
1416 			disk_num_bytes =
1417 				btrfs_file_extent_disk_num_bytes(leaf, fi);
1418 			if (extent_end <= start) {
1419 				path->slots[0]++;
1420 				goto next_slot;
1421 			}
1422 			if (disk_bytenr == 0)
1423 				goto out_check;
1424 			if (btrfs_file_extent_compression(leaf, fi) ||
1425 			    btrfs_file_extent_encryption(leaf, fi) ||
1426 			    btrfs_file_extent_other_encoding(leaf, fi))
1427 				goto out_check;
1428 			/*
1429 			 * Do the same check as in btrfs_cross_ref_exist but
1430 			 * without the unnecessary search.
1431 			 */
1432 			if (!nolock &&
1433 			    btrfs_file_extent_generation(leaf, fi) <=
1434 			    btrfs_root_last_snapshot(&root->root_item))
1435 				goto out_check;
1436 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1437 				goto out_check;
1438 			if (btrfs_extent_readonly(fs_info, disk_bytenr))
1439 				goto out_check;
1440 			ret = btrfs_cross_ref_exist(root, ino,
1441 						    found_key.offset -
1442 						    extent_offset, disk_bytenr);
1443 			if (ret) {
1444 				/*
1445 				 * ret could be -EIO if the above fails to read
1446 				 * metadata.
1447 				 */
1448 				if (ret < 0) {
1449 					if (cow_start != (u64)-1)
1450 						cur_offset = cow_start;
1451 					goto error;
1452 				}
1453 
1454 				WARN_ON_ONCE(nolock);
1455 				goto out_check;
1456 			}
1457 			disk_bytenr += extent_offset;
1458 			disk_bytenr += cur_offset - found_key.offset;
1459 			num_bytes = min(end + 1, extent_end) - cur_offset;
1460 			/*
1461 			 * if there are pending snapshots for this root,
1462 			 * we fall into common COW way.
1463 			 */
1464 			if (!nolock && atomic_read(&root->snapshot_force_cow))
1465 				goto out_check;
1466 			/*
1467 			 * force cow if csum exists in the range.
1468 			 * this ensure that csum for a given extent are
1469 			 * either valid or do not exist.
1470 			 */
1471 			ret = csum_exist_in_range(fs_info, disk_bytenr,
1472 						  num_bytes);
1473 			if (ret) {
1474 				/*
1475 				 * ret could be -EIO if the above fails to read
1476 				 * metadata.
1477 				 */
1478 				if (ret < 0) {
1479 					if (cow_start != (u64)-1)
1480 						cur_offset = cow_start;
1481 					goto error;
1482 				}
1483 				WARN_ON_ONCE(nolock);
1484 				goto out_check;
1485 			}
1486 			if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
1487 				goto out_check;
1488 			nocow = 1;
1489 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1490 			extent_end = found_key.offset +
1491 				btrfs_file_extent_ram_bytes(leaf, fi);
1492 			extent_end = ALIGN(extent_end,
1493 					   fs_info->sectorsize);
1494 		} else {
1495 			BUG_ON(1);
1496 		}
1497 out_check:
1498 		if (extent_end <= start) {
1499 			path->slots[0]++;
1500 			if (nocow)
1501 				btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1502 			goto next_slot;
1503 		}
1504 		if (!nocow) {
1505 			if (cow_start == (u64)-1)
1506 				cow_start = cur_offset;
1507 			cur_offset = extent_end;
1508 			if (cur_offset > end)
1509 				break;
1510 			path->slots[0]++;
1511 			goto next_slot;
1512 		}
1513 
1514 		btrfs_release_path(path);
1515 		if (cow_start != (u64)-1) {
1516 			ret = cow_file_range(inode, locked_page,
1517 					     cow_start, found_key.offset - 1,
1518 					     end, page_started, nr_written, 1,
1519 					     NULL);
1520 			if (ret) {
1521 				if (nocow)
1522 					btrfs_dec_nocow_writers(fs_info,
1523 								disk_bytenr);
1524 				goto error;
1525 			}
1526 			cow_start = (u64)-1;
1527 		}
1528 
1529 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1530 			u64 orig_start = found_key.offset - extent_offset;
1531 
1532 			em = create_io_em(inode, cur_offset, num_bytes,
1533 					  orig_start,
1534 					  disk_bytenr, /* block_start */
1535 					  num_bytes, /* block_len */
1536 					  disk_num_bytes, /* orig_block_len */
1537 					  ram_bytes, BTRFS_COMPRESS_NONE,
1538 					  BTRFS_ORDERED_PREALLOC);
1539 			if (IS_ERR(em)) {
1540 				if (nocow)
1541 					btrfs_dec_nocow_writers(fs_info,
1542 								disk_bytenr);
1543 				ret = PTR_ERR(em);
1544 				goto error;
1545 			}
1546 			free_extent_map(em);
1547 		}
1548 
1549 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1550 			type = BTRFS_ORDERED_PREALLOC;
1551 		} else {
1552 			type = BTRFS_ORDERED_NOCOW;
1553 		}
1554 
1555 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1556 					       num_bytes, num_bytes, type);
1557 		if (nocow)
1558 			btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1559 		BUG_ON(ret); /* -ENOMEM */
1560 
1561 		if (root->root_key.objectid ==
1562 		    BTRFS_DATA_RELOC_TREE_OBJECTID)
1563 			/*
1564 			 * Error handled later, as we must prevent
1565 			 * extent_clear_unlock_delalloc() in error handler
1566 			 * from freeing metadata of created ordered extent.
1567 			 */
1568 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1569 						      num_bytes);
1570 
1571 		extent_clear_unlock_delalloc(inode, cur_offset,
1572 					     cur_offset + num_bytes - 1, end,
1573 					     locked_page, EXTENT_LOCKED |
1574 					     EXTENT_DELALLOC |
1575 					     EXTENT_CLEAR_DATA_RESV,
1576 					     PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1577 
1578 		cur_offset = extent_end;
1579 
1580 		/*
1581 		 * btrfs_reloc_clone_csums() error, now we're OK to call error
1582 		 * handler, as metadata for created ordered extent will only
1583 		 * be freed by btrfs_finish_ordered_io().
1584 		 */
1585 		if (ret)
1586 			goto error;
1587 		if (cur_offset > end)
1588 			break;
1589 	}
1590 	btrfs_release_path(path);
1591 
1592 	if (cur_offset <= end && cow_start == (u64)-1)
1593 		cow_start = cur_offset;
1594 
1595 	if (cow_start != (u64)-1) {
1596 		cur_offset = end;
1597 		ret = cow_file_range(inode, locked_page, cow_start, end, end,
1598 				     page_started, nr_written, 1, NULL);
1599 		if (ret)
1600 			goto error;
1601 	}
1602 
1603 error:
1604 	if (ret && cur_offset < end)
1605 		extent_clear_unlock_delalloc(inode, cur_offset, end, end,
1606 					     locked_page, EXTENT_LOCKED |
1607 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
1608 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1609 					     PAGE_CLEAR_DIRTY |
1610 					     PAGE_SET_WRITEBACK |
1611 					     PAGE_END_WRITEBACK);
1612 	btrfs_free_path(path);
1613 	return ret;
1614 }
1615 
need_force_cow(struct inode * inode,u64 start,u64 end)1616 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1617 {
1618 
1619 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1620 	    !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1621 		return 0;
1622 
1623 	/*
1624 	 * @defrag_bytes is a hint value, no spinlock held here,
1625 	 * if is not zero, it means the file is defragging.
1626 	 * Force cow if given extent needs to be defragged.
1627 	 */
1628 	if (BTRFS_I(inode)->defrag_bytes &&
1629 	    test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1630 			   EXTENT_DEFRAG, 0, NULL))
1631 		return 1;
1632 
1633 	return 0;
1634 }
1635 
1636 /*
1637  * Function to process delayed allocation (create CoW) for ranges which are
1638  * being touched for the first time.
1639  */
btrfs_run_delalloc_range(void * private_data,struct page * locked_page,u64 start,u64 end,int * page_started,unsigned long * nr_written,struct writeback_control * wbc)1640 int btrfs_run_delalloc_range(void *private_data, struct page *locked_page,
1641 		u64 start, u64 end, int *page_started, unsigned long *nr_written,
1642 		struct writeback_control *wbc)
1643 {
1644 	struct inode *inode = private_data;
1645 	int ret;
1646 	int force_cow = need_force_cow(inode, start, end);
1647 	unsigned int write_flags = wbc_to_write_flags(wbc);
1648 
1649 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1650 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1651 					 page_started, 1, nr_written);
1652 	} else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1653 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1654 					 page_started, 0, nr_written);
1655 	} else if (!inode_can_compress(inode) ||
1656 		   !inode_need_compress(inode, start, end)) {
1657 		ret = cow_file_range(inode, locked_page, start, end, end,
1658 				      page_started, nr_written, 1, NULL);
1659 	} else {
1660 		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1661 			&BTRFS_I(inode)->runtime_flags);
1662 		ret = cow_file_range_async(inode, locked_page, start, end,
1663 					   page_started, nr_written,
1664 					   write_flags);
1665 	}
1666 	if (ret)
1667 		btrfs_cleanup_ordered_extents(inode, locked_page, start,
1668 					      end - start + 1);
1669 	return ret;
1670 }
1671 
btrfs_split_extent_hook(void * private_data,struct extent_state * orig,u64 split)1672 static void btrfs_split_extent_hook(void *private_data,
1673 				    struct extent_state *orig, u64 split)
1674 {
1675 	struct inode *inode = private_data;
1676 	u64 size;
1677 
1678 	/* not delalloc, ignore it */
1679 	if (!(orig->state & EXTENT_DELALLOC))
1680 		return;
1681 
1682 	size = orig->end - orig->start + 1;
1683 	if (size > BTRFS_MAX_EXTENT_SIZE) {
1684 		u32 num_extents;
1685 		u64 new_size;
1686 
1687 		/*
1688 		 * See the explanation in btrfs_merge_extent_hook, the same
1689 		 * applies here, just in reverse.
1690 		 */
1691 		new_size = orig->end - split + 1;
1692 		num_extents = count_max_extents(new_size);
1693 		new_size = split - orig->start;
1694 		num_extents += count_max_extents(new_size);
1695 		if (count_max_extents(size) >= num_extents)
1696 			return;
1697 	}
1698 
1699 	spin_lock(&BTRFS_I(inode)->lock);
1700 	btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1701 	spin_unlock(&BTRFS_I(inode)->lock);
1702 }
1703 
1704 /*
1705  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1706  * extents so we can keep track of new extents that are just merged onto old
1707  * extents, such as when we are doing sequential writes, so we can properly
1708  * account for the metadata space we'll need.
1709  */
btrfs_merge_extent_hook(void * private_data,struct extent_state * new,struct extent_state * other)1710 static void btrfs_merge_extent_hook(void *private_data,
1711 				    struct extent_state *new,
1712 				    struct extent_state *other)
1713 {
1714 	struct inode *inode = private_data;
1715 	u64 new_size, old_size;
1716 	u32 num_extents;
1717 
1718 	/* not delalloc, ignore it */
1719 	if (!(other->state & EXTENT_DELALLOC))
1720 		return;
1721 
1722 	if (new->start > other->start)
1723 		new_size = new->end - other->start + 1;
1724 	else
1725 		new_size = other->end - new->start + 1;
1726 
1727 	/* we're not bigger than the max, unreserve the space and go */
1728 	if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1729 		spin_lock(&BTRFS_I(inode)->lock);
1730 		btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1731 		spin_unlock(&BTRFS_I(inode)->lock);
1732 		return;
1733 	}
1734 
1735 	/*
1736 	 * We have to add up either side to figure out how many extents were
1737 	 * accounted for before we merged into one big extent.  If the number of
1738 	 * extents we accounted for is <= the amount we need for the new range
1739 	 * then we can return, otherwise drop.  Think of it like this
1740 	 *
1741 	 * [ 4k][MAX_SIZE]
1742 	 *
1743 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1744 	 * need 2 outstanding extents, on one side we have 1 and the other side
1745 	 * we have 1 so they are == and we can return.  But in this case
1746 	 *
1747 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
1748 	 *
1749 	 * Each range on their own accounts for 2 extents, but merged together
1750 	 * they are only 3 extents worth of accounting, so we need to drop in
1751 	 * this case.
1752 	 */
1753 	old_size = other->end - other->start + 1;
1754 	num_extents = count_max_extents(old_size);
1755 	old_size = new->end - new->start + 1;
1756 	num_extents += count_max_extents(old_size);
1757 	if (count_max_extents(new_size) >= num_extents)
1758 		return;
1759 
1760 	spin_lock(&BTRFS_I(inode)->lock);
1761 	btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1762 	spin_unlock(&BTRFS_I(inode)->lock);
1763 }
1764 
btrfs_add_delalloc_inodes(struct btrfs_root * root,struct inode * inode)1765 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1766 				      struct inode *inode)
1767 {
1768 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1769 
1770 	spin_lock(&root->delalloc_lock);
1771 	if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1772 		list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1773 			      &root->delalloc_inodes);
1774 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1775 			&BTRFS_I(inode)->runtime_flags);
1776 		root->nr_delalloc_inodes++;
1777 		if (root->nr_delalloc_inodes == 1) {
1778 			spin_lock(&fs_info->delalloc_root_lock);
1779 			BUG_ON(!list_empty(&root->delalloc_root));
1780 			list_add_tail(&root->delalloc_root,
1781 				      &fs_info->delalloc_roots);
1782 			spin_unlock(&fs_info->delalloc_root_lock);
1783 		}
1784 	}
1785 	spin_unlock(&root->delalloc_lock);
1786 }
1787 
1788 
__btrfs_del_delalloc_inode(struct btrfs_root * root,struct btrfs_inode * inode)1789 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
1790 				struct btrfs_inode *inode)
1791 {
1792 	struct btrfs_fs_info *fs_info = root->fs_info;
1793 
1794 	if (!list_empty(&inode->delalloc_inodes)) {
1795 		list_del_init(&inode->delalloc_inodes);
1796 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1797 			  &inode->runtime_flags);
1798 		root->nr_delalloc_inodes--;
1799 		if (!root->nr_delalloc_inodes) {
1800 			ASSERT(list_empty(&root->delalloc_inodes));
1801 			spin_lock(&fs_info->delalloc_root_lock);
1802 			BUG_ON(list_empty(&root->delalloc_root));
1803 			list_del_init(&root->delalloc_root);
1804 			spin_unlock(&fs_info->delalloc_root_lock);
1805 		}
1806 	}
1807 }
1808 
btrfs_del_delalloc_inode(struct btrfs_root * root,struct btrfs_inode * inode)1809 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1810 				     struct btrfs_inode *inode)
1811 {
1812 	spin_lock(&root->delalloc_lock);
1813 	__btrfs_del_delalloc_inode(root, inode);
1814 	spin_unlock(&root->delalloc_lock);
1815 }
1816 
1817 /*
1818  * extent_io.c set_bit_hook, used to track delayed allocation
1819  * bytes in this file, and to maintain the list of inodes that
1820  * have pending delalloc work to be done.
1821  */
btrfs_set_bit_hook(void * private_data,struct extent_state * state,unsigned * bits)1822 static void btrfs_set_bit_hook(void *private_data,
1823 			       struct extent_state *state, unsigned *bits)
1824 {
1825 	struct inode *inode = private_data;
1826 
1827 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1828 
1829 	if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1830 		WARN_ON(1);
1831 	/*
1832 	 * set_bit and clear bit hooks normally require _irqsave/restore
1833 	 * but in this case, we are only testing for the DELALLOC
1834 	 * bit, which is only set or cleared with irqs on
1835 	 */
1836 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1837 		struct btrfs_root *root = BTRFS_I(inode)->root;
1838 		u64 len = state->end + 1 - state->start;
1839 		u32 num_extents = count_max_extents(len);
1840 		bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
1841 
1842 		spin_lock(&BTRFS_I(inode)->lock);
1843 		btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
1844 		spin_unlock(&BTRFS_I(inode)->lock);
1845 
1846 		/* For sanity tests */
1847 		if (btrfs_is_testing(fs_info))
1848 			return;
1849 
1850 		percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
1851 					 fs_info->delalloc_batch);
1852 		spin_lock(&BTRFS_I(inode)->lock);
1853 		BTRFS_I(inode)->delalloc_bytes += len;
1854 		if (*bits & EXTENT_DEFRAG)
1855 			BTRFS_I(inode)->defrag_bytes += len;
1856 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1857 					 &BTRFS_I(inode)->runtime_flags))
1858 			btrfs_add_delalloc_inodes(root, inode);
1859 		spin_unlock(&BTRFS_I(inode)->lock);
1860 	}
1861 
1862 	if (!(state->state & EXTENT_DELALLOC_NEW) &&
1863 	    (*bits & EXTENT_DELALLOC_NEW)) {
1864 		spin_lock(&BTRFS_I(inode)->lock);
1865 		BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1866 			state->start;
1867 		spin_unlock(&BTRFS_I(inode)->lock);
1868 	}
1869 }
1870 
1871 /*
1872  * extent_io.c clear_bit_hook, see set_bit_hook for why
1873  */
btrfs_clear_bit_hook(void * private_data,struct extent_state * state,unsigned * bits)1874 static void btrfs_clear_bit_hook(void *private_data,
1875 				 struct extent_state *state,
1876 				 unsigned *bits)
1877 {
1878 	struct btrfs_inode *inode = BTRFS_I((struct inode *)private_data);
1879 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1880 	u64 len = state->end + 1 - state->start;
1881 	u32 num_extents = count_max_extents(len);
1882 
1883 	if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
1884 		spin_lock(&inode->lock);
1885 		inode->defrag_bytes -= len;
1886 		spin_unlock(&inode->lock);
1887 	}
1888 
1889 	/*
1890 	 * set_bit and clear bit hooks normally require _irqsave/restore
1891 	 * but in this case, we are only testing for the DELALLOC
1892 	 * bit, which is only set or cleared with irqs on
1893 	 */
1894 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1895 		struct btrfs_root *root = inode->root;
1896 		bool do_list = !btrfs_is_free_space_inode(inode);
1897 
1898 		spin_lock(&inode->lock);
1899 		btrfs_mod_outstanding_extents(inode, -num_extents);
1900 		spin_unlock(&inode->lock);
1901 
1902 		/*
1903 		 * We don't reserve metadata space for space cache inodes so we
1904 		 * don't need to call dellalloc_release_metadata if there is an
1905 		 * error.
1906 		 */
1907 		if (*bits & EXTENT_CLEAR_META_RESV &&
1908 		    root != fs_info->tree_root)
1909 			btrfs_delalloc_release_metadata(inode, len, false);
1910 
1911 		/* For sanity tests. */
1912 		if (btrfs_is_testing(fs_info))
1913 			return;
1914 
1915 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
1916 		    do_list && !(state->state & EXTENT_NORESERVE) &&
1917 		    (*bits & EXTENT_CLEAR_DATA_RESV))
1918 			btrfs_free_reserved_data_space_noquota(
1919 					&inode->vfs_inode,
1920 					state->start, len);
1921 
1922 		percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
1923 					 fs_info->delalloc_batch);
1924 		spin_lock(&inode->lock);
1925 		inode->delalloc_bytes -= len;
1926 		if (do_list && inode->delalloc_bytes == 0 &&
1927 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1928 					&inode->runtime_flags))
1929 			btrfs_del_delalloc_inode(root, inode);
1930 		spin_unlock(&inode->lock);
1931 	}
1932 
1933 	if ((state->state & EXTENT_DELALLOC_NEW) &&
1934 	    (*bits & EXTENT_DELALLOC_NEW)) {
1935 		spin_lock(&inode->lock);
1936 		ASSERT(inode->new_delalloc_bytes >= len);
1937 		inode->new_delalloc_bytes -= len;
1938 		spin_unlock(&inode->lock);
1939 	}
1940 }
1941 
1942 /*
1943  * Merge bio hook, this must check the chunk tree to make sure we don't create
1944  * bios that span stripes or chunks
1945  *
1946  * return 1 if page cannot be merged to bio
1947  * return 0 if page can be merged to bio
1948  * return error otherwise
1949  */
btrfs_merge_bio_hook(struct page * page,unsigned long offset,size_t size,struct bio * bio,unsigned long bio_flags)1950 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1951 			 size_t size, struct bio *bio,
1952 			 unsigned long bio_flags)
1953 {
1954 	struct inode *inode = page->mapping->host;
1955 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1956 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1957 	u64 length = 0;
1958 	u64 map_length;
1959 	int ret;
1960 
1961 	if (bio_flags & EXTENT_BIO_COMPRESSED)
1962 		return 0;
1963 
1964 	length = bio->bi_iter.bi_size;
1965 	map_length = length;
1966 	ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
1967 			      NULL, 0);
1968 	if (ret < 0)
1969 		return ret;
1970 	if (map_length < length + size)
1971 		return 1;
1972 	return 0;
1973 }
1974 
1975 /*
1976  * in order to insert checksums into the metadata in large chunks,
1977  * we wait until bio submission time.   All the pages in the bio are
1978  * checksummed and sums are attached onto the ordered extent record.
1979  *
1980  * At IO completion time the cums attached on the ordered extent record
1981  * are inserted into the btree
1982  */
btrfs_submit_bio_start(void * private_data,struct bio * bio,u64 bio_offset)1983 static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio,
1984 				    u64 bio_offset)
1985 {
1986 	struct inode *inode = private_data;
1987 	blk_status_t ret = 0;
1988 
1989 	ret = btrfs_csum_one_bio(inode, bio, 0, 0);
1990 	BUG_ON(ret); /* -ENOMEM */
1991 	return 0;
1992 }
1993 
1994 /*
1995  * in order to insert checksums into the metadata in large chunks,
1996  * we wait until bio submission time.   All the pages in the bio are
1997  * checksummed and sums are attached onto the ordered extent record.
1998  *
1999  * At IO completion time the cums attached on the ordered extent record
2000  * are inserted into the btree
2001  */
btrfs_submit_bio_done(void * private_data,struct bio * bio,int mirror_num)2002 blk_status_t btrfs_submit_bio_done(void *private_data, struct bio *bio,
2003 			  int mirror_num)
2004 {
2005 	struct inode *inode = private_data;
2006 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2007 	blk_status_t ret;
2008 
2009 	ret = btrfs_map_bio(fs_info, bio, mirror_num, 1);
2010 	if (ret) {
2011 		bio->bi_status = ret;
2012 		bio_endio(bio);
2013 	}
2014 	return ret;
2015 }
2016 
2017 /*
2018  * extent_io.c submission hook. This does the right thing for csum calculation
2019  * on write, or reading the csums from the tree before a read.
2020  *
2021  * Rules about async/sync submit,
2022  * a) read:				sync submit
2023  *
2024  * b) write without checksum:		sync submit
2025  *
2026  * c) write with checksum:
2027  *    c-1) if bio is issued by fsync:	sync submit
2028  *         (sync_writers != 0)
2029  *
2030  *    c-2) if root is reloc root:	sync submit
2031  *         (only in case of buffered IO)
2032  *
2033  *    c-3) otherwise:			async submit
2034  */
btrfs_submit_bio_hook(void * private_data,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 bio_offset)2035 static blk_status_t btrfs_submit_bio_hook(void *private_data, struct bio *bio,
2036 				 int mirror_num, unsigned long bio_flags,
2037 				 u64 bio_offset)
2038 {
2039 	struct inode *inode = private_data;
2040 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2041 	struct btrfs_root *root = BTRFS_I(inode)->root;
2042 	enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
2043 	blk_status_t ret = 0;
2044 	int skip_sum;
2045 	int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
2046 
2047 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
2048 
2049 	if (btrfs_is_free_space_inode(BTRFS_I(inode)))
2050 		metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
2051 
2052 	if (bio_op(bio) != REQ_OP_WRITE) {
2053 		ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
2054 		if (ret)
2055 			goto out;
2056 
2057 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
2058 			ret = btrfs_submit_compressed_read(inode, bio,
2059 							   mirror_num,
2060 							   bio_flags);
2061 			goto out;
2062 		} else if (!skip_sum) {
2063 			ret = btrfs_lookup_bio_sums(inode, bio, NULL);
2064 			if (ret)
2065 				goto out;
2066 		}
2067 		goto mapit;
2068 	} else if (async && !skip_sum) {
2069 		/* csum items have already been cloned */
2070 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2071 			goto mapit;
2072 		/* we're doing a write, do the async checksumming */
2073 		ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
2074 					  bio_offset, inode,
2075 					  btrfs_submit_bio_start);
2076 		goto out;
2077 	} else if (!skip_sum) {
2078 		ret = btrfs_csum_one_bio(inode, bio, 0, 0);
2079 		if (ret)
2080 			goto out;
2081 	}
2082 
2083 mapit:
2084 	ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
2085 
2086 out:
2087 	if (ret) {
2088 		bio->bi_status = ret;
2089 		bio_endio(bio);
2090 	}
2091 	return ret;
2092 }
2093 
2094 /*
2095  * given a list of ordered sums record them in the inode.  This happens
2096  * at IO completion time based on sums calculated at bio submission time.
2097  */
add_pending_csums(struct btrfs_trans_handle * trans,struct inode * inode,struct list_head * list)2098 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
2099 			     struct inode *inode, struct list_head *list)
2100 {
2101 	struct btrfs_ordered_sum *sum;
2102 	int ret;
2103 
2104 	list_for_each_entry(sum, list, list) {
2105 		trans->adding_csums = true;
2106 		ret = btrfs_csum_file_blocks(trans,
2107 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
2108 		trans->adding_csums = false;
2109 		if (ret)
2110 			return ret;
2111 	}
2112 	return 0;
2113 }
2114 
btrfs_set_extent_delalloc(struct inode * inode,u64 start,u64 end,unsigned int extra_bits,struct extent_state ** cached_state,int dedupe)2115 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
2116 			      unsigned int extra_bits,
2117 			      struct extent_state **cached_state, int dedupe)
2118 {
2119 	WARN_ON((end & (PAGE_SIZE - 1)) == 0);
2120 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2121 				   extra_bits, cached_state);
2122 }
2123 
2124 /* see btrfs_writepage_start_hook for details on why this is required */
2125 struct btrfs_writepage_fixup {
2126 	struct page *page;
2127 	struct btrfs_work work;
2128 };
2129 
btrfs_writepage_fixup_worker(struct btrfs_work * work)2130 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2131 {
2132 	struct btrfs_writepage_fixup *fixup;
2133 	struct btrfs_ordered_extent *ordered;
2134 	struct extent_state *cached_state = NULL;
2135 	struct extent_changeset *data_reserved = NULL;
2136 	struct page *page;
2137 	struct inode *inode;
2138 	u64 page_start;
2139 	u64 page_end;
2140 	int ret;
2141 
2142 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
2143 	page = fixup->page;
2144 again:
2145 	lock_page(page);
2146 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2147 		ClearPageChecked(page);
2148 		goto out_page;
2149 	}
2150 
2151 	inode = page->mapping->host;
2152 	page_start = page_offset(page);
2153 	page_end = page_offset(page) + PAGE_SIZE - 1;
2154 
2155 	lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
2156 			 &cached_state);
2157 
2158 	/* already ordered? We're done */
2159 	if (PagePrivate2(page))
2160 		goto out;
2161 
2162 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
2163 					PAGE_SIZE);
2164 	if (ordered) {
2165 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2166 				     page_end, &cached_state);
2167 		unlock_page(page);
2168 		btrfs_start_ordered_extent(inode, ordered, 1);
2169 		btrfs_put_ordered_extent(ordered);
2170 		goto again;
2171 	}
2172 
2173 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2174 					   PAGE_SIZE);
2175 	if (ret) {
2176 		mapping_set_error(page->mapping, ret);
2177 		end_extent_writepage(page, ret, page_start, page_end);
2178 		ClearPageChecked(page);
2179 		goto out;
2180 	 }
2181 
2182 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2183 					&cached_state, 0);
2184 	if (ret) {
2185 		mapping_set_error(page->mapping, ret);
2186 		end_extent_writepage(page, ret, page_start, page_end);
2187 		ClearPageChecked(page);
2188 		goto out_reserved;
2189 	}
2190 
2191 	ClearPageChecked(page);
2192 	set_page_dirty(page);
2193 out_reserved:
2194 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
2195 	if (ret)
2196 		btrfs_delalloc_release_space(inode, data_reserved, page_start,
2197 					     PAGE_SIZE, true);
2198 out:
2199 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2200 			     &cached_state);
2201 out_page:
2202 	unlock_page(page);
2203 	put_page(page);
2204 	kfree(fixup);
2205 	extent_changeset_free(data_reserved);
2206 }
2207 
2208 /*
2209  * There are a few paths in the higher layers of the kernel that directly
2210  * set the page dirty bit without asking the filesystem if it is a
2211  * good idea.  This causes problems because we want to make sure COW
2212  * properly happens and the data=ordered rules are followed.
2213  *
2214  * In our case any range that doesn't have the ORDERED bit set
2215  * hasn't been properly setup for IO.  We kick off an async process
2216  * to fix it up.  The async helper will wait for ordered extents, set
2217  * the delalloc bit and make it safe to write the page.
2218  */
btrfs_writepage_start_hook(struct page * page,u64 start,u64 end)2219 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
2220 {
2221 	struct inode *inode = page->mapping->host;
2222 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2223 	struct btrfs_writepage_fixup *fixup;
2224 
2225 	/* this page is properly in the ordered list */
2226 	if (TestClearPagePrivate2(page))
2227 		return 0;
2228 
2229 	if (PageChecked(page))
2230 		return -EAGAIN;
2231 
2232 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2233 	if (!fixup)
2234 		return -EAGAIN;
2235 
2236 	SetPageChecked(page);
2237 	get_page(page);
2238 	btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2239 			btrfs_writepage_fixup_worker, NULL, NULL);
2240 	fixup->page = page;
2241 	btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2242 	return -EBUSY;
2243 }
2244 
insert_reserved_file_extent(struct btrfs_trans_handle * trans,struct inode * inode,u64 file_pos,u64 disk_bytenr,u64 disk_num_bytes,u64 num_bytes,u64 ram_bytes,u8 compression,u8 encryption,u16 other_encoding,int extent_type)2245 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2246 				       struct inode *inode, u64 file_pos,
2247 				       u64 disk_bytenr, u64 disk_num_bytes,
2248 				       u64 num_bytes, u64 ram_bytes,
2249 				       u8 compression, u8 encryption,
2250 				       u16 other_encoding, int extent_type)
2251 {
2252 	struct btrfs_root *root = BTRFS_I(inode)->root;
2253 	struct btrfs_file_extent_item *fi;
2254 	struct btrfs_path *path;
2255 	struct extent_buffer *leaf;
2256 	struct btrfs_key ins;
2257 	u64 qg_released;
2258 	int extent_inserted = 0;
2259 	int ret;
2260 
2261 	path = btrfs_alloc_path();
2262 	if (!path)
2263 		return -ENOMEM;
2264 
2265 	/*
2266 	 * we may be replacing one extent in the tree with another.
2267 	 * The new extent is pinned in the extent map, and we don't want
2268 	 * to drop it from the cache until it is completely in the btree.
2269 	 *
2270 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2271 	 * the caller is expected to unpin it and allow it to be merged
2272 	 * with the others.
2273 	 */
2274 	ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2275 				   file_pos + num_bytes, NULL, 0,
2276 				   1, sizeof(*fi), &extent_inserted);
2277 	if (ret)
2278 		goto out;
2279 
2280 	if (!extent_inserted) {
2281 		ins.objectid = btrfs_ino(BTRFS_I(inode));
2282 		ins.offset = file_pos;
2283 		ins.type = BTRFS_EXTENT_DATA_KEY;
2284 
2285 		path->leave_spinning = 1;
2286 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2287 					      sizeof(*fi));
2288 		if (ret)
2289 			goto out;
2290 	}
2291 	leaf = path->nodes[0];
2292 	fi = btrfs_item_ptr(leaf, path->slots[0],
2293 			    struct btrfs_file_extent_item);
2294 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2295 	btrfs_set_file_extent_type(leaf, fi, extent_type);
2296 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2297 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2298 	btrfs_set_file_extent_offset(leaf, fi, 0);
2299 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2300 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2301 	btrfs_set_file_extent_compression(leaf, fi, compression);
2302 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
2303 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2304 
2305 	btrfs_mark_buffer_dirty(leaf);
2306 	btrfs_release_path(path);
2307 
2308 	inode_add_bytes(inode, num_bytes);
2309 
2310 	ins.objectid = disk_bytenr;
2311 	ins.offset = disk_num_bytes;
2312 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2313 
2314 	/*
2315 	 * Release the reserved range from inode dirty range map, as it is
2316 	 * already moved into delayed_ref_head
2317 	 */
2318 	ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2319 	if (ret < 0)
2320 		goto out;
2321 	qg_released = ret;
2322 	ret = btrfs_alloc_reserved_file_extent(trans, root,
2323 					       btrfs_ino(BTRFS_I(inode)),
2324 					       file_pos, qg_released, &ins);
2325 out:
2326 	btrfs_free_path(path);
2327 
2328 	return ret;
2329 }
2330 
2331 /* snapshot-aware defrag */
2332 struct sa_defrag_extent_backref {
2333 	struct rb_node node;
2334 	struct old_sa_defrag_extent *old;
2335 	u64 root_id;
2336 	u64 inum;
2337 	u64 file_pos;
2338 	u64 extent_offset;
2339 	u64 num_bytes;
2340 	u64 generation;
2341 };
2342 
2343 struct old_sa_defrag_extent {
2344 	struct list_head list;
2345 	struct new_sa_defrag_extent *new;
2346 
2347 	u64 extent_offset;
2348 	u64 bytenr;
2349 	u64 offset;
2350 	u64 len;
2351 	int count;
2352 };
2353 
2354 struct new_sa_defrag_extent {
2355 	struct rb_root root;
2356 	struct list_head head;
2357 	struct btrfs_path *path;
2358 	struct inode *inode;
2359 	u64 file_pos;
2360 	u64 len;
2361 	u64 bytenr;
2362 	u64 disk_len;
2363 	u8 compress_type;
2364 };
2365 
backref_comp(struct sa_defrag_extent_backref * b1,struct sa_defrag_extent_backref * b2)2366 static int backref_comp(struct sa_defrag_extent_backref *b1,
2367 			struct sa_defrag_extent_backref *b2)
2368 {
2369 	if (b1->root_id < b2->root_id)
2370 		return -1;
2371 	else if (b1->root_id > b2->root_id)
2372 		return 1;
2373 
2374 	if (b1->inum < b2->inum)
2375 		return -1;
2376 	else if (b1->inum > b2->inum)
2377 		return 1;
2378 
2379 	if (b1->file_pos < b2->file_pos)
2380 		return -1;
2381 	else if (b1->file_pos > b2->file_pos)
2382 		return 1;
2383 
2384 	/*
2385 	 * [------------------------------] ===> (a range of space)
2386 	 *     |<--->|   |<---->| =============> (fs/file tree A)
2387 	 * |<---------------------------->| ===> (fs/file tree B)
2388 	 *
2389 	 * A range of space can refer to two file extents in one tree while
2390 	 * refer to only one file extent in another tree.
2391 	 *
2392 	 * So we may process a disk offset more than one time(two extents in A)
2393 	 * and locate at the same extent(one extent in B), then insert two same
2394 	 * backrefs(both refer to the extent in B).
2395 	 */
2396 	return 0;
2397 }
2398 
backref_insert(struct rb_root * root,struct sa_defrag_extent_backref * backref)2399 static void backref_insert(struct rb_root *root,
2400 			   struct sa_defrag_extent_backref *backref)
2401 {
2402 	struct rb_node **p = &root->rb_node;
2403 	struct rb_node *parent = NULL;
2404 	struct sa_defrag_extent_backref *entry;
2405 	int ret;
2406 
2407 	while (*p) {
2408 		parent = *p;
2409 		entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2410 
2411 		ret = backref_comp(backref, entry);
2412 		if (ret < 0)
2413 			p = &(*p)->rb_left;
2414 		else
2415 			p = &(*p)->rb_right;
2416 	}
2417 
2418 	rb_link_node(&backref->node, parent, p);
2419 	rb_insert_color(&backref->node, root);
2420 }
2421 
2422 /*
2423  * Note the backref might has changed, and in this case we just return 0.
2424  */
record_one_backref(u64 inum,u64 offset,u64 root_id,void * ctx)2425 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2426 				       void *ctx)
2427 {
2428 	struct btrfs_file_extent_item *extent;
2429 	struct old_sa_defrag_extent *old = ctx;
2430 	struct new_sa_defrag_extent *new = old->new;
2431 	struct btrfs_path *path = new->path;
2432 	struct btrfs_key key;
2433 	struct btrfs_root *root;
2434 	struct sa_defrag_extent_backref *backref;
2435 	struct extent_buffer *leaf;
2436 	struct inode *inode = new->inode;
2437 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2438 	int slot;
2439 	int ret;
2440 	u64 extent_offset;
2441 	u64 num_bytes;
2442 
2443 	if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2444 	    inum == btrfs_ino(BTRFS_I(inode)))
2445 		return 0;
2446 
2447 	key.objectid = root_id;
2448 	key.type = BTRFS_ROOT_ITEM_KEY;
2449 	key.offset = (u64)-1;
2450 
2451 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2452 	if (IS_ERR(root)) {
2453 		if (PTR_ERR(root) == -ENOENT)
2454 			return 0;
2455 		WARN_ON(1);
2456 		btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
2457 			 inum, offset, root_id);
2458 		return PTR_ERR(root);
2459 	}
2460 
2461 	key.objectid = inum;
2462 	key.type = BTRFS_EXTENT_DATA_KEY;
2463 	if (offset > (u64)-1 << 32)
2464 		key.offset = 0;
2465 	else
2466 		key.offset = offset;
2467 
2468 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2469 	if (WARN_ON(ret < 0))
2470 		return ret;
2471 	ret = 0;
2472 
2473 	while (1) {
2474 		cond_resched();
2475 
2476 		leaf = path->nodes[0];
2477 		slot = path->slots[0];
2478 
2479 		if (slot >= btrfs_header_nritems(leaf)) {
2480 			ret = btrfs_next_leaf(root, path);
2481 			if (ret < 0) {
2482 				goto out;
2483 			} else if (ret > 0) {
2484 				ret = 0;
2485 				goto out;
2486 			}
2487 			continue;
2488 		}
2489 
2490 		path->slots[0]++;
2491 
2492 		btrfs_item_key_to_cpu(leaf, &key, slot);
2493 
2494 		if (key.objectid > inum)
2495 			goto out;
2496 
2497 		if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2498 			continue;
2499 
2500 		extent = btrfs_item_ptr(leaf, slot,
2501 					struct btrfs_file_extent_item);
2502 
2503 		if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2504 			continue;
2505 
2506 		/*
2507 		 * 'offset' refers to the exact key.offset,
2508 		 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2509 		 * (key.offset - extent_offset).
2510 		 */
2511 		if (key.offset != offset)
2512 			continue;
2513 
2514 		extent_offset = btrfs_file_extent_offset(leaf, extent);
2515 		num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2516 
2517 		if (extent_offset >= old->extent_offset + old->offset +
2518 		    old->len || extent_offset + num_bytes <=
2519 		    old->extent_offset + old->offset)
2520 			continue;
2521 		break;
2522 	}
2523 
2524 	backref = kmalloc(sizeof(*backref), GFP_NOFS);
2525 	if (!backref) {
2526 		ret = -ENOENT;
2527 		goto out;
2528 	}
2529 
2530 	backref->root_id = root_id;
2531 	backref->inum = inum;
2532 	backref->file_pos = offset;
2533 	backref->num_bytes = num_bytes;
2534 	backref->extent_offset = extent_offset;
2535 	backref->generation = btrfs_file_extent_generation(leaf, extent);
2536 	backref->old = old;
2537 	backref_insert(&new->root, backref);
2538 	old->count++;
2539 out:
2540 	btrfs_release_path(path);
2541 	WARN_ON(ret);
2542 	return ret;
2543 }
2544 
record_extent_backrefs(struct btrfs_path * path,struct new_sa_defrag_extent * new)2545 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2546 				   struct new_sa_defrag_extent *new)
2547 {
2548 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2549 	struct old_sa_defrag_extent *old, *tmp;
2550 	int ret;
2551 
2552 	new->path = path;
2553 
2554 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2555 		ret = iterate_inodes_from_logical(old->bytenr +
2556 						  old->extent_offset, fs_info,
2557 						  path, record_one_backref,
2558 						  old, false);
2559 		if (ret < 0 && ret != -ENOENT)
2560 			return false;
2561 
2562 		/* no backref to be processed for this extent */
2563 		if (!old->count) {
2564 			list_del(&old->list);
2565 			kfree(old);
2566 		}
2567 	}
2568 
2569 	if (list_empty(&new->head))
2570 		return false;
2571 
2572 	return true;
2573 }
2574 
relink_is_mergable(struct extent_buffer * leaf,struct btrfs_file_extent_item * fi,struct new_sa_defrag_extent * new)2575 static int relink_is_mergable(struct extent_buffer *leaf,
2576 			      struct btrfs_file_extent_item *fi,
2577 			      struct new_sa_defrag_extent *new)
2578 {
2579 	if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2580 		return 0;
2581 
2582 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2583 		return 0;
2584 
2585 	if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2586 		return 0;
2587 
2588 	if (btrfs_file_extent_encryption(leaf, fi) ||
2589 	    btrfs_file_extent_other_encoding(leaf, fi))
2590 		return 0;
2591 
2592 	return 1;
2593 }
2594 
2595 /*
2596  * Note the backref might has changed, and in this case we just return 0.
