1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/ratelimit.h>
8 #include <linux/sched/mm.h>
9 #include "ctree.h"
10 #include "volumes.h"
11 #include "disk-io.h"
12 #include "ordered-data.h"
13 #include "transaction.h"
14 #include "backref.h"
15 #include "extent_io.h"
16 #include "dev-replace.h"
17 #include "check-integrity.h"
18 #include "rcu-string.h"
19 #include "raid56.h"
20 
21 /*
22  * This is only the first step towards a full-features scrub. It reads all
23  * extent and super block and verifies the checksums. In case a bad checksum
24  * is found or the extent cannot be read, good data will be written back if
25  * any can be found.
26  *
27  * Future enhancements:
28  *  - In case an unrepairable extent is encountered, track which files are
29  *    affected and report them
30  *  - track and record media errors, throw out bad devices
31  *  - add a mode to also read unallocated space
32  */
33 
34 struct scrub_block;
35 struct scrub_ctx;
36 
37 /*
38  * the following three values only influence the performance.
39  * The last one configures the number of parallel and outstanding I/O
40  * operations. The first two values configure an upper limit for the number
41  * of (dynamically allocated) pages that are added to a bio.
42  */
43 #define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
44 #define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
45 #define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
46 
47 /*
48  * the following value times PAGE_SIZE needs to be large enough to match the
49  * largest node/leaf/sector size that shall be supported.
50  * Values larger than BTRFS_STRIPE_LEN are not supported.
51  */
52 #define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
53 
54 struct scrub_recover {
55 	refcount_t		refs;
56 	struct btrfs_bio	*bbio;
57 	u64			map_length;
58 };
59 
60 struct scrub_page {
61 	struct scrub_block	*sblock;
62 	struct page		*page;
63 	struct btrfs_device	*dev;
64 	struct list_head	list;
65 	u64			flags;  /* extent flags */
66 	u64			generation;
67 	u64			logical;
68 	u64			physical;
69 	u64			physical_for_dev_replace;
70 	atomic_t		refs;
71 	struct {
72 		unsigned int	mirror_num:8;
73 		unsigned int	have_csum:1;
74 		unsigned int	io_error:1;
75 	};
76 	u8			csum[BTRFS_CSUM_SIZE];
77 
78 	struct scrub_recover	*recover;
79 };
80 
81 struct scrub_bio {
82 	int			index;
83 	struct scrub_ctx	*sctx;
84 	struct btrfs_device	*dev;
85 	struct bio		*bio;
86 	blk_status_t		status;
87 	u64			logical;
88 	u64			physical;
89 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
90 	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
91 #else
92 	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
93 #endif
94 	int			page_count;
95 	int			next_free;
96 	struct btrfs_work	work;
97 };
98 
99 struct scrub_block {
100 	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
101 	int			page_count;
102 	atomic_t		outstanding_pages;
103 	refcount_t		refs; /* free mem on transition to zero */
104 	struct scrub_ctx	*sctx;
105 	struct scrub_parity	*sparity;
106 	struct {
107 		unsigned int	header_error:1;
108 		unsigned int	checksum_error:1;
109 		unsigned int	no_io_error_seen:1;
110 		unsigned int	generation_error:1; /* also sets header_error */
111 
112 		/* The following is for the data used to check parity */
113 		/* It is for the data with checksum */
114 		unsigned int	data_corrected:1;
115 	};
116 	struct btrfs_work	work;
117 };
118 
119 /* Used for the chunks with parity stripe such RAID5/6 */
120 struct scrub_parity {
121 	struct scrub_ctx	*sctx;
122 
123 	struct btrfs_device	*scrub_dev;
124 
125 	u64			logic_start;
126 
127 	u64			logic_end;
128 
129 	int			nsectors;
130 
131 	u64			stripe_len;
132 
133 	refcount_t		refs;
134 
135 	struct list_head	spages;
136 
137 	/* Work of parity check and repair */
138 	struct btrfs_work	work;
139 
140 	/* Mark the parity blocks which have data */
141 	unsigned long		*dbitmap;
142 
143 	/*
144 	 * Mark the parity blocks which have data, but errors happen when
145 	 * read data or check data
146 	 */
147 	unsigned long		*ebitmap;
148 
149 	unsigned long		bitmap[0];
150 };
151 
152 struct scrub_ctx {
153 	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
154 	struct btrfs_fs_info	*fs_info;
155 	int			first_free;
156 	int			curr;
157 	atomic_t		bios_in_flight;
158 	atomic_t		workers_pending;
159 	spinlock_t		list_lock;
160 	wait_queue_head_t	list_wait;
161 	u16			csum_size;
162 	struct list_head	csum_list;
163 	atomic_t		cancel_req;
164 	int			readonly;
165 	int			pages_per_rd_bio;
166 
167 	int			is_dev_replace;
168 
169 	struct scrub_bio        *wr_curr_bio;
170 	struct mutex            wr_lock;
171 	int                     pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
172 	struct btrfs_device     *wr_tgtdev;
173 	bool                    flush_all_writes;
174 
175 	/*
176 	 * statistics
177 	 */
178 	struct btrfs_scrub_progress stat;
179 	spinlock_t		stat_lock;
180 
181 	/*
182 	 * Use a ref counter to avoid use-after-free issues. Scrub workers
183 	 * decrement bios_in_flight and workers_pending and then do a wakeup
184 	 * on the list_wait wait queue. We must ensure the main scrub task
185 	 * doesn't free the scrub context before or while the workers are
186 	 * doing the wakeup() call.
187 	 */
188 	refcount_t              refs;
189 };
190 
191 struct scrub_warning {
192 	struct btrfs_path	*path;
193 	u64			extent_item_size;
194 	const char		*errstr;
195 	u64			physical;
196 	u64			logical;
197 	struct btrfs_device	*dev;
198 };
199 
200 struct full_stripe_lock {
201 	struct rb_node node;
202 	u64 logical;
203 	u64 refs;
204 	struct mutex mutex;
205 };
206 
207 static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
208 static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
209 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
210 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
211 				     struct scrub_block *sblocks_for_recheck);
212 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
213 				struct scrub_block *sblock,
214 				int retry_failed_mirror);
215 static void scrub_recheck_block_checksum(struct scrub_block *sblock);
216 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
217 					     struct scrub_block *sblock_good);
218 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
219 					    struct scrub_block *sblock_good,
220 					    int page_num, int force_write);
221 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
222 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
223 					   int page_num);
224 static int scrub_checksum_data(struct scrub_block *sblock);
225 static int scrub_checksum_tree_block(struct scrub_block *sblock);
226 static int scrub_checksum_super(struct scrub_block *sblock);
227 static void scrub_block_get(struct scrub_block *sblock);
228 static void scrub_block_put(struct scrub_block *sblock);
229 static void scrub_page_get(struct scrub_page *spage);
230 static void scrub_page_put(struct scrub_page *spage);
231 static void scrub_parity_get(struct scrub_parity *sparity);
232 static void scrub_parity_put(struct scrub_parity *sparity);
233 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
234 				    struct scrub_page *spage);
235 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
236 		       u64 physical, struct btrfs_device *dev, u64 flags,
237 		       u64 gen, int mirror_num, u8 *csum, int force,
238 		       u64 physical_for_dev_replace);
239 static void scrub_bio_end_io(struct bio *bio);
240 static void scrub_bio_end_io_worker(struct btrfs_work *work);
241 static void scrub_block_complete(struct scrub_block *sblock);
242 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
243 			       u64 extent_logical, u64 extent_len,
244 			       u64 *extent_physical,
245 			       struct btrfs_device **extent_dev,
246 			       int *extent_mirror_num);
247 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
248 				    struct scrub_page *spage);
249 static void scrub_wr_submit(struct scrub_ctx *sctx);
250 static void scrub_wr_bio_end_io(struct bio *bio);
251 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
252 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
253 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
254 static void scrub_put_ctx(struct scrub_ctx *sctx);
255 
scrub_is_page_on_raid56(struct scrub_page * page)256 static inline int scrub_is_page_on_raid56(struct scrub_page *page)
257 {
258 	return page->recover &&
259 	       (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
260 }
261 
scrub_pending_bio_inc(struct scrub_ctx * sctx)262 static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
263 {
264 	refcount_inc(&sctx->refs);
265 	atomic_inc(&sctx->bios_in_flight);
266 }
267 
scrub_pending_bio_dec(struct scrub_ctx * sctx)268 static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
269 {
270 	atomic_dec(&sctx->bios_in_flight);
271 	wake_up(&sctx->list_wait);
272 	scrub_put_ctx(sctx);
273 }
274 
__scrub_blocked_if_needed(struct btrfs_fs_info * fs_info)275 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
276 {
277 	while (atomic_read(&fs_info->scrub_pause_req)) {
278 		mutex_unlock(&fs_info->scrub_lock);
279 		wait_event(fs_info->scrub_pause_wait,
280 		   atomic_read(&fs_info->scrub_pause_req) == 0);
281 		mutex_lock(&fs_info->scrub_lock);
282 	}
283 }
284 
scrub_pause_on(struct btrfs_fs_info * fs_info)285 static void scrub_pause_on(struct btrfs_fs_info *fs_info)
286 {
287 	atomic_inc(&fs_info->scrubs_paused);
288 	wake_up(&fs_info->scrub_pause_wait);
289 }
290 
scrub_pause_off(struct btrfs_fs_info * fs_info)291 static void scrub_pause_off(struct btrfs_fs_info *fs_info)
292 {
293 	mutex_lock(&fs_info->scrub_lock);
294 	__scrub_blocked_if_needed(fs_info);
295 	atomic_dec(&fs_info->scrubs_paused);
296 	mutex_unlock(&fs_info->scrub_lock);
297 
298 	wake_up(&fs_info->scrub_pause_wait);
299 }
300 
scrub_blocked_if_needed(struct btrfs_fs_info * fs_info)301 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
302 {
303 	scrub_pause_on(fs_info);
304 	scrub_pause_off(fs_info);
305 }
306 
307 /*
308  * Insert new full stripe lock into full stripe locks tree
309  *
310  * Return pointer to existing or newly inserted full_stripe_lock structure if
311  * everything works well.
