1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2009 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/writeback.h>
9 #include <linux/blkdev.h>
10 #include <linux/rbtree.h>
11 #include <linux/slab.h>
12 #include "ctree.h"
13 #include "disk-io.h"
14 #include "transaction.h"
15 #include "volumes.h"
16 #include "locking.h"
17 #include "btrfs_inode.h"
18 #include "async-thread.h"
19 #include "free-space-cache.h"
20 #include "inode-map.h"
21 #include "qgroup.h"
22 #include "print-tree.h"
23
24 /*
25 * backref_node, mapping_node and tree_block start with this
26 */
27 struct tree_entry {
28 struct rb_node rb_node;
29 u64 bytenr;
30 };
31
32 /*
33 * present a tree block in the backref cache
34 */
35 struct backref_node {
36 struct rb_node rb_node;
37 u64 bytenr;
38
39 u64 new_bytenr;
40 /* objectid of tree block owner, can be not uptodate */
41 u64 owner;
42 /* link to pending, changed or detached list */
43 struct list_head list;
44 /* list of upper level blocks reference this block */
45 struct list_head upper;
46 /* list of child blocks in the cache */
47 struct list_head lower;
48 /* NULL if this node is not tree root */
49 struct btrfs_root *root;
50 /* extent buffer got by COW the block */
51 struct extent_buffer *eb;
52 /* level of tree block */
53 unsigned int level:8;
54 /* is the block in non-reference counted tree */
55 unsigned int cowonly:1;
56 /* 1 if no child node in the cache */
57 unsigned int lowest:1;
58 /* is the extent buffer locked */
59 unsigned int locked:1;
60 /* has the block been processed */
61 unsigned int processed:1;
62 /* have backrefs of this block been checked */
63 unsigned int checked:1;
64 /*
65 * 1 if corresponding block has been cowed but some upper
66 * level block pointers may not point to the new location
67 */
68 unsigned int pending:1;
69 /*
70 * 1 if the backref node isn't connected to any other
71 * backref node.
72 */
73 unsigned int detached:1;
74 };
75
76 /*
77 * present a block pointer in the backref cache
78 */
79 struct backref_edge {
80 struct list_head list[2];
81 struct backref_node *node[2];
82 };
83
84 #define LOWER 0
85 #define UPPER 1
86 #define RELOCATION_RESERVED_NODES 256
87
88 struct backref_cache {
89 /* red black tree of all backref nodes in the cache */
90 struct rb_root rb_root;
91 /* for passing backref nodes to btrfs_reloc_cow_block */
92 struct backref_node *path[BTRFS_MAX_LEVEL];
93 /*
94 * list of blocks that have been cowed but some block
95 * pointers in upper level blocks may not reflect the
96 * new location
97 */
98 struct list_head pending[BTRFS_MAX_LEVEL];
99 /* list of backref nodes with no child node */
100 struct list_head leaves;
101 /* list of blocks that have been cowed in current transaction */
102 struct list_head changed;
103 /* list of detached backref node. */
104 struct list_head detached;
105
106 u64 last_trans;
107
108 int nr_nodes;
109 int nr_edges;
110 };
111
112 /*
113 * map address of tree root to tree
114 */
115 struct mapping_node {
116 struct rb_node rb_node;
117 u64 bytenr;
118 void *data;
119 };
120
121 struct mapping_tree {
122 struct rb_root rb_root;
123 spinlock_t lock;
124 };
125
126 /*
127 * present a tree block to process
128 */
129 struct tree_block {
130 struct rb_node rb_node;
131 u64 bytenr;
132 struct btrfs_key key;
133 unsigned int level:8;
134 unsigned int key_ready:1;
135 };
136
137 #define MAX_EXTENTS 128
138
139 struct file_extent_cluster {
140 u64 start;
141 u64 end;
142 u64 boundary[MAX_EXTENTS];
143 unsigned int nr;
144 };
145
146 struct reloc_control {
147 /* block group to relocate */
148 struct btrfs_block_group_cache *block_group;
149 /* extent tree */
150 struct btrfs_root *extent_root;
151 /* inode for moving data */
152 struct inode *data_inode;
153
154 struct btrfs_block_rsv *block_rsv;
155
156 struct backref_cache backref_cache;
157
158 struct file_extent_cluster cluster;
159 /* tree blocks have been processed */
160 struct extent_io_tree processed_blocks;
161 /* map start of tree root to corresponding reloc tree */
162 struct mapping_tree reloc_root_tree;
163 /* list of reloc trees */
164 struct list_head reloc_roots;
165 /* size of metadata reservation for merging reloc trees */
166 u64 merging_rsv_size;
167 /* size of relocated tree nodes */
168 u64 nodes_relocated;
169 /* reserved size for block group relocation*/
170 u64 reserved_bytes;
171
172 u64 search_start;
173 u64 extents_found;
174
175 unsigned int stage:8;
176 unsigned int create_reloc_tree:1;
177 unsigned int merge_reloc_tree:1;
178 unsigned int found_file_extent:1;
179 };
180
181 /* stages of data relocation */
182 #define MOVE_DATA_EXTENTS 0
183 #define UPDATE_DATA_PTRS 1
184
185 static void remove_backref_node(struct backref_cache *cache,
186 struct backref_node *node);
187 static void __mark_block_processed(struct reloc_control *rc,
188 struct backref_node *node);
189
mapping_tree_init(struct mapping_tree * tree)190 static void mapping_tree_init(struct mapping_tree *tree)
191 {
192 tree->rb_root = RB_ROOT;
193 spin_lock_init(&tree->lock);
194 }
195
backref_cache_init(struct backref_cache * cache)196 static void backref_cache_init(struct backref_cache *cache)
197 {
198 int i;
199 cache->rb_root = RB_ROOT;
200 for (i = 0; i < BTRFS_MAX_LEVEL; i++)
201 INIT_LIST_HEAD(&cache->pending[i]);
202 INIT_LIST_HEAD(&cache->changed);
203 INIT_LIST_HEAD(&cache->detached);
204 INIT_LIST_HEAD(&cache->leaves);
205 }
206
backref_cache_cleanup(struct backref_cache * cache)207 static void backref_cache_cleanup(struct backref_cache *cache)
208 {
209 struct backref_node *node;
210 int i;
211
212 while (!list_empty(&cache->detached)) {
213 node = list_entry(cache->detached.next,
214 struct backref_node, list);
215 remove_backref_node(cache, node);
216 }
217
218 while (!list_empty(&cache->leaves)) {
219 node = list_entry(cache->leaves.next,
220 struct backref_node, lower);
221 remove_backref_node(cache, node);
222 }
223
224 cache->last_trans = 0;
225
226 for (i = 0; i < BTRFS_MAX_LEVEL; i++)
227 ASSERT(list_empty(&cache->pending[i]));
228 ASSERT(list_empty(&cache->changed));
229 ASSERT(list_empty(&cache->detached));
230 ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
231 ASSERT(!cache->nr_nodes);
232 ASSERT(!cache->nr_edges);
233 }
234
alloc_backref_node(struct backref_cache * cache)235 static struct backref_node *alloc_backref_node(struct backref_cache *cache)
236 {
237 struct backref_node *node;
238
239 node = kzalloc(sizeof(*node), GFP_NOFS);
240 if (node) {
241 INIT_LIST_HEAD(&node->list);
242 INIT_LIST_HEAD(&node->upper);
243 INIT_LIST_HEAD(&node->lower);
244 RB_CLEAR_NODE(&node->rb_node);
245 cache->nr_nodes++;
246 }
247 return node;
248 }
249
free_backref_node(struct backref_cache * cache,struct backref_node * node)250 static void free_backref_node(struct backref_cache *cache,
251 struct backref_node *node)
252 {
253 if (node) {
254 cache->nr_nodes--;
255 kfree(node);
256 }
257 }
258
alloc_backref_edge(struct backref_cache * cache)259 static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
260 {
261 struct backref_edge *edge;
262
263 edge = kzalloc(sizeof(*edge), GFP_NOFS);
264 if (edge)
265 cache->nr_edges++;
266 return edge;
267 }
268
free_backref_edge(struct backref_cache * cache,struct backref_edge * edge)269 static void free_backref_edge(struct backref_cache *cache,
270 struct backref_edge *edge)
271 {
272 if (edge) {
273 cache->nr_edges--;
274 kfree(edge);
275 }
276 }
277
tree_insert(struct rb_root * root,u64 bytenr,struct rb_node * node)278 static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
279 struct rb_node *node)
280 {
281 struct rb_node **p = &root->rb_node;
282 struct rb_node *parent = NULL;
283 struct tree_entry *entry;
284
285 while (*p) {
286 parent = *p;
287 entry = rb_entry(parent, struct tree_entry, rb_node);
288
289 if (bytenr < entry->bytenr)
290 p = &(*p)->rb_left;
291 else if (bytenr > entry->bytenr)
292 p = &(*p)->rb_right;
293 else
294 return parent;
295 }
296
297 rb_link_node(node, parent, p);
298 rb_insert_color(node, root);
299 return NULL;
300 }
301
tree_search(struct rb_root * root,u64 bytenr)302 static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
303 {
304 struct rb_node *n = root->rb_node;
305 struct tree_entry *entry;
306
307 while (n) {
308 entry = rb_entry(n, struct tree_entry, rb_node);
309
310 if (bytenr < entry->bytenr)
311 n = n->rb_left;
312 else if (bytenr > entry->bytenr)
313 n = n->rb_right;
314 else
315 return n;
316 }
317 return NULL;
318 }
319
backref_tree_panic(struct rb_node * rb_node,int errno,u64 bytenr)320 static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr)
321 {
322
323 struct btrfs_fs_info *fs_info = NULL;
324 struct backref_node *bnode = rb_entry(rb_node, struct backref_node,
325 rb_node);
326 if (bnode->root)
327 fs_info = bnode->root->fs_info;
328 btrfs_panic(fs_info, errno,
329 "Inconsistency in backref cache found at offset %llu",
330 bytenr);
331 }
332
333 /*
334 * walk up backref nodes until reach node presents tree root
335 */
walk_up_backref(struct backref_node * node,struct backref_edge * edges[],int * index)336 static struct backref_node *walk_up_backref(struct backref_node *node,
337 struct backref_edge *edges[],
338 int *index)
339 {
340 struct backref_edge *edge;
341 int idx = *index;
342
343 while (!list_empty(&node->upper)) {
344 edge = list_entry(node->upper.next,
345 struct backref_edge, list[LOWER]);
346 edges[idx++] = edge;
347 node = edge->node[UPPER];
348 }
349 BUG_ON(node->detached);
350 *index = idx;
351 return node;
352 }
353
354 /*
355 * walk down backref nodes to find start of next reference path
356 */
walk_down_backref(struct backref_edge * edges[],int * index)357 static struct backref_node *walk_down_backref(struct backref_edge *edges[],
358 int *index)
359 {
360 struct backref_edge *edge;
361 struct backref_node *lower;
362 int idx = *index;
363
364 while (idx > 0) {
365 edge = edges[idx - 1];
366 lower = edge->node[LOWER];
367 if (list_is_last(&edge->list[LOWER], &lower->upper)) {
368 idx--;
369 continue;
370 }
371 edge = list_entry(edge->list[LOWER].next,
372 struct backref_edge, list[LOWER]);
373 edges[idx - 1] = edge;
374 *index = idx;
375 return edge->node[UPPER];
376 }
377 *index = 0;
378 return NULL;
379 }
380
unlock_node_buffer(struct backref_node * node)381 static void unlock_node_buffer(struct backref_node *node)
382 {
383 if (node->locked) {
384 btrfs_tree_unlock(node->eb);
385 node->locked = 0;
386 }
387 }
388
drop_node_buffer(struct backref_node * node)389 static void drop_node_buffer(struct backref_node *node)
390 {
391 if (node->eb) {
392 unlock_node_buffer(node);
393 free_extent_buffer(node->eb);
394 node->eb = NULL;
395 }
396 }
397
drop_backref_node(struct backref_cache * tree,struct backref_node * node)398 static void drop_backref_node(struct backref_cache *tree,
399 struct backref_node *node)
400 {
401 BUG_ON(!list_empty(&node->upper));
402
403 drop_node_buffer(node);
404 list_del(&node->list);
405 list_del(&node->lower);
406 if (!RB_EMPTY_NODE(&node->rb_node))
407 rb_erase(&node->rb_node, &tree->rb_root);
408 free_backref_node(tree, node);
409 }
410
411 /*
412 * remove a backref node from the backref cache
413 */
remove_backref_node(struct backref_cache * cache,struct backref_node * node)414 static void remove_backref_node(struct backref_cache *cache,
415 struct backref_node *node)
416 {
417 struct backref_node *upper;
418 struct backref_edge *edge;
419
420 if (!node)
421 return;
422
423 BUG_ON(!node->lowest && !node->detached);
424 while (!list_empty(&node->upper)) {
425 edge = list_entry(node->upper.next, struct backref_edge,
426 list[LOWER]);
427 upper = edge->node[UPPER];
428 list_del(&edge->list[LOWER]);
429 list_del(&edge->list[UPPER]);
430 free_backref_edge(cache, edge);
431
432 if (RB_EMPTY_NODE(&upper->rb_node)) {
433 BUG_ON(!list_empty(&node->upper));
434 drop_backref_node(cache, node);
435 node = upper;
436 node->lowest = 1;
437 continue;
438 }
439 /*
440 * add the node to leaf node list if no other
441 * child block cached.
442 */
443 if (list_empty(&upper->lower)) {
444 list_add_tail(&upper->lower, &cache->leaves);
445 upper->lowest = 1;
446 }
447 }
448
449 drop_backref_node(cache, node);
450 }
451
update_backref_node(struct backref_cache * cache,struct backref_node * node,u64 bytenr)452 static void update_backref_node(struct backref_cache *cache,
453 struct backref_node *node, u64 bytenr)
454 {
455 struct rb_node *rb_node;
456 rb_erase(&node->rb_node, &cache->rb_root);
457 node->bytenr = bytenr;
458 rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
459 if (rb_node)
460 backref_tree_panic(rb_node, -EEXIST, bytenr);
461 }
462
463 /*
464 * update backref cache after a transaction commit
465 */
update_backref_cache(struct btrfs_trans_handle * trans,struct backref_cache * cache)466 static int update_backref_cache(struct btrfs_trans_handle *trans,
467 struct backref_cache *cache)
468 {
469 struct backref_node *node;
470 int level = 0;
471
472 if (cache->last_trans == 0) {
473 cache->last_trans = trans->transid;
474 return 0;
475 }
476
477 if (cache->last_trans == trans->transid)
478 return 0;
479
480 /*
481 * detached nodes are used to avoid unnecessary backref
482 * lookup. transaction commit changes the extent tree.
483 * so the detached nodes are no longer useful.
484 */
485 while (!list_empty(&cache->detached)) {
486 node = list_entry(cache->detached.next,
487 struct backref_node, list);
488 remove_backref_node(cache, node);
489 }
490
491 while (!list_empty(&cache->changed)) {
492 node = list_entry(cache->changed.next,
493 struct backref_node, list);
494 list_del_init(&node->list);
495 BUG_ON(node->pending);
496 update_backref_node(cache, node, node->new_bytenr);
497 }
498
499 /*
500 * some nodes can be left in the pending list if there were
501 * errors during processing the pending nodes.
502 */
503 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
504 list_for_each_entry(node, &cache->pending[level], list) {
505 BUG_ON(!node->pending);
506 if (node->bytenr == node->new_bytenr)
507 continue;
508 update_backref_node(cache, node, node->new_bytenr);
509 }
510 }
511
512 cache->last_trans = 0;
513 return 1;
514 }
515
516
should_ignore_root(struct btrfs_root * root)517 static int should_ignore_root(struct btrfs_root *root)
518 {
519 struct btrfs_root *reloc_root;
520
521 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
522 return 0;
523
524 reloc_root = root->reloc_root;
525 if (!reloc_root)
526 return 0;
527
528 if (btrfs_header_generation(reloc_root->commit_root) ==
529 root->fs_info->running_transaction->transid)
530 return 0;
531 /*
532 * if there is reloc tree and it was created in previous
533 * transaction backref lookup can find the reloc tree,
534 * so backref node for the fs tree root is useless for
535 * relocation.
536 */
537 return 1;
538 }
539 /*
540 * find reloc tree by address of tree root
541 */
find_reloc_root(struct reloc_control * rc,u64 bytenr)542 static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
543 u64 bytenr)
544 {
545 struct rb_node *rb_node;
546 struct mapping_node *node;
547 struct btrfs_root *root = NULL;
548
549 spin_lock(&rc->reloc_root_tree.lock);
550 rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
551 if (rb_node) {
552 node = rb_entry(rb_node, struct mapping_node, rb_node);
553 root = (struct btrfs_root *)node->data;
554 }
555 spin_unlock(&rc->reloc_root_tree.lock);
556 return root;
557 }
558
is_cowonly_root(u64 root_objectid)559 static int is_cowonly_root(u64 root_objectid)
560 {
561 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
562 root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
563 root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
564 root_objectid == BTRFS_DEV_TREE_OBJECTID ||
565 root_objectid == BTRFS_TREE_LOG_OBJECTID ||
566 root_objectid == BTRFS_CSUM_TREE_OBJECTID ||
567 root_objectid == BTRFS_UUID_TREE_OBJECTID ||
568 root_objectid == BTRFS_QUOTA_TREE_OBJECTID ||
569 root_objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
570 return 1;
571 return 0;
572 }
573
read_fs_root(struct btrfs_fs_info * fs_info,u64 root_objectid)574 static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
575 u64 root_objectid)
576 {
577 struct btrfs_key key;
578
579 key.objectid = root_objectid;
580 key.type = BTRFS_ROOT_ITEM_KEY;
581 if (is_cowonly_root(root_objectid))
582 key.offset = 0;
583 else
584 key.offset = (u64)-1;
585
586 return btrfs_get_fs_root(fs_info, &key, false);
587 }
588
589 static noinline_for_stack
find_inline_backref(struct extent_buffer * leaf,int slot,unsigned long * ptr,unsigned long * end)590 int find_inline_backref(struct extent_buffer *leaf, int slot,
591 unsigned long *ptr, unsigned long *end)
592 {
593 struct btrfs_key key;
594 struct btrfs_extent_item *ei;
595 struct btrfs_tree_block_info *bi;
596 u32 item_size;
597
598 btrfs_item_key_to_cpu(leaf, &key, slot);
599
600 item_size = btrfs_item_size_nr(leaf, slot);
601 if (item_size < sizeof(*ei)) {
602 btrfs_print_v0_err(leaf->fs_info);
603 btrfs_handle_fs_error(leaf->fs_info, -EINVAL, NULL);
604 return 1;
605 }
606 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
607 WARN_ON(!(btrfs_extent_flags(leaf, ei) &
608 BTRFS_EXTENT_FLAG_TREE_BLOCK));
609
610 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
611 item_size <= sizeof(*ei) + sizeof(*bi)) {
612 WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
613 return 1;
614 }
615 if (key.type == BTRFS_METADATA_ITEM_KEY &&
616 item_size <= sizeof(*ei)) {
617 WARN_ON(item_size < sizeof(*ei));
618 return 1;
619 }
620
621 if (key.type == BTRFS_EXTENT_ITEM_KEY) {
622 bi = (struct btrfs_tree_block_info *)(ei + 1);
623 *ptr = (unsigned long)(bi + 1);
624 } else {
625 *ptr = (unsigned long)(ei + 1);
626 }
627 *end = (unsigned long)ei + item_size;
628 return 0;
629 }
630
631 /*
632 * build backref tree for a given tree block. root of the backref tree
633 * corresponds the tree block, leaves of the backref tree correspond
634 * roots of b-trees that reference the tree block.