2597  */
relink_extent_backref(struct btrfs_path * path,struct sa_defrag_extent_backref * prev,struct sa_defrag_extent_backref * backref)2598 static noinline int relink_extent_backref(struct btrfs_path *path,
2599 				 struct sa_defrag_extent_backref *prev,
2600 				 struct sa_defrag_extent_backref *backref)
2601 {
2602 	struct btrfs_file_extent_item *extent;
2603 	struct btrfs_file_extent_item *item;
2604 	struct btrfs_ordered_extent *ordered;
2605 	struct btrfs_trans_handle *trans;
2606 	struct btrfs_root *root;
2607 	struct btrfs_key key;
2608 	struct extent_buffer *leaf;
2609 	struct old_sa_defrag_extent *old = backref->old;
2610 	struct new_sa_defrag_extent *new = old->new;
2611 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2612 	struct inode *inode;
2613 	struct extent_state *cached = NULL;
2614 	int ret = 0;
2615 	u64 start;
2616 	u64 len;
2617 	u64 lock_start;
2618 	u64 lock_end;
2619 	bool merge = false;
2620 	int index;
2621 
2622 	if (prev && prev->root_id == backref->root_id &&
2623 	    prev->inum == backref->inum &&
2624 	    prev->file_pos + prev->num_bytes == backref->file_pos)
2625 		merge = true;
2626 
2627 	/* step 1: get root */
2628 	key.objectid = backref->root_id;
2629 	key.type = BTRFS_ROOT_ITEM_KEY;
2630 	key.offset = (u64)-1;
2631 
2632 	index = srcu_read_lock(&fs_info->subvol_srcu);
2633 
2634 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2635 	if (IS_ERR(root)) {
2636 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2637 		if (PTR_ERR(root) == -ENOENT)
2638 			return 0;
2639 		return PTR_ERR(root);
2640 	}
2641 
2642 	if (btrfs_root_readonly(root)) {
2643 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2644 		return 0;
2645 	}
2646 
2647 	/* step 2: get inode */
2648 	key.objectid = backref->inum;
2649 	key.type = BTRFS_INODE_ITEM_KEY;
2650 	key.offset = 0;
2651 
2652 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2653 	if (IS_ERR(inode)) {
2654 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2655 		return 0;
2656 	}
2657 
2658 	srcu_read_unlock(&fs_info->subvol_srcu, index);
2659 
2660 	/* step 3: relink backref */
2661 	lock_start = backref->file_pos;
2662 	lock_end = backref->file_pos + backref->num_bytes - 1;
2663 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2664 			 &cached);
2665 
2666 	ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2667 	if (ordered) {
2668 		btrfs_put_ordered_extent(ordered);
2669 		goto out_unlock;
2670 	}
2671 
2672 	trans = btrfs_join_transaction(root);
2673 	if (IS_ERR(trans)) {
2674 		ret = PTR_ERR(trans);
2675 		goto out_unlock;
2676 	}
2677 
2678 	key.objectid = backref->inum;
2679 	key.type = BTRFS_EXTENT_DATA_KEY;
2680 	key.offset = backref->file_pos;
2681 
2682 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2683 	if (ret < 0) {
2684 		goto out_free_path;
2685 	} else if (ret > 0) {
2686 		ret = 0;
2687 		goto out_free_path;
2688 	}
2689 
2690 	extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2691 				struct btrfs_file_extent_item);
2692 
2693 	if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2694 	    backref->generation)
2695 		goto out_free_path;
2696 
2697 	btrfs_release_path(path);
2698 
2699 	start = backref->file_pos;
2700 	if (backref->extent_offset < old->extent_offset + old->offset)
2701 		start += old->extent_offset + old->offset -
2702 			 backref->extent_offset;
2703 
2704 	len = min(backref->extent_offset + backref->num_bytes,
2705 		  old->extent_offset + old->offset + old->len);
2706 	len -= max(backref->extent_offset, old->extent_offset + old->offset);
2707 
2708 	ret = btrfs_drop_extents(trans, root, inode, start,
2709 				 start + len, 1);
2710 	if (ret)
2711 		goto out_free_path;
2712 again:
2713 	key.objectid = btrfs_ino(BTRFS_I(inode));
2714 	key.type = BTRFS_EXTENT_DATA_KEY;
2715 	key.offset = start;
2716 
2717 	path->leave_spinning = 1;
2718 	if (merge) {
2719 		struct btrfs_file_extent_item *fi;
2720 		u64 extent_len;
2721 		struct btrfs_key found_key;
2722 
2723 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2724 		if (ret < 0)
2725 			goto out_free_path;
2726 
2727 		path->slots[0]--;
2728 		leaf = path->nodes[0];
2729 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2730 
2731 		fi = btrfs_item_ptr(leaf, path->slots[0],
2732 				    struct btrfs_file_extent_item);
2733 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2734 
2735 		if (extent_len + found_key.offset == start &&
2736 		    relink_is_mergable(leaf, fi, new)) {
2737 			btrfs_set_file_extent_num_bytes(leaf, fi,
2738 							extent_len + len);
2739 			btrfs_mark_buffer_dirty(leaf);
2740 			inode_add_bytes(inode, len);
2741 
2742 			ret = 1;
2743 			goto out_free_path;
2744 		} else {
2745 			merge = false;
2746 			btrfs_release_path(path);
2747 			goto again;
2748 		}
2749 	}
2750 
2751 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2752 					sizeof(*extent));
2753 	if (ret) {
2754 		btrfs_abort_transaction(trans, ret);
2755 		goto out_free_path;
2756 	}
2757 
2758 	leaf = path->nodes[0];
2759 	item = btrfs_item_ptr(leaf, path->slots[0],
2760 				struct btrfs_file_extent_item);
2761 	btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2762 	btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2763 	btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2764 	btrfs_set_file_extent_num_bytes(leaf, item, len);
2765 	btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2766 	btrfs_set_file_extent_generation(leaf, item, trans->transid);
2767 	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2768 	btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2769 	btrfs_set_file_extent_encryption(leaf, item, 0);
2770 	btrfs_set_file_extent_other_encoding(leaf, item, 0);
2771 
2772 	btrfs_mark_buffer_dirty(leaf);
2773 	inode_add_bytes(inode, len);
2774 	btrfs_release_path(path);
2775 
2776 	ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2777 			new->disk_len, 0,
2778 			backref->root_id, backref->inum,
2779 			new->file_pos);	/* start - extent_offset */
2780 	if (ret) {
2781 		btrfs_abort_transaction(trans, ret);
2782 		goto out_free_path;
2783 	}
2784 
2785 	ret = 1;
2786 out_free_path:
2787 	btrfs_release_path(path);
2788 	path->leave_spinning = 0;
2789 	btrfs_end_transaction(trans);
2790 out_unlock:
2791 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2792 			     &cached);
2793 	iput(inode);
2794 	return ret;
2795 }
2796 
free_sa_defrag_extent(struct new_sa_defrag_extent * new)2797 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2798 {
2799 	struct old_sa_defrag_extent *old, *tmp;
2800 
2801 	if (!new)
2802 		return;
2803 
2804 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2805 		kfree(old);
2806 	}
2807 	kfree(new);
2808 }
2809 
relink_file_extents(struct new_sa_defrag_extent * new)2810 static void relink_file_extents(struct new_sa_defrag_extent *new)
2811 {
2812 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2813 	struct btrfs_path *path;
2814 	struct sa_defrag_extent_backref *backref;
2815 	struct sa_defrag_extent_backref *prev = NULL;
2816 	struct inode *inode;
2817 	struct rb_node *node;
2818 	int ret;
2819 
2820 	inode = new->inode;
2821 
2822 	path = btrfs_alloc_path();
2823 	if (!path)
2824 		return;
2825 
2826 	if (!record_extent_backrefs(path, new)) {
2827 		btrfs_free_path(path);
2828 		goto out;
2829 	}
2830 	btrfs_release_path(path);
2831 
2832 	while (1) {
2833 		node = rb_first(&new->root);
2834 		if (!node)
2835 			break;
2836 		rb_erase(node, &new->root);
2837 
2838 		backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2839 
2840 		ret = relink_extent_backref(path, prev, backref);
2841 		WARN_ON(ret < 0);
2842 
2843 		kfree(prev);
2844 
2845 		if (ret == 1)
2846 			prev = backref;
2847 		else
2848 			prev = NULL;
2849 		cond_resched();
2850 	}
2851 	kfree(prev);
2852 
2853 	btrfs_free_path(path);
2854 out:
2855 	free_sa_defrag_extent(new);
2856 
2857 	atomic_dec(&fs_info->defrag_running);
2858 	wake_up(&fs_info->transaction_wait);
2859 }
2860 
2861 static struct new_sa_defrag_extent *
record_old_file_extents(struct inode * inode,struct btrfs_ordered_extent * ordered)2862 record_old_file_extents(struct inode *inode,
2863 			struct btrfs_ordered_extent *ordered)
2864 {
2865 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2866 	struct btrfs_root *root = BTRFS_I(inode)->root;
2867 	struct btrfs_path *path;
2868 	struct btrfs_key key;
2869 	struct old_sa_defrag_extent *old;
2870 	struct new_sa_defrag_extent *new;
2871 	int ret;
2872 
2873 	new = kmalloc(sizeof(*new), GFP_NOFS);
2874 	if (!new)
2875 		return NULL;
2876 
2877 	new->inode = inode;
2878 	new->file_pos = ordered->file_offset;
2879 	new->len = ordered->len;
2880 	new->bytenr = ordered->start;
2881 	new->disk_len = ordered->disk_len;
2882 	new->compress_type = ordered->compress_type;
2883 	new->root = RB_ROOT;
2884 	INIT_LIST_HEAD(&new->head);
2885 
2886 	path = btrfs_alloc_path();
2887 	if (!path)
2888 		goto out_kfree;
2889 
2890 	key.objectid = btrfs_ino(BTRFS_I(inode));
2891 	key.type = BTRFS_EXTENT_DATA_KEY;
2892 	key.offset = new->file_pos;
2893 
2894 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2895 	if (ret < 0)
2896 		goto out_free_path;
2897 	if (ret > 0 && path->slots[0] > 0)
2898 		path->slots[0]--;
2899 
2900 	/* find out all the old extents for the file range */
2901 	while (1) {
2902 		struct btrfs_file_extent_item *extent;
2903 		struct extent_buffer *l;
2904 		int slot;
2905 		u64 num_bytes;
2906 		u64 offset;
2907 		u64 end;
2908 		u64 disk_bytenr;
2909 		u64 extent_offset;
2910 
2911 		l = path->nodes[0];
2912 		slot = path->slots[0];
2913 
2914 		if (slot >= btrfs_header_nritems(l)) {
2915 			ret = btrfs_next_leaf(root, path);
2916 			if (ret < 0)
2917 				goto out_free_path;
2918 			else if (ret > 0)
2919 				break;
2920 			continue;
2921 		}
2922 
2923 		btrfs_item_key_to_cpu(l, &key, slot);
2924 
2925 		if (key.objectid != btrfs_ino(BTRFS_I(inode)))
2926 			break;
2927 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2928 			break;
2929 		if (key.offset >= new->file_pos + new->len)
2930 			break;
2931 
2932 		extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2933 
2934 		num_bytes = btrfs_file_extent_num_bytes(l, extent);
2935 		if (key.offset + num_bytes < new->file_pos)
2936 			goto next;
2937 
2938 		disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2939 		if (!disk_bytenr)
2940 			goto next;
2941 
2942 		extent_offset = btrfs_file_extent_offset(l, extent);
2943 
2944 		old = kmalloc(sizeof(*old), GFP_NOFS);
2945 		if (!old)
2946 			goto out_free_path;
2947 
2948 		offset = max(new->file_pos, key.offset);
2949 		end = min(new->file_pos + new->len, key.offset + num_bytes);
2950 
2951 		old->bytenr = disk_bytenr;
2952 		old->extent_offset = extent_offset;
2953 		old->offset = offset - key.offset;
2954 		old->len = end - offset;
2955 		old->new = new;
2956 		old->count = 0;
2957 		list_add_tail(&old->list, &new->head);
2958 next:
2959 		path->slots[0]++;
2960 		cond_resched();
2961 	}
2962 
2963 	btrfs_free_path(path);
2964 	atomic_inc(&fs_info->defrag_running);
2965 
2966 	return new;
2967 
2968 out_free_path:
2969 	btrfs_free_path(path);
2970 out_kfree:
2971 	free_sa_defrag_extent(new);
2972 	return NULL;
2973 }
2974 
btrfs_release_delalloc_bytes(struct btrfs_fs_info * fs_info,u64 start,u64 len)2975 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2976 					 u64 start, u64 len)
2977 {
2978 	struct btrfs_block_group_cache *cache;
2979 
2980 	cache = btrfs_lookup_block_group(fs_info, start);
2981 	ASSERT(cache);
2982 
2983 	spin_lock(&cache->lock);
2984 	cache->delalloc_bytes -= len;
2985 	spin_unlock(&cache->lock);
2986 
2987 	btrfs_put_block_group(cache);
2988 }
2989 
2990 /* as ordered data IO finishes, this gets called so we can finish
2991  * an ordered extent if the range of bytes in the file it covers are
2992  * fully written.
2993  */
btrfs_finish_ordered_io(struct btrfs_ordered_extent * ordered_extent)2994 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2995 {
2996 	struct inode *inode = ordered_extent->inode;
2997 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2998 	struct btrfs_root *root = BTRFS_I(inode)->root;
2999 	struct btrfs_trans_handle *trans = NULL;
3000 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3001 	struct extent_state *cached_state = NULL;
3002 	struct new_sa_defrag_extent *new = NULL;
3003 	int compress_type = 0;
3004 	int ret = 0;
3005 	u64 logical_len = ordered_extent->len;
3006 	bool nolock;
3007 	bool truncated = false;
3008 	bool range_locked = false;
3009 	bool clear_new_delalloc_bytes = false;
3010 	bool clear_reserved_extent = true;
3011 
3012 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3013 	    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3014 	    !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
3015 		clear_new_delalloc_bytes = true;
3016 
3017 	nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
3018 
3019 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3020 		ret = -EIO;
3021 		goto out;
3022 	}
3023 
3024 	btrfs_free_io_failure_record(BTRFS_I(inode),
3025 			ordered_extent->file_offset,
3026 			ordered_extent->file_offset +
3027 			ordered_extent->len - 1);
3028 
3029 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3030 		truncated = true;
3031 		logical_len = ordered_extent->truncated_len;
3032 		/* Truncated the entire extent, don't bother adding */
3033 		if (!logical_len)
3034 			goto out;
3035 	}
3036 
3037 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3038 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
3039 
3040 		/*
3041 		 * For mwrite(mmap + memset to write) case, we still reserve
3042 		 * space for NOCOW range.
3043 		 * As NOCOW won't cause a new delayed ref, just free the space
3044 		 */
3045 		btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3046 				       ordered_extent->len);
3047 		btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3048 		if (nolock)
3049 			trans = btrfs_join_transaction_nolock(root);
3050 		else
3051 			trans = btrfs_join_transaction(root);
3052 		if (IS_ERR(trans)) {
3053 			ret = PTR_ERR(trans);
3054 			trans = NULL;
3055 			goto out;
3056 		}
3057 		trans->block_rsv = &BTRFS_I(inode)->block_rsv;
3058 		ret = btrfs_update_inode_fallback(trans, root, inode);
3059 		if (ret) /* -ENOMEM or corruption */
3060 			btrfs_abort_transaction(trans, ret);
3061 		goto out;
3062 	}
3063 
3064 	range_locked = true;
3065 	lock_extent_bits(io_tree, ordered_extent->file_offset,
3066 			 ordered_extent->file_offset + ordered_extent->len - 1,
3067 			 &cached_state);
3068 
3069 	ret = test_range_bit(io_tree, ordered_extent->file_offset,
3070 			ordered_extent->file_offset + ordered_extent->len - 1,
3071 			EXTENT_DEFRAG, 0, cached_state);
3072 	if (ret) {
3073 		u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
3074 		if (0 && last_snapshot >= BTRFS_I(inode)->generation)
3075 			/* the inode is shared */
3076 			new = record_old_file_extents(inode, ordered_extent);
3077 
3078 		clear_extent_bit(io_tree, ordered_extent->file_offset,
3079 			ordered_extent->file_offset + ordered_extent->len - 1,
3080 			EXTENT_DEFRAG, 0, 0, &cached_state);
3081 	}
3082 
3083 	if (nolock)
3084 		trans = btrfs_join_transaction_nolock(root);
3085 	else
3086 		trans = btrfs_join_transaction(root);
3087 	if (IS_ERR(trans)) {
3088 		ret = PTR_ERR(trans);
3089 		trans = NULL;
3090 		goto out;
3091 	}
3092 
3093 	trans->block_rsv = &BTRFS_I(inode)->block_rsv;
3094 
3095 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3096 		compress_type = ordered_extent->compress_type;
3097 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3098 		BUG_ON(compress_type);
3099 		btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3100 				       ordered_extent->len);
3101 		ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
3102 						ordered_extent->file_offset,
3103 						ordered_extent->file_offset +
3104 						logical_len);
3105 	} else {
3106 		BUG_ON(root == fs_info->tree_root);
3107 		ret = insert_reserved_file_extent(trans, inode,
3108 						ordered_extent->file_offset,
3109 						ordered_extent->start,
3110 						ordered_extent->disk_len,
3111 						logical_len, logical_len,
3112 						compress_type, 0, 0,
3113 						BTRFS_FILE_EXTENT_REG);
3114 		if (!ret) {
3115 			clear_reserved_extent = false;
3116 			btrfs_release_delalloc_bytes(fs_info,
3117 						     ordered_extent->start,
3118 						     ordered_extent->disk_len);
3119 		}
3120 	}
3121 	unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3122 			   ordered_extent->file_offset, ordered_extent->len,
3123 			   trans->transid);
3124 	if (ret < 0) {
3125 		btrfs_abort_transaction(trans, ret);
3126 		goto out;
3127 	}
3128 
3129 	ret = add_pending_csums(trans, inode, &ordered_extent->list);
3130 	if (ret) {
3131 		btrfs_abort_transaction(trans, ret);
3132 		goto out;
3133 	}
3134 
3135 	btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3136 	ret = btrfs_update_inode_fallback(trans, root, inode);
3137 	if (ret) { /* -ENOMEM or corruption */
3138 		btrfs_abort_transaction(trans, ret);
3139 		goto out;
3140 	}
3141 	ret = 0;
3142 out:
3143 	if (range_locked || clear_new_delalloc_bytes) {
3144 		unsigned int clear_bits = 0;
3145 
3146 		if (range_locked)
3147 			clear_bits |= EXTENT_LOCKED;
3148 		if (clear_new_delalloc_bytes)
3149 			clear_bits |= EXTENT_DELALLOC_NEW;
3150 		clear_extent_bit(&BTRFS_I(inode)->io_tree,
3151 				 ordered_extent->file_offset,
3152 				 ordered_extent->file_offset +
3153 				 ordered_extent->len - 1,
3154 				 clear_bits,
3155 				 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
3156 				 0, &cached_state);
3157 	}
3158 
3159 	if (trans)
3160 		btrfs_end_transaction(trans);
3161 
3162 	if (ret || truncated) {
3163 		u64 start, end;
3164 
3165 		/*
3166 		 * If we failed to finish this ordered extent for any reason we
3167 		 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
3168 		 * extent, and mark the inode with the error if it wasn't
3169 		 * already set.  Any error during writeback would have already
3170 		 * set the mapping error, so we need to set it if we're the ones
3171 		 * marking this ordered extent as failed.
3172 		 */
3173 		if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR,
3174 					     &ordered_extent->flags))
3175 			mapping_set_error(ordered_extent->inode->i_mapping, -EIO);
3176 
3177 		if (truncated)
3178 			start = ordered_extent->file_offset + logical_len;
3179 		else
3180 			start = ordered_extent->file_offset;
3181 		end = ordered_extent->file_offset + ordered_extent->len - 1;
3182 		clear_extent_uptodate(io_tree, start, end, NULL);
3183 
3184 		/* Drop the cache for the part of the extent we didn't write. */
3185 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3186 
3187 		/*
3188 		 * If the ordered extent had an IOERR or something else went
3189 		 * wrong we need to return the space for this ordered extent
3190 		 * back to the allocator.  We only free the extent in the
3191 		 * truncated case if we didn't write out the extent at all.
3192 		 *
3193 		 * If we made it past insert_reserved_file_extent before we
3194 		 * errored out then we don't need to do this as the accounting
3195 		 * has already been done.
3196 		 */
3197 		if ((ret || !logical_len) &&
3198 		    clear_reserved_extent &&
3199 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3200 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3201 			btrfs_free_reserved_extent(fs_info,
3202 						   ordered_extent->start,
3203 						   ordered_extent->disk_len, 1);
3204 	}
3205 
3206 
3207 	/*
3208 	 * This needs to be done to make sure anybody waiting knows we are done
3209 	 * updating everything for this ordered extent.
3210 	 */
3211 	btrfs_remove_ordered_extent(inode, ordered_extent);
3212 
3213 	/* for snapshot-aware defrag */
3214 	if (new) {
3215 		if (ret) {
3216 			free_sa_defrag_extent(new);
3217 			atomic_dec(&fs_info->defrag_running);
3218 		} else {
3219 			relink_file_extents(new);
3220 		}
3221 	}
3222 
3223 	/* once for us */
3224 	btrfs_put_ordered_extent(ordered_extent);
3225 	/* once for the tree */
3226 	btrfs_put_ordered_extent(ordered_extent);
3227 
3228 	return ret;
3229 }
3230 
finish_ordered_fn(struct btrfs_work * work)3231 static void finish_ordered_fn(struct btrfs_work *work)
3232 {
3233 	struct btrfs_ordered_extent *ordered_extent;
3234 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3235 	btrfs_finish_ordered_io(ordered_extent);
3236 }
3237 
btrfs_writepage_end_io_hook(struct page * page,u64 start,u64 end,struct extent_state * state,int uptodate)3238 static void btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
3239 				struct extent_state *state, int uptodate)
3240 {
3241 	struct inode *inode = page->mapping->host;
3242 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3243 	struct btrfs_ordered_extent *ordered_extent = NULL;
3244 	struct btrfs_workqueue *wq;
3245 	btrfs_work_func_t func;
3246 
3247 	trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3248 
3249 	ClearPagePrivate2(page);
3250 	if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3251 					    end - start + 1, uptodate))
3252 		return;
3253 
3254 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
3255 		wq = fs_info->endio_freespace_worker;
3256 		func = btrfs_freespace_write_helper;
3257 	} else {
3258 		wq = fs_info->endio_write_workers;
3259 		func = btrfs_endio_write_helper;
3260 	}
3261 
3262 	btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3263 			NULL);
3264 	btrfs_queue_work(wq, &ordered_extent->work);
3265 }
3266 
__readpage_endio_check(struct inode * inode,struct btrfs_io_bio * io_bio,int icsum,struct page * page,int pgoff,u64 start,size_t len)3267 static int __readpage_endio_check(struct inode *inode,
3268 				  struct btrfs_io_bio *io_bio,
3269 				  int icsum, struct page *page,
3270 				  int pgoff, u64 start, size_t len)
3271 {
3272 	char *kaddr;
3273 	u32 csum_expected;
3274 	u32 csum = ~(u32)0;
3275 
3276 	csum_expected = *(((u32 *)io_bio->csum) + icsum);
3277 
3278 	kaddr = kmap_atomic(page);
3279 	csum = btrfs_csum_data(kaddr + pgoff, csum,  len);
3280 	btrfs_csum_final(csum, (u8 *)&csum);
3281 	if (csum != csum_expected)
3282 		goto zeroit;
3283 
3284 	kunmap_atomic(kaddr);
3285 	return 0;
3286 zeroit:
3287 	btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3288 				    io_bio->mirror_num);
3289 	memset(kaddr + pgoff, 1, len);
3290 	flush_dcache_page(page);
3291 	kunmap_atomic(kaddr);
3292 	return -EIO;
3293 }
3294 
3295 /*
3296  * when reads are done, we need to check csums to verify the data is correct
3297  * if there's a match, we allow the bio to finish.  If not, the code in
3298  * extent_io.c will try to find good copies for us.
3299  */
btrfs_readpage_end_io_hook(struct btrfs_io_bio * io_bio,u64 phy_offset,struct page * page,u64 start,u64 end,int mirror)3300 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3301 				      u64 phy_offset, struct page *page,
3302 				      u64 start, u64 end, int mirror)
3303 {
3304 	size_t offset = start - page_offset(page);
3305 	struct inode *inode = page->mapping->host;
3306 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3307 	struct btrfs_root *root = BTRFS_I(inode)->root;
3308 
3309 	if (PageChecked(page)) {
3310 		ClearPageChecked(page);
3311 		return 0;
3312 	}
3313 
3314 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3315 		return 0;
3316 
3317 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3318 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3319 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3320 		return 0;
3321 	}
3322 
3323 	phy_offset >>= inode->i_sb->s_blocksize_bits;
3324 	return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3325 				      start, (size_t)(end - start + 1));
3326 }
3327 
3328 /*
3329  * btrfs_add_delayed_iput - perform a delayed iput on @inode
3330  *
3331  * @inode: The inode we want to perform iput on
3332  *
3333  * This function uses the generic vfs_inode::i_count to track whether we should
3334  * just decrement it (in case it's > 1) or if this is the last iput then link
3335  * the inode to the delayed iput machinery. Delayed iputs are processed at
3336  * transaction commit time/superblock commit/cleaner kthread.
3337  */
btrfs_add_delayed_iput(struct inode * inode)3338 void btrfs_add_delayed_iput(struct inode *inode)
3339 {
3340 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3341 	struct btrfs_inode *binode = BTRFS_I(inode);
3342 
3343 	if (atomic_add_unless(&inode->i_count, -1, 1))
3344 		return;
3345 
3346 	spin_lock(&fs_info->delayed_iput_lock);
3347 	ASSERT(list_empty(&binode->delayed_iput));
3348 	list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3349 	spin_unlock(&fs_info->delayed_iput_lock);
3350 }
3351 
btrfs_run_delayed_iputs(struct btrfs_fs_info * fs_info)3352 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3353 {
3354 
3355 	spin_lock(&fs_info->delayed_iput_lock);
3356 	while (!list_empty(&fs_info->delayed_iputs)) {
3357 		struct btrfs_inode *inode;
3358 
3359 		inode = list_first_entry(&fs_info->delayed_iputs,
3360 				struct btrfs_inode, delayed_iput);
3361 		list_del_init(&inode->delayed_iput);
3362 		spin_unlock(&fs_info->delayed_iput_lock);
3363 		iput(&inode->vfs_inode);
3364 		spin_lock(&fs_info->delayed_iput_lock);
3365 	}
3366 	spin_unlock(&fs_info->delayed_iput_lock);
3367 }
3368 
3369 /*
3370  * This creates an orphan entry for the given inode in case something goes wrong
3371  * in the middle of an unlink.
3372  */
btrfs_orphan_add(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3373 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3374 		     struct btrfs_inode *inode)
3375 {
3376 	int ret;
3377 
3378 	ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3379 	if (ret && ret != -EEXIST) {
3380 		btrfs_abort_transaction(trans, ret);
3381 		return ret;
3382 	}
3383 
3384 	return 0;
3385 }
3386 
3387 /*
3388  * We have done the delete so we can go ahead and remove the orphan item for
3389  * this particular inode.
3390  */
btrfs_orphan_del(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3391 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3392 			    struct btrfs_inode *inode)
3393 {
3394 	return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3395 }
3396 
3397 /*
3398  * this cleans up any orphans that may be left on the list from the last use
3399  * of this root.
3400  */
btrfs_orphan_cleanup(struct btrfs_root * root)3401 int btrfs_orphan_cleanup(struct btrfs_root *root)
3402 {
3403 	struct btrfs_fs_info *fs_info = root->fs_info;
3404 	struct btrfs_path *path;
3405 	struct extent_buffer *leaf;
3406 	struct btrfs_key key, found_key;
3407 	struct btrfs_trans_handle *trans;
3408 	struct inode *inode;
3409 	u64 last_objectid = 0;
3410 	int ret = 0, nr_unlink = 0;
3411 
3412 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3413 		return 0;
3414 
3415 	path = btrfs_alloc_path();
3416 	if (!path) {
3417 		ret = -ENOMEM;
3418 		goto out;
3419 	}
3420 	path->reada = READA_BACK;
3421 
3422 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3423 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3424 	key.offset = (u64)-1;
3425 
3426 	while (1) {
3427 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3428 		if (ret < 0)
3429 			goto out;
3430 
3431 		/*
3432 		 * if ret == 0 means we found what we were searching for, which
3433 		 * is weird, but possible, so only screw with path if we didn't
3434 		 * find the key and see if we have stuff that matches
3435 		 */
3436 		if (ret > 0) {
3437 			ret = 0;
3438 			if (path->slots[0] == 0)
3439 				break;
3440 			path->slots[0]--;
3441 		}
3442 
3443 		/* pull out the item */
3444 		leaf = path->nodes[0];
3445 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3446 
3447 		/* make sure the item matches what we want */
3448 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3449 			break;
3450 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3451 			break;
3452 
3453 		/* release the path since we're done with it */
3454 		btrfs_release_path(path);
3455 
3456 		/*
3457 		 * this is where we are basically btrfs_lookup, without the
3458 		 * crossing root thing.  we store the inode number in the
3459 		 * offset of the orphan item.
3460 		 */
3461 
3462 		if (found_key.offset == last_objectid) {
3463 			btrfs_err(fs_info,
3464 				  "Error removing orphan entry, stopping orphan cleanup");
3465 			ret = -EINVAL;
3466 			goto out;
3467 		}
3468 
3469 		last_objectid = found_key.offset;
3470 
3471 		found_key.objectid = found_key.offset;
3472 		found_key.type = BTRFS_INODE_ITEM_KEY;
3473 		found_key.offset = 0;
3474 		inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
3475 		ret = PTR_ERR_OR_ZERO(inode);
3476 		if (ret && ret != -ENOENT)
3477 			goto out;
3478 
3479 		if (ret == -ENOENT && root == fs_info->tree_root) {
3480 			struct btrfs_root *dead_root;
3481 			struct btrfs_fs_info *fs_info = root->fs_info;
3482 			int is_dead_root = 0;
3483 
3484 			/*
3485 			 * this is an orphan in the tree root. Currently these
3486 			 * could come from 2 sources:
3487 			 *  a) a snapshot deletion in progress
3488 			 *  b) a free space cache inode
3489 			 * We need to distinguish those two, as the snapshot
3490 			 * orphan must not get deleted.
3491 			 * find_dead_roots already ran before us, so if this
3492 			 * is a snapshot deletion, we should find the root
3493 			 * in the dead_roots list
3494 			 */
3495 			spin_lock(&fs_info->trans_lock);
3496 			list_for_each_entry(dead_root, &fs_info->dead_roots,
3497 					    root_list) {
3498 				if (dead_root->root_key.objectid ==
3499 				    found_key.objectid) {
3500 					is_dead_root = 1;
3501 					break;
3502 				}
3503 			}
3504 			spin_unlock(&fs_info->trans_lock);
3505 			if (is_dead_root) {
3506 				/* prevent this orphan from being found again */
3507 				key.offset = found_key.objectid - 1;
3508 				continue;
3509 			}
3510 
3511 		}
3512 
3513 		/*
3514 		 * If we have an inode with links, there are a couple of
3515 		 * possibilities. Old kernels (before v3.12) used to create an
3516 		 * orphan item for truncate indicating that there were possibly
3517 		 * extent items past i_size that needed to be deleted. In v3.12,
3518 		 * truncate was changed to update i_size in sync with the extent
3519 		 * items, but the (useless) orphan item was still created. Since
3520 		 * v4.18, we don't create the orphan item for truncate at all.
3521 		 *
3522 		 * So, this item could mean that we need to do a truncate, but
3523 		 * only if this filesystem was last used on a pre-v3.12 kernel
3524 		 * and was not cleanly unmounted. The odds of that are quite
3525 		 * slim, and it's a pain to do the truncate now, so just delete
3526 		 * the orphan item.
3527 		 *
3528 		 * It's also possible that this orphan item was supposed to be
3529 		 * deleted but wasn't. The inode number may have been reused,
3530 		 * but either way, we can delete the orphan item.
3531 		 */
3532 		if (ret == -ENOENT || inode->i_nlink) {
3533 			if (!ret)
3534 				iput(inode);
3535 			trans = btrfs_start_transaction(root, 1);
3536 			if (IS_ERR(trans)) {
3537 				ret = PTR_ERR(trans);
3538 				goto out;
3539 			}
3540 			btrfs_debug(fs_info, "auto deleting %Lu",
3541 				    found_key.objectid);
3542 			ret = btrfs_del_orphan_item(trans, root,
3543 						    found_key.objectid);
3544 			btrfs_end_transaction(trans);
3545 			if (ret)
3546 				goto out;
3547 			continue;
3548 		}
3549 
3550 		nr_unlink++;
3551 
3552 		/* this will do delete_inode and everything for us */
3553 		iput(inode);
3554 		if (ret)
3555 			goto out;
3556 	}
3557 	/* release the path since we're done with it */
3558 	btrfs_release_path(path);
3559 
3560 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3561 
3562 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3563 		trans = btrfs_join_transaction(root);
3564 		if (!IS_ERR(trans))
3565 			btrfs_end_transaction(trans);
3566 	}
3567 
3568 	if (nr_unlink)
3569 		btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3570 
3571 out:
3572 	if (ret)
3573 		btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3574 	btrfs_free_path(path);
3575 	return ret;
3576 }
3577 
3578 /*
3579  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3580  * don't find any xattrs, we know there can't be any acls.
3581  *
3582  * slot is the slot the inode is in, objectid is the objectid of the inode
3583  */
acls_after_inode_item(struct extent_buffer * leaf,int slot,u64 objectid,int * first_xattr_slot)3584 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3585 					  int slot, u64 objectid,
3586 					  int *first_xattr_slot)
3587 {
3588 	u32 nritems = btrfs_header_nritems(leaf);
3589 	struct btrfs_key found_key;
3590 	static u64 xattr_access = 0;
3591 	static u64 xattr_default = 0;
3592 	int scanned = 0;
3593 
3594 	if (!xattr_access) {
3595 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3596 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3597 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3598 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3599 	}
3600 
3601 	slot++;
3602 	*first_xattr_slot = -1;
3603 	while (slot < nritems) {
3604 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3605 
3606 		/* we found a different objectid, there must not be acls */
3607 		if (found_key.objectid != objectid)
3608 			return 0;
3609 
3610 		/* we found an xattr, assume we've got an acl */
3611 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3612 			if (*first_xattr_slot == -1)
3613 				*first_xattr_slot = slot;
3614 			if (found_key.offset == xattr_access ||
3615 			    found_key.offset == xattr_default)
3616 				return 1;
3617 		}
3618 
3619 		/*
3620 		 * we found a key greater than an xattr key, there can't
3621 		 * be any acls later on
3622 		 */
3623 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3624 			return 0;
3625 
3626 		slot++;
3627 		scanned++;
3628 
3629 		/*
3630 		 * it goes inode, inode backrefs, xattrs, extents,
3631 		 * so if there are a ton of hard links to an inode there can
3632 		 * be a lot of backrefs.  Don't waste time searching too hard,
3633 		 * this is just an optimization
3634 		 */
3635 		if (scanned >= 8)
3636 			break;
3637 	}
3638 	/* we hit the end of the leaf before we found an xattr or
3639 	 * something larger than an xattr.  We have to assume the inode
3640 	 * has acls
3641 	 */
3642 	if (*first_xattr_slot == -1)
3643 		*first_xattr_slot = slot;
3644 	return 1;
3645 }
3646 
3647 /*
3648  * read an inode from the btree into the in-memory inode
3649  */
btrfs_read_locked_inode(struct inode * inode,struct btrfs_path * in_path)3650 static int btrfs_read_locked_inode(struct inode *inode,
3651 				   struct btrfs_path *in_path)
3652 {
3653 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3654 	struct btrfs_path *path = in_path;
3655 	struct extent_buffer *leaf;
3656 	struct btrfs_inode_item *inode_item;
3657 	struct btrfs_root *root = BTRFS_I(inode)->root;
3658 	struct btrfs_key location;
3659 	unsigned long ptr;
3660 	int maybe_acls;
3661 	u32 rdev;
3662 	int ret;
3663 	bool filled = false;
3664 	int first_xattr_slot;
3665 
3666 	ret = btrfs_fill_inode(inode, &rdev);
3667 	if (!ret)
3668 		filled = true;
3669 
3670 	if (!path) {
3671 		path = btrfs_alloc_path();
3672 		if (!path)
3673 			return -ENOMEM;
3674 	}
3675 
3676 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3677 
3678 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3679 	if (ret) {
3680 		if (path != in_path)
3681 			btrfs_free_path(path);
3682 		return ret;
3683 	}
3684 
3685 	leaf = path->nodes[0];
3686 
3687 	if (filled)
3688 		goto cache_index;
3689 
3690 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3691 				    struct btrfs_inode_item);
3692 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3693 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3694 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3695 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3696 	btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3697 
3698 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3699 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3700 
3701 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3702 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3703 
3704 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3705 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3706 
3707 	BTRFS_I(inode)->i_otime.tv_sec =
3708 		btrfs_timespec_sec(leaf, &inode_item->otime);
3709 	BTRFS_I(inode)->i_otime.tv_nsec =
3710 		btrfs_timespec_nsec(leaf, &inode_item->otime);
3711 
3712 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3713 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3714 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3715 
3716 	inode_set_iversion_queried(inode,
3717 				   btrfs_inode_sequence(leaf, inode_item));
3718 	inode->i_generation = BTRFS_I(inode)->generation;
3719 	inode->i_rdev = 0;
3720 	rdev = btrfs_inode_rdev(leaf, inode_item);
3721 
3722 	BTRFS_I(inode)->index_cnt = (u64)-1;
3723 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3724 
3725 cache_index:
3726 	/*
3727 	 * If we were modified in the current generation and evicted from memory
3728 	 * and then re-read we need to do a full sync since we don't have any
3729 	 * idea about which extents were modified before we were evicted from
3730 	 * cache.
3731 	 *
3732 	 * This is required for both inode re-read from disk and delayed inode
3733 	 * in delayed_nodes_tree.
3734 	 */
3735 	if (BTRFS_I(inode)->last_trans == fs_info->generation)
3736 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3737 			&BTRFS_I(inode)->runtime_flags);
3738 
3739 	/*
3740 	 * We don't persist the id of the transaction where an unlink operation
3741 	 * against the inode was last made. So here we assume the inode might
3742 	 * have been evicted, and therefore the exact value of last_unlink_trans
3743 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3744 	 * between the inode and its parent if the inode is fsync'ed and the log
3745 	 * replayed. For example, in the scenario:
3746 	 *
3747 	 * touch mydir/foo
3748 	 * ln mydir/foo mydir/bar
3749 	 * sync
3750 	 * unlink mydir/bar
3751 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3752 	 * xfs_io -c fsync mydir/foo
3753 	 * <power failure>
3754 	 * mount fs, triggers fsync log replay
3755 	 *
3756 	 * We must make sure that when we fsync our inode foo we also log its
3757 	 * parent inode, otherwise after log replay the parent still has the
3758 	 * dentry with the "bar" name but our inode foo has a link count of 1
3759 	 * and doesn't have an inode ref with the name "bar" anymore.
3760 	 *
3761 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3762 	 * but it guarantees correctness at the expense of occasional full
3763 	 * transaction commits on fsync if our inode is a directory, or if our
3764 	 * inode is not a directory, logging its parent unnecessarily.
3765 	 */
3766 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3767 	/*
3768 	 * Similar reasoning for last_link_trans, needs to be set otherwise
3769 	 * for a case like the following:
3770 	 *
3771 	 * mkdir A
3772 	 * touch foo
3773 	 * ln foo A/bar
3774 	 * echo 2 > /proc/sys/vm/drop_caches
3775 	 * fsync foo
3776 	 * <power failure>
3777 	 *
3778 	 * Would result in link bar and directory A not existing after the power
3779 	 * failure.