312  * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
313  *
314  * NOTE: caller must hold full_stripe_locks_root->lock before calling this
315  * function
316  */
insert_full_stripe_lock(struct btrfs_full_stripe_locks_tree * locks_root,u64 fstripe_logical)317 static struct full_stripe_lock *insert_full_stripe_lock(
318 		struct btrfs_full_stripe_locks_tree *locks_root,
319 		u64 fstripe_logical)
320 {
321 	struct rb_node **p;
322 	struct rb_node *parent = NULL;
323 	struct full_stripe_lock *entry;
324 	struct full_stripe_lock *ret;
325 	unsigned int nofs_flag;
326 
327 	lockdep_assert_held(&locks_root->lock);
328 
329 	p = &locks_root->root.rb_node;
330 	while (*p) {
331 		parent = *p;
332 		entry = rb_entry(parent, struct full_stripe_lock, node);
333 		if (fstripe_logical < entry->logical) {
334 			p = &(*p)->rb_left;
335 		} else if (fstripe_logical > entry->logical) {
336 			p = &(*p)->rb_right;
337 		} else {
338 			entry->refs++;
339 			return entry;
340 		}
341 	}
342 
343 	/*
344 	 * Insert new lock.
345 	 *
346 	 * We must use GFP_NOFS because the scrub task might be waiting for a
347 	 * worker task executing this function and in turn a transaction commit
348 	 * might be waiting the scrub task to pause (which needs to wait for all
349 	 * the worker tasks to complete before pausing).
350 	 */
351 	nofs_flag = memalloc_nofs_save();
352 	ret = kmalloc(sizeof(*ret), GFP_KERNEL);
353 	memalloc_nofs_restore(nofs_flag);
354 	if (!ret)
355 		return ERR_PTR(-ENOMEM);
356 	ret->logical = fstripe_logical;
357 	ret->refs = 1;
358 	mutex_init(&ret->mutex);
359 
360 	rb_link_node(&ret->node, parent, p);
361 	rb_insert_color(&ret->node, &locks_root->root);
362 	return ret;
363 }
364 
365 /*
366  * Search for a full stripe lock of a block group
367  *
368  * Return pointer to existing full stripe lock if found
369  * Return NULL if not found
370  */
search_full_stripe_lock(struct btrfs_full_stripe_locks_tree * locks_root,u64 fstripe_logical)371 static struct full_stripe_lock *search_full_stripe_lock(
372 		struct btrfs_full_stripe_locks_tree *locks_root,
373 		u64 fstripe_logical)
374 {
375 	struct rb_node *node;
376 	struct full_stripe_lock *entry;
377 
378 	lockdep_assert_held(&locks_root->lock);
379 
380 	node = locks_root->root.rb_node;
381 	while (node) {
382 		entry = rb_entry(node, struct full_stripe_lock, node);
383 		if (fstripe_logical < entry->logical)
384 			node = node->rb_left;
385 		else if (fstripe_logical > entry->logical)
386 			node = node->rb_right;
387 		else
388 			return entry;
389 	}
390 	return NULL;
391 }
392 
393 /*
394  * Helper to get full stripe logical from a normal bytenr.
395  *
396  * Caller must ensure @cache is a RAID56 block group.
397  */
get_full_stripe_logical(struct btrfs_block_group_cache * cache,u64 bytenr)398 static u64 get_full_stripe_logical(struct btrfs_block_group_cache *cache,
399 				   u64 bytenr)
400 {
401 	u64 ret;
402 
403 	/*
404 	 * Due to chunk item size limit, full stripe length should not be
405 	 * larger than U32_MAX. Just a sanity check here.
406 	 */
407 	WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);
408 
409 	/*
410 	 * round_down() can only handle power of 2, while RAID56 full
411 	 * stripe length can be 64KiB * n, so we need to manually round down.
412 	 */
413 	ret = div64_u64(bytenr - cache->key.objectid, cache->full_stripe_len) *
414 		cache->full_stripe_len + cache->key.objectid;
415 	return ret;
416 }
417 
418 /*
419  * Lock a full stripe to avoid concurrency of recovery and read
420  *
421  * It's only used for profiles with parities (RAID5/6), for other profiles it
422  * does nothing.
423  *
424  * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
425  * So caller must call unlock_full_stripe() at the same context.
426  *
427  * Return <0 if encounters error.
428  */
lock_full_stripe(struct btrfs_fs_info * fs_info,u64 bytenr,bool * locked_ret)429 static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
430 			    bool *locked_ret)
431 {
432 	struct btrfs_block_group_cache *bg_cache;
433 	struct btrfs_full_stripe_locks_tree *locks_root;
434 	struct full_stripe_lock *existing;
435 	u64 fstripe_start;
436 	int ret = 0;
437 
438 	*locked_ret = false;
439 	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
440 	if (!bg_cache) {
441 		ASSERT(0);
442 		return -ENOENT;
443 	}
444 
445 	/* Profiles not based on parity don't need full stripe lock */
446 	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
447 		goto out;
448 	locks_root = &bg_cache->full_stripe_locks_root;
449 
450 	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
451 
452 	/* Now insert the full stripe lock */
453 	mutex_lock(&locks_root->lock);
454 	existing = insert_full_stripe_lock(locks_root, fstripe_start);
455 	mutex_unlock(&locks_root->lock);
456 	if (IS_ERR(existing)) {
457 		ret = PTR_ERR(existing);
458 		goto out;
459 	}
460 	mutex_lock(&existing->mutex);
461 	*locked_ret = true;
462 out:
463 	btrfs_put_block_group(bg_cache);
464 	return ret;
465 }
466 
467 /*
468  * Unlock a full stripe.
469  *
470  * NOTE: Caller must ensure it's the same context calling corresponding
471  * lock_full_stripe().
472  *
473  * Return 0 if we unlock full stripe without problem.