635 *
636 * the basic idea of this function is check backrefs of a given block
637 * to find upper level blocks that reference the block, and then check
638 * backrefs of these upper level blocks recursively. the recursion stop
639 * when tree root is reached or backrefs for the block is cached.
640 *
641 * NOTE: if we find backrefs for a block are cached, we know backrefs
642 * for all upper level blocks that directly/indirectly reference the
643 * block are also cached.
644 */
645 static noinline_for_stack
build_backref_tree(struct reloc_control * rc,struct btrfs_key * node_key,int level,u64 bytenr)646 struct backref_node *build_backref_tree(struct reloc_control *rc,
647 struct btrfs_key *node_key,
648 int level, u64 bytenr)
649 {
650 struct backref_cache *cache = &rc->backref_cache;
651 struct btrfs_path *path1;
652 struct btrfs_path *path2;
653 struct extent_buffer *eb;
654 struct btrfs_root *root;
655 struct backref_node *cur;
656 struct backref_node *upper;
657 struct backref_node *lower;
658 struct backref_node *node = NULL;
659 struct backref_node *exist = NULL;
660 struct backref_edge *edge;
661 struct rb_node *rb_node;
662 struct btrfs_key key;
663 unsigned long end;
664 unsigned long ptr;
665 LIST_HEAD(list);
666 LIST_HEAD(useless);
667 int cowonly;
668 int ret;
669 int err = 0;
670 bool need_check = true;
671
672 path1 = btrfs_alloc_path();
673 path2 = btrfs_alloc_path();
674 if (!path1 || !path2) {
675 err = -ENOMEM;
676 goto out;
677 }
678 path1->reada = READA_FORWARD;
679 path2->reada = READA_FORWARD;
680
681 node = alloc_backref_node(cache);
682 if (!node) {
683 err = -ENOMEM;
684 goto out;
685 }
686
687 node->bytenr = bytenr;
688 node->level = level;
689 node->lowest = 1;
690 cur = node;
691 again:
692 end = 0;
693 ptr = 0;
694 key.objectid = cur->bytenr;
695 key.type = BTRFS_METADATA_ITEM_KEY;
696 key.offset = (u64)-1;
697
698 path1->search_commit_root = 1;
699 path1->skip_locking = 1;
700 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
701 0, 0);
702 if (ret < 0) {
703 err = ret;
704 goto out;
705 }
706 ASSERT(ret);
707 ASSERT(path1->slots[0]);
708
709 path1->slots[0]--;
710
711 WARN_ON(cur->checked);
712 if (!list_empty(&cur->upper)) {
713 /*
714 * the backref was added previously when processing
715 * backref of type BTRFS_TREE_BLOCK_REF_KEY
716 */
717 ASSERT(list_is_singular(&cur->upper));
718 edge = list_entry(cur->upper.next, struct backref_edge,
719 list[LOWER]);
720 ASSERT(list_empty(&edge->list[UPPER]));
721 exist = edge->node[UPPER];
722 /*
723 * add the upper level block to pending list if we need
724 * check its backrefs
725 */
726 if (!exist->checked)
727 list_add_tail(&edge->list[UPPER], &list);
728 } else {
729 exist = NULL;
730 }
731
732 while (1) {
733 cond_resched();
734 eb = path1->nodes[0];
735
736 if (ptr >= end) {
737 if (path1->slots[0] >= btrfs_header_nritems(eb)) {
738 ret = btrfs_next_leaf(rc->extent_root, path1);
739 if (ret < 0) {
740 err = ret;
741 goto out;
742 }
743 if (ret > 0)
744 break;
745 eb = path1->nodes[0];
746 }
747
748 btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
749 if (key.objectid != cur->bytenr) {
750 WARN_ON(exist);
751 break;
752 }
753
754 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
755 key.type == BTRFS_METADATA_ITEM_KEY) {
756 ret = find_inline_backref(eb, path1->slots[0],
757 &ptr, &end);
758 if (ret)
759 goto next;
760 }
761 }
762
763 if (ptr < end) {
764 /* update key for inline back ref */
765 struct btrfs_extent_inline_ref *iref;
766 int type;
767 iref = (struct btrfs_extent_inline_ref *)ptr;
768 type = btrfs_get_extent_inline_ref_type(eb, iref,
769 BTRFS_REF_TYPE_BLOCK);
770 if (type == BTRFS_REF_TYPE_INVALID) {
771 err = -EUCLEAN;
772 goto out;
773 }
774 key.type = type;
775 key.offset = btrfs_extent_inline_ref_offset(eb, iref);
776
777 WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
778 key.type != BTRFS_SHARED_BLOCK_REF_KEY);
779 }
780
781 if (exist &&
782 ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
783 exist->owner == key.offset) ||
784 (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
785 exist->bytenr == key.offset))) {
786 exist = NULL;
787 goto next;
788 }
789
790 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
791 if (key.objectid == key.offset) {
792 /*
793 * only root blocks of reloc trees use
794 * backref of this type.
795 */
796 root = find_reloc_root(rc, cur->bytenr);
797 ASSERT(root);
798 cur->root = root;
799 break;
800 }
801
802 edge = alloc_backref_edge(cache);
803 if (!edge) {
804 err = -ENOMEM;
805 goto out;
806 }
807 rb_node = tree_search(&cache->rb_root, key.offset);
808 if (!rb_node) {
809 upper = alloc_backref_node(cache);
810 if (!upper) {
811 free_backref_edge(cache, edge);
812 err = -ENOMEM;
813 goto out;
814 }
815 upper->bytenr = key.offset;
816 upper->level = cur->level + 1;
817 /*
818 * backrefs for the upper level block isn't
819 * cached, add the block to pending list
820 */
821 list_add_tail(&edge->list[UPPER], &list);
822 } else {
823 upper = rb_entry(rb_node, struct backref_node,
824 rb_node);
825 ASSERT(upper->checked);
826 INIT_LIST_HEAD(&edge->list[UPPER]);
827 }
828 list_add_tail(&edge->list[LOWER], &cur->upper);
829 edge->node[LOWER] = cur;
830 edge->node[UPPER] = upper;
831
832 goto next;
833 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
834 err = -EINVAL;
835 btrfs_print_v0_err(rc->extent_root->fs_info);
836 btrfs_handle_fs_error(rc->extent_root->fs_info, err,
837 NULL);
838 goto out;
839 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
840 goto next;
841 }
842
843 /* key.type == BTRFS_TREE_BLOCK_REF_KEY */
844 root = read_fs_root(rc->extent_root->fs_info, key.offset);
845 if (IS_ERR(root)) {
846 err = PTR_ERR(root);
847 goto out;
848 }
849
850 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
851 cur->cowonly = 1;
852
853 if (btrfs_root_level(&root->root_item) == cur->level) {
854 /* tree root */
855 ASSERT(btrfs_root_bytenr(&root->root_item) ==
856 cur->bytenr);
857 if (should_ignore_root(root))
858 list_add(&cur->list, &useless);
859 else
860 cur->root = root;
861 break;
862 }
863
864 level = cur->level + 1;
865
866 /*
867 * searching the tree to find upper level blocks
868 * reference the block.
869 */
870 path2->search_commit_root = 1;
871 path2->skip_locking = 1;
872 path2->lowest_level = level;
873 ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
874 path2->lowest_level = 0;
875 if (ret < 0) {
876 err = ret;
877 goto out;
878 }
879 if (ret > 0 && path2->slots[level] > 0)
880 path2->slots[level]--;
881
882 eb = path2->nodes[level];
883 if (btrfs_node_blockptr(eb, path2->slots[level]) !=
884 cur->bytenr) {
885 btrfs_err(root->fs_info,
886 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
887 cur->bytenr, level - 1, root->objectid,
888 node_key->objectid, node_key->type,
889 node_key->offset);
890 err = -ENOENT;
891 goto out;
892 }
893 lower = cur;
894 need_check = true;
895 for (; level < BTRFS_MAX_LEVEL; level++) {
896 if (!path2->nodes[level]) {
897 ASSERT(btrfs_root_bytenr(&root->root_item) ==
898 lower->bytenr);
899 if (should_ignore_root(root))
900 list_add(&lower->list, &useless);
901 else
902 lower->root = root;
903 break;
904 }
905
906 edge = alloc_backref_edge(cache);
907 if (!edge) {
908 err = -ENOMEM;
909 goto out;
910 }
911
912 eb = path2->nodes[level];
913 rb_node = tree_search(&cache->rb_root, eb->start);
914 if (!rb_node) {
915 upper = alloc_backref_node(cache);
916 if (!upper) {
917 free_backref_edge(cache, edge);
918 err = -ENOMEM;
919 goto out;
920 }
921 upper->bytenr = eb->start;
922 upper->owner = btrfs_header_owner(eb);
923 upper->level = lower->level + 1;
924 if (!test_bit(BTRFS_ROOT_REF_COWS,
925 &root->state))
926 upper->cowonly = 1;
927
928 /*
929 * if we know the block isn't shared
930 * we can void checking its backrefs.
931 */
932 if (btrfs_block_can_be_shared(root, eb))
933 upper->checked = 0;
934 else
935 upper->checked = 1;
936
937 /*
938 * add the block to pending list if we
939 * need check its backrefs, we only do this once
940 * while walking up a tree as we will catch
941 * anything else later on.
942 */
943 if (!upper->checked && need_check) {
944 need_check = false;
945 list_add_tail(&edge->list[UPPER],
946 &list);
947 } else {
948 if (upper->checked)
949 need_check = true;
950 INIT_LIST_HEAD(&edge->list[UPPER]);
951 }
952 } else {
953 upper = rb_entry(rb_node, struct backref_node,
954 rb_node);
955 ASSERT(upper->checked);
956 INIT_LIST_HEAD(&edge->list[UPPER]);
957 if (!upper->owner)
958 upper->owner = btrfs_header_owner(eb);
959 }
960 list_add_tail(&edge->list[LOWER], &lower->upper);
961 edge->node[LOWER] = lower;
962 edge->node[UPPER] = upper;
963
964 if (rb_node)
965 break;
966 lower = upper;
967 upper = NULL;
968 }
969 btrfs_release_path(path2);
970 next:
971 if (ptr < end) {
972 ptr += btrfs_extent_inline_ref_size(key.type);
973 if (ptr >= end) {
974 WARN_ON(ptr > end);
975 ptr = 0;
976 end = 0;
977 }
978 }
979 if (ptr >= end)
980 path1->slots[0]++;
981 }
982 btrfs_release_path(path1);
983
984 cur->checked = 1;
985 WARN_ON(exist);
986
987 /* the pending list isn't empty, take the first block to process */
988 if (!list_empty(&list)) {
989 edge = list_entry(list.next, struct backref_edge, list[UPPER]);
990 list_del_init(&edge->list[UPPER]);
991 cur = edge->node[UPPER];
992 goto again;
993 }
994
995 /*
996 * everything goes well, connect backref nodes and insert backref nodes
997 * into the cache.
998 */
999 ASSERT(node->checked);
1000 cowonly = node->cowonly;
1001 if (!cowonly) {
1002 rb_node = tree_insert(&cache->rb_root, node->bytenr,
1003 &node->rb_node);
1004 if (rb_node)
1005 backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1006 list_add_tail(&node->lower, &cache->leaves);
1007 }
1008
1009 list_for_each_entry(edge, &node->upper, list[LOWER])
1010 list_add_tail(&edge->list[UPPER], &list);
1011
1012 while (!list_empty(&list)) {
1013 edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1014 list_del_init(&edge->list[UPPER]);
1015 upper = edge->node[UPPER];
1016 if (upper->detached) {
1017 list_del(&edge->list[LOWER]);
1018 lower = edge->node[LOWER];
1019 free_backref_edge(cache, edge);
1020 if (list_empty(&lower->upper))
1021 list_add(&lower->list, &useless);
1022 continue;
1023 }
1024
1025 if (!RB_EMPTY_NODE(&upper->rb_node)) {
1026 if (upper->lowest) {
1027 list_del_init(&upper->lower);
1028 upper->lowest = 0;
1029 }
1030
1031 list_add_tail(&edge->list[UPPER], &upper->lower);
1032 continue;
1033 }
1034
1035 if (!upper->checked) {
1036 /*
1037 * Still want to blow up for developers since this is a
1038 * logic bug.
1039 */
1040 ASSERT(0);
1041 err = -EINVAL;
1042 goto out;
1043 }
1044 if (cowonly != upper->cowonly) {
1045 ASSERT(0);
1046 err = -EINVAL;
1047 goto out;
1048 }
1049
1050 if (!cowonly) {
1051 rb_node = tree_insert(&cache->rb_root, upper->bytenr,
1052 &upper->rb_node);
1053 if (rb_node)
1054 backref_tree_panic(rb_node, -EEXIST,
1055 upper->bytenr);
1056 }
1057
1058 list_add_tail(&edge->list[UPPER], &upper->lower);
1059
1060 list_for_each_entry(edge, &upper->upper, list[LOWER])
1061 list_add_tail(&edge->list[UPPER], &list);
1062 }
1063 /*
1064 * process useless backref nodes. backref nodes for tree leaves
1065 * are deleted from the cache. backref nodes for upper level
1066 * tree blocks are left in the cache to avoid unnecessary backref
1067 * lookup.
1068 */
1069 while (!list_empty(&useless)) {
1070 upper = list_entry(useless.next, struct backref_node, list);
1071 list_del_init(&upper->list);
1072 ASSERT(list_empty(&upper->upper));
1073 if (upper == node)
1074 node = NULL;
1075 if (upper->lowest) {
1076 list_del_init(&upper->lower);
1077 upper->lowest = 0;
1078 }
1079 while (!list_empty(&upper->lower)) {
1080 edge = list_entry(upper->lower.next,
1081 struct backref_edge, list[UPPER]);
1082 list_del(&edge->list[UPPER]);
1083 list_del(&edge->list[LOWER]);
1084 lower = edge->node[LOWER];
1085 free_backref_edge(cache, edge);
1086
1087 if (list_empty(&lower->upper))
1088 list_add(&lower->list, &useless);
1089 }
1090 __mark_block_processed(rc, upper);
1091 if (upper->level > 0) {
1092 list_add(&upper->list, &cache->detached);
1093 upper->detached = 1;
1094 } else {
1095 rb_erase(&upper->rb_node, &cache->rb_root);
1096 free_backref_node(cache, upper);
1097 }
1098 }
1099 out:
1100 btrfs_free_path(path1);
1101 btrfs_free_path(path2);
1102 if (err) {
1103 while (!list_empty(&useless)) {
1104 lower = list_entry(useless.next,
1105 struct backref_node, list);
1106 list_del_init(&lower->list);
1107 }
1108 while (!list_empty(&list)) {
1109 edge = list_first_entry(&list, struct backref_edge,
1110 list[UPPER]);
1111 list_del(&edge->list[UPPER]);
1112 list_del(&edge->list[LOWER]);
1113 lower = edge->node[LOWER];
1114 upper = edge->node[UPPER];
1115 free_backref_edge(cache, edge);
1116
1117 /*
1118 * Lower is no longer linked to any upper backref nodes
1119 * and isn't in the cache, we can free it ourselves.
1120 */
1121 if (list_empty(&lower->upper) &&
1122 RB_EMPTY_NODE(&lower->rb_node))
1123 list_add(&lower->list, &useless);
1124
1125 if (!RB_EMPTY_NODE(&upper->rb_node))
1126 continue;
1127
1128 /* Add this guy's upper edges to the list to process */
1129 list_for_each_entry(edge, &upper->upper, list[LOWER])
1130 list_add_tail(&edge->list[UPPER], &list);
1131 if (list_empty(&upper->upper))
1132 list_add(&upper->list, &useless);
1133 }
1134
1135 while (!list_empty(&useless)) {
1136 lower = list_entry(useless.next,
1137 struct backref_node, list);
1138 list_del_init(&lower->list);
1139 if (lower == node)
1140 node = NULL;
1141 free_backref_node(cache, lower);
1142 }
1143
1144 remove_backref_node(cache, node);
1145 return ERR_PTR(err);
1146 }
1147 ASSERT(!node || !node->detached);
1148 return node;
1149 }
1150
1151 /*
1152 * helper to add backref node for the newly created snapshot.