3780 	 */
3781 	BTRFS_I(inode)->last_link_trans = BTRFS_I(inode)->last_trans;
3782 
3783 	path->slots[0]++;
3784 	if (inode->i_nlink != 1 ||
3785 	    path->slots[0] >= btrfs_header_nritems(leaf))
3786 		goto cache_acl;
3787 
3788 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3789 	if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3790 		goto cache_acl;
3791 
3792 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3793 	if (location.type == BTRFS_INODE_REF_KEY) {
3794 		struct btrfs_inode_ref *ref;
3795 
3796 		ref = (struct btrfs_inode_ref *)ptr;
3797 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3798 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3799 		struct btrfs_inode_extref *extref;
3800 
3801 		extref = (struct btrfs_inode_extref *)ptr;
3802 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3803 								     extref);
3804 	}
3805 cache_acl:
3806 	/*
3807 	 * try to precache a NULL acl entry for files that don't have
3808 	 * any xattrs or acls
3809 	 */
3810 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3811 			btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3812 	if (first_xattr_slot != -1) {
3813 		path->slots[0] = first_xattr_slot;
3814 		ret = btrfs_load_inode_props(inode, path);
3815 		if (ret)
3816 			btrfs_err(fs_info,
3817 				  "error loading props for ino %llu (root %llu): %d",
3818 				  btrfs_ino(BTRFS_I(inode)),
3819 				  root->root_key.objectid, ret);
3820 	}
3821 	if (path != in_path)
3822 		btrfs_free_path(path);
3823 
3824 	if (!maybe_acls)
3825 		cache_no_acl(inode);
3826 
3827 	switch (inode->i_mode & S_IFMT) {
3828 	case S_IFREG:
3829 		inode->i_mapping->a_ops = &btrfs_aops;
3830 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3831 		inode->i_fop = &btrfs_file_operations;
3832 		inode->i_op = &btrfs_file_inode_operations;
3833 		break;
3834 	case S_IFDIR:
3835 		inode->i_fop = &btrfs_dir_file_operations;
3836 		inode->i_op = &btrfs_dir_inode_operations;
3837 		break;
3838 	case S_IFLNK:
3839 		inode->i_op = &btrfs_symlink_inode_operations;
3840 		inode_nohighmem(inode);
3841 		inode->i_mapping->a_ops = &btrfs_symlink_aops;
3842 		break;
3843 	default:
3844 		inode->i_op = &btrfs_special_inode_operations;
3845 		init_special_inode(inode, inode->i_mode, rdev);
3846 		break;
3847 	}
3848 
3849 	btrfs_sync_inode_flags_to_i_flags(inode);
3850 	return 0;
3851 }
3852 
3853 /*
3854  * given a leaf and an inode, copy the inode fields into the leaf
3855  */
fill_inode_item(struct btrfs_trans_handle * trans,struct extent_buffer * leaf,struct btrfs_inode_item * item,struct inode * inode)3856 static void fill_inode_item(struct btrfs_trans_handle *trans,
3857 			    struct extent_buffer *leaf,
3858 			    struct btrfs_inode_item *item,
3859 			    struct inode *inode)
3860 {
3861 	struct btrfs_map_token token;
3862 
3863 	btrfs_init_map_token(&token);
3864 
3865 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3866 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3867 	btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3868 				   &token);
3869 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3870 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3871 
3872 	btrfs_set_token_timespec_sec(leaf, &item->atime,
3873 				     inode->i_atime.tv_sec, &token);
3874 	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3875 				      inode->i_atime.tv_nsec, &token);
3876 
3877 	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3878 				     inode->i_mtime.tv_sec, &token);
3879 	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3880 				      inode->i_mtime.tv_nsec, &token);
3881 
3882 	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3883 				     inode->i_ctime.tv_sec, &token);
3884 	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3885 				      inode->i_ctime.tv_nsec, &token);
3886 
3887 	btrfs_set_token_timespec_sec(leaf, &item->otime,
3888 				     BTRFS_I(inode)->i_otime.tv_sec, &token);
3889 	btrfs_set_token_timespec_nsec(leaf, &item->otime,
3890 				      BTRFS_I(inode)->i_otime.tv_nsec, &token);
3891 
3892 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3893 				     &token);
3894 	btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3895 					 &token);
3896 	btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode),
3897 				       &token);
3898 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3899 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3900 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3901 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3902 }
3903 
3904 /*
3905  * copy everything in the in-memory inode into the btree.
3906  */
btrfs_update_inode_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)3907 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3908 				struct btrfs_root *root, struct inode *inode)
3909 {
3910 	struct btrfs_inode_item *inode_item;
3911 	struct btrfs_path *path;
3912 	struct extent_buffer *leaf;
3913 	int ret;
3914 
3915 	path = btrfs_alloc_path();
3916 	if (!path)
3917 		return -ENOMEM;
3918 
3919 	path->leave_spinning = 1;
3920 	ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3921 				 1);
3922 	if (ret) {
3923 		if (ret > 0)
3924 			ret = -ENOENT;
3925 		goto failed;
3926 	}
3927 
3928 	leaf = path->nodes[0];
3929 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3930 				    struct btrfs_inode_item);
3931 
3932 	fill_inode_item(trans, leaf, inode_item, inode);
3933 	btrfs_mark_buffer_dirty(leaf);
3934 	btrfs_set_inode_last_trans(trans, inode);
3935 	ret = 0;
3936 failed:
3937 	btrfs_free_path(path);
3938 	return ret;
3939 }
3940 
3941 /*
3942  * copy everything in the in-memory inode into the btree.
3943  */
btrfs_update_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)3944 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3945 				struct btrfs_root *root, struct inode *inode)
3946 {
3947 	struct btrfs_fs_info *fs_info = root->fs_info;
3948 	int ret;
3949 
3950 	/*
3951 	 * If the inode is a free space inode, we can deadlock during commit
3952 	 * if we put it into the delayed code.
3953 	 *
3954 	 * The data relocation inode should also be directly updated
3955 	 * without delay
3956 	 */
3957 	if (!btrfs_is_free_space_inode(BTRFS_I(inode))
3958 	    && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3959 	    && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
3960 		btrfs_update_root_times(trans, root);
3961 
3962 		ret = btrfs_delayed_update_inode(trans, root, inode);
3963 		if (!ret)
3964 			btrfs_set_inode_last_trans(trans, inode);
3965 		return ret;
3966 	}
3967 
3968 	return btrfs_update_inode_item(trans, root, inode);
3969 }
3970 
btrfs_update_inode_fallback(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)3971 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3972 					 struct btrfs_root *root,
3973 					 struct inode *inode)
3974 {
3975 	int ret;
3976 
3977 	ret = btrfs_update_inode(trans, root, inode);
3978 	if (ret == -ENOSPC)
3979 		return btrfs_update_inode_item(trans, root, inode);
3980 	return ret;
3981 }
3982 
3983 /*
3984  * unlink helper that gets used here in inode.c and in the tree logging
3985  * recovery code.  It remove a link in a directory with a given name, and
3986  * also drops the back refs in the inode to the directory
3987  */
__btrfs_unlink_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * dir,struct btrfs_inode * inode,const char * name,int name_len)3988 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3989 				struct btrfs_root *root,
3990 				struct btrfs_inode *dir,
3991 				struct btrfs_inode *inode,
3992 				const char *name, int name_len)
3993 {
3994 	struct btrfs_fs_info *fs_info = root->fs_info;
3995 	struct btrfs_path *path;
3996 	int ret = 0;
3997 	struct extent_buffer *leaf;
3998 	struct btrfs_dir_item *di;
3999 	struct btrfs_key key;
4000 	u64 index;
4001 	u64 ino = btrfs_ino(inode);
4002 	u64 dir_ino = btrfs_ino(dir);
4003 
4004 	path = btrfs_alloc_path();
4005 	if (!path) {
4006 		ret = -ENOMEM;
4007 		goto out;
4008 	}
4009 
4010 	path->leave_spinning = 1;
4011 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4012 				    name, name_len, -1);
4013 	if (IS_ERR(di)) {
4014 		ret = PTR_ERR(di);
4015 		goto err;
4016 	}
4017 	if (!di) {
4018 		ret = -ENOENT;
4019 		goto err;
4020 	}
4021 	leaf = path->nodes[0];
4022 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4023 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4024 	if (ret)
4025 		goto err;
4026 	btrfs_release_path(path);
4027 
4028 	/*
4029 	 * If we don't have dir index, we have to get it by looking up
4030 	 * the inode ref, since we get the inode ref, remove it directly,
4031 	 * it is unnecessary to do delayed deletion.
4032 	 *
4033 	 * But if we have dir index, needn't search inode ref to get it.
4034 	 * Since the inode ref is close to the inode item, it is better
4035 	 * that we delay to delete it, and just do this deletion when
4036 	 * we update the inode item.
4037 	 */
4038 	if (inode->dir_index) {
4039 		ret = btrfs_delayed_delete_inode_ref(inode);
4040 		if (!ret) {
4041 			index = inode->dir_index;
4042 			goto skip_backref;
4043 		}
4044 	}
4045 
4046 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4047 				  dir_ino, &index);
4048 	if (ret) {
4049 		btrfs_info(fs_info,
4050 			"failed to delete reference to %.*s, inode %llu parent %llu",
4051 			name_len, name, ino, dir_ino);
4052 		btrfs_abort_transaction(trans, ret);
4053 		goto err;
4054 	}
4055 skip_backref:
4056 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4057 	if (ret) {
4058 		btrfs_abort_transaction(trans, ret);
4059 		goto err;
4060 	}
4061 
4062 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
4063 			dir_ino);
4064 	if (ret != 0 && ret != -ENOENT) {
4065 		btrfs_abort_transaction(trans, ret);
4066 		goto err;
4067 	}
4068 
4069 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
4070 			index);
4071 	if (ret == -ENOENT)
4072 		ret = 0;
4073 	else if (ret)
4074 		btrfs_abort_transaction(trans, ret);
4075 err:
4076 	btrfs_free_path(path);
4077 	if (ret)
4078 		goto out;
4079 
4080 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4081 	inode_inc_iversion(&inode->vfs_inode);
4082 	inode_inc_iversion(&dir->vfs_inode);
4083 	inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
4084 		dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4085 	ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
4086 out:
4087 	return ret;
4088 }
4089 
btrfs_unlink_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * dir,struct btrfs_inode * inode,const char * name,int name_len)4090 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4091 		       struct btrfs_root *root,
4092 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
4093 		       const char *name, int name_len)
4094 {
4095 	int ret;
4096 	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4097 	if (!ret) {
4098 		drop_nlink(&inode->vfs_inode);
4099 		ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
4100 	}
4101 	return ret;
4102 }
4103 
4104 /*
4105  * helper to start transaction for unlink and rmdir.
4106  *
4107  * unlink and rmdir are special in btrfs, they do not always free space, so
4108  * if we cannot make our reservations the normal way try and see if there is
4109  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4110  * allow the unlink to occur.
4111  */
__unlink_start_trans(struct inode * dir)4112 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4113 {
4114 	struct btrfs_root *root = BTRFS_I(dir)->root;
4115 
4116 	/*
4117 	 * 1 for the possible orphan item
4118 	 * 1 for the dir item
4119 	 * 1 for the dir index
4120 	 * 1 for the inode ref
4121 	 * 1 for the inode
4122 	 */
4123 	return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
4124 }
4125 
btrfs_unlink(struct inode * dir,struct dentry * dentry)4126 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4127 {
4128 	struct btrfs_root *root = BTRFS_I(dir)->root;
4129 	struct btrfs_trans_handle *trans;
4130 	struct inode *inode = d_inode(dentry);
4131 	int ret;
4132 
4133 	trans = __unlink_start_trans(dir);
4134 	if (IS_ERR(trans))
4135 		return PTR_ERR(trans);
4136 
4137 	btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4138 			0);
4139 
4140 	ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4141 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4142 			dentry->d_name.len);
4143 	if (ret)
4144 		goto out;
4145 
4146 	if (inode->i_nlink == 0) {
4147 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4148 		if (ret)
4149 			goto out;
4150 	}
4151 
4152 out:
4153 	btrfs_end_transaction(trans);
4154 	btrfs_btree_balance_dirty(root->fs_info);
4155 	return ret;
4156 }
4157 
btrfs_unlink_subvol(struct btrfs_trans_handle * trans,struct inode * dir,struct dentry * dentry)4158 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4159 			       struct inode *dir, struct dentry *dentry)
4160 {
4161 	struct btrfs_root *root = BTRFS_I(dir)->root;
4162 	struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4163 	struct btrfs_path *path;
4164 	struct extent_buffer *leaf;
4165 	struct btrfs_dir_item *di;
4166 	struct btrfs_key key;
4167 	const char *name = dentry->d_name.name;
4168 	int name_len = dentry->d_name.len;
4169 	u64 index;
4170 	int ret;
4171 	u64 objectid;
4172 	u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4173 
4174 	if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4175 		objectid = inode->root->root_key.objectid;
4176 	} else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4177 		objectid = inode->location.objectid;
4178 	} else {
4179 		WARN_ON(1);
4180 		return -EINVAL;
4181 	}
4182 
4183 	path = btrfs_alloc_path();
4184 	if (!path)
4185 		return -ENOMEM;
4186 
4187 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4188 				   name, name_len, -1);
4189 	if (IS_ERR_OR_NULL(di)) {
4190 		if (!di)
4191 			ret = -ENOENT;
4192 		else
4193 			ret = PTR_ERR(di);
4194 		goto out;
4195 	}
4196 
4197 	leaf = path->nodes[0];
4198 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4199 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4200 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4201 	if (ret) {
4202 		btrfs_abort_transaction(trans, ret);
4203 		goto out;
4204 	}
4205 	btrfs_release_path(path);
4206 
4207 	/*
4208 	 * This is a placeholder inode for a subvolume we didn't have a
4209 	 * reference to at the time of the snapshot creation.  In the meantime
4210 	 * we could have renamed the real subvol link into our snapshot, so
4211 	 * depending on btrfs_del_root_ref to return -ENOENT here is incorret.
4212 	 * Instead simply lookup the dir_index_item for this entry so we can
4213 	 * remove it.  Otherwise we know we have a ref to the root and we can
4214 	 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4215 	 */
4216 	if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4217 		di = btrfs_search_dir_index_item(root, path, dir_ino,
4218 						 name, name_len);
4219 		if (IS_ERR_OR_NULL(di)) {
4220 			if (!di)
4221 				ret = -ENOENT;
4222 			else
4223 				ret = PTR_ERR(di);
4224 			btrfs_abort_transaction(trans, ret);
4225 			goto out;
4226 		}
4227 
4228 		leaf = path->nodes[0];
4229 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4230 		index = key.offset;
4231 		btrfs_release_path(path);
4232 	} else {
4233 		ret = btrfs_del_root_ref(trans, objectid,
4234 					 root->root_key.objectid, dir_ino,
4235 					 &index, name, name_len);
4236 		if (ret) {
4237 			btrfs_abort_transaction(trans, ret);
4238 			goto out;
4239 		}
4240 	}
4241 
4242 	ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
4243 	if (ret) {
4244 		btrfs_abort_transaction(trans, ret);
4245 		goto out;
4246 	}
4247 
4248 	btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
4249 	inode_inc_iversion(dir);
4250 	dir->i_mtime = dir->i_ctime = current_time(dir);
4251 	ret = btrfs_update_inode_fallback(trans, root, dir);
4252 	if (ret)
4253 		btrfs_abort_transaction(trans, ret);
4254 out:
4255 	btrfs_free_path(path);
4256 	return ret;
4257 }
4258 
4259 /*
4260  * Helper to check if the subvolume references other subvolumes or if it's
4261  * default.
4262  */
may_destroy_subvol(struct btrfs_root * root)4263 static noinline int may_destroy_subvol(struct btrfs_root *root)
4264 {
4265 	struct btrfs_fs_info *fs_info = root->fs_info;
4266 	struct btrfs_path *path;
4267 	struct btrfs_dir_item *di;
4268 	struct btrfs_key key;
4269 	u64 dir_id;
4270 	int ret;
4271 
4272 	path = btrfs_alloc_path();
4273 	if (!path)
4274 		return -ENOMEM;
4275 
4276 	/* Make sure this root isn't set as the default subvol */
4277 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
4278 	di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4279 				   dir_id, "default", 7, 0);
4280 	if (di && !IS_ERR(di)) {
4281 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4282 		if (key.objectid == root->root_key.objectid) {
4283 			ret = -EPERM;
4284 			btrfs_err(fs_info,
4285 				  "deleting default subvolume %llu is not allowed",
4286 				  key.objectid);
4287 			goto out;
4288 		}
4289 		btrfs_release_path(path);
4290 	}
4291 
4292 	key.objectid = root->root_key.objectid;
4293 	key.type = BTRFS_ROOT_REF_KEY;
4294 	key.offset = (u64)-1;
4295 
4296 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4297 	if (ret < 0)
4298 		goto out;
4299 	BUG_ON(ret == 0);
4300 
4301 	ret = 0;
4302 	if (path->slots[0] > 0) {
4303 		path->slots[0]--;
4304 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4305 		if (key.objectid == root->root_key.objectid &&
4306 		    key.type == BTRFS_ROOT_REF_KEY)
4307 			ret = -ENOTEMPTY;
4308 	}
4309 out:
4310 	btrfs_free_path(path);
4311 	return ret;
4312 }
4313 
4314 /* Delete all dentries for inodes belonging to the root */
btrfs_prune_dentries(struct btrfs_root * root)4315 static void btrfs_prune_dentries(struct btrfs_root *root)
4316 {
4317 	struct btrfs_fs_info *fs_info = root->fs_info;
4318 	struct rb_node *node;
4319 	struct rb_node *prev;
4320 	struct btrfs_inode *entry;
4321 	struct inode *inode;
4322 	u64 objectid = 0;
4323 
4324 	if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
4325 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4326 
4327 	spin_lock(&root->inode_lock);
4328 again:
4329 	node = root->inode_tree.rb_node;
4330 	prev = NULL;
4331 	while (node) {
4332 		prev = node;
4333 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4334 
4335 		if (objectid < btrfs_ino(entry))
4336 			node = node->rb_left;
4337 		else if (objectid > btrfs_ino(entry))
4338 			node = node->rb_right;
4339 		else
4340 			break;
4341 	}
4342 	if (!node) {
4343 		while (prev) {
4344 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
4345 			if (objectid <= btrfs_ino(entry)) {
4346 				node = prev;
4347 				break;
4348 			}
4349 			prev = rb_next(prev);
4350 		}
4351 	}
4352 	while (node) {
4353 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4354 		objectid = btrfs_ino(entry) + 1;
4355 		inode = igrab(&entry->vfs_inode);
4356 		if (inode) {
4357 			spin_unlock(&root->inode_lock);
4358 			if (atomic_read(&inode->i_count) > 1)
4359 				d_prune_aliases(inode);
4360 			/*
4361 			 * btrfs_drop_inode will have it removed from the inode
4362 			 * cache when its usage count hits zero.
4363 			 */
4364 			iput(inode);
4365 			cond_resched();
4366 			spin_lock(&root->inode_lock);
4367 			goto again;
4368 		}
4369 
4370 		if (cond_resched_lock(&root->inode_lock))
4371 			goto again;
4372 
4373 		node = rb_next(node);
4374 	}
4375 	spin_unlock(&root->inode_lock);
4376 }
4377 
btrfs_delete_subvolume(struct inode * dir,struct dentry * dentry)4378 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
4379 {
4380 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4381 	struct btrfs_root *root = BTRFS_I(dir)->root;
4382 	struct inode *inode = d_inode(dentry);
4383 	struct btrfs_root *dest = BTRFS_I(inode)->root;
4384 	struct btrfs_trans_handle *trans;
4385 	struct btrfs_block_rsv block_rsv;
4386 	u64 root_flags;
4387 	int ret;
4388 	int err;
4389 
4390 	/*
4391 	 * Don't allow to delete a subvolume with send in progress. This is
4392 	 * inside the inode lock so the error handling that has to drop the bit
4393 	 * again is not run concurrently.
4394 	 */
4395 	spin_lock(&dest->root_item_lock);
4396 	root_flags = btrfs_root_flags(&dest->root_item);
4397 	if (dest->send_in_progress == 0) {
4398 		btrfs_set_root_flags(&dest->root_item,
4399 				root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4400 		spin_unlock(&dest->root_item_lock);
4401 	} else {
4402 		spin_unlock(&dest->root_item_lock);
4403 		btrfs_warn(fs_info,
4404 			   "attempt to delete subvolume %llu during send",
4405 			   dest->root_key.objectid);
4406 		return -EPERM;
4407 	}
4408 
4409 	down_write(&fs_info->subvol_sem);
4410 
4411 	err = may_destroy_subvol(dest);
4412 	if (err)
4413 		goto out_up_write;
4414 
4415 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4416 	/*
4417 	 * One for dir inode,
4418 	 * two for dir entries,
4419 	 * two for root ref/backref.
4420 	 */
4421 	err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4422 	if (err)
4423 		goto out_up_write;
4424 
4425 	trans = btrfs_start_transaction(root, 0);
4426 	if (IS_ERR(trans)) {
4427 		err = PTR_ERR(trans);
4428 		goto out_release;
4429 	}
4430 	trans->block_rsv = &block_rsv;
4431 	trans->bytes_reserved = block_rsv.size;
4432 
4433 	btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4434 
4435 	ret = btrfs_unlink_subvol(trans, dir, dentry);
4436 	if (ret) {
4437 		err = ret;
4438 		btrfs_abort_transaction(trans, ret);
4439 		goto out_end_trans;
4440 	}
4441 
4442 	btrfs_record_root_in_trans(trans, dest);
4443 
4444 	memset(&dest->root_item.drop_progress, 0,
4445 		sizeof(dest->root_item.drop_progress));
4446 	dest->root_item.drop_level = 0;
4447 	btrfs_set_root_refs(&dest->root_item, 0);
4448 
4449 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4450 		ret = btrfs_insert_orphan_item(trans,
4451 					fs_info->tree_root,
4452 					dest->root_key.objectid);
4453 		if (ret) {
4454 			btrfs_abort_transaction(trans, ret);
4455 			err = ret;
4456 			goto out_end_trans;
4457 		}
4458 	}
4459 
4460 	ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4461 				  BTRFS_UUID_KEY_SUBVOL,
4462 				  dest->root_key.objectid);
4463 	if (ret && ret != -ENOENT) {
4464 		btrfs_abort_transaction(trans, ret);
4465 		err = ret;
4466 		goto out_end_trans;
4467 	}
4468 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4469 		ret = btrfs_uuid_tree_remove(trans,
4470 					  dest->root_item.received_uuid,
4471 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4472 					  dest->root_key.objectid);
4473 		if (ret && ret != -ENOENT) {
4474 			btrfs_abort_transaction(trans, ret);
4475 			err = ret;
4476 			goto out_end_trans;
4477 		}
4478 	}
4479 
4480 	free_anon_bdev(dest->anon_dev);
4481 	dest->anon_dev = 0;
4482 out_end_trans:
4483 	trans->block_rsv = NULL;
4484 	trans->bytes_reserved = 0;
4485 	ret = btrfs_end_transaction(trans);
4486 	if (ret && !err)
4487 		err = ret;
4488 	inode->i_flags |= S_DEAD;
4489 out_release:
4490 	btrfs_subvolume_release_metadata(fs_info, &block_rsv);
4491 out_up_write:
4492 	up_write(&fs_info->subvol_sem);
4493 	if (err) {
4494 		spin_lock(&dest->root_item_lock);
4495 		root_flags = btrfs_root_flags(&dest->root_item);
4496 		btrfs_set_root_flags(&dest->root_item,
4497 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4498 		spin_unlock(&dest->root_item_lock);
4499 	} else {
4500 		d_invalidate(dentry);
4501 		btrfs_prune_dentries(dest);
4502 		ASSERT(dest->send_in_progress == 0);
4503 
4504 		/* the last ref */
4505 		if (dest->ino_cache_inode) {
4506 			iput(dest->ino_cache_inode);
4507 			dest->ino_cache_inode = NULL;
4508 		}
4509 	}
4510 
4511 	return err;
4512 }
4513 
btrfs_rmdir(struct inode * dir,struct dentry * dentry)4514 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4515 {
4516 	struct inode *inode = d_inode(dentry);
4517 	int err = 0;
4518 	struct btrfs_root *root = BTRFS_I(dir)->root;
4519 	struct btrfs_trans_handle *trans;
4520 	u64 last_unlink_trans;
4521 
4522 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4523 		return -ENOTEMPTY;
4524 	if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
4525 		return btrfs_delete_subvolume(dir, dentry);
4526 
4527 	trans = __unlink_start_trans(dir);
4528 	if (IS_ERR(trans))
4529 		return PTR_ERR(trans);
4530 
4531 	if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4532 		err = btrfs_unlink_subvol(trans, dir, dentry);
4533 		goto out;
4534 	}
4535 
4536 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
4537 	if (err)
4538 		goto out;
4539 
4540 	last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4541 
4542 	/* now the directory is empty */
4543 	err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4544 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4545 			dentry->d_name.len);
4546 	if (!err) {
4547 		btrfs_i_size_write(BTRFS_I(inode), 0);
4548 		/*
4549 		 * Propagate the last_unlink_trans value of the deleted dir to
4550 		 * its parent directory. This is to prevent an unrecoverable
4551 		 * log tree in the case we do something like this:
4552 		 * 1) create dir foo
4553 		 * 2) create snapshot under dir foo
4554 		 * 3) delete the snapshot
4555 		 * 4) rmdir foo
4556 		 * 5) mkdir foo
4557 		 * 6) fsync foo or some file inside foo
4558 		 */
4559 		if (last_unlink_trans >= trans->transid)
4560 			BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4561 	}
4562 out:
4563 	btrfs_end_transaction(trans);
4564 	btrfs_btree_balance_dirty(root->fs_info);
4565 
4566 	return err;
4567 }
4568 
truncate_space_check(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytes_deleted)4569 static int truncate_space_check(struct btrfs_trans_handle *trans,
4570 				struct btrfs_root *root,
4571 				u64 bytes_deleted)
4572 {
4573 	struct btrfs_fs_info *fs_info = root->fs_info;
4574 	int ret;
4575 
4576 	/*
4577 	 * This is only used to apply pressure to the enospc system, we don't
4578 	 * intend to use this reservation at all.
4579 	 */
4580 	bytes_deleted = btrfs_csum_bytes_to_leaves(fs_info, bytes_deleted);
4581 	bytes_deleted *= fs_info->nodesize;
4582 	ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
4583 				  bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
4584 	if (!ret) {
4585 		trace_btrfs_space_reservation(fs_info, "transaction",
4586 					      trans->transid,
4587 					      bytes_deleted, 1);
4588 		trans->bytes_reserved += bytes_deleted;
4589 	}
4590 	return ret;
4591 
4592 }
4593 
4594 /*
4595  * Return this if we need to call truncate_block for the last bit of the
4596  * truncate.
4597  */
4598 #define NEED_TRUNCATE_BLOCK 1
4599 
4600 /*
4601  * this can truncate away extent items, csum items and directory items.
4602  * It starts at a high offset and removes keys until it can't find
4603  * any higher than new_size
4604  *
4605  * csum items that cross the new i_size are truncated to the new size
4606  * as well.
4607  *
4608  * min_type is the minimum key type to truncate down to.  If set to 0, this
4609  * will kill all the items on this inode, including the INODE_ITEM_KEY.
4610  */
btrfs_truncate_inode_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,u64 new_size,u32 min_type)4611 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4612 			       struct btrfs_root *root,
4613 			       struct inode *inode,
4614 			       u64 new_size, u32 min_type)
4615 {
4616 	struct btrfs_fs_info *fs_info = root->fs_info;
4617 	struct btrfs_path *path;
4618 	struct extent_buffer *leaf;
4619 	struct btrfs_file_extent_item *fi;
4620 	struct btrfs_key key;
4621 	struct btrfs_key found_key;
4622 	u64 extent_start = 0;
4623 	u64 extent_num_bytes = 0;
4624 	u64 extent_offset = 0;
4625 	u64 item_end = 0;
4626 	u64 last_size = new_size;
4627 	u32 found_type = (u8)-1;
4628 	int found_extent;
4629 	int del_item;
4630 	int pending_del_nr = 0;
4631 	int pending_del_slot = 0;
4632 	int extent_type = -1;
4633 	int ret;
4634 	u64 ino = btrfs_ino(BTRFS_I(inode));
4635 	u64 bytes_deleted = 0;
4636 	bool be_nice = false;
4637 	bool should_throttle = false;
4638 	bool should_end = false;
4639 
4640 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4641 
4642 	/*
4643 	 * for non-free space inodes and ref cows, we want to back off from
4644 	 * time to time
4645 	 */
4646 	if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
4647 	    test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4648 		be_nice = true;
4649 
4650 	path = btrfs_alloc_path();
4651 	if (!path)
4652 		return -ENOMEM;
4653 	path->reada = READA_BACK;
4654 
4655 	/*
4656 	 * We want to drop from the next block forward in case this new size is
4657 	 * not block aligned since we will be keeping the last block of the
4658 	 * extent just the way it is.
4659 	 */
4660 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4661 	    root == fs_info->tree_root)
4662 		btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
4663 					fs_info->sectorsize),
4664 					(u64)-1, 0);
4665 
4666 	/*
4667 	 * This function is also used to drop the items in the log tree before
4668 	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4669 	 * it is used to drop the loged items. So we shouldn't kill the delayed
4670 	 * items.
4671 	 */
4672 	if (min_type == 0 && root == BTRFS_I(inode)->root)
4673 		btrfs_kill_delayed_inode_items(BTRFS_I(inode));
4674 
4675 	key.objectid = ino;
4676 	key.offset = (u64)-1;
4677 	key.type = (u8)-1;
4678 
4679 search_again:
4680 	/*
4681 	 * with a 16K leaf size and 128MB extents, you can actually queue
4682 	 * up a huge file in a single leaf.  Most of the time that
4683 	 * bytes_deleted is > 0, it will be huge by the time we get here
4684 	 */
4685 	if (be_nice && bytes_deleted > SZ_32M &&
4686 	    btrfs_should_end_transaction(trans)) {
4687 		ret = -EAGAIN;
4688 		goto out;
4689 	}
4690 
4691 	path->leave_spinning = 1;
4692 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4693 	if (ret < 0)
4694 		goto out;
4695 
4696 	if (ret > 0) {
4697 		ret = 0;
4698 		/* there are no items in the tree for us to truncate, we're
4699 		 * done
4700 		 */
4701 		if (path->slots[0] == 0)
4702 			goto out;
4703 		path->slots[0]--;
4704 	}
4705 
4706 	while (1) {
4707 		fi = NULL;
4708 		leaf = path->nodes[0];
4709 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4710 		found_type = found_key.type;
4711 
4712 		if (found_key.objectid != ino)
4713 			break;
4714 
4715 		if (found_type < min_type)
4716 			break;
4717 
4718 		item_end = found_key.offset;
4719 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
4720 			fi = btrfs_item_ptr(leaf, path->slots[0],
4721 					    struct btrfs_file_extent_item);
4722 			extent_type = btrfs_file_extent_type(leaf, fi);
4723 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4724 				item_end +=
4725 				    btrfs_file_extent_num_bytes(leaf, fi);
4726 
4727 				trace_btrfs_truncate_show_fi_regular(
4728 					BTRFS_I(inode), leaf, fi,
4729 					found_key.offset);
4730 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4731 				item_end += btrfs_file_extent_ram_bytes(leaf,
4732 									fi);
4733 
4734 				trace_btrfs_truncate_show_fi_inline(
4735 					BTRFS_I(inode), leaf, fi, path->slots[0],
4736 					found_key.offset);
4737 			}
4738 			item_end--;
4739 		}
4740 		if (found_type > min_type) {
4741 			del_item = 1;
4742 		} else {
4743 			if (item_end < new_size)
4744 				break;
4745 			if (found_key.offset >= new_size)
4746 				del_item = 1;
4747 			else
4748 				del_item = 0;
4749 		}
4750 		found_extent = 0;
4751 		/* FIXME, shrink the extent if the ref count is only 1 */
4752 		if (found_type != BTRFS_EXTENT_DATA_KEY)
4753 			goto delete;
4754 
4755 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4756 			u64 num_dec;
4757 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4758 			if (!del_item) {
4759 				u64 orig_num_bytes =
4760 					btrfs_file_extent_num_bytes(leaf, fi);
4761 				extent_num_bytes = ALIGN(new_size -
4762 						found_key.offset,
4763 						fs_info->sectorsize);
4764 				btrfs_set_file_extent_num_bytes(leaf, fi,
4765 							 extent_num_bytes);
4766 				num_dec = (orig_num_bytes -
4767 					   extent_num_bytes);
4768 				if (test_bit(BTRFS_ROOT_REF_COWS,
4769 					     &root->state) &&
4770 				    extent_start != 0)
4771 					inode_sub_bytes(inode, num_dec);
4772 				btrfs_mark_buffer_dirty(leaf);
4773 			} else {
4774 				extent_num_bytes =
4775 					btrfs_file_extent_disk_num_bytes(leaf,
4776 									 fi);
4777 				extent_offset = found_key.offset -
4778 					btrfs_file_extent_offset(leaf, fi);
4779 
4780 				/* FIXME blocksize != 4096 */
4781 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4782 				if (extent_start != 0) {
4783 					found_extent = 1;
4784 					if (test_bit(BTRFS_ROOT_REF_COWS,
4785 						     &root->state))
4786 						inode_sub_bytes(inode, num_dec);
4787 				}
4788 			}
4789 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4790 			/*
4791 			 * we can't truncate inline items that have had
4792 			 * special encodings
4793 			 */
4794 			if (!del_item &&
4795 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
4796 			    btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4797 			    btrfs_file_extent_compression(leaf, fi) == 0) {
4798 				u32 size = (u32)(new_size - found_key.offset);
4799 
4800 				btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4801 				size = btrfs_file_extent_calc_inline_size(size);
4802 				btrfs_truncate_item(root->fs_info, path, size, 1);
4803 			} else if (!del_item) {
4804 				/*
4805 				 * We have to bail so the last_size is set to
4806 				 * just before this extent.
4807 				 */
4808 				ret = NEED_TRUNCATE_BLOCK;
4809 				break;
4810 			}
4811 
4812 			if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4813 				inode_sub_bytes(inode, item_end + 1 - new_size);
4814 		}
4815 delete:
4816 		if (del_item)
4817 			last_size = found_key.offset;
4818 		else
4819 			last_size = new_size;
4820 		if (del_item) {
4821 			if (!pending_del_nr) {
4822 				/* no pending yet, add ourselves */
4823 				pending_del_slot = path->slots[0];
4824 				pending_del_nr = 1;
4825 			} else if (pending_del_nr &&
4826 				   path->slots[0] + 1 == pending_del_slot) {
4827 				/* hop on the pending chunk */
4828 				pending_del_nr++;
4829 				pending_del_slot = path->slots[0];
4830 			} else {
4831 				BUG();
4832 			}
4833 		} else {
4834 			break;
4835 		}
4836 		should_throttle = false;
4837 
4838 		if (found_extent &&
4839 		    (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4840 		     root == fs_info->tree_root)) {
4841 			btrfs_set_path_blocking(path);
4842 			bytes_deleted += extent_num_bytes;
4843 			ret = btrfs_free_extent(trans, root, extent_start,
4844 						extent_num_bytes, 0,
4845 						btrfs_header_owner(leaf),
4846 						ino, extent_offset);
4847 			if (ret) {
4848 				btrfs_abort_transaction(trans, ret);
4849 				break;
4850 			}
4851 			if (btrfs_should_throttle_delayed_refs(trans, fs_info))
4852 				btrfs_async_run_delayed_refs(fs_info,
4853 					trans->delayed_ref_updates * 2,
4854 					trans->transid, 0);
4855 			if (be_nice) {
4856 				if (truncate_space_check(trans, root,
4857 							 extent_num_bytes)) {
4858 					should_end = true;
4859 				}
4860 				if (btrfs_should_throttle_delayed_refs(trans,
4861 								       fs_info))
4862 					should_throttle = true;
4863 			}
4864 		}
4865 
4866 		if (found_type == BTRFS_INODE_ITEM_KEY)
4867 			break;
4868 
4869 		if (path->slots[0] == 0 ||
4870 		    path->slots[0] != pending_del_slot ||
4871 		    should_throttle || should_end) {
4872 			if (pending_del_nr) {
4873 				ret = btrfs_del_items(trans, root, path,
4874 						pending_del_slot,
4875 						pending_del_nr);
4876 				if (ret) {
4877 					btrfs_abort_transaction(trans, ret);
4878 					break;
4879 				}
4880 				pending_del_nr = 0;
4881 			}
4882 			btrfs_release_path(path);
4883 			if (should_throttle) {
4884 				unsigned long updates = trans->delayed_ref_updates;
4885 				if (updates) {
4886 					trans->delayed_ref_updates = 0;
4887 					ret = btrfs_run_delayed_refs(trans,
4888 								   updates * 2);
4889 					if (ret)
4890 						break;
4891 				}
4892 			}
4893 			/*
4894 			 * if we failed to refill our space rsv, bail out
4895 			 * and let the transaction restart
4896 			 */
4897 			if (should_end) {
4898 				ret = -EAGAIN;
4899 				break;
4900 			}
4901 			goto search_again;
4902 		} else {
4903 			path->slots[0]--;
4904 		}
4905 	}
4906 out:
4907 	if (ret >= 0 && pending_del_nr) {
4908 		int err;
4909 
4910 		err = btrfs_del_items(trans, root, path, pending_del_slot,
4911 				      pending_del_nr);
4912 		if (err) {
4913 			btrfs_abort_transaction(trans, err);
4914 			ret = err;
4915 		}
4916 	}
4917 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4918 		ASSERT(last_size >= new_size);
4919 		if (!ret && last_size > new_size)
4920 			last_size = new_size;
4921 		btrfs_ordered_update_i_size(inode, last_size, NULL);
4922 	}
4923 
4924 	btrfs_free_path(path);
4925 
4926 	if (be_nice && bytes_deleted > SZ_32M && (ret >= 0 || ret == -EAGAIN)) {
4927 		unsigned long updates = trans->delayed_ref_updates;
4928 		int err;
4929 
4930 		if (updates) {
4931 			trans->delayed_ref_updates = 0;
4932 			err = btrfs_run_delayed_refs(trans, updates * 2);
4933 			if (err)
4934 				ret = err;
4935 		}
4936 	}
4937 	return ret;
4938 }
4939 
4940 /*
4941  * btrfs_truncate_block - read, zero a chunk and write a block
4942  * @inode - inode that we're zeroing
4943  * @from - the offset to start zeroing
4944  * @len - the length to zero, 0 to zero the entire range respective to the
4945  *	offset
4946  * @front - zero up to the offset instead of from the offset on
4947  *
4948  * This will find the block for the "from" offset and cow the block and zero the
4949  * part we want to zero.  This is used with truncate and hole punching.
4950  */
btrfs_truncate_block(struct inode * inode,loff_t from,loff_t len,int front)4951 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4952 			int front)
4953 {
4954 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4955 	struct address_space *mapping = inode->i_mapping;
4956 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4957 	struct btrfs_ordered_extent *ordered;
4958 	struct extent_state *cached_state = NULL;
4959 	struct extent_changeset *data_reserved = NULL;
4960 	char *kaddr;
4961 	u32 blocksize = fs_info->sectorsize;
4962 	pgoff_t index = from >> PAGE_SHIFT;
4963 	unsigned offset = from & (blocksize - 1);
4964 	struct page *page;
4965 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4966 	int ret = 0;
4967 	u64 block_start;
4968 	u64 block_end;
4969 
4970 	if (IS_ALIGNED(offset, blocksize) &&
4971 	    (!len || IS_ALIGNED(len, blocksize)))
4972 		goto out;
4973 
4974 	block_start = round_down(from, blocksize);
4975 	block_end = block_start + blocksize - 1;
4976 
4977 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
4978 					   block_start, blocksize);
4979 	if (ret)
4980 		goto out;
4981 
4982 again:
4983 	page = find_or_create_page(mapping, index, mask);
4984 	if (!page) {
4985 		btrfs_delalloc_release_space(inode, data_reserved,
4986 					     block_start, blocksize, true);
4987 		btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
4988 		ret = -ENOMEM;
4989 		goto out;
4990 	}
4991 
4992 	if (!PageUptodate(page)) {
4993 		ret = btrfs_readpage(NULL, page);
4994 		lock_page(page);
4995 		if (page->mapping != mapping) {
4996 			unlock_page(page);
4997 			put_page(page);
4998 			goto again;
4999 		}
5000 		if (!PageUptodate(page)) {
5001 			ret = -EIO;
5002 			goto out_unlock;
5003 		}
5004 	}
5005 	wait_on_page_writeback(page);
5006 
5007 	lock_extent_bits(io_tree, block_start, block_end, &cached_state);
5008 	set_page_extent_mapped(page);
5009 
5010 	ordered = btrfs_lookup_ordered_extent(inode, block_start);
5011 	if (ordered) {
5012 		unlock_extent_cached(io_tree, block_start, block_end,
5013 				     &cached_state);
5014 		unlock_page(page);
5015 		put_page(page);
5016 		btrfs_start_ordered_extent(inode, ordered, 1);
5017 		btrfs_put_ordered_extent(ordered);
5018 		goto again;
5019 	}
5020 
5021 	clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
5022 			  EXTENT_DIRTY | EXTENT_DELALLOC |
5023 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
5024 			  0, 0, &cached_state);
5025 
5026 	ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
5027 					&cached_state, 0);
5028 	if (ret) {
5029 		unlock_extent_cached(io_tree, block_start, block_end,
5030 				     &cached_state);
5031 		goto out_unlock;
5032 	}
5033 
5034 	if (offset != blocksize) {
5035 		if (!len)
5036 			len = blocksize - offset;
5037 		kaddr = kmap(page);
5038 		if (front)
5039 			memset(kaddr + (block_start - page_offset(page)),
5040 				0, offset);
5041 		else
5042 			memset(kaddr + (block_start - page_offset(page)) +  offset,
5043 				0, len);
5044 		flush_dcache_page(page);
5045 		kunmap(page);
5046 	}
5047 	ClearPageChecked(page);
5048 	set_page_dirty(page);
5049 	unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
5050 
5051 out_unlock:
5052 	if (ret)
5053 		btrfs_delalloc_release_space(inode, data_reserved, block_start,
5054 					     blocksize, true);
5055 	btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
5056 	unlock_page(page);
5057 	put_page(page);
5058 out:
5059 	extent_changeset_free(data_reserved);
5060 	return ret;
5061 }
5062 
maybe_insert_hole(struct btrfs_root * root,struct inode * inode,u64 offset,u64 len)5063 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
5064 			     u64 offset, u64 len)
5065 {
5066 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5067 	struct btrfs_trans_handle *trans;
5068 	int ret;
5069 
5070 	/*
5071 	 * Still need to make sure the inode looks like it's been updated so
5072 	 * that any holes get logged if we fsync.
