1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2009 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/writeback.h>
9 #include <linux/blkdev.h>
10 #include <linux/rbtree.h>
11 #include <linux/slab.h>
12 #include "ctree.h"
13 #include "disk-io.h"
14 #include "transaction.h"
15 #include "volumes.h"
16 #include "locking.h"
17 #include "btrfs_inode.h"
18 #include "async-thread.h"
19 #include "free-space-cache.h"
20 #include "inode-map.h"
21 #include "qgroup.h"
22 #include "print-tree.h"
23 
24 /*
25  * backref_node, mapping_node and tree_block start with this
26  */
27 struct tree_entry {
28 	struct rb_node rb_node;
29 	u64 bytenr;
30 };
31 
32 /*
33  * present a tree block in the backref cache
34  */
35 struct backref_node {
36 	struct rb_node rb_node;
37 	u64 bytenr;
38 
39 	u64 new_bytenr;
40 	/* objectid of tree block owner, can be not uptodate */
41 	u64 owner;
42 	/* link to pending, changed or detached list */
43 	struct list_head list;
44 	/* list of upper level blocks reference this block */
45 	struct list_head upper;
46 	/* list of child blocks in the cache */
47 	struct list_head lower;
48 	/* NULL if this node is not tree root */
49 	struct btrfs_root *root;
50 	/* extent buffer got by COW the block */
51 	struct extent_buffer *eb;
52 	/* level of tree block */
53 	unsigned int level:8;
54 	/* is the block in non-reference counted tree */
55 	unsigned int cowonly:1;
56 	/* 1 if no child node in the cache */
57 	unsigned int lowest:1;
58 	/* is the extent buffer locked */
59 	unsigned int locked:1;
60 	/* has the block been processed */
61 	unsigned int processed:1;
62 	/* have backrefs of this block been checked */
63 	unsigned int checked:1;
64 	/*
65 	 * 1 if corresponding block has been cowed but some upper
66 	 * level block pointers may not point to the new location
67 	 */
68 	unsigned int pending:1;
69 	/*
70 	 * 1 if the backref node isn't connected to any other
71 	 * backref node.
72 	 */
73 	unsigned int detached:1;
74 };
75 
76 /*
77  * present a block pointer in the backref cache
78  */
79 struct backref_edge {
80 	struct list_head list[2];
81 	struct backref_node *node[2];
82 };
83 
84 #define LOWER	0
85 #define UPPER	1
86 #define RELOCATION_RESERVED_NODES	256
87 
88 struct backref_cache {
89 	/* red black tree of all backref nodes in the cache */
90 	struct rb_root rb_root;
91 	/* for passing backref nodes to btrfs_reloc_cow_block */
92 	struct backref_node *path[BTRFS_MAX_LEVEL];
93 	/*
94 	 * list of blocks that have been cowed but some block
95 	 * pointers in upper level blocks may not reflect the
96 	 * new location
97 	 */
98 	struct list_head pending[BTRFS_MAX_LEVEL];
99 	/* list of backref nodes with no child node */
100 	struct list_head leaves;
101 	/* list of blocks that have been cowed in current transaction */
102 	struct list_head changed;
103 	/* list of detached backref node. */
104 	struct list_head detached;
105 
106 	u64 last_trans;
107 
108 	int nr_nodes;
109 	int nr_edges;
110 };
111 
112 /*
113  * map address of tree root to tree
114  */
115 struct mapping_node {
116 	struct rb_node rb_node;
117 	u64 bytenr;
118 	void *data;
119 };
120 
121 struct mapping_tree {
122 	struct rb_root rb_root;
123 	spinlock_t lock;
124 };
125 
126 /*
127  * present a tree block to process
128  */
129 struct tree_block {
130 	struct rb_node rb_node;
131 	u64 bytenr;
132 	struct btrfs_key key;
133 	unsigned int level:8;
134 	unsigned int key_ready:1;
135 };
136 
137 #define MAX_EXTENTS 128
138 
139 struct file_extent_cluster {
140 	u64 start;
141 	u64 end;
142 	u64 boundary[MAX_EXTENTS];
143 	unsigned int nr;
144 };
145 
146 struct reloc_control {
147 	/* block group to relocate */
148 	struct btrfs_block_group_cache *block_group;
149 	/* extent tree */
150 	struct btrfs_root *extent_root;
151 	/* inode for moving data */
152 	struct inode *data_inode;
153 
154 	struct btrfs_block_rsv *block_rsv;
155 
156 	struct backref_cache backref_cache;
157 
158 	struct file_extent_cluster cluster;
159 	/* tree blocks have been processed */
160 	struct extent_io_tree processed_blocks;
161 	/* map start of tree root to corresponding reloc tree */
162 	struct mapping_tree reloc_root_tree;
163 	/* list of reloc trees */
164 	struct list_head reloc_roots;
165 	/* size of metadata reservation for merging reloc trees */
166 	u64 merging_rsv_size;
167 	/* size of relocated tree nodes */
168 	u64 nodes_relocated;
169 	/* reserved size for block group relocation*/
170 	u64 reserved_bytes;
171 
172 	u64 search_start;
173 	u64 extents_found;
174 
175 	unsigned int stage:8;
176 	unsigned int create_reloc_tree:1;
177 	unsigned int merge_reloc_tree:1;
178 	unsigned int found_file_extent:1;
179 };
180 
181 /* stages of data relocation */
182 #define MOVE_DATA_EXTENTS	0
183 #define UPDATE_DATA_PTRS	1
184 
185 static void remove_backref_node(struct backref_cache *cache,
186 				struct backref_node *node);
187 static void __mark_block_processed(struct reloc_control *rc,
188 				   struct backref_node *node);
189 
mapping_tree_init(struct mapping_tree * tree)190 static void mapping_tree_init(struct mapping_tree *tree)
191 {
192 	tree->rb_root = RB_ROOT;
193 	spin_lock_init(&tree->lock);
194 }
195 
backref_cache_init(struct backref_cache * cache)196 static void backref_cache_init(struct backref_cache *cache)
197 {
198 	int i;
199 	cache->rb_root = RB_ROOT;
200 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
201 		INIT_LIST_HEAD(&cache->pending[i]);
202 	INIT_LIST_HEAD(&cache->changed);
203 	INIT_LIST_HEAD(&cache->detached);
204 	INIT_LIST_HEAD(&cache->leaves);
205 }
206 
backref_cache_cleanup(struct backref_cache * cache)207 static void backref_cache_cleanup(struct backref_cache *cache)
208 {
209 	struct backref_node *node;
210 	int i;
211 
212 	while (!list_empty(&cache->detached)) {
213 		node = list_entry(cache->detached.next,
214 				  struct backref_node, list);
215 		remove_backref_node(cache, node);
216 	}
217 
218 	while (!list_empty(&cache->leaves)) {
219 		node = list_entry(cache->leaves.next,
220 				  struct backref_node, lower);
221 		remove_backref_node(cache, node);
222 	}
223 
224 	cache->last_trans = 0;
225 
226 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
227 		ASSERT(list_empty(&cache->pending[i]));
228 	ASSERT(list_empty(&cache->changed));
229 	ASSERT(list_empty(&cache->detached));
230 	ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
231 	ASSERT(!cache->nr_nodes);
232 	ASSERT(!cache->nr_edges);
233 }
234 
alloc_backref_node(struct backref_cache * cache)235 static struct backref_node *alloc_backref_node(struct backref_cache *cache)
236 {
237 	struct backref_node *node;
238 
239 	node = kzalloc(sizeof(*node), GFP_NOFS);
240 	if (node) {
241 		INIT_LIST_HEAD(&node->list);
242 		INIT_LIST_HEAD(&node->upper);
243 		INIT_LIST_HEAD(&node->lower);
244 		RB_CLEAR_NODE(&node->rb_node);
245 		cache->nr_nodes++;
246 	}
247 	return node;
248 }
249 
free_backref_node(struct backref_cache * cache,struct backref_node * node)250 static void free_backref_node(struct backref_cache *cache,
251 			      struct backref_node *node)
252 {
253 	if (node) {
254 		cache->nr_nodes--;
255 		kfree(node);
256 	}
257 }
258 
alloc_backref_edge(struct backref_cache * cache)259 static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
260 {
261 	struct backref_edge *edge;
262 
263 	edge = kzalloc(sizeof(*edge), GFP_NOFS);
264 	if (edge)
265 		cache->nr_edges++;
266 	return edge;
267 }
268 
free_backref_edge(struct backref_cache * cache,struct backref_edge * edge)269 static void free_backref_edge(struct backref_cache *cache,
270 			      struct backref_edge *edge)
271 {
272 	if (edge) {
273 		cache->nr_edges--;
274 		kfree(edge);
275 	}
276 }
277 
tree_insert(struct rb_root * root,u64 bytenr,struct rb_node * node)278 static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
279 				   struct rb_node *node)
280 {
281 	struct rb_node **p = &root->rb_node;
282 	struct rb_node *parent = NULL;
283 	struct tree_entry *entry;
284 
285 	while (*p) {
286 		parent = *p;
287 		entry = rb_entry(parent, struct tree_entry, rb_node);
288 
289 		if (bytenr < entry->bytenr)
290 			p = &(*p)->rb_left;
291 		else if (bytenr > entry->bytenr)
292 			p = &(*p)->rb_right;
293 		else
294 			return parent;
295 	}
296 
297 	rb_link_node(node, parent, p);
298 	rb_insert_color(node, root);
299 	return NULL;
300 }
301 
tree_search(struct rb_root * root,u64 bytenr)302 static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
303 {
304 	struct rb_node *n = root->rb_node;
305 	struct tree_entry *entry;
306 
307 	while (n) {
308 		entry = rb_entry(n, struct tree_entry, rb_node);
309 
310 		if (bytenr < entry->bytenr)
311 			n = n->rb_left;
312 		else if (bytenr > entry->bytenr)
313 			n = n->rb_right;
314 		else
315 			return n;
316 	}
317 	return NULL;
318 }
319 
backref_tree_panic(struct rb_node * rb_node,int errno,u64 bytenr)320 static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr)
321 {
322 
323 	struct btrfs_fs_info *fs_info = NULL;
324 	struct backref_node *bnode = rb_entry(rb_node, struct backref_node,
325 					      rb_node);
326 	if (bnode->root)
327 		fs_info = bnode->root->fs_info;
328 	btrfs_panic(fs_info, errno,
329 		    "Inconsistency in backref cache found at offset %llu",
330 		    bytenr);
331 }
332 
333 /*
334  * walk up backref nodes until reach node presents tree root
335  */
walk_up_backref(struct backref_node * node,struct backref_edge * edges[],int * index)336 static struct backref_node *walk_up_backref(struct backref_node *node,
337 					    struct backref_edge *edges[],
338 					    int *index)
339 {
340 	struct backref_edge *edge;
341 	int idx = *index;
342 
343 	while (!list_empty(&node->upper)) {
344 		edge = list_entry(node->upper.next,
345 				  struct backref_edge, list[LOWER]);
346 		edges[idx++] = edge;
347 		node = edge->node[UPPER];
348 	}
349 	BUG_ON(node->detached);
350 	*index = idx;
351 	return node;
352 }
353 
354 /*
355  * walk down backref nodes to find start of next reference path
356  */
walk_down_backref(struct backref_edge * edges[],int * index)357 static struct backref_node *walk_down_backref(struct backref_edge *edges[],
358 					      int *index)
359 {
360 	struct backref_edge *edge;
361 	struct backref_node *lower;
362 	int idx = *index;
363 
364 	while (idx > 0) {
365 		edge = edges[idx - 1];
366 		lower = edge->node[LOWER];
367 		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
368 			idx--;
369 			continue;
370 		}
371 		edge = list_entry(edge->list[LOWER].next,
372 				  struct backref_edge, list[LOWER]);
373 		edges[idx - 1] = edge;
374 		*index = idx;
375 		return edge->node[UPPER];
376 	}
377 	*index = 0;
378 	return NULL;
379 }
380 
unlock_node_buffer(struct backref_node * node)381 static void unlock_node_buffer(struct backref_node *node)
382 {
383 	if (node->locked) {
384 		btrfs_tree_unlock(node->eb);
385 		node->locked = 0;
386 	}
387 }
388 
drop_node_buffer(struct backref_node * node)389 static void drop_node_buffer(struct backref_node *node)
390 {
391 	if (node->eb) {
392 		unlock_node_buffer(node);
393 		free_extent_buffer(node->eb);
394 		node->eb = NULL;
395 	}
396 }
397 
drop_backref_node(struct backref_cache * tree,struct backref_node * node)398 static void drop_backref_node(struct backref_cache *tree,
399 			      struct backref_node *node)
400 {
401 	BUG_ON(!list_empty(&node->upper));
402 
403 	drop_node_buffer(node);
404 	list_del(&node->list);
405 	list_del(&node->lower);
406 	if (!RB_EMPTY_NODE(&node->rb_node))
407 		rb_erase(&node->rb_node, &tree->rb_root);
408 	free_backref_node(tree, node);
409 }
410 
411 /*
412  * remove a backref node from the backref cache
413  */
remove_backref_node(struct backref_cache * cache,struct backref_node * node)414 static void remove_backref_node(struct backref_cache *cache,
415 				struct backref_node *node)
416 {
417 	struct backref_node *upper;
418 	struct backref_edge *edge;
419 
420 	if (!node)
421 		return;
422 
423 	BUG_ON(!node->lowest && !node->detached);
424 	while (!list_empty(&node->upper)) {
425 		edge = list_entry(node->upper.next, struct backref_edge,
426 				  list[LOWER]);
427 		upper = edge->node[UPPER];
428 		list_del(&edge->list[LOWER]);
429 		list_del(&edge->list[UPPER]);
430 		free_backref_edge(cache, edge);
431 
432 		if (RB_EMPTY_NODE(&upper->rb_node)) {
433 			BUG_ON(!list_empty(&node->upper));
434 			drop_backref_node(cache, node);
435 			node = upper;
436 			node->lowest = 1;
437 			continue;
438 		}
439 		/*
440 		 * add the node to leaf node list if no other
441 		 * child block cached.
442 		 */
443 		if (list_empty(&upper->lower)) {
444 			list_add_tail(&upper->lower, &cache->leaves);
445 			upper->lowest = 1;
446 		}
447 	}
448 
449 	drop_backref_node(cache, node);
450 }
451 
update_backref_node(struct backref_cache * cache,struct backref_node * node,u64 bytenr)452 static void update_backref_node(struct backref_cache *cache,
453 				struct backref_node *node, u64 bytenr)
454 {
455 	struct rb_node *rb_node;
456 	rb_erase(&node->rb_node, &cache->rb_root);
457 	node->bytenr = bytenr;
458 	rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
459 	if (rb_node)
460 		backref_tree_panic(rb_node, -EEXIST, bytenr);
461 }
462 
463 /*
464  * update backref cache after a transaction commit
465  */
update_backref_cache(struct btrfs_trans_handle * trans,struct backref_cache * cache)466 static int update_backref_cache(struct btrfs_trans_handle *trans,
467 				struct backref_cache *cache)
468 {
469 	struct backref_node *node;
470 	int level = 0;
471 
472 	if (cache->last_trans == 0) {
473 		cache->last_trans = trans->transid;
474 		return 0;
475 	}
476 
477 	if (cache->last_trans == trans->transid)
478 		return 0;
479 
480 	/*
481 	 * detached nodes are used to avoid unnecessary backref
482 	 * lookup. transaction commit changes the extent tree.
483 	 * so the detached nodes are no longer useful.
484 	 */
485 	while (!list_empty(&cache->detached)) {
486 		node = list_entry(cache->detached.next,
487 				  struct backref_node, list);
488 		remove_backref_node(cache, node);
489 	}
490 
491 	while (!list_empty(&cache->changed)) {
492 		node = list_entry(cache->changed.next,
493 				  struct backref_node, list);
494 		list_del_init(&node->list);
495 		BUG_ON(node->pending);
496 		update_backref_node(cache, node, node->new_bytenr);
497 	}
498 
499 	/*
500 	 * some nodes can be left in the pending list if there were
501 	 * errors during processing the pending nodes.
502 	 */
503 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
504 		list_for_each_entry(node, &cache->pending[level], list) {
505 			BUG_ON(!node->pending);
506 			if (node->bytenr == node->new_bytenr)
507 				continue;
508 			update_backref_node(cache, node, node->new_bytenr);
509 		}
510 	}
511 
512 	cache->last_trans = 0;
513 	return 1;
514 }
515 
516 
should_ignore_root(struct btrfs_root * root)517 static int should_ignore_root(struct btrfs_root *root)
518 {
519 	struct btrfs_root *reloc_root;
520 
521 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
522 		return 0;
523 
524 	reloc_root = root->reloc_root;
525 	if (!reloc_root)
526 		return 0;
527 
528 	if (btrfs_header_generation(reloc_root->commit_root) ==
529 	    root->fs_info->running_transaction->transid)
530 		return 0;
531 	/*
532 	 * if there is reloc tree and it was created in previous
533 	 * transaction backref lookup can find the reloc tree,
534 	 * so backref node for the fs tree root is useless for
535 	 * relocation.
536 	 */
537 	return 1;
538 }
539 /*
540  * find reloc tree by address of tree root
541  */
find_reloc_root(struct reloc_control * rc,u64 bytenr)542 static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
543 					  u64 bytenr)
544 {
545 	struct rb_node *rb_node;
546 	struct mapping_node *node;
547 	struct btrfs_root *root = NULL;
548 
549 	spin_lock(&rc->reloc_root_tree.lock);
550 	rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
551 	if (rb_node) {
552 		node = rb_entry(rb_node, struct mapping_node, rb_node);
553 		root = (struct btrfs_root *)node->data;
554 	}
555 	spin_unlock(&rc->reloc_root_tree.lock);
556 	return root;
557 }
558 
is_cowonly_root(u64 root_objectid)559 static int is_cowonly_root(u64 root_objectid)
560 {
561 	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
562 	    root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
563 	    root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
564 	    root_objectid == BTRFS_DEV_TREE_OBJECTID ||
565 	    root_objectid == BTRFS_TREE_LOG_OBJECTID ||
566 	    root_objectid == BTRFS_CSUM_TREE_OBJECTID ||
567 	    root_objectid == BTRFS_UUID_TREE_OBJECTID ||
568 	    root_objectid == BTRFS_QUOTA_TREE_OBJECTID ||
569 	    root_objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
570 		return 1;
571 	return 0;
572 }
573 
read_fs_root(struct btrfs_fs_info * fs_info,u64 root_objectid)574 static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
575 					u64 root_objectid)
576 {
577 	struct btrfs_key key;
578 
579 	key.objectid = root_objectid;
580 	key.type = BTRFS_ROOT_ITEM_KEY;
581 	if (is_cowonly_root(root_objectid))
582 		key.offset = 0;
583 	else
584 		key.offset = (u64)-1;
585 
586 	return btrfs_get_fs_root(fs_info, &key, false);
587 }
588 
589 static noinline_for_stack
find_inline_backref(struct extent_buffer * leaf,int slot,unsigned long * ptr,unsigned long * end)590 int find_inline_backref(struct extent_buffer *leaf, int slot,
591 			unsigned long *ptr, unsigned long *end)
592 {
593 	struct btrfs_key key;
594 	struct btrfs_extent_item *ei;
595 	struct btrfs_tree_block_info *bi;
596 	u32 item_size;
597 
598 	btrfs_item_key_to_cpu(leaf, &key, slot);
599 
600 	item_size = btrfs_item_size_nr(leaf, slot);
601 	if (item_size < sizeof(*ei)) {
602 		btrfs_print_v0_err(leaf->fs_info);
603 		btrfs_handle_fs_error(leaf->fs_info, -EINVAL, NULL);
604 		return 1;
605 	}
606 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
607 	WARN_ON(!(btrfs_extent_flags(leaf, ei) &
608 		  BTRFS_EXTENT_FLAG_TREE_BLOCK));
609 
610 	if (key.type == BTRFS_EXTENT_ITEM_KEY &&
611 	    item_size <= sizeof(*ei) + sizeof(*bi)) {
612 		WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
613 		return 1;
614 	}
615 	if (key.type == BTRFS_METADATA_ITEM_KEY &&
616 	    item_size <= sizeof(*ei)) {
617 		WARN_ON(item_size < sizeof(*ei));
618 		return 1;
619 	}
620 
621 	if (key.type == BTRFS_EXTENT_ITEM_KEY) {
622 		bi = (struct btrfs_tree_block_info *)(ei + 1);
623 		*ptr = (unsigned long)(bi + 1);
624 	} else {
625 		*ptr = (unsigned long)(ei + 1);
626 	}
627 	*end = (unsigned long)ei + item_size;
628 	return 0;
629 }
630 
631 /*
632  * build backref tree for a given tree block. root of the backref tree
633  * corresponds the tree block, leaves of the backref tree correspond
634  * roots of b-trees that reference the tree block.