474  * Return <0 for error
475  */
unlock_full_stripe(struct btrfs_fs_info * fs_info,u64 bytenr,bool locked)476 static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
477 			      bool locked)
478 {
479 	struct btrfs_block_group_cache *bg_cache;
480 	struct btrfs_full_stripe_locks_tree *locks_root;
481 	struct full_stripe_lock *fstripe_lock;
482 	u64 fstripe_start;
483 	bool freeit = false;
484 	int ret = 0;
485 
486 	/* If we didn't acquire full stripe lock, no need to continue */
487 	if (!locked)
488 		return 0;
489 
490 	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
491 	if (!bg_cache) {
492 		ASSERT(0);
493 		return -ENOENT;
494 	}
495 	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
496 		goto out;
497 
498 	locks_root = &bg_cache->full_stripe_locks_root;
499 	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
500 
501 	mutex_lock(&locks_root->lock);
502 	fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
503 	/* Unpaired unlock_full_stripe() detected */
504 	if (!fstripe_lock) {
505 		WARN_ON(1);
506 		ret = -ENOENT;
507 		mutex_unlock(&locks_root->lock);
508 		goto out;
509 	}
510 
511 	if (fstripe_lock->refs == 0) {
512 		WARN_ON(1);
513 		btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
514 			fstripe_lock->logical);
515 	} else {
516 		fstripe_lock->refs--;
517 	}
518 
519 	if (fstripe_lock->refs == 0) {
520 		rb_erase(&fstripe_lock->node, &locks_root->root);
521 		freeit = true;
522 	}
523 	mutex_unlock(&locks_root->lock);
524 
525 	mutex_unlock(&fstripe_lock->mutex);
526 	if (freeit)
527 		kfree(fstripe_lock);
528 out:
529 	btrfs_put_block_group(bg_cache);
530 	return ret;
531 }
532 
scrub_free_csums(struct scrub_ctx * sctx)533 static void scrub_free_csums(struct scrub_ctx *sctx)
534 {
535 	while (!list_empty(&sctx->csum_list)) {
536 		struct btrfs_ordered_sum *sum;
537 		sum = list_first_entry(&sctx->csum_list,
538 				       struct btrfs_ordered_sum, list);
539 		list_del(&sum->list);
540 		kfree(sum);
541 	}
542 }
543 
scrub_free_ctx(struct scrub_ctx * sctx)544 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
545 {
546 	int i;
547 
548 	if (!sctx)
549 		return;
550 
551 	/* this can happen when scrub is cancelled */
552 	if (sctx->curr != -1) {
553 		struct scrub_bio *sbio = sctx->bios[sctx->curr];
554 
555 		for (i = 0; i < sbio->page_count; i++) {
556 			WARN_ON(!sbio->pagev[i]->page);
557 			scrub_block_put(sbio->pagev[i]->sblock);
558 		}
559 		bio_put(sbio->bio);
560 	}
561 
562 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
563 		struct scrub_bio *sbio = sctx->bios[i];
564 
565 		if (!sbio)
566 			break;
567 		kfree(sbio);
568 	}
569 
570 	kfree(sctx->wr_curr_bio);
571 	scrub_free_csums(sctx);
572 	kfree(sctx);
573 }
574 
scrub_put_ctx(struct scrub_ctx * sctx)575 static void scrub_put_ctx(struct scrub_ctx *sctx)
576 {
577 	if (refcount_dec_and_test(&sctx->refs))
578 		scrub_free_ctx(sctx);
579 }
580 
scrub_setup_ctx(struct btrfs_fs_info * fs_info,int is_dev_replace)581 static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
582 		struct btrfs_fs_info *fs_info, int is_dev_replace)
583 {
584 	struct scrub_ctx *sctx;
585 	int		i;
586 
587 	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
588 	if (!sctx)
589 		goto nomem;
590 	refcount_set(&sctx->refs, 1);
591 	sctx->is_dev_replace = is_dev_replace;
592 	sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
593 	sctx->curr = -1;
594 	sctx->fs_info = fs_info;
595 	INIT_LIST_HEAD(&sctx->csum_list);
596 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
597 		struct scrub_bio *sbio;
598 
599 		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
600 		if (!sbio)
601 			goto nomem;
602 		sctx->bios[i] = sbio;
603 
604 		sbio->index = i;
605 		sbio->sctx = sctx;
606 		sbio->page_count = 0;
607 		btrfs_init_work(&sbio->work, btrfs_scrub_helper,
608 				scrub_bio_end_io_worker, NULL, NULL);
609 
610 		if (i != SCRUB_BIOS_PER_SCTX - 1)
611 			sctx->bios[i]->next_free = i + 1;
612 		else
613 			sctx->bios[i]->next_free = -1;
614 	}
615 	sctx->first_free = 0;
616 	atomic_set(&sctx->bios_in_flight, 0);
617 	atomic_set(&sctx->workers_pending, 0);
618 	atomic_set(&sctx->cancel_req, 0);
619 	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
620 
621 	spin_lock_init(&sctx->list_lock);
622 	spin_lock_init(&sctx->stat_lock);
623 	init_waitqueue_head(&sctx->list_wait);
624 
625 	WARN_ON(sctx->wr_curr_bio != NULL);
626 	mutex_init(&sctx->wr_lock);
627 	sctx->wr_curr_bio = NULL;
628 	if (is_dev_replace) {
629 		WARN_ON(!fs_info->dev_replace.tgtdev);
630 		sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
631 		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
632 		sctx->flush_all_writes = false;
633 	}
634 
635 	return sctx;
636 
637 nomem:
638 	scrub_free_ctx(sctx);
639 	return ERR_PTR(-ENOMEM);
640 }
641 
scrub_print_warning_inode(u64 inum,u64 offset,u64 root,void * warn_ctx)642 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
643 				     void *warn_ctx)
644 {
645 	u64 isize;
646 	u32 nlink;
647 	int ret;
648 	int i;
649 	unsigned nofs_flag;
650 	struct extent_buffer *eb;
651 	struct btrfs_inode_item *inode_item;
652 	struct scrub_warning *swarn = warn_ctx;
653 	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
654 	struct inode_fs_paths *ipath = NULL;
655 	struct btrfs_root *local_root;
656 	struct btrfs_key root_key;
657 	struct btrfs_key key;
658 
659 	root_key.objectid = root;
660 	root_key.type = BTRFS_ROOT_ITEM_KEY;
661 	root_key.offset = (u64)-1;
662 	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
663 	if (IS_ERR(local_root)) {
664 		ret = PTR_ERR(local_root);
665 		goto err;
666 	}
667 
668 	/*
669 	 * this makes the path point to (inum INODE_ITEM ioff)
670 	 */
671 	key.objectid = inum;
672 	key.type = BTRFS_INODE_ITEM_KEY;
673 	key.offset = 0;
674 
675 	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
676 	if (ret) {
677 		btrfs_release_path(swarn->path);
678 		goto err;
679 	}
680 
681 	eb = swarn->path->nodes[0];
682 	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
683 					struct btrfs_inode_item);
684 	isize = btrfs_inode_size(eb, inode_item);
685 	nlink = btrfs_inode_nlink(eb, inode_item);
686 	btrfs_release_path(swarn->path);
687 
688 	/*
689 	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
690 	 * uses GFP_NOFS in this context, so we keep it consistent but it does
691 	 * not seem to be strictly necessary.
692 	 */
693 	nofs_flag = memalloc_nofs_save();
694 	ipath = init_ipath(4096, local_root, swarn->path);
695 	memalloc_nofs_restore(nofs_flag);
696 	if (IS_ERR(ipath)) {
697 		ret = PTR_ERR(ipath);
698 		ipath = NULL;
699 		goto err;
700 	}
701 	ret = paths_from_inode(inum, ipath);
702 
703 	if (ret < 0)
704 		goto err;
705 
706 	/*
707 	 * we deliberately ignore the bit ipath might have been too small to
708 	 * hold all of the paths here
709 	 */
710 	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
711 		btrfs_warn_in_rcu(fs_info,
712 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
713 				  swarn->errstr, swarn->logical,
714 				  rcu_str_deref(swarn->dev->name),
715 				  swarn->physical,
716 				  root, inum, offset,
717 				  min(isize - offset, (u64)PAGE_SIZE), nlink,
718 				  (char *)(unsigned long)ipath->fspath->val[i]);
719 
720 	free_ipath(ipath);
721 	return 0;
722 
723 err:
724 	btrfs_warn_in_rcu(fs_info,
725 			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
726 			  swarn->errstr, swarn->logical,
727 			  rcu_str_deref(swarn->dev->name),
728 			  swarn->physical,
729 			  root, inum, offset, ret);
730 
731 	free_ipath(ipath);
732 	return 0;
733 }
734 
scrub_print_warning(const char * errstr,struct scrub_block * sblock)735 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
736 {
737 	struct btrfs_device *dev;
738 	struct btrfs_fs_info *fs_info;
739 	struct btrfs_path *path;
740 	struct btrfs_key found_key;
741 	struct extent_buffer *eb;
742 	struct btrfs_extent_item *ei;
743 	struct scrub_warning swarn;
744 	unsigned long ptr = 0;
745 	u64 extent_item_pos;
746 	u64 flags = 0;
747 	u64 ref_root;
748 	u32 item_size;
749 	u8 ref_level = 0;
750 	int ret;
751 
752 	WARN_ON(sblock->page_count < 1);
753 	dev = sblock->pagev[0]->dev;
754 	fs_info = sblock->sctx->fs_info;
755 
756 	path = btrfs_alloc_path();
757 	if (!path)
758 		return;
759 
760 	swarn.physical = sblock->pagev[0]->physical;
761 	swarn.logical = sblock->pagev[0]->logical;
762 	swarn.errstr = errstr;
763 	swarn.dev = NULL;
764 
765 	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
766 				  &flags);
767 	if (ret < 0)
768 		goto out;
769 
770 	extent_item_pos = swarn.logical - found_key.objectid;
771 	swarn.extent_item_size = found_key.offset;
772 
773 	eb = path->nodes[0];
774 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
775 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
776 
777 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
778 		do {
779 			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
780 						      item_size, &ref_root,
781 						      &ref_level);
782 			btrfs_warn_in_rcu(fs_info,
783 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
784 				errstr, swarn.logical,
785 				rcu_str_deref(dev->name),
786 				swarn.physical,
787 				ref_level ? "node" : "leaf",
788 				ret < 0 ? -1 : ref_level,
789 				ret < 0 ? -1 : ref_root);
790 		} while (ret != 1);
791 		btrfs_release_path(path);
792 	} else {
793 		btrfs_release_path(path);
794 		swarn.path = path;
795 		swarn.dev = dev;
796 		iterate_extent_inodes(fs_info, found_key.objectid,
797 					extent_item_pos, 1,
798 					scrub_print_warning_inode, &swarn, false);
799 	}
800 
801 out:
802 	btrfs_free_path(path);
803 }
804 
scrub_get_recover(struct scrub_recover * recover)805 static inline void scrub_get_recover(struct scrub_recover *recover)
806 {
807 	refcount_inc(&recover->refs);
808 }
809 
scrub_put_recover(struct btrfs_fs_info * fs_info,struct scrub_recover * recover)810 static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
811 				     struct scrub_recover *recover)
812 {
813 	if (refcount_dec_and_test(&recover->refs)) {
814 		btrfs_bio_counter_dec(fs_info);
815 		btrfs_put_bbio(recover->bbio);
816 		kfree(recover);
817 	}
818 }
819 
820 /*
821  * scrub_handle_errored_block gets called when either verification of the
822  * pages failed or the bio failed to read, e.g. with EIO. In the latter
823  * case, this function handles all pages in the bio, even though only one
824  * may be bad.