5073 	 */
5074 	if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
5075 		BTRFS_I(inode)->last_trans = fs_info->generation;
5076 		BTRFS_I(inode)->last_sub_trans = root->log_transid;
5077 		BTRFS_I(inode)->last_log_commit = root->last_log_commit;
5078 		return 0;
5079 	}
5080 
5081 	/*
5082 	 * 1 - for the one we're dropping
5083 	 * 1 - for the one we're adding
5084 	 * 1 - for updating the inode.
5085 	 */
5086 	trans = btrfs_start_transaction(root, 3);
5087 	if (IS_ERR(trans))
5088 		return PTR_ERR(trans);
5089 
5090 	ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
5091 	if (ret) {
5092 		btrfs_abort_transaction(trans, ret);
5093 		btrfs_end_transaction(trans);
5094 		return ret;
5095 	}
5096 
5097 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
5098 			offset, 0, 0, len, 0, len, 0, 0, 0);
5099 	if (ret)
5100 		btrfs_abort_transaction(trans, ret);
5101 	else
5102 		btrfs_update_inode(trans, root, inode);
5103 	btrfs_end_transaction(trans);
5104 	return ret;
5105 }
5106 
5107 /*
5108  * This function puts in dummy file extents for the area we're creating a hole
5109  * for.  So if we are truncating this file to a larger size we need to insert
5110  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
5111  * the range between oldsize and size
5112  */
btrfs_cont_expand(struct inode * inode,loff_t oldsize,loff_t size)5113 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
5114 {
5115 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5116 	struct btrfs_root *root = BTRFS_I(inode)->root;
5117 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5118 	struct extent_map *em = NULL;
5119 	struct extent_state *cached_state = NULL;
5120 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5121 	u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
5122 	u64 block_end = ALIGN(size, fs_info->sectorsize);
5123 	u64 last_byte;
5124 	u64 cur_offset;
5125 	u64 hole_size;
5126 	int err = 0;
5127 
5128 	/*
5129 	 * If our size started in the middle of a block we need to zero out the
5130 	 * rest of the block before we expand the i_size, otherwise we could
5131 	 * expose stale data.
5132 	 */
5133 	err = btrfs_truncate_block(inode, oldsize, 0, 0);
5134 	if (err)
5135 		return err;
5136 
5137 	if (size <= hole_start)
5138 		return 0;
5139 
5140 	while (1) {
5141 		struct btrfs_ordered_extent *ordered;
5142 
5143 		lock_extent_bits(io_tree, hole_start, block_end - 1,
5144 				 &cached_state);
5145 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start,
5146 						     block_end - hole_start);
5147 		if (!ordered)
5148 			break;
5149 		unlock_extent_cached(io_tree, hole_start, block_end - 1,
5150 				     &cached_state);
5151 		btrfs_start_ordered_extent(inode, ordered, 1);
5152 		btrfs_put_ordered_extent(ordered);
5153 	}
5154 
5155 	cur_offset = hole_start;
5156 	while (1) {
5157 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
5158 				block_end - cur_offset, 0);
5159 		if (IS_ERR(em)) {
5160 			err = PTR_ERR(em);
5161 			em = NULL;
5162 			break;
5163 		}
5164 		last_byte = min(extent_map_end(em), block_end);
5165 		last_byte = ALIGN(last_byte, fs_info->sectorsize);
5166 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5167 			struct extent_map *hole_em;
5168 			hole_size = last_byte - cur_offset;
5169 
5170 			err = maybe_insert_hole(root, inode, cur_offset,
5171 						hole_size);
5172 			if (err)
5173 				break;
5174 			btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5175 						cur_offset + hole_size - 1, 0);
5176 			hole_em = alloc_extent_map();
5177 			if (!hole_em) {
5178 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5179 					&BTRFS_I(inode)->runtime_flags);
5180 				goto next;
5181 			}
5182 			hole_em->start = cur_offset;
5183 			hole_em->len = hole_size;
5184 			hole_em->orig_start = cur_offset;
5185 
5186 			hole_em->block_start = EXTENT_MAP_HOLE;
5187 			hole_em->block_len = 0;
5188 			hole_em->orig_block_len = 0;
5189 			hole_em->ram_bytes = hole_size;
5190 			hole_em->bdev = fs_info->fs_devices->latest_bdev;
5191 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
5192 			hole_em->generation = fs_info->generation;
5193 
5194 			while (1) {
5195 				write_lock(&em_tree->lock);
5196 				err = add_extent_mapping(em_tree, hole_em, 1);
5197 				write_unlock(&em_tree->lock);
5198 				if (err != -EEXIST)
5199 					break;
5200 				btrfs_drop_extent_cache(BTRFS_I(inode),
5201 							cur_offset,
5202 							cur_offset +
5203 							hole_size - 1, 0);
5204 			}
5205 			free_extent_map(hole_em);
5206 		}
5207 next:
5208 		free_extent_map(em);
5209 		em = NULL;
5210 		cur_offset = last_byte;
5211 		if (cur_offset >= block_end)
5212 			break;
5213 	}
5214 	free_extent_map(em);
5215 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
5216 	return err;
5217 }
5218 
btrfs_setsize(struct inode * inode,struct iattr * attr)5219 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5220 {
5221 	struct btrfs_root *root = BTRFS_I(inode)->root;
5222 	struct btrfs_trans_handle *trans;
5223 	loff_t oldsize = i_size_read(inode);
5224 	loff_t newsize = attr->ia_size;
5225 	int mask = attr->ia_valid;
5226 	int ret;
5227 
5228 	/*
5229 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5230 	 * special case where we need to update the times despite not having
5231 	 * these flags set.  For all other operations the VFS set these flags
5232 	 * explicitly if it wants a timestamp update.
5233 	 */
5234 	if (newsize != oldsize) {
5235 		inode_inc_iversion(inode);
5236 		if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5237 			inode->i_ctime = inode->i_mtime =
5238 				current_time(inode);
5239 	}
5240 
5241 	if (newsize > oldsize) {
5242 		/*
5243 		 * Don't do an expanding truncate while snapshotting is ongoing.
5244 		 * This is to ensure the snapshot captures a fully consistent
5245 		 * state of this file - if the snapshot captures this expanding
5246 		 * truncation, it must capture all writes that happened before
5247 		 * this truncation.
5248 		 */
5249 		btrfs_wait_for_snapshot_creation(root);
5250 		ret = btrfs_cont_expand(inode, oldsize, newsize);
5251 		if (ret) {
5252 			btrfs_end_write_no_snapshotting(root);
5253 			return ret;
5254 		}
5255 
5256 		trans = btrfs_start_transaction(root, 1);
5257 		if (IS_ERR(trans)) {
5258 			btrfs_end_write_no_snapshotting(root);
5259 			return PTR_ERR(trans);
5260 		}
5261 
5262 		i_size_write(inode, newsize);
5263 		btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
5264 		pagecache_isize_extended(inode, oldsize, newsize);
5265 		ret = btrfs_update_inode(trans, root, inode);
5266 		btrfs_end_write_no_snapshotting(root);
5267 		btrfs_end_transaction(trans);
5268 	} else {
5269 
5270 		/*
5271 		 * We're truncating a file that used to have good data down to
5272 		 * zero. Make sure it gets into the ordered flush list so that
5273 		 * any new writes get down to disk quickly.
5274 		 */
5275 		if (newsize == 0)
5276 			set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5277 				&BTRFS_I(inode)->runtime_flags);
5278 
5279 		truncate_setsize(inode, newsize);
5280 
5281 		/* Disable nonlocked read DIO to avoid the end less truncate */
5282 		btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
5283 		inode_dio_wait(inode);
5284 		btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
5285 
5286 		ret = btrfs_truncate(inode, newsize == oldsize);
5287 		if (ret && inode->i_nlink) {
5288 			int err;
5289 
5290 			/*
5291 			 * Truncate failed, so fix up the in-memory size. We
5292 			 * adjusted disk_i_size down as we removed extents, so
5293 			 * wait for disk_i_size to be stable and then update the
5294 			 * in-memory size to match.
5295 			 */
5296 			err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5297 			if (err)
5298 				return err;
5299 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5300 		}
5301 	}
5302 
5303 	return ret;
5304 }
5305 
btrfs_setattr(struct dentry * dentry,struct iattr * attr)5306 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5307 {
5308 	struct inode *inode = d_inode(dentry);
5309 	struct btrfs_root *root = BTRFS_I(inode)->root;
5310 	int err;
5311 
5312 	if (btrfs_root_readonly(root))
5313 		return -EROFS;
5314 
5315 	err = setattr_prepare(dentry, attr);
5316 	if (err)
5317 		return err;
5318 
5319 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5320 		err = btrfs_setsize(inode, attr);
5321 		if (err)
5322 			return err;
5323 	}
5324 
5325 	if (attr->ia_valid) {
5326 		setattr_copy(inode, attr);
5327 		inode_inc_iversion(inode);
5328 		err = btrfs_dirty_inode(inode);
5329 
5330 		if (!err && attr->ia_valid & ATTR_MODE)
5331 			err = posix_acl_chmod(inode, inode->i_mode);
5332 	}
5333 
5334 	return err;
5335 }
5336 
5337 /*
5338  * While truncating the inode pages during eviction, we get the VFS calling
5339  * btrfs_invalidatepage() against each page of the inode. This is slow because
5340  * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5341  * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5342  * extent_state structures over and over, wasting lots of time.
5343  *
5344  * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5345  * those expensive operations on a per page basis and do only the ordered io
5346  * finishing, while we release here the extent_map and extent_state structures,
5347  * without the excessive merging and splitting.
5348  */
evict_inode_truncate_pages(struct inode * inode)5349 static void evict_inode_truncate_pages(struct inode *inode)
5350 {
5351 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5352 	struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5353 	struct rb_node *node;
5354 
5355 	ASSERT(inode->i_state & I_FREEING);
5356 	truncate_inode_pages_final(&inode->i_data);
5357 
5358 	write_lock(&map_tree->lock);
5359 	while (!RB_EMPTY_ROOT(&map_tree->map)) {
5360 		struct extent_map *em;
5361 
5362 		node = rb_first(&map_tree->map);
5363 		em = rb_entry(node, struct extent_map, rb_node);
5364 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5365 		clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5366 		remove_extent_mapping(map_tree, em);
5367 		free_extent_map(em);
5368 		if (need_resched()) {
5369 			write_unlock(&map_tree->lock);
5370 			cond_resched();
5371 			write_lock(&map_tree->lock);
5372 		}
5373 	}
5374 	write_unlock(&map_tree->lock);
5375 
5376 	/*
5377 	 * Keep looping until we have no more ranges in the io tree.
5378 	 * We can have ongoing bios started by readpages (called from readahead)
5379 	 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5380 	 * still in progress (unlocked the pages in the bio but did not yet
5381 	 * unlocked the ranges in the io tree). Therefore this means some
5382 	 * ranges can still be locked and eviction started because before
5383 	 * submitting those bios, which are executed by a separate task (work
5384 	 * queue kthread), inode references (inode->i_count) were not taken
5385 	 * (which would be dropped in the end io callback of each bio).
5386 	 * Therefore here we effectively end up waiting for those bios and
5387 	 * anyone else holding locked ranges without having bumped the inode's
5388 	 * reference count - if we don't do it, when they access the inode's
5389 	 * io_tree to unlock a range it may be too late, leading to an
5390 	 * use-after-free issue.
5391 	 */
5392 	spin_lock(&io_tree->lock);
5393 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5394 		struct extent_state *state;
5395 		struct extent_state *cached_state = NULL;
5396 		u64 start;
5397 		u64 end;
5398 		unsigned state_flags;
5399 
5400 		node = rb_first(&io_tree->state);
5401 		state = rb_entry(node, struct extent_state, rb_node);
5402 		start = state->start;
5403 		end = state->end;
5404 		state_flags = state->state;
5405 		spin_unlock(&io_tree->lock);
5406 
5407 		lock_extent_bits(io_tree, start, end, &cached_state);
5408 
5409 		/*
5410 		 * If still has DELALLOC flag, the extent didn't reach disk,
5411 		 * and its reserved space won't be freed by delayed_ref.
5412 		 * So we need to free its reserved space here.
5413 		 * (Refer to comment in btrfs_invalidatepage, case 2)
5414 		 *
5415 		 * Note, end is the bytenr of last byte, so we need + 1 here.
5416 		 */
5417 		if (state_flags & EXTENT_DELALLOC)
5418 			btrfs_qgroup_free_data(inode, NULL, start, end - start + 1);
5419 
5420 		clear_extent_bit(io_tree, start, end,
5421 				 EXTENT_LOCKED | EXTENT_DIRTY |
5422 				 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5423 				 EXTENT_DEFRAG, 1, 1, &cached_state);
5424 
5425 		cond_resched();
5426 		spin_lock(&io_tree->lock);
5427 	}
5428 	spin_unlock(&io_tree->lock);
5429 }
5430 
evict_refill_and_join(struct btrfs_root * root,struct btrfs_block_rsv * rsv,u64 min_size)5431 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5432 							struct btrfs_block_rsv *rsv,
5433 							u64 min_size)
5434 {
5435 	struct btrfs_fs_info *fs_info = root->fs_info;
5436 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5437 	int failures = 0;
5438 
5439 	for (;;) {
5440 		struct btrfs_trans_handle *trans;
5441 		int ret;
5442 
5443 		ret = btrfs_block_rsv_refill(root, rsv, min_size,
5444 					     BTRFS_RESERVE_FLUSH_LIMIT);
5445 
5446 		if (ret && ++failures > 2) {
5447 			btrfs_warn(fs_info,
5448 				   "could not allocate space for a delete; will truncate on mount");
5449 			return ERR_PTR(-ENOSPC);
5450 		}
5451 
5452 		trans = btrfs_join_transaction(root);
5453 		if (IS_ERR(trans) || !ret)
5454 			return trans;
5455 
5456 		/*
5457 		 * Try to steal from the global reserve if there is space for
5458 		 * it.
5459 		 */
5460 		if (!btrfs_check_space_for_delayed_refs(trans, fs_info) &&
5461 		    !btrfs_block_rsv_migrate(global_rsv, rsv, min_size, 0))
5462 			return trans;
5463 
5464 		/* If not, commit and try again. */
5465 		ret = btrfs_commit_transaction(trans);
5466 		if (ret)
5467 			return ERR_PTR(ret);
5468 	}
5469 }
5470 
btrfs_evict_inode(struct inode * inode)5471 void btrfs_evict_inode(struct inode *inode)
5472 {
5473 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5474 	struct btrfs_trans_handle *trans;
5475 	struct btrfs_root *root = BTRFS_I(inode)->root;
5476 	struct btrfs_block_rsv *rsv;
5477 	u64 min_size;
5478 	int ret;
5479 
5480 	trace_btrfs_inode_evict(inode);
5481 
5482 	if (!root) {
5483 		clear_inode(inode);
5484 		return;
5485 	}
5486 
5487 	min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
5488 
5489 	evict_inode_truncate_pages(inode);
5490 
5491 	if (inode->i_nlink &&
5492 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5493 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5494 	     btrfs_is_free_space_inode(BTRFS_I(inode))))
5495 		goto no_delete;
5496 
5497 	if (is_bad_inode(inode))
5498 		goto no_delete;
5499 	/* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
5500 	if (!special_file(inode->i_mode))
5501 		btrfs_wait_ordered_range(inode, 0, (u64)-1);
5502 
5503 	btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5504 
5505 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5506 		goto no_delete;
5507 
5508 	if (inode->i_nlink > 0) {
5509 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5510 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5511 		goto no_delete;
5512 	}
5513 
5514 	ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5515 	if (ret)
5516 		goto no_delete;
5517 
5518 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5519 	if (!rsv)
5520 		goto no_delete;
5521 	rsv->size = min_size;
5522 	rsv->failfast = 1;
5523 
5524 	btrfs_i_size_write(BTRFS_I(inode), 0);
5525 
5526 	while (1) {
5527 		trans = evict_refill_and_join(root, rsv, min_size);
5528 		if (IS_ERR(trans))
5529 			goto free_rsv;
5530 
5531 		trans->block_rsv = rsv;
5532 
5533 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5534 		trans->block_rsv = &fs_info->trans_block_rsv;
5535 		btrfs_end_transaction(trans);
5536 		btrfs_btree_balance_dirty(fs_info);
5537 		if (ret && ret != -ENOSPC && ret != -EAGAIN)
5538 			goto free_rsv;
5539 		else if (!ret)
5540 			break;
5541 	}
5542 
5543 	/*
5544 	 * Errors here aren't a big deal, it just means we leave orphan items in
5545 	 * the tree. They will be cleaned up on the next mount. If the inode
5546 	 * number gets reused, cleanup deletes the orphan item without doing
5547 	 * anything, and unlink reuses the existing orphan item.
5548 	 *
5549 	 * If it turns out that we are dropping too many of these, we might want
5550 	 * to add a mechanism for retrying these after a commit.
5551 	 */
5552 	trans = evict_refill_and_join(root, rsv, min_size);
5553 	if (!IS_ERR(trans)) {
5554 		trans->block_rsv = rsv;
5555 		btrfs_orphan_del(trans, BTRFS_I(inode));
5556 		trans->block_rsv = &fs_info->trans_block_rsv;
5557 		btrfs_end_transaction(trans);
5558 	}
5559 
5560 	if (!(root == fs_info->tree_root ||
5561 	      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5562 		btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
5563 
5564 free_rsv:
5565 	btrfs_free_block_rsv(fs_info, rsv);
5566 no_delete:
5567 	/*
5568 	 * If we didn't successfully delete, the orphan item will still be in
5569 	 * the tree and we'll retry on the next mount. Again, we might also want
5570 	 * to retry these periodically in the future.
5571 	 */
5572 	btrfs_remove_delayed_node(BTRFS_I(inode));
5573 	clear_inode(inode);
5574 }
5575 
5576 /*
5577  * Return the key found in the dir entry in the location pointer, fill @type
5578  * with BTRFS_FT_*, and return 0.
5579  *
5580  * If no dir entries were found, returns -ENOENT.
5581  * If found a corrupted location in dir entry, returns -EUCLEAN.
5582  */
btrfs_inode_by_name(struct inode * dir,struct dentry * dentry,struct btrfs_key * location,u8 * type)5583 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5584 			       struct btrfs_key *location, u8 *type)
5585 {
5586 	const char *name = dentry->d_name.name;
5587 	int namelen = dentry->d_name.len;
5588 	struct btrfs_dir_item *di;
5589 	struct btrfs_path *path;
5590 	struct btrfs_root *root = BTRFS_I(dir)->root;
5591 	int ret = 0;
5592 
5593 	path = btrfs_alloc_path();
5594 	if (!path)
5595 		return -ENOMEM;
5596 
5597 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5598 			name, namelen, 0);
5599 	if (!di) {
5600 		ret = -ENOENT;
5601 		goto out;
5602 	}
5603 	if (IS_ERR(di)) {
5604 		ret = PTR_ERR(di);
5605 		goto out;
5606 	}
5607 
5608 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5609 	if (location->type != BTRFS_INODE_ITEM_KEY &&
5610 	    location->type != BTRFS_ROOT_ITEM_KEY) {
5611 		ret = -EUCLEAN;
5612 		btrfs_warn(root->fs_info,
5613 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5614 			   __func__, name, btrfs_ino(BTRFS_I(dir)),
5615 			   location->objectid, location->type, location->offset);
5616 	}
5617 	if (!ret)
5618 		*type = btrfs_dir_type(path->nodes[0], di);
5619 out:
5620 	btrfs_free_path(path);
5621 	return ret;
5622 }
5623 
5624 /*
5625  * when we hit a tree root in a directory, the btrfs part of the inode
5626  * needs to be changed to reflect the root directory of the tree root.  This
5627  * is kind of like crossing a mount point.
5628  */
fixup_tree_root_location(struct btrfs_fs_info * fs_info,struct inode * dir,struct dentry * dentry,struct btrfs_key * location,struct btrfs_root ** sub_root)5629 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5630 				    struct inode *dir,
5631 				    struct dentry *dentry,
5632 				    struct btrfs_key *location,
5633 				    struct btrfs_root **sub_root)
5634 {
5635 	struct btrfs_path *path;
5636 	struct btrfs_root *new_root;
5637 	struct btrfs_root_ref *ref;
5638 	struct extent_buffer *leaf;
5639 	struct btrfs_key key;
5640 	int ret;
5641 	int err = 0;
5642 
5643 	path = btrfs_alloc_path();
5644 	if (!path) {
5645 		err = -ENOMEM;
5646 		goto out;
5647 	}
5648 
5649 	err = -ENOENT;
5650 	key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5651 	key.type = BTRFS_ROOT_REF_KEY;
5652 	key.offset = location->objectid;
5653 
5654 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5655 	if (ret) {
5656 		if (ret < 0)
5657 			err = ret;
5658 		goto out;
5659 	}
5660 
5661 	leaf = path->nodes[0];
5662 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5663 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5664 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5665 		goto out;
5666 
5667 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5668 				   (unsigned long)(ref + 1),
5669 				   dentry->d_name.len);
5670 	if (ret)
5671 		goto out;
5672 
5673 	btrfs_release_path(path);
5674 
5675 	new_root = btrfs_read_fs_root_no_name(fs_info, location);
5676 	if (IS_ERR(new_root)) {
5677 		err = PTR_ERR(new_root);
5678 		goto out;
5679 	}
5680 
5681 	*sub_root = new_root;
5682 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5683 	location->type = BTRFS_INODE_ITEM_KEY;
5684 	location->offset = 0;
5685 	err = 0;
5686 out:
5687 	btrfs_free_path(path);
5688 	return err;
5689 }
5690 
inode_tree_add(struct inode * inode)5691 static void inode_tree_add(struct inode *inode)
5692 {
5693 	struct btrfs_root *root = BTRFS_I(inode)->root;
5694 	struct btrfs_inode *entry;
5695 	struct rb_node **p;
5696 	struct rb_node *parent;
5697 	struct rb_node *new = &BTRFS_I(inode)->rb_node;
5698 	u64 ino = btrfs_ino(BTRFS_I(inode));
5699 
5700 	if (inode_unhashed(inode))
5701 		return;
5702 	parent = NULL;
5703 	spin_lock(&root->inode_lock);
5704 	p = &root->inode_tree.rb_node;
5705 	while (*p) {
5706 		parent = *p;
5707 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5708 
5709 		if (ino < btrfs_ino(entry))
5710 			p = &parent->rb_left;
5711 		else if (ino > btrfs_ino(entry))
5712 			p = &parent->rb_right;
5713 		else {
5714 			WARN_ON(!(entry->vfs_inode.i_state &
5715 				  (I_WILL_FREE | I_FREEING)));
5716 			rb_replace_node(parent, new, &root->inode_tree);
5717 			RB_CLEAR_NODE(parent);
5718 			spin_unlock(&root->inode_lock);
5719 			return;
5720 		}
5721 	}
5722 	rb_link_node(new, parent, p);
5723 	rb_insert_color(new, &root->inode_tree);
5724 	spin_unlock(&root->inode_lock);
5725 }
5726 
inode_tree_del(struct inode * inode)5727 static void inode_tree_del(struct inode *inode)
5728 {
5729 	struct btrfs_root *root = BTRFS_I(inode)->root;
5730 	int empty = 0;
5731 
5732 	spin_lock(&root->inode_lock);
5733 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5734 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5735 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5736 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5737 	}
5738 	spin_unlock(&root->inode_lock);
5739 
5740 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5741 		spin_lock(&root->inode_lock);
5742 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5743 		spin_unlock(&root->inode_lock);
5744 		if (empty)
5745 			btrfs_add_dead_root(root);
5746 	}
5747 }
5748 
5749 
btrfs_init_locked_inode(struct inode * inode,void * p)5750 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5751 {
5752 	struct btrfs_iget_args *args = p;
5753 	inode->i_ino = args->location->objectid;
5754 	memcpy(&BTRFS_I(inode)->location, args->location,
5755 	       sizeof(*args->location));
5756 	BTRFS_I(inode)->root = args->root;
5757 	return 0;
5758 }
5759 
btrfs_find_actor(struct inode * inode,void * opaque)5760 static int btrfs_find_actor(struct inode *inode, void *opaque)
5761 {
5762 	struct btrfs_iget_args *args = opaque;
5763 	return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5764 		args->root == BTRFS_I(inode)->root;
5765 }
5766 
btrfs_iget_locked(struct super_block * s,struct btrfs_key * location,struct btrfs_root * root)5767 static struct inode *btrfs_iget_locked(struct super_block *s,
5768 				       struct btrfs_key *location,
5769 				       struct btrfs_root *root)
5770 {
5771 	struct inode *inode;
5772 	struct btrfs_iget_args args;
5773 	unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5774 
5775 	args.location = location;
5776 	args.root = root;
5777 
5778 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5779 			     btrfs_init_locked_inode,
5780 			     (void *)&args);
5781 	return inode;
5782 }
5783 
5784 /* Get an inode object given its location and corresponding root.
5785  * Returns in *is_new if the inode was read from disk
5786  */
btrfs_iget_path(struct super_block * s,struct btrfs_key * location,struct btrfs_root * root,int * new,struct btrfs_path * path)5787 struct inode *btrfs_iget_path(struct super_block *s, struct btrfs_key *location,
5788 			      struct btrfs_root *root, int *new,
5789 			      struct btrfs_path *path)
5790 {
5791 	struct inode *inode;
5792 
5793 	inode = btrfs_iget_locked(s, location, root);
5794 	if (!inode)
5795 		return ERR_PTR(-ENOMEM);
5796 
5797 	if (inode->i_state & I_NEW) {
5798 		int ret;
5799 
5800 		ret = btrfs_read_locked_inode(inode, path);
5801 		if (!ret) {
5802 			inode_tree_add(inode);
5803 			unlock_new_inode(inode);
5804 			if (new)
5805 				*new = 1;
5806 		} else {
5807 			iget_failed(inode);
5808 			/*
5809 			 * ret > 0 can come from btrfs_search_slot called by
5810 			 * btrfs_read_locked_inode, this means the inode item
5811 			 * was not found.
5812 			 */
5813 			if (ret > 0)
5814 				ret = -ENOENT;
5815 			inode = ERR_PTR(ret);
5816 		}
5817 	}
5818 
5819 	return inode;
5820 }
5821 
btrfs_iget(struct super_block * s,struct btrfs_key * location,struct btrfs_root * root,int * new)5822 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5823 			 struct btrfs_root *root, int *new)
5824 {
5825 	return btrfs_iget_path(s, location, root, new, NULL);
5826 }
5827 
new_simple_dir(struct super_block * s,struct btrfs_key * key,struct btrfs_root * root)5828 static struct inode *new_simple_dir(struct super_block *s,
5829 				    struct btrfs_key *key,
5830 				    struct btrfs_root *root)
5831 {
5832 	struct inode *inode = new_inode(s);
5833 
5834 	if (!inode)
5835 		return ERR_PTR(-ENOMEM);
5836 
5837 	BTRFS_I(inode)->root = root;
5838 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5839 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5840 
5841 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5842 	inode->i_op = &btrfs_dir_ro_inode_operations;
5843 	inode->i_opflags &= ~IOP_XATTR;
5844 	inode->i_fop = &simple_dir_operations;
5845 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5846 	inode->i_mtime = current_time(inode);
5847 	inode->i_atime = inode->i_mtime;
5848 	inode->i_ctime = inode->i_mtime;
5849 	BTRFS_I(inode)->i_otime = inode->i_mtime;
5850 
5851 	return inode;
5852 }
5853 
btrfs_inode_type(struct inode * inode)5854 static inline u8 btrfs_inode_type(struct inode *inode)
5855 {
5856 	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
5857 }
5858 
btrfs_lookup_dentry(struct inode * dir,struct dentry * dentry)5859 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5860 {
5861 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5862 	struct inode *inode;
5863 	struct btrfs_root *root = BTRFS_I(dir)->root;
5864 	struct btrfs_root *sub_root = root;
5865 	struct btrfs_key location;
5866 	u8 di_type = 0;
5867 	int index;
5868 	int ret = 0;
5869 
5870 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5871 		return ERR_PTR(-ENAMETOOLONG);
5872 
5873 	ret = btrfs_inode_by_name(dir, dentry, &location, &di_type);
5874 	if (ret < 0)
5875 		return ERR_PTR(ret);
5876 
5877 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5878 		inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5879 		if (IS_ERR(inode))
5880 			return inode;
5881 
5882 		/* Do extra check against inode mode with di_type */
5883 		if (btrfs_inode_type(inode) != di_type) {
5884 			btrfs_crit(fs_info,
5885 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5886 				  inode->i_mode, btrfs_inode_type(inode),
5887 				  di_type);
5888 			iput(inode);
5889 			return ERR_PTR(-EUCLEAN);
5890 		}
5891 		return inode;
5892 	}
5893 
5894 	index = srcu_read_lock(&fs_info->subvol_srcu);
5895 	ret = fixup_tree_root_location(fs_info, dir, dentry,
5896 				       &location, &sub_root);
5897 	if (ret < 0) {
5898 		if (ret != -ENOENT)
5899 			inode = ERR_PTR(ret);
5900 		else
5901 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
5902 	} else {
5903 		inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5904 	}
5905 	srcu_read_unlock(&fs_info->subvol_srcu, index);
5906 
5907 	if (!IS_ERR(inode) && root != sub_root) {
5908 		down_read(&fs_info->cleanup_work_sem);
5909 		if (!sb_rdonly(inode->i_sb))
5910 			ret = btrfs_orphan_cleanup(sub_root);
5911 		up_read(&fs_info->cleanup_work_sem);
5912 		if (ret) {
5913 			iput(inode);
5914 			inode = ERR_PTR(ret);
5915 		}
5916 	}
5917 
5918 	return inode;
5919 }
5920 
btrfs_dentry_delete(const struct dentry * dentry)5921 static int btrfs_dentry_delete(const struct dentry *dentry)
5922 {
5923 	struct btrfs_root *root;
5924 	struct inode *inode = d_inode(dentry);
5925 
5926 	if (!inode && !IS_ROOT(dentry))
5927 		inode = d_inode(dentry->d_parent);
5928 
5929 	if (inode) {
5930 		root = BTRFS_I(inode)->root;
5931 		if (btrfs_root_refs(&root->root_item) == 0)
5932 			return 1;
5933 
5934 		if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5935 			return 1;
5936 	}
5937 	return 0;
5938 }
5939 
btrfs_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)5940 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5941 				   unsigned int flags)
5942 {
5943 	struct inode *inode;
5944 
5945 	inode = btrfs_lookup_dentry(dir, dentry);
5946 	if (IS_ERR(inode)) {
5947 		if (PTR_ERR(inode) == -ENOENT)
5948 			inode = NULL;
5949 		else
5950 			return ERR_CAST(inode);
5951 	}
5952 
5953 	return d_splice_alias(inode, dentry);
5954 }
5955 
5956 unsigned char btrfs_filetype_table[] = {
5957 	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5958 };
5959 
5960 /*
5961  * All this infrastructure exists because dir_emit can fault, and we are holding
5962  * the tree lock when doing readdir.  For now just allocate a buffer and copy
5963  * our information into that, and then dir_emit from the buffer.  This is
5964  * similar to what NFS does, only we don't keep the buffer around in pagecache
5965  * because I'm afraid I'll mess that up.  Long term we need to make filldir do
5966  * copy_to_user_inatomic so we don't have to worry about page faulting under the
5967  * tree lock.
5968  */
btrfs_opendir(struct inode * inode,struct file * file)5969 static int btrfs_opendir(struct inode *inode, struct file *file)
5970 {
5971 	struct btrfs_file_private *private;
5972 
5973 	private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5974 	if (!private)
5975 		return -ENOMEM;
5976 	private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5977 	if (!private->filldir_buf) {
5978 		kfree(private);
5979 		return -ENOMEM;
5980 	}
5981 	file->private_data = private;
5982 	return 0;
5983 }
5984 
5985 struct dir_entry {
5986 	u64 ino;
5987 	u64 offset;
5988 	unsigned type;
5989 	int name_len;
5990 };
5991 
btrfs_filldir(void * addr,int entries,struct dir_context * ctx)5992 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5993 {
5994 	while (entries--) {
5995 		struct dir_entry *entry = addr;
5996 		char *name = (char *)(entry + 1);
5997 
5998 		ctx->pos = get_unaligned(&entry->offset);
5999 		if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
6000 					 get_unaligned(&entry->ino),
6001 					 get_unaligned(&entry->type)))
6002 			return 1;
6003 		addr += sizeof(struct dir_entry) +
6004 			get_unaligned(&entry->name_len);
6005 		ctx->pos++;
6006 	}
6007 	return 0;
6008 }
6009 
btrfs_real_readdir(struct file * file,struct dir_context * ctx)6010 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
6011 {
6012 	struct inode *inode = file_inode(file);
6013 	struct btrfs_root *root = BTRFS_I(inode)->root;
6014 	struct btrfs_file_private *private = file->private_data;
6015 	struct btrfs_dir_item *di;
6016 	struct btrfs_key key;
6017 	struct btrfs_key found_key;
6018 	struct btrfs_path *path;
6019 	void *addr;
6020 	struct list_head ins_list;
6021 	struct list_head del_list;
6022 	int ret;
6023 	struct extent_buffer *leaf;
6024 	int slot;
6025 	char *name_ptr;
6026 	int name_len;
6027 	int entries = 0;
6028 	int total_len = 0;
6029 	bool put = false;
6030 	struct btrfs_key location;
6031 
6032 	if (!dir_emit_dots(file, ctx))
6033 		return 0;
6034 
6035 	path = btrfs_alloc_path();
6036 	if (!path)
6037 		return -ENOMEM;
6038 
6039 	addr = private->filldir_buf;
6040 	path->reada = READA_FORWARD;
6041 
6042 	INIT_LIST_HEAD(&ins_list);
6043 	INIT_LIST_HEAD(&del_list);
6044 	put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
6045 
6046 again:
6047 	key.type = BTRFS_DIR_INDEX_KEY;
6048 	key.offset = ctx->pos;
6049 	key.objectid = btrfs_ino(BTRFS_I(inode));
6050 
6051 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6052 	if (ret < 0)
6053 		goto err;
6054 
6055 	while (1) {
6056 		struct dir_entry *entry;
6057 
6058 		leaf = path->nodes[0];
6059 		slot = path->slots[0];
6060 		if (slot >= btrfs_header_nritems(leaf)) {
6061 			ret = btrfs_next_leaf(root, path);
6062 			if (ret < 0)
6063 				goto err;
6064 			else if (ret > 0)
6065 				break;
6066 			continue;
6067 		}
6068 
6069 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6070 
6071 		if (found_key.objectid != key.objectid)
6072 			break;
6073 		if (found_key.type != BTRFS_DIR_INDEX_KEY)
6074 			break;
6075 		if (found_key.offset < ctx->pos)
6076 			goto next;
6077 		if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
6078 			goto next;
6079 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
6080 		name_len = btrfs_dir_name_len(leaf, di);
6081 		if ((total_len + sizeof(struct dir_entry) + name_len) >=
6082 		    PAGE_SIZE) {
6083 			btrfs_release_path(path);
6084 			ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6085 			if (ret)
6086 				goto nopos;
6087 			addr = private->filldir_buf;
6088 			entries = 0;
6089 			total_len = 0;
6090 			goto again;
6091 		}
6092 
6093 		entry = addr;
6094 		put_unaligned(name_len, &entry->name_len);
6095 		name_ptr = (char *)(entry + 1);
6096 		read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
6097 				   name_len);
6098 		put_unaligned(btrfs_filetype_table[btrfs_dir_type(leaf, di)],
6099 				&entry->type);
6100 		btrfs_dir_item_key_to_cpu(leaf, di, &location);
6101 		put_unaligned(location.objectid, &entry->ino);
6102 		put_unaligned(found_key.offset, &entry->offset);
6103 		entries++;
6104 		addr += sizeof(struct dir_entry) + name_len;
6105 		total_len += sizeof(struct dir_entry) + name_len;
6106 next:
6107 		path->slots[0]++;
6108 	}
6109 	btrfs_release_path(path);
6110 
6111 	ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6112 	if (ret)
6113 		goto nopos;
6114 
6115 	ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
6116 	if (ret)
6117 		goto nopos;
6118 
6119 	/*
6120 	 * Stop new entries from being returned after we return the last
6121 	 * entry.
6122 	 *
6123 	 * New directory entries are assigned a strictly increasing
6124 	 * offset.  This means that new entries created during readdir
6125 	 * are *guaranteed* to be seen in the future by that readdir.
6126 	 * This has broken buggy programs which operate on names as
6127 	 * they're returned by readdir.  Until we re-use freed offsets
6128 	 * we have this hack to stop new entries from being returned
6129 	 * under the assumption that they'll never reach this huge
6130 	 * offset.
6131 	 *
6132 	 * This is being careful not to overflow 32bit loff_t unless the
6133 	 * last entry requires it because doing so has broken 32bit apps
6134 	 * in the past.
6135 	 */
6136 	if (ctx->pos >= INT_MAX)
6137 		ctx->pos = LLONG_MAX;
6138 	else
6139 		ctx->pos = INT_MAX;
6140 nopos:
6141 	ret = 0;
6142 err:
6143 	if (put)
6144 		btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
6145 	btrfs_free_path(path);
6146 	return ret;
6147 }
6148 
6149 /*
6150  * This is somewhat expensive, updating the tree every time the
6151  * inode changes.  But, it is most likely to find the inode in cache.
6152  * FIXME, needs more benchmarking...there are no reasons other than performance
6153  * to keep or drop this code.
6154  */
btrfs_dirty_inode(struct inode * inode)6155 static int btrfs_dirty_inode(struct inode *inode)
6156 {
6157 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6158 	struct btrfs_root *root = BTRFS_I(inode)->root;
6159 	struct btrfs_trans_handle *trans;
6160 	int ret;
6161 
6162 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6163 		return 0;
6164 
6165 	trans = btrfs_join_transaction(root);
6166 	if (IS_ERR(trans))
6167 		return PTR_ERR(trans);
6168 
6169 	ret = btrfs_update_inode(trans, root, inode);
6170 	if (ret && ret == -ENOSPC) {
6171 		/* whoops, lets try again with the full transaction */
6172 		btrfs_end_transaction(trans);
6173 		trans = btrfs_start_transaction(root, 1);
6174 		if (IS_ERR(trans))
6175 			return PTR_ERR(trans);
6176 
6177 		ret = btrfs_update_inode(trans, root, inode);
6178 	}
6179 	btrfs_end_transaction(trans);
6180 	if (BTRFS_I(inode)->delayed_node)
6181 		btrfs_balance_delayed_items(fs_info);
6182 
6183 	return ret;
6184 }
6185 
6186 /*
6187  * This is a copy of file_update_time.  We need this so we can return error on
6188  * ENOSPC for updating the inode in the case of file write and mmap writes.