635  *
636  * the basic idea of this function is check backrefs of a given block
637  * to find upper level blocks that reference the block, and then check
638  * backrefs of these upper level blocks recursively. the recursion stop
639  * when tree root is reached or backrefs for the block is cached.
640  *
641  * NOTE: if we find backrefs for a block are cached, we know backrefs
642  * for all upper level blocks that directly/indirectly reference the
643  * block are also cached.
644  */
645 static noinline_for_stack
build_backref_tree(struct reloc_control * rc,struct btrfs_key * node_key,int level,u64 bytenr)646 struct backref_node *build_backref_tree(struct reloc_control *rc,
647 					struct btrfs_key *node_key,
648 					int level, u64 bytenr)
649 {
650 	struct backref_cache *cache = &rc->backref_cache;
651 	struct btrfs_path *path1;
652 	struct btrfs_path *path2;
653 	struct extent_buffer *eb;
654 	struct btrfs_root *root;
655 	struct backref_node *cur;
656 	struct backref_node *upper;
657 	struct backref_node *lower;
658 	struct backref_node *node = NULL;
659 	struct backref_node *exist = NULL;
660 	struct backref_edge *edge;
661 	struct rb_node *rb_node;
662 	struct btrfs_key key;
663 	unsigned long end;
664 	unsigned long ptr;
665 	LIST_HEAD(list);
666 	LIST_HEAD(useless);
667 	int cowonly;
668 	int ret;
669 	int err = 0;
670 	bool need_check = true;
671 
672 	path1 = btrfs_alloc_path();
673 	path2 = btrfs_alloc_path();
674 	if (!path1 || !path2) {
675 		err = -ENOMEM;
676 		goto out;
677 	}
678 	path1->reada = READA_FORWARD;
679 	path2->reada = READA_FORWARD;
680 
681 	node = alloc_backref_node(cache);
682 	if (!node) {
683 		err = -ENOMEM;
684 		goto out;
685 	}
686 
687 	node->bytenr = bytenr;
688 	node->level = level;
689 	node->lowest = 1;
690 	cur = node;
691 again:
692 	end = 0;
693 	ptr = 0;
694 	key.objectid = cur->bytenr;
695 	key.type = BTRFS_METADATA_ITEM_KEY;
696 	key.offset = (u64)-1;
697 
698 	path1->search_commit_root = 1;
699 	path1->skip_locking = 1;
700 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
701 				0, 0);
702 	if (ret < 0) {
703 		err = ret;
704 		goto out;
705 	}
706 	ASSERT(ret);
707 	ASSERT(path1->slots[0]);
708 
709 	path1->slots[0]--;
710 
711 	WARN_ON(cur->checked);
712 	if (!list_empty(&cur->upper)) {
713 		/*
714 		 * the backref was added previously when processing
715 		 * backref of type BTRFS_TREE_BLOCK_REF_KEY
716 		 */
717 		ASSERT(list_is_singular(&cur->upper));
718 		edge = list_entry(cur->upper.next, struct backref_edge,
719 				  list[LOWER]);
720 		ASSERT(list_empty(&edge->list[UPPER]));
721 		exist = edge->node[UPPER];
722 		/*
723 		 * add the upper level block to pending list if we need
724 		 * check its backrefs
725 		 */
726 		if (!exist->checked)
727 			list_add_tail(&edge->list[UPPER], &list);
728 	} else {
729 		exist = NULL;
730 	}
731 
732 	while (1) {
733 		cond_resched();
734 		eb = path1->nodes[0];
735 
736 		if (ptr >= end) {
737 			if (path1->slots[0] >= btrfs_header_nritems(eb)) {
738 				ret = btrfs_next_leaf(rc->extent_root, path1);
739 				if (ret < 0) {
740 					err = ret;
741 					goto out;
742 				}
743 				if (ret > 0)
744 					break;
745 				eb = path1->nodes[0];
746 			}
747 
748 			btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
749 			if (key.objectid != cur->bytenr) {
750 				WARN_ON(exist);
751 				break;
752 			}
753 
754 			if (key.type == BTRFS_EXTENT_ITEM_KEY ||
755 			    key.type == BTRFS_METADATA_ITEM_KEY) {
756 				ret = find_inline_backref(eb, path1->slots[0],
757 							  &ptr, &end);
758 				if (ret)
759 					goto next;
760 			}
761 		}
762 
763 		if (ptr < end) {
764 			/* update key for inline back ref */
765 			struct btrfs_extent_inline_ref *iref;
766 			int type;
767 			iref = (struct btrfs_extent_inline_ref *)ptr;
768 			type = btrfs_get_extent_inline_ref_type(eb, iref,
769 							BTRFS_REF_TYPE_BLOCK);
770 			if (type == BTRFS_REF_TYPE_INVALID) {
771 				err = -EUCLEAN;
772 				goto out;
773 			}
774 			key.type = type;
775 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
776 
777 			WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
778 				key.type != BTRFS_SHARED_BLOCK_REF_KEY);
779 		}
780 
781 		if (exist &&
782 		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
783 		      exist->owner == key.offset) ||
784 		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
785 		      exist->bytenr == key.offset))) {
786 			exist = NULL;
787 			goto next;
788 		}
789 
790 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
791 			if (key.objectid == key.offset) {
792 				/*
793 				 * only root blocks of reloc trees use
794 				 * backref of this type.
795 				 */
796 				root = find_reloc_root(rc, cur->bytenr);
797 				ASSERT(root);
798 				cur->root = root;
799 				break;
800 			}
801 
802 			edge = alloc_backref_edge(cache);
803 			if (!edge) {
804 				err = -ENOMEM;
805 				goto out;
806 			}
807 			rb_node = tree_search(&cache->rb_root, key.offset);
808 			if (!rb_node) {
809 				upper = alloc_backref_node(cache);
810 				if (!upper) {
811 					free_backref_edge(cache, edge);
812 					err = -ENOMEM;
813 					goto out;
814 				}
815 				upper->bytenr = key.offset;
816 				upper->level = cur->level + 1;
817 				/*
818 				 *  backrefs for the upper level block isn't
819 				 *  cached, add the block to pending list
820 				 */
821 				list_add_tail(&edge->list[UPPER], &list);
822 			} else {
823 				upper = rb_entry(rb_node, struct backref_node,
824 						 rb_node);
825 				ASSERT(upper->checked);
826 				INIT_LIST_HEAD(&edge->list[UPPER]);
827 			}
828 			list_add_tail(&edge->list[LOWER], &cur->upper);
829 			edge->node[LOWER] = cur;
830 			edge->node[UPPER] = upper;
831 
832 			goto next;
833 		} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
834 			err = -EINVAL;
835 			btrfs_print_v0_err(rc->extent_root->fs_info);
836 			btrfs_handle_fs_error(rc->extent_root->fs_info, err,
837 					      NULL);
838 			goto out;
839 		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
840 			goto next;
841 		}
842 
843 		/* key.type == BTRFS_TREE_BLOCK_REF_KEY */
844 		root = read_fs_root(rc->extent_root->fs_info, key.offset);
845 		if (IS_ERR(root)) {
846 			err = PTR_ERR(root);
847 			goto out;
848 		}
849 
850 		if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
851 			cur->cowonly = 1;
852 
853 		if (btrfs_root_level(&root->root_item) == cur->level) {
854 			/* tree root */
855 			ASSERT(btrfs_root_bytenr(&root->root_item) ==
856 			       cur->bytenr);
857 			if (should_ignore_root(root))
858 				list_add(&cur->list, &useless);
859 			else
860 				cur->root = root;
861 			break;
862 		}
863 
864 		level = cur->level + 1;
865 
866 		/*
867 		 * searching the tree to find upper level blocks
868 		 * reference the block.
869 		 */
870 		path2->search_commit_root = 1;
871 		path2->skip_locking = 1;
872 		path2->lowest_level = level;
873 		ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
874 		path2->lowest_level = 0;
875 		if (ret < 0) {
876 			err = ret;
877 			goto out;
878 		}
879 		if (ret > 0 && path2->slots[level] > 0)
880 			path2->slots[level]--;
881 
882 		eb = path2->nodes[level];
883 		if (btrfs_node_blockptr(eb, path2->slots[level]) !=
884 		    cur->bytenr) {
885 			btrfs_err(root->fs_info,
886 	"couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
887 				  cur->bytenr, level - 1, root->objectid,
888 				  node_key->objectid, node_key->type,
889 				  node_key->offset);
890 			err = -ENOENT;
891 			goto out;
892 		}
893 		lower = cur;
894 		need_check = true;
895 		for (; level < BTRFS_MAX_LEVEL; level++) {
896 			if (!path2->nodes[level]) {
897 				ASSERT(btrfs_root_bytenr(&root->root_item) ==
898 				       lower->bytenr);
899 				if (should_ignore_root(root))
900 					list_add(&lower->list, &useless);
901 				else
902 					lower->root = root;
903 				break;
904 			}
905 
906 			edge = alloc_backref_edge(cache);
907 			if (!edge) {
908 				err = -ENOMEM;
909 				goto out;
910 			}
911 
912 			eb = path2->nodes[level];
913 			rb_node = tree_search(&cache->rb_root, eb->start);
914 			if (!rb_node) {
915 				upper = alloc_backref_node(cache);
916 				if (!upper) {
917 					free_backref_edge(cache, edge);
918 					err = -ENOMEM;
919 					goto out;
920 				}
921 				upper->bytenr = eb->start;
922 				upper->owner = btrfs_header_owner(eb);
923 				upper->level = lower->level + 1;
924 				if (!test_bit(BTRFS_ROOT_REF_COWS,
925 					      &root->state))
926 					upper->cowonly = 1;
927 
928 				/*
929 				 * if we know the block isn't shared
930 				 * we can void checking its backrefs.
931 				 */
932 				if (btrfs_block_can_be_shared(root, eb))
933 					upper->checked = 0;
934 				else
935 					upper->checked = 1;
936 
937 				/*
938 				 * add the block to pending list if we
939 				 * need check its backrefs, we only do this once
940 				 * while walking up a tree as we will catch
941 				 * anything else later on.
942 				 */
943 				if (!upper->checked && need_check) {
944 					need_check = false;
945 					list_add_tail(&edge->list[UPPER],
946 						      &list);
947 				} else {
948 					if (upper->checked)
949 						need_check = true;
950 					INIT_LIST_HEAD(&edge->list[UPPER]);
951 				}
952 			} else {
953 				upper = rb_entry(rb_node, struct backref_node,
954 						 rb_node);
955 				ASSERT(upper->checked);
956 				INIT_LIST_HEAD(&edge->list[UPPER]);
957 				if (!upper->owner)
958 					upper->owner = btrfs_header_owner(eb);
959 			}
960 			list_add_tail(&edge->list[LOWER], &lower->upper);
961 			edge->node[LOWER] = lower;
962 			edge->node[UPPER] = upper;
963 
964 			if (rb_node)
965 				break;
966 			lower = upper;
967 			upper = NULL;
968 		}
969 		btrfs_release_path(path2);
970 next:
971 		if (ptr < end) {
972 			ptr += btrfs_extent_inline_ref_size(key.type);
973 			if (ptr >= end) {
974 				WARN_ON(ptr > end);
975 				ptr = 0;
976 				end = 0;
977 			}
978 		}
979 		if (ptr >= end)
980 			path1->slots[0]++;
981 	}
982 	btrfs_release_path(path1);
983 
984 	cur->checked = 1;
985 	WARN_ON(exist);
986 
987 	/* the pending list isn't empty, take the first block to process */
988 	if (!list_empty(&list)) {
989 		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
990 		list_del_init(&edge->list[UPPER]);
991 		cur = edge->node[UPPER];
992 		goto again;
993 	}
994 
995 	/*
996 	 * everything goes well, connect backref nodes and insert backref nodes
997 	 * into the cache.
998 	 */
999 	ASSERT(node->checked);
1000 	cowonly = node->cowonly;
1001 	if (!cowonly) {
1002 		rb_node = tree_insert(&cache->rb_root, node->bytenr,
1003 				      &node->rb_node);
1004 		if (rb_node)
1005 			backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1006 		list_add_tail(&node->lower, &cache->leaves);
1007 	}
1008 
1009 	list_for_each_entry(edge, &node->upper, list[LOWER])
1010 		list_add_tail(&edge->list[UPPER], &list);
1011 
1012 	while (!list_empty(&list)) {
1013 		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1014 		list_del_init(&edge->list[UPPER]);
1015 		upper = edge->node[UPPER];
1016 		if (upper->detached) {
1017 			list_del(&edge->list[LOWER]);
1018 			lower = edge->node[LOWER];
1019 			free_backref_edge(cache, edge);
1020 			if (list_empty(&lower->upper))
1021 				list_add(&lower->list, &useless);
1022 			continue;
1023 		}
1024 
1025 		if (!RB_EMPTY_NODE(&upper->rb_node)) {
1026 			if (upper->lowest) {
1027 				list_del_init(&upper->lower);
1028 				upper->lowest = 0;
1029 			}
1030 
1031 			list_add_tail(&edge->list[UPPER], &upper->lower);
1032 			continue;
1033 		}
1034 
1035 		if (!upper->checked) {
1036 			/*
1037 			 * Still want to blow up for developers since this is a
1038 			 * logic bug.
1039 			 */
1040 			ASSERT(0);
1041 			err = -EINVAL;
1042 			goto out;
1043 		}
1044 		if (cowonly != upper->cowonly) {
1045 			ASSERT(0);
1046 			err = -EINVAL;
1047 			goto out;
1048 		}
1049 
1050 		if (!cowonly) {
1051 			rb_node = tree_insert(&cache->rb_root, upper->bytenr,
1052 					      &upper->rb_node);
1053 			if (rb_node)
1054 				backref_tree_panic(rb_node, -EEXIST,
1055 						   upper->bytenr);
1056 		}
1057 
1058 		list_add_tail(&edge->list[UPPER], &upper->lower);
1059 
1060 		list_for_each_entry(edge, &upper->upper, list[LOWER])
1061 			list_add_tail(&edge->list[UPPER], &list);
1062 	}
1063 	/*
1064 	 * process useless backref nodes. backref nodes for tree leaves
1065 	 * are deleted from the cache. backref nodes for upper level
1066 	 * tree blocks are left in the cache to avoid unnecessary backref
1067 	 * lookup.
1068 	 */
1069 	while (!list_empty(&useless)) {
1070 		upper = list_entry(useless.next, struct backref_node, list);
1071 		list_del_init(&upper->list);
1072 		ASSERT(list_empty(&upper->upper));
1073 		if (upper == node)
1074 			node = NULL;
1075 		if (upper->lowest) {
1076 			list_del_init(&upper->lower);
1077 			upper->lowest = 0;
1078 		}
1079 		while (!list_empty(&upper->lower)) {
1080 			edge = list_entry(upper->lower.next,
1081 					  struct backref_edge, list[UPPER]);
1082 			list_del(&edge->list[UPPER]);
1083 			list_del(&edge->list[LOWER]);
1084 			lower = edge->node[LOWER];
1085 			free_backref_edge(cache, edge);
1086 
1087 			if (list_empty(&lower->upper))
1088 				list_add(&lower->list, &useless);
1089 		}
1090 		__mark_block_processed(rc, upper);
1091 		if (upper->level > 0) {
1092 			list_add(&upper->list, &cache->detached);
1093 			upper->detached = 1;
1094 		} else {
1095 			rb_erase(&upper->rb_node, &cache->rb_root);
1096 			free_backref_node(cache, upper);
1097 		}
1098 	}
1099 out:
1100 	btrfs_free_path(path1);
1101 	btrfs_free_path(path2);
1102 	if (err) {
1103 		while (!list_empty(&useless)) {
1104 			lower = list_entry(useless.next,
1105 					   struct backref_node, list);
1106 			list_del_init(&lower->list);
1107 		}
1108 		while (!list_empty(&list)) {
1109 			edge = list_first_entry(&list, struct backref_edge,
1110 						list[UPPER]);
1111 			list_del(&edge->list[UPPER]);
1112 			list_del(&edge->list[LOWER]);
1113 			lower = edge->node[LOWER];
1114 			upper = edge->node[UPPER];
1115 			free_backref_edge(cache, edge);
1116 
1117 			/*
1118 			 * Lower is no longer linked to any upper backref nodes
1119 			 * and isn't in the cache, we can free it ourselves.
1120 			 */
1121 			if (list_empty(&lower->upper) &&
1122 			    RB_EMPTY_NODE(&lower->rb_node))
1123 				list_add(&lower->list, &useless);
1124 
1125 			if (!RB_EMPTY_NODE(&upper->rb_node))
1126 				continue;
1127 
1128 			/* Add this guy's upper edges to the list to process */
1129 			list_for_each_entry(edge, &upper->upper, list[LOWER])
1130 				list_add_tail(&edge->list[UPPER], &list);
1131 			if (list_empty(&upper->upper))
1132 				list_add(&upper->list, &useless);
1133 		}
1134 
1135 		while (!list_empty(&useless)) {
1136 			lower = list_entry(useless.next,
1137 					   struct backref_node, list);
1138 			list_del_init(&lower->list);
1139 			if (lower == node)
1140 				node = NULL;
1141 			free_backref_node(cache, lower);
1142 		}
1143 
1144 		remove_backref_node(cache, node);
1145 		return ERR_PTR(err);
1146 	}
1147 	ASSERT(!node || !node->detached);
1148 	return node;
1149 }
1150 
1151 /*
1152  * helper to add backref node for the newly created snapshot.