825  * The goal of this function is to repair the errored block by using the
826  * contents of one of the mirrors.
827  */
scrub_handle_errored_block(struct scrub_block * sblock_to_check)828 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
829 {
830 	struct scrub_ctx *sctx = sblock_to_check->sctx;
831 	struct btrfs_device *dev;
832 	struct btrfs_fs_info *fs_info;
833 	u64 logical;
834 	unsigned int failed_mirror_index;
835 	unsigned int is_metadata;
836 	unsigned int have_csum;
837 	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
838 	struct scrub_block *sblock_bad;
839 	int ret;
840 	int mirror_index;
841 	int page_num;
842 	int success;
843 	bool full_stripe_locked;
844 	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
845 				      DEFAULT_RATELIMIT_BURST);
846 
847 	BUG_ON(sblock_to_check->page_count < 1);
848 	fs_info = sctx->fs_info;
849 	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
850 		/*
851 		 * if we find an error in a super block, we just report it.
852 		 * They will get written with the next transaction commit
853 		 * anyway
854 		 */
855 		spin_lock(&sctx->stat_lock);
856 		++sctx->stat.super_errors;
857 		spin_unlock(&sctx->stat_lock);
858 		return 0;
859 	}
860 	logical = sblock_to_check->pagev[0]->logical;
861 	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
862 	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
863 	is_metadata = !(sblock_to_check->pagev[0]->flags &
864 			BTRFS_EXTENT_FLAG_DATA);
865 	have_csum = sblock_to_check->pagev[0]->have_csum;
866 	dev = sblock_to_check->pagev[0]->dev;
867 
868 	/*
869 	 * For RAID5/6, race can happen for a different device scrub thread.
870 	 * For data corruption, Parity and Data threads will both try
871 	 * to recovery the data.
872 	 * Race can lead to doubly added csum error, or even unrecoverable
873 	 * error.
874 	 */
875 	ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
876 	if (ret < 0) {
877 		spin_lock(&sctx->stat_lock);
878 		if (ret == -ENOMEM)
879 			sctx->stat.malloc_errors++;
880 		sctx->stat.read_errors++;
881 		sctx->stat.uncorrectable_errors++;
882 		spin_unlock(&sctx->stat_lock);
883 		return ret;
884 	}
885 
886 	/*
887 	 * read all mirrors one after the other. This includes to
888 	 * re-read the extent or metadata block that failed (that was
889 	 * the cause that this fixup code is called) another time,
890 	 * page by page this time in order to know which pages
891 	 * caused I/O errors and which ones are good (for all mirrors).
892 	 * It is the goal to handle the situation when more than one
893 	 * mirror contains I/O errors, but the errors do not
894 	 * overlap, i.e. the data can be repaired by selecting the
895 	 * pages from those mirrors without I/O error on the
896 	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
897 	 * would be that mirror #1 has an I/O error on the first page,
898 	 * the second page is good, and mirror #2 has an I/O error on
899 	 * the second page, but the first page is good.
900 	 * Then the first page of the first mirror can be repaired by
901 	 * taking the first page of the second mirror, and the
902 	 * second page of the second mirror can be repaired by
903 	 * copying the contents of the 2nd page of the 1st mirror.
904 	 * One more note: if the pages of one mirror contain I/O
905 	 * errors, the checksum cannot be verified. In order to get
906 	 * the best data for repairing, the first attempt is to find
907 	 * a mirror without I/O errors and with a validated checksum.
908 	 * Only if this is not possible, the pages are picked from
909 	 * mirrors with I/O errors without considering the checksum.
910 	 * If the latter is the case, at the end, the checksum of the
911 	 * repaired area is verified in order to correctly maintain
912 	 * the statistics.
913 	 */
914 
915 	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
916 				      sizeof(*sblocks_for_recheck), GFP_NOFS);
917 	if (!sblocks_for_recheck) {
918 		spin_lock(&sctx->stat_lock);
919 		sctx->stat.malloc_errors++;
920 		sctx->stat.read_errors++;
921 		sctx->stat.uncorrectable_errors++;
922 		spin_unlock(&sctx->stat_lock);
923 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
924 		goto out;
925 	}
926 
927 	/* setup the context, map the logical blocks and alloc the pages */
928 	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
929 	if (ret) {
930 		spin_lock(&sctx->stat_lock);
931 		sctx->stat.read_errors++;
932 		sctx->stat.uncorrectable_errors++;
933 		spin_unlock(&sctx->stat_lock);
934 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
935 		goto out;
936 	}
937 	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
938 	sblock_bad = sblocks_for_recheck + failed_mirror_index;
939 
940 	/* build and submit the bios for the failed mirror, check checksums */
941 	scrub_recheck_block(fs_info, sblock_bad, 1);
942 
943 	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
944 	    sblock_bad->no_io_error_seen) {
945 		/*
946 		 * the error disappeared after reading page by page, or
947 		 * the area was part of a huge bio and other parts of the
948 		 * bio caused I/O errors, or the block layer merged several
949 		 * read requests into one and the error is caused by a
950 		 * different bio (usually one of the two latter cases is
951 		 * the cause)
952 		 */
953 		spin_lock(&sctx->stat_lock);
954 		sctx->stat.unverified_errors++;
955 		sblock_to_check->data_corrected = 1;
956 		spin_unlock(&sctx->stat_lock);
957 
958 		if (sctx->is_dev_replace)
959 			scrub_write_block_to_dev_replace(sblock_bad);
960 		goto out;
961 	}
962 
963 	if (!sblock_bad->no_io_error_seen) {
964 		spin_lock(&sctx->stat_lock);
965 		sctx->stat.read_errors++;
966 		spin_unlock(&sctx->stat_lock);
967 		if (__ratelimit(&_rs))
968 			scrub_print_warning("i/o error", sblock_to_check);
969 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
970 	} else if (sblock_bad->checksum_error) {
971 		spin_lock(&sctx->stat_lock);
972 		sctx->stat.csum_errors++;
973 		spin_unlock(&sctx->stat_lock);
974 		if (__ratelimit(&_rs))
975 			scrub_print_warning("checksum error", sblock_to_check);
976 		btrfs_dev_stat_inc_and_print(dev,
977 					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
978 	} else if (sblock_bad->header_error) {
979 		spin_lock(&sctx->stat_lock);
980 		sctx->stat.verify_errors++;
981 		spin_unlock(&sctx->stat_lock);
982 		if (__ratelimit(&_rs))
983 			scrub_print_warning("checksum/header error",
984 					    sblock_to_check);
985 		if (sblock_bad->generation_error)
986 			btrfs_dev_stat_inc_and_print(dev,
987 				BTRFS_DEV_STAT_GENERATION_ERRS);
988 		else
989 			btrfs_dev_stat_inc_and_print(dev,
990 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
991 	}
992 
993 	if (sctx->readonly) {
994 		ASSERT(!sctx->is_dev_replace);
995 		goto out;
996 	}
997 
998 	/*
999 	 * now build and submit the bios for the other mirrors, check
1000 	 * checksums.
1001 	 * First try to pick the mirror which is completely without I/O
1002 	 * errors and also does not have a checksum error.
1003 	 * If one is found, and if a checksum is present, the full block
1004 	 * that is known to contain an error is rewritten. Afterwards
1005 	 * the block is known to be corrected.