6189  */
btrfs_update_time(struct inode * inode,struct timespec64 * now,int flags)6190 static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
6191 			     int flags)
6192 {
6193 	struct btrfs_root *root = BTRFS_I(inode)->root;
6194 	bool dirty = flags & ~S_VERSION;
6195 
6196 	if (btrfs_root_readonly(root))
6197 		return -EROFS;
6198 
6199 	if (flags & S_VERSION)
6200 		dirty |= inode_maybe_inc_iversion(inode, dirty);
6201 	if (flags & S_CTIME)
6202 		inode->i_ctime = *now;
6203 	if (flags & S_MTIME)
6204 		inode->i_mtime = *now;
6205 	if (flags & S_ATIME)
6206 		inode->i_atime = *now;
6207 	return dirty ? btrfs_dirty_inode(inode) : 0;
6208 }
6209 
6210 /*
6211  * find the highest existing sequence number in a directory
6212  * and then set the in-memory index_cnt variable to reflect
6213  * free sequence numbers
6214  */
btrfs_set_inode_index_count(struct btrfs_inode * inode)6215 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
6216 {
6217 	struct btrfs_root *root = inode->root;
6218 	struct btrfs_key key, found_key;
6219 	struct btrfs_path *path;
6220 	struct extent_buffer *leaf;
6221 	int ret;
6222 
6223 	key.objectid = btrfs_ino(inode);
6224 	key.type = BTRFS_DIR_INDEX_KEY;
6225 	key.offset = (u64)-1;
6226 
6227 	path = btrfs_alloc_path();
6228 	if (!path)
6229 		return -ENOMEM;
6230 
6231 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6232 	if (ret < 0)
6233 		goto out;
6234 	/* FIXME: we should be able to handle this */
6235 	if (ret == 0)
6236 		goto out;
6237 	ret = 0;
6238 
6239 	/*
6240 	 * MAGIC NUMBER EXPLANATION:
6241 	 * since we search a directory based on f_pos we have to start at 2
6242 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6243 	 * else has to start at 2
6244 	 */
6245 	if (path->slots[0] == 0) {
6246 		inode->index_cnt = 2;
6247 		goto out;
6248 	}
6249 
6250 	path->slots[0]--;
6251 
6252 	leaf = path->nodes[0];
6253 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6254 
6255 	if (found_key.objectid != btrfs_ino(inode) ||
6256 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
6257 		inode->index_cnt = 2;
6258 		goto out;
6259 	}
6260 
6261 	inode->index_cnt = found_key.offset + 1;
6262 out:
6263 	btrfs_free_path(path);
6264 	return ret;
6265 }
6266 
6267 /*
6268  * helper to find a free sequence number in a given directory.  This current
6269  * code is very simple, later versions will do smarter things in the btree
6270  */
btrfs_set_inode_index(struct btrfs_inode * dir,u64 * index)6271 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6272 {
6273 	int ret = 0;
6274 
6275 	if (dir->index_cnt == (u64)-1) {
6276 		ret = btrfs_inode_delayed_dir_index_count(dir);
6277 		if (ret) {
6278 			ret = btrfs_set_inode_index_count(dir);
6279 			if (ret)
6280 				return ret;
6281 		}
6282 	}
6283 
6284 	*index = dir->index_cnt;
6285 	dir->index_cnt++;
6286 
6287 	return ret;
6288 }
6289 
btrfs_insert_inode_locked(struct inode * inode)6290 static int btrfs_insert_inode_locked(struct inode *inode)
6291 {
6292 	struct btrfs_iget_args args;
6293 	args.location = &BTRFS_I(inode)->location;
6294 	args.root = BTRFS_I(inode)->root;
6295 
6296 	return insert_inode_locked4(inode,
6297 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6298 		   btrfs_find_actor, &args);
6299 }
6300 
6301 /*
6302  * Inherit flags from the parent inode.
6303  *
6304  * Currently only the compression flags and the cow flags are inherited.
6305  */
btrfs_inherit_iflags(struct inode * inode,struct inode * dir)6306 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6307 {
6308 	unsigned int flags;
6309 
6310 	if (!dir)
6311 		return;
6312 
6313 	flags = BTRFS_I(dir)->flags;
6314 
6315 	if (flags & BTRFS_INODE_NOCOMPRESS) {
6316 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6317 		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6318 	} else if (flags & BTRFS_INODE_COMPRESS) {
6319 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6320 		BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6321 	}
6322 
6323 	if (flags & BTRFS_INODE_NODATACOW) {
6324 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6325 		if (S_ISREG(inode->i_mode))
6326 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6327 	}
6328 
6329 	btrfs_sync_inode_flags_to_i_flags(inode);
6330 }
6331 
btrfs_new_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * dir,const char * name,int name_len,u64 ref_objectid,u64 objectid,umode_t mode,u64 * index)6332 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6333 				     struct btrfs_root *root,
6334 				     struct inode *dir,
6335 				     const char *name, int name_len,
6336 				     u64 ref_objectid, u64 objectid,
6337 				     umode_t mode, u64 *index)
6338 {
6339 	struct btrfs_fs_info *fs_info = root->fs_info;
6340 	struct inode *inode;
6341 	struct btrfs_inode_item *inode_item;
6342 	struct btrfs_key *location;
6343 	struct btrfs_path *path;
6344 	struct btrfs_inode_ref *ref;
6345 	struct btrfs_key key[2];
6346 	u32 sizes[2];
6347 	int nitems = name ? 2 : 1;
6348 	unsigned long ptr;
6349 	int ret;
6350 
6351 	path = btrfs_alloc_path();
6352 	if (!path)
6353 		return ERR_PTR(-ENOMEM);
6354 
6355 	inode = new_inode(fs_info->sb);
6356 	if (!inode) {
6357 		btrfs_free_path(path);
6358 		return ERR_PTR(-ENOMEM);
6359 	}
6360 
6361 	/*
6362 	 * O_TMPFILE, set link count to 0, so that after this point,
6363 	 * we fill in an inode item with the correct link count.
6364 	 */
6365 	if (!name)
6366 		set_nlink(inode, 0);
6367 
6368 	/*
6369 	 * we have to initialize this early, so we can reclaim the inode
6370 	 * number if we fail afterwards in this function.
6371 	 */
6372 	inode->i_ino = objectid;
6373 
6374 	if (dir && name) {
6375 		trace_btrfs_inode_request(dir);
6376 
6377 		ret = btrfs_set_inode_index(BTRFS_I(dir), index);
6378 		if (ret) {
6379 			btrfs_free_path(path);
6380 			iput(inode);
6381 			return ERR_PTR(ret);
6382 		}
6383 	} else if (dir) {
6384 		*index = 0;
6385 	}
6386 	/*
6387 	 * index_cnt is ignored for everything but a dir,
6388 	 * btrfs_set_inode_index_count has an explanation for the magic
6389 	 * number
6390 	 */
6391 	BTRFS_I(inode)->index_cnt = 2;
6392 	BTRFS_I(inode)->dir_index = *index;
6393 	BTRFS_I(inode)->root = root;
6394 	BTRFS_I(inode)->generation = trans->transid;
6395 	inode->i_generation = BTRFS_I(inode)->generation;
6396 
6397 	/*
6398 	 * We could have gotten an inode number from somebody who was fsynced
6399 	 * and then removed in this same transaction, so let's just set full
6400 	 * sync since it will be a full sync anyway and this will blow away the
6401 	 * old info in the log.
6402 	 */
6403 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6404 
6405 	key[0].objectid = objectid;
6406 	key[0].type = BTRFS_INODE_ITEM_KEY;
6407 	key[0].offset = 0;
6408 
6409 	sizes[0] = sizeof(struct btrfs_inode_item);
6410 
6411 	if (name) {
6412 		/*
6413 		 * Start new inodes with an inode_ref. This is slightly more
6414 		 * efficient for small numbers of hard links since they will
6415 		 * be packed into one item. Extended refs will kick in if we
6416 		 * add more hard links than can fit in the ref item.
6417 		 */
6418 		key[1].objectid = objectid;
6419 		key[1].type = BTRFS_INODE_REF_KEY;
6420 		key[1].offset = ref_objectid;
6421 
6422 		sizes[1] = name_len + sizeof(*ref);
6423 	}
6424 
6425 	location = &BTRFS_I(inode)->location;
6426 	location->objectid = objectid;
6427 	location->offset = 0;
6428 	location->type = BTRFS_INODE_ITEM_KEY;
6429 
6430 	ret = btrfs_insert_inode_locked(inode);
6431 	if (ret < 0) {
6432 		iput(inode);
6433 		goto fail;
6434 	}
6435 
6436 	path->leave_spinning = 1;
6437 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6438 	if (ret != 0)
6439 		goto fail_unlock;
6440 
6441 	inode_init_owner(inode, dir, mode);
6442 	inode_set_bytes(inode, 0);
6443 
6444 	inode->i_mtime = current_time(inode);
6445 	inode->i_atime = inode->i_mtime;
6446 	inode->i_ctime = inode->i_mtime;
6447 	BTRFS_I(inode)->i_otime = inode->i_mtime;
6448 
6449 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6450 				  struct btrfs_inode_item);
6451 	memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6452 			     sizeof(*inode_item));
6453 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6454 
6455 	if (name) {
6456 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6457 				     struct btrfs_inode_ref);
6458 		btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6459 		btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6460 		ptr = (unsigned long)(ref + 1);
6461 		write_extent_buffer(path->nodes[0], name, ptr, name_len);
6462 	}
6463 
6464 	btrfs_mark_buffer_dirty(path->nodes[0]);
6465 	btrfs_free_path(path);
6466 
6467 	btrfs_inherit_iflags(inode, dir);
6468 
6469 	if (S_ISREG(mode)) {
6470 		if (btrfs_test_opt(fs_info, NODATASUM))
6471 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6472 		if (btrfs_test_opt(fs_info, NODATACOW))
6473 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6474 				BTRFS_INODE_NODATASUM;
6475 	}
6476 
6477 	inode_tree_add(inode);
6478 
6479 	trace_btrfs_inode_new(inode);
6480 	btrfs_set_inode_last_trans(trans, inode);
6481 
6482 	btrfs_update_root_times(trans, root);
6483 
6484 	ret = btrfs_inode_inherit_props(trans, inode, dir);
6485 	if (ret)
6486 		btrfs_err(fs_info,
6487 			  "error inheriting props for ino %llu (root %llu): %d",
6488 			btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6489 
6490 	return inode;
6491 
6492 fail_unlock:
6493 	discard_new_inode(inode);
6494 fail:
6495 	if (dir && name)
6496 		BTRFS_I(dir)->index_cnt--;
6497 	btrfs_free_path(path);
6498 	return ERR_PTR(ret);
6499 }
6500 
6501 /*
6502  * utility function to add 'inode' into 'parent_inode' with
6503  * a give name and a given sequence number.
6504  * if 'add_backref' is true, also insert a backref from the
6505  * inode to the parent directory.
6506  */
btrfs_add_link(struct btrfs_trans_handle * trans,struct btrfs_inode * parent_inode,struct btrfs_inode * inode,const char * name,int name_len,int add_backref,u64 index)6507 int btrfs_add_link(struct btrfs_trans_handle *trans,
6508 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6509 		   const char *name, int name_len, int add_backref, u64 index)
6510 {
6511 	int ret = 0;
6512 	struct btrfs_key key;
6513 	struct btrfs_root *root = parent_inode->root;
6514 	u64 ino = btrfs_ino(inode);
6515 	u64 parent_ino = btrfs_ino(parent_inode);
6516 
6517 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6518 		memcpy(&key, &inode->root->root_key, sizeof(key));
6519 	} else {
6520 		key.objectid = ino;
6521 		key.type = BTRFS_INODE_ITEM_KEY;
6522 		key.offset = 0;
6523 	}
6524 
6525 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6526 		ret = btrfs_add_root_ref(trans, key.objectid,
6527 					 root->root_key.objectid, parent_ino,
6528 					 index, name, name_len);
6529 	} else if (add_backref) {
6530 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6531 					     parent_ino, index);
6532 	}
6533 
6534 	/* Nothing to clean up yet */
6535 	if (ret)
6536 		return ret;
6537 
6538 	ret = btrfs_insert_dir_item(trans, root, name, name_len,
6539 				    parent_inode, &key,
6540 				    btrfs_inode_type(&inode->vfs_inode), index);
6541 	if (ret == -EEXIST || ret == -EOVERFLOW)
6542 		goto fail_dir_item;
6543 	else if (ret) {
6544 		btrfs_abort_transaction(trans, ret);
6545 		return ret;
6546 	}
6547 
6548 	btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6549 			   name_len * 2);
6550 	inode_inc_iversion(&parent_inode->vfs_inode);
6551 	/*
6552 	 * If we are replaying a log tree, we do not want to update the mtime
6553 	 * and ctime of the parent directory with the current time, since the
6554 	 * log replay procedure is responsible for setting them to their correct
6555 	 * values (the ones it had when the fsync was done).
6556 	 */
6557 	if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6558 		struct timespec64 now = current_time(&parent_inode->vfs_inode);
6559 
6560 		parent_inode->vfs_inode.i_mtime = now;
6561 		parent_inode->vfs_inode.i_ctime = now;
6562 	}
6563 	ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
6564 	if (ret)
6565 		btrfs_abort_transaction(trans, ret);
6566 	return ret;
6567 
6568 fail_dir_item:
6569 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6570 		u64 local_index;
6571 		int err;
6572 		err = btrfs_del_root_ref(trans, key.objectid,
6573 					 root->root_key.objectid, parent_ino,
6574 					 &local_index, name, name_len);
6575 		if (err)
6576 			btrfs_abort_transaction(trans, err);
6577 	} else if (add_backref) {
6578 		u64 local_index;
6579 		int err;
6580 
6581 		err = btrfs_del_inode_ref(trans, root, name, name_len,
6582 					  ino, parent_ino, &local_index);
6583 		if (err)
6584 			btrfs_abort_transaction(trans, err);
6585 	}
6586 
6587 	/* Return the original error code */
6588 	return ret;
6589 }
6590 
btrfs_add_nondir(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct dentry * dentry,struct btrfs_inode * inode,int backref,u64 index)6591 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6592 			    struct btrfs_inode *dir, struct dentry *dentry,
6593 			    struct btrfs_inode *inode, int backref, u64 index)
6594 {
6595 	int err = btrfs_add_link(trans, dir, inode,
6596 				 dentry->d_name.name, dentry->d_name.len,
6597 				 backref, index);
6598 	if (err > 0)
6599 		err = -EEXIST;
6600 	return err;
6601 }
6602 
btrfs_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t rdev)6603 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6604 			umode_t mode, dev_t rdev)
6605 {
6606 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6607 	struct btrfs_trans_handle *trans;
6608 	struct btrfs_root *root = BTRFS_I(dir)->root;
6609 	struct inode *inode = NULL;
6610 	int err;
6611 	u64 objectid;
6612 	u64 index = 0;
6613 
6614 	/*
6615 	 * 2 for inode item and ref
6616 	 * 2 for dir items
6617 	 * 1 for xattr if selinux is on
6618 	 */
6619 	trans = btrfs_start_transaction(root, 5);
6620 	if (IS_ERR(trans))
6621 		return PTR_ERR(trans);
6622 
6623 	err = btrfs_find_free_objectid(root, &objectid);
6624 	if (err)
6625 		goto out_unlock;
6626 
6627 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6628 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6629 			mode, &index);
6630 	if (IS_ERR(inode)) {
6631 		err = PTR_ERR(inode);
6632 		inode = NULL;
6633 		goto out_unlock;
6634 	}
6635 
6636 	/*
6637 	* If the active LSM wants to access the inode during
6638 	* d_instantiate it needs these. Smack checks to see
6639 	* if the filesystem supports xattrs by looking at the
6640 	* ops vector.
6641 	*/
6642 	inode->i_op = &btrfs_special_inode_operations;
6643 	init_special_inode(inode, inode->i_mode, rdev);
6644 
6645 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6646 	if (err)
6647 		goto out_unlock;
6648 
6649 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6650 			0, index);
6651 	if (err)
6652 		goto out_unlock;
6653 
6654 	btrfs_update_inode(trans, root, inode);
6655 	d_instantiate_new(dentry, inode);
6656 
6657 out_unlock:
6658 	btrfs_end_transaction(trans);
6659 	btrfs_btree_balance_dirty(fs_info);
6660 	if (err && inode) {
6661 		inode_dec_link_count(inode);
6662 		discard_new_inode(inode);
6663 	}
6664 	return err;
6665 }
6666 
btrfs_create(struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)6667 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6668 			umode_t mode, bool excl)
6669 {
6670 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6671 	struct btrfs_trans_handle *trans;
6672 	struct btrfs_root *root = BTRFS_I(dir)->root;
6673 	struct inode *inode = NULL;
6674 	int err;
6675 	u64 objectid;
6676 	u64 index = 0;
6677 
6678 	/*
6679 	 * 2 for inode item and ref
6680 	 * 2 for dir items
6681 	 * 1 for xattr if selinux is on
6682 	 */
6683 	trans = btrfs_start_transaction(root, 5);
6684 	if (IS_ERR(trans))
6685 		return PTR_ERR(trans);
6686 
6687 	err = btrfs_find_free_objectid(root, &objectid);
6688 	if (err)
6689 		goto out_unlock;
6690 
6691 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6692 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6693 			mode, &index);
6694 	if (IS_ERR(inode)) {
6695 		err = PTR_ERR(inode);
6696 		inode = NULL;
6697 		goto out_unlock;
6698 	}
6699 	/*
6700 	* If the active LSM wants to access the inode during
6701 	* d_instantiate it needs these. Smack checks to see
6702 	* if the filesystem supports xattrs by looking at the
6703 	* ops vector.
6704 	*/
6705 	inode->i_fop = &btrfs_file_operations;
6706 	inode->i_op = &btrfs_file_inode_operations;
6707 	inode->i_mapping->a_ops = &btrfs_aops;
6708 
6709 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6710 	if (err)
6711 		goto out_unlock;
6712 
6713 	err = btrfs_update_inode(trans, root, inode);
6714 	if (err)
6715 		goto out_unlock;
6716 
6717 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6718 			0, index);
6719 	if (err)
6720 		goto out_unlock;
6721 
6722 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6723 	d_instantiate_new(dentry, inode);
6724 
6725 out_unlock:
6726 	btrfs_end_transaction(trans);
6727 	if (err && inode) {
6728 		inode_dec_link_count(inode);
6729 		discard_new_inode(inode);
6730 	}
6731 	btrfs_btree_balance_dirty(fs_info);
6732 	return err;
6733 }
6734 
btrfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)6735 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6736 		      struct dentry *dentry)
6737 {
6738 	struct btrfs_trans_handle *trans = NULL;
6739 	struct btrfs_root *root = BTRFS_I(dir)->root;
6740 	struct inode *inode = d_inode(old_dentry);
6741 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6742 	u64 index;
6743 	int err;
6744 	int drop_inode = 0;
6745 
6746 	/* do not allow sys_link's with other subvols of the same device */
6747 	if (root->objectid != BTRFS_I(inode)->root->objectid)
6748 		return -EXDEV;
6749 
6750 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6751 		return -EMLINK;
6752 
6753 	err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6754 	if (err)
6755 		goto fail;
6756 
6757 	/*
6758 	 * 2 items for inode and inode ref
6759 	 * 2 items for dir items
6760 	 * 1 item for parent inode
6761 	 * 1 item for orphan item deletion if O_TMPFILE
6762 	 */
6763 	trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6764 	if (IS_ERR(trans)) {
6765 		err = PTR_ERR(trans);
6766 		trans = NULL;
6767 		goto fail;
6768 	}
6769 
6770 	/* There are several dir indexes for this inode, clear the cache. */
6771 	BTRFS_I(inode)->dir_index = 0ULL;
6772 	inc_nlink(inode);
6773 	inode_inc_iversion(inode);
6774 	inode->i_ctime = current_time(inode);
6775 	ihold(inode);
6776 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6777 
6778 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6779 			1, index);
6780 
6781 	if (err) {
6782 		drop_inode = 1;
6783 	} else {
6784 		struct dentry *parent = dentry->d_parent;
6785 		int ret;
6786 
6787 		err = btrfs_update_inode(trans, root, inode);
6788 		if (err)
6789 			goto fail;
6790 		if (inode->i_nlink == 1) {
6791 			/*
6792 			 * If new hard link count is 1, it's a file created
6793 			 * with open(2) O_TMPFILE flag.
6794 			 */
6795 			err = btrfs_orphan_del(trans, BTRFS_I(inode));
6796 			if (err)
6797 				goto fail;
6798 		}
6799 		BTRFS_I(inode)->last_link_trans = trans->transid;
6800 		d_instantiate(dentry, inode);
6801 		ret = btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent,
6802 					 true, NULL);
6803 		if (ret == BTRFS_NEED_TRANS_COMMIT) {
6804 			err = btrfs_commit_transaction(trans);
6805 			trans = NULL;
6806 		}
6807 	}
6808 
6809 fail:
6810 	if (trans)
6811 		btrfs_end_transaction(trans);
6812 	if (drop_inode) {
6813 		inode_dec_link_count(inode);
6814 		iput(inode);
6815 	}
6816 	btrfs_btree_balance_dirty(fs_info);
6817 	return err;
6818 }
6819 
btrfs_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)6820 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6821 {
6822 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6823 	struct inode *inode = NULL;
6824 	struct btrfs_trans_handle *trans;
6825 	struct btrfs_root *root = BTRFS_I(dir)->root;
6826 	int err = 0;
6827 	int drop_on_err = 0;
6828 	u64 objectid = 0;
6829 	u64 index = 0;
6830 
6831 	/*
6832 	 * 2 items for inode and ref
6833 	 * 2 items for dir items
6834 	 * 1 for xattr if selinux is on
6835 	 */
6836 	trans = btrfs_start_transaction(root, 5);
6837 	if (IS_ERR(trans))
6838 		return PTR_ERR(trans);
6839 
6840 	err = btrfs_find_free_objectid(root, &objectid);
6841 	if (err)
6842 		goto out_fail;
6843 
6844 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6845 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6846 			S_IFDIR | mode, &index);
6847 	if (IS_ERR(inode)) {
6848 		err = PTR_ERR(inode);
6849 		inode = NULL;
6850 		goto out_fail;
6851 	}
6852 
6853 	drop_on_err = 1;
6854 	/* these must be set before we unlock the inode */
6855 	inode->i_op = &btrfs_dir_inode_operations;
6856 	inode->i_fop = &btrfs_dir_file_operations;
6857 
6858 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6859 	if (err)
6860 		goto out_fail;
6861 
6862 	btrfs_i_size_write(BTRFS_I(inode), 0);
6863 	err = btrfs_update_inode(trans, root, inode);
6864 	if (err)
6865 		goto out_fail;
6866 
6867 	err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6868 			dentry->d_name.name,
6869 			dentry->d_name.len, 0, index);
6870 	if (err)
6871 		goto out_fail;
6872 
6873 	d_instantiate_new(dentry, inode);
6874 	drop_on_err = 0;
6875 
6876 out_fail:
6877 	btrfs_end_transaction(trans);
6878 	if (err && inode) {
6879 		inode_dec_link_count(inode);
6880 		discard_new_inode(inode);
6881 	}
6882 	btrfs_btree_balance_dirty(fs_info);
6883 	return err;
6884 }
6885 
uncompress_inline(struct btrfs_path * path,struct page * page,size_t pg_offset,u64 extent_offset,struct btrfs_file_extent_item * item)6886 static noinline int uncompress_inline(struct btrfs_path *path,
6887 				      struct page *page,
6888 				      size_t pg_offset, u64 extent_offset,
6889 				      struct btrfs_file_extent_item *item)
6890 {
6891 	int ret;
6892 	struct extent_buffer *leaf = path->nodes[0];
6893 	char *tmp;
6894 	size_t max_size;
6895 	unsigned long inline_size;
6896 	unsigned long ptr;
6897 	int compress_type;
6898 
6899 	WARN_ON(pg_offset != 0);
6900 	compress_type = btrfs_file_extent_compression(leaf, item);
6901 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6902 	inline_size = btrfs_file_extent_inline_item_len(leaf,
6903 					btrfs_item_nr(path->slots[0]));
6904 	tmp = kmalloc(inline_size, GFP_NOFS);
6905 	if (!tmp)
6906 		return -ENOMEM;
6907 	ptr = btrfs_file_extent_inline_start(item);
6908 
6909 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6910 
6911 	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6912 	ret = btrfs_decompress(compress_type, tmp, page,
6913 			       extent_offset, inline_size, max_size);
6914 
6915 	/*
6916 	 * decompression code contains a memset to fill in any space between the end
6917 	 * of the uncompressed data and the end of max_size in case the decompressed
6918 	 * data ends up shorter than ram_bytes.  That doesn't cover the hole between
6919 	 * the end of an inline extent and the beginning of the next block, so we
6920 	 * cover that region here.
6921 	 */
6922 
6923 	if (max_size + pg_offset < PAGE_SIZE) {
6924 		char *map = kmap(page);
6925 		memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6926 		kunmap(page);
6927 	}
6928 	kfree(tmp);
6929 	return ret;
6930 }
6931 
6932 /*
6933  * a bit scary, this does extent mapping from logical file offset to the disk.
6934  * the ugly parts come from merging extents from the disk with the in-ram
6935  * representation.  This gets more complex because of the data=ordered code,
6936  * where the in-ram extents might be locked pending data=ordered completion.
6937  *
6938  * This also copies inline extents directly into the page.
6939  */
btrfs_get_extent(struct btrfs_inode * inode,struct page * page,size_t pg_offset,u64 start,u64 len,int create)6940 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6941 		struct page *page,
6942 	    size_t pg_offset, u64 start, u64 len,
6943 		int create)
6944 {
6945 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
6946 	int ret;
6947 	int err = 0;
6948 	u64 extent_start = 0;
6949 	u64 extent_end = 0;
6950 	u64 objectid = btrfs_ino(inode);
6951 	u32 found_type;
6952 	struct btrfs_path *path = NULL;
6953 	struct btrfs_root *root = inode->root;
6954 	struct btrfs_file_extent_item *item;
6955 	struct extent_buffer *leaf;
6956 	struct btrfs_key found_key;
6957 	struct extent_map *em = NULL;
6958 	struct extent_map_tree *em_tree = &inode->extent_tree;
6959 	struct extent_io_tree *io_tree = &inode->io_tree;
6960 	const bool new_inline = !page || create;
6961 
6962 	read_lock(&em_tree->lock);
6963 	em = lookup_extent_mapping(em_tree, start, len);
6964 	if (em)
6965 		em->bdev = fs_info->fs_devices->latest_bdev;
6966 	read_unlock(&em_tree->lock);
6967 
6968 	if (em) {
6969 		if (em->start > start || em->start + em->len <= start)
6970 			free_extent_map(em);
6971 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6972 			free_extent_map(em);
6973 		else
6974 			goto out;
6975 	}
6976 	em = alloc_extent_map();
6977 	if (!em) {
6978 		err = -ENOMEM;
6979 		goto out;
6980 	}
6981 	em->bdev = fs_info->fs_devices->latest_bdev;
6982 	em->start = EXTENT_MAP_HOLE;
6983 	em->orig_start = EXTENT_MAP_HOLE;
6984 	em->len = (u64)-1;
6985 	em->block_len = (u64)-1;
6986 
6987 	if (!path) {
6988 		path = btrfs_alloc_path();
6989 		if (!path) {
6990 			err = -ENOMEM;
6991 			goto out;
6992 		}
6993 		/*
6994 		 * Chances are we'll be called again, so go ahead and do
6995 		 * readahead
6996 		 */
6997 		path->reada = READA_FORWARD;
6998 	}
6999 
7000 	ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
7001 	if (ret < 0) {
7002 		err = ret;
7003 		goto out;
7004 	}
7005 
7006 	if (ret != 0) {
7007 		if (path->slots[0] == 0)
7008 			goto not_found;
7009 		path->slots[0]--;
7010 	}
7011 
7012 	leaf = path->nodes[0];
7013 	item = btrfs_item_ptr(leaf, path->slots[0],
7014 			      struct btrfs_file_extent_item);
7015 	/* are we inside the extent that was found? */
7016 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7017 	found_type = found_key.type;
7018 	if (found_key.objectid != objectid ||
7019 	    found_type != BTRFS_EXTENT_DATA_KEY) {
7020 		/*
7021 		 * If we backup past the first extent we want to move forward
7022 		 * and see if there is an extent in front of us, otherwise we'll
7023 		 * say there is a hole for our whole search range which can
7024 		 * cause problems.
7025 		 */
7026 		extent_end = start;
7027 		goto next;
7028 	}
7029 
7030 	found_type = btrfs_file_extent_type(leaf, item);
7031 	extent_start = found_key.offset;
7032 	if (found_type == BTRFS_FILE_EXTENT_REG ||
7033 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7034 		/* Only regular file could have regular/prealloc extent */
7035 		if (!S_ISREG(inode->vfs_inode.i_mode)) {
7036 			err = -EUCLEAN;
7037 			btrfs_crit(fs_info,
7038 		"regular/prealloc extent found for non-regular inode %llu",
7039 				   btrfs_ino(inode));
7040 			goto out;
7041 		}
7042 		extent_end = extent_start +
7043 		       btrfs_file_extent_num_bytes(leaf, item);
7044 
7045 		trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
7046 						       extent_start);
7047 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
7048 		size_t size;
7049 
7050 		size = btrfs_file_extent_ram_bytes(leaf, item);
7051 		extent_end = ALIGN(extent_start + size,
7052 				   fs_info->sectorsize);
7053 
7054 		trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
7055 						      path->slots[0],
7056 						      extent_start);
7057 	}
7058 next:
7059 	if (start >= extent_end) {
7060 		path->slots[0]++;
7061 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
7062 			ret = btrfs_next_leaf(root, path);
7063 			if (ret < 0) {
7064 				err = ret;
7065 				goto out;
7066 			}
7067 			if (ret > 0)
7068 				goto not_found;
7069 			leaf = path->nodes[0];
7070 		}
7071 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7072 		if (found_key.objectid != objectid ||
7073 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
7074 			goto not_found;
7075 		if (start + len <= found_key.offset)
7076 			goto not_found;
7077 		if (start > found_key.offset)
7078 			goto next;
7079 		em->start = start;
7080 		em->orig_start = start;
7081 		em->len = found_key.offset - start;
7082 		goto not_found_em;
7083 	}
7084 
7085 	btrfs_extent_item_to_extent_map(inode, path, item,
7086 			new_inline, em);
7087 
7088 	if (found_type == BTRFS_FILE_EXTENT_REG ||
7089 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7090 		goto insert;
7091 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
7092 		unsigned long ptr;
7093 		char *map;
7094 		size_t size;
7095 		size_t extent_offset;
7096 		size_t copy_size;
7097 
7098 		if (new_inline)
7099 			goto out;
7100 
7101 		size = btrfs_file_extent_ram_bytes(leaf, item);
7102 		extent_offset = page_offset(page) + pg_offset - extent_start;
7103 		copy_size = min_t(u64, PAGE_SIZE - pg_offset,
7104 				  size - extent_offset);
7105 		em->start = extent_start + extent_offset;
7106 		em->len = ALIGN(copy_size, fs_info->sectorsize);
7107 		em->orig_block_len = em->len;
7108 		em->orig_start = em->start;
7109 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
7110 		if (!PageUptodate(page)) {
7111 			if (btrfs_file_extent_compression(leaf, item) !=
7112 			    BTRFS_COMPRESS_NONE) {
7113 				ret = uncompress_inline(path, page, pg_offset,
7114 							extent_offset, item);
7115 				if (ret) {
7116 					err = ret;
7117 					goto out;
7118 				}
7119 			} else {
7120 				map = kmap(page);
7121 				read_extent_buffer(leaf, map + pg_offset, ptr,
7122 						   copy_size);
7123 				if (pg_offset + copy_size < PAGE_SIZE) {
7124 					memset(map + pg_offset + copy_size, 0,
7125 					       PAGE_SIZE - pg_offset -
7126 					       copy_size);
7127 				}
7128 				kunmap(page);
7129 			}
7130 			flush_dcache_page(page);
7131 		}
7132 		set_extent_uptodate(io_tree, em->start,
7133 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
7134 		goto insert;
7135 	}
7136 not_found:
7137 	em->start = start;
7138 	em->orig_start = start;
7139 	em->len = len;
7140 not_found_em:
7141 	em->block_start = EXTENT_MAP_HOLE;
7142 insert:
7143 	btrfs_release_path(path);
7144 	if (em->start > start || extent_map_end(em) <= start) {
7145 		btrfs_err(fs_info,
7146 			  "bad extent! em: [%llu %llu] passed [%llu %llu]",
7147 			  em->start, em->len, start, len);
7148 		err = -EIO;
7149 		goto out;
7150 	}
7151 
7152 	err = 0;
7153 	write_lock(&em_tree->lock);
7154 	err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
7155 	write_unlock(&em_tree->lock);
7156 out:
7157 
7158 	trace_btrfs_get_extent(root, inode, em);
7159 
7160 	btrfs_free_path(path);
7161 	if (err) {
7162 		free_extent_map(em);
7163 		return ERR_PTR(err);
7164 	}
7165 	BUG_ON(!em); /* Error is always set */
7166 	return em;
7167 }
7168 
btrfs_get_extent_fiemap(struct btrfs_inode * inode,struct page * page,size_t pg_offset,u64 start,u64 len,int create)7169 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
7170 		struct page *page,
7171 		size_t pg_offset, u64 start, u64 len,
7172 		int create)
7173 {
7174 	struct extent_map *em;
7175 	struct extent_map *hole_em = NULL;
7176 	u64 range_start = start;
7177 	u64 end;
7178 	u64 found;
7179 	u64 found_end;
7180 	int err = 0;
7181 
7182 	em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7183 	if (IS_ERR(em))
7184 		return em;
7185 	/*
7186 	 * If our em maps to:
7187 	 * - a hole or
7188 	 * - a pre-alloc extent,
7189 	 * there might actually be delalloc bytes behind it.
7190 	 */
7191 	if (em->block_start != EXTENT_MAP_HOLE &&
7192 	    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7193 		return em;
7194 	else
7195 		hole_em = em;
7196 
7197 	/* check to see if we've wrapped (len == -1 or similar) */
7198 	end = start + len;
7199 	if (end < start)
7200 		end = (u64)-1;
7201 	else
7202 		end -= 1;
7203 
7204 	em = NULL;
7205 
7206 	/* ok, we didn't find anything, lets look for delalloc */
7207 	found = count_range_bits(&inode->io_tree, &range_start,
7208 				 end, len, EXTENT_DELALLOC, 1);
7209 	found_end = range_start + found;
7210 	if (found_end < range_start)
7211 		found_end = (u64)-1;
7212 
7213 	/*
7214 	 * we didn't find anything useful, return
7215 	 * the original results from get_extent()
7216 	 */
7217 	if (range_start > end || found_end <= start) {
7218 		em = hole_em;
7219 		hole_em = NULL;
7220 		goto out;
7221 	}
7222 
7223 	/* adjust the range_start to make sure it doesn't
7224 	 * go backwards from the start they passed in
7225 	 */
7226 	range_start = max(start, range_start);
7227 	found = found_end - range_start;
7228 
7229 	if (found > 0) {
7230 		u64 hole_start = start;
7231 		u64 hole_len = len;
7232 
7233 		em = alloc_extent_map();
7234 		if (!em) {
7235 			err = -ENOMEM;
7236 			goto out;
7237 		}
7238 		/*
7239 		 * when btrfs_get_extent can't find anything it
7240 		 * returns one huge hole
7241 		 *
7242 		 * make sure what it found really fits our range, and
7243 		 * adjust to make sure it is based on the start from
7244 		 * the caller
7245 		 */
7246 		if (hole_em) {
7247 			u64 calc_end = extent_map_end(hole_em);
7248 
7249 			if (calc_end <= start || (hole_em->start > end)) {
7250 				free_extent_map(hole_em);
7251 				hole_em = NULL;
7252 			} else {
7253 				hole_start = max(hole_em->start, start);
7254 				hole_len = calc_end - hole_start;
7255 			}
7256 		}
7257 		em->bdev = NULL;
7258 		if (hole_em && range_start > hole_start) {
7259 			/* our hole starts before our delalloc, so we
7260 			 * have to return just the parts of the hole
7261 			 * that go until  the delalloc starts
7262 			 */
7263 			em->len = min(hole_len,
7264 				      range_start - hole_start);
7265 			em->start = hole_start;
7266 			em->orig_start = hole_start;
7267 			/*
7268 			 * don't adjust block start at all,
7269 			 * it is fixed at EXTENT_MAP_HOLE
7270 			 */
7271 			em->block_start = hole_em->block_start;
7272 			em->block_len = hole_len;
7273 			if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7274 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7275 		} else {
7276 			em->start = range_start;
7277 			em->len = found;
7278 			em->orig_start = range_start;
7279 			em->block_start = EXTENT_MAP_DELALLOC;
7280 			em->block_len = found;
7281 		}
7282 	} else {
7283 		return hole_em;
7284 	}
7285 out:
7286 
7287 	free_extent_map(hole_em);
7288 	if (err) {
7289 		free_extent_map(em);
7290 		return ERR_PTR(err);
7291 	}
7292 	return em;
7293 }
7294 
btrfs_create_dio_extent(struct inode * inode,const u64 start,const u64 len,const u64 orig_start,const u64 block_start,const u64 block_len,const u64 orig_block_len,const u64 ram_bytes,const int type)7295 static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7296 						  const u64 start,
7297 						  const u64 len,
7298 						  const u64 orig_start,
7299 						  const u64 block_start,
7300 						  const u64 block_len,
7301 						  const u64 orig_block_len,
7302 						  const u64 ram_bytes,
7303 						  const int type)
7304 {
7305 	struct extent_map *em = NULL;
7306 	int ret;
7307 
7308 	if (type != BTRFS_ORDERED_NOCOW) {
7309 		em = create_io_em(inode, start, len, orig_start,
7310 				  block_start, block_len, orig_block_len,
7311 				  ram_bytes,
7312 				  BTRFS_COMPRESS_NONE, /* compress_type */
7313 				  type);
7314 		if (IS_ERR(em))
7315 			goto out;
7316 	}
7317 	ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7318 					   len, block_len, type);
7319 	if (ret) {
7320 		if (em) {
7321 			free_extent_map(em);
7322 			btrfs_drop_extent_cache(BTRFS_I(inode), start,
7323 						start + len - 1, 0);
7324 		}
7325 		em = ERR_PTR(ret);
7326 	}
7327  out:
7328 
7329 	return em;
7330 }
7331 
btrfs_new_extent_direct(struct inode * inode,u64 start,u64 len)7332 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7333 						  u64 start, u64 len)
7334 {
7335 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7336 	struct btrfs_root *root = BTRFS_I(inode)->root;
7337 	struct extent_map *em;
7338 	struct btrfs_key ins;
7339 	u64 alloc_hint;
7340 	int ret;
7341 
7342 	alloc_hint = get_extent_allocation_hint(inode, start, len);
7343 	ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7344 				   0, alloc_hint, &ins, 1, 1);
7345 	if (ret)
7346 		return ERR_PTR(ret);
7347 
7348 	em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7349 				     ins.objectid, ins.offset, ins.offset,
7350 				     ins.offset, BTRFS_ORDERED_REGULAR);
7351 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7352 	if (IS_ERR(em))
7353 		btrfs_free_reserved_extent(fs_info, ins.objectid,
7354 					   ins.offset, 1);
7355 
7356 	return em;
7357 }
7358 
7359 /*
7360  * returns 1 when the nocow is safe, < 1 on error, 0 if the
7361  * block must be cow'd
7362  */
can_nocow_extent(struct inode * inode,u64 offset,u64 * len,u64 * orig_start,u64 * orig_block_len,u64 * ram_bytes)7363 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7364 			      u64 *orig_start, u64 *orig_block_len,
7365 			      u64 *ram_bytes)
7366 {
7367 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7368 	struct btrfs_path *path;
7369 	int ret;
7370 	struct extent_buffer *leaf;
7371 	struct btrfs_root *root = BTRFS_I(inode)->root;
7372 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7373 	struct btrfs_file_extent_item *fi;
7374 	struct btrfs_key key;
7375 	u64 disk_bytenr;
7376 	u64 backref_offset;
7377 	u64 extent_end;
7378 	u64 num_bytes;
7379 	int slot;
7380 	int found_type;
7381 	bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7382 
7383 	path = btrfs_alloc_path();
7384 	if (!path)
7385 		return -ENOMEM;
7386 
7387 	ret = btrfs_lookup_file_extent(NULL, root, path,
7388 			btrfs_ino(BTRFS_I(inode)), offset, 0);
7389 	if (ret < 0)
7390 		goto out;
7391 
7392 	slot = path->slots[0];
7393 	if (ret == 1) {
7394 		if (slot == 0) {
7395 			/* can't find the item, must cow */
7396 			ret = 0;
7397 			goto out;
7398 		}
7399 		slot--;
7400 	}
7401 	ret = 0;
7402 	leaf = path->nodes[0];
7403 	btrfs_item_key_to_cpu(leaf, &key, slot);
7404 	if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7405 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7406 		/* not our file or wrong item type, must cow */
7407 		goto out;
7408 	}
7409 
7410 	if (key.offset > offset) {
7411 		/* Wrong offset, must cow */
7412 		goto out;
7413 	}
7414 
7415 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7416 	found_type = btrfs_file_extent_type(leaf, fi);
7417 	if (found_type != BTRFS_FILE_EXTENT_REG &&
7418 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7419 		/* not a regular extent, must cow */
7420 		goto out;
7421 	}
7422 
7423 	if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7424 		goto out;
7425 
7426 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7427 	if (extent_end <= offset)
7428 		goto out;
7429 
7430 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7431 	if (disk_bytenr == 0)
7432 		goto out;
7433 
7434 	if (btrfs_file_extent_compression(leaf, fi) ||
7435 	    btrfs_file_extent_encryption(leaf, fi) ||
7436 	    btrfs_file_extent_other_encoding(leaf, fi))
7437 		goto out;
7438 
7439 	/*
7440 	 * Do the same check as in btrfs_cross_ref_exist but without the
7441 	 * unnecessary search.