1153  * the backref node is created by cloning backref node that
1154  * corresponds to root of source tree
1155  */
clone_backref_node(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_root * src,struct btrfs_root * dest)1156 static int clone_backref_node(struct btrfs_trans_handle *trans,
1157 			      struct reloc_control *rc,
1158 			      struct btrfs_root *src,
1159 			      struct btrfs_root *dest)
1160 {
1161 	struct btrfs_root *reloc_root = src->reloc_root;
1162 	struct backref_cache *cache = &rc->backref_cache;
1163 	struct backref_node *node = NULL;
1164 	struct backref_node *new_node;
1165 	struct backref_edge *edge;
1166 	struct backref_edge *new_edge;
1167 	struct rb_node *rb_node;
1168 
1169 	if (cache->last_trans > 0)
1170 		update_backref_cache(trans, cache);
1171 
1172 	rb_node = tree_search(&cache->rb_root, src->commit_root->start);
1173 	if (rb_node) {
1174 		node = rb_entry(rb_node, struct backref_node, rb_node);
1175 		if (node->detached)
1176 			node = NULL;
1177 		else
1178 			BUG_ON(node->new_bytenr != reloc_root->node->start);
1179 	}
1180 
1181 	if (!node) {
1182 		rb_node = tree_search(&cache->rb_root,
1183 				      reloc_root->commit_root->start);
1184 		if (rb_node) {
1185 			node = rb_entry(rb_node, struct backref_node,
1186 					rb_node);
1187 			BUG_ON(node->detached);
1188 		}
1189 	}
1190 
1191 	if (!node)
1192 		return 0;
1193 
1194 	new_node = alloc_backref_node(cache);
1195 	if (!new_node)
1196 		return -ENOMEM;
1197 
1198 	new_node->bytenr = dest->node->start;
1199 	new_node->level = node->level;
1200 	new_node->lowest = node->lowest;
1201 	new_node->checked = 1;
1202 	new_node->root = dest;
1203 
1204 	if (!node->lowest) {
1205 		list_for_each_entry(edge, &node->lower, list[UPPER]) {
1206 			new_edge = alloc_backref_edge(cache);
1207 			if (!new_edge)
1208 				goto fail;
1209 
1210 			new_edge->node[UPPER] = new_node;
1211 			new_edge->node[LOWER] = edge->node[LOWER];
1212 			list_add_tail(&new_edge->list[UPPER],
1213 				      &new_node->lower);
1214 		}
1215 	} else {
1216 		list_add_tail(&new_node->lower, &cache->leaves);
1217 	}
1218 
1219 	rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
1220 			      &new_node->rb_node);
1221 	if (rb_node)
1222 		backref_tree_panic(rb_node, -EEXIST, new_node->bytenr);
1223 
1224 	if (!new_node->lowest) {
1225 		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
1226 			list_add_tail(&new_edge->list[LOWER],
1227 				      &new_edge->node[LOWER]->upper);
1228 		}
1229 	}
1230 	return 0;
1231 fail:
1232 	while (!list_empty(&new_node->lower)) {
1233 		new_edge = list_entry(new_node->lower.next,
1234 				      struct backref_edge, list[UPPER]);
1235 		list_del(&new_edge->list[UPPER]);
1236 		free_backref_edge(cache, new_edge);
1237 	}
1238 	free_backref_node(cache, new_node);
1239 	return -ENOMEM;
1240 }
1241 
1242 /*
1243  * helper to add 'address of tree root -> reloc tree' mapping
1244  */
__add_reloc_root(struct btrfs_root * root)1245 static int __must_check __add_reloc_root(struct btrfs_root *root)
1246 {
1247 	struct btrfs_fs_info *fs_info = root->fs_info;
1248 	struct rb_node *rb_node;
1249 	struct mapping_node *node;
1250 	struct reloc_control *rc = fs_info->reloc_ctl;
1251 
1252 	node = kmalloc(sizeof(*node), GFP_NOFS);
1253 	if (!node)
1254 		return -ENOMEM;
1255 
1256 	node->bytenr = root->commit_root->start;
1257 	node->data = root;
1258 
1259 	spin_lock(&rc->reloc_root_tree.lock);
1260 	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1261 			      node->bytenr, &node->rb_node);
1262 	spin_unlock(&rc->reloc_root_tree.lock);
1263 	if (rb_node) {
1264 		btrfs_panic(fs_info, -EEXIST,
1265 			    "Duplicate root found for start=%llu while inserting into relocation tree",
1266 			    node->bytenr);
1267 	}
1268 
1269 	list_add_tail(&root->root_list, &rc->reloc_roots);
1270 	return 0;
1271 }
1272 
1273 /*
1274  * helper to delete the 'address of tree root -> reloc tree'
1275  * mapping
1276  */
__del_reloc_root(struct btrfs_root * root)1277 static void __del_reloc_root(struct btrfs_root *root)
1278 {
1279 	struct btrfs_fs_info *fs_info = root->fs_info;
1280 	struct rb_node *rb_node;
1281 	struct mapping_node *node = NULL;
1282 	struct reloc_control *rc = fs_info->reloc_ctl;
1283 
1284 	if (rc && root->node) {
1285 		spin_lock(&rc->reloc_root_tree.lock);
1286 		rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1287 				      root->commit_root->start);
1288 		if (rb_node) {
1289 			node = rb_entry(rb_node, struct mapping_node, rb_node);
1290 			rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1291 			RB_CLEAR_NODE(&node->rb_node);
1292 		}
1293 		spin_unlock(&rc->reloc_root_tree.lock);
1294 		ASSERT(!node || (struct btrfs_root *)node->data == root);
1295 	}
1296 
1297 	spin_lock(&fs_info->trans_lock);
1298 	list_del_init(&root->root_list);
1299 	spin_unlock(&fs_info->trans_lock);
1300 	kfree(node);
1301 }
1302 
1303 /*
1304  * helper to update the 'address of tree root -> reloc tree'
1305  * mapping
1306  */
__update_reloc_root(struct btrfs_root * root)1307 static int __update_reloc_root(struct btrfs_root *root)
1308 {
1309 	struct btrfs_fs_info *fs_info = root->fs_info;
1310 	struct rb_node *rb_node;
1311 	struct mapping_node *node = NULL;
1312 	struct reloc_control *rc = fs_info->reloc_ctl;
1313 
1314 	spin_lock(&rc->reloc_root_tree.lock);
1315 	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1316 			      root->commit_root->start);
1317 	if (rb_node) {
1318 		node = rb_entry(rb_node, struct mapping_node, rb_node);
1319 		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1320 	}
1321 	spin_unlock(&rc->reloc_root_tree.lock);
1322 
1323 	if (!node)
1324 		return 0;
1325 	BUG_ON((struct btrfs_root *)node->data != root);
1326 
1327 	spin_lock(&rc->reloc_root_tree.lock);
1328 	node->bytenr = root->node->start;
1329 	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1330 			      node->bytenr, &node->rb_node);
1331 	spin_unlock(&rc->reloc_root_tree.lock);
1332 	if (rb_node)
1333 		backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1334 	return 0;
1335 }
1336 
create_reloc_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 objectid)1337 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
1338 					struct btrfs_root *root, u64 objectid)
1339 {
1340 	struct btrfs_fs_info *fs_info = root->fs_info;
1341 	struct btrfs_root *reloc_root;
1342 	struct extent_buffer *eb;
1343 	struct btrfs_root_item *root_item;
1344 	struct btrfs_key root_key;
1345 	int ret;
1346 
1347 	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
1348 	BUG_ON(!root_item);
1349 
1350 	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
1351 	root_key.type = BTRFS_ROOT_ITEM_KEY;
1352 	root_key.offset = objectid;
1353 
1354 	if (root->root_key.objectid == objectid) {
1355 		u64 commit_root_gen;
1356 
1357 		/* called by btrfs_init_reloc_root */
1358 		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
1359 				      BTRFS_TREE_RELOC_OBJECTID);
1360 		BUG_ON(ret);
1361 		/*
1362 		 * Set the last_snapshot field to the generation of the commit
1363 		 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
1364 		 * correctly (returns true) when the relocation root is created
1365 		 * either inside the critical section of a transaction commit
1366 		 * (through transaction.c:qgroup_account_snapshot()) and when
1367 		 * it's created before the transaction commit is started.
1368 		 */
1369 		commit_root_gen = btrfs_header_generation(root->commit_root);
1370 		btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
1371 	} else {
1372 		/*
1373 		 * called by btrfs_reloc_post_snapshot_hook.
1374 		 * the source tree is a reloc tree, all tree blocks
1375 		 * modified after it was created have RELOC flag
1376 		 * set in their headers. so it's OK to not update
1377 		 * the 'last_snapshot'.
1378 		 */
1379 		ret = btrfs_copy_root(trans, root, root->node, &eb,
1380 				      BTRFS_TREE_RELOC_OBJECTID);
1381 		BUG_ON(ret);
1382 	}
1383 
1384 	memcpy(root_item, &root->root_item, sizeof(*root_item));
1385 	btrfs_set_root_bytenr(root_item, eb->start);
1386 	btrfs_set_root_level(root_item, btrfs_header_level(eb));
1387 	btrfs_set_root_generation(root_item, trans->transid);
1388 
1389 	if (root->root_key.objectid == objectid) {
1390 		btrfs_set_root_refs(root_item, 0);
1391 		memset(&root_item->drop_progress, 0,
1392 		       sizeof(struct btrfs_disk_key));
1393 		root_item->drop_level = 0;
1394 	}
1395 
1396 	btrfs_tree_unlock(eb);
1397 	free_extent_buffer(eb);
1398 
1399 	ret = btrfs_insert_root(trans, fs_info->tree_root,
1400 				&root_key, root_item);
1401 	BUG_ON(ret);
1402 	kfree(root_item);
1403 
1404 	reloc_root = btrfs_read_fs_root(fs_info->tree_root, &root_key);
1405 	BUG_ON(IS_ERR(reloc_root));
1406 	reloc_root->last_trans = trans->transid;
1407 	return reloc_root;
1408 }
1409 
1410 /*
1411  * create reloc tree for a given fs tree. reloc tree is just a
1412  * snapshot of the fs tree with special root objectid.
1413  */
btrfs_init_reloc_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)1414 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
1415 			  struct btrfs_root *root)
1416 {
1417 	struct btrfs_fs_info *fs_info = root->fs_info;
1418 	struct btrfs_root *reloc_root;
1419 	struct reloc_control *rc = fs_info->reloc_ctl;
1420 	struct btrfs_block_rsv *rsv;
1421 	int clear_rsv = 0;
1422 	int ret;
1423 
1424 	if (root->reloc_root) {
1425 		reloc_root = root->reloc_root;
1426 		reloc_root->last_trans = trans->transid;
1427 		return 0;
1428 	}
1429 
1430 	if (!rc || !rc->create_reloc_tree ||
1431 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1432 		return 0;
1433 
1434 	if (!trans->reloc_reserved) {
1435 		rsv = trans->block_rsv;
1436 		trans->block_rsv = rc->block_rsv;
1437 		clear_rsv = 1;
1438 	}
1439 	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
1440 	if (clear_rsv)
1441 		trans->block_rsv = rsv;
1442 
1443 	ret = __add_reloc_root(reloc_root);
1444 	BUG_ON(ret < 0);
1445 	root->reloc_root = reloc_root;
1446 	return 0;
1447 }
1448 
1449 /*
1450  * update root item of reloc tree
1451  */
btrfs_update_reloc_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)1452 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
1453 			    struct btrfs_root *root)
1454 {
1455 	struct btrfs_fs_info *fs_info = root->fs_info;
1456 	struct btrfs_root *reloc_root;
1457 	struct btrfs_root_item *root_item;
1458 	int ret;
1459 
1460 	if (!root->reloc_root)
1461 		goto out;
1462 
1463 	reloc_root = root->reloc_root;
1464 	root_item = &reloc_root->root_item;
1465 
1466 	if (fs_info->reloc_ctl->merge_reloc_tree &&
1467 	    btrfs_root_refs(root_item) == 0) {
1468 		root->reloc_root = NULL;
1469 		__del_reloc_root(reloc_root);
1470 	}
1471 
1472 	if (reloc_root->commit_root != reloc_root->node) {
1473 		__update_reloc_root(reloc_root);
1474 		btrfs_set_root_node(root_item, reloc_root->node);
1475 		free_extent_buffer(reloc_root->commit_root);
1476 		reloc_root->commit_root = btrfs_root_node(reloc_root);
1477 	}
1478 
1479 	ret = btrfs_update_root(trans, fs_info->tree_root,
1480 				&reloc_root->root_key, root_item);
1481 	BUG_ON(ret);
1482 
1483 out:
1484 	return 0;
1485 }
1486 
1487 /*
1488  * helper to find first cached inode with inode number >= objectid
1489  * in a subvolume
1490  */
find_next_inode(struct btrfs_root * root,u64 objectid)1491 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
1492 {
1493 	struct rb_node *node;
1494 	struct rb_node *prev;
1495 	struct btrfs_inode *entry;
1496 	struct inode *inode;
1497 
1498 	spin_lock(&root->inode_lock);
1499 again:
1500 	node = root->inode_tree.rb_node;
1501 	prev = NULL;
1502 	while (node) {
1503 		prev = node;
1504 		entry = rb_entry(node, struct btrfs_inode, rb_node);
1505 
1506 		if (objectid < btrfs_ino(entry))
1507 			node = node->rb_left;
1508 		else if (objectid > btrfs_ino(entry))
1509 			node = node->rb_right;
1510 		else
1511 			break;
1512 	}
1513 	if (!node) {
1514 		while (prev) {
1515 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
1516 			if (objectid <= btrfs_ino(entry)) {
1517 				node = prev;
1518 				break;
1519 			}
1520 			prev = rb_next(prev);
1521 		}
1522 	}
1523 	while (node) {
1524 		entry = rb_entry(node, struct btrfs_inode, rb_node);
1525 		inode = igrab(&entry->vfs_inode);
1526 		if (inode) {
1527 			spin_unlock(&root->inode_lock);
1528 			return inode;
1529 		}
1530 
1531 		objectid = btrfs_ino(entry) + 1;
1532 		if (cond_resched_lock(&root->inode_lock))
1533 			goto again;
1534 
1535 		node = rb_next(node);
1536 	}
1537 	spin_unlock(&root->inode_lock);
1538 	return NULL;
1539 }
1540 
in_block_group(u64 bytenr,struct btrfs_block_group_cache * block_group)1541 static int in_block_group(u64 bytenr,
1542 			  struct btrfs_block_group_cache *block_group)
1543 {
1544 	if (bytenr >= block_group->key.objectid &&
1545 	    bytenr < block_group->key.objectid + block_group->key.offset)
1546 		return 1;
1547 	return 0;
1548 }
1549 
1550 /*
1551  * get new location of data
1552  */
get_new_location(struct inode * reloc_inode,u64 * new_bytenr,u64 bytenr,u64 num_bytes)1553 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1554 			    u64 bytenr, u64 num_bytes)
1555 {
1556 	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1557 	struct btrfs_path *path;
1558 	struct btrfs_file_extent_item *fi;
1559 	struct extent_buffer *leaf;
1560 	int ret;
1561 
1562 	path = btrfs_alloc_path();
1563 	if (!path)
1564 		return -ENOMEM;
1565 
1566 	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1567 	ret = btrfs_lookup_file_extent(NULL, root, path,
1568 			btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
1569 	if (ret < 0)
1570 		goto out;
1571 	if (ret > 0) {
1572 		ret = -ENOENT;
1573 		goto out;
1574 	}
1575 
1576 	leaf = path->nodes[0];
1577 	fi = btrfs_item_ptr(leaf, path->slots[0],
1578 			    struct btrfs_file_extent_item);
1579 
1580 	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1581 	       btrfs_file_extent_compression(leaf, fi) ||
1582 	       btrfs_file_extent_encryption(leaf, fi) ||
1583 	       btrfs_file_extent_other_encoding(leaf, fi));
1584 
1585 	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1586 		ret = -EINVAL;
1587 		goto out;
1588 	}
1589 
1590 	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1591 	ret = 0;
1592 out:
1593 	btrfs_free_path(path);
1594 	return ret;
1595 }
1596 
1597 /*
1598  * update file extent items in the tree leaf to point to
1599  * the new locations.
1600  */
1601 static noinline_for_stack
replace_file_extents(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_root * root,struct extent_buffer * leaf)1602 int replace_file_extents(struct btrfs_trans_handle *trans,
1603 			 struct reloc_control *rc,
1604 			 struct btrfs_root *root,
1605 			 struct extent_buffer *leaf)
1606 {
1607 	struct btrfs_fs_info *fs_info = root->fs_info;
1608 	struct btrfs_key key;
1609 	struct btrfs_file_extent_item *fi;
1610 	struct inode *inode = NULL;
1611 	u64 parent;
1612 	u64 bytenr;
1613 	u64 new_bytenr = 0;
1614 	u64 num_bytes;
1615 	u64 end;
1616 	u32 nritems;
1617 	u32 i;
1618 	int ret = 0;
1619 	int first = 1;
1620 	int dirty = 0;
1621 
1622 	if (rc->stage != UPDATE_DATA_PTRS)
1623 		return 0;
1624 
1625 	/* reloc trees always use full backref */
1626 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1627 		parent = leaf->start;
1628 	else
1629 		parent = 0;
1630 
1631 	nritems = btrfs_header_nritems(leaf);
1632 	for (i = 0; i < nritems; i++) {
1633 		cond_resched();
1634 		btrfs_item_key_to_cpu(leaf, &key, i);
1635 		if (key.type != BTRFS_EXTENT_DATA_KEY)
1636 			continue;
1637 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1638 		if (btrfs_file_extent_type(leaf, fi) ==
1639 		    BTRFS_FILE_EXTENT_INLINE)
1640 			continue;
1641 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1642 		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1643 		if (bytenr == 0)
1644 			continue;
1645 		if (!in_block_group(bytenr, rc->block_group))
1646 			continue;
1647 
1648 		/*
1649 		 * if we are modifying block in fs tree, wait for readpage
1650 		 * to complete and drop the extent cache
1651 		 */
1652 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1653 			if (first) {
1654 				inode = find_next_inode(root, key.objectid);
1655 				first = 0;
1656 			} else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1657 				btrfs_add_delayed_iput(inode);
1658 				inode = find_next_inode(root, key.objectid);
1659 			}
1660 			if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1661 				end = key.offset +
1662 				      btrfs_file_extent_num_bytes(leaf, fi);
1663 				WARN_ON(!IS_ALIGNED(key.offset,
1664 						    fs_info->sectorsize));
1665 				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1666 				end--;
1667 				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1668 						      key.offset, end);
1669 				if (!ret)
1670 					continue;
1671 
1672 				btrfs_drop_extent_cache(BTRFS_I(inode),
1673 						key.offset,	end, 1);
1674 				unlock_extent(&BTRFS_I(inode)->io_tree,
1675 					      key.offset, end);
1676 			}
1677 		}
1678 
1679 		ret = get_new_location(rc->data_inode, &new_bytenr,
1680 				       bytenr, num_bytes);
1681 		if (ret) {
1682 			/*
1683 			 * Don't have to abort since we've not changed anything
1684 			 * in the file extent yet.
1685 			 */
1686 			break;
1687 		}
1688 
1689 		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1690 		dirty = 1;
1691 
1692 		key.offset -= btrfs_file_extent_offset(leaf, fi);
1693 		ret = btrfs_inc_extent_ref(trans, root, new_bytenr,
1694 					   num_bytes, parent,
1695 					   btrfs_header_owner(leaf),
1696 					   key.objectid, key.offset);
1697 		if (ret) {
1698 			btrfs_abort_transaction(trans, ret);
1699 			break;
1700 		}
1701 
1702 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1703 					parent, btrfs_header_owner(leaf),
1704 					key.objectid, key.offset);
1705 		if (ret) {
1706 			btrfs_abort_transaction(trans, ret);
1707 			break;
1708 		}
1709 	}
1710 	if (dirty)
1711 		btrfs_mark_buffer_dirty(leaf);
1712 	if (inode)
1713 		btrfs_add_delayed_iput(inode);
1714 	return ret;
1715 }
1716 
1717 static noinline_for_stack
memcmp_node_keys(struct extent_buffer * eb,int slot,struct btrfs_path * path,int level)1718 int memcmp_node_keys(struct extent_buffer *eb, int slot,
1719 		     struct btrfs_path *path, int level)
1720 {
1721 	struct btrfs_disk_key key1;
1722 	struct btrfs_disk_key key2;
1723 	btrfs_node_key(eb, &key1, slot);
1724 	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1725 	return memcmp(&key1, &key2, sizeof(key1));
1726 }
1727 
1728 /*
1729  * try to replace tree blocks in fs tree with the new blocks
1730  * in reloc tree. tree blocks haven't been modified since the
1731  * reloc tree was create can be replaced.
1732  *
1733  * if a block was replaced, level of the block + 1 is returned.
1734  * if no block got replaced, 0 is returned. if there are other
1735  * errors, a negative error number is returned.