1006 	 * If a mirror is found which is completely correct, and no
1007 	 * checksum is present, only those pages are rewritten that had
1008 	 * an I/O error in the block to be repaired, since it cannot be
1009 	 * determined, which copy of the other pages is better (and it
1010 	 * could happen otherwise that a correct page would be
1011 	 * overwritten by a bad one).
1012 	 */
1013 	for (mirror_index = 0; ;mirror_index++) {
1014 		struct scrub_block *sblock_other;
1015 
1016 		if (mirror_index == failed_mirror_index)
1017 			continue;
1018 
1019 		/* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1020 		if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1021 			if (mirror_index >= BTRFS_MAX_MIRRORS)
1022 				break;
1023 			if (!sblocks_for_recheck[mirror_index].page_count)
1024 				break;
1025 
1026 			sblock_other = sblocks_for_recheck + mirror_index;
1027 		} else {
1028 			struct scrub_recover *r = sblock_bad->pagev[0]->recover;
1029 			int max_allowed = r->bbio->num_stripes -
1030 						r->bbio->num_tgtdevs;
1031 
1032 			if (mirror_index >= max_allowed)
1033 				break;
1034 			if (!sblocks_for_recheck[1].page_count)
1035 				break;
1036 
1037 			ASSERT(failed_mirror_index == 0);
1038 			sblock_other = sblocks_for_recheck + 1;
1039 			sblock_other->pagev[0]->mirror_num = 1 + mirror_index;
1040 		}
1041 
1042 		/* build and submit the bios, check checksums */
1043 		scrub_recheck_block(fs_info, sblock_other, 0);
1044 
1045 		if (!sblock_other->header_error &&
1046 		    !sblock_other->checksum_error &&
1047 		    sblock_other->no_io_error_seen) {
1048 			if (sctx->is_dev_replace) {
1049 				scrub_write_block_to_dev_replace(sblock_other);
1050 				goto corrected_error;
1051 			} else {
1052 				ret = scrub_repair_block_from_good_copy(
1053 						sblock_bad, sblock_other);
1054 				if (!ret)
1055 					goto corrected_error;
1056 			}
1057 		}
1058 	}
1059 
1060 	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1061 		goto did_not_correct_error;
1062 
1063 	/*
1064 	 * In case of I/O errors in the area that is supposed to be
1065 	 * repaired, continue by picking good copies of those pages.
1066 	 * Select the good pages from mirrors to rewrite bad pages from
1067 	 * the area to fix. Afterwards verify the checksum of the block
1068 	 * that is supposed to be repaired. This verification step is
1069 	 * only done for the purpose of statistic counting and for the
1070 	 * final scrub report, whether errors remain.
1071 	 * A perfect algorithm could make use of the checksum and try
1072 	 * all possible combinations of pages from the different mirrors
1073 	 * until the checksum verification succeeds. For example, when
1074 	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1075 	 * of mirror #2 is readable but the final checksum test fails,
1076 	 * then the 2nd page of mirror #3 could be tried, whether now
1077 	 * the final checksum succeeds. But this would be a rare
1078 	 * exception and is therefore not implemented. At least it is
1079 	 * avoided that the good copy is overwritten.
1080 	 * A more useful improvement would be to pick the sectors
1081 	 * without I/O error based on sector sizes (512 bytes on legacy
1082 	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1083 	 * mirror could be repaired by taking 512 byte of a different
1084 	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1085 	 * area are unreadable.
1086 	 */
1087 	success = 1;
1088 	for (page_num = 0; page_num < sblock_bad->page_count;
1089 	     page_num++) {
1090 		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1091 		struct scrub_block *sblock_other = NULL;
1092 
1093 		/* skip no-io-error page in scrub */
1094 		if (!page_bad->io_error && !sctx->is_dev_replace)
1095 			continue;
1096 
1097 		if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1098 			/*
1099 			 * In case of dev replace, if raid56 rebuild process
1100 			 * didn't work out correct data, then copy the content
1101 			 * in sblock_bad to make sure target device is identical
1102 			 * to source device, instead of writing garbage data in
1103 			 * sblock_for_recheck array to target device.
1104 			 */
1105 			sblock_other = NULL;
1106 		} else if (page_bad->io_error) {
1107 			/* try to find no-io-error page in mirrors */
1108 			for (mirror_index = 0;
1109 			     mirror_index < BTRFS_MAX_MIRRORS &&
1110 			     sblocks_for_recheck[mirror_index].page_count > 0;
1111 			     mirror_index++) {
1112 				if (!sblocks_for_recheck[mirror_index].
1113 				    pagev[page_num]->io_error) {
1114 					sblock_other = sblocks_for_recheck +
1115 						       mirror_index;
1116 					break;
1117 				}
1118 			}
1119 			if (!sblock_other)
1120 				success = 0;
1121 		}
1122 
1123 		if (sctx->is_dev_replace) {
1124 			/*
1125 			 * did not find a mirror to fetch the page
1126 			 * from. scrub_write_page_to_dev_replace()
1127 			 * handles this case (page->io_error), by
1128 			 * filling the block with zeros before
1129 			 * submitting the write request
1130 			 */
1131 			if (!sblock_other)
1132 				sblock_other = sblock_bad;
1133 
1134 			if (scrub_write_page_to_dev_replace(sblock_other,
1135 							    page_num) != 0) {
1136 				btrfs_dev_replace_stats_inc(
1137 					&fs_info->dev_replace.num_write_errors);
1138 				success = 0;
1139 			}
1140 		} else if (sblock_other) {
1141 			ret = scrub_repair_page_from_good_copy(sblock_bad,
1142 							       sblock_other,
1143 							       page_num, 0);
1144 			if (0 == ret)
1145 				page_bad->io_error = 0;
1146 			else
1147 				success = 0;
1148 		}
1149 	}
1150 
1151 	if (success && !sctx->is_dev_replace) {
1152 		if (is_metadata || have_csum) {
1153 			/*
1154 			 * need to verify the checksum now that all
1155 			 * sectors on disk are repaired (the write
1156 			 * request for data to be repaired is on its way).
1157 			 * Just be lazy and use scrub_recheck_block()
1158 			 * which re-reads the data before the checksum
1159 			 * is verified, but most likely the data comes out
1160 			 * of the page cache.
1161 			 */
1162 			scrub_recheck_block(fs_info, sblock_bad, 1);
1163 			if (!sblock_bad->header_error &&
1164 			    !sblock_bad->checksum_error &&
1165 			    sblock_bad->no_io_error_seen)
1166 				goto corrected_error;
1167 			else
1168 				goto did_not_correct_error;
1169 		} else {
1170 corrected_error:
1171 			spin_lock(&sctx->stat_lock);
1172 			sctx->stat.corrected_errors++;
1173 			sblock_to_check->data_corrected = 1;
1174 			spin_unlock(&sctx->stat_lock);
1175 			btrfs_err_rl_in_rcu(fs_info,
1176 				"fixed up error at logical %llu on dev %s",
1177 				logical, rcu_str_deref(dev->name));
1178 		}
1179 	} else {
1180 did_not_correct_error:
1181 		spin_lock(&sctx->stat_lock);
1182 		sctx->stat.uncorrectable_errors++;
1183 		spin_unlock(&sctx->stat_lock);
1184 		btrfs_err_rl_in_rcu(fs_info,
1185 			"unable to fixup (regular) error at logical %llu on dev %s",
1186 			logical, rcu_str_deref(dev->name));
1187 	}
1188 
1189 out:
1190 	if (sblocks_for_recheck) {
1191 		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1192 		     mirror_index++) {
1193 			struct scrub_block *sblock = sblocks_for_recheck +
1194 						     mirror_index;
1195 			struct scrub_recover *recover;
1196 			int page_index;
1197 
1198 			for (page_index = 0; page_index < sblock->page_count;
1199 			     page_index++) {
1200 				sblock->pagev[page_index]->sblock = NULL;
1201 				recover = sblock->pagev[page_index]->recover;
1202 				if (recover) {
1203 					scrub_put_recover(fs_info, recover);
1204 					sblock->pagev[page_index]->recover =
1205 									NULL;
1206 				}
1207 				scrub_page_put(sblock->pagev[page_index]);
1208 			}
1209 		}
1210 		kfree(sblocks_for_recheck);
1211 	}
1212 
1213 	ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1214 	if (ret < 0)
1215 		return ret;
1216 	return 0;
1217 }
1218 