7442 	 */
7443 	if (btrfs_file_extent_generation(leaf, fi) <=
7444 	    btrfs_root_last_snapshot(&root->root_item))
7445 		goto out;
7446 
7447 	backref_offset = btrfs_file_extent_offset(leaf, fi);
7448 
7449 	if (orig_start) {
7450 		*orig_start = key.offset - backref_offset;
7451 		*orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7452 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7453 	}
7454 
7455 	if (btrfs_extent_readonly(fs_info, disk_bytenr))
7456 		goto out;
7457 
7458 	num_bytes = min(offset + *len, extent_end) - offset;
7459 	if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7460 		u64 range_end;
7461 
7462 		range_end = round_up(offset + num_bytes,
7463 				     root->fs_info->sectorsize) - 1;
7464 		ret = test_range_bit(io_tree, offset, range_end,
7465 				     EXTENT_DELALLOC, 0, NULL);
7466 		if (ret) {
7467 			ret = -EAGAIN;
7468 			goto out;
7469 		}
7470 	}
7471 
7472 	btrfs_release_path(path);
7473 
7474 	/*
7475 	 * look for other files referencing this extent, if we
7476 	 * find any we must cow
7477 	 */
7478 
7479 	ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7480 				    key.offset - backref_offset, disk_bytenr);
7481 	if (ret) {
7482 		ret = 0;
7483 		goto out;
7484 	}
7485 
7486 	/*
7487 	 * adjust disk_bytenr and num_bytes to cover just the bytes
7488 	 * in this extent we are about to write.  If there
7489 	 * are any csums in that range we have to cow in order
7490 	 * to keep the csums correct
7491 	 */
7492 	disk_bytenr += backref_offset;
7493 	disk_bytenr += offset - key.offset;
7494 	if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7495 		goto out;
7496 	/*
7497 	 * all of the above have passed, it is safe to overwrite this extent
7498 	 * without cow
7499 	 */
7500 	*len = num_bytes;
7501 	ret = 1;
7502 out:
7503 	btrfs_free_path(path);
7504 	return ret;
7505 }
7506 
lock_extent_direct(struct inode * inode,u64 lockstart,u64 lockend,struct extent_state ** cached_state,int writing)7507 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7508 			      struct extent_state **cached_state, int writing)
7509 {
7510 	struct btrfs_ordered_extent *ordered;
7511 	int ret = 0;
7512 
7513 	while (1) {
7514 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7515 				 cached_state);
7516 		/*
7517 		 * We're concerned with the entire range that we're going to be
7518 		 * doing DIO to, so we need to make sure there's no ordered
7519 		 * extents in this range.
7520 		 */
7521 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7522 						     lockend - lockstart + 1);
7523 
7524 		/*
7525 		 * We need to make sure there are no buffered pages in this
7526 		 * range either, we could have raced between the invalidate in
7527 		 * generic_file_direct_write and locking the extent.  The
7528 		 * invalidate needs to happen so that reads after a write do not
7529 		 * get stale data.
7530 		 */
7531 		if (!ordered &&
7532 		    (!writing || !filemap_range_has_page(inode->i_mapping,
7533 							 lockstart, lockend)))
7534 			break;
7535 
7536 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7537 				     cached_state);
7538 
7539 		if (ordered) {
7540 			/*
7541 			 * If we are doing a DIO read and the ordered extent we
7542 			 * found is for a buffered write, we can not wait for it
7543 			 * to complete and retry, because if we do so we can
7544 			 * deadlock with concurrent buffered writes on page
7545 			 * locks. This happens only if our DIO read covers more
7546 			 * than one extent map, if at this point has already
7547 			 * created an ordered extent for a previous extent map
7548 			 * and locked its range in the inode's io tree, and a
7549 			 * concurrent write against that previous extent map's
7550 			 * range and this range started (we unlock the ranges
7551 			 * in the io tree only when the bios complete and
7552 			 * buffered writes always lock pages before attempting
7553 			 * to lock range in the io tree).
7554 			 */
7555 			if (writing ||
7556 			    test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7557 				btrfs_start_ordered_extent(inode, ordered, 1);
7558 			else
7559 				ret = -ENOTBLK;
7560 			btrfs_put_ordered_extent(ordered);
7561 		} else {
7562 			/*
7563 			 * We could trigger writeback for this range (and wait
7564 			 * for it to complete) and then invalidate the pages for
7565 			 * this range (through invalidate_inode_pages2_range()),
7566 			 * but that can lead us to a deadlock with a concurrent
7567 			 * call to readpages() (a buffered read or a defrag call
7568 			 * triggered a readahead) on a page lock due to an
7569 			 * ordered dio extent we created before but did not have
7570 			 * yet a corresponding bio submitted (whence it can not
7571 			 * complete), which makes readpages() wait for that
7572 			 * ordered extent to complete while holding a lock on
7573 			 * that page.
7574 			 */
7575 			ret = -ENOTBLK;
7576 		}
7577 
7578 		if (ret)
7579 			break;
7580 
7581 		cond_resched();
7582 	}
7583 
7584 	return ret;
7585 }
7586 
7587 /* The callers of this must take lock_extent() */
create_io_em(struct inode * inode,u64 start,u64 len,u64 orig_start,u64 block_start,u64 block_len,u64 orig_block_len,u64 ram_bytes,int compress_type,int type)7588 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7589 				       u64 orig_start, u64 block_start,
7590 				       u64 block_len, u64 orig_block_len,
7591 				       u64 ram_bytes, int compress_type,
7592 				       int type)
7593 {
7594 	struct extent_map_tree *em_tree;
7595 	struct extent_map *em;
7596 	struct btrfs_root *root = BTRFS_I(inode)->root;
7597 	int ret;
7598 
7599 	ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7600 	       type == BTRFS_ORDERED_COMPRESSED ||
7601 	       type == BTRFS_ORDERED_NOCOW ||
7602 	       type == BTRFS_ORDERED_REGULAR);
7603 
7604 	em_tree = &BTRFS_I(inode)->extent_tree;
7605 	em = alloc_extent_map();
7606 	if (!em)
7607 		return ERR_PTR(-ENOMEM);
7608 
7609 	em->start = start;
7610 	em->orig_start = orig_start;
7611 	em->len = len;
7612 	em->block_len = block_len;
7613 	em->block_start = block_start;
7614 	em->bdev = root->fs_info->fs_devices->latest_bdev;
7615 	em->orig_block_len = orig_block_len;
7616 	em->ram_bytes = ram_bytes;
7617 	em->generation = -1;
7618 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
7619 	if (type == BTRFS_ORDERED_PREALLOC) {
7620 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
7621 	} else if (type == BTRFS_ORDERED_COMPRESSED) {
7622 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7623 		em->compress_type = compress_type;
7624 	}
7625 
7626 	do {
7627 		btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
7628 				em->start + em->len - 1, 0);
7629 		write_lock(&em_tree->lock);
7630 		ret = add_extent_mapping(em_tree, em, 1);
7631 		write_unlock(&em_tree->lock);
7632 		/*
7633 		 * The caller has taken lock_extent(), who could race with us
7634 		 * to add em?
7635 		 */
7636 	} while (ret == -EEXIST);
7637 
7638 	if (ret) {
7639 		free_extent_map(em);
7640 		return ERR_PTR(ret);
7641 	}
7642 
7643 	/* em got 2 refs now, callers needs to do free_extent_map once. */
7644 	return em;
7645 }
7646 
7647 
btrfs_get_blocks_direct_read(struct extent_map * em,struct buffer_head * bh_result,struct inode * inode,u64 start,u64 len)7648 static int btrfs_get_blocks_direct_read(struct extent_map *em,
7649 					struct buffer_head *bh_result,
7650 					struct inode *inode,
7651 					u64 start, u64 len)
7652 {
7653 	if (em->block_start == EXTENT_MAP_HOLE ||
7654 			test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7655 		return -ENOENT;
7656 
7657 	len = min(len, em->len - (start - em->start));
7658 
7659 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7660 		inode->i_blkbits;
7661 	bh_result->b_size = len;
7662 	bh_result->b_bdev = em->bdev;
7663 	set_buffer_mapped(bh_result);
7664 
7665 	return 0;
7666 }
7667 
btrfs_get_blocks_direct_write(struct extent_map ** map,struct buffer_head * bh_result,struct inode * inode,struct btrfs_dio_data * dio_data,u64 start,u64 len)7668 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7669 					 struct buffer_head *bh_result,
7670 					 struct inode *inode,
7671 					 struct btrfs_dio_data *dio_data,
7672 					 u64 start, u64 len)
7673 {
7674 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7675 	struct extent_map *em = *map;
7676 	int ret = 0;
7677 
7678 	/*
7679 	 * We don't allocate a new extent in the following cases
7680 	 *
7681 	 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7682 	 * existing extent.
7683 	 * 2) The extent is marked as PREALLOC. We're good to go here and can
7684 	 * just use the extent.
7685 	 *
7686 	 */
7687 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7688 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7689 	     em->block_start != EXTENT_MAP_HOLE)) {
7690 		int type;
7691 		u64 block_start, orig_start, orig_block_len, ram_bytes;
7692 
7693 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7694 			type = BTRFS_ORDERED_PREALLOC;
7695 		else
7696 			type = BTRFS_ORDERED_NOCOW;
7697 		len = min(len, em->len - (start - em->start));
7698 		block_start = em->block_start + (start - em->start);
7699 
7700 		if (can_nocow_extent(inode, start, &len, &orig_start,
7701 				     &orig_block_len, &ram_bytes) == 1 &&
7702 		    btrfs_inc_nocow_writers(fs_info, block_start)) {
7703 			struct extent_map *em2;
7704 
7705 			em2 = btrfs_create_dio_extent(inode, start, len,
7706 						      orig_start, block_start,
7707 						      len, orig_block_len,
7708 						      ram_bytes, type);
7709 			btrfs_dec_nocow_writers(fs_info, block_start);
7710 			if (type == BTRFS_ORDERED_PREALLOC) {
7711 				free_extent_map(em);
7712 				*map = em = em2;
7713 			}
7714 
7715 			if (em2 && IS_ERR(em2)) {
7716 				ret = PTR_ERR(em2);
7717 				goto out;
7718 			}
7719 			/*
7720 			 * For inode marked NODATACOW or extent marked PREALLOC,
7721 			 * use the existing or preallocated extent, so does not
7722 			 * need to adjust btrfs_space_info's bytes_may_use.
7723 			 */
7724 			btrfs_free_reserved_data_space_noquota(inode, start,
7725 							       len);
7726 			goto skip_cow;
7727 		}
7728 	}
7729 
7730 	/* this will cow the extent */
7731 	len = bh_result->b_size;
7732 	free_extent_map(em);
7733 	*map = em = btrfs_new_extent_direct(inode, start, len);
7734 	if (IS_ERR(em)) {
7735 		ret = PTR_ERR(em);
7736 		goto out;
7737 	}
7738 
7739 	len = min(len, em->len - (start - em->start));
7740 
7741 skip_cow:
7742 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7743 		inode->i_blkbits;
7744 	bh_result->b_size = len;
7745 	bh_result->b_bdev = em->bdev;
7746 	set_buffer_mapped(bh_result);
7747 
7748 	if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7749 		set_buffer_new(bh_result);
7750 
7751 	/*
7752 	 * Need to update the i_size under the extent lock so buffered
7753 	 * readers will get the updated i_size when we unlock.
7754 	 */
7755 	if (!dio_data->overwrite && start + len > i_size_read(inode))
7756 		i_size_write(inode, start + len);
7757 
7758 	WARN_ON(dio_data->reserve < len);
7759 	dio_data->reserve -= len;
7760 	dio_data->unsubmitted_oe_range_end = start + len;
7761 	current->journal_info = dio_data;
7762 out:
7763 	return ret;
7764 }
7765 
btrfs_get_blocks_direct(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)7766 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7767 				   struct buffer_head *bh_result, int create)
7768 {
7769 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7770 	struct extent_map *em;
7771 	struct extent_state *cached_state = NULL;
7772 	struct btrfs_dio_data *dio_data = NULL;
7773 	u64 start = iblock << inode->i_blkbits;
7774 	u64 lockstart, lockend;
7775 	u64 len = bh_result->b_size;
7776 	int unlock_bits = EXTENT_LOCKED;
7777 	int ret = 0;
7778 
7779 	if (create)
7780 		unlock_bits |= EXTENT_DIRTY;
7781 	else
7782 		len = min_t(u64, len, fs_info->sectorsize);
7783 
7784 	lockstart = start;
7785 	lockend = start + len - 1;
7786 
7787 	if (current->journal_info) {
7788 		/*
7789 		 * Need to pull our outstanding extents and set journal_info to NULL so
7790 		 * that anything that needs to check if there's a transaction doesn't get
7791 		 * confused.
7792 		 */
7793 		dio_data = current->journal_info;
7794 		current->journal_info = NULL;
7795 	}
7796 
7797 	/*
7798 	 * If this errors out it's because we couldn't invalidate pagecache for
7799 	 * this range and we need to fallback to buffered.
7800 	 */
7801 	if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7802 			       create)) {
7803 		ret = -ENOTBLK;
7804 		goto err;
7805 	}
7806 
7807 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
7808 	if (IS_ERR(em)) {
7809 		ret = PTR_ERR(em);
7810 		goto unlock_err;
7811 	}
7812 
7813 	/*
7814 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7815 	 * io.  INLINE is special, and we could probably kludge it in here, but
7816 	 * it's still buffered so for safety lets just fall back to the generic
7817 	 * buffered path.
7818 	 *
7819 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7820 	 * decompress it, so there will be buffering required no matter what we
7821 	 * do, so go ahead and fallback to buffered.
7822 	 *
7823 	 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7824 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7825 	 * the generic code.
7826 	 */
7827 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7828 	    em->block_start == EXTENT_MAP_INLINE) {
7829 		free_extent_map(em);
7830 		ret = -ENOTBLK;
7831 		goto unlock_err;
7832 	}
7833 
7834 	if (create) {
7835 		ret = btrfs_get_blocks_direct_write(&em, bh_result, inode,
7836 						    dio_data, start, len);
7837 		if (ret < 0)
7838 			goto unlock_err;
7839 
7840 		/* clear and unlock the entire range */
7841 		clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7842 				 unlock_bits, 1, 0, &cached_state);
7843 	} else {
7844 		ret = btrfs_get_blocks_direct_read(em, bh_result, inode,
7845 						   start, len);
7846 		/* Can be negative only if we read from a hole */
7847 		if (ret < 0) {
7848 			ret = 0;
7849 			free_extent_map(em);
7850 			goto unlock_err;
7851 		}
7852 		/*
7853 		 * We need to unlock only the end area that we aren't using.
7854 		 * The rest is going to be unlocked by the endio routine.
7855 		 */
7856 		lockstart = start + bh_result->b_size;
7857 		if (lockstart < lockend) {
7858 			clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7859 					 lockend, unlock_bits, 1, 0,
7860 					 &cached_state);
7861 		} else {
7862 			free_extent_state(cached_state);
7863 		}
7864 	}
7865 
7866 	free_extent_map(em);
7867 
7868 	return 0;
7869 
7870 unlock_err:
7871 	clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7872 			 unlock_bits, 1, 0, &cached_state);
7873 err:
7874 	if (dio_data)
7875 		current->journal_info = dio_data;
7876 	return ret;
7877 }
7878 
submit_dio_repair_bio(struct inode * inode,struct bio * bio,int mirror_num)7879 static inline blk_status_t submit_dio_repair_bio(struct inode *inode,
7880 						 struct bio *bio,
7881 						 int mirror_num)
7882 {
7883 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7884 	blk_status_t ret;
7885 
7886 	BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7887 
7888 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
7889 	if (ret)
7890 		return ret;
7891 
7892 	ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
7893 
7894 	return ret;
7895 }
7896 
btrfs_check_dio_repairable(struct inode * inode,struct bio * failed_bio,struct io_failure_record * failrec,int failed_mirror)7897 static int btrfs_check_dio_repairable(struct inode *inode,
7898 				      struct bio *failed_bio,
7899 				      struct io_failure_record *failrec,
7900 				      int failed_mirror)
7901 {
7902 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7903 	int num_copies;
7904 
7905 	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
7906 	if (num_copies == 1) {
7907 		/*
7908 		 * we only have a single copy of the data, so don't bother with
7909 		 * all the retry and error correction code that follows. no
7910 		 * matter what the error is, it is very likely to persist.
7911 		 */
7912 		btrfs_debug(fs_info,
7913 			"Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7914 			num_copies, failrec->this_mirror, failed_mirror);
7915 		return 0;
7916 	}
7917 
7918 	failrec->failed_mirror = failed_mirror;
7919 	failrec->this_mirror++;
7920 	if (failrec->this_mirror == failed_mirror)
7921 		failrec->this_mirror++;
7922 
7923 	if (failrec->this_mirror > num_copies) {
7924 		btrfs_debug(fs_info,
7925 			"Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7926 			num_copies, failrec->this_mirror, failed_mirror);
7927 		return 0;
7928 	}
7929 
7930 	return 1;
7931 }
7932 
dio_read_error(struct inode * inode,struct bio * failed_bio,struct page * page,unsigned int pgoff,u64 start,u64 end,int failed_mirror,bio_end_io_t * repair_endio,void * repair_arg)7933 static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio,
7934 				   struct page *page, unsigned int pgoff,
7935 				   u64 start, u64 end, int failed_mirror,
7936 				   bio_end_io_t *repair_endio, void *repair_arg)
7937 {
7938 	struct io_failure_record *failrec;
7939 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7940 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
7941 	struct bio *bio;
7942 	int isector;
7943 	unsigned int read_mode = 0;
7944 	int segs;
7945 	int ret;
7946 	blk_status_t status;
7947 	struct bio_vec bvec;
7948 
7949 	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
7950 
7951 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7952 	if (ret)
7953 		return errno_to_blk_status(ret);
7954 
7955 	ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7956 					 failed_mirror);
7957 	if (!ret) {
7958 		free_io_failure(failure_tree, io_tree, failrec);
7959 		return BLK_STS_IOERR;
7960 	}
7961 
7962 	segs = bio_segments(failed_bio);
7963 	bio_get_first_bvec(failed_bio, &bvec);
7964 	if (segs > 1 ||
7965 	    (bvec.bv_len > btrfs_inode_sectorsize(inode)))
7966 		read_mode |= REQ_FAILFAST_DEV;
7967 
7968 	isector = start - btrfs_io_bio(failed_bio)->logical;
7969 	isector >>= inode->i_sb->s_blocksize_bits;
7970 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7971 				pgoff, isector, repair_endio, repair_arg);
7972 	bio->bi_opf = REQ_OP_READ | read_mode;
7973 
7974 	btrfs_debug(BTRFS_I(inode)->root->fs_info,
7975 		    "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d",
7976 		    read_mode, failrec->this_mirror, failrec->in_validation);
7977 
7978 	status = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
7979 	if (status) {
7980 		free_io_failure(failure_tree, io_tree, failrec);
7981 		bio_put(bio);
7982 	}
7983 
7984 	return status;
7985 }
7986 
7987 struct btrfs_retry_complete {
7988 	struct completion done;
7989 	struct inode *inode;
7990 	u64 start;
7991 	int uptodate;
7992 };
7993 
btrfs_retry_endio_nocsum(struct bio * bio)7994 static void btrfs_retry_endio_nocsum(struct bio *bio)
7995 {
7996 	struct btrfs_retry_complete *done = bio->bi_private;
7997 	struct inode *inode = done->inode;
7998 	struct bio_vec *bvec;
7999 	struct extent_io_tree *io_tree, *failure_tree;
8000 	int i;
8001 
8002 	if (bio->bi_status)
8003 		goto end;
8004 
8005 	ASSERT(bio->bi_vcnt == 1);
8006 	io_tree = &BTRFS_I(inode)->io_tree;
8007 	failure_tree = &BTRFS_I(inode)->io_failure_tree;
8008 	ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode));
8009 
8010 	done->uptodate = 1;
8011 	ASSERT(!bio_flagged(bio, BIO_CLONED));
8012 	bio_for_each_segment_all(bvec, bio, i)
8013 		clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree,
8014 				 io_tree, done->start, bvec->bv_page,
8015 				 btrfs_ino(BTRFS_I(inode)), 0);
8016 end:
8017 	complete(&done->done);
8018 	bio_put(bio);
8019 }
8020 
__btrfs_correct_data_nocsum(struct inode * inode,struct btrfs_io_bio * io_bio)8021 static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode,
8022 						struct btrfs_io_bio *io_bio)
8023 {
8024 	struct btrfs_fs_info *fs_info;
8025 	struct bio_vec bvec;
8026 	struct bvec_iter iter;
8027 	struct btrfs_retry_complete done;
8028 	u64 start;
8029 	unsigned int pgoff;
8030 	u32 sectorsize;
8031 	int nr_sectors;
8032 	blk_status_t ret;
8033 	blk_status_t err = BLK_STS_OK;
8034 
8035 	fs_info = BTRFS_I(inode)->root->fs_info;
8036 	sectorsize = fs_info->sectorsize;
8037 
8038 	start = io_bio->logical;
8039 	done.inode = inode;
8040 	io_bio->bio.bi_iter = io_bio->iter;
8041 
8042 	bio_for_each_segment(bvec, &io_bio->bio, iter) {
8043 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
8044 		pgoff = bvec.bv_offset;
8045 
8046 next_block_or_try_again:
8047 		done.uptodate = 0;
8048 		done.start = start;
8049 		init_completion(&done.done);
8050 
8051 		ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
8052 				pgoff, start, start + sectorsize - 1,
8053 				io_bio->mirror_num,
8054 				btrfs_retry_endio_nocsum, &done);
8055 		if (ret) {
8056 			err = ret;
8057 			goto next;
8058 		}
8059 
8060 		wait_for_completion_io(&done.done);
8061 
8062 		if (!done.uptodate) {
8063 			/* We might have another mirror, so try again */
8064 			goto next_block_or_try_again;
8065 		}
8066 
8067 next:
8068 		start += sectorsize;
8069 
8070 		nr_sectors--;
8071 		if (nr_sectors) {
8072 			pgoff += sectorsize;
8073 			ASSERT(pgoff < PAGE_SIZE);
8074 			goto next_block_or_try_again;
8075 		}
8076 	}
8077 
8078 	return err;
8079 }
8080 
btrfs_retry_endio(struct bio * bio)8081 static void btrfs_retry_endio(struct bio *bio)
8082 {
8083 	struct btrfs_retry_complete *done = bio->bi_private;
8084 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8085 	struct extent_io_tree *io_tree, *failure_tree;
8086 	struct inode *inode = done->inode;
8087 	struct bio_vec *bvec;
8088 	int uptodate;
8089 	int ret;
8090 	int i;
8091 
8092 	if (bio->bi_status)
8093 		goto end;
8094 
8095 	uptodate = 1;
8096 
8097 	ASSERT(bio->bi_vcnt == 1);
8098 	ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode));
8099 
8100 	io_tree = &BTRFS_I(inode)->io_tree;
8101 	failure_tree = &BTRFS_I(inode)->io_failure_tree;
8102 
8103 	ASSERT(!bio_flagged(bio, BIO_CLONED));
8104 	bio_for_each_segment_all(bvec, bio, i) {
8105 		ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
8106 					     bvec->bv_offset, done->start,
8107 					     bvec->bv_len);
8108 		if (!ret)
8109 			clean_io_failure(BTRFS_I(inode)->root->fs_info,
8110 					 failure_tree, io_tree, done->start,
8111 					 bvec->bv_page,
8112 					 btrfs_ino(BTRFS_I(inode)),
8113 					 bvec->bv_offset);
8114 		else
8115 			uptodate = 0;
8116 	}
8117 
8118 	done->uptodate = uptodate;
8119 end:
8120 	complete(&done->done);
8121 	bio_put(bio);
8122 }
8123 
__btrfs_subio_endio_read(struct inode * inode,struct btrfs_io_bio * io_bio,blk_status_t err)8124 static blk_status_t __btrfs_subio_endio_read(struct inode *inode,
8125 		struct btrfs_io_bio *io_bio, blk_status_t err)
8126 {
8127 	struct btrfs_fs_info *fs_info;
8128 	struct bio_vec bvec;
8129 	struct bvec_iter iter;
8130 	struct btrfs_retry_complete done;
8131 	u64 start;
8132 	u64 offset = 0;
8133 	u32 sectorsize;
8134 	int nr_sectors;
8135 	unsigned int pgoff;
8136 	int csum_pos;
8137 	bool uptodate = (err == 0);
8138 	int ret;
8139 	blk_status_t status;
8140 
8141 	fs_info = BTRFS_I(inode)->root->fs_info;
8142 	sectorsize = fs_info->sectorsize;
8143 
8144 	err = BLK_STS_OK;
8145 	start = io_bio->logical;
8146 	done.inode = inode;
8147 	io_bio->bio.bi_iter = io_bio->iter;
8148 
8149 	bio_for_each_segment(bvec, &io_bio->bio, iter) {
8150 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
8151 
8152 		pgoff = bvec.bv_offset;
8153 next_block:
8154 		if (uptodate) {
8155 			csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8156 			ret = __readpage_endio_check(inode, io_bio, csum_pos,
8157 					bvec.bv_page, pgoff, start, sectorsize);
8158 			if (likely(!ret))
8159 				goto next;
8160 		}
8161 try_again:
8162 		done.uptodate = 0;
8163 		done.start = start;
8164 		init_completion(&done.done);
8165 
8166 		status = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
8167 					pgoff, start, start + sectorsize - 1,
8168 					io_bio->mirror_num, btrfs_retry_endio,
8169 					&done);
8170 		if (status) {
8171 			err = status;
8172 			goto next;
8173 		}
8174 
8175 		wait_for_completion_io(&done.done);
8176 
8177 		if (!done.uptodate) {
8178 			/* We might have another mirror, so try again */
8179 			goto try_again;
8180 		}
8181 next:
8182 		offset += sectorsize;
8183 		start += sectorsize;
8184 
8185 		ASSERT(nr_sectors);
8186 
8187 		nr_sectors--;
8188 		if (nr_sectors) {
8189 			pgoff += sectorsize;
8190 			ASSERT(pgoff < PAGE_SIZE);
8191 			goto next_block;
8192 		}
8193 	}
8194 
8195 	return err;
8196 }
8197 
btrfs_subio_endio_read(struct inode * inode,struct btrfs_io_bio * io_bio,blk_status_t err)8198 static blk_status_t btrfs_subio_endio_read(struct inode *inode,
8199 		struct btrfs_io_bio *io_bio, blk_status_t err)
8200 {
8201 	bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8202 
8203 	if (skip_csum) {
8204 		if (unlikely(err))
8205 			return __btrfs_correct_data_nocsum(inode, io_bio);
8206 		else
8207 			return BLK_STS_OK;
8208 	} else {
8209 		return __btrfs_subio_endio_read(inode, io_bio, err);
8210 	}
8211 }
8212 
btrfs_endio_direct_read(struct bio * bio)8213 static void btrfs_endio_direct_read(struct bio *bio)
8214 {
8215 	struct btrfs_dio_private *dip = bio->bi_private;
8216 	struct inode *inode = dip->inode;
8217 	struct bio *dio_bio;
8218 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8219 	blk_status_t err = bio->bi_status;
8220 
8221 	if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8222 		err = btrfs_subio_endio_read(inode, io_bio, err);
8223 
8224 	unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
8225 		      dip->logical_offset + dip->bytes - 1);
8226 	dio_bio = dip->dio_bio;
8227 
8228 	kfree(dip);
8229 
8230 	dio_bio->bi_status = err;
8231 	dio_end_io(dio_bio);
8232 
8233 	if (io_bio->end_io)
8234 		io_bio->end_io(io_bio, blk_status_to_errno(err));
8235 	bio_put(bio);
8236 }
8237 
__endio_write_update_ordered(struct inode * inode,const u64 offset,const u64 bytes,const bool uptodate)8238 static void __endio_write_update_ordered(struct inode *inode,
8239 					 const u64 offset, const u64 bytes,
8240 					 const bool uptodate)
8241 {
8242 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8243 	struct btrfs_ordered_extent *ordered = NULL;
8244 	struct btrfs_workqueue *wq;
8245 	btrfs_work_func_t func;
8246 	u64 ordered_offset = offset;
8247 	u64 ordered_bytes = bytes;
8248 	u64 last_offset;
8249 
8250 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
8251 		wq = fs_info->endio_freespace_worker;
8252 		func = btrfs_freespace_write_helper;
8253 	} else {
8254 		wq = fs_info->endio_write_workers;
8255 		func = btrfs_endio_write_helper;
8256 	}
8257 
8258 	while (ordered_offset < offset + bytes) {
8259 		last_offset = ordered_offset;
8260 		if (btrfs_dec_test_first_ordered_pending(inode, &ordered,
8261 							   &ordered_offset,
8262 							   ordered_bytes,
8263 							   uptodate)) {
8264 			btrfs_init_work(&ordered->work, func,
8265 					finish_ordered_fn,
8266 					NULL, NULL);
8267 			btrfs_queue_work(wq, &ordered->work);
8268 		}
8269 		/*
8270 		 * If btrfs_dec_test_ordered_pending does not find any ordered
8271 		 * extent in the range, we can exit.
8272 		 */
8273 		if (ordered_offset == last_offset)
8274 			return;
8275 		/*
8276 		 * Our bio might span multiple ordered extents. In this case
8277 		 * we keep goin until we have accounted the whole dio.
8278 		 */
8279 		if (ordered_offset < offset + bytes) {
8280 			ordered_bytes = offset + bytes - ordered_offset;
8281 			ordered = NULL;
8282 		}
8283 	}
8284 }
8285 
btrfs_endio_direct_write(struct bio * bio)8286 static void btrfs_endio_direct_write(struct bio *bio)
8287 {
8288 	struct btrfs_dio_private *dip = bio->bi_private;
8289 	struct bio *dio_bio = dip->dio_bio;
8290 
8291 	__endio_write_update_ordered(dip->inode, dip->logical_offset,
8292 				     dip->bytes, !bio->bi_status);
8293 
8294 	kfree(dip);
8295 
8296 	dio_bio->bi_status = bio->bi_status;
8297 	dio_end_io(dio_bio);
8298 	bio_put(bio);
8299 }
8300 
btrfs_submit_bio_start_direct_io(void * private_data,struct bio * bio,u64 offset)8301 static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data,
8302 				    struct bio *bio, u64 offset)
8303 {
8304 	struct inode *inode = private_data;
8305 	blk_status_t ret;
8306 	ret = btrfs_csum_one_bio(inode, bio, offset, 1);
8307 	BUG_ON(ret); /* -ENOMEM */
8308 	return 0;
8309 }
8310 
btrfs_end_dio_bio(struct bio * bio)8311 static void btrfs_end_dio_bio(struct bio *bio)
8312 {
8313 	struct btrfs_dio_private *dip = bio->bi_private;
8314 	blk_status_t err = bio->bi_status;
8315 
8316 	if (err)
8317 		btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8318 			   "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8319 			   btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8320 			   bio->bi_opf,
8321 			   (unsigned long long)bio->bi_iter.bi_sector,
8322 			   bio->bi_iter.bi_size, err);
8323 
8324 	if (dip->subio_endio)
8325 		err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8326 
8327 	if (err) {
8328 		/*
8329 		 * We want to perceive the errors flag being set before
8330 		 * decrementing the reference count. We don't need a barrier
8331 		 * since atomic operations with a return value are fully
8332 		 * ordered as per atomic_t.txt
8333 		 */
8334 		dip->errors = 1;
8335 	}
8336 
8337 	/* if there are more bios still pending for this dio, just exit */
8338 	if (!atomic_dec_and_test(&dip->pending_bios))
8339 		goto out;
8340 
8341 	if (dip->errors) {
8342 		bio_io_error(dip->orig_bio);
8343 	} else {
8344 		dip->dio_bio->bi_status = BLK_STS_OK;
8345 		bio_endio(dip->orig_bio);
8346 	}
8347 out:
8348 	bio_put(bio);
8349 }
8350 
btrfs_lookup_and_bind_dio_csum(struct inode * inode,struct btrfs_dio_private * dip,struct bio * bio,u64 file_offset)8351 static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode,
8352 						 struct btrfs_dio_private *dip,
8353 						 struct bio *bio,
8354 						 u64 file_offset)
8355 {
8356 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8357 	struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8358 	blk_status_t ret;
8359 
8360 	/*
8361 	 * We load all the csum data we need when we submit
8362 	 * the first bio to reduce the csum tree search and
8363 	 * contention.
8364 	 */
8365 	if (dip->logical_offset == file_offset) {
8366 		ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
8367 						file_offset);
8368 		if (ret)
8369 			return ret;
8370 	}
8371 
8372 	if (bio == dip->orig_bio)
8373 		return 0;
8374 
8375 	file_offset -= dip->logical_offset;
8376 	file_offset >>= inode->i_sb->s_blocksize_bits;
8377 	io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8378 
8379 	return 0;
8380 }
8381 
btrfs_submit_dio_bio(struct bio * bio,struct inode * inode,u64 file_offset,int async_submit)8382 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
8383 		struct inode *inode, u64 file_offset, int async_submit)
8384 {
8385 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8386 	struct btrfs_dio_private *dip = bio->bi_private;
8387 	bool write = bio_op(bio) == REQ_OP_WRITE;
8388 	blk_status_t ret;
8389 
8390 	/* Check btrfs_submit_bio_hook() for rules about async submit. */
8391 	if (async_submit)
8392 		async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8393 
8394 	if (!write) {
8395 		ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8396 		if (ret)
8397 			goto err;
8398 	}
8399 
8400 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
8401 		goto map;
8402 
8403 	if (write && async_submit) {
8404 		ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
8405 					  file_offset, inode,
8406 					  btrfs_submit_bio_start_direct_io);
8407 		goto err;
8408 	} else if (write) {
8409 		/*
8410 		 * If we aren't doing async submit, calculate the csum of the
8411 		 * bio now.
8412 		 */
8413 		ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
8414 		if (ret)
8415 			goto err;
8416 	} else {
8417 		ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
8418 						     file_offset);
8419 		if (ret)
8420 			goto err;
8421 	}
8422 map:
8423 	ret = btrfs_map_bio(fs_info, bio, 0, 0);
8424 err:
8425 	return ret;
8426 }
8427 
btrfs_submit_direct_hook(struct btrfs_dio_private * dip)8428 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip)
8429 {
8430 	struct inode *inode = dip->inode;
8431 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8432 	struct bio *bio;
8433 	struct bio *orig_bio = dip->orig_bio;
8434 	u64 start_sector = orig_bio->bi_iter.bi_sector;
8435 	u64 file_offset = dip->logical_offset;
8436 	u64 map_length;
8437 	int async_submit = 0;
8438 	u64 submit_len;
8439 	int clone_offset = 0;
8440 	int clone_len;
8441 	int ret;
8442 	blk_status_t status;
8443 
8444 	map_length = orig_bio->bi_iter.bi_size;
8445 	submit_len = map_length;
8446 	ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9,
8447 			      &map_length, NULL, 0);
8448 	if (ret)
8449 		return -EIO;
8450 
8451 	if (map_length >= submit_len) {
8452 		bio = orig_bio;
8453 		dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8454 		goto submit;
8455 	}
8456 
8457 	/* async crcs make it difficult to collect full stripe writes. */
8458 	if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8459 		async_submit = 0;
8460 	else
8461 		async_submit = 1;
8462 
8463 	/* bio split */
8464 	ASSERT(map_length <= INT_MAX);
8465 	do {
8466 		clone_len = min_t(int, submit_len, map_length);
8467 
8468 		/*
8469 		 * This will never fail as it's passing GPF_NOFS and
8470 		 * the allocation is backed by btrfs_bioset.
8471 		 */
8472 		bio = btrfs_bio_clone_partial(orig_bio, clone_offset,
8473 					      clone_len);
8474 		bio->bi_private = dip;
8475 		bio->bi_end_io = btrfs_end_dio_bio;
8476 		btrfs_io_bio(bio)->logical = file_offset;
8477 
8478 		ASSERT(submit_len >= clone_len);
8479 		submit_len -= clone_len;
8480 		if (submit_len == 0)
8481 			break;
8482 
8483 		/*
8484 		 * Increase the count before we submit the bio so we know
8485 		 * the end IO handler won't happen before we increase the
8486 		 * count. Otherwise, the dip might get freed before we're
8487 		 * done setting it up.
8488 		 */
8489 		atomic_inc(&dip->pending_bios);
8490 
8491 		status = btrfs_submit_dio_bio(bio, inode, file_offset,
8492 						async_submit);
8493 		if (status) {
8494 			bio_put(bio);
8495 			atomic_dec(&dip->pending_bios);
8496 			goto out_err;
8497 		}
8498 
8499 		clone_offset += clone_len;
8500 		start_sector += clone_len >> 9;
8501 		file_offset += clone_len;
8502 
8503 		map_length = submit_len;
8504 		ret = btrfs_map_block(fs_info, btrfs_op(orig_bio),
8505 				      start_sector << 9, &map_length, NULL, 0);
8506 		if (ret)
8507 			goto out_err;
8508 	} while (submit_len > 0);
8509 
8510 submit:
8511 	status = btrfs_submit_dio_bio(bio, inode, file_offset, async_submit);
8512 	if (!status)
8513 		return 0;
8514 
8515 	if (bio != orig_bio)
8516 		bio_put(bio);
8517 out_err:
8518 	dip->errors = 1;
8519 	/*
8520 	 * Before atomic variable goto zero, we must  make sure dip->errors is
8521 	 * perceived to be set. This ordering is ensured by the fact that an
8522 	 * atomic operations with a return value are fully ordered as per
8523 	 * atomic_t.txt
8524 	 */
8525 	if (atomic_dec_and_test(&dip->pending_bios))
8526 		bio_io_error(dip->orig_bio);
8527 
8528 	/* bio_end_io() will handle error, so we needn't return it */
8529 	return 0;
8530 }
8531 
btrfs_submit_direct(struct bio * dio_bio,struct inode * inode,loff_t file_offset)8532 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8533 				loff_t file_offset)
8534 {
8535 	struct btrfs_dio_private *dip = NULL;
8536 	struct bio *bio = NULL;
8537 	struct btrfs_io_bio *io_bio;
8538 	bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
8539 	int ret = 0;
8540 
8541 	bio = btrfs_bio_clone(dio_bio);
8542 
8543 	dip = kzalloc(sizeof(*dip), GFP_NOFS);
8544 	if (!dip) {
8545 		ret = -ENOMEM;
8546 		goto free_ordered;
8547 	}
8548 
8549 	dip->private = dio_bio->bi_private;
8550 	dip->inode = inode;
8551 	dip->logical_offset = file_offset;
8552 	dip->bytes = dio_bio->bi_iter.bi_size;
8553 	dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8554 	bio->bi_private = dip;
8555 	dip->orig_bio = bio;
8556 	dip->dio_bio = dio_bio;
8557 	atomic_set(&dip->pending_bios, 1);
8558 	io_bio = btrfs_io_bio(bio);
8559 	io_bio->logical = file_offset;
8560 
8561 	if (write) {
8562 		bio->bi_end_io = btrfs_endio_direct_write;
8563 	} else {
8564 		bio->bi_end_io = btrfs_endio_direct_read;
8565 		dip->subio_endio = btrfs_subio_endio_read;
8566 	}
8567 
8568 	/*
8569 	 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8570 	 * even if we fail to submit a bio, because in such case we do the
8571 	 * corresponding error handling below and it must not be done a second
8572 	 * time by btrfs_direct_IO().
8573 	 */
8574 	if (write) {
8575 		struct btrfs_dio_data *dio_data = current->journal_info;
8576 
8577 		dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8578 			dip->bytes;
8579 		dio_data->unsubmitted_oe_range_start =
8580 			dio_data->unsubmitted_oe_range_end;
8581 	}
8582 
8583 	ret = btrfs_submit_direct_hook(dip);
8584 	if (!ret)
8585 		return;
8586 
8587 	if (io_bio->end_io)
8588 		io_bio->end_io(io_bio, ret);
8589 
8590 free_ordered:
8591 	/*
8592 	 * If we arrived here it means either we failed to submit the dip
8593 	 * or we either failed to clone the dio_bio or failed to allocate the
8594 	 * dip. If we cloned the dio_bio and allocated the dip, we can just
8595 	 * call bio_endio against our io_bio so that we get proper resource
8596 	 * cleanup if we fail to submit the dip, otherwise, we must do the
8597 	 * same as btrfs_endio_direct_[write|read] because we can't call these
8598 	 * callbacks - they require an allocated dip and a clone of dio_bio.