1153 * the backref node is created by cloning backref node that
1154 * corresponds to root of source tree
1155 */
clone_backref_node(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_root * src,struct btrfs_root * dest)1156 static int clone_backref_node(struct btrfs_trans_handle *trans,
1157 struct reloc_control *rc,
1158 struct btrfs_root *src,
1159 struct btrfs_root *dest)
1160 {
1161 struct btrfs_root *reloc_root = src->reloc_root;
1162 struct backref_cache *cache = &rc->backref_cache;
1163 struct backref_node *node = NULL;
1164 struct backref_node *new_node;
1165 struct backref_edge *edge;
1166 struct backref_edge *new_edge;
1167 struct rb_node *rb_node;
1168
1169 if (cache->last_trans > 0)
1170 update_backref_cache(trans, cache);
1171
1172 rb_node = tree_search(&cache->rb_root, src->commit_root->start);
1173 if (rb_node) {
1174 node = rb_entry(rb_node, struct backref_node, rb_node);
1175 if (node->detached)
1176 node = NULL;
1177 else
1178 BUG_ON(node->new_bytenr != reloc_root->node->start);
1179 }
1180
1181 if (!node) {
1182 rb_node = tree_search(&cache->rb_root,
1183 reloc_root->commit_root->start);
1184 if (rb_node) {
1185 node = rb_entry(rb_node, struct backref_node,
1186 rb_node);
1187 BUG_ON(node->detached);
1188 }
1189 }
1190
1191 if (!node)
1192 return 0;
1193
1194 new_node = alloc_backref_node(cache);
1195 if (!new_node)
1196 return -ENOMEM;
1197
1198 new_node->bytenr = dest->node->start;
1199 new_node->level = node->level;
1200 new_node->lowest = node->lowest;
1201 new_node->checked = 1;
1202 new_node->root = dest;
1203
1204 if (!node->lowest) {
1205 list_for_each_entry(edge, &node->lower, list[UPPER]) {
1206 new_edge = alloc_backref_edge(cache);
1207 if (!new_edge)
1208 goto fail;
1209
1210 new_edge->node[UPPER] = new_node;
1211 new_edge->node[LOWER] = edge->node[LOWER];
1212 list_add_tail(&new_edge->list[UPPER],
1213 &new_node->lower);
1214 }
1215 } else {
1216 list_add_tail(&new_node->lower, &cache->leaves);
1217 }
1218
1219 rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
1220 &new_node->rb_node);
1221 if (rb_node)
1222 backref_tree_panic(rb_node, -EEXIST, new_node->bytenr);
1223
1224 if (!new_node->lowest) {
1225 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
1226 list_add_tail(&new_edge->list[LOWER],
1227 &new_edge->node[LOWER]->upper);
1228 }
1229 }
1230 return 0;
1231 fail:
1232 while (!list_empty(&new_node->lower)) {
1233 new_edge = list_entry(new_node->lower.next,
1234 struct backref_edge, list[UPPER]);
1235 list_del(&new_edge->list[UPPER]);
1236 free_backref_edge(cache, new_edge);
1237 }
1238 free_backref_node(cache, new_node);
1239 return -ENOMEM;
1240 }
1241
1242 /*
1243 * helper to add 'address of tree root -> reloc tree' mapping
1244 */
__add_reloc_root(struct btrfs_root * root)1245 static int __must_check __add_reloc_root(struct btrfs_root *root)
1246 {
1247 struct btrfs_fs_info *fs_info = root->fs_info;
1248 struct rb_node *rb_node;
1249 struct mapping_node *node;
1250 struct reloc_control *rc = fs_info->reloc_ctl;
1251
1252 node = kmalloc(sizeof(*node), GFP_NOFS);
1253 if (!node)
1254 return -ENOMEM;
1255
1256 node->bytenr = root->commit_root->start;
1257 node->data = root;
1258
1259 spin_lock(&rc->reloc_root_tree.lock);
1260 rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1261 node->bytenr, &node->rb_node);
1262 spin_unlock(&rc->reloc_root_tree.lock);
1263 if (rb_node) {
1264 btrfs_panic(fs_info, -EEXIST,
1265 "Duplicate root found for start=%llu while inserting into relocation tree",
1266 node->bytenr);
1267 }
1268
1269 list_add_tail(&root->root_list, &rc->reloc_roots);
1270 return 0;
1271 }
1272
1273 /*
1274 * helper to delete the 'address of tree root -> reloc tree'
1275 * mapping
1276 */
__del_reloc_root(struct btrfs_root * root)1277 static void __del_reloc_root(struct btrfs_root *root)
1278 {
1279 struct btrfs_fs_info *fs_info = root->fs_info;
1280 struct rb_node *rb_node;
1281 struct mapping_node *node = NULL;
1282 struct reloc_control *rc = fs_info->reloc_ctl;
1283
1284 if (rc && root->node) {
1285 spin_lock(&rc->reloc_root_tree.lock);
1286 rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1287 root->commit_root->start);
1288 if (rb_node) {
1289 node = rb_entry(rb_node, struct mapping_node, rb_node);
1290 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1291 RB_CLEAR_NODE(&node->rb_node);
1292 }
1293 spin_unlock(&rc->reloc_root_tree.lock);
1294 ASSERT(!node || (struct btrfs_root *)node->data == root);
1295 }
1296
1297 spin_lock(&fs_info->trans_lock);
1298 list_del_init(&root->root_list);
1299 spin_unlock(&fs_info->trans_lock);
1300 kfree(node);
1301 }
1302
1303 /*
1304 * helper to update the 'address of tree root -> reloc tree'
1305 * mapping
1306 */
__update_reloc_root(struct btrfs_root * root)1307 static int __update_reloc_root(struct btrfs_root *root)
1308 {
1309 struct btrfs_fs_info *fs_info = root->fs_info;
1310 struct rb_node *rb_node;
1311 struct mapping_node *node = NULL;
1312 struct reloc_control *rc = fs_info->reloc_ctl;
1313
1314 spin_lock(&rc->reloc_root_tree.lock);
1315 rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1316 root->commit_root->start);
1317 if (rb_node) {
1318 node = rb_entry(rb_node, struct mapping_node, rb_node);
1319 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1320 }
1321 spin_unlock(&rc->reloc_root_tree.lock);
1322
1323 if (!node)
1324 return 0;
1325 BUG_ON((struct btrfs_root *)node->data != root);
1326
1327 spin_lock(&rc->reloc_root_tree.lock);
1328 node->bytenr = root->node->start;
1329 rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1330 node->bytenr, &node->rb_node);
1331 spin_unlock(&rc->reloc_root_tree.lock);
1332 if (rb_node)
1333 backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1334 return 0;
1335 }
1336
create_reloc_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 objectid)1337 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
1338 struct btrfs_root *root, u64 objectid)
1339 {
1340 struct btrfs_fs_info *fs_info = root->fs_info;
1341 struct btrfs_root *reloc_root;
1342 struct extent_buffer *eb;
1343 struct btrfs_root_item *root_item;
1344 struct btrfs_key root_key;
1345 int ret;
1346
1347 root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
1348 BUG_ON(!root_item);
1349
1350 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
1351 root_key.type = BTRFS_ROOT_ITEM_KEY;
1352 root_key.offset = objectid;
1353
1354 if (root->root_key.objectid == objectid) {
1355 u64 commit_root_gen;
1356
1357 /* called by btrfs_init_reloc_root */
1358 ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
1359 BTRFS_TREE_RELOC_OBJECTID);
1360 BUG_ON(ret);
1361 /*
1362 * Set the last_snapshot field to the generation of the commit
1363 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
1364 * correctly (returns true) when the relocation root is created
1365 * either inside the critical section of a transaction commit
1366 * (through transaction.c:qgroup_account_snapshot()) and when
1367 * it's created before the transaction commit is started.
1368 */
1369 commit_root_gen = btrfs_header_generation(root->commit_root);
1370 btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
1371 } else {
1372 /*
1373 * called by btrfs_reloc_post_snapshot_hook.
1374 * the source tree is a reloc tree, all tree blocks
1375 * modified after it was created have RELOC flag
1376 * set in their headers. so it's OK to not update
1377 * the 'last_snapshot'.
1378 */
1379 ret = btrfs_copy_root(trans, root, root->node, &eb,
1380 BTRFS_TREE_RELOC_OBJECTID);
1381 BUG_ON(ret);
1382 }
1383
1384 memcpy(root_item, &root->root_item, sizeof(*root_item));
1385 btrfs_set_root_bytenr(root_item, eb->start);
1386 btrfs_set_root_level(root_item, btrfs_header_level(eb));
1387 btrfs_set_root_generation(root_item, trans->transid);
1388
1389 if (root->root_key.objectid == objectid) {
1390 btrfs_set_root_refs(root_item, 0);
1391 memset(&root_item->drop_progress, 0,
1392 sizeof(struct btrfs_disk_key));
1393 root_item->drop_level = 0;
1394 }
1395
1396 btrfs_tree_unlock(eb);
1397 free_extent_buffer(eb);
1398
1399 ret = btrfs_insert_root(trans, fs_info->tree_root,
1400 &root_key, root_item);
1401 BUG_ON(ret);
1402 kfree(root_item);
1403
1404 reloc_root = btrfs_read_fs_root(fs_info->tree_root, &root_key);
1405 BUG_ON(IS_ERR(reloc_root));
1406 reloc_root->last_trans = trans->transid;
1407 return reloc_root;
1408 }
1409
1410 /*
1411 * create reloc tree for a given fs tree. reloc tree is just a
1412 * snapshot of the fs tree with special root objectid.
1413 */
btrfs_init_reloc_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)1414 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
1415 struct btrfs_root *root)
1416 {
1417 struct btrfs_fs_info *fs_info = root->fs_info;
1418 struct btrfs_root *reloc_root;
1419 struct reloc_control *rc = fs_info->reloc_ctl;
1420 struct btrfs_block_rsv *rsv;
1421 int clear_rsv = 0;
1422 int ret;
1423
1424 if (root->reloc_root) {
1425 reloc_root = root->reloc_root;
1426 reloc_root->last_trans = trans->transid;
1427 return 0;
1428 }
1429
1430 if (!rc || !rc->create_reloc_tree ||
1431 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1432 return 0;
1433
1434 if (!trans->reloc_reserved) {
1435 rsv = trans->block_rsv;
1436 trans->block_rsv = rc->block_rsv;
1437 clear_rsv = 1;
1438 }
1439 reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
1440 if (clear_rsv)
1441 trans->block_rsv = rsv;
1442
1443 ret = __add_reloc_root(reloc_root);
1444 BUG_ON(ret < 0);
1445 root->reloc_root = reloc_root;
1446 return 0;
1447 }
1448
1449 /*
1450 * update root item of reloc tree
1451 */
btrfs_update_reloc_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)1452 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
1453 struct btrfs_root *root)
1454 {
1455 struct btrfs_fs_info *fs_info = root->fs_info;
1456 struct btrfs_root *reloc_root;
1457 struct btrfs_root_item *root_item;
1458 int ret;
1459
1460 if (!root->reloc_root)
1461 goto out;
1462
1463 reloc_root = root->reloc_root;
1464 root_item = &reloc_root->root_item;
1465
1466 if (fs_info->reloc_ctl->merge_reloc_tree &&
1467 btrfs_root_refs(root_item) == 0) {
1468 root->reloc_root = NULL;
1469 __del_reloc_root(reloc_root);
1470 }
1471
1472 if (reloc_root->commit_root != reloc_root->node) {
1473 __update_reloc_root(reloc_root);
1474 btrfs_set_root_node(root_item, reloc_root->node);
1475 free_extent_buffer(reloc_root->commit_root);
1476 reloc_root->commit_root = btrfs_root_node(reloc_root);
1477 }
1478
1479 ret = btrfs_update_root(trans, fs_info->tree_root,
1480 &reloc_root->root_key, root_item);
1481 BUG_ON(ret);
1482
1483 out:
1484 return 0;
1485 }
1486
1487 /*
1488 * helper to find first cached inode with inode number >= objectid
1489 * in a subvolume
1490 */
find_next_inode(struct btrfs_root * root,u64 objectid)1491 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
1492 {
1493 struct rb_node *node;
1494 struct rb_node *prev;
1495 struct btrfs_inode *entry;
1496 struct inode *inode;
1497
1498 spin_lock(&root->inode_lock);
1499 again:
1500 node = root->inode_tree.rb_node;
1501 prev = NULL;
1502 while (node) {
1503 prev = node;
1504 entry = rb_entry(node, struct btrfs_inode, rb_node);
1505
1506 if (objectid < btrfs_ino(entry))
1507 node = node->rb_left;
1508 else if (objectid > btrfs_ino(entry))
1509 node = node->rb_right;
1510 else
1511 break;
1512 }
1513 if (!node) {
1514 while (prev) {
1515 entry = rb_entry(prev, struct btrfs_inode, rb_node);
1516 if (objectid <= btrfs_ino(entry)) {
1517 node = prev;
1518 break;
1519 }
1520 prev = rb_next(prev);
1521 }
1522 }
1523 while (node) {
1524 entry = rb_entry(node, struct btrfs_inode, rb_node);
1525 inode = igrab(&entry->vfs_inode);
1526 if (inode) {
1527 spin_unlock(&root->inode_lock);
1528 return inode;
1529 }
1530
1531 objectid = btrfs_ino(entry) + 1;
1532 if (cond_resched_lock(&root->inode_lock))
1533 goto again;
1534
1535 node = rb_next(node);
1536 }
1537 spin_unlock(&root->inode_lock);
1538 return NULL;
1539 }
1540
in_block_group(u64 bytenr,struct btrfs_block_group_cache * block_group)1541 static int in_block_group(u64 bytenr,
1542 struct btrfs_block_group_cache *block_group)
1543 {
1544 if (bytenr >= block_group->key.objectid &&
1545 bytenr < block_group->key.objectid + block_group->key.offset)
1546 return 1;
1547 return 0;
1548 }
1549
1550 /*
1551 * get new location of data
1552 */
get_new_location(struct inode * reloc_inode,u64 * new_bytenr,u64 bytenr,u64 num_bytes)1553 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1554 u64 bytenr, u64 num_bytes)
1555 {
1556 struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1557 struct btrfs_path *path;
1558 struct btrfs_file_extent_item *fi;
1559 struct extent_buffer *leaf;
1560 int ret;
1561
1562 path = btrfs_alloc_path();
1563 if (!path)
1564 return -ENOMEM;
1565
1566 bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1567 ret = btrfs_lookup_file_extent(NULL, root, path,
1568 btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
1569 if (ret < 0)
1570 goto out;
1571 if (ret > 0) {
1572 ret = -ENOENT;
1573 goto out;
1574 }
1575
1576 leaf = path->nodes[0];
1577 fi = btrfs_item_ptr(leaf, path->slots[0],
1578 struct btrfs_file_extent_item);
1579
1580 BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1581 btrfs_file_extent_compression(leaf, fi) ||
1582 btrfs_file_extent_encryption(leaf, fi) ||
1583 btrfs_file_extent_other_encoding(leaf, fi));
1584
1585 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1586 ret = -EINVAL;
1587 goto out;
1588 }
1589
1590 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1591 ret = 0;
1592 out:
1593 btrfs_free_path(path);
1594 return ret;
1595 }
1596
1597 /*
1598 * update file extent items in the tree leaf to point to
1599 * the new locations.
1600 */
1601 static noinline_for_stack
replace_file_extents(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_root * root,struct extent_buffer * leaf)1602 int replace_file_extents(struct btrfs_trans_handle *trans,
1603 struct reloc_control *rc,
1604 struct btrfs_root *root,
1605 struct extent_buffer *leaf)
1606 {
1607 struct btrfs_fs_info *fs_info = root->fs_info;
1608 struct btrfs_key key;
1609 struct btrfs_file_extent_item *fi;
1610 struct inode *inode = NULL;
1611 u64 parent;
1612 u64 bytenr;
1613 u64 new_bytenr = 0;
1614 u64 num_bytes;
1615 u64 end;
1616 u32 nritems;
1617 u32 i;
1618 int ret = 0;
1619 int first = 1;
1620 int dirty = 0;
1621
1622 if (rc->stage != UPDATE_DATA_PTRS)
1623 return 0;
1624
1625 /* reloc trees always use full backref */
1626 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1627 parent = leaf->start;
1628 else
1629 parent = 0;
1630
1631 nritems = btrfs_header_nritems(leaf);
1632 for (i = 0; i < nritems; i++) {
1633 cond_resched();
1634 btrfs_item_key_to_cpu(leaf, &key, i);
1635 if (key.type != BTRFS_EXTENT_DATA_KEY)
1636 continue;
1637 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1638 if (btrfs_file_extent_type(leaf, fi) ==
1639 BTRFS_FILE_EXTENT_INLINE)
1640 continue;
1641 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1642 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1643 if (bytenr == 0)
1644 continue;
1645 if (!in_block_group(bytenr, rc->block_group))
1646 continue;
1647
1648 /*
1649 * if we are modifying block in fs tree, wait for readpage
1650 * to complete and drop the extent cache
1651 */
1652 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1653 if (first) {
1654 inode = find_next_inode(root, key.objectid);
1655 first = 0;
1656 } else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1657 btrfs_add_delayed_iput(inode);
1658 inode = find_next_inode(root, key.objectid);
1659 }
1660 if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1661 end = key.offset +
1662 btrfs_file_extent_num_bytes(leaf, fi);
1663 WARN_ON(!IS_ALIGNED(key.offset,
1664 fs_info->sectorsize));
1665 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1666 end--;
1667 ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1668 key.offset, end);
1669 if (!ret)
1670 continue;
1671
1672 btrfs_drop_extent_cache(BTRFS_I(inode),
1673 key.offset, end, 1);
1674 unlock_extent(&BTRFS_I(inode)->io_tree,
1675 key.offset, end);
1676 }
1677 }
1678
1679 ret = get_new_location(rc->data_inode, &new_bytenr,
1680 bytenr, num_bytes);
1681 if (ret) {
1682 /*
1683 * Don't have to abort since we've not changed anything
1684 * in the file extent yet.
1685 */
1686 break;
1687 }
1688
1689 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1690 dirty = 1;
1691
1692 key.offset -= btrfs_file_extent_offset(leaf, fi);
1693 ret = btrfs_inc_extent_ref(trans, root, new_bytenr,
1694 num_bytes, parent,
1695 btrfs_header_owner(leaf),
1696 key.objectid, key.offset);
1697 if (ret) {
1698 btrfs_abort_transaction(trans, ret);
1699 break;
1700 }
1701
1702 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1703 parent, btrfs_header_owner(leaf),
1704 key.objectid, key.offset);
1705 if (ret) {
1706 btrfs_abort_transaction(trans, ret);
1707 break;
1708 }
1709 }
1710 if (dirty)
1711 btrfs_mark_buffer_dirty(leaf);
1712 if (inode)
1713 btrfs_add_delayed_iput(inode);
1714 return ret;
1715 }
1716
1717 static noinline_for_stack
memcmp_node_keys(struct extent_buffer * eb,int slot,struct btrfs_path * path,int level)1718 int memcmp_node_keys(struct extent_buffer *eb, int slot,
1719 struct btrfs_path *path, int level)
1720 {
1721 struct btrfs_disk_key key1;
1722 struct btrfs_disk_key key2;
1723 btrfs_node_key(eb, &key1, slot);
1724 btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1725 return memcmp(&key1, &key2, sizeof(key1));
1726 }
1727
1728 /*
1729 * try to replace tree blocks in fs tree with the new blocks
1730 * in reloc tree. tree blocks haven't been modified since the
1731 * reloc tree was create can be replaced.
1732 *
1733 * if a block was replaced, level of the block + 1 is returned.
1734 * if no block got replaced, 0 is returned. if there are other
1735 * errors, a negative error number is returned.