scrub_nr_raid_mirrors(struct btrfs_bio * bbio)1219 static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1220 {
1221 	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1222 		return 2;
1223 	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1224 		return 3;
1225 	else
1226 		return (int)bbio->num_stripes;
1227 }
1228 
scrub_stripe_index_and_offset(u64 logical,u64 map_type,u64 * raid_map,u64 mapped_length,int nstripes,int mirror,int * stripe_index,u64 * stripe_offset)1229 static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1230 						 u64 *raid_map,
1231 						 u64 mapped_length,
1232 						 int nstripes, int mirror,
1233 						 int *stripe_index,
1234 						 u64 *stripe_offset)
1235 {
1236 	int i;
1237 
1238 	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1239 		/* RAID5/6 */
1240 		for (i = 0; i < nstripes; i++) {
1241 			if (raid_map[i] == RAID6_Q_STRIPE ||
1242 			    raid_map[i] == RAID5_P_STRIPE)
1243 				continue;
1244 
1245 			if (logical >= raid_map[i] &&
1246 			    logical < raid_map[i] + mapped_length)
1247 				break;
1248 		}
1249 
1250 		*stripe_index = i;
1251 		*stripe_offset = logical - raid_map[i];
1252 	} else {
1253 		/* The other RAID type */
1254 		*stripe_index = mirror;
1255 		*stripe_offset = 0;
1256 	}
1257 }
1258 
scrub_setup_recheck_block(struct scrub_block * original_sblock,struct scrub_block * sblocks_for_recheck)1259 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1260 				     struct scrub_block *sblocks_for_recheck)
1261 {
1262 	struct scrub_ctx *sctx = original_sblock->sctx;
1263 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1264 	u64 length = original_sblock->page_count * PAGE_SIZE;
1265 	u64 logical = original_sblock->pagev[0]->logical;
1266 	u64 generation = original_sblock->pagev[0]->generation;
1267 	u64 flags = original_sblock->pagev[0]->flags;
1268 	u64 have_csum = original_sblock->pagev[0]->have_csum;
1269 	struct scrub_recover *recover;
1270 	struct btrfs_bio *bbio;
1271 	u64 sublen;
1272 	u64 mapped_length;
1273 	u64 stripe_offset;
1274 	int stripe_index;
1275 	int page_index = 0;
1276 	int mirror_index;
1277 	int nmirrors;
1278 	int ret;
1279 
1280 	/*
1281 	 * note: the two members refs and outstanding_pages
1282 	 * are not used (and not set) in the blocks that are used for
1283 	 * the recheck procedure
1284 	 */
1285 
1286 	while (length > 0) {
1287 		sublen = min_t(u64, length, PAGE_SIZE);
1288 		mapped_length = sublen;
1289 		bbio = NULL;
1290 
1291 		/*
1292 		 * with a length of PAGE_SIZE, each returned stripe
1293 		 * represents one mirror
1294 		 */
1295 		btrfs_bio_counter_inc_blocked(fs_info);
1296 		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1297 				logical, &mapped_length, &bbio);
1298 		if (ret || !bbio || mapped_length < sublen) {
1299 			btrfs_put_bbio(bbio);
1300 			btrfs_bio_counter_dec(fs_info);
1301 			return -EIO;
1302 		}
1303 
1304 		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1305 		if (!recover) {
1306 			btrfs_put_bbio(bbio);
1307 			btrfs_bio_counter_dec(fs_info);
1308 			return -ENOMEM;
1309 		}
1310 
1311 		refcount_set(&recover->refs, 1);
1312 		recover->bbio = bbio;
1313 		recover->map_length = mapped_length;
1314 
1315 		BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1316 
1317 		nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
1318 
1319 		for (mirror_index = 0; mirror_index < nmirrors;
1320 		     mirror_index++) {
1321 			struct scrub_block *sblock;
1322 			struct scrub_page *page;
1323 
1324 			sblock = sblocks_for_recheck + mirror_index;
1325 			sblock->sctx = sctx;
1326 
1327 			page = kzalloc(sizeof(*page), GFP_NOFS);
1328 			if (!page) {
1329 leave_nomem:
1330 				spin_lock(&sctx->stat_lock);
1331 				sctx->stat.malloc_errors++;
1332 				spin_unlock(&sctx->stat_lock);
1333 				scrub_put_recover(fs_info, recover);
1334 				return -ENOMEM;
1335 			}
1336 			scrub_page_get(page);
1337 			sblock->pagev[page_index] = page;
1338 			page->sblock = sblock;
1339 			page->flags = flags;
1340 			page->generation = generation;
1341 			page->logical = logical;
1342 			page->have_csum = have_csum;
1343 			if (have_csum)
1344 				memcpy(page->csum,
1345 				       original_sblock->pagev[0]->csum,
1346 				       sctx->csum_size);
1347 
1348 			scrub_stripe_index_and_offset(logical,
1349 						      bbio->map_type,
1350 						      bbio->raid_map,
1351 						      mapped_length,
1352 						      bbio->num_stripes -
1353 						      bbio->num_tgtdevs,
1354 						      mirror_index,
1355 						      &stripe_index,
1356 						      &stripe_offset);
1357 			page->physical = bbio->stripes[stripe_index].physical +
1358 					 stripe_offset;
1359 			page->dev = bbio->stripes[stripe_index].dev;
1360 
1361 			BUG_ON(page_index >= original_sblock->page_count);
1362 			page->physical_for_dev_replace =
1363 				original_sblock->pagev[page_index]->
1364 				physical_for_dev_replace;
1365 			/* for missing devices, dev->bdev is NULL */
1366 			page->mirror_num = mirror_index + 1;
1367 			sblock->page_count++;
1368 			page->page = alloc_page(GFP_NOFS);
1369 			if (!page->page)
1370 				goto leave_nomem;
1371 
1372 			scrub_get_recover(recover);
1373 			page->recover = recover;
1374 		}
1375 		scrub_put_recover(fs_info, recover);
1376 		length -= sublen;
1377 		logical += sublen;
1378 		page_index++;
1379 	}
1380 
1381 	return 0;
1382 }
1383 
scrub_bio_wait_endio(struct bio * bio)1384 static void scrub_bio_wait_endio(struct bio *bio)
1385 {
1386 	complete(bio->bi_private);
1387 }
1388 
scrub_submit_raid56_bio_wait(struct btrfs_fs_info * fs_info,struct bio * bio,struct scrub_page * page)1389 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1390 					struct bio *bio,
1391 					struct scrub_page *page)
1392 {
1393 	DECLARE_COMPLETION_ONSTACK(done);
1394 	int ret;
1395 	int mirror_num;
1396 
1397 	bio->bi_iter.bi_sector = page->logical >> 9;
1398 	bio->bi_private = &done;
1399 	bio->bi_end_io = scrub_bio_wait_endio;
1400 
1401 	mirror_num = page->sblock->pagev[0]->mirror_num;
1402 	ret = raid56_parity_recover(fs_info, bio, page->recover->bbio,
1403 				    page->recover->map_length,
1404 				    mirror_num, 0);
1405 	if (ret)
1406 		return ret;
1407 
1408 	wait_for_completion_io(&done);
1409 	return blk_status_to_errno(bio->bi_status);
1410 }
1411 
scrub_recheck_block_on_raid56(struct btrfs_fs_info * fs_info,struct scrub_block * sblock)1412 static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
1413 					  struct scrub_block *sblock)
1414 {
1415 	struct scrub_page *first_page = sblock->pagev[0];
1416 	struct bio *bio;
1417 	int page_num;
1418 
1419 	/* All pages in sblock belong to the same stripe on the same device. */
1420 	ASSERT(first_page->dev);
1421 	if (!first_page->dev->bdev)
1422 		goto out;
1423 
1424 	bio = btrfs_io_bio_alloc(BIO_MAX_PAGES);
1425 	bio_set_dev(bio, first_page->dev->bdev);
1426 
1427 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1428 		struct scrub_page *page = sblock->pagev[page_num];
1429 
1430 		WARN_ON(!page->page);
1431 		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1432 	}
1433 
1434 	if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) {
1435 		bio_put(bio);
1436 		goto out;
1437 	}
1438 
1439 	bio_put(bio);
1440 
1441 	scrub_recheck_block_checksum(sblock);
1442 
1443 	return;
1444 out:
1445 	for (page_num = 0; page_num < sblock->page_count; page_num++)
1446 		sblock->pagev[page_num]->io_error = 1;
1447 
1448 	sblock->no_io_error_seen = 0;
1449 }
1450 
1451 /*
1452  * this function will check the on disk data for checksum errors, header
1453  * errors and read I/O errors. If any I/O errors happen, the exact pages
1454  * which are errored are marked as being bad. The goal is to enable scrub
1455  * to take those pages that are not errored from all the mirrors so that
1456  * the pages that are errored in the just handled mirror can be repaired.