8599 	 */
8600 	if (bio && dip) {
8601 		bio_io_error(bio);
8602 		/*
8603 		 * The end io callbacks free our dip, do the final put on bio
8604 		 * and all the cleanup and final put for dio_bio (through
8605 		 * dio_end_io()).
8606 		 */
8607 		dip = NULL;
8608 		bio = NULL;
8609 	} else {
8610 		if (write)
8611 			__endio_write_update_ordered(inode,
8612 						file_offset,
8613 						dio_bio->bi_iter.bi_size,
8614 						false);
8615 		else
8616 			unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8617 			      file_offset + dio_bio->bi_iter.bi_size - 1);
8618 
8619 		dio_bio->bi_status = BLK_STS_IOERR;
8620 		/*
8621 		 * Releases and cleans up our dio_bio, no need to bio_put()
8622 		 * nor bio_endio()/bio_io_error() against dio_bio.
8623 		 */
8624 		dio_end_io(dio_bio);
8625 	}
8626 	if (bio)
8627 		bio_put(bio);
8628 	kfree(dip);
8629 }
8630 
check_direct_IO(struct btrfs_fs_info * fs_info,const struct iov_iter * iter,loff_t offset)8631 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
8632 			       const struct iov_iter *iter, loff_t offset)
8633 {
8634 	int seg;
8635 	int i;
8636 	unsigned int blocksize_mask = fs_info->sectorsize - 1;
8637 	ssize_t retval = -EINVAL;
8638 
8639 	if (offset & blocksize_mask)
8640 		goto out;
8641 
8642 	if (iov_iter_alignment(iter) & blocksize_mask)
8643 		goto out;
8644 
8645 	/* If this is a write we don't need to check anymore */
8646 	if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
8647 		return 0;
8648 	/*
8649 	 * Check to make sure we don't have duplicate iov_base's in this
8650 	 * iovec, if so return EINVAL, otherwise we'll get csum errors
8651 	 * when reading back.
8652 	 */
8653 	for (seg = 0; seg < iter->nr_segs; seg++) {
8654 		for (i = seg + 1; i < iter->nr_segs; i++) {
8655 			if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8656 				goto out;
8657 		}
8658 	}
8659 	retval = 0;
8660 out:
8661 	return retval;
8662 }
8663 
btrfs_direct_IO(struct kiocb * iocb,struct iov_iter * iter)8664 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
8665 {
8666 	struct file *file = iocb->ki_filp;
8667 	struct inode *inode = file->f_mapping->host;
8668 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8669 	struct btrfs_dio_data dio_data = { 0 };
8670 	struct extent_changeset *data_reserved = NULL;
8671 	loff_t offset = iocb->ki_pos;
8672 	size_t count = 0;
8673 	int flags = 0;
8674 	bool wakeup = true;
8675 	bool relock = false;
8676 	ssize_t ret;
8677 
8678 	if (check_direct_IO(fs_info, iter, offset))
8679 		return 0;
8680 
8681 	inode_dio_begin(inode);
8682 
8683 	/*
8684 	 * The generic stuff only does filemap_write_and_wait_range, which
8685 	 * isn't enough if we've written compressed pages to this area, so
8686 	 * we need to flush the dirty pages again to make absolutely sure
8687 	 * that any outstanding dirty pages are on disk.
8688 	 */
8689 	count = iov_iter_count(iter);
8690 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8691 		     &BTRFS_I(inode)->runtime_flags))
8692 		filemap_fdatawrite_range(inode->i_mapping, offset,
8693 					 offset + count - 1);
8694 
8695 	if (iov_iter_rw(iter) == WRITE) {
8696 		/*
8697 		 * If the write DIO is beyond the EOF, we need update
8698 		 * the isize, but it is protected by i_mutex. So we can
8699 		 * not unlock the i_mutex at this case.
8700 		 */
8701 		if (offset + count <= inode->i_size) {
8702 			dio_data.overwrite = 1;
8703 			inode_unlock(inode);
8704 			relock = true;
8705 		}
8706 		ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8707 						   offset, count);
8708 		if (ret)
8709 			goto out;
8710 
8711 		/*
8712 		 * We need to know how many extents we reserved so that we can
8713 		 * do the accounting properly if we go over the number we
8714 		 * originally calculated.  Abuse current->journal_info for this.
8715 		 */
8716 		dio_data.reserve = round_up(count,
8717 					    fs_info->sectorsize);
8718 		dio_data.unsubmitted_oe_range_start = (u64)offset;
8719 		dio_data.unsubmitted_oe_range_end = (u64)offset;
8720 		current->journal_info = &dio_data;
8721 		down_read(&BTRFS_I(inode)->dio_sem);
8722 	} else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8723 				     &BTRFS_I(inode)->runtime_flags)) {
8724 		inode_dio_end(inode);
8725 		flags = DIO_LOCKING | DIO_SKIP_HOLES;
8726 		wakeup = false;
8727 	}
8728 
8729 	ret = __blockdev_direct_IO(iocb, inode,
8730 				   fs_info->fs_devices->latest_bdev,
8731 				   iter, btrfs_get_blocks_direct, NULL,
8732 				   btrfs_submit_direct, flags);
8733 	if (iov_iter_rw(iter) == WRITE) {
8734 		up_read(&BTRFS_I(inode)->dio_sem);
8735 		current->journal_info = NULL;
8736 		if (ret < 0 && ret != -EIOCBQUEUED) {
8737 			if (dio_data.reserve)
8738 				btrfs_delalloc_release_space(inode, data_reserved,
8739 					offset, dio_data.reserve, true);
8740 			/*
8741 			 * On error we might have left some ordered extents
8742 			 * without submitting corresponding bios for them, so
8743 			 * cleanup them up to avoid other tasks getting them
8744 			 * and waiting for them to complete forever.
8745 			 */
8746 			if (dio_data.unsubmitted_oe_range_start <
8747 			    dio_data.unsubmitted_oe_range_end)
8748 				__endio_write_update_ordered(inode,
8749 					dio_data.unsubmitted_oe_range_start,
8750 					dio_data.unsubmitted_oe_range_end -
8751 					dio_data.unsubmitted_oe_range_start,
8752 					false);
8753 		} else if (ret >= 0 && (size_t)ret < count)
8754 			btrfs_delalloc_release_space(inode, data_reserved,
8755 					offset, count - (size_t)ret, true);
8756 		btrfs_delalloc_release_extents(BTRFS_I(inode), count);
8757 	}
8758 out:
8759 	if (wakeup)
8760 		inode_dio_end(inode);
8761 	if (relock)
8762 		inode_lock(inode);
8763 
8764 	extent_changeset_free(data_reserved);
8765 	return ret;
8766 }
8767 
8768 #define BTRFS_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC)
8769 
btrfs_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,__u64 start,__u64 len)8770 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8771 		__u64 start, __u64 len)
8772 {
8773 	int	ret;
8774 
8775 	ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8776 	if (ret)
8777 		return ret;
8778 
8779 	return extent_fiemap(inode, fieinfo, start, len);
8780 }
8781 
btrfs_readpage(struct file * file,struct page * page)8782 int btrfs_readpage(struct file *file, struct page *page)
8783 {
8784 	struct extent_io_tree *tree;
8785 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8786 	return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8787 }
8788 
btrfs_writepage(struct page * page,struct writeback_control * wbc)8789 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8790 {
8791 	struct inode *inode = page->mapping->host;
8792 	int ret;
8793 
8794 	if (current->flags & PF_MEMALLOC) {
8795 		redirty_page_for_writepage(wbc, page);
8796 		unlock_page(page);
8797 		return 0;
8798 	}
8799 
8800 	/*
8801 	 * If we are under memory pressure we will call this directly from the
8802 	 * VM, we need to make sure we have the inode referenced for the ordered
8803 	 * extent.  If not just return like we didn't do anything.
8804 	 */
8805 	if (!igrab(inode)) {
8806 		redirty_page_for_writepage(wbc, page);
8807 		return AOP_WRITEPAGE_ACTIVATE;
8808 	}
8809 	ret = extent_write_full_page(page, wbc);
8810 	btrfs_add_delayed_iput(inode);
8811 	return ret;
8812 }
8813 
btrfs_writepages(struct address_space * mapping,struct writeback_control * wbc)8814 static int btrfs_writepages(struct address_space *mapping,
8815 			    struct writeback_control *wbc)
8816 {
8817 	return extent_writepages(mapping, wbc);
8818 }
8819 
8820 static int
btrfs_readpages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)8821 btrfs_readpages(struct file *file, struct address_space *mapping,
8822 		struct list_head *pages, unsigned nr_pages)
8823 {
8824 	return extent_readpages(mapping, pages, nr_pages);
8825 }
8826 
__btrfs_releasepage(struct page * page,gfp_t gfp_flags)8827 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8828 {
8829 	int ret = try_release_extent_mapping(page, gfp_flags);
8830 	if (ret == 1) {
8831 		ClearPagePrivate(page);
8832 		set_page_private(page, 0);
8833 		put_page(page);
8834 	}
8835 	return ret;
8836 }
8837 
btrfs_releasepage(struct page * page,gfp_t gfp_flags)8838 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8839 {
8840 	if (PageWriteback(page) || PageDirty(page))
8841 		return 0;
8842 	return __btrfs_releasepage(page, gfp_flags);
8843 }
8844 
btrfs_invalidatepage(struct page * page,unsigned int offset,unsigned int length)8845 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8846 				 unsigned int length)
8847 {
8848 	struct inode *inode = page->mapping->host;
8849 	struct extent_io_tree *tree;
8850 	struct btrfs_ordered_extent *ordered;
8851 	struct extent_state *cached_state = NULL;
8852 	u64 page_start = page_offset(page);
8853 	u64 page_end = page_start + PAGE_SIZE - 1;
8854 	u64 start;
8855 	u64 end;
8856 	int inode_evicting = inode->i_state & I_FREEING;
8857 
8858 	/*
8859 	 * we have the page locked, so new writeback can't start,
8860 	 * and the dirty bit won't be cleared while we are here.
8861 	 *
8862 	 * Wait for IO on this page so that we can safely clear
8863 	 * the PagePrivate2 bit and do ordered accounting
8864 	 */
8865 	wait_on_page_writeback(page);
8866 
8867 	tree = &BTRFS_I(inode)->io_tree;
8868 	if (offset) {
8869 		btrfs_releasepage(page, GFP_NOFS);
8870 		return;
8871 	}
8872 
8873 	if (!inode_evicting)
8874 		lock_extent_bits(tree, page_start, page_end, &cached_state);
8875 again:
8876 	start = page_start;
8877 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
8878 					page_end - start + 1);
8879 	if (ordered) {
8880 		end = min(page_end, ordered->file_offset + ordered->len - 1);
8881 		/*
8882 		 * IO on this page will never be started, so we need
8883 		 * to account for any ordered extents now
8884 		 */
8885 		if (!inode_evicting)
8886 			clear_extent_bit(tree, start, end,
8887 					 EXTENT_DIRTY | EXTENT_DELALLOC |
8888 					 EXTENT_DELALLOC_NEW |
8889 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8890 					 EXTENT_DEFRAG, 1, 0, &cached_state);
8891 		/*
8892 		 * whoever cleared the private bit is responsible
8893 		 * for the finish_ordered_io
8894 		 */
8895 		if (TestClearPagePrivate2(page)) {
8896 			struct btrfs_ordered_inode_tree *tree;
8897 			u64 new_len;
8898 
8899 			tree = &BTRFS_I(inode)->ordered_tree;
8900 
8901 			spin_lock_irq(&tree->lock);
8902 			set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8903 			new_len = start - ordered->file_offset;
8904 			if (new_len < ordered->truncated_len)
8905 				ordered->truncated_len = new_len;
8906 			spin_unlock_irq(&tree->lock);
8907 
8908 			if (btrfs_dec_test_ordered_pending(inode, &ordered,
8909 							   start,
8910 							   end - start + 1, 1))
8911 				btrfs_finish_ordered_io(ordered);
8912 		}
8913 		btrfs_put_ordered_extent(ordered);
8914 		if (!inode_evicting) {
8915 			cached_state = NULL;
8916 			lock_extent_bits(tree, start, end,
8917 					 &cached_state);
8918 		}
8919 
8920 		start = end + 1;
8921 		if (start < page_end)
8922 			goto again;
8923 	}
8924 
8925 	/*
8926 	 * Qgroup reserved space handler
8927 	 * Page here will be either
8928 	 * 1) Already written to disk or ordered extent already submitted
8929 	 *    Then its QGROUP_RESERVED bit in io_tree is already cleaned.
8930 	 *    Qgroup will be handled by its qgroup_record then.
8931 	 *    btrfs_qgroup_free_data() call will do nothing here.
8932 	 *
8933 	 * 2) Not written to disk yet
8934 	 *    Then btrfs_qgroup_free_data() call will clear the QGROUP_RESERVED
8935 	 *    bit of its io_tree, and free the qgroup reserved data space.
8936 	 *    Since the IO will never happen for this page.
8937 	 */
8938 	btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
8939 	if (!inode_evicting) {
8940 		clear_extent_bit(tree, page_start, page_end,
8941 				 EXTENT_LOCKED | EXTENT_DIRTY |
8942 				 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8943 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
8944 				 &cached_state);
8945 
8946 		__btrfs_releasepage(page, GFP_NOFS);
8947 	}
8948 
8949 	ClearPageChecked(page);
8950 	if (PagePrivate(page)) {
8951 		ClearPagePrivate(page);
8952 		set_page_private(page, 0);
8953 		put_page(page);
8954 	}
8955 }
8956 
8957 /*
8958  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8959  * called from a page fault handler when a page is first dirtied. Hence we must
8960  * be careful to check for EOF conditions here. We set the page up correctly
8961  * for a written page which means we get ENOSPC checking when writing into
8962  * holes and correct delalloc and unwritten extent mapping on filesystems that
8963  * support these features.
8964  *
8965  * We are not allowed to take the i_mutex here so we have to play games to
8966  * protect against truncate races as the page could now be beyond EOF.  Because
8967  * truncate_setsize() writes the inode size before removing pages, once we have
8968  * the page lock we can determine safely if the page is beyond EOF. If it is not
8969  * beyond EOF, then the page is guaranteed safe against truncation until we
8970  * unlock the page.
8971  */
btrfs_page_mkwrite(struct vm_fault * vmf)8972 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8973 {
8974 	struct page *page = vmf->page;
8975 	struct inode *inode = file_inode(vmf->vma->vm_file);
8976 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8977 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8978 	struct btrfs_ordered_extent *ordered;
8979 	struct extent_state *cached_state = NULL;
8980 	struct extent_changeset *data_reserved = NULL;
8981 	char *kaddr;
8982 	unsigned long zero_start;
8983 	loff_t size;
8984 	vm_fault_t ret;
8985 	int ret2;
8986 	int reserved = 0;
8987 	u64 reserved_space;
8988 	u64 page_start;
8989 	u64 page_end;
8990 	u64 end;
8991 
8992 	reserved_space = PAGE_SIZE;
8993 
8994 	sb_start_pagefault(inode->i_sb);
8995 	page_start = page_offset(page);
8996 	page_end = page_start + PAGE_SIZE - 1;
8997 	end = page_end;
8998 
8999 	/*
9000 	 * Reserving delalloc space after obtaining the page lock can lead to
9001 	 * deadlock. For example, if a dirty page is locked by this function
9002 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
9003 	 * dirty page write out, then the btrfs_writepage() function could
9004 	 * end up waiting indefinitely to get a lock on the page currently
9005 	 * being processed by btrfs_page_mkwrite() function.
9006 	 */
9007 	ret2 = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
9008 					   reserved_space);
9009 	if (!ret2) {
9010 		ret2 = file_update_time(vmf->vma->vm_file);
9011 		reserved = 1;
9012 	}
9013 	if (ret2) {
9014 		ret = vmf_error(ret2);
9015 		if (reserved)
9016 			goto out;
9017 		goto out_noreserve;
9018 	}
9019 
9020 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
9021 again:
9022 	lock_page(page);
9023 	size = i_size_read(inode);
9024 
9025 	if ((page->mapping != inode->i_mapping) ||
9026 	    (page_start >= size)) {
9027 		/* page got truncated out from underneath us */
9028 		goto out_unlock;
9029 	}
9030 	wait_on_page_writeback(page);
9031 
9032 	lock_extent_bits(io_tree, page_start, page_end, &cached_state);
9033 	set_page_extent_mapped(page);
9034 
9035 	/*
9036 	 * we can't set the delalloc bits if there are pending ordered
9037 	 * extents.  Drop our locks and wait for them to finish
9038 	 */
9039 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
9040 			PAGE_SIZE);
9041 	if (ordered) {
9042 		unlock_extent_cached(io_tree, page_start, page_end,
9043 				     &cached_state);
9044 		unlock_page(page);
9045 		btrfs_start_ordered_extent(inode, ordered, 1);
9046 		btrfs_put_ordered_extent(ordered);
9047 		goto again;
9048 	}
9049 
9050 	if (page->index == ((size - 1) >> PAGE_SHIFT)) {
9051 		reserved_space = round_up(size - page_start,
9052 					  fs_info->sectorsize);
9053 		if (reserved_space < PAGE_SIZE) {
9054 			end = page_start + reserved_space - 1;
9055 			btrfs_delalloc_release_space(inode, data_reserved,
9056 					page_start, PAGE_SIZE - reserved_space,
9057 					true);
9058 		}
9059 	}
9060 
9061 	/*
9062 	 * page_mkwrite gets called when the page is firstly dirtied after it's
9063 	 * faulted in, but write(2) could also dirty a page and set delalloc
9064 	 * bits, thus in this case for space account reason, we still need to
9065 	 * clear any delalloc bits within this page range since we have to
9066 	 * reserve data&meta space before lock_page() (see above comments).
9067 	 */
9068 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9069 			  EXTENT_DIRTY | EXTENT_DELALLOC |
9070 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
9071 			  0, 0, &cached_state);
9072 
9073 	ret2 = btrfs_set_extent_delalloc(inode, page_start, end, 0,
9074 					&cached_state, 0);
9075 	if (ret2) {
9076 		unlock_extent_cached(io_tree, page_start, page_end,
9077 				     &cached_state);
9078 		ret = VM_FAULT_SIGBUS;
9079 		goto out_unlock;
9080 	}
9081 	ret2 = 0;
9082 
9083 	/* page is wholly or partially inside EOF */
9084 	if (page_start + PAGE_SIZE > size)
9085 		zero_start = size & ~PAGE_MASK;
9086 	else
9087 		zero_start = PAGE_SIZE;
9088 
9089 	if (zero_start != PAGE_SIZE) {
9090 		kaddr = kmap(page);
9091 		memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
9092 		flush_dcache_page(page);
9093 		kunmap(page);
9094 	}
9095 	ClearPageChecked(page);
9096 	set_page_dirty(page);
9097 	SetPageUptodate(page);
9098 
9099 	BTRFS_I(inode)->last_trans = fs_info->generation;
9100 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
9101 	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
9102 
9103 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
9104 
9105 	if (!ret2) {
9106 		btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
9107 		sb_end_pagefault(inode->i_sb);
9108 		extent_changeset_free(data_reserved);
9109 		return VM_FAULT_LOCKED;
9110 	}
9111 
9112 out_unlock:
9113 	unlock_page(page);
9114 out:
9115 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
9116 	btrfs_delalloc_release_space(inode, data_reserved, page_start,
9117 				     reserved_space, (ret != 0));
9118 out_noreserve:
9119 	sb_end_pagefault(inode->i_sb);
9120 	extent_changeset_free(data_reserved);
9121 	return ret;
9122 }
9123 
btrfs_truncate(struct inode * inode,bool skip_writeback)9124 static int btrfs_truncate(struct inode *inode, bool skip_writeback)
9125 {
9126 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9127 	struct btrfs_root *root = BTRFS_I(inode)->root;
9128 	struct btrfs_block_rsv *rsv;
9129 	int ret;
9130 	struct btrfs_trans_handle *trans;
9131 	u64 mask = fs_info->sectorsize - 1;
9132 	u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
9133 
9134 	if (!skip_writeback) {
9135 		ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9136 					       (u64)-1);
9137 		if (ret)
9138 			return ret;
9139 	}
9140 
9141 	/*
9142 	 * Yes ladies and gentlemen, this is indeed ugly.  We have a couple of
9143 	 * things going on here:
9144 	 *
9145 	 * 1) We need to reserve space to update our inode.
9146 	 *
9147 	 * 2) We need to have something to cache all the space that is going to
9148 	 * be free'd up by the truncate operation, but also have some slack
9149 	 * space reserved in case it uses space during the truncate (thank you
9150 	 * very much snapshotting).
9151 	 *
9152 	 * And we need these to be separate.  The fact is we can use a lot of
9153 	 * space doing the truncate, and we have no earthly idea how much space
9154 	 * we will use, so we need the truncate reservation to be separate so it
9155 	 * doesn't end up using space reserved for updating the inode.  We also
9156 	 * need to be able to stop the transaction and start a new one, which
9157 	 * means we need to be able to update the inode several times, and we
9158 	 * have no idea of knowing how many times that will be, so we can't just
9159 	 * reserve 1 item for the entirety of the operation, so that has to be
9160 	 * done separately as well.
9161 	 *
9162 	 * So that leaves us with
9163 	 *
9164 	 * 1) rsv - for the truncate reservation, which we will steal from the
9165 	 * transaction reservation.
9166 	 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
9167 	 * updating the inode.
9168 	 */
9169 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
9170 	if (!rsv)
9171 		return -ENOMEM;
9172 	rsv->size = min_size;
9173 	rsv->failfast = 1;
9174 
9175 	/*
9176 	 * 1 for the truncate slack space
9177 	 * 1 for updating the inode.
9178 	 */
9179 	trans = btrfs_start_transaction(root, 2);
9180 	if (IS_ERR(trans)) {
9181 		ret = PTR_ERR(trans);
9182 		goto out;
9183 	}
9184 
9185 	/* Migrate the slack space for the truncate to our reserve */
9186 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
9187 				      min_size, 0);
9188 	BUG_ON(ret);
9189 
9190 	/*
9191 	 * So if we truncate and then write and fsync we normally would just
9192 	 * write the extents that changed, which is a problem if we need to
9193 	 * first truncate that entire inode.  So set this flag so we write out
9194 	 * all of the extents in the inode to the sync log so we're completely
9195 	 * safe.
9196 	 */
9197 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
9198 	trans->block_rsv = rsv;
9199 
9200 	while (1) {
9201 		ret = btrfs_truncate_inode_items(trans, root, inode,
9202 						 inode->i_size,
9203 						 BTRFS_EXTENT_DATA_KEY);
9204 		trans->block_rsv = &fs_info->trans_block_rsv;
9205 		if (ret != -ENOSPC && ret != -EAGAIN)
9206 			break;
9207 
9208 		ret = btrfs_update_inode(trans, root, inode);
9209 		if (ret)
9210 			break;
9211 
9212 		btrfs_end_transaction(trans);
9213 		btrfs_btree_balance_dirty(fs_info);
9214 
9215 		trans = btrfs_start_transaction(root, 2);
9216 		if (IS_ERR(trans)) {
9217 			ret = PTR_ERR(trans);
9218 			trans = NULL;
9219 			break;
9220 		}
9221 
9222 		btrfs_block_rsv_release(fs_info, rsv, -1);
9223 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
9224 					      rsv, min_size, 0);
9225 		BUG_ON(ret);	/* shouldn't happen */
9226 		trans->block_rsv = rsv;
9227 	}
9228 
9229 	/*
9230 	 * We can't call btrfs_truncate_block inside a trans handle as we could
9231 	 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
9232 	 * we've truncated everything except the last little bit, and can do
9233 	 * btrfs_truncate_block and then update the disk_i_size.
9234 	 */
9235 	if (ret == NEED_TRUNCATE_BLOCK) {
9236 		btrfs_end_transaction(trans);
9237 		btrfs_btree_balance_dirty(fs_info);
9238 
9239 		ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
9240 		if (ret)
9241 			goto out;
9242 		trans = btrfs_start_transaction(root, 1);
9243 		if (IS_ERR(trans)) {
9244 			ret = PTR_ERR(trans);
9245 			goto out;
9246 		}
9247 		btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
9248 	}
9249 
9250 	if (trans) {
9251 		int ret2;
9252 
9253 		trans->block_rsv = &fs_info->trans_block_rsv;
9254 		ret2 = btrfs_update_inode(trans, root, inode);
9255 		if (ret2 && !ret)
9256 			ret = ret2;
9257 
9258 		ret2 = btrfs_end_transaction(trans);
9259 		if (ret2 && !ret)
9260 			ret = ret2;
9261 		btrfs_btree_balance_dirty(fs_info);
9262 	}
9263 out:
9264 	btrfs_free_block_rsv(fs_info, rsv);
9265 
9266 	return ret;
9267 }
9268 
9269 /*
9270  * create a new subvolume directory/inode (helper for the ioctl).
9271  */
btrfs_create_subvol_root(struct btrfs_trans_handle * trans,struct btrfs_root * new_root,struct btrfs_root * parent_root,u64 new_dirid)9272 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
9273 			     struct btrfs_root *new_root,
9274 			     struct btrfs_root *parent_root,
9275 			     u64 new_dirid)
9276 {
9277 	struct inode *inode;
9278 	int err;
9279 	u64 index = 0;
9280 
9281 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9282 				new_dirid, new_dirid,
9283 				S_IFDIR | (~current_umask() & S_IRWXUGO),
9284 				&index);
9285 	if (IS_ERR(inode))
9286 		return PTR_ERR(inode);
9287 	inode->i_op = &btrfs_dir_inode_operations;
9288 	inode->i_fop = &btrfs_dir_file_operations;
9289 
9290 	set_nlink(inode, 1);
9291 	btrfs_i_size_write(BTRFS_I(inode), 0);
9292 	unlock_new_inode(inode);
9293 
9294 	err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9295 	if (err)
9296 		btrfs_err(new_root->fs_info,
9297 			  "error inheriting subvolume %llu properties: %d",
9298 			  new_root->root_key.objectid, err);
9299 
9300 	err = btrfs_update_inode(trans, new_root, inode);
9301 
9302 	iput(inode);
9303 	return err;
9304 }
9305 
btrfs_alloc_inode(struct super_block * sb)9306 struct inode *btrfs_alloc_inode(struct super_block *sb)
9307 {
9308 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
9309 	struct btrfs_inode *ei;
9310 	struct inode *inode;
9311 
9312 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
9313 	if (!ei)
9314 		return NULL;
9315 
9316 	ei->root = NULL;
9317 	ei->generation = 0;
9318 	ei->last_trans = 0;
9319 	ei->last_sub_trans = 0;
9320 	ei->logged_trans = 0;
9321 	ei->delalloc_bytes = 0;
9322 	ei->new_delalloc_bytes = 0;
9323 	ei->defrag_bytes = 0;
9324 	ei->disk_i_size = 0;
9325 	ei->flags = 0;
9326 	ei->csum_bytes = 0;
9327 	ei->index_cnt = (u64)-1;
9328 	ei->dir_index = 0;
9329 	ei->last_unlink_trans = 0;
9330 	ei->last_link_trans = 0;
9331 	ei->last_log_commit = 0;
9332 
9333 	spin_lock_init(&ei->lock);
9334 	ei->outstanding_extents = 0;
9335 	if (sb->s_magic != BTRFS_TEST_MAGIC)
9336 		btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
9337 					      BTRFS_BLOCK_RSV_DELALLOC);
9338 	ei->runtime_flags = 0;
9339 	ei->prop_compress = BTRFS_COMPRESS_NONE;
9340 	ei->defrag_compress = BTRFS_COMPRESS_NONE;
9341 
9342 	ei->delayed_node = NULL;
9343 
9344 	ei->i_otime.tv_sec = 0;
9345 	ei->i_otime.tv_nsec = 0;
9346 
9347 	inode = &ei->vfs_inode;
9348 	extent_map_tree_init(&ei->extent_tree);
9349 	extent_io_tree_init(&ei->io_tree, inode);
9350 	extent_io_tree_init(&ei->io_failure_tree, inode);
9351 	ei->io_tree.track_uptodate = 1;
9352 	ei->io_failure_tree.track_uptodate = 1;
9353 	atomic_set(&ei->sync_writers, 0);
9354 	mutex_init(&ei->log_mutex);
9355 	mutex_init(&ei->delalloc_mutex);
9356 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9357 	INIT_LIST_HEAD(&ei->delalloc_inodes);
9358 	INIT_LIST_HEAD(&ei->delayed_iput);
9359 	RB_CLEAR_NODE(&ei->rb_node);
9360 	init_rwsem(&ei->dio_sem);
9361 
9362 	return inode;
9363 }
9364 
9365 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
btrfs_test_destroy_inode(struct inode * inode)9366 void btrfs_test_destroy_inode(struct inode *inode)
9367 {
9368 	btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9369 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9370 }
9371 #endif
9372 
btrfs_i_callback(struct rcu_head * head)9373 static void btrfs_i_callback(struct rcu_head *head)
9374 {
9375 	struct inode *inode = container_of(head, struct inode, i_rcu);
9376 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9377 }
9378 
btrfs_destroy_inode(struct inode * inode)9379 void btrfs_destroy_inode(struct inode *inode)
9380 {
9381 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9382 	struct btrfs_ordered_extent *ordered;
9383 	struct btrfs_root *root = BTRFS_I(inode)->root;
9384 
9385 	WARN_ON(!hlist_empty(&inode->i_dentry));
9386 	WARN_ON(inode->i_data.nrpages);
9387 	WARN_ON(BTRFS_I(inode)->block_rsv.reserved);
9388 	WARN_ON(BTRFS_I(inode)->block_rsv.size);
9389 	WARN_ON(BTRFS_I(inode)->outstanding_extents);
9390 	WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9391 	WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
9392 	WARN_ON(BTRFS_I(inode)->csum_bytes);
9393 	WARN_ON(BTRFS_I(inode)->defrag_bytes);
9394 
9395 	/*
9396 	 * This can happen where we create an inode, but somebody else also
9397 	 * created the same inode and we need to destroy the one we already
9398 	 * created.
9399 	 */
9400 	if (!root)
9401 		goto free;
9402 
9403 	while (1) {
9404 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9405 		if (!ordered)
9406 			break;
9407 		else {
9408 			btrfs_err(fs_info,
9409 				  "found ordered extent %llu %llu on inode cleanup",
9410 				  ordered->file_offset, ordered->len);
9411 			btrfs_remove_ordered_extent(inode, ordered);
9412 			btrfs_put_ordered_extent(ordered);
9413 			btrfs_put_ordered_extent(ordered);
9414 		}
9415 	}
9416 	btrfs_qgroup_check_reserved_leak(inode);
9417 	inode_tree_del(inode);
9418 	btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9419 free:
9420 	call_rcu(&inode->i_rcu, btrfs_i_callback);
9421 }
9422 
btrfs_drop_inode(struct inode * inode)9423 int btrfs_drop_inode(struct inode *inode)
9424 {
9425 	struct btrfs_root *root = BTRFS_I(inode)->root;
9426 
9427 	if (root == NULL)
9428 		return 1;
9429 
9430 	/* the snap/subvol tree is on deleting */
9431 	if (btrfs_root_refs(&root->root_item) == 0)
9432 		return 1;
9433 	else
9434 		return generic_drop_inode(inode);
9435 }
9436 
init_once(void * foo)9437 static void init_once(void *foo)
9438 {
9439 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9440 
9441 	inode_init_once(&ei->vfs_inode);
9442 }
9443 
btrfs_destroy_cachep(void)9444 void __cold btrfs_destroy_cachep(void)
9445 {
9446 	/*
9447 	 * Make sure all delayed rcu free inodes are flushed before we
9448 	 * destroy cache.
9449 	 */
9450 	rcu_barrier();
9451 	kmem_cache_destroy(btrfs_inode_cachep);
9452 	kmem_cache_destroy(btrfs_trans_handle_cachep);
9453 	kmem_cache_destroy(btrfs_path_cachep);
9454 	kmem_cache_destroy(btrfs_free_space_cachep);
9455 	kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
9456 }
9457 
btrfs_init_cachep(void)9458 int __init btrfs_init_cachep(void)
9459 {
9460 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9461 			sizeof(struct btrfs_inode), 0,
9462 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9463 			init_once);
9464 	if (!btrfs_inode_cachep)
9465 		goto fail;
9466 
9467 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9468 			sizeof(struct btrfs_trans_handle), 0,
9469 			SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9470 	if (!btrfs_trans_handle_cachep)
9471 		goto fail;
9472 
9473 	btrfs_path_cachep = kmem_cache_create("btrfs_path",
9474 			sizeof(struct btrfs_path), 0,
9475 			SLAB_MEM_SPREAD, NULL);
9476 	if (!btrfs_path_cachep)
9477 		goto fail;
9478 
9479 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9480 			sizeof(struct btrfs_free_space), 0,
9481 			SLAB_MEM_SPREAD, NULL);
9482 	if (!btrfs_free_space_cachep)
9483 		goto fail;
9484 
9485 	btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
9486 							PAGE_SIZE, PAGE_SIZE,
9487 							SLAB_MEM_SPREAD, NULL);
9488 	if (!btrfs_free_space_bitmap_cachep)
9489 		goto fail;
9490 
9491 	return 0;
9492 fail:
9493 	btrfs_destroy_cachep();
9494 	return -ENOMEM;
9495 }
9496 
btrfs_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int flags)9497 static int btrfs_getattr(const struct path *path, struct kstat *stat,
9498 			 u32 request_mask, unsigned int flags)
9499 {
9500 	u64 delalloc_bytes;
9501 	struct inode *inode = d_inode(path->dentry);
9502 	u32 blocksize = inode->i_sb->s_blocksize;
9503 	u32 bi_flags = BTRFS_I(inode)->flags;
9504 
9505 	stat->result_mask |= STATX_BTIME;
9506 	stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9507 	stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9508 	if (bi_flags & BTRFS_INODE_APPEND)
9509 		stat->attributes |= STATX_ATTR_APPEND;
9510 	if (bi_flags & BTRFS_INODE_COMPRESS)
9511 		stat->attributes |= STATX_ATTR_COMPRESSED;
9512 	if (bi_flags & BTRFS_INODE_IMMUTABLE)
9513 		stat->attributes |= STATX_ATTR_IMMUTABLE;
9514 	if (bi_flags & BTRFS_INODE_NODUMP)
9515 		stat->attributes |= STATX_ATTR_NODUMP;
9516 
9517 	stat->attributes_mask |= (STATX_ATTR_APPEND |
9518 				  STATX_ATTR_COMPRESSED |
9519 				  STATX_ATTR_IMMUTABLE |
9520 				  STATX_ATTR_NODUMP);
9521 
9522 	generic_fillattr(inode, stat);
9523 	stat->dev = BTRFS_I(inode)->root->anon_dev;
9524 
9525 	spin_lock(&BTRFS_I(inode)->lock);
9526 	delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
9527 	spin_unlock(&BTRFS_I(inode)->lock);
9528 	stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9529 			ALIGN(delalloc_bytes, blocksize)) >> 9;
9530 	return 0;
9531 }
9532 
btrfs_rename_exchange(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)9533 static int btrfs_rename_exchange(struct inode *old_dir,
9534 			      struct dentry *old_dentry,
9535 			      struct inode *new_dir,
9536 			      struct dentry *new_dentry)
9537 {
9538 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9539 	struct btrfs_trans_handle *trans;
9540 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9541 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9542 	struct inode *new_inode = new_dentry->d_inode;
9543 	struct inode *old_inode = old_dentry->d_inode;
9544 	struct timespec64 ctime = current_time(old_inode);
9545 	struct dentry *parent;
9546 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9547 	u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
9548 	u64 old_idx = 0;
9549 	u64 new_idx = 0;
9550 	int ret;
9551 	bool root_log_pinned = false;
9552 	bool dest_log_pinned = false;
9553 	struct btrfs_log_ctx ctx_root;
9554 	struct btrfs_log_ctx ctx_dest;
9555 	bool sync_log_root = false;
9556 	bool sync_log_dest = false;
9557 	bool commit_transaction = false;
9558 
9559 	/*
9560 	 * For non-subvolumes allow exchange only within one subvolume, in the
9561 	 * same inode namespace. Two subvolumes (represented as directory) can
9562 	 * be exchanged as they're a logical link and have a fixed inode number.
9563 	 */
9564 	if (root != dest &&
9565 	    (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
9566 	     new_ino != BTRFS_FIRST_FREE_OBJECTID))
9567 		return -EXDEV;
9568 
9569 	btrfs_init_log_ctx(&ctx_root, old_inode);
9570 	btrfs_init_log_ctx(&ctx_dest, new_inode);
9571 
9572 	/* close the race window with snapshot create/destroy ioctl */
9573 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
9574 	    new_ino == BTRFS_FIRST_FREE_OBJECTID)
9575 		down_read(&fs_info->subvol_sem);
9576 
9577 	/*
9578 	 * We want to reserve the absolute worst case amount of items.  So if
9579 	 * both inodes are subvols and we need to unlink them then that would
9580 	 * require 4 item modifications, but if they are both normal inodes it
9581 	 * would require 5 item modifications, so we'll assume their normal
9582 	 * inodes.  So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9583 	 * should cover the worst case number of items we'll modify.
9584 	 */
9585 	trans = btrfs_start_transaction(root, 12);
9586 	if (IS_ERR(trans)) {
9587 		ret = PTR_ERR(trans);
9588 		goto out_notrans;
9589 	}
9590 
9591 	if (dest != root)
9592 		btrfs_record_root_in_trans(trans, dest);
9593 
9594 	/*
9595 	 * We need to find a free sequence number both in the source and
9596 	 * in the destination directory for the exchange.
9597 	 */
9598 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
9599 	if (ret)
9600 		goto out_fail;
9601 	ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
9602 	if (ret)
9603 		goto out_fail;
9604 
9605 	BTRFS_I(old_inode)->dir_index = 0ULL;
9606 	BTRFS_I(new_inode)->dir_index = 0ULL;
9607 
9608 	/* Reference for the source. */
9609 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9610 		/* force full log commit if subvolume involved. */
9611 		btrfs_set_log_full_commit(fs_info, trans);
9612 	} else {
9613 		btrfs_pin_log_trans(root);
9614 		root_log_pinned = true;
9615 		ret = btrfs_insert_inode_ref(trans, dest,
9616 					     new_dentry->d_name.name,
9617 					     new_dentry->d_name.len,
9618 					     old_ino,
9619 					     btrfs_ino(BTRFS_I(new_dir)),
9620 					     old_idx);
9621 		if (ret)
9622 			goto out_fail;
9623 	}
9624 
9625 	/* And now for the dest. */
9626 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9627 		/* force full log commit if subvolume involved. */
9628 		btrfs_set_log_full_commit(fs_info, trans);
9629 	} else {
9630 		btrfs_pin_log_trans(dest);
9631 		dest_log_pinned = true;
9632 		ret = btrfs_insert_inode_ref(trans, root,
9633 					     old_dentry->d_name.name,
9634 					     old_dentry->d_name.len,
9635 					     new_ino,
9636 					     btrfs_ino(BTRFS_I(old_dir)),
9637 					     new_idx);
9638 		if (ret)
9639 			goto out_fail;
9640 	}
9641 
9642 	/* Update inode version and ctime/mtime. */
9643 	inode_inc_iversion(old_dir);
9644 	inode_inc_iversion(new_dir);
9645 	inode_inc_iversion(old_inode);
9646 	inode_inc_iversion(new_inode);
9647 	old_dir->i_ctime = old_dir->i_mtime = ctime;
9648 	new_dir->i_ctime = new_dir->i_mtime = ctime;
9649 	old_inode->i_ctime = ctime;
9650 	new_inode->i_ctime = ctime;
9651 
9652 	if (old_dentry->d_parent != new_dentry->d_parent) {
9653 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9654 				BTRFS_I(old_inode), 1);
9655 		btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9656 				BTRFS_I(new_inode), 1);
9657 	}
9658 
9659 	/* src is a subvolume */
9660 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9661 		ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9662 	} else { /* src is an inode */
9663 		ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9664 					   BTRFS_I(old_dentry->d_inode),
9665 					   old_dentry->d_name.name,
9666 					   old_dentry->d_name.len);
9667 		if (!ret)
9668 			ret = btrfs_update_inode(trans, root, old_inode);
9669 	}
9670 	if (ret) {
9671 		btrfs_abort_transaction(trans, ret);
9672 		goto out_fail;
9673 	}
9674 
9675 	/* dest is a subvolume */
9676 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9677 		ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
9678 	} else { /* dest is an inode */
9679 		ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9680 					   BTRFS_I(new_dentry->d_inode),
9681 					   new_dentry->d_name.name,
9682 					   new_dentry->d_name.len);
9683 		if (!ret)
9684 			ret = btrfs_update_inode(trans, dest, new_inode);
9685 	}
9686 	if (ret) {
9687 		btrfs_abort_transaction(trans, ret);
9688 		goto out_fail;
9689 	}
9690 
9691 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9692 			     new_dentry->d_name.name,
9693 			     new_dentry->d_name.len, 0, old_idx);
9694 	if (ret) {
9695 		btrfs_abort_transaction(trans, ret);
9696 		goto out_fail;
9697 	}
9698 
9699 	ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9700 			     old_dentry->d_name.name,
9701 			     old_dentry->d_name.len, 0, new_idx);
9702 	if (ret) {
9703 		btrfs_abort_transaction(trans, ret);
9704 		goto out_fail;
9705 	}
9706 
9707 	if (old_inode->i_nlink == 1)
9708 		BTRFS_I(old_inode)->dir_index = old_idx;
9709 	if (new_inode->i_nlink == 1)
9710 		BTRFS_I(new_inode)->dir_index = new_idx;
9711 
9712 	if (root_log_pinned) {
9713 		parent = new_dentry->d_parent;
9714 		ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
9715 					 BTRFS_I(old_dir), parent,
9716 					 false, &ctx_root);
9717 		if (ret == BTRFS_NEED_LOG_SYNC)
9718 			sync_log_root = true;
9719 		else if (ret == BTRFS_NEED_TRANS_COMMIT)
9720 			commit_transaction = true;
9721 		ret = 0;
9722 		btrfs_end_log_trans(root);
9723 		root_log_pinned = false;
9724 	}
9725 	if (dest_log_pinned) {
9726 		if (!commit_transaction) {
9727 			parent = old_dentry->d_parent;
9728 			ret = btrfs_log_new_name(trans, BTRFS_I(new_inode),
9729 						 BTRFS_I(new_dir), parent,
9730 						 false, &ctx_dest);
9731 			if (ret == BTRFS_NEED_LOG_SYNC)
9732 				sync_log_dest = true;
9733 			else if (ret == BTRFS_NEED_TRANS_COMMIT)
9734 				commit_transaction = true;
9735 			ret = 0;
9736 		}
9737 		btrfs_end_log_trans(dest);
9738 		dest_log_pinned = false;
9739 	}
9740 out_fail:
9741 	/*
9742 	 * If we have pinned a log and an error happened, we unpin tasks
9743 	 * trying to sync the log and force them to fallback to a transaction
9744 	 * commit if the log currently contains any of the inodes involved in
9745 	 * this rename operation (to ensure we do not persist a log with an
9746 	 * inconsistent state for any of these inodes or leading to any
9747 	 * inconsistencies when replayed). If the transaction was aborted, the
9748 	 * abortion reason is propagated to userspace when attempting to commit
9749 	 * the transaction. If the log does not contain any of these inodes, we
9750 	 * allow the tasks to sync it.