1736 */
1737 static noinline_for_stack
replace_path(struct btrfs_trans_handle * trans,struct btrfs_root * dest,struct btrfs_root * src,struct btrfs_path * path,struct btrfs_key * next_key,int lowest_level,int max_level)1738 int replace_path(struct btrfs_trans_handle *trans,
1739 struct btrfs_root *dest, struct btrfs_root *src,
1740 struct btrfs_path *path, struct btrfs_key *next_key,
1741 int lowest_level, int max_level)
1742 {
1743 struct btrfs_fs_info *fs_info = dest->fs_info;
1744 struct extent_buffer *eb;
1745 struct extent_buffer *parent;
1746 struct btrfs_key key;
1747 u64 old_bytenr;
1748 u64 new_bytenr;
1749 u64 old_ptr_gen;
1750 u64 new_ptr_gen;
1751 u64 last_snapshot;
1752 u32 blocksize;
1753 int cow = 0;
1754 int level;
1755 int ret;
1756 int slot;
1757
1758 ASSERT(src->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1759 ASSERT(dest->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1760
1761 last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1762 again:
1763 slot = path->slots[lowest_level];
1764 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1765
1766 eb = btrfs_lock_root_node(dest);
1767 btrfs_set_lock_blocking(eb);
1768 level = btrfs_header_level(eb);
1769
1770 if (level < lowest_level) {
1771 btrfs_tree_unlock(eb);
1772 free_extent_buffer(eb);
1773 return 0;
1774 }
1775
1776 if (cow) {
1777 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1778 BUG_ON(ret);
1779 }
1780 btrfs_set_lock_blocking(eb);
1781
1782 if (next_key) {
1783 next_key->objectid = (u64)-1;
1784 next_key->type = (u8)-1;
1785 next_key->offset = (u64)-1;
1786 }
1787
1788 parent = eb;
1789 while (1) {
1790 struct btrfs_key first_key;
1791
1792 level = btrfs_header_level(parent);
1793 ASSERT(level >= lowest_level);
1794
1795 ret = btrfs_bin_search(parent, &key, level, &slot);
1796 if (ret && slot > 0)
1797 slot--;
1798
1799 if (next_key && slot + 1 < btrfs_header_nritems(parent))
1800 btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1801
1802 old_bytenr = btrfs_node_blockptr(parent, slot);
1803 blocksize = fs_info->nodesize;
1804 old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1805 btrfs_node_key_to_cpu(parent, &first_key, slot);
1806
1807 if (level <= max_level) {
1808 eb = path->nodes[level];
1809 new_bytenr = btrfs_node_blockptr(eb,
1810 path->slots[level]);
1811 new_ptr_gen = btrfs_node_ptr_generation(eb,
1812 path->slots[level]);
1813 } else {
1814 new_bytenr = 0;
1815 new_ptr_gen = 0;
1816 }
1817
1818 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1819 ret = level;
1820 break;
1821 }
1822
1823 if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1824 memcmp_node_keys(parent, slot, path, level)) {
1825 if (level <= lowest_level) {
1826 ret = 0;
1827 break;
1828 }
1829
1830 eb = read_tree_block(fs_info, old_bytenr, old_ptr_gen,
1831 level - 1, &first_key);
1832 if (IS_ERR(eb)) {
1833 ret = PTR_ERR(eb);
1834 break;
1835 } else if (!extent_buffer_uptodate(eb)) {
1836 ret = -EIO;
1837 free_extent_buffer(eb);
1838 break;
1839 }
1840 btrfs_tree_lock(eb);
1841 if (cow) {
1842 ret = btrfs_cow_block(trans, dest, eb, parent,
1843 slot, &eb);
1844 BUG_ON(ret);
1845 }
1846 btrfs_set_lock_blocking(eb);
1847
1848 btrfs_tree_unlock(parent);
1849 free_extent_buffer(parent);
1850
1851 parent = eb;
1852 continue;
1853 }
1854
1855 if (!cow) {
1856 btrfs_tree_unlock(parent);
1857 free_extent_buffer(parent);
1858 cow = 1;
1859 goto again;
1860 }
1861
1862 btrfs_node_key_to_cpu(path->nodes[level], &key,
1863 path->slots[level]);
1864 btrfs_release_path(path);
1865
1866 path->lowest_level = level;
1867 ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1868 path->lowest_level = 0;
1869 BUG_ON(ret);
1870
1871 /*
1872 * Info qgroup to trace both subtrees.
1873 *
1874 * We must trace both trees.
1875 * 1) Tree reloc subtree
1876 * If not traced, we will leak data numbers
1877 * 2) Fs subtree
1878 * If not traced, we will double count old data
1879 * and tree block numbers, if current trans doesn't free
1880 * data reloc tree inode.
1881 */
1882 ret = btrfs_qgroup_trace_subtree(trans, parent,
1883 btrfs_header_generation(parent),
1884 btrfs_header_level(parent));
1885 if (ret < 0)
1886 break;
1887 ret = btrfs_qgroup_trace_subtree(trans, path->nodes[level],
1888 btrfs_header_generation(path->nodes[level]),
1889 btrfs_header_level(path->nodes[level]));
1890 if (ret < 0)
1891 break;
1892
1893 /*
1894 * swap blocks in fs tree and reloc tree.
1895 */
1896 btrfs_set_node_blockptr(parent, slot, new_bytenr);
1897 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1898 btrfs_mark_buffer_dirty(parent);
1899
1900 btrfs_set_node_blockptr(path->nodes[level],
1901 path->slots[level], old_bytenr);
1902 btrfs_set_node_ptr_generation(path->nodes[level],
1903 path->slots[level], old_ptr_gen);
1904 btrfs_mark_buffer_dirty(path->nodes[level]);
1905
1906 ret = btrfs_inc_extent_ref(trans, src, old_bytenr,
1907 blocksize, path->nodes[level]->start,
1908 src->root_key.objectid, level - 1, 0);
1909 BUG_ON(ret);
1910 ret = btrfs_inc_extent_ref(trans, dest, new_bytenr,
1911 blocksize, 0, dest->root_key.objectid,
1912 level - 1, 0);
1913 BUG_ON(ret);
1914
1915 ret = btrfs_free_extent(trans, src, new_bytenr, blocksize,
1916 path->nodes[level]->start,
1917 src->root_key.objectid, level - 1, 0);
1918 BUG_ON(ret);
1919
1920 ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize,
1921 0, dest->root_key.objectid, level - 1,
1922 0);
1923 BUG_ON(ret);
1924
1925 btrfs_unlock_up_safe(path, 0);
1926
1927 ret = level;
1928 break;
1929 }
1930 btrfs_tree_unlock(parent);
1931 free_extent_buffer(parent);
1932 return ret;
1933 }
1934
1935 /*
1936 * helper to find next relocated block in reloc tree
1937 */
1938 static noinline_for_stack
walk_up_reloc_tree(struct btrfs_root * root,struct btrfs_path * path,int * level)1939 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1940 int *level)
1941 {
1942 struct extent_buffer *eb;
1943 int i;
1944 u64 last_snapshot;
1945 u32 nritems;
1946
1947 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1948
1949 for (i = 0; i < *level; i++) {
1950 free_extent_buffer(path->nodes[i]);
1951 path->nodes[i] = NULL;
1952 }
1953
1954 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1955 eb = path->nodes[i];
1956 nritems = btrfs_header_nritems(eb);
1957 while (path->slots[i] + 1 < nritems) {
1958 path->slots[i]++;
1959 if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1960 last_snapshot)
1961 continue;
1962
1963 *level = i;
1964 return 0;
1965 }
1966 free_extent_buffer(path->nodes[i]);
1967 path->nodes[i] = NULL;
1968 }
1969 return 1;
1970 }
1971
1972 /*
1973 * walk down reloc tree to find relocated block of lowest level
1974 */
1975 static noinline_for_stack
walk_down_reloc_tree(struct btrfs_root * root,struct btrfs_path * path,int * level)1976 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1977 int *level)
1978 {
1979 struct btrfs_fs_info *fs_info = root->fs_info;
1980 struct extent_buffer *eb = NULL;
1981 int i;
1982 u64 bytenr;
1983 u64 ptr_gen = 0;
1984 u64 last_snapshot;
1985 u32 nritems;
1986
1987 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1988
1989 for (i = *level; i > 0; i--) {
1990 struct btrfs_key first_key;
1991
1992 eb = path->nodes[i];
1993 nritems = btrfs_header_nritems(eb);
1994 while (path->slots[i] < nritems) {
1995 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1996 if (ptr_gen > last_snapshot)
1997 break;
1998 path->slots[i]++;
1999 }
2000 if (path->slots[i] >= nritems) {
2001 if (i == *level)
2002 break;
2003 *level = i + 1;
2004 return 0;
2005 }
2006 if (i == 1) {
2007 *level = i;
2008 return 0;
2009 }
2010
2011 bytenr = btrfs_node_blockptr(eb, path->slots[i]);
2012 btrfs_node_key_to_cpu(eb, &first_key, path->slots[i]);
2013 eb = read_tree_block(fs_info, bytenr, ptr_gen, i - 1,
2014 &first_key);
2015 if (IS_ERR(eb)) {
2016 return PTR_ERR(eb);
2017 } else if (!extent_buffer_uptodate(eb)) {
2018 free_extent_buffer(eb);
2019 return -EIO;
2020 }
2021 BUG_ON(btrfs_header_level(eb) != i - 1);
2022 path->nodes[i - 1] = eb;
2023 path->slots[i - 1] = 0;
2024 }
2025 return 1;
2026 }
2027
2028 /*
2029 * invalidate extent cache for file extents whose key in range of
2030 * [min_key, max_key)
2031 */
invalidate_extent_cache(struct btrfs_root * root,struct btrfs_key * min_key,struct btrfs_key * max_key)2032 static int invalidate_extent_cache(struct btrfs_root *root,
2033 struct btrfs_key *min_key,
2034 struct btrfs_key *max_key)
2035 {
2036 struct btrfs_fs_info *fs_info = root->fs_info;
2037 struct inode *inode = NULL;
2038 u64 objectid;
2039 u64 start, end;
2040 u64 ino;
2041
2042 objectid = min_key->objectid;
2043 while (1) {
2044 cond_resched();
2045 iput(inode);
2046
2047 if (objectid > max_key->objectid)
2048 break;
2049
2050 inode = find_next_inode(root, objectid);
2051 if (!inode)
2052 break;
2053 ino = btrfs_ino(BTRFS_I(inode));
2054
2055 if (ino > max_key->objectid) {
2056 iput(inode);
2057 break;
2058 }
2059
2060 objectid = ino + 1;
2061 if (!S_ISREG(inode->i_mode))
2062 continue;
2063
2064 if (unlikely(min_key->objectid == ino)) {
2065 if (min_key->type > BTRFS_EXTENT_DATA_KEY)
2066 continue;
2067 if (min_key->type < BTRFS_EXTENT_DATA_KEY)
2068 start = 0;
2069 else {
2070 start = min_key->offset;
2071 WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
2072 }
2073 } else {
2074 start = 0;
2075 }
2076
2077 if (unlikely(max_key->objectid == ino)) {
2078 if (max_key->type < BTRFS_EXTENT_DATA_KEY)
2079 continue;
2080 if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
2081 end = (u64)-1;
2082 } else {
2083 if (max_key->offset == 0)
2084 continue;
2085 end = max_key->offset;
2086 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
2087 end--;
2088 }
2089 } else {
2090 end = (u64)-1;
2091 }
2092
2093 /* the lock_extent waits for readpage to complete */
2094 lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2095 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1);
2096 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2097 }
2098 return 0;
2099 }
2100
find_next_key(struct btrfs_path * path,int level,struct btrfs_key * key)2101 static int find_next_key(struct btrfs_path *path, int level,
2102 struct btrfs_key *key)
2103
2104 {
2105 while (level < BTRFS_MAX_LEVEL) {
2106 if (!path->nodes[level])
2107 break;
2108 if (path->slots[level] + 1 <
2109 btrfs_header_nritems(path->nodes[level])) {
2110 btrfs_node_key_to_cpu(path->nodes[level], key,
2111 path->slots[level] + 1);
2112 return 0;
2113 }
2114 level++;
2115 }
2116 return 1;
2117 }
2118
2119 /*
2120 * merge the relocated tree blocks in reloc tree with corresponding
2121 * fs tree.
2122 */
merge_reloc_root(struct reloc_control * rc,struct btrfs_root * root)2123 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
2124 struct btrfs_root *root)
2125 {
2126 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2127 LIST_HEAD(inode_list);
2128 struct btrfs_key key;
2129 struct btrfs_key next_key;
2130 struct btrfs_trans_handle *trans = NULL;
2131 struct btrfs_root *reloc_root;
2132 struct btrfs_root_item *root_item;
2133 struct btrfs_path *path;
2134 struct extent_buffer *leaf;
2135 int level;
2136 int max_level;
2137 int replaced = 0;
2138 int ret;
2139 int err = 0;
2140 u32 min_reserved;
2141
2142 path = btrfs_alloc_path();
2143 if (!path)
2144 return -ENOMEM;
2145 path->reada = READA_FORWARD;
2146
2147 reloc_root = root->reloc_root;
2148 root_item = &reloc_root->root_item;
2149
2150 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2151 level = btrfs_root_level(root_item);
2152 extent_buffer_get(reloc_root->node);
2153 path->nodes[level] = reloc_root->node;
2154 path->slots[level] = 0;
2155 } else {
2156 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2157
2158 level = root_item->drop_level;
2159 BUG_ON(level == 0);
2160 path->lowest_level = level;
2161 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
2162 path->lowest_level = 0;
2163 if (ret < 0) {
2164 btrfs_free_path(path);
2165 return ret;
2166 }
2167
2168 btrfs_node_key_to_cpu(path->nodes[level], &next_key,
2169 path->slots[level]);
2170 WARN_ON(memcmp(&key, &next_key, sizeof(key)));
2171
2172 btrfs_unlock_up_safe(path, 0);
2173 }
2174
2175 min_reserved = fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2176 memset(&next_key, 0, sizeof(next_key));
2177
2178 while (1) {
2179 ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
2180 BTRFS_RESERVE_FLUSH_ALL);
2181 if (ret) {
2182 err = ret;
2183 goto out;
2184 }
2185 trans = btrfs_start_transaction(root, 0);
2186 if (IS_ERR(trans)) {
2187 err = PTR_ERR(trans);
2188 trans = NULL;
2189 goto out;
2190 }
2191 trans->block_rsv = rc->block_rsv;
2192
2193 replaced = 0;
2194 max_level = level;
2195
2196 ret = walk_down_reloc_tree(reloc_root, path, &level);
2197 if (ret < 0) {
2198 err = ret;
2199 goto out;
2200 }
2201 if (ret > 0)
2202 break;
2203
2204 if (!find_next_key(path, level, &key) &&
2205 btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
2206 ret = 0;
2207 } else {
2208 ret = replace_path(trans, root, reloc_root, path,
2209 &next_key, level, max_level);
2210 }
2211 if (ret < 0) {
2212 err = ret;
2213 goto out;
2214 }
2215
2216 if (ret > 0) {
2217 level = ret;
2218 btrfs_node_key_to_cpu(path->nodes[level], &key,
2219 path->slots[level]);
2220 replaced = 1;
2221 }
2222
2223 ret = walk_up_reloc_tree(reloc_root, path, &level);
2224 if (ret > 0)
2225 break;
2226
2227 BUG_ON(level == 0);
2228 /*
2229 * save the merging progress in the drop_progress.
2230 * this is OK since root refs == 1 in this case.
2231 */
2232 btrfs_node_key(path->nodes[level], &root_item->drop_progress,
2233 path->slots[level]);
2234 root_item->drop_level = level;
2235
2236 btrfs_end_transaction_throttle(trans);
2237 trans = NULL;
2238
2239 btrfs_btree_balance_dirty(fs_info);
2240
2241 if (replaced && rc->stage == UPDATE_DATA_PTRS)
2242 invalidate_extent_cache(root, &key, &next_key);
2243 }
2244
2245 /*
2246 * handle the case only one block in the fs tree need to be
2247 * relocated and the block is tree root.
2248 */
2249 leaf = btrfs_lock_root_node(root);
2250 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
2251 btrfs_tree_unlock(leaf);
2252 free_extent_buffer(leaf);
2253 if (ret < 0)
2254 err = ret;
2255 out:
2256 btrfs_free_path(path);
2257
2258 if (err == 0) {
2259 memset(&root_item->drop_progress, 0,
2260 sizeof(root_item->drop_progress));
2261 root_item->drop_level = 0;
2262 btrfs_set_root_refs(root_item, 0);
2263 btrfs_update_reloc_root(trans, root);
2264 }
2265
2266 if (trans)
2267 btrfs_end_transaction_throttle(trans);
2268
2269 btrfs_btree_balance_dirty(fs_info);
2270
2271 if (replaced && rc->stage == UPDATE_DATA_PTRS)
2272 invalidate_extent_cache(root, &key, &next_key);
2273
2274 return err;
2275 }
2276
2277 static noinline_for_stack
prepare_to_merge(struct reloc_control * rc,int err)2278 int prepare_to_merge(struct reloc_control *rc, int err)
2279 {
2280 struct btrfs_root *root = rc->extent_root;
2281 struct btrfs_fs_info *fs_info = root->fs_info;
2282 struct btrfs_root *reloc_root;
2283 struct btrfs_trans_handle *trans;
2284 LIST_HEAD(reloc_roots);
2285 u64 num_bytes = 0;
2286 int ret;
2287
2288 mutex_lock(&fs_info->reloc_mutex);
2289 rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2290 rc->merging_rsv_size += rc->nodes_relocated * 2;
2291 mutex_unlock(&fs_info->reloc_mutex);
2292
2293 again:
2294 if (!err) {
2295 num_bytes = rc->merging_rsv_size;
2296 ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
2297 BTRFS_RESERVE_FLUSH_ALL);
2298 if (ret)
2299 err = ret;
2300 }
2301
2302 trans = btrfs_join_transaction(rc->extent_root);
2303 if (IS_ERR(trans)) {
2304 if (!err)
2305 btrfs_block_rsv_release(fs_info, rc->block_rsv,
2306 num_bytes);
2307 return PTR_ERR(trans);
2308 }
2309
2310 if (!err) {
2311 if (num_bytes != rc->merging_rsv_size) {
2312 btrfs_end_transaction(trans);
2313 btrfs_block_rsv_release(fs_info, rc->block_rsv,
2314 num_bytes);
2315 goto again;
2316 }
2317 }
2318
2319 rc->merge_reloc_tree = 1;
2320
2321 while (!list_empty(&rc->reloc_roots)) {
2322 reloc_root = list_entry(rc->reloc_roots.next,
2323 struct btrfs_root, root_list);
2324 list_del_init(&reloc_root->root_list);
2325
2326 root = read_fs_root(fs_info, reloc_root->root_key.offset);
2327 BUG_ON(IS_ERR(root));
2328 BUG_ON(root->reloc_root != reloc_root);
2329
2330 /*
2331 * set reference count to 1, so btrfs_recover_relocation
2332 * knows it should resumes merging
2333 */
2334 if (!err)
2335 btrfs_set_root_refs(&reloc_root->root_item, 1);
2336 btrfs_update_reloc_root(trans, root);
2337
2338 list_add(&reloc_root->root_list, &reloc_roots);
2339 }
2340
2341 list_splice(&reloc_roots, &rc->reloc_roots);
2342
2343 if (!err)
2344 err = btrfs_commit_transaction(trans);
2345 else
2346 btrfs_end_transaction(trans);
2347 return err;
2348 }
2349
2350 static noinline_for_stack
free_reloc_roots(struct list_head * list)2351 void free_reloc_roots(struct list_head *list)
2352 {
2353 struct btrfs_root *reloc_root;
2354
2355 while (!list_empty(list)) {
2356 reloc_root = list_entry(list->next, struct btrfs_root,
2357 root_list);
2358 __del_reloc_root(reloc_root);
2359 free_extent_buffer(reloc_root->node);
2360 free_extent_buffer(reloc_root->commit_root);
2361 reloc_root->node = NULL;
2362 reloc_root->commit_root = NULL;
2363 }
2364 }
2365
2366 static noinline_for_stack
merge_reloc_roots(struct reloc_control * rc)2367 void merge_reloc_roots(struct reloc_control *rc)
2368 {
2369 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2370 struct btrfs_root *root;
2371 struct btrfs_root *reloc_root;
2372 LIST_HEAD(reloc_roots);
2373 int found = 0;
2374 int ret = 0;
2375 again:
2376 root = rc->extent_root;
2377
2378 /*
2379 * this serializes us with btrfs_record_root_in_transaction,
2380 * we have to make sure nobody is in the middle of
2381 * adding their roots to the list while we are
2382 * doing this splice
2383 */
2384 mutex_lock(&fs_info->reloc_mutex);
2385 list_splice_init(&rc->reloc_roots, &reloc_roots);
2386 mutex_unlock(&fs_info->reloc_mutex);
2387
2388 while (!list_empty(&reloc_roots)) {
2389 found = 1;
2390 reloc_root = list_entry(reloc_roots.next,
2391 struct btrfs_root, root_list);
2392
2393 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2394 root = read_fs_root(fs_info,
2395 reloc_root->root_key.offset);
2396 BUG_ON(IS_ERR(root));
2397 BUG_ON(root->reloc_root != reloc_root);
2398
2399 ret = merge_reloc_root(rc, root);
2400 if (ret) {
2401 if (list_empty(&reloc_root->root_list))
2402 list_add_tail(&reloc_root->root_list,
2403 &reloc_roots);
2404 goto out;
2405 }
2406 } else {
2407 list_del_init(&reloc_root->root_list);
2408 }
2409
2410 ret = btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0, 1);
2411 if (ret < 0) {
2412 if (list_empty(&reloc_root->root_list))
2413 list_add_tail(&reloc_root->root_list,
2414 &reloc_roots);
2415 goto out;
2416 }
2417 }
2418
2419 if (found) {
2420 found = 0;
2421 goto again;
2422 }
2423 out:
2424 if (ret) {
2425 btrfs_handle_fs_error(fs_info, ret, NULL);
2426 if (!list_empty(&reloc_roots))
2427 free_reloc_roots(&reloc_roots);
2428
2429 /* new reloc root may be added */
2430 mutex_lock(&fs_info->reloc_mutex);
2431 list_splice_init(&rc->reloc_roots, &reloc_roots);
2432 mutex_unlock(&fs_info->reloc_mutex);
2433 if (!list_empty(&reloc_roots))
2434 free_reloc_roots(&reloc_roots);
2435 }
2436
2437 /*
2438 * We used to have
2439 *
2440 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2441 *
2442 * here, but it's wrong. If we fail to start the transaction in
2443 * prepare_to_merge() we will have only 0 ref reloc roots, none of which
2444 * have actually been removed from the reloc_root_tree rb tree. This is
2445 * fine because we're bailing here, and we hold a reference on the root
2446 * for the list that holds it, so these roots will be cleaned up when we
2447 * do the reloc_dirty_list afterwards. Meanwhile the root->reloc_root
2448 * will be cleaned up on unmount.