1736  */
1737 static noinline_for_stack
replace_path(struct btrfs_trans_handle * trans,struct btrfs_root * dest,struct btrfs_root * src,struct btrfs_path * path,struct btrfs_key * next_key,int lowest_level,int max_level)1738 int replace_path(struct btrfs_trans_handle *trans,
1739 		 struct btrfs_root *dest, struct btrfs_root *src,
1740 		 struct btrfs_path *path, struct btrfs_key *next_key,
1741 		 int lowest_level, int max_level)
1742 {
1743 	struct btrfs_fs_info *fs_info = dest->fs_info;
1744 	struct extent_buffer *eb;
1745 	struct extent_buffer *parent;
1746 	struct btrfs_key key;
1747 	u64 old_bytenr;
1748 	u64 new_bytenr;
1749 	u64 old_ptr_gen;
1750 	u64 new_ptr_gen;
1751 	u64 last_snapshot;
1752 	u32 blocksize;
1753 	int cow = 0;
1754 	int level;
1755 	int ret;
1756 	int slot;
1757 
1758 	ASSERT(src->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1759 	ASSERT(dest->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1760 
1761 	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1762 again:
1763 	slot = path->slots[lowest_level];
1764 	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1765 
1766 	eb = btrfs_lock_root_node(dest);
1767 	btrfs_set_lock_blocking(eb);
1768 	level = btrfs_header_level(eb);
1769 
1770 	if (level < lowest_level) {
1771 		btrfs_tree_unlock(eb);
1772 		free_extent_buffer(eb);
1773 		return 0;
1774 	}
1775 
1776 	if (cow) {
1777 		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1778 		BUG_ON(ret);
1779 	}
1780 	btrfs_set_lock_blocking(eb);
1781 
1782 	if (next_key) {
1783 		next_key->objectid = (u64)-1;
1784 		next_key->type = (u8)-1;
1785 		next_key->offset = (u64)-1;
1786 	}
1787 
1788 	parent = eb;
1789 	while (1) {
1790 		struct btrfs_key first_key;
1791 
1792 		level = btrfs_header_level(parent);
1793 		ASSERT(level >= lowest_level);
1794 
1795 		ret = btrfs_bin_search(parent, &key, level, &slot);
1796 		if (ret && slot > 0)
1797 			slot--;
1798 
1799 		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1800 			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1801 
1802 		old_bytenr = btrfs_node_blockptr(parent, slot);
1803 		blocksize = fs_info->nodesize;
1804 		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1805 		btrfs_node_key_to_cpu(parent, &first_key, slot);
1806 
1807 		if (level <= max_level) {
1808 			eb = path->nodes[level];
1809 			new_bytenr = btrfs_node_blockptr(eb,
1810 							path->slots[level]);
1811 			new_ptr_gen = btrfs_node_ptr_generation(eb,
1812 							path->slots[level]);
1813 		} else {
1814 			new_bytenr = 0;
1815 			new_ptr_gen = 0;
1816 		}
1817 
1818 		if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1819 			ret = level;
1820 			break;
1821 		}
1822 
1823 		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1824 		    memcmp_node_keys(parent, slot, path, level)) {
1825 			if (level <= lowest_level) {
1826 				ret = 0;
1827 				break;
1828 			}
1829 
1830 			eb = read_tree_block(fs_info, old_bytenr, old_ptr_gen,
1831 					     level - 1, &first_key);
1832 			if (IS_ERR(eb)) {
1833 				ret = PTR_ERR(eb);
1834 				break;
1835 			} else if (!extent_buffer_uptodate(eb)) {
1836 				ret = -EIO;
1837 				free_extent_buffer(eb);
1838 				break;
1839 			}
1840 			btrfs_tree_lock(eb);
1841 			if (cow) {
1842 				ret = btrfs_cow_block(trans, dest, eb, parent,
1843 						      slot, &eb);
1844 				BUG_ON(ret);
1845 			}
1846 			btrfs_set_lock_blocking(eb);
1847 
1848 			btrfs_tree_unlock(parent);
1849 			free_extent_buffer(parent);
1850 
1851 			parent = eb;
1852 			continue;
1853 		}
1854 
1855 		if (!cow) {
1856 			btrfs_tree_unlock(parent);
1857 			free_extent_buffer(parent);
1858 			cow = 1;
1859 			goto again;
1860 		}
1861 
1862 		btrfs_node_key_to_cpu(path->nodes[level], &key,
1863 				      path->slots[level]);
1864 		btrfs_release_path(path);
1865 
1866 		path->lowest_level = level;
1867 		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1868 		path->lowest_level = 0;
1869 		BUG_ON(ret);
1870 
1871 		/*
1872 		 * Info qgroup to trace both subtrees.
1873 		 *
1874 		 * We must trace both trees.
1875 		 * 1) Tree reloc subtree
1876 		 *    If not traced, we will leak data numbers
1877 		 * 2) Fs subtree
1878 		 *    If not traced, we will double count old data
1879 		 *    and tree block numbers, if current trans doesn't free
1880 		 *    data reloc tree inode.
1881 		 */
1882 		ret = btrfs_qgroup_trace_subtree(trans, parent,
1883 				btrfs_header_generation(parent),
1884 				btrfs_header_level(parent));
1885 		if (ret < 0)
1886 			break;
1887 		ret = btrfs_qgroup_trace_subtree(trans, path->nodes[level],
1888 				btrfs_header_generation(path->nodes[level]),
1889 				btrfs_header_level(path->nodes[level]));
1890 		if (ret < 0)
1891 			break;
1892 
1893 		/*
1894 		 * swap blocks in fs tree and reloc tree.
1895 		 */
1896 		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1897 		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1898 		btrfs_mark_buffer_dirty(parent);
1899 
1900 		btrfs_set_node_blockptr(path->nodes[level],
1901 					path->slots[level], old_bytenr);
1902 		btrfs_set_node_ptr_generation(path->nodes[level],
1903 					      path->slots[level], old_ptr_gen);
1904 		btrfs_mark_buffer_dirty(path->nodes[level]);
1905 
1906 		ret = btrfs_inc_extent_ref(trans, src, old_bytenr,
1907 					blocksize, path->nodes[level]->start,
1908 					src->root_key.objectid, level - 1, 0);
1909 		BUG_ON(ret);
1910 		ret = btrfs_inc_extent_ref(trans, dest, new_bytenr,
1911 					blocksize, 0, dest->root_key.objectid,
1912 					level - 1, 0);
1913 		BUG_ON(ret);
1914 
1915 		ret = btrfs_free_extent(trans, src, new_bytenr, blocksize,
1916 					path->nodes[level]->start,
1917 					src->root_key.objectid, level - 1, 0);
1918 		BUG_ON(ret);
1919 
1920 		ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize,
1921 					0, dest->root_key.objectid, level - 1,
1922 					0);
1923 		BUG_ON(ret);
1924 
1925 		btrfs_unlock_up_safe(path, 0);
1926 
1927 		ret = level;
1928 		break;
1929 	}
1930 	btrfs_tree_unlock(parent);
1931 	free_extent_buffer(parent);
1932 	return ret;
1933 }
1934 
1935 /*
1936  * helper to find next relocated block in reloc tree
1937  */
1938 static noinline_for_stack
walk_up_reloc_tree(struct btrfs_root * root,struct btrfs_path * path,int * level)1939 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1940 		       int *level)
1941 {
1942 	struct extent_buffer *eb;
1943 	int i;
1944 	u64 last_snapshot;
1945 	u32 nritems;
1946 
1947 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1948 
1949 	for (i = 0; i < *level; i++) {
1950 		free_extent_buffer(path->nodes[i]);
1951 		path->nodes[i] = NULL;
1952 	}
1953 
1954 	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1955 		eb = path->nodes[i];
1956 		nritems = btrfs_header_nritems(eb);
1957 		while (path->slots[i] + 1 < nritems) {
1958 			path->slots[i]++;
1959 			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1960 			    last_snapshot)
1961 				continue;
1962 
1963 			*level = i;
1964 			return 0;
1965 		}
1966 		free_extent_buffer(path->nodes[i]);
1967 		path->nodes[i] = NULL;
1968 	}
1969 	return 1;
1970 }
1971 
1972 /*
1973  * walk down reloc tree to find relocated block of lowest level
1974  */
1975 static noinline_for_stack
walk_down_reloc_tree(struct btrfs_root * root,struct btrfs_path * path,int * level)1976 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1977 			 int *level)
1978 {
1979 	struct btrfs_fs_info *fs_info = root->fs_info;
1980 	struct extent_buffer *eb = NULL;
1981 	int i;
1982 	u64 bytenr;
1983 	u64 ptr_gen = 0;
1984 	u64 last_snapshot;
1985 	u32 nritems;
1986 
1987 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1988 
1989 	for (i = *level; i > 0; i--) {
1990 		struct btrfs_key first_key;
1991 
1992 		eb = path->nodes[i];
1993 		nritems = btrfs_header_nritems(eb);
1994 		while (path->slots[i] < nritems) {
1995 			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1996 			if (ptr_gen > last_snapshot)
1997 				break;
1998 			path->slots[i]++;
1999 		}
2000 		if (path->slots[i] >= nritems) {
2001 			if (i == *level)
2002 				break;
2003 			*level = i + 1;
2004 			return 0;
2005 		}
2006 		if (i == 1) {
2007 			*level = i;
2008 			return 0;
2009 		}
2010 
2011 		bytenr = btrfs_node_blockptr(eb, path->slots[i]);
2012 		btrfs_node_key_to_cpu(eb, &first_key, path->slots[i]);
2013 		eb = read_tree_block(fs_info, bytenr, ptr_gen, i - 1,
2014 				     &first_key);
2015 		if (IS_ERR(eb)) {
2016 			return PTR_ERR(eb);
2017 		} else if (!extent_buffer_uptodate(eb)) {
2018 			free_extent_buffer(eb);
2019 			return -EIO;
2020 		}
2021 		BUG_ON(btrfs_header_level(eb) != i - 1);
2022 		path->nodes[i - 1] = eb;
2023 		path->slots[i - 1] = 0;
2024 	}
2025 	return 1;
2026 }
2027 
2028 /*
2029  * invalidate extent cache for file extents whose key in range of
2030  * [min_key, max_key)
2031  */
invalidate_extent_cache(struct btrfs_root * root,struct btrfs_key * min_key,struct btrfs_key * max_key)2032 static int invalidate_extent_cache(struct btrfs_root *root,
2033 				   struct btrfs_key *min_key,
2034 				   struct btrfs_key *max_key)
2035 {
2036 	struct btrfs_fs_info *fs_info = root->fs_info;
2037 	struct inode *inode = NULL;
2038 	u64 objectid;
2039 	u64 start, end;
2040 	u64 ino;
2041 
2042 	objectid = min_key->objectid;
2043 	while (1) {
2044 		cond_resched();
2045 		iput(inode);
2046 
2047 		if (objectid > max_key->objectid)
2048 			break;
2049 
2050 		inode = find_next_inode(root, objectid);
2051 		if (!inode)
2052 			break;
2053 		ino = btrfs_ino(BTRFS_I(inode));
2054 
2055 		if (ino > max_key->objectid) {
2056 			iput(inode);
2057 			break;
2058 		}
2059 
2060 		objectid = ino + 1;
2061 		if (!S_ISREG(inode->i_mode))
2062 			continue;
2063 
2064 		if (unlikely(min_key->objectid == ino)) {
2065 			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
2066 				continue;
2067 			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
2068 				start = 0;
2069 			else {
2070 				start = min_key->offset;
2071 				WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
2072 			}
2073 		} else {
2074 			start = 0;
2075 		}
2076 
2077 		if (unlikely(max_key->objectid == ino)) {
2078 			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
2079 				continue;
2080 			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
2081 				end = (u64)-1;
2082 			} else {
2083 				if (max_key->offset == 0)
2084 					continue;
2085 				end = max_key->offset;
2086 				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
2087 				end--;
2088 			}
2089 		} else {
2090 			end = (u64)-1;
2091 		}
2092 
2093 		/* the lock_extent waits for readpage to complete */
2094 		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2095 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1);
2096 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2097 	}
2098 	return 0;
2099 }
2100 
find_next_key(struct btrfs_path * path,int level,struct btrfs_key * key)2101 static int find_next_key(struct btrfs_path *path, int level,
2102 			 struct btrfs_key *key)
2103 
2104 {
2105 	while (level < BTRFS_MAX_LEVEL) {
2106 		if (!path->nodes[level])
2107 			break;
2108 		if (path->slots[level] + 1 <
2109 		    btrfs_header_nritems(path->nodes[level])) {
2110 			btrfs_node_key_to_cpu(path->nodes[level], key,
2111 					      path->slots[level] + 1);
2112 			return 0;
2113 		}
2114 		level++;
2115 	}
2116 	return 1;
2117 }
2118 
2119 /*
2120  * merge the relocated tree blocks in reloc tree with corresponding
2121  * fs tree.
2122  */
merge_reloc_root(struct reloc_control * rc,struct btrfs_root * root)2123 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
2124 					       struct btrfs_root *root)
2125 {
2126 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2127 	LIST_HEAD(inode_list);
2128 	struct btrfs_key key;
2129 	struct btrfs_key next_key;
2130 	struct btrfs_trans_handle *trans = NULL;
2131 	struct btrfs_root *reloc_root;
2132 	struct btrfs_root_item *root_item;
2133 	struct btrfs_path *path;
2134 	struct extent_buffer *leaf;
2135 	int level;
2136 	int max_level;
2137 	int replaced = 0;
2138 	int ret;
2139 	int err = 0;
2140 	u32 min_reserved;
2141 
2142 	path = btrfs_alloc_path();
2143 	if (!path)
2144 		return -ENOMEM;
2145 	path->reada = READA_FORWARD;
2146 
2147 	reloc_root = root->reloc_root;
2148 	root_item = &reloc_root->root_item;
2149 
2150 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2151 		level = btrfs_root_level(root_item);
2152 		extent_buffer_get(reloc_root->node);
2153 		path->nodes[level] = reloc_root->node;
2154 		path->slots[level] = 0;
2155 	} else {
2156 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2157 
2158 		level = root_item->drop_level;
2159 		BUG_ON(level == 0);
2160 		path->lowest_level = level;
2161 		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
2162 		path->lowest_level = 0;
2163 		if (ret < 0) {
2164 			btrfs_free_path(path);
2165 			return ret;
2166 		}
2167 
2168 		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
2169 				      path->slots[level]);
2170 		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
2171 
2172 		btrfs_unlock_up_safe(path, 0);
2173 	}
2174 
2175 	min_reserved = fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2176 	memset(&next_key, 0, sizeof(next_key));
2177 
2178 	while (1) {
2179 		ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
2180 					     BTRFS_RESERVE_FLUSH_ALL);
2181 		if (ret) {
2182 			err = ret;
2183 			goto out;
2184 		}
2185 		trans = btrfs_start_transaction(root, 0);
2186 		if (IS_ERR(trans)) {
2187 			err = PTR_ERR(trans);
2188 			trans = NULL;
2189 			goto out;
2190 		}
2191 		trans->block_rsv = rc->block_rsv;
2192 
2193 		replaced = 0;
2194 		max_level = level;
2195 
2196 		ret = walk_down_reloc_tree(reloc_root, path, &level);
2197 		if (ret < 0) {
2198 			err = ret;
2199 			goto out;
2200 		}
2201 		if (ret > 0)
2202 			break;
2203 
2204 		if (!find_next_key(path, level, &key) &&
2205 		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
2206 			ret = 0;
2207 		} else {
2208 			ret = replace_path(trans, root, reloc_root, path,
2209 					   &next_key, level, max_level);
2210 		}
2211 		if (ret < 0) {
2212 			err = ret;
2213 			goto out;
2214 		}
2215 
2216 		if (ret > 0) {
2217 			level = ret;
2218 			btrfs_node_key_to_cpu(path->nodes[level], &key,
2219 					      path->slots[level]);
2220 			replaced = 1;
2221 		}
2222 
2223 		ret = walk_up_reloc_tree(reloc_root, path, &level);
2224 		if (ret > 0)
2225 			break;
2226 
2227 		BUG_ON(level == 0);
2228 		/*
2229 		 * save the merging progress in the drop_progress.
2230 		 * this is OK since root refs == 1 in this case.
2231 		 */
2232 		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
2233 			       path->slots[level]);
2234 		root_item->drop_level = level;
2235 
2236 		btrfs_end_transaction_throttle(trans);
2237 		trans = NULL;
2238 
2239 		btrfs_btree_balance_dirty(fs_info);
2240 
2241 		if (replaced && rc->stage == UPDATE_DATA_PTRS)
2242 			invalidate_extent_cache(root, &key, &next_key);
2243 	}
2244 
2245 	/*
2246 	 * handle the case only one block in the fs tree need to be
2247 	 * relocated and the block is tree root.
2248 	 */
2249 	leaf = btrfs_lock_root_node(root);
2250 	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
2251 	btrfs_tree_unlock(leaf);
2252 	free_extent_buffer(leaf);
2253 	if (ret < 0)
2254 		err = ret;
2255 out:
2256 	btrfs_free_path(path);
2257 
2258 	if (err == 0) {
2259 		memset(&root_item->drop_progress, 0,
2260 		       sizeof(root_item->drop_progress));
2261 		root_item->drop_level = 0;
2262 		btrfs_set_root_refs(root_item, 0);
2263 		btrfs_update_reloc_root(trans, root);
2264 	}
2265 
2266 	if (trans)
2267 		btrfs_end_transaction_throttle(trans);
2268 
2269 	btrfs_btree_balance_dirty(fs_info);
2270 
2271 	if (replaced && rc->stage == UPDATE_DATA_PTRS)
2272 		invalidate_extent_cache(root, &key, &next_key);
2273 
2274 	return err;
2275 }
2276 
2277 static noinline_for_stack
prepare_to_merge(struct reloc_control * rc,int err)2278 int prepare_to_merge(struct reloc_control *rc, int err)
2279 {
2280 	struct btrfs_root *root = rc->extent_root;
2281 	struct btrfs_fs_info *fs_info = root->fs_info;
2282 	struct btrfs_root *reloc_root;
2283 	struct btrfs_trans_handle *trans;
2284 	LIST_HEAD(reloc_roots);
2285 	u64 num_bytes = 0;
2286 	int ret;
2287 
2288 	mutex_lock(&fs_info->reloc_mutex);
2289 	rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2290 	rc->merging_rsv_size += rc->nodes_relocated * 2;
2291 	mutex_unlock(&fs_info->reloc_mutex);
2292 
2293 again:
2294 	if (!err) {
2295 		num_bytes = rc->merging_rsv_size;
2296 		ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
2297 					  BTRFS_RESERVE_FLUSH_ALL);
2298 		if (ret)
2299 			err = ret;
2300 	}
2301 
2302 	trans = btrfs_join_transaction(rc->extent_root);
2303 	if (IS_ERR(trans)) {
2304 		if (!err)
2305 			btrfs_block_rsv_release(fs_info, rc->block_rsv,
2306 						num_bytes);
2307 		return PTR_ERR(trans);
2308 	}
2309 
2310 	if (!err) {
2311 		if (num_bytes != rc->merging_rsv_size) {
2312 			btrfs_end_transaction(trans);
2313 			btrfs_block_rsv_release(fs_info, rc->block_rsv,
2314 						num_bytes);
2315 			goto again;
2316 		}
2317 	}
2318 
2319 	rc->merge_reloc_tree = 1;
2320 
2321 	while (!list_empty(&rc->reloc_roots)) {
2322 		reloc_root = list_entry(rc->reloc_roots.next,
2323 					struct btrfs_root, root_list);
2324 		list_del_init(&reloc_root->root_list);
2325 
2326 		root = read_fs_root(fs_info, reloc_root->root_key.offset);
2327 		BUG_ON(IS_ERR(root));
2328 		BUG_ON(root->reloc_root != reloc_root);
2329 
2330 		/*
2331 		 * set reference count to 1, so btrfs_recover_relocation
2332 		 * knows it should resumes merging
2333 		 */
2334 		if (!err)
2335 			btrfs_set_root_refs(&reloc_root->root_item, 1);
2336 		btrfs_update_reloc_root(trans, root);
2337 
2338 		list_add(&reloc_root->root_list, &reloc_roots);
2339 	}
2340 
2341 	list_splice(&reloc_roots, &rc->reloc_roots);
2342 
2343 	if (!err)
2344 		err = btrfs_commit_transaction(trans);
2345 	else
2346 		btrfs_end_transaction(trans);
2347 	return err;
2348 }
2349 
2350 static noinline_for_stack
free_reloc_roots(struct list_head * list)2351 void free_reloc_roots(struct list_head *list)
2352 {
2353 	struct btrfs_root *reloc_root;
2354 
2355 	while (!list_empty(list)) {
2356 		reloc_root = list_entry(list->next, struct btrfs_root,
2357 					root_list);
2358 		__del_reloc_root(reloc_root);
2359 		free_extent_buffer(reloc_root->node);
2360 		free_extent_buffer(reloc_root->commit_root);
2361 		reloc_root->node = NULL;
2362 		reloc_root->commit_root = NULL;
2363 	}
2364 }
2365 
2366 static noinline_for_stack
merge_reloc_roots(struct reloc_control * rc)2367 void merge_reloc_roots(struct reloc_control *rc)
2368 {
2369 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2370 	struct btrfs_root *root;
2371 	struct btrfs_root *reloc_root;
2372 	LIST_HEAD(reloc_roots);
2373 	int found = 0;
2374 	int ret = 0;
2375 again:
2376 	root = rc->extent_root;
2377 
2378 	/*
2379 	 * this serializes us with btrfs_record_root_in_transaction,
2380 	 * we have to make sure nobody is in the middle of
2381 	 * adding their roots to the list while we are
2382 	 * doing this splice
2383 	 */
2384 	mutex_lock(&fs_info->reloc_mutex);
2385 	list_splice_init(&rc->reloc_roots, &reloc_roots);
2386 	mutex_unlock(&fs_info->reloc_mutex);
2387 
2388 	while (!list_empty(&reloc_roots)) {
2389 		found = 1;
2390 		reloc_root = list_entry(reloc_roots.next,
2391 					struct btrfs_root, root_list);
2392 
2393 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2394 			root = read_fs_root(fs_info,
2395 					    reloc_root->root_key.offset);
2396 			BUG_ON(IS_ERR(root));
2397 			BUG_ON(root->reloc_root != reloc_root);
2398 
2399 			ret = merge_reloc_root(rc, root);
2400 			if (ret) {
2401 				if (list_empty(&reloc_root->root_list))
2402 					list_add_tail(&reloc_root->root_list,
2403 						      &reloc_roots);
2404 				goto out;
2405 			}
2406 		} else {
2407 			list_del_init(&reloc_root->root_list);
2408 		}
2409 
2410 		ret = btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0, 1);
2411 		if (ret < 0) {
2412 			if (list_empty(&reloc_root->root_list))
2413 				list_add_tail(&reloc_root->root_list,
2414 					      &reloc_roots);
2415 			goto out;
2416 		}
2417 	}
2418 
2419 	if (found) {
2420 		found = 0;
2421 		goto again;
2422 	}
2423 out:
2424 	if (ret) {
2425 		btrfs_handle_fs_error(fs_info, ret, NULL);
2426 		if (!list_empty(&reloc_roots))
2427 			free_reloc_roots(&reloc_roots);
2428 
2429 		/* new reloc root may be added */
2430 		mutex_lock(&fs_info->reloc_mutex);
2431 		list_splice_init(&rc->reloc_roots, &reloc_roots);
2432 		mutex_unlock(&fs_info->reloc_mutex);
2433 		if (!list_empty(&reloc_roots))
2434 			free_reloc_roots(&reloc_roots);
2435 	}
2436 
2437 	/*
2438 	 * We used to have
2439 	 *
2440 	 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2441 	 *
2442 	 * here, but it's wrong.  If we fail to start the transaction in
2443 	 * prepare_to_merge() we will have only 0 ref reloc roots, none of which
2444 	 * have actually been removed from the reloc_root_tree rb tree.  This is
2445 	 * fine because we're bailing here, and we hold a reference on the root
2446 	 * for the list that holds it, so these roots will be cleaned up when we
2447 	 * do the reloc_dirty_list afterwards.  Meanwhile the root->reloc_root
2448 	 * will be cleaned up on unmount.