9751 	 */
9752 	if (ret && (root_log_pinned || dest_log_pinned)) {
9753 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9754 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9755 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9756 		    (new_inode &&
9757 		     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9758 			btrfs_set_log_full_commit(fs_info, trans);
9759 
9760 		if (root_log_pinned) {
9761 			btrfs_end_log_trans(root);
9762 			root_log_pinned = false;
9763 		}
9764 		if (dest_log_pinned) {
9765 			btrfs_end_log_trans(dest);
9766 			dest_log_pinned = false;
9767 		}
9768 	}
9769 	if (!ret && sync_log_root && !commit_transaction) {
9770 		ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root,
9771 				     &ctx_root);
9772 		if (ret)
9773 			commit_transaction = true;
9774 	}
9775 	if (!ret && sync_log_dest && !commit_transaction) {
9776 		ret = btrfs_sync_log(trans, BTRFS_I(new_inode)->root,
9777 				     &ctx_dest);
9778 		if (ret)
9779 			commit_transaction = true;
9780 	}
9781 	if (commit_transaction) {
9782 		/*
9783 		 * We may have set commit_transaction when logging the new name
9784 		 * in the destination root, in which case we left the source
9785 		 * root context in the list of log contextes. So make sure we
9786 		 * remove it to avoid invalid memory accesses, since the context
9787 		 * was allocated in our stack frame.
9788 		 */
9789 		if (sync_log_root) {
9790 			mutex_lock(&root->log_mutex);
9791 			list_del_init(&ctx_root.list);
9792 			mutex_unlock(&root->log_mutex);
9793 		}
9794 		ret = btrfs_commit_transaction(trans);
9795 	} else {
9796 		int ret2;
9797 
9798 		ret2 = btrfs_end_transaction(trans);
9799 		ret = ret ? ret : ret2;
9800 	}
9801 out_notrans:
9802 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
9803 	    old_ino == BTRFS_FIRST_FREE_OBJECTID)
9804 		up_read(&fs_info->subvol_sem);
9805 
9806 	ASSERT(list_empty(&ctx_root.list));
9807 	ASSERT(list_empty(&ctx_dest.list));
9808 
9809 	return ret;
9810 }
9811 
btrfs_whiteout_for_rename(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * dir,struct dentry * dentry)9812 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9813 				     struct btrfs_root *root,
9814 				     struct inode *dir,
9815 				     struct dentry *dentry)
9816 {
9817 	int ret;
9818 	struct inode *inode;
9819 	u64 objectid;
9820 	u64 index;
9821 
9822 	ret = btrfs_find_free_objectid(root, &objectid);
9823 	if (ret)
9824 		return ret;
9825 
9826 	inode = btrfs_new_inode(trans, root, dir,
9827 				dentry->d_name.name,
9828 				dentry->d_name.len,
9829 				btrfs_ino(BTRFS_I(dir)),
9830 				objectid,
9831 				S_IFCHR | WHITEOUT_MODE,
9832 				&index);
9833 
9834 	if (IS_ERR(inode)) {
9835 		ret = PTR_ERR(inode);
9836 		return ret;
9837 	}
9838 
9839 	inode->i_op = &btrfs_special_inode_operations;
9840 	init_special_inode(inode, inode->i_mode,
9841 		WHITEOUT_DEV);
9842 
9843 	ret = btrfs_init_inode_security(trans, inode, dir,
9844 				&dentry->d_name);
9845 	if (ret)
9846 		goto out;
9847 
9848 	ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9849 				BTRFS_I(inode), 0, index);
9850 	if (ret)
9851 		goto out;
9852 
9853 	ret = btrfs_update_inode(trans, root, inode);
9854 out:
9855 	unlock_new_inode(inode);
9856 	if (ret)
9857 		inode_dec_link_count(inode);
9858 	iput(inode);
9859 
9860 	return ret;
9861 }
9862 
btrfs_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)9863 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9864 			   struct inode *new_dir, struct dentry *new_dentry,
9865 			   unsigned int flags)
9866 {
9867 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9868 	struct btrfs_trans_handle *trans;
9869 	unsigned int trans_num_items;
9870 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9871 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9872 	struct inode *new_inode = d_inode(new_dentry);
9873 	struct inode *old_inode = d_inode(old_dentry);
9874 	u64 index = 0;
9875 	int ret;
9876 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9877 	bool log_pinned = false;
9878 	struct btrfs_log_ctx ctx;
9879 	bool sync_log = false;
9880 	bool commit_transaction = false;
9881 
9882 	if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9883 		return -EPERM;
9884 
9885 	/* we only allow rename subvolume link between subvolumes */
9886 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9887 		return -EXDEV;
9888 
9889 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9890 	    (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9891 		return -ENOTEMPTY;
9892 
9893 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
9894 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9895 		return -ENOTEMPTY;
9896 
9897 
9898 	/* check for collisions, even if the  name isn't there */
9899 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9900 			     new_dentry->d_name.name,
9901 			     new_dentry->d_name.len);
9902 
9903 	if (ret) {
9904 		if (ret == -EEXIST) {
9905 			/* we shouldn't get
9906 			 * eexist without a new_inode */
9907 			if (WARN_ON(!new_inode)) {
9908 				return ret;
9909 			}
9910 		} else {
9911 			/* maybe -EOVERFLOW */
9912 			return ret;
9913 		}
9914 	}
9915 	ret = 0;
9916 
9917 	/*
9918 	 * we're using rename to replace one file with another.  Start IO on it
9919 	 * now so  we don't add too much work to the end of the transaction
9920 	 */
9921 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9922 		filemap_flush(old_inode->i_mapping);
9923 
9924 	/* close the racy window with snapshot create/destroy ioctl */
9925 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9926 		down_read(&fs_info->subvol_sem);
9927 	/*
9928 	 * We want to reserve the absolute worst case amount of items.  So if
9929 	 * both inodes are subvols and we need to unlink them then that would
9930 	 * require 4 item modifications, but if they are both normal inodes it
9931 	 * would require 5 item modifications, so we'll assume they are normal
9932 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9933 	 * should cover the worst case number of items we'll modify.
9934 	 * If our rename has the whiteout flag, we need more 5 units for the
9935 	 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9936 	 * when selinux is enabled).
9937 	 */
9938 	trans_num_items = 11;
9939 	if (flags & RENAME_WHITEOUT)
9940 		trans_num_items += 5;
9941 	trans = btrfs_start_transaction(root, trans_num_items);
9942 	if (IS_ERR(trans)) {
9943 		ret = PTR_ERR(trans);
9944 		goto out_notrans;
9945 	}
9946 
9947 	if (dest != root)
9948 		btrfs_record_root_in_trans(trans, dest);
9949 
9950 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9951 	if (ret)
9952 		goto out_fail;
9953 
9954 	BTRFS_I(old_inode)->dir_index = 0ULL;
9955 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9956 		/* force full log commit if subvolume involved. */
9957 		btrfs_set_log_full_commit(fs_info, trans);
9958 	} else {
9959 		btrfs_pin_log_trans(root);
9960 		log_pinned = true;
9961 		ret = btrfs_insert_inode_ref(trans, dest,
9962 					     new_dentry->d_name.name,
9963 					     new_dentry->d_name.len,
9964 					     old_ino,
9965 					     btrfs_ino(BTRFS_I(new_dir)), index);
9966 		if (ret)
9967 			goto out_fail;
9968 	}
9969 
9970 	inode_inc_iversion(old_dir);
9971 	inode_inc_iversion(new_dir);
9972 	inode_inc_iversion(old_inode);
9973 	old_dir->i_ctime = old_dir->i_mtime =
9974 	new_dir->i_ctime = new_dir->i_mtime =
9975 	old_inode->i_ctime = current_time(old_dir);
9976 
9977 	if (old_dentry->d_parent != new_dentry->d_parent)
9978 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9979 				BTRFS_I(old_inode), 1);
9980 
9981 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9982 		ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9983 	} else {
9984 		ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9985 					BTRFS_I(d_inode(old_dentry)),
9986 					old_dentry->d_name.name,
9987 					old_dentry->d_name.len);
9988 		if (!ret)
9989 			ret = btrfs_update_inode(trans, root, old_inode);
9990 	}
9991 	if (ret) {
9992 		btrfs_abort_transaction(trans, ret);
9993 		goto out_fail;
9994 	}
9995 
9996 	if (new_inode) {
9997 		inode_inc_iversion(new_inode);
9998 		new_inode->i_ctime = current_time(new_inode);
9999 		if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
10000 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
10001 			ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
10002 			BUG_ON(new_inode->i_nlink == 0);
10003 		} else {
10004 			ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
10005 						 BTRFS_I(d_inode(new_dentry)),
10006 						 new_dentry->d_name.name,
10007 						 new_dentry->d_name.len);
10008 		}
10009 		if (!ret && new_inode->i_nlink == 0)
10010 			ret = btrfs_orphan_add(trans,
10011 					BTRFS_I(d_inode(new_dentry)));
10012 		if (ret) {
10013 			btrfs_abort_transaction(trans, ret);
10014 			goto out_fail;
10015 		}
10016 	}
10017 
10018 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
10019 			     new_dentry->d_name.name,
10020 			     new_dentry->d_name.len, 0, index);
10021 	if (ret) {
10022 		btrfs_abort_transaction(trans, ret);
10023 		goto out_fail;
10024 	}
10025 
10026 	if (old_inode->i_nlink == 1)
10027 		BTRFS_I(old_inode)->dir_index = index;
10028 
10029 	if (log_pinned) {
10030 		struct dentry *parent = new_dentry->d_parent;
10031 
10032 		btrfs_init_log_ctx(&ctx, old_inode);
10033 		ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
10034 					 BTRFS_I(old_dir), parent,
10035 					 false, &ctx);
10036 		if (ret == BTRFS_NEED_LOG_SYNC)
10037 			sync_log = true;
10038 		else if (ret == BTRFS_NEED_TRANS_COMMIT)
10039 			commit_transaction = true;
10040 		ret = 0;
10041 		btrfs_end_log_trans(root);
10042 		log_pinned = false;
10043 	}
10044 
10045 	if (flags & RENAME_WHITEOUT) {
10046 		ret = btrfs_whiteout_for_rename(trans, root, old_dir,
10047 						old_dentry);
10048 
10049 		if (ret) {
10050 			btrfs_abort_transaction(trans, ret);
10051 			goto out_fail;
10052 		}
10053 	}
10054 out_fail:
10055 	/*
10056 	 * If we have pinned the log and an error happened, we unpin tasks
10057 	 * trying to sync the log and force them to fallback to a transaction
10058 	 * commit if the log currently contains any of the inodes involved in
10059 	 * this rename operation (to ensure we do not persist a log with an
10060 	 * inconsistent state for any of these inodes or leading to any
10061 	 * inconsistencies when replayed). If the transaction was aborted, the
10062 	 * abortion reason is propagated to userspace when attempting to commit
10063 	 * the transaction. If the log does not contain any of these inodes, we
10064 	 * allow the tasks to sync it.
10065 	 */
10066 	if (ret && log_pinned) {
10067 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
10068 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
10069 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
10070 		    (new_inode &&
10071 		     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
10072 			btrfs_set_log_full_commit(fs_info, trans);
10073 
10074 		btrfs_end_log_trans(root);
10075 		log_pinned = false;
10076 	}
10077 	if (!ret && sync_log) {
10078 		ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, &ctx);
10079 		if (ret)
10080 			commit_transaction = true;
10081 	} else if (sync_log) {
10082 		mutex_lock(&root->log_mutex);
10083 		list_del(&ctx.list);
10084 		mutex_unlock(&root->log_mutex);
10085 	}
10086 	if (commit_transaction) {
10087 		ret = btrfs_commit_transaction(trans);
10088 	} else {
10089 		int ret2;
10090 
10091 		ret2 = btrfs_end_transaction(trans);
10092 		ret = ret ? ret : ret2;
10093 	}
10094 out_notrans:
10095 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
10096 		up_read(&fs_info->subvol_sem);
10097 
10098 	return ret;
10099 }
10100 
btrfs_rename2(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)10101 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
10102 			 struct inode *new_dir, struct dentry *new_dentry,
10103 			 unsigned int flags)
10104 {
10105 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
10106 		return -EINVAL;
10107 
10108 	if (flags & RENAME_EXCHANGE)
10109 		return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
10110 					  new_dentry);
10111 
10112 	return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
10113 }
10114 
10115 struct btrfs_delalloc_work {
10116 	struct inode *inode;
10117 	struct completion completion;
10118 	struct list_head list;
10119 	struct btrfs_work work;
10120 };
10121 
btrfs_run_delalloc_work(struct btrfs_work * work)10122 static void btrfs_run_delalloc_work(struct btrfs_work *work)
10123 {
10124 	struct btrfs_delalloc_work *delalloc_work;
10125 	struct inode *inode;
10126 
10127 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
10128 				     work);
10129 	inode = delalloc_work->inode;
10130 	filemap_flush(inode->i_mapping);
10131 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
10132 				&BTRFS_I(inode)->runtime_flags))
10133 		filemap_flush(inode->i_mapping);
10134 
10135 	iput(inode);
10136 	complete(&delalloc_work->completion);
10137 }
10138 
btrfs_alloc_delalloc_work(struct inode * inode)10139 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
10140 {
10141 	struct btrfs_delalloc_work *work;
10142 
10143 	work = kmalloc(sizeof(*work), GFP_NOFS);
10144 	if (!work)
10145 		return NULL;
10146 
10147 	init_completion(&work->completion);
10148 	INIT_LIST_HEAD(&work->list);
10149 	work->inode = inode;
10150 	WARN_ON_ONCE(!inode);
10151 	btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
10152 			btrfs_run_delalloc_work, NULL, NULL);
10153 
10154 	return work;
10155 }
10156 
10157 /*
10158  * some fairly slow code that needs optimization. This walks the list
10159  * of all the inodes with pending delalloc and forces them to disk.
10160  */
start_delalloc_inodes(struct btrfs_root * root,int nr,bool snapshot)10161 static int start_delalloc_inodes(struct btrfs_root *root, int nr, bool snapshot)
10162 {
10163 	struct btrfs_inode *binode;
10164 	struct inode *inode;
10165 	struct btrfs_delalloc_work *work, *next;
10166 	struct list_head works;
10167 	struct list_head splice;
10168 	int ret = 0;
10169 
10170 	INIT_LIST_HEAD(&works);
10171 	INIT_LIST_HEAD(&splice);
10172 
10173 	mutex_lock(&root->delalloc_mutex);
10174 	spin_lock(&root->delalloc_lock);
10175 	list_splice_init(&root->delalloc_inodes, &splice);
10176 	while (!list_empty(&splice)) {
10177 		binode = list_entry(splice.next, struct btrfs_inode,
10178 				    delalloc_inodes);
10179 
10180 		list_move_tail(&binode->delalloc_inodes,
10181 			       &root->delalloc_inodes);
10182 		inode = igrab(&binode->vfs_inode);
10183 		if (!inode) {
10184 			cond_resched_lock(&root->delalloc_lock);
10185 			continue;
10186 		}
10187 		spin_unlock(&root->delalloc_lock);
10188 
10189 		if (snapshot)
10190 			set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
10191 				&binode->runtime_flags);
10192 		work = btrfs_alloc_delalloc_work(inode);
10193 		if (!work) {
10194 			iput(inode);
10195 			ret = -ENOMEM;
10196 			goto out;
10197 		}
10198 		list_add_tail(&work->list, &works);
10199 		btrfs_queue_work(root->fs_info->flush_workers,
10200 				 &work->work);
10201 		ret++;
10202 		if (nr != -1 && ret >= nr)
10203 			goto out;
10204 		cond_resched();
10205 		spin_lock(&root->delalloc_lock);
10206 	}
10207 	spin_unlock(&root->delalloc_lock);
10208 
10209 out:
10210 	list_for_each_entry_safe(work, next, &works, list) {
10211 		list_del_init(&work->list);
10212 		wait_for_completion(&work->completion);
10213 		kfree(work);
10214 	}
10215 
10216 	if (!list_empty(&splice)) {
10217 		spin_lock(&root->delalloc_lock);
10218 		list_splice_tail(&splice, &root->delalloc_inodes);
10219 		spin_unlock(&root->delalloc_lock);
10220 	}
10221 	mutex_unlock(&root->delalloc_mutex);
10222 	return ret;
10223 }
10224 
btrfs_start_delalloc_snapshot(struct btrfs_root * root)10225 int btrfs_start_delalloc_snapshot(struct btrfs_root *root)
10226 {
10227 	struct btrfs_fs_info *fs_info = root->fs_info;
10228 	int ret;
10229 
10230 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10231 		return -EROFS;
10232 
10233 	ret = start_delalloc_inodes(root, -1, true);
10234 	if (ret > 0)
10235 		ret = 0;
10236 	return ret;
10237 }
10238 
btrfs_start_delalloc_roots(struct btrfs_fs_info * fs_info,int nr)10239 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr)
10240 {
10241 	struct btrfs_root *root;
10242 	struct list_head splice;
10243 	int ret;
10244 
10245 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10246 		return -EROFS;
10247 
10248 	INIT_LIST_HEAD(&splice);
10249 
10250 	mutex_lock(&fs_info->delalloc_root_mutex);
10251 	spin_lock(&fs_info->delalloc_root_lock);
10252 	list_splice_init(&fs_info->delalloc_roots, &splice);
10253 	while (!list_empty(&splice) && nr) {
10254 		root = list_first_entry(&splice, struct btrfs_root,
10255 					delalloc_root);
10256 		root = btrfs_grab_fs_root(root);
10257 		BUG_ON(!root);
10258 		list_move_tail(&root->delalloc_root,
10259 			       &fs_info->delalloc_roots);
10260 		spin_unlock(&fs_info->delalloc_root_lock);
10261 
10262 		ret = start_delalloc_inodes(root, nr, false);
10263 		btrfs_put_fs_root(root);
10264 		if (ret < 0)
10265 			goto out;
10266 
10267 		if (nr != -1) {
10268 			nr -= ret;
10269 			WARN_ON(nr < 0);
10270 		}
10271 		spin_lock(&fs_info->delalloc_root_lock);
10272 	}
10273 	spin_unlock(&fs_info->delalloc_root_lock);
10274 
10275 	ret = 0;
10276 out:
10277 	if (!list_empty(&splice)) {
10278 		spin_lock(&fs_info->delalloc_root_lock);
10279 		list_splice_tail(&splice, &fs_info->delalloc_roots);
10280 		spin_unlock(&fs_info->delalloc_root_lock);
10281 	}
10282 	mutex_unlock(&fs_info->delalloc_root_mutex);
10283 	return ret;
10284 }
10285 
btrfs_symlink(struct inode * dir,struct dentry * dentry,const char * symname)10286 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10287 			 const char *symname)
10288 {
10289 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10290 	struct btrfs_trans_handle *trans;
10291 	struct btrfs_root *root = BTRFS_I(dir)->root;
10292 	struct btrfs_path *path;
10293 	struct btrfs_key key;
10294 	struct inode *inode = NULL;
10295 	int err;
10296 	u64 objectid;
10297 	u64 index = 0;
10298 	int name_len;
10299 	int datasize;
10300 	unsigned long ptr;
10301 	struct btrfs_file_extent_item *ei;
10302 	struct extent_buffer *leaf;
10303 
10304 	name_len = strlen(symname);
10305 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
10306 		return -ENAMETOOLONG;
10307 
10308 	/*
10309 	 * 2 items for inode item and ref
10310 	 * 2 items for dir items
10311 	 * 1 item for updating parent inode item
10312 	 * 1 item for the inline extent item
10313 	 * 1 item for xattr if selinux is on
10314 	 */
10315 	trans = btrfs_start_transaction(root, 7);
10316 	if (IS_ERR(trans))
10317 		return PTR_ERR(trans);
10318 
10319 	err = btrfs_find_free_objectid(root, &objectid);
10320 	if (err)
10321 		goto out_unlock;
10322 
10323 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
10324 				dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10325 				objectid, S_IFLNK|S_IRWXUGO, &index);
10326 	if (IS_ERR(inode)) {
10327 		err = PTR_ERR(inode);
10328 		inode = NULL;
10329 		goto out_unlock;
10330 	}
10331 
10332 	/*
10333 	* If the active LSM wants to access the inode during
10334 	* d_instantiate it needs these. Smack checks to see
10335 	* if the filesystem supports xattrs by looking at the
10336 	* ops vector.
10337 	*/
10338 	inode->i_fop = &btrfs_file_operations;
10339 	inode->i_op = &btrfs_file_inode_operations;
10340 	inode->i_mapping->a_ops = &btrfs_aops;
10341 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10342 
10343 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10344 	if (err)
10345 		goto out_unlock;
10346 
10347 	path = btrfs_alloc_path();
10348 	if (!path) {
10349 		err = -ENOMEM;
10350 		goto out_unlock;
10351 	}
10352 	key.objectid = btrfs_ino(BTRFS_I(inode));
10353 	key.offset = 0;
10354 	key.type = BTRFS_EXTENT_DATA_KEY;
10355 	datasize = btrfs_file_extent_calc_inline_size(name_len);
10356 	err = btrfs_insert_empty_item(trans, root, path, &key,
10357 				      datasize);
10358 	if (err) {
10359 		btrfs_free_path(path);
10360 		goto out_unlock;
10361 	}
10362 	leaf = path->nodes[0];
10363 	ei = btrfs_item_ptr(leaf, path->slots[0],
10364 			    struct btrfs_file_extent_item);
10365 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10366 	btrfs_set_file_extent_type(leaf, ei,
10367 				   BTRFS_FILE_EXTENT_INLINE);
10368 	btrfs_set_file_extent_encryption(leaf, ei, 0);
10369 	btrfs_set_file_extent_compression(leaf, ei, 0);
10370 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10371 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10372 
10373 	ptr = btrfs_file_extent_inline_start(ei);
10374 	write_extent_buffer(leaf, symname, ptr, name_len);
10375 	btrfs_mark_buffer_dirty(leaf);
10376 	btrfs_free_path(path);
10377 
10378 	inode->i_op = &btrfs_symlink_inode_operations;
10379 	inode_nohighmem(inode);
10380 	inode->i_mapping->a_ops = &btrfs_symlink_aops;
10381 	inode_set_bytes(inode, name_len);
10382 	btrfs_i_size_write(BTRFS_I(inode), name_len);
10383 	err = btrfs_update_inode(trans, root, inode);
10384 	/*
10385 	 * Last step, add directory indexes for our symlink inode. This is the
10386 	 * last step to avoid extra cleanup of these indexes if an error happens
10387 	 * elsewhere above.
10388 	 */
10389 	if (!err)
10390 		err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10391 				BTRFS_I(inode), 0, index);
10392 	if (err)
10393 		goto out_unlock;
10394 
10395 	d_instantiate_new(dentry, inode);
10396 
10397 out_unlock:
10398 	btrfs_end_transaction(trans);
10399 	if (err && inode) {
10400 		inode_dec_link_count(inode);
10401 		discard_new_inode(inode);
10402 	}
10403 	btrfs_btree_balance_dirty(fs_info);
10404 	return err;
10405 }
10406 
__btrfs_prealloc_file_range(struct inode * inode,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint,struct btrfs_trans_handle * trans)10407 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10408 				       u64 start, u64 num_bytes, u64 min_size,
10409 				       loff_t actual_len, u64 *alloc_hint,
10410 				       struct btrfs_trans_handle *trans)
10411 {
10412 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
10413 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10414 	struct extent_map *em;
10415 	struct btrfs_root *root = BTRFS_I(inode)->root;
10416 	struct btrfs_key ins;
10417 	u64 cur_offset = start;
10418 	u64 clear_offset = start;
10419 	u64 i_size;
10420 	u64 cur_bytes;
10421 	u64 last_alloc = (u64)-1;
10422 	int ret = 0;
10423 	bool own_trans = true;
10424 	u64 end = start + num_bytes - 1;
10425 
10426 	if (trans)
10427 		own_trans = false;
10428 	while (num_bytes > 0) {
10429 		if (own_trans) {
10430 			trans = btrfs_start_transaction(root, 3);
10431 			if (IS_ERR(trans)) {
10432 				ret = PTR_ERR(trans);
10433 				break;
10434 			}
10435 		}
10436 
10437 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
10438 		cur_bytes = max(cur_bytes, min_size);
10439 		/*
10440 		 * If we are severely fragmented we could end up with really
10441 		 * small allocations, so if the allocator is returning small
10442 		 * chunks lets make its job easier by only searching for those
10443 		 * sized chunks.
10444 		 */
10445 		cur_bytes = min(cur_bytes, last_alloc);
10446 		ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10447 				min_size, 0, *alloc_hint, &ins, 1, 0);
10448 		if (ret) {
10449 			if (own_trans)
10450 				btrfs_end_transaction(trans);
10451 			break;
10452 		}
10453 
10454 		/*
10455 		 * We've reserved this space, and thus converted it from
10456 		 * ->bytes_may_use to ->bytes_reserved.  Any error that happens
10457 		 * from here on out we will only need to clear our reservation
10458 		 * for the remaining unreserved area, so advance our
10459 		 * clear_offset by our extent size.
10460 		 */
10461 		clear_offset += ins.offset;
10462 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10463 
10464 		last_alloc = ins.offset;
10465 		ret = insert_reserved_file_extent(trans, inode,
10466 						  cur_offset, ins.objectid,
10467 						  ins.offset, ins.offset,
10468 						  ins.offset, 0, 0, 0,
10469 						  BTRFS_FILE_EXTENT_PREALLOC);
10470 		if (ret) {
10471 			btrfs_free_reserved_extent(fs_info, ins.objectid,
10472 						   ins.offset, 0);
10473 			btrfs_abort_transaction(trans, ret);
10474 			if (own_trans)
10475 				btrfs_end_transaction(trans);
10476 			break;
10477 		}
10478 
10479 		btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10480 					cur_offset + ins.offset -1, 0);
10481 
10482 		em = alloc_extent_map();
10483 		if (!em) {
10484 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10485 				&BTRFS_I(inode)->runtime_flags);
10486 			goto next;
10487 		}
10488 
10489 		em->start = cur_offset;
10490 		em->orig_start = cur_offset;
10491 		em->len = ins.offset;
10492 		em->block_start = ins.objectid;
10493 		em->block_len = ins.offset;
10494 		em->orig_block_len = ins.offset;
10495 		em->ram_bytes = ins.offset;
10496 		em->bdev = fs_info->fs_devices->latest_bdev;
10497 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10498 		em->generation = trans->transid;
10499 
10500 		while (1) {
10501 			write_lock(&em_tree->lock);
10502 			ret = add_extent_mapping(em_tree, em, 1);
10503 			write_unlock(&em_tree->lock);
10504 			if (ret != -EEXIST)
10505 				break;
10506 			btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10507 						cur_offset + ins.offset - 1,
10508 						0);
10509 		}
10510 		free_extent_map(em);
10511 next:
10512 		num_bytes -= ins.offset;
10513 		cur_offset += ins.offset;
10514 		*alloc_hint = ins.objectid + ins.offset;
10515 
10516 		inode_inc_iversion(inode);
10517 		inode->i_ctime = current_time(inode);
10518 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10519 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10520 		    (actual_len > inode->i_size) &&
10521 		    (cur_offset > inode->i_size)) {
10522 			if (cur_offset > actual_len)
10523 				i_size = actual_len;
10524 			else
10525 				i_size = cur_offset;
10526 			i_size_write(inode, i_size);
10527 			btrfs_ordered_update_i_size(inode, i_size, NULL);
10528 		}
10529 
10530 		ret = btrfs_update_inode(trans, root, inode);
10531 
10532 		if (ret) {
10533 			btrfs_abort_transaction(trans, ret);
10534 			if (own_trans)
10535 				btrfs_end_transaction(trans);
10536 			break;
10537 		}
10538 
10539 		if (own_trans)
10540 			btrfs_end_transaction(trans);
10541 	}
10542 	if (clear_offset < end)
10543 		btrfs_free_reserved_data_space(inode, NULL, clear_offset,
10544 			end - clear_offset + 1);
10545 	return ret;
10546 }
10547 
btrfs_prealloc_file_range(struct inode * inode,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint)10548 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10549 			      u64 start, u64 num_bytes, u64 min_size,
10550 			      loff_t actual_len, u64 *alloc_hint)
10551 {
10552 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10553 					   min_size, actual_len, alloc_hint,
10554 					   NULL);
10555 }
10556 
btrfs_prealloc_file_range_trans(struct inode * inode,struct btrfs_trans_handle * trans,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint)10557 int btrfs_prealloc_file_range_trans(struct inode *inode,
10558 				    struct btrfs_trans_handle *trans, int mode,
10559 				    u64 start, u64 num_bytes, u64 min_size,
10560 				    loff_t actual_len, u64 *alloc_hint)
10561 {
10562 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10563 					   min_size, actual_len, alloc_hint, trans);
10564 }
10565 
btrfs_set_page_dirty(struct page * page)10566 static int btrfs_set_page_dirty(struct page *page)
10567 {
10568 	return __set_page_dirty_nobuffers(page);
10569 }
10570 
btrfs_permission(struct inode * inode,int mask)10571 static int btrfs_permission(struct inode *inode, int mask)
10572 {
10573 	struct btrfs_root *root = BTRFS_I(inode)->root;
10574 	umode_t mode = inode->i_mode;
10575 
10576 	if (mask & MAY_WRITE &&
10577 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10578 		if (btrfs_root_readonly(root))
10579 			return -EROFS;
10580 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10581 			return -EACCES;
10582 	}
10583 	return generic_permission(inode, mask);
10584 }
10585 
btrfs_tmpfile(struct inode * dir,struct dentry * dentry,umode_t mode)10586 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10587 {
10588 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10589 	struct btrfs_trans_handle *trans;
10590 	struct btrfs_root *root = BTRFS_I(dir)->root;
10591 	struct inode *inode = NULL;
10592 	u64 objectid;
10593 	u64 index;
10594 	int ret = 0;
10595 
10596 	/*
10597 	 * 5 units required for adding orphan entry
10598 	 */
10599 	trans = btrfs_start_transaction(root, 5);
10600 	if (IS_ERR(trans))
10601 		return PTR_ERR(trans);
10602 
10603 	ret = btrfs_find_free_objectid(root, &objectid);
10604 	if (ret)
10605 		goto out;
10606 
10607 	inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10608 			btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
10609 	if (IS_ERR(inode)) {
10610 		ret = PTR_ERR(inode);
10611 		inode = NULL;
10612 		goto out;
10613 	}
10614 
10615 	inode->i_fop = &btrfs_file_operations;
10616 	inode->i_op = &btrfs_file_inode_operations;
10617 
10618 	inode->i_mapping->a_ops = &btrfs_aops;
10619 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10620 
10621 	ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10622 	if (ret)
10623 		goto out;
10624 
10625 	ret = btrfs_update_inode(trans, root, inode);
10626 	if (ret)
10627 		goto out;
10628 	ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10629 	if (ret)
10630 		goto out;
10631 
10632 	/*
10633 	 * We set number of links to 0 in btrfs_new_inode(), and here we set
10634 	 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10635 	 * through:
10636 	 *
10637 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10638 	 */
10639 	set_nlink(inode, 1);
10640 	d_tmpfile(dentry, inode);
10641 	unlock_new_inode(inode);
10642 	mark_inode_dirty(inode);
10643 out:
10644 	btrfs_end_transaction(trans);
10645 	if (ret && inode)
10646 		discard_new_inode(inode);
10647 	btrfs_btree_balance_dirty(fs_info);
10648 	return ret;
10649 }
10650 
10651 __attribute__((const))
btrfs_readpage_io_failed_hook(struct page * page,int failed_mirror)10652 static int btrfs_readpage_io_failed_hook(struct page *page, int failed_mirror)
10653 {
10654 	return -EAGAIN;
10655 }
10656 
btrfs_check_extent_io_range(void * private_data,const char * caller,u64 start,u64 end)10657 static void btrfs_check_extent_io_range(void *private_data, const char *caller,
10658 					u64 start, u64 end)
10659 {
10660 	struct inode *inode = private_data;
10661 	u64 isize;
10662 
10663 	isize = i_size_read(inode);
10664 	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
10665 		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
10666 		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
10667 			caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
10668 	}
10669 }
10670 
btrfs_set_range_writeback(struct extent_io_tree * tree,u64 start,u64 end)10671 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
10672 {
10673 	struct inode *inode = tree->private_data;
10674 	unsigned long index = start >> PAGE_SHIFT;
10675 	unsigned long end_index = end >> PAGE_SHIFT;
10676 	struct page *page;
10677 
10678 	while (index <= end_index) {
10679 		page = find_get_page(inode->i_mapping, index);
10680 		ASSERT(page); /* Pages should be in the extent_io_tree */
10681 		set_page_writeback(page);
10682 		put_page(page);
10683 		index++;
10684 	}
10685 }
10686 
10687 static const struct inode_operations btrfs_dir_inode_operations = {
10688 	.getattr	= btrfs_getattr,
10689 	.lookup		= btrfs_lookup,
10690 	.create		= btrfs_create,
10691 	.unlink		= btrfs_unlink,
10692 	.link		= btrfs_link,
10693 	.mkdir		= btrfs_mkdir,
10694 	.rmdir		= btrfs_rmdir,
10695 	.rename		= btrfs_rename2,
10696 	.symlink	= btrfs_symlink,
10697 	.setattr	= btrfs_setattr,
10698 	.mknod		= btrfs_mknod,
10699 	.listxattr	= btrfs_listxattr,
10700 	.permission	= btrfs_permission,
10701 	.get_acl	= btrfs_get_acl,
10702 	.set_acl	= btrfs_set_acl,
10703 	.update_time	= btrfs_update_time,
10704 	.tmpfile        = btrfs_tmpfile,
10705 };
10706 static const struct inode_operations btrfs_dir_ro_inode_operations = {
10707 	.lookup		= btrfs_lookup,
10708 	.permission	= btrfs_permission,
10709 	.update_time	= btrfs_update_time,
10710 };
10711 
10712 static const struct file_operations btrfs_dir_file_operations = {
10713 	.llseek		= generic_file_llseek,
10714 	.read		= generic_read_dir,
10715 	.iterate_shared	= btrfs_real_readdir,
10716 	.open		= btrfs_opendir,
10717 	.unlocked_ioctl	= btrfs_ioctl,
10718 #ifdef CONFIG_COMPAT
10719 	.compat_ioctl	= btrfs_compat_ioctl,
10720 #endif
10721 	.release        = btrfs_release_file,
10722 	.fsync		= btrfs_sync_file,
10723 };
10724 
10725 static const struct extent_io_ops btrfs_extent_io_ops = {
10726 	/* mandatory callbacks */
10727 	.submit_bio_hook = btrfs_submit_bio_hook,
10728 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
10729 	.readpage_io_failed_hook = btrfs_readpage_io_failed_hook,
10730 
10731 	/* optional callbacks */
10732 	.writepage_end_io_hook = btrfs_writepage_end_io_hook,
10733 	.writepage_start_hook = btrfs_writepage_start_hook,
10734 	.set_bit_hook = btrfs_set_bit_hook,
10735 	.clear_bit_hook = btrfs_clear_bit_hook,
10736 	.merge_extent_hook = btrfs_merge_extent_hook,
10737 	.split_extent_hook = btrfs_split_extent_hook,
10738 	.check_extent_io_range = btrfs_check_extent_io_range,
10739 };
10740 
10741 /*
10742  * btrfs doesn't support the bmap operation because swapfiles
10743  * use bmap to make a mapping of extents in the file.  They assume
10744  * these extents won't change over the life of the file and they
10745  * use the bmap result to do IO directly to the drive.
10746  *
10747  * the btrfs bmap call would return logical addresses that aren't
10748  * suitable for IO and they also will change frequently as COW
10749  * operations happen.  So, swapfile + btrfs == corruption.
10750  *
10751  * For now we're avoiding this by dropping bmap.
10752  */
10753 static const struct address_space_operations btrfs_aops = {
10754 	.readpage	= btrfs_readpage,
10755 	.writepage	= btrfs_writepage,
10756 	.writepages	= btrfs_writepages,
10757 	.readpages	= btrfs_readpages,
10758 	.direct_IO	= btrfs_direct_IO,
10759 	.invalidatepage = btrfs_invalidatepage,
10760 	.releasepage	= btrfs_releasepage,
10761 	.set_page_dirty	= btrfs_set_page_dirty,
10762 	.error_remove_page = generic_error_remove_page,
10763 };
10764 
10765 static const struct address_space_operations btrfs_symlink_aops = {
10766 	.readpage	= btrfs_readpage,
10767 	.writepage	= btrfs_writepage,
10768 	.invalidatepage = btrfs_invalidatepage,
10769 	.releasepage	= btrfs_releasepage,
10770 };
10771 
10772 static const struct inode_operations btrfs_file_inode_operations = {
10773 	.getattr	= btrfs_getattr,
10774 	.setattr	= btrfs_setattr,
10775 	.listxattr      = btrfs_listxattr,
10776 	.permission	= btrfs_permission,
10777 	.fiemap		= btrfs_fiemap,
10778 	.get_acl	= btrfs_get_acl,
10779 	.set_acl	= btrfs_set_acl,
10780 	.update_time	= btrfs_update_time,
10781 };
10782 static const struct inode_operations btrfs_special_inode_operations = {
10783 	.getattr	= btrfs_getattr,
10784 	.setattr	= btrfs_setattr,
10785 	.permission	= btrfs_permission,
10786 	.listxattr	= btrfs_listxattr,
10787 	.get_acl	= btrfs_get_acl,
10788 	.set_acl	= btrfs_set_acl,
10789 	.update_time	= btrfs_update_time,
10790 };
10791 static const struct inode_operations btrfs_symlink_inode_operations = {
10792 	.get_link	= page_get_link,
10793 	.getattr	= btrfs_getattr,
10794 	.setattr	= btrfs_setattr,
10795 	.permission	= btrfs_permission,
10796 	.listxattr	= btrfs_listxattr,
10797 	.update_time	= btrfs_update_time,
10798 };
10799 
10800 const struct dentry_operations btrfs_dentry_operations = {
10801 	.d_delete	= btrfs_dentry_delete,
10802 };
10803