2449 *
2450 * The remaining nodes will be cleaned up by free_reloc_control.
2451 */
2452 }
2453
free_block_list(struct rb_root * blocks)2454 static void free_block_list(struct rb_root *blocks)
2455 {
2456 struct tree_block *block;
2457 struct rb_node *rb_node;
2458 while ((rb_node = rb_first(blocks))) {
2459 block = rb_entry(rb_node, struct tree_block, rb_node);
2460 rb_erase(rb_node, blocks);
2461 kfree(block);
2462 }
2463 }
2464
record_reloc_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * reloc_root)2465 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2466 struct btrfs_root *reloc_root)
2467 {
2468 struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2469 struct btrfs_root *root;
2470
2471 if (reloc_root->last_trans == trans->transid)
2472 return 0;
2473
2474 root = read_fs_root(fs_info, reloc_root->root_key.offset);
2475 BUG_ON(IS_ERR(root));
2476 BUG_ON(root->reloc_root != reloc_root);
2477
2478 return btrfs_record_root_in_trans(trans, root);
2479 }
2480
2481 static noinline_for_stack
select_reloc_root(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct backref_node * node,struct backref_edge * edges[])2482 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2483 struct reloc_control *rc,
2484 struct backref_node *node,
2485 struct backref_edge *edges[])
2486 {
2487 struct backref_node *next;
2488 struct btrfs_root *root;
2489 int index = 0;
2490
2491 next = node;
2492 while (1) {
2493 cond_resched();
2494 next = walk_up_backref(next, edges, &index);
2495 root = next->root;
2496 BUG_ON(!root);
2497 BUG_ON(!test_bit(BTRFS_ROOT_REF_COWS, &root->state));
2498
2499 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2500 record_reloc_root_in_trans(trans, root);
2501 break;
2502 }
2503
2504 btrfs_record_root_in_trans(trans, root);
2505 root = root->reloc_root;
2506
2507 if (next->new_bytenr != root->node->start) {
2508 BUG_ON(next->new_bytenr);
2509 BUG_ON(!list_empty(&next->list));
2510 next->new_bytenr = root->node->start;
2511 next->root = root;
2512 list_add_tail(&next->list,
2513 &rc->backref_cache.changed);
2514 __mark_block_processed(rc, next);
2515 break;
2516 }
2517
2518 WARN_ON(1);
2519 root = NULL;
2520 next = walk_down_backref(edges, &index);
2521 if (!next || next->level <= node->level)
2522 break;
2523 }
2524 if (!root)
2525 return NULL;
2526
2527 next = node;
2528 /* setup backref node path for btrfs_reloc_cow_block */
2529 while (1) {
2530 rc->backref_cache.path[next->level] = next;
2531 if (--index < 0)
2532 break;
2533 next = edges[index]->node[UPPER];
2534 }
2535 return root;
2536 }
2537
2538 /*
2539 * select a tree root for relocation. return NULL if the block
2540 * is reference counted. we should use do_relocation() in this
2541 * case. return a tree root pointer if the block isn't reference
2542 * counted. return -ENOENT if the block is root of reloc tree.
2543 */
2544 static noinline_for_stack
select_one_root(struct backref_node * node)2545 struct btrfs_root *select_one_root(struct backref_node *node)
2546 {
2547 struct backref_node *next;
2548 struct btrfs_root *root;
2549 struct btrfs_root *fs_root = NULL;
2550 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2551 int index = 0;
2552
2553 next = node;
2554 while (1) {
2555 cond_resched();
2556 next = walk_up_backref(next, edges, &index);
2557 root = next->root;
2558 BUG_ON(!root);
2559
2560 /* no other choice for non-references counted tree */
2561 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
2562 return root;
2563
2564 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2565 fs_root = root;
2566
2567 if (next != node)
2568 return NULL;
2569
2570 next = walk_down_backref(edges, &index);
2571 if (!next || next->level <= node->level)
2572 break;
2573 }
2574
2575 if (!fs_root)
2576 return ERR_PTR(-ENOENT);
2577 return fs_root;
2578 }
2579
2580 static noinline_for_stack
calcu_metadata_size(struct reloc_control * rc,struct backref_node * node,int reserve)2581 u64 calcu_metadata_size(struct reloc_control *rc,
2582 struct backref_node *node, int reserve)
2583 {
2584 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2585 struct backref_node *next = node;
2586 struct backref_edge *edge;
2587 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2588 u64 num_bytes = 0;
2589 int index = 0;
2590
2591 BUG_ON(reserve && node->processed);
2592
2593 while (next) {
2594 cond_resched();
2595 while (1) {
2596 if (next->processed && (reserve || next != node))
2597 break;
2598
2599 num_bytes += fs_info->nodesize;
2600
2601 if (list_empty(&next->upper))
2602 break;
2603
2604 edge = list_entry(next->upper.next,
2605 struct backref_edge, list[LOWER]);
2606 edges[index++] = edge;
2607 next = edge->node[UPPER];
2608 }
2609 next = walk_down_backref(edges, &index);
2610 }
2611 return num_bytes;
2612 }
2613
reserve_metadata_space(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct backref_node * node)2614 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2615 struct reloc_control *rc,
2616 struct backref_node *node)
2617 {
2618 struct btrfs_root *root = rc->extent_root;
2619 struct btrfs_fs_info *fs_info = root->fs_info;
2620 u64 num_bytes;
2621 int ret;
2622 u64 tmp;
2623
2624 num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2625
2626 trans->block_rsv = rc->block_rsv;
2627 rc->reserved_bytes += num_bytes;
2628
2629 /*
2630 * We are under a transaction here so we can only do limited flushing.
2631 * If we get an enospc just kick back -EAGAIN so we know to drop the
2632 * transaction and try to refill when we can flush all the things.
2633 */
2634 ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2635 BTRFS_RESERVE_FLUSH_LIMIT);
2636 if (ret) {
2637 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2638 while (tmp <= rc->reserved_bytes)
2639 tmp <<= 1;
2640 /*
2641 * only one thread can access block_rsv at this point,
2642 * so we don't need hold lock to protect block_rsv.
2643 * we expand more reservation size here to allow enough
2644 * space for relocation and we will return eailer in
2645 * enospc case.
2646 */
2647 rc->block_rsv->size = tmp + fs_info->nodesize *
2648 RELOCATION_RESERVED_NODES;
2649 return -EAGAIN;
2650 }
2651
2652 return 0;
2653 }
2654
2655 /*
2656 * relocate a block tree, and then update pointers in upper level
2657 * blocks that reference the block to point to the new location.
2658 *
2659 * if called by link_to_upper, the block has already been relocated.
2660 * in that case this function just updates pointers.
2661 */
do_relocation(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct backref_node * node,struct btrfs_key * key,struct btrfs_path * path,int lowest)2662 static int do_relocation(struct btrfs_trans_handle *trans,
2663 struct reloc_control *rc,
2664 struct backref_node *node,
2665 struct btrfs_key *key,
2666 struct btrfs_path *path, int lowest)
2667 {
2668 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2669 struct backref_node *upper;
2670 struct backref_edge *edge;
2671 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2672 struct btrfs_root *root;
2673 struct extent_buffer *eb;
2674 u32 blocksize;
2675 u64 bytenr;
2676 u64 generation;
2677 int slot;
2678 int ret;
2679 int err = 0;
2680
2681 BUG_ON(lowest && node->eb);
2682
2683 path->lowest_level = node->level + 1;
2684 rc->backref_cache.path[node->level] = node;
2685 list_for_each_entry(edge, &node->upper, list[LOWER]) {
2686 struct btrfs_key first_key;
2687
2688 cond_resched();
2689
2690 upper = edge->node[UPPER];
2691 root = select_reloc_root(trans, rc, upper, edges);
2692 BUG_ON(!root);
2693
2694 if (upper->eb && !upper->locked) {
2695 if (!lowest) {
2696 ret = btrfs_bin_search(upper->eb, key,
2697 upper->level, &slot);
2698 BUG_ON(ret);
2699 bytenr = btrfs_node_blockptr(upper->eb, slot);
2700 if (node->eb->start == bytenr)
2701 goto next;
2702 }
2703 drop_node_buffer(upper);
2704 }
2705
2706 if (!upper->eb) {
2707 ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2708 if (ret) {
2709 if (ret < 0)
2710 err = ret;
2711 else
2712 err = -ENOENT;
2713
2714 btrfs_release_path(path);
2715 break;
2716 }
2717
2718 if (!upper->eb) {
2719 upper->eb = path->nodes[upper->level];
2720 path->nodes[upper->level] = NULL;
2721 } else {
2722 BUG_ON(upper->eb != path->nodes[upper->level]);
2723 }
2724
2725 upper->locked = 1;
2726 path->locks[upper->level] = 0;
2727
2728 slot = path->slots[upper->level];
2729 btrfs_release_path(path);
2730 } else {
2731 ret = btrfs_bin_search(upper->eb, key, upper->level,
2732 &slot);
2733 BUG_ON(ret);
2734 }
2735
2736 bytenr = btrfs_node_blockptr(upper->eb, slot);
2737 if (lowest) {
2738 if (bytenr != node->bytenr) {
2739 btrfs_err(root->fs_info,
2740 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2741 bytenr, node->bytenr, slot,
2742 upper->eb->start);
2743 err = -EIO;
2744 goto next;
2745 }
2746 } else {
2747 if (node->eb->start == bytenr)
2748 goto next;
2749 }
2750
2751 blocksize = root->fs_info->nodesize;
2752 generation = btrfs_node_ptr_generation(upper->eb, slot);
2753 btrfs_node_key_to_cpu(upper->eb, &first_key, slot);
2754 eb = read_tree_block(fs_info, bytenr, generation,
2755 upper->level - 1, &first_key);
2756 if (IS_ERR(eb)) {
2757 err = PTR_ERR(eb);
2758 goto next;
2759 } else if (!extent_buffer_uptodate(eb)) {
2760 free_extent_buffer(eb);
2761 err = -EIO;
2762 goto next;
2763 }
2764 btrfs_tree_lock(eb);
2765 btrfs_set_lock_blocking(eb);
2766
2767 if (!node->eb) {
2768 ret = btrfs_cow_block(trans, root, eb, upper->eb,
2769 slot, &eb);
2770 btrfs_tree_unlock(eb);
2771 free_extent_buffer(eb);
2772 if (ret < 0) {
2773 err = ret;
2774 goto next;
2775 }
2776 BUG_ON(node->eb != eb);
2777 } else {
2778 btrfs_set_node_blockptr(upper->eb, slot,
2779 node->eb->start);
2780 btrfs_set_node_ptr_generation(upper->eb, slot,
2781 trans->transid);
2782 btrfs_mark_buffer_dirty(upper->eb);
2783
2784 ret = btrfs_inc_extent_ref(trans, root,
2785 node->eb->start, blocksize,
2786 upper->eb->start,
2787 btrfs_header_owner(upper->eb),
2788 node->level, 0);
2789 BUG_ON(ret);
2790
2791 ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2792 BUG_ON(ret);
2793 }
2794 next:
2795 if (!upper->pending)
2796 drop_node_buffer(upper);
2797 else
2798 unlock_node_buffer(upper);
2799 if (err)
2800 break;
2801 }
2802
2803 if (!err && node->pending) {
2804 drop_node_buffer(node);
2805 list_move_tail(&node->list, &rc->backref_cache.changed);
2806 node->pending = 0;
2807 }
2808
2809 path->lowest_level = 0;
2810 BUG_ON(err == -ENOSPC);
2811 return err;
2812 }
2813
link_to_upper(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct backref_node * node,struct btrfs_path * path)2814 static int link_to_upper(struct btrfs_trans_handle *trans,
2815 struct reloc_control *rc,
2816 struct backref_node *node,
2817 struct btrfs_path *path)
2818 {
2819 struct btrfs_key key;
2820
2821 btrfs_node_key_to_cpu(node->eb, &key, 0);
2822 return do_relocation(trans, rc, node, &key, path, 0);
2823 }
2824
finish_pending_nodes(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_path * path,int err)2825 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2826 struct reloc_control *rc,
2827 struct btrfs_path *path, int err)
2828 {
2829 LIST_HEAD(list);
2830 struct backref_cache *cache = &rc->backref_cache;
2831 struct backref_node *node;
2832 int level;
2833 int ret;
2834
2835 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2836 while (!list_empty(&cache->pending[level])) {
2837 node = list_entry(cache->pending[level].next,
2838 struct backref_node, list);
2839 list_move_tail(&node->list, &list);
2840 BUG_ON(!node->pending);
2841
2842 if (!err) {
2843 ret = link_to_upper(trans, rc, node, path);
2844 if (ret < 0)
2845 err = ret;
2846 }
2847 }
2848 list_splice_init(&list, &cache->pending[level]);
2849 }
2850 return err;
2851 }
2852
mark_block_processed(struct reloc_control * rc,u64 bytenr,u32 blocksize)2853 static void mark_block_processed(struct reloc_control *rc,
2854 u64 bytenr, u32 blocksize)
2855 {
2856 set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
2857 EXTENT_DIRTY);
2858 }
2859
__mark_block_processed(struct reloc_control * rc,struct backref_node * node)2860 static void __mark_block_processed(struct reloc_control *rc,
2861 struct backref_node *node)
2862 {
2863 u32 blocksize;
2864 if (node->level == 0 ||
2865 in_block_group(node->bytenr, rc->block_group)) {
2866 blocksize = rc->extent_root->fs_info->nodesize;
2867 mark_block_processed(rc, node->bytenr, blocksize);
2868 }
2869 node->processed = 1;
2870 }
2871
2872 /*
2873 * mark a block and all blocks directly/indirectly reference the block
2874 * as processed.