2449 	 *
2450 	 * The remaining nodes will be cleaned up by free_reloc_control.
2451 	 */
2452 }
2453 
free_block_list(struct rb_root * blocks)2454 static void free_block_list(struct rb_root *blocks)
2455 {
2456 	struct tree_block *block;
2457 	struct rb_node *rb_node;
2458 	while ((rb_node = rb_first(blocks))) {
2459 		block = rb_entry(rb_node, struct tree_block, rb_node);
2460 		rb_erase(rb_node, blocks);
2461 		kfree(block);
2462 	}
2463 }
2464 
record_reloc_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * reloc_root)2465 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2466 				      struct btrfs_root *reloc_root)
2467 {
2468 	struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2469 	struct btrfs_root *root;
2470 
2471 	if (reloc_root->last_trans == trans->transid)
2472 		return 0;
2473 
2474 	root = read_fs_root(fs_info, reloc_root->root_key.offset);
2475 	BUG_ON(IS_ERR(root));
2476 	BUG_ON(root->reloc_root != reloc_root);
2477 
2478 	return btrfs_record_root_in_trans(trans, root);
2479 }
2480 
2481 static noinline_for_stack
select_reloc_root(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct backref_node * node,struct backref_edge * edges[])2482 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2483 				     struct reloc_control *rc,
2484 				     struct backref_node *node,
2485 				     struct backref_edge *edges[])
2486 {
2487 	struct backref_node *next;
2488 	struct btrfs_root *root;
2489 	int index = 0;
2490 
2491 	next = node;
2492 	while (1) {
2493 		cond_resched();
2494 		next = walk_up_backref(next, edges, &index);
2495 		root = next->root;
2496 		BUG_ON(!root);
2497 		BUG_ON(!test_bit(BTRFS_ROOT_REF_COWS, &root->state));
2498 
2499 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2500 			record_reloc_root_in_trans(trans, root);
2501 			break;
2502 		}
2503 
2504 		btrfs_record_root_in_trans(trans, root);
2505 		root = root->reloc_root;
2506 
2507 		if (next->new_bytenr != root->node->start) {
2508 			BUG_ON(next->new_bytenr);
2509 			BUG_ON(!list_empty(&next->list));
2510 			next->new_bytenr = root->node->start;
2511 			next->root = root;
2512 			list_add_tail(&next->list,
2513 				      &rc->backref_cache.changed);
2514 			__mark_block_processed(rc, next);
2515 			break;
2516 		}
2517 
2518 		WARN_ON(1);
2519 		root = NULL;
2520 		next = walk_down_backref(edges, &index);
2521 		if (!next || next->level <= node->level)
2522 			break;
2523 	}
2524 	if (!root)
2525 		return NULL;
2526 
2527 	next = node;
2528 	/* setup backref node path for btrfs_reloc_cow_block */
2529 	while (1) {
2530 		rc->backref_cache.path[next->level] = next;
2531 		if (--index < 0)
2532 			break;
2533 		next = edges[index]->node[UPPER];
2534 	}
2535 	return root;
2536 }
2537 
2538 /*
2539  * select a tree root for relocation. return NULL if the block
2540  * is reference counted. we should use do_relocation() in this
2541  * case. return a tree root pointer if the block isn't reference
2542  * counted. return -ENOENT if the block is root of reloc tree.
2543  */
2544 static noinline_for_stack
select_one_root(struct backref_node * node)2545 struct btrfs_root *select_one_root(struct backref_node *node)
2546 {
2547 	struct backref_node *next;
2548 	struct btrfs_root *root;
2549 	struct btrfs_root *fs_root = NULL;
2550 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2551 	int index = 0;
2552 
2553 	next = node;
2554 	while (1) {
2555 		cond_resched();
2556 		next = walk_up_backref(next, edges, &index);
2557 		root = next->root;
2558 		BUG_ON(!root);
2559 
2560 		/* no other choice for non-references counted tree */
2561 		if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
2562 			return root;
2563 
2564 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2565 			fs_root = root;
2566 
2567 		if (next != node)
2568 			return NULL;
2569 
2570 		next = walk_down_backref(edges, &index);
2571 		if (!next || next->level <= node->level)
2572 			break;
2573 	}
2574 
2575 	if (!fs_root)
2576 		return ERR_PTR(-ENOENT);
2577 	return fs_root;
2578 }
2579 
2580 static noinline_for_stack
calcu_metadata_size(struct reloc_control * rc,struct backref_node * node,int reserve)2581 u64 calcu_metadata_size(struct reloc_control *rc,
2582 			struct backref_node *node, int reserve)
2583 {
2584 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2585 	struct backref_node *next = node;
2586 	struct backref_edge *edge;
2587 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2588 	u64 num_bytes = 0;
2589 	int index = 0;
2590 
2591 	BUG_ON(reserve && node->processed);
2592 
2593 	while (next) {
2594 		cond_resched();
2595 		while (1) {
2596 			if (next->processed && (reserve || next != node))
2597 				break;
2598 
2599 			num_bytes += fs_info->nodesize;
2600 
2601 			if (list_empty(&next->upper))
2602 				break;
2603 
2604 			edge = list_entry(next->upper.next,
2605 					  struct backref_edge, list[LOWER]);
2606 			edges[index++] = edge;
2607 			next = edge->node[UPPER];
2608 		}
2609 		next = walk_down_backref(edges, &index);
2610 	}
2611 	return num_bytes;
2612 }
2613 
reserve_metadata_space(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct backref_node * node)2614 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2615 				  struct reloc_control *rc,
2616 				  struct backref_node *node)
2617 {
2618 	struct btrfs_root *root = rc->extent_root;
2619 	struct btrfs_fs_info *fs_info = root->fs_info;
2620 	u64 num_bytes;
2621 	int ret;
2622 	u64 tmp;
2623 
2624 	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2625 
2626 	trans->block_rsv = rc->block_rsv;
2627 	rc->reserved_bytes += num_bytes;
2628 
2629 	/*
2630 	 * We are under a transaction here so we can only do limited flushing.
2631 	 * If we get an enospc just kick back -EAGAIN so we know to drop the
2632 	 * transaction and try to refill when we can flush all the things.
2633 	 */
2634 	ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2635 				BTRFS_RESERVE_FLUSH_LIMIT);
2636 	if (ret) {
2637 		tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2638 		while (tmp <= rc->reserved_bytes)
2639 			tmp <<= 1;
2640 		/*
2641 		 * only one thread can access block_rsv at this point,
2642 		 * so we don't need hold lock to protect block_rsv.
2643 		 * we expand more reservation size here to allow enough
2644 		 * space for relocation and we will return eailer in
2645 		 * enospc case.
2646 		 */
2647 		rc->block_rsv->size = tmp + fs_info->nodesize *
2648 				      RELOCATION_RESERVED_NODES;
2649 		return -EAGAIN;
2650 	}
2651 
2652 	return 0;
2653 }
2654 
2655 /*
2656  * relocate a block tree, and then update pointers in upper level
2657  * blocks that reference the block to point to the new location.
2658  *
2659  * if called by link_to_upper, the block has already been relocated.
2660  * in that case this function just updates pointers.
2661  */
do_relocation(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct backref_node * node,struct btrfs_key * key,struct btrfs_path * path,int lowest)2662 static int do_relocation(struct btrfs_trans_handle *trans,
2663 			 struct reloc_control *rc,
2664 			 struct backref_node *node,
2665 			 struct btrfs_key *key,
2666 			 struct btrfs_path *path, int lowest)
2667 {
2668 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2669 	struct backref_node *upper;
2670 	struct backref_edge *edge;
2671 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2672 	struct btrfs_root *root;
2673 	struct extent_buffer *eb;
2674 	u32 blocksize;
2675 	u64 bytenr;
2676 	u64 generation;
2677 	int slot;
2678 	int ret;
2679 	int err = 0;
2680 
2681 	BUG_ON(lowest && node->eb);
2682 
2683 	path->lowest_level = node->level + 1;
2684 	rc->backref_cache.path[node->level] = node;
2685 	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2686 		struct btrfs_key first_key;
2687 
2688 		cond_resched();
2689 
2690 		upper = edge->node[UPPER];
2691 		root = select_reloc_root(trans, rc, upper, edges);
2692 		BUG_ON(!root);
2693 
2694 		if (upper->eb && !upper->locked) {
2695 			if (!lowest) {
2696 				ret = btrfs_bin_search(upper->eb, key,
2697 						       upper->level, &slot);
2698 				BUG_ON(ret);
2699 				bytenr = btrfs_node_blockptr(upper->eb, slot);
2700 				if (node->eb->start == bytenr)
2701 					goto next;
2702 			}
2703 			drop_node_buffer(upper);
2704 		}
2705 
2706 		if (!upper->eb) {
2707 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2708 			if (ret) {
2709 				if (ret < 0)
2710 					err = ret;
2711 				else
2712 					err = -ENOENT;
2713 
2714 				btrfs_release_path(path);
2715 				break;
2716 			}
2717 
2718 			if (!upper->eb) {
2719 				upper->eb = path->nodes[upper->level];
2720 				path->nodes[upper->level] = NULL;
2721 			} else {
2722 				BUG_ON(upper->eb != path->nodes[upper->level]);
2723 			}
2724 
2725 			upper->locked = 1;
2726 			path->locks[upper->level] = 0;
2727 
2728 			slot = path->slots[upper->level];
2729 			btrfs_release_path(path);
2730 		} else {
2731 			ret = btrfs_bin_search(upper->eb, key, upper->level,
2732 					       &slot);
2733 			BUG_ON(ret);
2734 		}
2735 
2736 		bytenr = btrfs_node_blockptr(upper->eb, slot);
2737 		if (lowest) {
2738 			if (bytenr != node->bytenr) {
2739 				btrfs_err(root->fs_info,
2740 		"lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2741 					  bytenr, node->bytenr, slot,
2742 					  upper->eb->start);
2743 				err = -EIO;
2744 				goto next;
2745 			}
2746 		} else {
2747 			if (node->eb->start == bytenr)
2748 				goto next;
2749 		}
2750 
2751 		blocksize = root->fs_info->nodesize;
2752 		generation = btrfs_node_ptr_generation(upper->eb, slot);
2753 		btrfs_node_key_to_cpu(upper->eb, &first_key, slot);
2754 		eb = read_tree_block(fs_info, bytenr, generation,
2755 				     upper->level - 1, &first_key);
2756 		if (IS_ERR(eb)) {
2757 			err = PTR_ERR(eb);
2758 			goto next;
2759 		} else if (!extent_buffer_uptodate(eb)) {
2760 			free_extent_buffer(eb);
2761 			err = -EIO;
2762 			goto next;
2763 		}
2764 		btrfs_tree_lock(eb);
2765 		btrfs_set_lock_blocking(eb);
2766 
2767 		if (!node->eb) {
2768 			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2769 					      slot, &eb);
2770 			btrfs_tree_unlock(eb);
2771 			free_extent_buffer(eb);
2772 			if (ret < 0) {
2773 				err = ret;
2774 				goto next;
2775 			}
2776 			BUG_ON(node->eb != eb);
2777 		} else {
2778 			btrfs_set_node_blockptr(upper->eb, slot,
2779 						node->eb->start);
2780 			btrfs_set_node_ptr_generation(upper->eb, slot,
2781 						      trans->transid);
2782 			btrfs_mark_buffer_dirty(upper->eb);
2783 
2784 			ret = btrfs_inc_extent_ref(trans, root,
2785 						node->eb->start, blocksize,
2786 						upper->eb->start,
2787 						btrfs_header_owner(upper->eb),
2788 						node->level, 0);
2789 			BUG_ON(ret);
2790 
2791 			ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2792 			BUG_ON(ret);
2793 		}
2794 next:
2795 		if (!upper->pending)
2796 			drop_node_buffer(upper);
2797 		else
2798 			unlock_node_buffer(upper);
2799 		if (err)
2800 			break;
2801 	}
2802 
2803 	if (!err && node->pending) {
2804 		drop_node_buffer(node);
2805 		list_move_tail(&node->list, &rc->backref_cache.changed);
2806 		node->pending = 0;
2807 	}
2808 
2809 	path->lowest_level = 0;
2810 	BUG_ON(err == -ENOSPC);
2811 	return err;
2812 }
2813 
link_to_upper(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct backref_node * node,struct btrfs_path * path)2814 static int link_to_upper(struct btrfs_trans_handle *trans,
2815 			 struct reloc_control *rc,
2816 			 struct backref_node *node,
2817 			 struct btrfs_path *path)
2818 {
2819 	struct btrfs_key key;
2820 
2821 	btrfs_node_key_to_cpu(node->eb, &key, 0);
2822 	return do_relocation(trans, rc, node, &key, path, 0);
2823 }
2824 
finish_pending_nodes(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_path * path,int err)2825 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2826 				struct reloc_control *rc,
2827 				struct btrfs_path *path, int err)
2828 {
2829 	LIST_HEAD(list);
2830 	struct backref_cache *cache = &rc->backref_cache;
2831 	struct backref_node *node;
2832 	int level;
2833 	int ret;
2834 
2835 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2836 		while (!list_empty(&cache->pending[level])) {
2837 			node = list_entry(cache->pending[level].next,
2838 					  struct backref_node, list);
2839 			list_move_tail(&node->list, &list);
2840 			BUG_ON(!node->pending);
2841 
2842 			if (!err) {
2843 				ret = link_to_upper(trans, rc, node, path);
2844 				if (ret < 0)
2845 					err = ret;
2846 			}
2847 		}
2848 		list_splice_init(&list, &cache->pending[level]);
2849 	}
2850 	return err;
2851 }
2852 
mark_block_processed(struct reloc_control * rc,u64 bytenr,u32 blocksize)2853 static void mark_block_processed(struct reloc_control *rc,
2854 				 u64 bytenr, u32 blocksize)
2855 {
2856 	set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
2857 			EXTENT_DIRTY);
2858 }
2859 
__mark_block_processed(struct reloc_control * rc,struct backref_node * node)2860 static void __mark_block_processed(struct reloc_control *rc,
2861 				   struct backref_node *node)
2862 {
2863 	u32 blocksize;
2864 	if (node->level == 0 ||
2865 	    in_block_group(node->bytenr, rc->block_group)) {
2866 		blocksize = rc->extent_root->fs_info->nodesize;
2867 		mark_block_processed(rc, node->bytenr, blocksize);
2868 	}
2869 	node->processed = 1;
2870 }
2871 
2872 /*
2873  * mark a block and all blocks directly/indirectly reference the block
2874  * as processed.