1457  */
scrub_recheck_block(struct btrfs_fs_info * fs_info,struct scrub_block * sblock,int retry_failed_mirror)1458 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1459 				struct scrub_block *sblock,
1460 				int retry_failed_mirror)
1461 {
1462 	int page_num;
1463 
1464 	sblock->no_io_error_seen = 1;
1465 
1466 	/* short cut for raid56 */
1467 	if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0]))
1468 		return scrub_recheck_block_on_raid56(fs_info, sblock);
1469 
1470 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1471 		struct bio *bio;
1472 		struct scrub_page *page = sblock->pagev[page_num];
1473 
1474 		if (page->dev->bdev == NULL) {
1475 			page->io_error = 1;
1476 			sblock->no_io_error_seen = 0;
1477 			continue;
1478 		}
1479 
1480 		WARN_ON(!page->page);
1481 		bio = btrfs_io_bio_alloc(1);
1482 		bio_set_dev(bio, page->dev->bdev);
1483 
1484 		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1485 		bio->bi_iter.bi_sector = page->physical >> 9;
1486 		bio->bi_opf = REQ_OP_READ;
1487 
1488 		if (btrfsic_submit_bio_wait(bio)) {
1489 			page->io_error = 1;
1490 			sblock->no_io_error_seen = 0;
1491 		}
1492 
1493 		bio_put(bio);
1494 	}
1495 
1496 	if (sblock->no_io_error_seen)
1497 		scrub_recheck_block_checksum(sblock);
1498 }
1499 
scrub_check_fsid(u8 fsid[],struct scrub_page * spage)1500 static inline int scrub_check_fsid(u8 fsid[],
1501 				   struct scrub_page *spage)
1502 {
1503 	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1504 	int ret;
1505 
1506 	ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1507 	return !ret;
1508 }
1509 
scrub_recheck_block_checksum(struct scrub_block * sblock)1510 static void scrub_recheck_block_checksum(struct scrub_block *sblock)
1511 {
1512 	sblock->header_error = 0;
1513 	sblock->checksum_error = 0;
1514 	sblock->generation_error = 0;
1515 
1516 	if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1517 		scrub_checksum_data(sblock);
1518 	else
1519 		scrub_checksum_tree_block(sblock);
1520 }
1521 
scrub_repair_block_from_good_copy(struct scrub_block * sblock_bad,struct scrub_block * sblock_good)1522 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1523 					     struct scrub_block *sblock_good)
1524 {
1525 	int page_num;
1526 	int ret = 0;
1527 
1528 	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1529 		int ret_sub;
1530 
1531 		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1532 							   sblock_good,
1533 							   page_num, 1);
1534 		if (ret_sub)
1535 			ret = ret_sub;
1536 	}
1537 
1538 	return ret;
1539 }
1540 
scrub_repair_page_from_good_copy(struct scrub_block * sblock_bad,struct scrub_block * sblock_good,int page_num,int force_write)1541 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1542 					    struct scrub_block *sblock_good,
1543 					    int page_num, int force_write)
1544 {
1545 	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1546 	struct scrub_page *page_good = sblock_good->pagev[page_num];
1547 	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1548 
1549 	BUG_ON(page_bad->page == NULL);
1550 	BUG_ON(page_good->page == NULL);
1551 	if (force_write || sblock_bad->header_error ||
1552 	    sblock_bad->checksum_error || page_bad->io_error) {
1553 		struct bio *bio;
1554 		int ret;
1555 
1556 		if (!page_bad->dev->bdev) {
1557 			btrfs_warn_rl(fs_info,
1558 				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1559 			return -EIO;
1560 		}
1561 
1562 		bio = btrfs_io_bio_alloc(1);
1563 		bio_set_dev(bio, page_bad->dev->bdev);
1564 		bio->bi_iter.bi_sector = page_bad->physical >> 9;
1565 		bio->bi_opf = REQ_OP_WRITE;
1566 
1567 		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1568 		if (PAGE_SIZE != ret) {
1569 			bio_put(bio);
1570 			return -EIO;
1571 		}
1572 
1573 		if (btrfsic_submit_bio_wait(bio)) {
1574 			btrfs_dev_stat_inc_and_print(page_bad->dev,
1575 				BTRFS_DEV_STAT_WRITE_ERRS);
1576 			btrfs_dev_replace_stats_inc(
1577 				&fs_info->dev_replace.num_write_errors);
1578 			bio_put(bio);
1579 			return -EIO;
1580 		}
1581 		bio_put(bio);
1582 	}
1583 
1584 	return 0;
1585 }
1586 
scrub_write_block_to_dev_replace(struct scrub_block * sblock)1587 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1588 {
1589 	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1590 	int page_num;
1591 
1592 	/*
1593 	 * This block is used for the check of the parity on the source device,
1594 	 * so the data needn't be written into the destination device.
1595 	 */
1596 	if (sblock->sparity)
1597 		return;
1598 
1599 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1600 		int ret;
1601 
1602 		ret = scrub_write_page_to_dev_replace(sblock, page_num);
1603 		if (ret)
1604 			btrfs_dev_replace_stats_inc(
1605 				&fs_info->dev_replace.num_write_errors);
1606 	}
1607 }
1608 
scrub_write_page_to_dev_replace(struct scrub_block * sblock,int page_num)1609 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1610 					   int page_num)
1611 {
1612 	struct scrub_page *spage = sblock->pagev[page_num];
1613 
1614 	BUG_ON(spage->page == NULL);
1615 	if (spage->io_error) {
1616 		void *mapped_buffer = kmap_atomic(spage->page);
1617 
1618 		clear_page(mapped_buffer);
1619 		flush_dcache_page(spage->page);
1620 		kunmap_atomic(mapped_buffer);
1621 	}
1622 	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1623 }
1624 
scrub_add_page_to_wr_bio(struct scrub_ctx * sctx,struct scrub_page * spage)1625 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1626 				    struct scrub_page *spage)
1627 {
1628 	struct scrub_bio *sbio;
1629 	int ret;
1630 
1631 	mutex_lock(&sctx->wr_lock);
1632 again:
1633 	if (!sctx->wr_curr_bio) {
1634 		unsigned int nofs_flag;
1635 
1636 		/*
1637 		 * We must use GFP_NOFS because the scrub task might be waiting
1638 		 * for a worker task executing this function and in turn a
1639 		 * transaction commit might be waiting the scrub task to pause
1640 		 * (which needs to wait for all the worker tasks to complete
1641 		 * before pausing).
1642 		 */
1643 		nofs_flag = memalloc_nofs_save();
1644 		sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1645 					      GFP_KERNEL);
1646 		memalloc_nofs_restore(nofs_flag);
1647 		if (!sctx->wr_curr_bio) {
1648 			mutex_unlock(&sctx->wr_lock);
1649 			return -ENOMEM;
1650 		}
1651 		sctx->wr_curr_bio->sctx = sctx;
1652 		sctx->wr_curr_bio->page_count = 0;
1653 	}
1654 	sbio = sctx->wr_curr_bio;
1655 	if (sbio->page_count == 0) {
1656 		struct bio *bio;
1657 
1658 		sbio->physical = spage->physical_for_dev_replace;
1659 		sbio->logical = spage->logical;
1660 		sbio->dev = sctx->wr_tgtdev;
1661 		bio = sbio->bio;
1662 		if (!bio) {
1663 			bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio);
1664 			sbio->bio = bio;
1665 		}
1666 
1667 		bio->bi_private = sbio;
1668 		bio->bi_end_io = scrub_wr_bio_end_io;
1669 		bio_set_dev(bio, sbio->dev->bdev);
1670 		bio->bi_iter.bi_sector = sbio->physical >> 9;
1671 		bio->bi_opf = REQ_OP_WRITE;
1672 		sbio->status = 0;
1673 	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1674 		   spage->physical_for_dev_replace ||
1675 		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1676 		   spage->logical) {
1677 		scrub_wr_submit(sctx);
1678 		goto again;
1679 	}
1680 
1681 	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1682 	if (ret != PAGE_SIZE) {
1683 		if (sbio->page_count < 1) {
1684 			bio_put(sbio->bio);
1685 			sbio->bio = NULL;
1686 			mutex_unlock(&sctx->wr_lock);
1687 			return -EIO;
1688 		}
1689 		scrub_wr_submit(sctx);
1690 		goto again;
1691 	}
1692 
1693 	sbio->pagev[sbio->page_count] = spage;
1694 	scrub_page_get(spage);
1695 	sbio->page_count++;
1696 	if (sbio->page_count == sctx->pages_per_wr_bio)
1697 		scrub_wr_submit(sctx);
1698 	mutex_unlock(&sctx->wr_lock);
1699 
1700 	return 0;
1701 }
1702 
scrub_wr_submit(struct scrub_ctx * sctx)1703 static void scrub_wr_submit(struct scrub_ctx *sctx)
1704 {
1705 	struct scrub_bio *sbio;
1706 
1707 	if (!sctx->wr_curr_bio)
1708 		return;
1709 
1710 	sbio = sctx->wr_curr_bio;
1711 	sctx->wr_curr_bio = NULL;
1712 	WARN_ON(!sbio->bio->bi_disk);
1713 	scrub_pending_bio_inc(sctx);
1714 	/* process all writes in a single worker thread. Then the block layer
1715 	 * orders the requests before sending them to the driver which
1716 	 * doubled the write performance on spinning disks when measured
1717 	 * with Linux 3.5 */
1718 	btrfsic_submit_bio(sbio->bio);
1719 }
1720 
scrub_wr_bio_end_io(struct bio * bio)1721 static void scrub_wr_bio_end_io(struct bio *bio)
1722 {
1723 	struct scrub_bio *sbio = bio->bi_private;
1724 	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1725 
1726 	sbio->status = bio->bi_status;
1727 	sbio->bio = bio;
1728 
1729 	btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
1730 			 scrub_wr_bio_end_io_worker, NULL, NULL);
1731 	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1732 }
1733 
scrub_wr_bio_end_io_worker(struct btrfs_work * work)1734 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1735 {
1736 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1737 	struct scrub_ctx *sctx = sbio->sctx;
1738 	int i;
1739 
1740 	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1741 	if (sbio->status) {
1742 		struct btrfs_dev_replace *dev_replace =
1743 			&sbio->sctx->fs_info->dev_replace;
1744 
1745 		for (i = 0; i < sbio->page_count; i++) {
1746 			struct scrub_page *spage = sbio->pagev[i];
1747 
1748 			spage->io_error = 1;
1749 			btrfs_dev_replace_stats_inc(&dev_replace->
1750 						    num_write_errors);
1751 		}
1752 	}
1753 
1754 	for (i = 0; i < sbio->page_count; i++)
1755 		scrub_page_put(sbio->pagev[i]);
1756 
1757 	bio_put(sbio->bio);
1758 	kfree(sbio);
1759 	scrub_pending_bio_dec(sctx);
1760 }
1761 
scrub_checksum(struct scrub_block * sblock)1762 static int scrub_checksum(struct scrub_block *sblock)
1763 {
1764 	u64 flags;
1765 	int ret;
1766 
1767 	/*
1768 	 * No need to initialize these stats currently,
1769 	 * because this function only use return value
1770 	 * instead of these stats value.