2875 */
update_processed_blocks(struct reloc_control * rc,struct backref_node * node)2876 static void update_processed_blocks(struct reloc_control *rc,
2877 struct backref_node *node)
2878 {
2879 struct backref_node *next = node;
2880 struct backref_edge *edge;
2881 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2882 int index = 0;
2883
2884 while (next) {
2885 cond_resched();
2886 while (1) {
2887 if (next->processed)
2888 break;
2889
2890 __mark_block_processed(rc, next);
2891
2892 if (list_empty(&next->upper))
2893 break;
2894
2895 edge = list_entry(next->upper.next,
2896 struct backref_edge, list[LOWER]);
2897 edges[index++] = edge;
2898 next = edge->node[UPPER];
2899 }
2900 next = walk_down_backref(edges, &index);
2901 }
2902 }
2903
tree_block_processed(u64 bytenr,struct reloc_control * rc)2904 static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2905 {
2906 u32 blocksize = rc->extent_root->fs_info->nodesize;
2907
2908 if (test_range_bit(&rc->processed_blocks, bytenr,
2909 bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2910 return 1;
2911 return 0;
2912 }
2913
get_tree_block_key(struct btrfs_fs_info * fs_info,struct tree_block * block)2914 static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2915 struct tree_block *block)
2916 {
2917 struct extent_buffer *eb;
2918
2919 BUG_ON(block->key_ready);
2920 eb = read_tree_block(fs_info, block->bytenr, block->key.offset,
2921 block->level, NULL);
2922 if (IS_ERR(eb)) {
2923 return PTR_ERR(eb);
2924 } else if (!extent_buffer_uptodate(eb)) {
2925 free_extent_buffer(eb);
2926 return -EIO;
2927 }
2928 WARN_ON(btrfs_header_level(eb) != block->level);
2929 if (block->level == 0)
2930 btrfs_item_key_to_cpu(eb, &block->key, 0);
2931 else
2932 btrfs_node_key_to_cpu(eb, &block->key, 0);
2933 free_extent_buffer(eb);
2934 block->key_ready = 1;
2935 return 0;
2936 }
2937
2938 /*
2939 * helper function to relocate a tree block
2940 */
relocate_tree_block(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct backref_node * node,struct btrfs_key * key,struct btrfs_path * path)2941 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2942 struct reloc_control *rc,
2943 struct backref_node *node,
2944 struct btrfs_key *key,
2945 struct btrfs_path *path)
2946 {
2947 struct btrfs_root *root;
2948 int ret = 0;
2949
2950 if (!node)
2951 return 0;
2952
2953 BUG_ON(node->processed);
2954 root = select_one_root(node);
2955 if (root == ERR_PTR(-ENOENT)) {
2956 update_processed_blocks(rc, node);
2957 goto out;
2958 }
2959
2960 if (!root || test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
2961 ret = reserve_metadata_space(trans, rc, node);
2962 if (ret)
2963 goto out;
2964 }
2965
2966 if (root) {
2967 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
2968 BUG_ON(node->new_bytenr);
2969 BUG_ON(!list_empty(&node->list));
2970 btrfs_record_root_in_trans(trans, root);
2971 root = root->reloc_root;
2972 node->new_bytenr = root->node->start;
2973 node->root = root;
2974 list_add_tail(&node->list, &rc->backref_cache.changed);
2975 } else {
2976 path->lowest_level = node->level;
2977 ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2978 btrfs_release_path(path);
2979 if (ret > 0)
2980 ret = 0;
2981 }
2982 if (!ret)
2983 update_processed_blocks(rc, node);
2984 } else {
2985 ret = do_relocation(trans, rc, node, key, path, 1);
2986 }
2987 out:
2988 if (ret || node->level == 0 || node->cowonly)
2989 remove_backref_node(&rc->backref_cache, node);
2990 return ret;
2991 }
2992
2993 /*
2994 * relocate a list of blocks
2995 */
2996 static noinline_for_stack
relocate_tree_blocks(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct rb_root * blocks)2997 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2998 struct reloc_control *rc, struct rb_root *blocks)
2999 {
3000 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3001 struct backref_node *node;
3002 struct btrfs_path *path;
3003 struct tree_block *block;
3004 struct rb_node *rb_node;
3005 int ret;
3006 int err = 0;
3007
3008 path = btrfs_alloc_path();
3009 if (!path) {
3010 err = -ENOMEM;
3011 goto out_free_blocks;
3012 }
3013
3014 rb_node = rb_first(blocks);
3015 while (rb_node) {
3016 block = rb_entry(rb_node, struct tree_block, rb_node);
3017 if (!block->key_ready)
3018 readahead_tree_block(fs_info, block->bytenr);
3019 rb_node = rb_next(rb_node);
3020 }
3021
3022 rb_node = rb_first(blocks);
3023 while (rb_node) {
3024 block = rb_entry(rb_node, struct tree_block, rb_node);
3025 if (!block->key_ready) {
3026 err = get_tree_block_key(fs_info, block);
3027 if (err)
3028 goto out_free_path;
3029 }
3030 rb_node = rb_next(rb_node);
3031 }
3032
3033 rb_node = rb_first(blocks);
3034 while (rb_node) {
3035 block = rb_entry(rb_node, struct tree_block, rb_node);
3036
3037 node = build_backref_tree(rc, &block->key,
3038 block->level, block->bytenr);
3039 if (IS_ERR(node)) {
3040 err = PTR_ERR(node);
3041 goto out;
3042 }
3043
3044 ret = relocate_tree_block(trans, rc, node, &block->key,
3045 path);
3046 if (ret < 0) {
3047 if (ret != -EAGAIN || rb_node == rb_first(blocks))
3048 err = ret;
3049 goto out;
3050 }
3051 rb_node = rb_next(rb_node);
3052 }
3053 out:
3054 err = finish_pending_nodes(trans, rc, path, err);
3055
3056 out_free_path:
3057 btrfs_free_path(path);
3058 out_free_blocks:
3059 free_block_list(blocks);
3060 return err;
3061 }
3062
3063 static noinline_for_stack
prealloc_file_extent_cluster(struct inode * inode,struct file_extent_cluster * cluster)3064 int prealloc_file_extent_cluster(struct inode *inode,
3065 struct file_extent_cluster *cluster)
3066 {
3067 u64 alloc_hint = 0;
3068 u64 start;
3069 u64 end;
3070 u64 offset = BTRFS_I(inode)->index_cnt;
3071 u64 num_bytes;
3072 int nr = 0;
3073 int ret = 0;
3074 u64 prealloc_start = cluster->start - offset;
3075 u64 prealloc_end = cluster->end - offset;
3076 u64 cur_offset;
3077 struct extent_changeset *data_reserved = NULL;
3078
3079 BUG_ON(cluster->start != cluster->boundary[0]);
3080 inode_lock(inode);
3081
3082 ret = btrfs_check_data_free_space(inode, &data_reserved, prealloc_start,
3083 prealloc_end + 1 - prealloc_start);
3084 if (ret)
3085 goto out;
3086
3087 cur_offset = prealloc_start;
3088 while (nr < cluster->nr) {
3089 start = cluster->boundary[nr] - offset;
3090 if (nr + 1 < cluster->nr)
3091 end = cluster->boundary[nr + 1] - 1 - offset;
3092 else
3093 end = cluster->end - offset;
3094
3095 lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3096 num_bytes = end + 1 - start;
3097 if (cur_offset < start)
3098 btrfs_free_reserved_data_space(inode, data_reserved,
3099 cur_offset, start - cur_offset);
3100 ret = btrfs_prealloc_file_range(inode, 0, start,
3101 num_bytes, num_bytes,
3102 end + 1, &alloc_hint);
3103 cur_offset = end + 1;
3104 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3105 if (ret)
3106 break;
3107 nr++;
3108 }
3109 if (cur_offset < prealloc_end)
3110 btrfs_free_reserved_data_space(inode, data_reserved,
3111 cur_offset, prealloc_end + 1 - cur_offset);
3112 out:
3113 inode_unlock(inode);
3114 extent_changeset_free(data_reserved);
3115 return ret;
3116 }
3117
3118 static noinline_for_stack
setup_extent_mapping(struct inode * inode,u64 start,u64 end,u64 block_start)3119 int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
3120 u64 block_start)
3121 {
3122 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3123 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3124 struct extent_map *em;
3125 int ret = 0;
3126
3127 em = alloc_extent_map();
3128 if (!em)
3129 return -ENOMEM;
3130
3131 em->start = start;
3132 em->len = end + 1 - start;
3133 em->block_len = em->len;
3134 em->block_start = block_start;
3135 em->bdev = fs_info->fs_devices->latest_bdev;
3136 set_bit(EXTENT_FLAG_PINNED, &em->flags);
3137
3138 lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3139 while (1) {
3140 write_lock(&em_tree->lock);
3141 ret = add_extent_mapping(em_tree, em, 0);
3142 write_unlock(&em_tree->lock);
3143 if (ret != -EEXIST) {
3144 free_extent_map(em);
3145 break;
3146 }
3147 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3148 }
3149 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3150 return ret;
3151 }
3152
relocate_file_extent_cluster(struct inode * inode,struct file_extent_cluster * cluster)3153 static int relocate_file_extent_cluster(struct inode *inode,
3154 struct file_extent_cluster *cluster)
3155 {
3156 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3157 u64 page_start;
3158 u64 page_end;
3159 u64 offset = BTRFS_I(inode)->index_cnt;
3160 unsigned long index;
3161 unsigned long last_index;
3162 struct page *page;
3163 struct file_ra_state *ra;
3164 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
3165 int nr = 0;
3166 int ret = 0;
3167
3168 if (!cluster->nr)
3169 return 0;
3170
3171 ra = kzalloc(sizeof(*ra), GFP_NOFS);
3172 if (!ra)
3173 return -ENOMEM;
3174
3175 ret = prealloc_file_extent_cluster(inode, cluster);
3176 if (ret)
3177 goto out;
3178
3179 file_ra_state_init(ra, inode->i_mapping);
3180
3181 ret = setup_extent_mapping(inode, cluster->start - offset,
3182 cluster->end - offset, cluster->start);
3183 if (ret)
3184 goto out;
3185
3186 index = (cluster->start - offset) >> PAGE_SHIFT;
3187 last_index = (cluster->end - offset) >> PAGE_SHIFT;
3188 while (index <= last_index) {
3189 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
3190 PAGE_SIZE);
3191 if (ret)
3192 goto out;
3193
3194 page = find_lock_page(inode->i_mapping, index);
3195 if (!page) {
3196 page_cache_sync_readahead(inode->i_mapping,
3197 ra, NULL, index,
3198 last_index + 1 - index);
3199 page = find_or_create_page(inode->i_mapping, index,
3200 mask);
3201 if (!page) {
3202 btrfs_delalloc_release_metadata(BTRFS_I(inode),
3203 PAGE_SIZE, true);
3204 btrfs_delalloc_release_extents(BTRFS_I(inode),
3205 PAGE_SIZE);
3206 ret = -ENOMEM;
3207 goto out;
3208 }
3209 }
3210
3211 if (PageReadahead(page)) {
3212 page_cache_async_readahead(inode->i_mapping,
3213 ra, NULL, page, index,
3214 last_index + 1 - index);
3215 }
3216
3217 if (!PageUptodate(page)) {
3218 btrfs_readpage(NULL, page);
3219 lock_page(page);
3220 if (!PageUptodate(page)) {
3221 unlock_page(page);
3222 put_page(page);
3223 btrfs_delalloc_release_metadata(BTRFS_I(inode),
3224 PAGE_SIZE, true);
3225 btrfs_delalloc_release_extents(BTRFS_I(inode),
3226 PAGE_SIZE);
3227 ret = -EIO;
3228 goto out;
3229 }
3230 }
3231
3232 page_start = page_offset(page);
3233 page_end = page_start + PAGE_SIZE - 1;
3234
3235 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
3236
3237 set_page_extent_mapped(page);
3238
3239 if (nr < cluster->nr &&
3240 page_start + offset == cluster->boundary[nr]) {
3241 set_extent_bits(&BTRFS_I(inode)->io_tree,
3242 page_start, page_end,
3243 EXTENT_BOUNDARY);
3244 nr++;
3245 }
3246
3247 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
3248 NULL, 0);
3249 if (ret) {
3250 unlock_page(page);
3251 put_page(page);
3252 btrfs_delalloc_release_metadata(BTRFS_I(inode),
3253 PAGE_SIZE, true);
3254 btrfs_delalloc_release_extents(BTRFS_I(inode),
3255 PAGE_SIZE);
3256
3257 clear_extent_bits(&BTRFS_I(inode)->io_tree,
3258 page_start, page_end,
3259 EXTENT_LOCKED | EXTENT_BOUNDARY);
3260 goto out;
3261
3262 }
3263 set_page_dirty(page);
3264
3265 unlock_extent(&BTRFS_I(inode)->io_tree,
3266 page_start, page_end);
3267 unlock_page(page);
3268 put_page(page);
3269
3270 index++;
3271 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
3272 balance_dirty_pages_ratelimited(inode->i_mapping);
3273 btrfs_throttle(fs_info);
3274 }
3275 WARN_ON(nr != cluster->nr);
3276 out:
3277 kfree(ra);
3278 return ret;
3279 }
3280
3281 static noinline_for_stack
relocate_data_extent(struct inode * inode,struct btrfs_key * extent_key,struct file_extent_cluster * cluster)3282 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3283 struct file_extent_cluster *cluster)
3284 {
3285 int ret;
3286
3287 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3288 ret = relocate_file_extent_cluster(inode, cluster);
3289 if (ret)
3290 return ret;
3291 cluster->nr = 0;
3292 }
3293
3294 if (!cluster->nr)
3295 cluster->start = extent_key->objectid;
3296 else
3297 BUG_ON(cluster->nr >= MAX_EXTENTS);
3298 cluster->end = extent_key->objectid + extent_key->offset - 1;
3299 cluster->boundary[cluster->nr] = extent_key->objectid;
3300 cluster->nr++;
3301
3302 if (cluster->nr >= MAX_EXTENTS) {
3303 ret = relocate_file_extent_cluster(inode, cluster);
3304 if (ret)
3305 return ret;
3306 cluster->nr = 0;
3307 }
3308 return 0;
3309 }
3310
3311 /*
3312 * helper to add a tree block to the list.
3313 * the major work is getting the generation and level of the block
3314 */
add_tree_block(struct reloc_control * rc,struct btrfs_key * extent_key,struct btrfs_path * path,struct rb_root * blocks)3315 static int add_tree_block(struct reloc_control *rc,
3316 struct btrfs_key *extent_key,
3317 struct btrfs_path *path,
3318 struct rb_root *blocks)
3319 {
3320 struct extent_buffer *eb;
3321 struct btrfs_extent_item *ei;
3322 struct btrfs_tree_block_info *bi;
3323 struct tree_block *block;
3324 struct rb_node *rb_node;
3325 u32 item_size;
3326 int level = -1;
3327 u64 generation;
3328
3329 eb = path->nodes[0];
3330 item_size = btrfs_item_size_nr(eb, path->slots[0]);
3331
3332 if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3333 item_size >= sizeof(*ei) + sizeof(*bi)) {
3334 ei = btrfs_item_ptr(eb, path->slots[0],
3335 struct btrfs_extent_item);
3336 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3337 bi = (struct btrfs_tree_block_info *)(ei + 1);
3338 level = btrfs_tree_block_level(eb, bi);
3339 } else {
3340 level = (int)extent_key->offset;
3341 }
3342 generation = btrfs_extent_generation(eb, ei);
3343 } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
3344 btrfs_print_v0_err(eb->fs_info);
3345 btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
3346 return -EINVAL;
3347 } else {
3348 BUG();
3349 }
3350
3351 btrfs_release_path(path);
3352
3353 BUG_ON(level == -1);
3354
3355 block = kmalloc(sizeof(*block), GFP_NOFS);
3356 if (!block)
3357 return -ENOMEM;
3358
3359 block->bytenr = extent_key->objectid;
3360 block->key.objectid = rc->extent_root->fs_info->nodesize;
3361 block->key.offset = generation;
3362 block->level = level;
3363 block->key_ready = 0;
3364
3365 rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
3366 if (rb_node)
3367 backref_tree_panic(rb_node, -EEXIST, block->bytenr);
3368
3369 return 0;
3370 }
3371
3372 /*
3373 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3374 */
__add_tree_block(struct reloc_control * rc,u64 bytenr,u32 blocksize,struct rb_root * blocks)3375 static int __add_tree_block(struct reloc_control *rc,
3376 u64 bytenr, u32 blocksize,
3377 struct rb_root *blocks)
3378 {
3379 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3380 struct btrfs_path *path;
3381 struct btrfs_key key;
3382 int ret;
3383 bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3384
3385 if (tree_block_processed(bytenr, rc))
3386 return 0;
3387
3388 if (tree_search(blocks, bytenr))
3389 return 0;
3390
3391 path = btrfs_alloc_path();
3392 if (!path)
3393 return -ENOMEM;
3394 again:
3395 key.objectid = bytenr;
3396 if (skinny) {
3397 key.type = BTRFS_METADATA_ITEM_KEY;
3398 key.offset = (u64)-1;
3399 } else {
3400 key.type = BTRFS_EXTENT_ITEM_KEY;
3401 key.offset = blocksize;
3402 }
3403
3404 path->search_commit_root = 1;
3405 path->skip_locking = 1;
3406 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3407 if (ret < 0)
3408 goto out;
3409
3410 if (ret > 0 && skinny) {
3411 if (path->slots[0]) {
3412 path->slots[0]--;
3413 btrfs_item_key_to_cpu(path->nodes[0], &key,
3414 path->slots[0]);
3415 if (key.objectid == bytenr &&
3416 (key.type == BTRFS_METADATA_ITEM_KEY ||
3417 (key.type == BTRFS_EXTENT_ITEM_KEY &&
3418 key.offset == blocksize)))
3419 ret = 0;
3420 }
3421
3422 if (ret) {
3423 skinny = false;
3424 btrfs_release_path(path);
3425 goto again;
3426 }
3427 }
3428 if (ret) {
3429 ASSERT(ret == 1);
3430 btrfs_print_leaf(path->nodes[0]);
3431 btrfs_err(fs_info,
3432 "tree block extent item (%llu) is not found in extent tree",
3433 bytenr);
3434 WARN_ON(1);
3435 ret = -EINVAL;
3436 goto out;
3437 }
3438
3439 ret = add_tree_block(rc, &key, path, blocks);
3440 out:
3441 btrfs_free_path(path);
3442 return ret;
3443 }
3444
3445 /*
3446 * helper to check if the block use full backrefs for pointers in it
3447 */
block_use_full_backref(struct reloc_control * rc,struct extent_buffer * eb)3448 static int block_use_full_backref(struct reloc_control *rc,
3449 struct extent_buffer *eb)
3450 {
3451 u64 flags;
3452 int ret;
3453
3454 if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
3455 btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
3456 return 1;
3457
3458 ret = btrfs_lookup_extent_info(NULL, rc->extent_root->fs_info,
3459 eb->start, btrfs_header_level(eb), 1,
3460 NULL, &flags);
3461 BUG_ON(ret);
3462
3463 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
3464 ret = 1;
3465 else
3466 ret = 0;
3467 return ret;
3468 }
3469
delete_block_group_cache(struct btrfs_fs_info * fs_info,struct btrfs_block_group_cache * block_group,struct inode * inode,u64 ino)3470 static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3471 struct btrfs_block_group_cache *block_group,
3472 struct inode *inode,
3473 u64 ino)
3474 {
3475 struct btrfs_key key;
3476 struct btrfs_root *root = fs_info->tree_root;
3477 struct btrfs_trans_handle *trans;
3478 int ret = 0;
3479
3480 if (inode)
3481 goto truncate;
3482
3483 key.objectid = ino;
3484 key.type = BTRFS_INODE_ITEM_KEY;
3485 key.offset = 0;
3486
3487 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3488 if (IS_ERR(inode))
3489 return -ENOENT;
3490
3491 truncate:
3492 ret = btrfs_check_trunc_cache_free_space(fs_info,
3493 &fs_info->global_block_rsv);
3494 if (ret)
3495 goto out;
3496
3497 trans = btrfs_join_transaction(root);
3498 if (IS_ERR(trans)) {
3499 ret = PTR_ERR(trans);
3500 goto out;
3501 }
3502
3503 ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3504
3505 btrfs_end_transaction(trans);
3506 btrfs_btree_balance_dirty(fs_info);
3507 out:
3508 iput(inode);
3509 return ret;
3510 }
3511
3512 /*
3513 * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
3514 * this function scans fs tree to find blocks reference the data extent
3515 */
find_data_references(struct reloc_control * rc,struct btrfs_key * extent_key,struct extent_buffer * leaf,struct btrfs_extent_data_ref * ref,struct rb_root * blocks)3516 static int find_data_references(struct reloc_control *rc,
3517 struct btrfs_key *extent_key,
3518 struct extent_buffer *leaf,
3519 struct btrfs_extent_data_ref *ref,
3520 struct rb_root *blocks)
3521 {
3522 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3523 struct btrfs_path *path;
3524 struct tree_block *block;
3525 struct btrfs_root *root;
3526 struct btrfs_file_extent_item *fi;
3527 struct rb_node *rb_node;
3528 struct btrfs_key key;
3529 u64 ref_root;
3530 u64 ref_objectid;
3531 u64 ref_offset;
3532 u32 ref_count;
3533 u32 nritems;
3534 int err = 0;
3535 int added = 0;
3536 int counted;
3537 int ret;
3538
3539 ref_root = btrfs_extent_data_ref_root(leaf, ref);
3540 ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
3541 ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
3542 ref_count = btrfs_extent_data_ref_count(leaf, ref);
3543
3544 /*
3545 * This is an extent belonging to the free space cache, lets just delete
3546 * it and redo the search.