2875  */
update_processed_blocks(struct reloc_control * rc,struct backref_node * node)2876 static void update_processed_blocks(struct reloc_control *rc,
2877 				    struct backref_node *node)
2878 {
2879 	struct backref_node *next = node;
2880 	struct backref_edge *edge;
2881 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2882 	int index = 0;
2883 
2884 	while (next) {
2885 		cond_resched();
2886 		while (1) {
2887 			if (next->processed)
2888 				break;
2889 
2890 			__mark_block_processed(rc, next);
2891 
2892 			if (list_empty(&next->upper))
2893 				break;
2894 
2895 			edge = list_entry(next->upper.next,
2896 					  struct backref_edge, list[LOWER]);
2897 			edges[index++] = edge;
2898 			next = edge->node[UPPER];
2899 		}
2900 		next = walk_down_backref(edges, &index);
2901 	}
2902 }
2903 
tree_block_processed(u64 bytenr,struct reloc_control * rc)2904 static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2905 {
2906 	u32 blocksize = rc->extent_root->fs_info->nodesize;
2907 
2908 	if (test_range_bit(&rc->processed_blocks, bytenr,
2909 			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2910 		return 1;
2911 	return 0;
2912 }
2913 
get_tree_block_key(struct btrfs_fs_info * fs_info,struct tree_block * block)2914 static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2915 			      struct tree_block *block)
2916 {
2917 	struct extent_buffer *eb;
2918 
2919 	BUG_ON(block->key_ready);
2920 	eb = read_tree_block(fs_info, block->bytenr, block->key.offset,
2921 			     block->level, NULL);
2922 	if (IS_ERR(eb)) {
2923 		return PTR_ERR(eb);
2924 	} else if (!extent_buffer_uptodate(eb)) {
2925 		free_extent_buffer(eb);
2926 		return -EIO;
2927 	}
2928 	WARN_ON(btrfs_header_level(eb) != block->level);
2929 	if (block->level == 0)
2930 		btrfs_item_key_to_cpu(eb, &block->key, 0);
2931 	else
2932 		btrfs_node_key_to_cpu(eb, &block->key, 0);
2933 	free_extent_buffer(eb);
2934 	block->key_ready = 1;
2935 	return 0;
2936 }
2937 
2938 /*
2939  * helper function to relocate a tree block
2940  */
relocate_tree_block(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct backref_node * node,struct btrfs_key * key,struct btrfs_path * path)2941 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2942 				struct reloc_control *rc,
2943 				struct backref_node *node,
2944 				struct btrfs_key *key,
2945 				struct btrfs_path *path)
2946 {
2947 	struct btrfs_root *root;
2948 	int ret = 0;
2949 
2950 	if (!node)
2951 		return 0;
2952 
2953 	BUG_ON(node->processed);
2954 	root = select_one_root(node);
2955 	if (root == ERR_PTR(-ENOENT)) {
2956 		update_processed_blocks(rc, node);
2957 		goto out;
2958 	}
2959 
2960 	if (!root || test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
2961 		ret = reserve_metadata_space(trans, rc, node);
2962 		if (ret)
2963 			goto out;
2964 	}
2965 
2966 	if (root) {
2967 		if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
2968 			BUG_ON(node->new_bytenr);
2969 			BUG_ON(!list_empty(&node->list));
2970 			btrfs_record_root_in_trans(trans, root);
2971 			root = root->reloc_root;
2972 			node->new_bytenr = root->node->start;
2973 			node->root = root;
2974 			list_add_tail(&node->list, &rc->backref_cache.changed);
2975 		} else {
2976 			path->lowest_level = node->level;
2977 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2978 			btrfs_release_path(path);
2979 			if (ret > 0)
2980 				ret = 0;
2981 		}
2982 		if (!ret)
2983 			update_processed_blocks(rc, node);
2984 	} else {
2985 		ret = do_relocation(trans, rc, node, key, path, 1);
2986 	}
2987 out:
2988 	if (ret || node->level == 0 || node->cowonly)
2989 		remove_backref_node(&rc->backref_cache, node);
2990 	return ret;
2991 }
2992 
2993 /*
2994  * relocate a list of blocks
2995  */
2996 static noinline_for_stack
relocate_tree_blocks(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct rb_root * blocks)2997 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2998 			 struct reloc_control *rc, struct rb_root *blocks)
2999 {
3000 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3001 	struct backref_node *node;
3002 	struct btrfs_path *path;
3003 	struct tree_block *block;
3004 	struct rb_node *rb_node;
3005 	int ret;
3006 	int err = 0;
3007 
3008 	path = btrfs_alloc_path();
3009 	if (!path) {
3010 		err = -ENOMEM;
3011 		goto out_free_blocks;
3012 	}
3013 
3014 	rb_node = rb_first(blocks);
3015 	while (rb_node) {
3016 		block = rb_entry(rb_node, struct tree_block, rb_node);
3017 		if (!block->key_ready)
3018 			readahead_tree_block(fs_info, block->bytenr);
3019 		rb_node = rb_next(rb_node);
3020 	}
3021 
3022 	rb_node = rb_first(blocks);
3023 	while (rb_node) {
3024 		block = rb_entry(rb_node, struct tree_block, rb_node);
3025 		if (!block->key_ready) {
3026 			err = get_tree_block_key(fs_info, block);
3027 			if (err)
3028 				goto out_free_path;
3029 		}
3030 		rb_node = rb_next(rb_node);
3031 	}
3032 
3033 	rb_node = rb_first(blocks);
3034 	while (rb_node) {
3035 		block = rb_entry(rb_node, struct tree_block, rb_node);
3036 
3037 		node = build_backref_tree(rc, &block->key,
3038 					  block->level, block->bytenr);
3039 		if (IS_ERR(node)) {
3040 			err = PTR_ERR(node);
3041 			goto out;
3042 		}
3043 
3044 		ret = relocate_tree_block(trans, rc, node, &block->key,
3045 					  path);
3046 		if (ret < 0) {
3047 			if (ret != -EAGAIN || rb_node == rb_first(blocks))
3048 				err = ret;
3049 			goto out;
3050 		}
3051 		rb_node = rb_next(rb_node);
3052 	}
3053 out:
3054 	err = finish_pending_nodes(trans, rc, path, err);
3055 
3056 out_free_path:
3057 	btrfs_free_path(path);
3058 out_free_blocks:
3059 	free_block_list(blocks);
3060 	return err;
3061 }
3062 
3063 static noinline_for_stack
prealloc_file_extent_cluster(struct inode * inode,struct file_extent_cluster * cluster)3064 int prealloc_file_extent_cluster(struct inode *inode,
3065 				 struct file_extent_cluster *cluster)
3066 {
3067 	u64 alloc_hint = 0;
3068 	u64 start;
3069 	u64 end;
3070 	u64 offset = BTRFS_I(inode)->index_cnt;
3071 	u64 num_bytes;
3072 	int nr = 0;
3073 	int ret = 0;
3074 	u64 prealloc_start = cluster->start - offset;
3075 	u64 prealloc_end = cluster->end - offset;
3076 	u64 cur_offset;
3077 	struct extent_changeset *data_reserved = NULL;
3078 
3079 	BUG_ON(cluster->start != cluster->boundary[0]);
3080 	inode_lock(inode);
3081 
3082 	ret = btrfs_check_data_free_space(inode, &data_reserved, prealloc_start,
3083 					  prealloc_end + 1 - prealloc_start);
3084 	if (ret)
3085 		goto out;
3086 
3087 	cur_offset = prealloc_start;
3088 	while (nr < cluster->nr) {
3089 		start = cluster->boundary[nr] - offset;
3090 		if (nr + 1 < cluster->nr)
3091 			end = cluster->boundary[nr + 1] - 1 - offset;
3092 		else
3093 			end = cluster->end - offset;
3094 
3095 		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3096 		num_bytes = end + 1 - start;
3097 		if (cur_offset < start)
3098 			btrfs_free_reserved_data_space(inode, data_reserved,
3099 					cur_offset, start - cur_offset);
3100 		ret = btrfs_prealloc_file_range(inode, 0, start,
3101 						num_bytes, num_bytes,
3102 						end + 1, &alloc_hint);
3103 		cur_offset = end + 1;
3104 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3105 		if (ret)
3106 			break;
3107 		nr++;
3108 	}
3109 	if (cur_offset < prealloc_end)
3110 		btrfs_free_reserved_data_space(inode, data_reserved,
3111 				cur_offset, prealloc_end + 1 - cur_offset);
3112 out:
3113 	inode_unlock(inode);
3114 	extent_changeset_free(data_reserved);
3115 	return ret;
3116 }
3117 
3118 static noinline_for_stack
setup_extent_mapping(struct inode * inode,u64 start,u64 end,u64 block_start)3119 int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
3120 			 u64 block_start)
3121 {
3122 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3123 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3124 	struct extent_map *em;
3125 	int ret = 0;
3126 
3127 	em = alloc_extent_map();
3128 	if (!em)
3129 		return -ENOMEM;
3130 
3131 	em->start = start;
3132 	em->len = end + 1 - start;
3133 	em->block_len = em->len;
3134 	em->block_start = block_start;
3135 	em->bdev = fs_info->fs_devices->latest_bdev;
3136 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
3137 
3138 	lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3139 	while (1) {
3140 		write_lock(&em_tree->lock);
3141 		ret = add_extent_mapping(em_tree, em, 0);
3142 		write_unlock(&em_tree->lock);
3143 		if (ret != -EEXIST) {
3144 			free_extent_map(em);
3145 			break;
3146 		}
3147 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3148 	}
3149 	unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3150 	return ret;
3151 }
3152 
relocate_file_extent_cluster(struct inode * inode,struct file_extent_cluster * cluster)3153 static int relocate_file_extent_cluster(struct inode *inode,
3154 					struct file_extent_cluster *cluster)
3155 {
3156 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3157 	u64 page_start;
3158 	u64 page_end;
3159 	u64 offset = BTRFS_I(inode)->index_cnt;
3160 	unsigned long index;
3161 	unsigned long last_index;
3162 	struct page *page;
3163 	struct file_ra_state *ra;
3164 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
3165 	int nr = 0;
3166 	int ret = 0;
3167 
3168 	if (!cluster->nr)
3169 		return 0;
3170 
3171 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
3172 	if (!ra)
3173 		return -ENOMEM;
3174 
3175 	ret = prealloc_file_extent_cluster(inode, cluster);
3176 	if (ret)
3177 		goto out;
3178 
3179 	file_ra_state_init(ra, inode->i_mapping);
3180 
3181 	ret = setup_extent_mapping(inode, cluster->start - offset,
3182 				   cluster->end - offset, cluster->start);
3183 	if (ret)
3184 		goto out;
3185 
3186 	index = (cluster->start - offset) >> PAGE_SHIFT;
3187 	last_index = (cluster->end - offset) >> PAGE_SHIFT;
3188 	while (index <= last_index) {
3189 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
3190 				PAGE_SIZE);
3191 		if (ret)
3192 			goto out;
3193 
3194 		page = find_lock_page(inode->i_mapping, index);
3195 		if (!page) {
3196 			page_cache_sync_readahead(inode->i_mapping,
3197 						  ra, NULL, index,
3198 						  last_index + 1 - index);
3199 			page = find_or_create_page(inode->i_mapping, index,
3200 						   mask);
3201 			if (!page) {
3202 				btrfs_delalloc_release_metadata(BTRFS_I(inode),
3203 							PAGE_SIZE, true);
3204 				btrfs_delalloc_release_extents(BTRFS_I(inode),
3205 							PAGE_SIZE);
3206 				ret = -ENOMEM;
3207 				goto out;
3208 			}
3209 		}
3210 
3211 		if (PageReadahead(page)) {
3212 			page_cache_async_readahead(inode->i_mapping,
3213 						   ra, NULL, page, index,
3214 						   last_index + 1 - index);
3215 		}
3216 
3217 		if (!PageUptodate(page)) {
3218 			btrfs_readpage(NULL, page);
3219 			lock_page(page);
3220 			if (!PageUptodate(page)) {
3221 				unlock_page(page);
3222 				put_page(page);
3223 				btrfs_delalloc_release_metadata(BTRFS_I(inode),
3224 							PAGE_SIZE, true);
3225 				btrfs_delalloc_release_extents(BTRFS_I(inode),
3226 							       PAGE_SIZE);
3227 				ret = -EIO;
3228 				goto out;
3229 			}
3230 		}
3231 
3232 		page_start = page_offset(page);
3233 		page_end = page_start + PAGE_SIZE - 1;
3234 
3235 		lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
3236 
3237 		set_page_extent_mapped(page);
3238 
3239 		if (nr < cluster->nr &&
3240 		    page_start + offset == cluster->boundary[nr]) {
3241 			set_extent_bits(&BTRFS_I(inode)->io_tree,
3242 					page_start, page_end,
3243 					EXTENT_BOUNDARY);
3244 			nr++;
3245 		}
3246 
3247 		ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
3248 						NULL, 0);
3249 		if (ret) {
3250 			unlock_page(page);
3251 			put_page(page);
3252 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
3253 							 PAGE_SIZE, true);
3254 			btrfs_delalloc_release_extents(BTRFS_I(inode),
3255 			                               PAGE_SIZE);
3256 
3257 			clear_extent_bits(&BTRFS_I(inode)->io_tree,
3258 					  page_start, page_end,
3259 					  EXTENT_LOCKED | EXTENT_BOUNDARY);
3260 			goto out;
3261 
3262 		}
3263 		set_page_dirty(page);
3264 
3265 		unlock_extent(&BTRFS_I(inode)->io_tree,
3266 			      page_start, page_end);
3267 		unlock_page(page);
3268 		put_page(page);
3269 
3270 		index++;
3271 		btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
3272 		balance_dirty_pages_ratelimited(inode->i_mapping);
3273 		btrfs_throttle(fs_info);
3274 	}
3275 	WARN_ON(nr != cluster->nr);
3276 out:
3277 	kfree(ra);
3278 	return ret;
3279 }
3280 
3281 static noinline_for_stack
relocate_data_extent(struct inode * inode,struct btrfs_key * extent_key,struct file_extent_cluster * cluster)3282 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3283 			 struct file_extent_cluster *cluster)
3284 {
3285 	int ret;
3286 
3287 	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3288 		ret = relocate_file_extent_cluster(inode, cluster);
3289 		if (ret)
3290 			return ret;
3291 		cluster->nr = 0;
3292 	}
3293 
3294 	if (!cluster->nr)
3295 		cluster->start = extent_key->objectid;
3296 	else
3297 		BUG_ON(cluster->nr >= MAX_EXTENTS);
3298 	cluster->end = extent_key->objectid + extent_key->offset - 1;
3299 	cluster->boundary[cluster->nr] = extent_key->objectid;
3300 	cluster->nr++;
3301 
3302 	if (cluster->nr >= MAX_EXTENTS) {
3303 		ret = relocate_file_extent_cluster(inode, cluster);
3304 		if (ret)
3305 			return ret;
3306 		cluster->nr = 0;
3307 	}
3308 	return 0;
3309 }
3310 
3311 /*
3312  * helper to add a tree block to the list.
3313  * the major work is getting the generation and level of the block
3314  */
add_tree_block(struct reloc_control * rc,struct btrfs_key * extent_key,struct btrfs_path * path,struct rb_root * blocks)3315 static int add_tree_block(struct reloc_control *rc,
3316 			  struct btrfs_key *extent_key,
3317 			  struct btrfs_path *path,
3318 			  struct rb_root *blocks)
3319 {
3320 	struct extent_buffer *eb;
3321 	struct btrfs_extent_item *ei;
3322 	struct btrfs_tree_block_info *bi;
3323 	struct tree_block *block;
3324 	struct rb_node *rb_node;
3325 	u32 item_size;
3326 	int level = -1;
3327 	u64 generation;
3328 
3329 	eb =  path->nodes[0];
3330 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
3331 
3332 	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3333 	    item_size >= sizeof(*ei) + sizeof(*bi)) {
3334 		ei = btrfs_item_ptr(eb, path->slots[0],
3335 				struct btrfs_extent_item);
3336 		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3337 			bi = (struct btrfs_tree_block_info *)(ei + 1);
3338 			level = btrfs_tree_block_level(eb, bi);
3339 		} else {
3340 			level = (int)extent_key->offset;
3341 		}
3342 		generation = btrfs_extent_generation(eb, ei);
3343 	} else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
3344 		btrfs_print_v0_err(eb->fs_info);
3345 		btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
3346 		return -EINVAL;
3347 	} else {
3348 		BUG();
3349 	}
3350 
3351 	btrfs_release_path(path);
3352 
3353 	BUG_ON(level == -1);
3354 
3355 	block = kmalloc(sizeof(*block), GFP_NOFS);
3356 	if (!block)
3357 		return -ENOMEM;
3358 
3359 	block->bytenr = extent_key->objectid;
3360 	block->key.objectid = rc->extent_root->fs_info->nodesize;
3361 	block->key.offset = generation;
3362 	block->level = level;
3363 	block->key_ready = 0;
3364 
3365 	rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
3366 	if (rb_node)
3367 		backref_tree_panic(rb_node, -EEXIST, block->bytenr);
3368 
3369 	return 0;
3370 }
3371 
3372 /*
3373  * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3374  */
__add_tree_block(struct reloc_control * rc,u64 bytenr,u32 blocksize,struct rb_root * blocks)3375 static int __add_tree_block(struct reloc_control *rc,
3376 			    u64 bytenr, u32 blocksize,
3377 			    struct rb_root *blocks)
3378 {
3379 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3380 	struct btrfs_path *path;
3381 	struct btrfs_key key;
3382 	int ret;
3383 	bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3384 
3385 	if (tree_block_processed(bytenr, rc))
3386 		return 0;
3387 
3388 	if (tree_search(blocks, bytenr))
3389 		return 0;
3390 
3391 	path = btrfs_alloc_path();
3392 	if (!path)
3393 		return -ENOMEM;
3394 again:
3395 	key.objectid = bytenr;
3396 	if (skinny) {
3397 		key.type = BTRFS_METADATA_ITEM_KEY;
3398 		key.offset = (u64)-1;
3399 	} else {
3400 		key.type = BTRFS_EXTENT_ITEM_KEY;
3401 		key.offset = blocksize;
3402 	}
3403 
3404 	path->search_commit_root = 1;
3405 	path->skip_locking = 1;
3406 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3407 	if (ret < 0)
3408 		goto out;
3409 
3410 	if (ret > 0 && skinny) {
3411 		if (path->slots[0]) {
3412 			path->slots[0]--;
3413 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3414 					      path->slots[0]);
3415 			if (key.objectid == bytenr &&
3416 			    (key.type == BTRFS_METADATA_ITEM_KEY ||
3417 			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
3418 			      key.offset == blocksize)))
3419 				ret = 0;
3420 		}
3421 
3422 		if (ret) {
3423 			skinny = false;
3424 			btrfs_release_path(path);
3425 			goto again;
3426 		}
3427 	}
3428 	if (ret) {
3429 		ASSERT(ret == 1);
3430 		btrfs_print_leaf(path->nodes[0]);
3431 		btrfs_err(fs_info,
3432 	     "tree block extent item (%llu) is not found in extent tree",
3433 		     bytenr);
3434 		WARN_ON(1);
3435 		ret = -EINVAL;
3436 		goto out;
3437 	}
3438 
3439 	ret = add_tree_block(rc, &key, path, blocks);
3440 out:
3441 	btrfs_free_path(path);
3442 	return ret;
3443 }
3444 
3445 /*
3446  * helper to check if the block use full backrefs for pointers in it
3447  */
block_use_full_backref(struct reloc_control * rc,struct extent_buffer * eb)3448 static int block_use_full_backref(struct reloc_control *rc,
3449 				  struct extent_buffer *eb)
3450 {
3451 	u64 flags;
3452 	int ret;
3453 
3454 	if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
3455 	    btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
3456 		return 1;
3457 
3458 	ret = btrfs_lookup_extent_info(NULL, rc->extent_root->fs_info,
3459 				       eb->start, btrfs_header_level(eb), 1,
3460 				       NULL, &flags);
3461 	BUG_ON(ret);
3462 
3463 	if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
3464 		ret = 1;
3465 	else
3466 		ret = 0;
3467 	return ret;
3468 }
3469 
delete_block_group_cache(struct btrfs_fs_info * fs_info,struct btrfs_block_group_cache * block_group,struct inode * inode,u64 ino)3470 static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3471 				    struct btrfs_block_group_cache *block_group,
3472 				    struct inode *inode,
3473 				    u64 ino)
3474 {
3475 	struct btrfs_key key;
3476 	struct btrfs_root *root = fs_info->tree_root;
3477 	struct btrfs_trans_handle *trans;
3478 	int ret = 0;
3479 
3480 	if (inode)
3481 		goto truncate;
3482 
3483 	key.objectid = ino;
3484 	key.type = BTRFS_INODE_ITEM_KEY;
3485 	key.offset = 0;
3486 
3487 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3488 	if (IS_ERR(inode))
3489 		return -ENOENT;
3490 
3491 truncate:
3492 	ret = btrfs_check_trunc_cache_free_space(fs_info,
3493 						 &fs_info->global_block_rsv);
3494 	if (ret)
3495 		goto out;
3496 
3497 	trans = btrfs_join_transaction(root);
3498 	if (IS_ERR(trans)) {
3499 		ret = PTR_ERR(trans);
3500 		goto out;
3501 	}
3502 
3503 	ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3504 
3505 	btrfs_end_transaction(trans);
3506 	btrfs_btree_balance_dirty(fs_info);
3507 out:
3508 	iput(inode);
3509 	return ret;
3510 }
3511 
3512 /*
3513  * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
3514  * this function scans fs tree to find blocks reference the data extent
3515  */
find_data_references(struct reloc_control * rc,struct btrfs_key * extent_key,struct extent_buffer * leaf,struct btrfs_extent_data_ref * ref,struct rb_root * blocks)3516 static int find_data_references(struct reloc_control *rc,
3517 				struct btrfs_key *extent_key,
3518 				struct extent_buffer *leaf,
3519 				struct btrfs_extent_data_ref *ref,
3520 				struct rb_root *blocks)
3521 {
3522 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3523 	struct btrfs_path *path;
3524 	struct tree_block *block;
3525 	struct btrfs_root *root;
3526 	struct btrfs_file_extent_item *fi;
3527 	struct rb_node *rb_node;
3528 	struct btrfs_key key;
3529 	u64 ref_root;
3530 	u64 ref_objectid;
3531 	u64 ref_offset;
3532 	u32 ref_count;
3533 	u32 nritems;
3534 	int err = 0;
3535 	int added = 0;
3536 	int counted;
3537 	int ret;
3538 
3539 	ref_root = btrfs_extent_data_ref_root(leaf, ref);
3540 	ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
3541 	ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
3542 	ref_count = btrfs_extent_data_ref_count(leaf, ref);
3543 
3544 	/*
3545 	 * This is an extent belonging to the free space cache, lets just delete
3546 	 * it and redo the search.
3547 	 */
3548 	if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
3549 		ret = delete_block_group_cache(fs_info, rc->block_group,
3550 					       NULL, ref_objectid);
3551 		if (ret != -ENOENT)
3552 			return ret;
3553 		ret = 0;
3554 	}
3555 
3556 	path = btrfs_alloc_path();
3557 	if (!path)
3558 		return -ENOMEM;
3559 	path->reada = READA_FORWARD;
3560 
3561 	root = read_fs_root(fs_info, ref_root);
3562 	if (IS_ERR(root)) {
3563 		err = PTR_ERR(root);
3564 		goto out;
3565 	}
3566 
3567 	key.objectid = ref_objectid;
3568 	key.type = BTRFS_EXTENT_DATA_KEY;
3569 	if (ref_offset > ((u64)-1 << 32))
3570 		key.offset = 0;
3571 	else
3572 		key.offset = ref_offset;
3573 
3574 	path->search_commit_root = 1;
3575 	path->skip_locking = 1;
3576 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3577 	if (ret < 0) {
3578 		err = ret;
3579 		goto out;
3580 	}
3581 
3582 	leaf = path->nodes[0];
3583 	nritems = btrfs_header_nritems(leaf);
3584 	/*
3585 	 * the references in tree blocks that use full backrefs
3586 	 * are not counted in
3587 	 */
3588 	if (block_use_full_backref(rc, leaf))
3589 		counted = 0;
3590 	else
3591 		counted = 1;
3592 	rb_node = tree_search(blocks, leaf->start);
3593 	if (rb_node) {
3594 		if (counted)
3595 			added = 1;
3596 		else
3597 			path->slots[0] = nritems;
3598 	}
3599 
3600 	while (ref_count > 0) {
3601 		while (path->slots[0] >= nritems) {
3602 			ret = btrfs_next_leaf(root, path);
3603 			if (ret < 0) {
3604 				err = ret;
3605 				goto out;
3606 			}
3607 			if (WARN_ON(ret > 0))
3608 				goto out;
3609 
3610 			leaf = path->nodes[0];
3611 			nritems = btrfs_header_nritems(leaf);
3612 			added = 0;
3613 
3614 			if (block_use_full_backref(rc, leaf))
3615 				counted = 0;
3616 			else
3617 				counted = 1;
3618 			rb_node = tree_search(blocks, leaf->start);
3619 			if (rb_node) {
3620 				if (counted)
3621 					added = 1;
3622 				else
3623 					path->slots[0] = nritems;
3624 			}
3625 		}
3626 
3627 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3628 		if (WARN_ON(key.objectid != ref_objectid ||
3629 		    key.type != BTRFS_EXTENT_DATA_KEY))
3630 			break;
3631 
3632 		fi = btrfs_item_ptr(leaf, path->slots[0],
3633 				    struct btrfs_file_extent_item);
3634 
3635 		if (btrfs_file_extent_type(leaf, fi) ==
3636 		    BTRFS_FILE_EXTENT_INLINE)
3637 			goto next;
3638 
3639 		if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
3640 		    extent_key->objectid)
3641 			goto next;
3642 
3643 		key.offset -= btrfs_file_extent_offset(leaf, fi);
3644 		if (key.offset != ref_offset)
3645 			goto next;
3646 
3647 		if (counted)
3648 			ref_count--;
3649 		if (added)
3650 			goto next;
3651 
3652 		if (!tree_block_processed(leaf->start, rc)) {
3653 			block = kmalloc(sizeof(*block), GFP_NOFS);
3654 			if (!block) {
3655 				err = -ENOMEM;
3656 				break;
3657 			}
3658 			block->bytenr = leaf->start;
3659 			btrfs_item_key_to_cpu(leaf, &block->key, 0);
3660 			block->level = 0;
3661 			block->key_ready = 1;
3662 			rb_node = tree_insert(blocks, block->bytenr,
3663 					      &block->rb_node);
3664 			if (rb_node)
3665 				backref_tree_panic(rb_node, -EEXIST,
3666 						   block->bytenr);
3667 		}
3668 		if (counted)
3669 			added = 1;
3670 		else
3671 			path->slots[0] = nritems;
3672 next:
3673 		path->slots[0]++;
3674 
3675 	}
3676 out:
3677 	btrfs_free_path(path);
3678 	return err;
3679 }
3680 
3681 /*
3682  * helper to find all tree blocks that reference a given data extent
3683  */
3684 static noinline_for_stack
add_data_references(struct reloc_control * rc,struct btrfs_key * extent_key,struct btrfs_path * path,struct rb_root * blocks)3685 int add_data_references(struct reloc_control *rc,
3686 			struct btrfs_key *extent_key,
3687 			struct btrfs_path *path,
3688 			struct rb_root *blocks)
3689 {
3690 	struct btrfs_key key;
3691 	struct extent_buffer *eb;
3692 	struct btrfs_extent_data_ref *dref;
3693 	struct btrfs_extent_inline_ref *iref;
3694 	unsigned long ptr;
3695 	unsigned long end;
3696 	u32 blocksize = rc->extent_root->fs_info->nodesize;
3697 	int ret = 0;
3698 	int err = 0;
3699 
3700 	eb = path->nodes[0];
3701 	ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3702 	end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
3703 	ptr += sizeof(struct btrfs_extent_item);
3704 
3705 	while (ptr < end) {
3706 		iref = (struct btrfs_extent_inline_ref *)ptr;
3707 		key.type = btrfs_get_extent_inline_ref_type(eb, iref,
3708 							BTRFS_REF_TYPE_DATA);
3709 		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3710 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3711 			ret = __add_tree_block(rc, key.offset, blocksize,
3712 					       blocks);
3713 		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3714 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
3715 			ret = find_data_references(rc, extent_key,
3716 						   eb, dref, blocks);
3717 		} else {
3718 			ret = -EUCLEAN;
3719 			btrfs_err(rc->extent_root->fs_info,
3720 		     "extent %llu slot %d has an invalid inline ref type",
3721 			     eb->start, path->slots[0]);
3722 		}
3723 		if (ret) {
3724 			err = ret;
3725 			goto out;
3726 		}
3727 		ptr += btrfs_extent_inline_ref_size(key.type);
3728 	}
3729 	WARN_ON(ptr > end);
3730 
3731 	while (1) {
3732 		cond_resched();
3733 		eb = path->nodes[0];
3734 		if (path->slots[0] >= btrfs_header_nritems(eb)) {
3735 			ret = btrfs_next_leaf(rc->extent_root, path);
3736 			if (ret < 0) {
3737 				err = ret;
3738 				break;
3739 			}
3740 			if (ret > 0)
3741 				break;
3742 			eb = path->nodes[0];
3743 		}
3744 
3745 		btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
3746 		if (key.objectid != extent_key->objectid)
3747 			break;
3748 
3749 		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3750 			ret = __add_tree_block(rc, key.offset, blocksize,
3751 					       blocks);
3752 		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3753 			dref = btrfs_item_ptr(eb, path->slots[0],
3754 					      struct btrfs_extent_data_ref);
3755 			ret = find_data_references(rc, extent_key,
3756 						   eb, dref, blocks);
3757 		} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
3758 			btrfs_print_v0_err(eb->fs_info);
3759 			btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
3760 			ret = -EINVAL;
3761 		} else {
3762 			ret = 0;
3763 		}
3764 		if (ret) {
3765 			err = ret;
3766 			break;
3767 		}
3768 		path->slots[0]++;
3769 	}
3770 out:
3771 	btrfs_release_path(path);
3772 	if (err)
3773 		free_block_list(blocks);
3774 	return err;
3775 }
3776 
3777 /*
3778  * helper to find next unprocessed extent
3779  */
3780 static noinline_for_stack
find_next_extent(struct reloc_control * rc,struct btrfs_path * path,struct btrfs_key * extent_key)3781 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3782 		     struct btrfs_key *extent_key)
3783 {
3784 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3785 	struct btrfs_key key;
3786 	struct extent_buffer *leaf;
3787 	u64 start, end, last;
3788 	int ret;
3789 
3790 	last = rc->block_group->key.objectid + rc->block_group->key.offset;
3791 	while (1) {
3792 		cond_resched();
3793 		if (rc->search_start >= last) {
3794 			ret = 1;
3795 			break;
3796 		}
3797 
3798 		key.objectid = rc->search_start;
3799 		key.type = BTRFS_EXTENT_ITEM_KEY;
3800 		key.offset = 0;
3801 
3802 		path->search_commit_root = 1;
3803 		path->skip_locking = 1;
3804 		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3805 					0, 0);
3806 		if (ret < 0)
3807 			break;
3808 next:
3809 		leaf = path->nodes[0];
3810 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3811 			ret = btrfs_next_leaf(rc->extent_root, path);
3812 			if (ret != 0)
3813 				break;
3814 			leaf = path->nodes[0];
3815 		}
3816 
3817 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3818 		if (key.objectid >= last) {
3819 			ret = 1;
3820 			break;
3821 		}
3822 
3823 		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3824 		    key.type != BTRFS_METADATA_ITEM_KEY) {
3825 			path->slots[0]++;
3826 			goto next;
3827 		}
3828 
3829 		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3830 		    key.objectid + key.offset <= rc->search_start) {
3831 			path->slots[0]++;
3832 			goto next;
3833 		}
3834 
3835 		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3836 		    key.objectid + fs_info->nodesize <=
3837 		    rc->search_start) {
3838 			path->slots[0]++;
3839 			goto next;
3840 		}
3841 
3842 		ret = find_first_extent_bit(&rc->processed_blocks,
3843 					    key.objectid, &start, &end,
3844 					    EXTENT_DIRTY, NULL);
3845 
3846 		if (ret == 0 && start <= key.objectid) {
3847 			btrfs_release_path(path);
3848 			rc->search_start = end + 1;
3849 		} else {
3850 			if (key.type == BTRFS_EXTENT_ITEM_KEY)
3851 				rc->search_start = key.objectid + key.offset;
3852 			else
3853 				rc->search_start = key.objectid +
3854 					fs_info->nodesize;
3855 			memcpy(extent_key, &key, sizeof(key));
3856 			return 0;
3857 		}
3858 	}
3859 	btrfs_release_path(path);
3860 	return ret;
3861 }
3862 
set_reloc_control(struct reloc_control * rc)3863 static void set_reloc_control(struct reloc_control *rc)
3864 {
3865 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3866 
3867 	mutex_lock(&fs_info->reloc_mutex);
3868 	fs_info->reloc_ctl = rc;
3869 	mutex_unlock(&fs_info->reloc_mutex);
3870 }
3871 
unset_reloc_control(struct reloc_control * rc)3872 static void unset_reloc_control(struct reloc_control *rc)
3873 {
3874 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3875 
3876 	mutex_lock(&fs_info->reloc_mutex);
3877 	fs_info->reloc_ctl = NULL;
3878 	mutex_unlock(&fs_info->reloc_mutex);
3879 }
3880 
check_extent_flags(u64 flags)3881 static int check_extent_flags(u64 flags)
3882 {
3883 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3884 	    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3885 		return 1;
3886 	if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3887 	    !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3888 		return 1;
3889 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3890 	    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3891 		return 1;
3892 	return 0;
3893 }
3894 
3895 static noinline_for_stack
prepare_to_relocate(struct reloc_control * rc)3896 int prepare_to_relocate(struct reloc_control *rc)
3897 {
3898 	struct btrfs_trans_handle *trans;
3899 	int ret;
3900 
3901 	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3902 					      BTRFS_BLOCK_RSV_TEMP);
3903 	if (!rc->block_rsv)
3904 		return -ENOMEM;
3905 
3906 	memset(&rc->cluster, 0, sizeof(rc->cluster));
3907 	rc->search_start = rc->block_group->key.objectid;
3908 	rc->extents_found = 0;
3909 	rc->nodes_relocated = 0;
3910 	rc->merging_rsv_size = 0;
3911 	rc->reserved_bytes = 0;
3912 	rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3913 			      RELOCATION_RESERVED_NODES;
3914 	ret = btrfs_block_rsv_refill(rc->extent_root,
3915 				     rc->block_rsv, rc->block_rsv->size,
3916 				     BTRFS_RESERVE_FLUSH_ALL);
3917 	if (ret)
3918 		return ret;
3919 
3920 	rc->create_reloc_tree = 1;
3921 	set_reloc_control(rc);
3922 
3923 	trans = btrfs_join_transaction(rc->extent_root);
3924 	if (IS_ERR(trans)) {
3925 		unset_reloc_control(rc);
3926 		/*
3927 		 * extent tree is not a ref_cow tree and has no reloc_root to
3928 		 * cleanup.  And callers are responsible to free the above
3929 		 * block rsv.
3930 		 */
3931 		return PTR_ERR(trans);
3932 	}
3933 
3934 	ret = btrfs_commit_transaction(trans);
3935 	if (ret)
3936 		unset_reloc_control(rc);
3937 
3938 	return ret;
3939 }
3940 
relocate_block_group(struct reloc_control * rc)3941 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3942 {
3943 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3944 	struct rb_root blocks = RB_ROOT;
3945 	struct btrfs_key key;
3946 	struct btrfs_trans_handle *trans = NULL;
3947 	struct btrfs_path *path;
3948 	struct btrfs_extent_item *ei;
3949 	u64 flags;
3950 	u32 item_size;
3951 	int ret;
3952 	int err = 0;
3953 	int progress = 0;
3954 
3955 	path = btrfs_alloc_path();
3956 	if (!path)
3957 		return -ENOMEM;
3958 	path->reada = READA_FORWARD;
3959 
3960 	ret = prepare_to_relocate(rc);
3961 	if (ret) {
3962 		err = ret;
3963 		goto out_free;
3964 	}
3965 
3966 	while (1) {
3967 		rc->reserved_bytes = 0;
3968 		ret = btrfs_block_rsv_refill(rc->extent_root,
3969 					rc->block_rsv, rc->block_rsv->size,
3970 					BTRFS_RESERVE_FLUSH_ALL);
3971 		if (ret) {
3972 			err = ret;
3973 			break;
3974 		}
3975 		progress++;
3976 		trans = btrfs_start_transaction(rc->extent_root, 0);
3977 		if (IS_ERR(trans)) {
3978 			err = PTR_ERR(trans);
3979 			trans = NULL;
3980 			break;
3981 		}
3982 restart:
3983 		if (update_backref_cache(trans, &rc->backref_cache)) {
3984 			btrfs_end_transaction(trans);
3985 			trans = NULL;
3986 			continue;
3987 		}
3988 
3989 		ret = find_next_extent(rc, path, &key);
3990 		if (ret < 0)
3991 			err = ret;
3992 		if (ret != 0)
3993 			break;
3994 
3995 		rc->extents_found++;
3996 
3997 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3998 				    struct btrfs_extent_item);
3999 		item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
4000 		if (item_size >= sizeof(*ei)) {
4001 			flags = btrfs_extent_flags(path->nodes[0], ei);
4002 			ret = check_extent_flags(flags);
4003 			BUG_ON(ret);
4004 		} else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
4005 			err = -EINVAL;
4006 			btrfs_print_v0_err(trans->fs_info);
4007 			btrfs_abort_transaction(trans, err);
4008 			break;
4009 		} else {
4010 			BUG();
4011 		}
4012 
4013 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
4014 			ret = add_tree_block(rc, &key, path, &blocks);
4015 		} else if (rc->stage == UPDATE_DATA_PTRS &&
4016 			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
4017 			ret = add_data_references(rc, &key, path, &blocks);
4018 		} else {
4019 			btrfs_release_path(path);
4020 			ret = 0;
4021 		}
4022 		if (ret < 0) {
4023 			err = ret;
4024 			break;
4025 		}
4026 
4027 		if (!RB_EMPTY_ROOT(&blocks)) {
4028 			ret = relocate_tree_blocks(trans, rc, &blocks);
4029 			if (ret < 0) {
4030 				/*
4031 				 * if we fail to relocate tree blocks, force to update
4032 				 * backref cache when committing transaction.
4033 				 */
4034 				rc->backref_cache.last_trans = trans->transid - 1;
4035 
4036 				if (ret != -EAGAIN) {
4037 					err = ret;
4038 					break;
4039 				}
4040 				rc->extents_found--;
4041 				rc->search_start = key.objectid;
4042 			}
4043 		}
4044 
4045 		btrfs_end_transaction_throttle(trans);
4046 		btrfs_btree_balance_dirty(fs_info);
4047 		trans = NULL;
4048 
4049 		if (rc->stage == MOVE_DATA_EXTENTS &&
4050 		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
4051 			rc->found_file_extent = 1;
4052 			ret = relocate_data_extent(rc->data_inode,
4053 						   &key, &rc->cluster);
4054 			if (ret < 0) {
4055 				err = ret;
4056 				break;
4057 			}
4058 		}
4059 	}
4060 	if (trans && progress && err == -ENOSPC) {
4061 		ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
4062 		if (ret == 1) {
4063 			err = 0;
4064 			progress = 0;
4065 			goto restart;
4066 		}
4067 	}
4068 
4069 	btrfs_release_path(path);
4070 	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
4071 
4072 	if (trans) {
4073 		btrfs_end_transaction_throttle(trans);
4074 		btrfs_btree_balance_dirty(fs_info);
4075 	}
4076 
4077 	if (!err) {
4078 		ret = relocate_file_extent_cluster(rc->data_inode,
4079 						   &rc->cluster);
4080 		if (ret < 0)
4081 			err = ret;
4082 	}
4083 
4084 	rc->create_reloc_tree = 0;
4085 	set_reloc_control(rc);
4086 
4087 	backref_cache_cleanup(&rc->backref_cache);
4088 	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
4089 
4090 	err = prepare_to_merge(rc, err);
4091 
4092 	merge_reloc_roots(rc);
4093 
4094 	rc->merge_reloc_tree = 0;
4095 	unset_reloc_control(rc);
4096 	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
4097 
4098 	/* get rid of pinned extents */
4099 	trans = btrfs_join_transaction(rc->extent_root);
4100 	if (IS_ERR(trans)) {
4101 		err = PTR_ERR(trans);
4102 		goto out_free;
4103 	}
4104 	ret = btrfs_commit_transaction(trans);
4105 	if (ret && !err)
4106 		err = ret;
4107 out_free:
4108 	btrfs_free_block_rsv(fs_info, rc->block_rsv);
4109 	btrfs_free_path(path);
4110 	return err;
4111 }
4112 
__insert_orphan_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 objectid)4113 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
4114 				 struct btrfs_root *root, u64 objectid)
4115 {
4116 	struct btrfs_path *path;
4117 	struct btrfs_inode_item *item;
4118 	struct extent_buffer *leaf;
4119 	int ret;
4120 
4121 	path = btrfs_alloc_path();
4122 	if (!path)
4123 		return -ENOMEM;
4124 
4125 	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
4126 	if (ret)
4127 		goto out;
4128 
4129 	leaf = path->nodes[0];
4130 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
4131 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
4132 	btrfs_set_inode_generation(leaf, item, 1);
4133 	btrfs_set_inode_size(leaf, item, 0);
4134 	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
4135 	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
4136 					  BTRFS_INODE_PREALLOC);
4137 	btrfs_mark_buffer_dirty(leaf);
4138 out:
4139 	btrfs_free_path(path);
4140 	return ret;
4141 }
4142 
4143 /*
4144  * helper to create inode for data relocation.