3547 */
3548 if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
3549 ret = delete_block_group_cache(fs_info, rc->block_group,
3550 NULL, ref_objectid);
3551 if (ret != -ENOENT)
3552 return ret;
3553 ret = 0;
3554 }
3555
3556 path = btrfs_alloc_path();
3557 if (!path)
3558 return -ENOMEM;
3559 path->reada = READA_FORWARD;
3560
3561 root = read_fs_root(fs_info, ref_root);
3562 if (IS_ERR(root)) {
3563 err = PTR_ERR(root);
3564 goto out;
3565 }
3566
3567 key.objectid = ref_objectid;
3568 key.type = BTRFS_EXTENT_DATA_KEY;
3569 if (ref_offset > ((u64)-1 << 32))
3570 key.offset = 0;
3571 else
3572 key.offset = ref_offset;
3573
3574 path->search_commit_root = 1;
3575 path->skip_locking = 1;
3576 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3577 if (ret < 0) {
3578 err = ret;
3579 goto out;
3580 }
3581
3582 leaf = path->nodes[0];
3583 nritems = btrfs_header_nritems(leaf);
3584 /*
3585 * the references in tree blocks that use full backrefs
3586 * are not counted in
3587 */
3588 if (block_use_full_backref(rc, leaf))
3589 counted = 0;
3590 else
3591 counted = 1;
3592 rb_node = tree_search(blocks, leaf->start);
3593 if (rb_node) {
3594 if (counted)
3595 added = 1;
3596 else
3597 path->slots[0] = nritems;
3598 }
3599
3600 while (ref_count > 0) {
3601 while (path->slots[0] >= nritems) {
3602 ret = btrfs_next_leaf(root, path);
3603 if (ret < 0) {
3604 err = ret;
3605 goto out;
3606 }
3607 if (WARN_ON(ret > 0))
3608 goto out;
3609
3610 leaf = path->nodes[0];
3611 nritems = btrfs_header_nritems(leaf);
3612 added = 0;
3613
3614 if (block_use_full_backref(rc, leaf))
3615 counted = 0;
3616 else
3617 counted = 1;
3618 rb_node = tree_search(blocks, leaf->start);
3619 if (rb_node) {
3620 if (counted)
3621 added = 1;
3622 else
3623 path->slots[0] = nritems;
3624 }
3625 }
3626
3627 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3628 if (WARN_ON(key.objectid != ref_objectid ||
3629 key.type != BTRFS_EXTENT_DATA_KEY))
3630 break;
3631
3632 fi = btrfs_item_ptr(leaf, path->slots[0],
3633 struct btrfs_file_extent_item);
3634
3635 if (btrfs_file_extent_type(leaf, fi) ==
3636 BTRFS_FILE_EXTENT_INLINE)
3637 goto next;
3638
3639 if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
3640 extent_key->objectid)
3641 goto next;
3642
3643 key.offset -= btrfs_file_extent_offset(leaf, fi);
3644 if (key.offset != ref_offset)
3645 goto next;
3646
3647 if (counted)
3648 ref_count--;
3649 if (added)
3650 goto next;
3651
3652 if (!tree_block_processed(leaf->start, rc)) {
3653 block = kmalloc(sizeof(*block), GFP_NOFS);
3654 if (!block) {
3655 err = -ENOMEM;
3656 break;
3657 }
3658 block->bytenr = leaf->start;
3659 btrfs_item_key_to_cpu(leaf, &block->key, 0);
3660 block->level = 0;
3661 block->key_ready = 1;
3662 rb_node = tree_insert(blocks, block->bytenr,
3663 &block->rb_node);
3664 if (rb_node)
3665 backref_tree_panic(rb_node, -EEXIST,
3666 block->bytenr);
3667 }
3668 if (counted)
3669 added = 1;
3670 else
3671 path->slots[0] = nritems;
3672 next:
3673 path->slots[0]++;
3674
3675 }
3676 out:
3677 btrfs_free_path(path);
3678 return err;
3679 }
3680
3681 /*
3682 * helper to find all tree blocks that reference a given data extent
3683 */
3684 static noinline_for_stack
add_data_references(struct reloc_control * rc,struct btrfs_key * extent_key,struct btrfs_path * path,struct rb_root * blocks)3685 int add_data_references(struct reloc_control *rc,
3686 struct btrfs_key *extent_key,
3687 struct btrfs_path *path,
3688 struct rb_root *blocks)
3689 {
3690 struct btrfs_key key;
3691 struct extent_buffer *eb;
3692 struct btrfs_extent_data_ref *dref;
3693 struct btrfs_extent_inline_ref *iref;
3694 unsigned long ptr;
3695 unsigned long end;
3696 u32 blocksize = rc->extent_root->fs_info->nodesize;
3697 int ret = 0;
3698 int err = 0;
3699
3700 eb = path->nodes[0];
3701 ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3702 end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
3703 ptr += sizeof(struct btrfs_extent_item);
3704
3705 while (ptr < end) {
3706 iref = (struct btrfs_extent_inline_ref *)ptr;
3707 key.type = btrfs_get_extent_inline_ref_type(eb, iref,
3708 BTRFS_REF_TYPE_DATA);
3709 if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3710 key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3711 ret = __add_tree_block(rc, key.offset, blocksize,
3712 blocks);
3713 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3714 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
3715 ret = find_data_references(rc, extent_key,
3716 eb, dref, blocks);
3717 } else {
3718 ret = -EUCLEAN;
3719 btrfs_err(rc->extent_root->fs_info,
3720 "extent %llu slot %d has an invalid inline ref type",
3721 eb->start, path->slots[0]);
3722 }
3723 if (ret) {
3724 err = ret;
3725 goto out;
3726 }
3727 ptr += btrfs_extent_inline_ref_size(key.type);
3728 }
3729 WARN_ON(ptr > end);
3730
3731 while (1) {
3732 cond_resched();
3733 eb = path->nodes[0];
3734 if (path->slots[0] >= btrfs_header_nritems(eb)) {
3735 ret = btrfs_next_leaf(rc->extent_root, path);
3736 if (ret < 0) {
3737 err = ret;
3738 break;
3739 }
3740 if (ret > 0)
3741 break;
3742 eb = path->nodes[0];
3743 }
3744
3745 btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
3746 if (key.objectid != extent_key->objectid)
3747 break;
3748
3749 if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3750 ret = __add_tree_block(rc, key.offset, blocksize,
3751 blocks);
3752 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3753 dref = btrfs_item_ptr(eb, path->slots[0],
3754 struct btrfs_extent_data_ref);
3755 ret = find_data_references(rc, extent_key,
3756 eb, dref, blocks);
3757 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
3758 btrfs_print_v0_err(eb->fs_info);
3759 btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
3760 ret = -EINVAL;
3761 } else {
3762 ret = 0;
3763 }
3764 if (ret) {
3765 err = ret;
3766 break;
3767 }
3768 path->slots[0]++;
3769 }
3770 out:
3771 btrfs_release_path(path);
3772 if (err)
3773 free_block_list(blocks);
3774 return err;
3775 }
3776
3777 /*
3778 * helper to find next unprocessed extent
3779 */
3780 static noinline_for_stack
find_next_extent(struct reloc_control * rc,struct btrfs_path * path,struct btrfs_key * extent_key)3781 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3782 struct btrfs_key *extent_key)
3783 {
3784 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3785 struct btrfs_key key;
3786 struct extent_buffer *leaf;
3787 u64 start, end, last;
3788 int ret;
3789
3790 last = rc->block_group->key.objectid + rc->block_group->key.offset;
3791 while (1) {
3792 cond_resched();
3793 if (rc->search_start >= last) {
3794 ret = 1;
3795 break;
3796 }
3797
3798 key.objectid = rc->search_start;
3799 key.type = BTRFS_EXTENT_ITEM_KEY;
3800 key.offset = 0;
3801
3802 path->search_commit_root = 1;
3803 path->skip_locking = 1;
3804 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3805 0, 0);
3806 if (ret < 0)
3807 break;
3808 next:
3809 leaf = path->nodes[0];
3810 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3811 ret = btrfs_next_leaf(rc->extent_root, path);
3812 if (ret != 0)
3813 break;
3814 leaf = path->nodes[0];
3815 }
3816
3817 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3818 if (key.objectid >= last) {
3819 ret = 1;
3820 break;
3821 }
3822
3823 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3824 key.type != BTRFS_METADATA_ITEM_KEY) {
3825 path->slots[0]++;
3826 goto next;
3827 }
3828
3829 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3830 key.objectid + key.offset <= rc->search_start) {
3831 path->slots[0]++;
3832 goto next;
3833 }
3834
3835 if (key.type == BTRFS_METADATA_ITEM_KEY &&
3836 key.objectid + fs_info->nodesize <=
3837 rc->search_start) {
3838 path->slots[0]++;
3839 goto next;
3840 }
3841
3842 ret = find_first_extent_bit(&rc->processed_blocks,
3843 key.objectid, &start, &end,
3844 EXTENT_DIRTY, NULL);
3845
3846 if (ret == 0 && start <= key.objectid) {
3847 btrfs_release_path(path);
3848 rc->search_start = end + 1;
3849 } else {
3850 if (key.type == BTRFS_EXTENT_ITEM_KEY)
3851 rc->search_start = key.objectid + key.offset;
3852 else
3853 rc->search_start = key.objectid +
3854 fs_info->nodesize;
3855 memcpy(extent_key, &key, sizeof(key));
3856 return 0;
3857 }
3858 }
3859 btrfs_release_path(path);
3860 return ret;
3861 }
3862
set_reloc_control(struct reloc_control * rc)3863 static void set_reloc_control(struct reloc_control *rc)
3864 {
3865 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3866
3867 mutex_lock(&fs_info->reloc_mutex);
3868 fs_info->reloc_ctl = rc;
3869 mutex_unlock(&fs_info->reloc_mutex);
3870 }
3871
unset_reloc_control(struct reloc_control * rc)3872 static void unset_reloc_control(struct reloc_control *rc)
3873 {
3874 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3875
3876 mutex_lock(&fs_info->reloc_mutex);
3877 fs_info->reloc_ctl = NULL;
3878 mutex_unlock(&fs_info->reloc_mutex);
3879 }
3880
check_extent_flags(u64 flags)3881 static int check_extent_flags(u64 flags)
3882 {
3883 if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3884 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3885 return 1;
3886 if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3887 !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3888 return 1;
3889 if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3890 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3891 return 1;
3892 return 0;
3893 }
3894
3895 static noinline_for_stack
prepare_to_relocate(struct reloc_control * rc)3896 int prepare_to_relocate(struct reloc_control *rc)
3897 {
3898 struct btrfs_trans_handle *trans;
3899 int ret;
3900
3901 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3902 BTRFS_BLOCK_RSV_TEMP);
3903 if (!rc->block_rsv)
3904 return -ENOMEM;
3905
3906 memset(&rc->cluster, 0, sizeof(rc->cluster));
3907 rc->search_start = rc->block_group->key.objectid;
3908 rc->extents_found = 0;
3909 rc->nodes_relocated = 0;
3910 rc->merging_rsv_size = 0;
3911 rc->reserved_bytes = 0;
3912 rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3913 RELOCATION_RESERVED_NODES;
3914 ret = btrfs_block_rsv_refill(rc->extent_root,
3915 rc->block_rsv, rc->block_rsv->size,
3916 BTRFS_RESERVE_FLUSH_ALL);
3917 if (ret)
3918 return ret;
3919
3920 rc->create_reloc_tree = 1;
3921 set_reloc_control(rc);
3922
3923 trans = btrfs_join_transaction(rc->extent_root);
3924 if (IS_ERR(trans)) {
3925 unset_reloc_control(rc);
3926 /*
3927 * extent tree is not a ref_cow tree and has no reloc_root to
3928 * cleanup. And callers are responsible to free the above
3929 * block rsv.
3930 */
3931 return PTR_ERR(trans);
3932 }
3933
3934 ret = btrfs_commit_transaction(trans);
3935 if (ret)
3936 unset_reloc_control(rc);
3937
3938 return ret;
3939 }
3940
relocate_block_group(struct reloc_control * rc)3941 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3942 {
3943 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3944 struct rb_root blocks = RB_ROOT;
3945 struct btrfs_key key;
3946 struct btrfs_trans_handle *trans = NULL;
3947 struct btrfs_path *path;
3948 struct btrfs_extent_item *ei;
3949 u64 flags;
3950 u32 item_size;
3951 int ret;
3952 int err = 0;
3953 int progress = 0;
3954
3955 path = btrfs_alloc_path();
3956 if (!path)
3957 return -ENOMEM;
3958 path->reada = READA_FORWARD;
3959
3960 ret = prepare_to_relocate(rc);
3961 if (ret) {
3962 err = ret;
3963 goto out_free;
3964 }
3965
3966 while (1) {
3967 rc->reserved_bytes = 0;
3968 ret = btrfs_block_rsv_refill(rc->extent_root,
3969 rc->block_rsv, rc->block_rsv->size,
3970 BTRFS_RESERVE_FLUSH_ALL);
3971 if (ret) {
3972 err = ret;
3973 break;
3974 }
3975 progress++;
3976 trans = btrfs_start_transaction(rc->extent_root, 0);
3977 if (IS_ERR(trans)) {
3978 err = PTR_ERR(trans);
3979 trans = NULL;
3980 break;
3981 }
3982 restart:
3983 if (update_backref_cache(trans, &rc->backref_cache)) {
3984 btrfs_end_transaction(trans);
3985 trans = NULL;
3986 continue;
3987 }
3988
3989 ret = find_next_extent(rc, path, &key);
3990 if (ret < 0)
3991 err = ret;
3992 if (ret != 0)
3993 break;
3994
3995 rc->extents_found++;
3996
3997 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3998 struct btrfs_extent_item);
3999 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
4000 if (item_size >= sizeof(*ei)) {
4001 flags = btrfs_extent_flags(path->nodes[0], ei);
4002 ret = check_extent_flags(flags);
4003 BUG_ON(ret);
4004 } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
4005 err = -EINVAL;
4006 btrfs_print_v0_err(trans->fs_info);
4007 btrfs_abort_transaction(trans, err);
4008 break;
4009 } else {
4010 BUG();
4011 }
4012
4013 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
4014 ret = add_tree_block(rc, &key, path, &blocks);
4015 } else if (rc->stage == UPDATE_DATA_PTRS &&
4016 (flags & BTRFS_EXTENT_FLAG_DATA)) {
4017 ret = add_data_references(rc, &key, path, &blocks);
4018 } else {
4019 btrfs_release_path(path);
4020 ret = 0;
4021 }
4022 if (ret < 0) {
4023 err = ret;
4024 break;
4025 }
4026
4027 if (!RB_EMPTY_ROOT(&blocks)) {
4028 ret = relocate_tree_blocks(trans, rc, &blocks);
4029 if (ret < 0) {
4030 /*
4031 * if we fail to relocate tree blocks, force to update
4032 * backref cache when committing transaction.
4033 */
4034 rc->backref_cache.last_trans = trans->transid - 1;
4035
4036 if (ret != -EAGAIN) {
4037 err = ret;
4038 break;
4039 }
4040 rc->extents_found--;
4041 rc->search_start = key.objectid;
4042 }
4043 }
4044
4045 btrfs_end_transaction_throttle(trans);
4046 btrfs_btree_balance_dirty(fs_info);
4047 trans = NULL;
4048
4049 if (rc->stage == MOVE_DATA_EXTENTS &&
4050 (flags & BTRFS_EXTENT_FLAG_DATA)) {
4051 rc->found_file_extent = 1;
4052 ret = relocate_data_extent(rc->data_inode,
4053 &key, &rc->cluster);
4054 if (ret < 0) {
4055 err = ret;
4056 break;
4057 }
4058 }
4059 }
4060 if (trans && progress && err == -ENOSPC) {
4061 ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
4062 if (ret == 1) {
4063 err = 0;
4064 progress = 0;
4065 goto restart;
4066 }
4067 }
4068
4069 btrfs_release_path(path);
4070 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
4071
4072 if (trans) {
4073 btrfs_end_transaction_throttle(trans);
4074 btrfs_btree_balance_dirty(fs_info);
4075 }
4076
4077 if (!err) {
4078 ret = relocate_file_extent_cluster(rc->data_inode,
4079 &rc->cluster);
4080 if (ret < 0)
4081 err = ret;
4082 }
4083
4084 rc->create_reloc_tree = 0;
4085 set_reloc_control(rc);
4086
4087 backref_cache_cleanup(&rc->backref_cache);
4088 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
4089
4090 err = prepare_to_merge(rc, err);
4091
4092 merge_reloc_roots(rc);
4093
4094 rc->merge_reloc_tree = 0;
4095 unset_reloc_control(rc);
4096 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
4097
4098 /* get rid of pinned extents */
4099 trans = btrfs_join_transaction(rc->extent_root);
4100 if (IS_ERR(trans)) {
4101 err = PTR_ERR(trans);
4102 goto out_free;
4103 }
4104 ret = btrfs_commit_transaction(trans);
4105 if (ret && !err)
4106 err = ret;
4107 out_free:
4108 btrfs_free_block_rsv(fs_info, rc->block_rsv);
4109 btrfs_free_path(path);
4110 return err;
4111 }
4112
__insert_orphan_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 objectid)4113 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
4114 struct btrfs_root *root, u64 objectid)
4115 {
4116 struct btrfs_path *path;
4117 struct btrfs_inode_item *item;
4118 struct extent_buffer *leaf;
4119 int ret;
4120
4121 path = btrfs_alloc_path();
4122 if (!path)
4123 return -ENOMEM;
4124
4125 ret = btrfs_insert_empty_inode(trans, root, path, objectid);
4126 if (ret)
4127 goto out;
4128
4129 leaf = path->nodes[0];
4130 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
4131 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
4132 btrfs_set_inode_generation(leaf, item, 1);
4133 btrfs_set_inode_size(leaf, item, 0);
4134 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
4135 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
4136 BTRFS_INODE_PREALLOC);
4137 btrfs_mark_buffer_dirty(leaf);
4138 out:
4139 btrfs_free_path(path);
4140 return ret;
4141 }
4142
4143 /*
4144 * helper to create inode for data relocation.
4145 * the inode is in data relocation tree and its link count is 0
4146 */
4147 static noinline_for_stack
create_reloc_inode(struct btrfs_fs_info * fs_info,struct btrfs_block_group_cache * group)4148 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
4149 struct btrfs_block_group_cache *group)
4150 {
4151 struct inode *inode = NULL;
4152 struct btrfs_trans_handle *trans;
4153 struct btrfs_root *root;
4154 struct btrfs_key key;
4155 u64 objectid;
4156 int err = 0;
4157
4158 root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4159 if (IS_ERR(root))
4160 return ERR_CAST(root);
4161
4162 trans = btrfs_start_transaction(root, 6);
4163 if (IS_ERR(trans))
4164 return ERR_CAST(trans);
4165
4166 err = btrfs_find_free_objectid(root, &objectid);
4167 if (err)
4168 goto out;
4169
4170 err = __insert_orphan_inode(trans, root, objectid);
4171 BUG_ON(err);
4172
4173 key.objectid = objectid;
4174 key.type = BTRFS_INODE_ITEM_KEY;
4175 key.offset = 0;
4176 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4177 BUG_ON(IS_ERR(inode));
4178 BTRFS_I(inode)->index_cnt = group->key.objectid;
4179
4180 err = btrfs_orphan_add(trans, BTRFS_I(inode));
4181 out:
4182 btrfs_end_transaction(trans);
4183 btrfs_btree_balance_dirty(fs_info);
4184 if (err) {
4185 if (inode)
4186 iput(inode);
4187 inode = ERR_PTR(err);
4188 }
4189 return inode;
4190 }
4191
alloc_reloc_control(void)4192 static struct reloc_control *alloc_reloc_control(void)
4193 {
4194 struct reloc_control *rc;
4195
4196 rc = kzalloc(sizeof(*rc), GFP_NOFS);
4197 if (!rc)
4198 return NULL;
4199
4200 INIT_LIST_HEAD(&rc->reloc_roots);
4201 backref_cache_init(&rc->backref_cache);
4202 mapping_tree_init(&rc->reloc_root_tree);
4203 extent_io_tree_init(&rc->processed_blocks, NULL);
4204 return rc;
4205 }
4206
4207 /*
4208 * Print the block group being relocated
4209 */
describe_relocation(struct btrfs_fs_info * fs_info,struct btrfs_block_group_cache * block_group)4210 static void describe_relocation(struct btrfs_fs_info *fs_info,
4211 struct btrfs_block_group_cache *block_group)
4212 {
4213 char buf[128]; /* prefixed by a '|' that'll be dropped */
4214 u64 flags = block_group->flags;
4215
4216 /* Shouldn't happen */
4217 if (!flags) {
4218 strcpy(buf, "|NONE");
4219 } else {
4220 char *bp = buf;
4221
4222 #define DESCRIBE_FLAG(f, d) \
4223 if (flags & BTRFS_BLOCK_GROUP_##f) { \
4224 bp += snprintf(bp, buf - bp + sizeof(buf), "|%s", d); \
4225 flags &= ~BTRFS_BLOCK_GROUP_##f; \
4226 }
4227 DESCRIBE_FLAG(DATA, "data");
4228 DESCRIBE_FLAG(SYSTEM, "system");
4229 DESCRIBE_FLAG(METADATA, "metadata");
4230 DESCRIBE_FLAG(RAID0, "raid0");
4231 DESCRIBE_FLAG(RAID1, "raid1");
4232 DESCRIBE_FLAG(DUP, "dup");
4233 DESCRIBE_FLAG(RAID10, "raid10");
4234 DESCRIBE_FLAG(RAID5, "raid5");
4235 DESCRIBE_FLAG(RAID6, "raid6");
4236 if (flags)
4237 snprintf(bp, buf - bp + sizeof(buf), "|0x%llx", flags);
4238 #undef DESCRIBE_FLAG
4239 }
4240
4241 btrfs_info(fs_info,
4242 "relocating block group %llu flags %s",
4243 block_group->key.objectid, buf + 1);
4244 }
4245
4246 /*
4247 * function to relocate all extents in a block group.
4248 */
btrfs_relocate_block_group(struct btrfs_fs_info * fs_info,u64 group_start)4249 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
4250 {
4251 struct btrfs_root *extent_root = fs_info->extent_root;
4252 struct reloc_control *rc;
4253 struct inode *inode;
4254 struct btrfs_path *path;
4255 int ret;
4256 int rw = 0;
4257 int err = 0;
4258
4259 rc = alloc_reloc_control();
4260 if (!rc)
4261 return -ENOMEM;
4262
4263 rc->extent_root = extent_root;
4264
4265 rc->block_group = btrfs_lookup_block_group(fs_info, group_start);
4266 BUG_ON(!rc->block_group);
4267
4268 ret = btrfs_inc_block_group_ro(rc->block_group);
4269 if (ret) {
4270 err = ret;
4271 goto out;
4272 }
4273 rw = 1;
4274
4275 path = btrfs_alloc_path();
4276 if (!path) {
4277 err = -ENOMEM;
4278 goto out;
4279 }
4280
4281 inode = lookup_free_space_inode(fs_info, rc->block_group, path);
4282 btrfs_free_path(path);
4283
4284 if (!IS_ERR(inode))
4285 ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4286 else
4287 ret = PTR_ERR(inode);
4288
4289 if (ret && ret != -ENOENT) {
4290 err = ret;
4291 goto out;
4292 }
4293
4294 rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4295 if (IS_ERR(rc->data_inode)) {
4296 err = PTR_ERR(rc->data_inode);
4297 rc->data_inode = NULL;
4298 goto out;
4299 }
4300
4301 describe_relocation(fs_info, rc->block_group);
4302
4303 btrfs_wait_block_group_reservations(rc->block_group);
4304 btrfs_wait_nocow_writers(rc->block_group);
4305 btrfs_wait_ordered_roots(fs_info, U64_MAX,
4306 rc->block_group->key.objectid,
4307 rc->block_group->key.offset);
4308
4309 while (1) {
4310 mutex_lock(&fs_info->cleaner_mutex);
4311 ret = relocate_block_group(rc);
4312 mutex_unlock(&fs_info->cleaner_mutex);
4313 if (ret < 0)
4314 err = ret;
4315
4316 /*
4317 * We may have gotten ENOSPC after we already dirtied some
4318 * extents. If writeout happens while we're relocating a
4319 * different block group we could end up hitting the
4320 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
4321 * btrfs_reloc_cow_block. Make sure we write everything out
4322 * properly so we don't trip over this problem, and then break
4323 * out of the loop if we hit an error.
4324 */
4325 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4326 ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4327 (u64)-1);
4328 if (ret)
4329 err = ret;
4330 invalidate_mapping_pages(rc->data_inode->i_mapping,
4331 0, -1);
4332 rc->stage = UPDATE_DATA_PTRS;
4333 }
4334
4335 if (err < 0)
4336 goto out;
4337
4338 if (rc->extents_found == 0)
4339 break;
4340
4341 btrfs_info(fs_info, "found %llu extents", rc->extents_found);
4342
4343 }
4344
4345 WARN_ON(rc->block_group->pinned > 0);
4346 WARN_ON(rc->block_group->reserved > 0);
4347 WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
4348 out:
4349 if (err && rw)
4350 btrfs_dec_block_group_ro(rc->block_group);
4351 iput(rc->data_inode);
4352 btrfs_put_block_group(rc->block_group);
4353 kfree(rc);
4354 return err;
4355 }
4356
mark_garbage_root(struct btrfs_root * root)4357 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4358 {
4359 struct btrfs_fs_info *fs_info = root->fs_info;
4360 struct btrfs_trans_handle *trans;
4361 int ret, err;
4362
4363 trans = btrfs_start_transaction(fs_info->tree_root, 0);
4364 if (IS_ERR(trans))
4365 return PTR_ERR(trans);
4366
4367 memset(&root->root_item.drop_progress, 0,
4368 sizeof(root->root_item.drop_progress));
4369 root->root_item.drop_level = 0;
4370 btrfs_set_root_refs(&root->root_item, 0);
4371 ret = btrfs_update_root(trans, fs_info->tree_root,
4372 &root->root_key, &root->root_item);
4373
4374 err = btrfs_end_transaction(trans);
4375 if (err)
4376 return err;
4377 return ret;
4378 }
4379
4380 /*
4381 * recover relocation interrupted by system crash.
4382 *
4383 * this function resumes merging reloc trees with corresponding fs trees.
4384 * this is important for keeping the sharing of tree blocks
4385 */
btrfs_recover_relocation(struct btrfs_root * root)4386 int btrfs_recover_relocation(struct btrfs_root *root)
4387 {
4388 struct btrfs_fs_info *fs_info = root->fs_info;
4389 LIST_HEAD(reloc_roots);
4390 struct btrfs_key key;
4391 struct btrfs_root *fs_root;
4392 struct btrfs_root *reloc_root;
4393 struct btrfs_path *path;
4394 struct extent_buffer *leaf;
4395 struct reloc_control *rc = NULL;
4396 struct btrfs_trans_handle *trans;
4397 int ret;
4398 int err = 0;
4399
4400 path = btrfs_alloc_path();
4401 if (!path)
4402 return -ENOMEM;
4403 path->reada = READA_BACK;
4404
4405 key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4406 key.type = BTRFS_ROOT_ITEM_KEY;
4407 key.offset = (u64)-1;
4408
4409 while (1) {
4410 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4411 path, 0, 0);
4412 if (ret < 0) {
4413 err = ret;
4414 goto out;
4415 }
4416 if (ret > 0) {
4417 if (path->slots[0] == 0)
4418 break;
4419 path->slots[0]--;
4420 }
4421 leaf = path->nodes[0];
4422 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4423 btrfs_release_path(path);
4424
4425 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4426 key.type != BTRFS_ROOT_ITEM_KEY)
4427 break;
4428
4429 reloc_root = btrfs_read_fs_root(root, &key);
4430 if (IS_ERR(reloc_root)) {
4431 err = PTR_ERR(reloc_root);
4432 goto out;
4433 }
4434
4435 list_add(&reloc_root->root_list, &reloc_roots);
4436
4437 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4438 fs_root = read_fs_root(fs_info,
4439 reloc_root->root_key.offset);
4440 if (IS_ERR(fs_root)) {
4441 ret = PTR_ERR(fs_root);
4442 if (ret != -ENOENT) {
4443 err = ret;
4444 goto out;
4445 }
4446 ret = mark_garbage_root(reloc_root);
4447 if (ret < 0) {
4448 err = ret;
4449 goto out;
4450 }
4451 }
4452 }
4453
4454 if (key.offset == 0)
4455 break;
4456
4457 key.offset--;
4458 }
4459 btrfs_release_path(path);
4460
4461 if (list_empty(&reloc_roots))
4462 goto out;
4463
4464 rc = alloc_reloc_control();
4465 if (!rc) {
4466 err = -ENOMEM;
4467 goto out;
4468 }
4469
4470 rc->extent_root = fs_info->extent_root;
4471
4472 set_reloc_control(rc);
4473
4474 trans = btrfs_join_transaction(rc->extent_root);
4475 if (IS_ERR(trans)) {
4476 unset_reloc_control(rc);
4477 err = PTR_ERR(trans);
4478 goto out_free;
4479 }
4480
4481 rc->merge_reloc_tree = 1;
4482
4483 while (!list_empty(&reloc_roots)) {
4484 reloc_root = list_entry(reloc_roots.next,
4485 struct btrfs_root, root_list);
4486 list_del(&reloc_root->root_list);
4487
4488 if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4489 list_add_tail(&reloc_root->root_list,
4490 &rc->reloc_roots);
4491 continue;
4492 }
4493
4494 fs_root = read_fs_root(fs_info, reloc_root->root_key.offset);
4495 if (IS_ERR(fs_root)) {
4496 err = PTR_ERR(fs_root);
4497 list_add_tail(&reloc_root->root_list, &reloc_roots);
4498 goto out_free;
4499 }
4500
4501 err = __add_reloc_root(reloc_root);
4502 BUG_ON(err < 0); /* -ENOMEM or logic error */
4503 fs_root->reloc_root = reloc_root;
4504 }
4505
4506 err = btrfs_commit_transaction(trans);
4507 if (err)
4508 goto out_free;
4509
4510 merge_reloc_roots(rc);
4511
4512 unset_reloc_control(rc);
4513
4514 trans = btrfs_join_transaction(rc->extent_root);
4515 if (IS_ERR(trans)) {
4516 err = PTR_ERR(trans);
4517 goto out_free;
4518 }
4519 err = btrfs_commit_transaction(trans);
4520 out_free:
4521 kfree(rc);
4522 out:
4523 if (!list_empty(&reloc_roots))
4524 free_reloc_roots(&reloc_roots);
4525
4526 btrfs_free_path(path);
4527
4528 if (err == 0) {
4529 /* cleanup orphan inode in data relocation tree */
4530 fs_root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4531 if (IS_ERR(fs_root))
4532 err = PTR_ERR(fs_root);
4533 else
4534 err = btrfs_orphan_cleanup(fs_root);
4535 }
4536 return err;
4537 }
4538
4539 /*
4540 * helper to add ordered checksum for data relocation.
4541 *
4542 * cloning checksum properly handles the nodatasum extents.
4543 * it also saves CPU time to re-calculate the checksum.
4544 */
btrfs_reloc_clone_csums(struct inode * inode,u64 file_pos,u64 len)4545 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
4546 {
4547 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4548 struct btrfs_ordered_sum *sums;
4549 struct btrfs_ordered_extent *ordered;
4550 int ret;
4551 u64 disk_bytenr;
4552 u64 new_bytenr;
4553 LIST_HEAD(list);
4554
4555 ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4556 BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
4557
4558 disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
4559 ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr,
4560 disk_bytenr + len - 1, &list, 0);
4561 if (ret)
4562 goto out;
4563
4564 while (!list_empty(&list)) {
4565 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4566 list_del_init(&sums->list);
4567
4568 /*
4569 * We need to offset the new_bytenr based on where the csum is.
4570 * We need to do this because we will read in entire prealloc
4571 * extents but we may have written to say the middle of the
4572 * prealloc extent, so we need to make sure the csum goes with
4573 * the right disk offset.
4574 *
4575 * We can do this because the data reloc inode refers strictly
4576 * to the on disk bytes, so we don't have to worry about
4577 * disk_len vs real len like with real inodes since it's all
4578 * disk length.
4579 */
4580 new_bytenr = ordered->start + (sums->bytenr - disk_bytenr);
4581 sums->bytenr = new_bytenr;
4582
4583 btrfs_add_ordered_sum(inode, ordered, sums);
4584 }
4585 out:
4586 btrfs_put_ordered_extent(ordered);
4587 return ret;
4588 }
4589
btrfs_reloc_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * cow)4590 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4591 struct btrfs_root *root, struct extent_buffer *buf,
4592 struct extent_buffer *cow)
4593 {
4594 struct btrfs_fs_info *fs_info = root->fs_info;
4595 struct reloc_control *rc;
4596 struct backref_node *node;
4597 int first_cow = 0;
4598 int level;
4599 int ret = 0;
4600
4601 rc = fs_info->reloc_ctl;
4602 if (!rc)
4603 return 0;
4604
4605 BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4606 root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4607
4608 level = btrfs_header_level(buf);
4609 if (btrfs_header_generation(buf) <=
4610 btrfs_root_last_snapshot(&root->root_item))
4611 first_cow = 1;
4612
4613 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4614 rc->create_reloc_tree) {
4615 WARN_ON(!first_cow && level == 0);
4616
4617 node = rc->backref_cache.path[level];
4618 BUG_ON(node->bytenr != buf->start &&
4619 node->new_bytenr != buf->start);
4620
4621 drop_node_buffer(node);
4622 extent_buffer_get(cow);
4623 node->eb = cow;
4624 node->new_bytenr = cow->start;
4625
4626 if (!node->pending) {
4627 list_move_tail(&node->list,
4628 &rc->backref_cache.pending[level]);
4629 node->pending = 1;
4630 }
4631
4632 if (first_cow)
4633 __mark_block_processed(rc, node);
4634
4635 if (first_cow && level > 0)
4636 rc->nodes_relocated += buf->len;
4637 }
4638
4639 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4640 ret = replace_file_extents(trans, rc, root, cow);
4641 return ret;
4642 }
4643
4644 /*
4645 * called before creating snapshot. it calculates metadata reservation
4646 * required for relocating tree blocks in the snapshot
4647 */
btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot * pending,u64 * bytes_to_reserve)4648 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4649 u64 *bytes_to_reserve)
4650 {
4651 struct btrfs_root *root;
4652 struct reloc_control *rc;
4653
4654 root = pending->root;
4655 if (!root->reloc_root)
4656 return;
4657
4658 rc = root->fs_info->reloc_ctl;
4659 if (!rc->merge_reloc_tree)
4660 return;
4661
4662 root = root->reloc_root;
4663 BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4664 /*
4665 * relocation is in the stage of merging trees. the space
4666 * used by merging a reloc tree is twice the size of
4667 * relocated tree nodes in the worst case. half for cowing
4668 * the reloc tree, half for cowing the fs tree. the space
4669 * used by cowing the reloc tree will be freed after the
4670 * tree is dropped. if we create snapshot, cowing the fs
4671 * tree may use more space than it frees. so we need
4672 * reserve extra space.
4673 */
4674 *bytes_to_reserve += rc->nodes_relocated;
4675 }
4676
4677 /*
4678 * called after snapshot is created. migrate block reservation
4679 * and create reloc root for the newly created snapshot
4680 */
btrfs_reloc_post_snapshot(struct btrfs_trans_handle * trans,struct btrfs_pending_snapshot * pending)4681 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4682 struct btrfs_pending_snapshot *pending)
4683 {
4684 struct btrfs_root *root = pending->root;
4685 struct btrfs_root *reloc_root;
4686 struct btrfs_root *new_root;
4687 struct reloc_control *rc;
4688 int ret;
4689
4690 if (!root->reloc_root)
4691 return 0;
4692
4693 rc = root->fs_info->reloc_ctl;
4694 rc->merging_rsv_size += rc->nodes_relocated;
4695
4696 if (rc->merge_reloc_tree) {
4697 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4698 rc->block_rsv,
4699 rc->nodes_relocated, 1);
4700 if (ret)
4701 return ret;
4702 }
4703
4704 new_root = pending->snap;
4705 reloc_root = create_reloc_root(trans, root->reloc_root,
4706 new_root->root_key.objectid);
4707 if (IS_ERR(reloc_root))
4708 return PTR_ERR(reloc_root);
4709
4710 ret = __add_reloc_root(reloc_root);
4711 BUG_ON(ret < 0);
4712 new_root->reloc_root = reloc_root;
4713
4714 if (rc->create_reloc_tree)
4715 ret = clone_backref_node(trans, rc, root, reloc_root);
4716 return ret;
4717 }
4718