4145  * the inode is in data relocation tree and its link count is 0
4146  */
4147 static noinline_for_stack
create_reloc_inode(struct btrfs_fs_info * fs_info,struct btrfs_block_group_cache * group)4148 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
4149 				 struct btrfs_block_group_cache *group)
4150 {
4151 	struct inode *inode = NULL;
4152 	struct btrfs_trans_handle *trans;
4153 	struct btrfs_root *root;
4154 	struct btrfs_key key;
4155 	u64 objectid;
4156 	int err = 0;
4157 
4158 	root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4159 	if (IS_ERR(root))
4160 		return ERR_CAST(root);
4161 
4162 	trans = btrfs_start_transaction(root, 6);
4163 	if (IS_ERR(trans))
4164 		return ERR_CAST(trans);
4165 
4166 	err = btrfs_find_free_objectid(root, &objectid);
4167 	if (err)
4168 		goto out;
4169 
4170 	err = __insert_orphan_inode(trans, root, objectid);
4171 	BUG_ON(err);
4172 
4173 	key.objectid = objectid;
4174 	key.type = BTRFS_INODE_ITEM_KEY;
4175 	key.offset = 0;
4176 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4177 	BUG_ON(IS_ERR(inode));
4178 	BTRFS_I(inode)->index_cnt = group->key.objectid;
4179 
4180 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
4181 out:
4182 	btrfs_end_transaction(trans);
4183 	btrfs_btree_balance_dirty(fs_info);
4184 	if (err) {
4185 		if (inode)
4186 			iput(inode);
4187 		inode = ERR_PTR(err);
4188 	}
4189 	return inode;
4190 }
4191 
alloc_reloc_control(void)4192 static struct reloc_control *alloc_reloc_control(void)
4193 {
4194 	struct reloc_control *rc;
4195 
4196 	rc = kzalloc(sizeof(*rc), GFP_NOFS);
4197 	if (!rc)
4198 		return NULL;
4199 
4200 	INIT_LIST_HEAD(&rc->reloc_roots);
4201 	backref_cache_init(&rc->backref_cache);
4202 	mapping_tree_init(&rc->reloc_root_tree);
4203 	extent_io_tree_init(&rc->processed_blocks, NULL);
4204 	return rc;
4205 }
4206 
4207 /*
4208  * Print the block group being relocated
4209  */
describe_relocation(struct btrfs_fs_info * fs_info,struct btrfs_block_group_cache * block_group)4210 static void describe_relocation(struct btrfs_fs_info *fs_info,
4211 				struct btrfs_block_group_cache *block_group)
4212 {
4213 	char buf[128];		/* prefixed by a '|' that'll be dropped */
4214 	u64 flags = block_group->flags;
4215 
4216 	/* Shouldn't happen */
4217 	if (!flags) {
4218 		strcpy(buf, "|NONE");
4219 	} else {
4220 		char *bp = buf;
4221 
4222 #define DESCRIBE_FLAG(f, d) \
4223 		if (flags & BTRFS_BLOCK_GROUP_##f) { \
4224 			bp += snprintf(bp, buf - bp + sizeof(buf), "|%s", d); \
4225 			flags &= ~BTRFS_BLOCK_GROUP_##f; \
4226 		}
4227 		DESCRIBE_FLAG(DATA,     "data");
4228 		DESCRIBE_FLAG(SYSTEM,   "system");
4229 		DESCRIBE_FLAG(METADATA, "metadata");
4230 		DESCRIBE_FLAG(RAID0,    "raid0");
4231 		DESCRIBE_FLAG(RAID1,    "raid1");
4232 		DESCRIBE_FLAG(DUP,      "dup");
4233 		DESCRIBE_FLAG(RAID10,   "raid10");
4234 		DESCRIBE_FLAG(RAID5,    "raid5");
4235 		DESCRIBE_FLAG(RAID6,    "raid6");
4236 		if (flags)
4237 			snprintf(bp, buf - bp + sizeof(buf), "|0x%llx", flags);
4238 #undef DESCRIBE_FLAG
4239 	}
4240 
4241 	btrfs_info(fs_info,
4242 		   "relocating block group %llu flags %s",
4243 		   block_group->key.objectid, buf + 1);
4244 }
4245 
4246 /*
4247  * function to relocate all extents in a block group.
4248  */
btrfs_relocate_block_group(struct btrfs_fs_info * fs_info,u64 group_start)4249 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
4250 {
4251 	struct btrfs_root *extent_root = fs_info->extent_root;
4252 	struct reloc_control *rc;
4253 	struct inode *inode;
4254 	struct btrfs_path *path;
4255 	int ret;
4256 	int rw = 0;
4257 	int err = 0;
4258 
4259 	rc = alloc_reloc_control();
4260 	if (!rc)
4261 		return -ENOMEM;
4262 
4263 	rc->extent_root = extent_root;
4264 
4265 	rc->block_group = btrfs_lookup_block_group(fs_info, group_start);
4266 	BUG_ON(!rc->block_group);
4267 
4268 	ret = btrfs_inc_block_group_ro(rc->block_group);
4269 	if (ret) {
4270 		err = ret;
4271 		goto out;
4272 	}
4273 	rw = 1;
4274 
4275 	path = btrfs_alloc_path();
4276 	if (!path) {
4277 		err = -ENOMEM;
4278 		goto out;
4279 	}
4280 
4281 	inode = lookup_free_space_inode(fs_info, rc->block_group, path);
4282 	btrfs_free_path(path);
4283 
4284 	if (!IS_ERR(inode))
4285 		ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4286 	else
4287 		ret = PTR_ERR(inode);
4288 
4289 	if (ret && ret != -ENOENT) {
4290 		err = ret;
4291 		goto out;
4292 	}
4293 
4294 	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4295 	if (IS_ERR(rc->data_inode)) {
4296 		err = PTR_ERR(rc->data_inode);
4297 		rc->data_inode = NULL;
4298 		goto out;
4299 	}
4300 
4301 	describe_relocation(fs_info, rc->block_group);
4302 
4303 	btrfs_wait_block_group_reservations(rc->block_group);
4304 	btrfs_wait_nocow_writers(rc->block_group);
4305 	btrfs_wait_ordered_roots(fs_info, U64_MAX,
4306 				 rc->block_group->key.objectid,
4307 				 rc->block_group->key.offset);
4308 
4309 	while (1) {
4310 		mutex_lock(&fs_info->cleaner_mutex);
4311 		ret = relocate_block_group(rc);
4312 		mutex_unlock(&fs_info->cleaner_mutex);
4313 		if (ret < 0)
4314 			err = ret;
4315 
4316 		/*
4317 		 * We may have gotten ENOSPC after we already dirtied some
4318 		 * extents.  If writeout happens while we're relocating a
4319 		 * different block group we could end up hitting the
4320 		 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
4321 		 * btrfs_reloc_cow_block.  Make sure we write everything out
4322 		 * properly so we don't trip over this problem, and then break
4323 		 * out of the loop if we hit an error.
4324 		 */
4325 		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4326 			ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4327 						       (u64)-1);
4328 			if (ret)
4329 				err = ret;
4330 			invalidate_mapping_pages(rc->data_inode->i_mapping,
4331 						 0, -1);
4332 			rc->stage = UPDATE_DATA_PTRS;
4333 		}
4334 
4335 		if (err < 0)
4336 			goto out;
4337 
4338 		if (rc->extents_found == 0)
4339 			break;
4340 
4341 		btrfs_info(fs_info, "found %llu extents", rc->extents_found);
4342 
4343 	}
4344 
4345 	WARN_ON(rc->block_group->pinned > 0);
4346 	WARN_ON(rc->block_group->reserved > 0);
4347 	WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
4348 out:
4349 	if (err && rw)
4350 		btrfs_dec_block_group_ro(rc->block_group);
4351 	iput(rc->data_inode);
4352 	btrfs_put_block_group(rc->block_group);
4353 	kfree(rc);
4354 	return err;
4355 }
4356 
mark_garbage_root(struct btrfs_root * root)4357 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4358 {
4359 	struct btrfs_fs_info *fs_info = root->fs_info;
4360 	struct btrfs_trans_handle *trans;
4361 	int ret, err;
4362 
4363 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
4364 	if (IS_ERR(trans))
4365 		return PTR_ERR(trans);
4366 
4367 	memset(&root->root_item.drop_progress, 0,
4368 		sizeof(root->root_item.drop_progress));
4369 	root->root_item.drop_level = 0;
4370 	btrfs_set_root_refs(&root->root_item, 0);
4371 	ret = btrfs_update_root(trans, fs_info->tree_root,
4372 				&root->root_key, &root->root_item);
4373 
4374 	err = btrfs_end_transaction(trans);
4375 	if (err)
4376 		return err;
4377 	return ret;
4378 }
4379 
4380 /*
4381  * recover relocation interrupted by system crash.
4382  *
4383  * this function resumes merging reloc trees with corresponding fs trees.
4384  * this is important for keeping the sharing of tree blocks
4385  */
btrfs_recover_relocation(struct btrfs_root * root)4386 int btrfs_recover_relocation(struct btrfs_root *root)
4387 {
4388 	struct btrfs_fs_info *fs_info = root->fs_info;
4389 	LIST_HEAD(reloc_roots);
4390 	struct btrfs_key key;
4391 	struct btrfs_root *fs_root;
4392 	struct btrfs_root *reloc_root;
4393 	struct btrfs_path *path;
4394 	struct extent_buffer *leaf;
4395 	struct reloc_control *rc = NULL;
4396 	struct btrfs_trans_handle *trans;
4397 	int ret;
4398 	int err = 0;
4399 
4400 	path = btrfs_alloc_path();
4401 	if (!path)
4402 		return -ENOMEM;
4403 	path->reada = READA_BACK;
4404 
4405 	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4406 	key.type = BTRFS_ROOT_ITEM_KEY;
4407 	key.offset = (u64)-1;
4408 
4409 	while (1) {
4410 		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4411 					path, 0, 0);
4412 		if (ret < 0) {
4413 			err = ret;
4414 			goto out;
4415 		}
4416 		if (ret > 0) {
4417 			if (path->slots[0] == 0)
4418 				break;
4419 			path->slots[0]--;
4420 		}
4421 		leaf = path->nodes[0];
4422 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4423 		btrfs_release_path(path);
4424 
4425 		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4426 		    key.type != BTRFS_ROOT_ITEM_KEY)
4427 			break;
4428 
4429 		reloc_root = btrfs_read_fs_root(root, &key);
4430 		if (IS_ERR(reloc_root)) {
4431 			err = PTR_ERR(reloc_root);
4432 			goto out;
4433 		}
4434 
4435 		list_add(&reloc_root->root_list, &reloc_roots);
4436 
4437 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4438 			fs_root = read_fs_root(fs_info,
4439 					       reloc_root->root_key.offset);
4440 			if (IS_ERR(fs_root)) {
4441 				ret = PTR_ERR(fs_root);
4442 				if (ret != -ENOENT) {
4443 					err = ret;
4444 					goto out;
4445 				}
4446 				ret = mark_garbage_root(reloc_root);
4447 				if (ret < 0) {
4448 					err = ret;
4449 					goto out;
4450 				}
4451 			}
4452 		}
4453 
4454 		if (key.offset == 0)
4455 			break;
4456 
4457 		key.offset--;
4458 	}
4459 	btrfs_release_path(path);
4460 
4461 	if (list_empty(&reloc_roots))
4462 		goto out;
4463 
4464 	rc = alloc_reloc_control();
4465 	if (!rc) {
4466 		err = -ENOMEM;
4467 		goto out;
4468 	}
4469 
4470 	rc->extent_root = fs_info->extent_root;
4471 
4472 	set_reloc_control(rc);
4473 
4474 	trans = btrfs_join_transaction(rc->extent_root);
4475 	if (IS_ERR(trans)) {
4476 		unset_reloc_control(rc);
4477 		err = PTR_ERR(trans);
4478 		goto out_free;
4479 	}
4480 
4481 	rc->merge_reloc_tree = 1;
4482 
4483 	while (!list_empty(&reloc_roots)) {
4484 		reloc_root = list_entry(reloc_roots.next,
4485 					struct btrfs_root, root_list);
4486 		list_del(&reloc_root->root_list);
4487 
4488 		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4489 			list_add_tail(&reloc_root->root_list,
4490 				      &rc->reloc_roots);
4491 			continue;
4492 		}
4493 
4494 		fs_root = read_fs_root(fs_info, reloc_root->root_key.offset);
4495 		if (IS_ERR(fs_root)) {
4496 			err = PTR_ERR(fs_root);
4497 			list_add_tail(&reloc_root->root_list, &reloc_roots);
4498 			goto out_free;
4499 		}
4500 
4501 		err = __add_reloc_root(reloc_root);
4502 		BUG_ON(err < 0); /* -ENOMEM or logic error */
4503 		fs_root->reloc_root = reloc_root;
4504 	}
4505 
4506 	err = btrfs_commit_transaction(trans);
4507 	if (err)
4508 		goto out_free;
4509 
4510 	merge_reloc_roots(rc);
4511 
4512 	unset_reloc_control(rc);
4513 
4514 	trans = btrfs_join_transaction(rc->extent_root);
4515 	if (IS_ERR(trans)) {
4516 		err = PTR_ERR(trans);
4517 		goto out_free;
4518 	}
4519 	err = btrfs_commit_transaction(trans);
4520 out_free:
4521 	kfree(rc);
4522 out:
4523 	if (!list_empty(&reloc_roots))
4524 		free_reloc_roots(&reloc_roots);
4525 
4526 	btrfs_free_path(path);
4527 
4528 	if (err == 0) {
4529 		/* cleanup orphan inode in data relocation tree */
4530 		fs_root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4531 		if (IS_ERR(fs_root))
4532 			err = PTR_ERR(fs_root);
4533 		else
4534 			err = btrfs_orphan_cleanup(fs_root);
4535 	}
4536 	return err;
4537 }
4538 
4539 /*
4540  * helper to add ordered checksum for data relocation.
4541  *
4542  * cloning checksum properly handles the nodatasum extents.
4543  * it also saves CPU time to re-calculate the checksum.
4544  */
btrfs_reloc_clone_csums(struct inode * inode,u64 file_pos,u64 len)4545 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
4546 {
4547 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4548 	struct btrfs_ordered_sum *sums;
4549 	struct btrfs_ordered_extent *ordered;
4550 	int ret;
4551 	u64 disk_bytenr;
4552 	u64 new_bytenr;
4553 	LIST_HEAD(list);
4554 
4555 	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4556 	BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
4557 
4558 	disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
4559 	ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr,
4560 				       disk_bytenr + len - 1, &list, 0);
4561 	if (ret)
4562 		goto out;
4563 
4564 	while (!list_empty(&list)) {
4565 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4566 		list_del_init(&sums->list);
4567 
4568 		/*
4569 		 * We need to offset the new_bytenr based on where the csum is.
4570 		 * We need to do this because we will read in entire prealloc
4571 		 * extents but we may have written to say the middle of the
4572 		 * prealloc extent, so we need to make sure the csum goes with
4573 		 * the right disk offset.
4574 		 *
4575 		 * We can do this because the data reloc inode refers strictly
4576 		 * to the on disk bytes, so we don't have to worry about
4577 		 * disk_len vs real len like with real inodes since it's all
4578 		 * disk length.
4579 		 */
4580 		new_bytenr = ordered->start + (sums->bytenr - disk_bytenr);
4581 		sums->bytenr = new_bytenr;
4582 
4583 		btrfs_add_ordered_sum(inode, ordered, sums);
4584 	}
4585 out:
4586 	btrfs_put_ordered_extent(ordered);
4587 	return ret;
4588 }
4589 
btrfs_reloc_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * cow)4590 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4591 			  struct btrfs_root *root, struct extent_buffer *buf,
4592 			  struct extent_buffer *cow)
4593 {
4594 	struct btrfs_fs_info *fs_info = root->fs_info;
4595 	struct reloc_control *rc;
4596 	struct backref_node *node;
4597 	int first_cow = 0;
4598 	int level;
4599 	int ret = 0;
4600 
4601 	rc = fs_info->reloc_ctl;
4602 	if (!rc)
4603 		return 0;
4604 
4605 	BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4606 	       root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4607 
4608 	level = btrfs_header_level(buf);
4609 	if (btrfs_header_generation(buf) <=
4610 	    btrfs_root_last_snapshot(&root->root_item))
4611 		first_cow = 1;
4612 
4613 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4614 	    rc->create_reloc_tree) {
4615 		WARN_ON(!first_cow && level == 0);
4616 
4617 		node = rc->backref_cache.path[level];
4618 		BUG_ON(node->bytenr != buf->start &&
4619 		       node->new_bytenr != buf->start);
4620 
4621 		drop_node_buffer(node);
4622 		extent_buffer_get(cow);
4623 		node->eb = cow;
4624 		node->new_bytenr = cow->start;
4625 
4626 		if (!node->pending) {
4627 			list_move_tail(&node->list,
4628 				       &rc->backref_cache.pending[level]);
4629 			node->pending = 1;
4630 		}
4631 
4632 		if (first_cow)
4633 			__mark_block_processed(rc, node);
4634 
4635 		if (first_cow && level > 0)
4636 			rc->nodes_relocated += buf->len;
4637 	}
4638 
4639 	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4640 		ret = replace_file_extents(trans, rc, root, cow);
4641 	return ret;
4642 }
4643 
4644 /*
4645  * called before creating snapshot. it calculates metadata reservation
4646  * required for relocating tree blocks in the snapshot
4647  */
btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot * pending,u64 * bytes_to_reserve)4648 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4649 			      u64 *bytes_to_reserve)
4650 {
4651 	struct btrfs_root *root;
4652 	struct reloc_control *rc;
4653 
4654 	root = pending->root;
4655 	if (!root->reloc_root)
4656 		return;
4657 
4658 	rc = root->fs_info->reloc_ctl;
4659 	if (!rc->merge_reloc_tree)
4660 		return;
4661 
4662 	root = root->reloc_root;
4663 	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4664 	/*
4665 	 * relocation is in the stage of merging trees. the space
4666 	 * used by merging a reloc tree is twice the size of
4667 	 * relocated tree nodes in the worst case. half for cowing
4668 	 * the reloc tree, half for cowing the fs tree. the space
4669 	 * used by cowing the reloc tree will be freed after the
4670 	 * tree is dropped. if we create snapshot, cowing the fs
4671 	 * tree may use more space than it frees. so we need
4672 	 * reserve extra space.
4673 	 */
4674 	*bytes_to_reserve += rc->nodes_relocated;
4675 }
4676 
4677 /*
4678  * called after snapshot is created. migrate block reservation
4679  * and create reloc root for the newly created snapshot
4680  */
btrfs_reloc_post_snapshot(struct btrfs_trans_handle * trans,struct btrfs_pending_snapshot * pending)4681 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4682 			       struct btrfs_pending_snapshot *pending)
4683 {
4684 	struct btrfs_root *root = pending->root;
4685 	struct btrfs_root *reloc_root;
4686 	struct btrfs_root *new_root;
4687 	struct reloc_control *rc;
4688 	int ret;
4689 
4690 	if (!root->reloc_root)
4691 		return 0;
4692 
4693 	rc = root->fs_info->reloc_ctl;
4694 	rc->merging_rsv_size += rc->nodes_relocated;
4695 
4696 	if (rc->merge_reloc_tree) {
4697 		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4698 					      rc->block_rsv,
4699 					      rc->nodes_relocated, 1);
4700 		if (ret)
4701 			return ret;
4702 	}
4703 
4704 	new_root = pending->snap;
4705 	reloc_root = create_reloc_root(trans, root->reloc_root,
4706 				       new_root->root_key.objectid);
4707 	if (IS_ERR(reloc_root))
4708 		return PTR_ERR(reloc_root);
4709 
4710 	ret = __add_reloc_root(reloc_root);
4711 	BUG_ON(ret < 0);
4712 	new_root->reloc_root = reloc_root;
4713 
4714 	if (rc->create_reloc_tree)
4715 		ret = clone_backref_node(trans, rc, root, reloc_root);
4716 	return ret;
4717 }
4718