1771 	 *
1772 	 * Todo:
1773 	 * always use stats
1774 	 */
1775 	sblock->header_error = 0;
1776 	sblock->generation_error = 0;
1777 	sblock->checksum_error = 0;
1778 
1779 	WARN_ON(sblock->page_count < 1);
1780 	flags = sblock->pagev[0]->flags;
1781 	ret = 0;
1782 	if (flags & BTRFS_EXTENT_FLAG_DATA)
1783 		ret = scrub_checksum_data(sblock);
1784 	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1785 		ret = scrub_checksum_tree_block(sblock);
1786 	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1787 		(void)scrub_checksum_super(sblock);
1788 	else
1789 		WARN_ON(1);
1790 	if (ret)
1791 		scrub_handle_errored_block(sblock);
1792 
1793 	return ret;
1794 }
1795 
scrub_checksum_data(struct scrub_block * sblock)1796 static int scrub_checksum_data(struct scrub_block *sblock)
1797 {
1798 	struct scrub_ctx *sctx = sblock->sctx;
1799 	u8 csum[BTRFS_CSUM_SIZE];
1800 	u8 *on_disk_csum;
1801 	struct page *page;
1802 	void *buffer;
1803 	u32 crc = ~(u32)0;
1804 	u64 len;
1805 	int index;
1806 
1807 	BUG_ON(sblock->page_count < 1);
1808 	if (!sblock->pagev[0]->have_csum)
1809 		return 0;
1810 
1811 	on_disk_csum = sblock->pagev[0]->csum;
1812 	page = sblock->pagev[0]->page;
1813 	buffer = kmap_atomic(page);
1814 
1815 	len = sctx->fs_info->sectorsize;
1816 	index = 0;
1817 	for (;;) {
1818 		u64 l = min_t(u64, len, PAGE_SIZE);
1819 
1820 		crc = btrfs_csum_data(buffer, crc, l);
1821 		kunmap_atomic(buffer);
1822 		len -= l;
1823 		if (len == 0)
1824 			break;
1825 		index++;
1826 		BUG_ON(index >= sblock->page_count);
1827 		BUG_ON(!sblock->pagev[index]->page);
1828 		page = sblock->pagev[index]->page;
1829 		buffer = kmap_atomic(page);
1830 	}
1831 
1832 	btrfs_csum_final(crc, csum);
1833 	if (memcmp(csum, on_disk_csum, sctx->csum_size))
1834 		sblock->checksum_error = 1;
1835 
1836 	return sblock->checksum_error;
1837 }
1838 
scrub_checksum_tree_block(struct scrub_block * sblock)1839 static int scrub_checksum_tree_block(struct scrub_block *sblock)
1840 {
1841 	struct scrub_ctx *sctx = sblock->sctx;
1842 	struct btrfs_header *h;
1843 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1844 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1845 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1846 	struct page *page;
1847 	void *mapped_buffer;
1848 	u64 mapped_size;
1849 	void *p;
1850 	u32 crc = ~(u32)0;
1851 	u64 len;
1852 	int index;
1853 
1854 	BUG_ON(sblock->page_count < 1);
1855 	page = sblock->pagev[0]->page;
1856 	mapped_buffer = kmap_atomic(page);
1857 	h = (struct btrfs_header *)mapped_buffer;
1858 	memcpy(on_disk_csum, h->csum, sctx->csum_size);
1859 
1860 	/*
1861 	 * we don't use the getter functions here, as we
1862 	 * a) don't have an extent buffer and
1863 	 * b) the page is already kmapped
1864 	 */
1865 	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1866 		sblock->header_error = 1;
1867 
1868 	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
1869 		sblock->header_error = 1;
1870 		sblock->generation_error = 1;
1871 	}
1872 
1873 	if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
1874 		sblock->header_error = 1;
1875 
1876 	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1877 		   BTRFS_UUID_SIZE))
1878 		sblock->header_error = 1;
1879 
1880 	len = sctx->fs_info->nodesize - BTRFS_CSUM_SIZE;
1881 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1882 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1883 	index = 0;
1884 	for (;;) {
1885 		u64 l = min_t(u64, len, mapped_size);
1886 
1887 		crc = btrfs_csum_data(p, crc, l);
1888 		kunmap_atomic(mapped_buffer);
1889 		len -= l;
1890 		if (len == 0)
1891 			break;
1892 		index++;
1893 		BUG_ON(index >= sblock->page_count);
1894 		BUG_ON(!sblock->pagev[index]->page);
1895 		page = sblock->pagev[index]->page;
1896 		mapped_buffer = kmap_atomic(page);
1897 		mapped_size = PAGE_SIZE;
1898 		p = mapped_buffer;
1899 	}
1900 
1901 	btrfs_csum_final(crc, calculated_csum);
1902 	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1903 		sblock->checksum_error = 1;
1904 
1905 	return sblock->header_error || sblock->checksum_error;
1906 }
1907 
scrub_checksum_super(struct scrub_block * sblock)1908 static int scrub_checksum_super(struct scrub_block *sblock)
1909 {
1910 	struct btrfs_super_block *s;
1911 	struct scrub_ctx *sctx = sblock->sctx;
1912 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1913 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1914 	struct page *page;
1915 	void *mapped_buffer;
1916 	u64 mapped_size;
1917 	void *p;
1918 	u32 crc = ~(u32)0;
1919 	int fail_gen = 0;
1920 	int fail_cor = 0;
1921 	u64 len;
1922 	int index;
1923 
1924 	BUG_ON(sblock->page_count < 1);
1925 	page = sblock->pagev[0]->page;
1926 	mapped_buffer = kmap_atomic(page);
1927 	s = (struct btrfs_super_block *)mapped_buffer;
1928 	memcpy(on_disk_csum, s->csum, sctx->csum_size);
1929 
1930 	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1931 		++fail_cor;
1932 
1933 	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1934 		++fail_gen;
1935 
1936 	if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
1937 		++fail_cor;
1938 
1939 	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1940 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1941 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1942 	index = 0;
1943 	for (;;) {
1944 		u64 l = min_t(u64, len, mapped_size);
1945 
1946 		crc = btrfs_csum_data(p, crc, l);
1947 		kunmap_atomic(mapped_buffer);
1948 		len -= l;
1949 		if (len == 0)
1950 			break;
1951 		index++;
1952 		BUG_ON(index >= sblock->page_count);
1953 		BUG_ON(!sblock->pagev[index]->page);
1954 		page = sblock->pagev[index]->page;
1955 		mapped_buffer = kmap_atomic(page);
1956 		mapped_size = PAGE_SIZE;
1957 		p = mapped_buffer;
1958 	}
1959 
1960 	btrfs_csum_final(crc, calculated_csum);
1961 	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1962 		++fail_cor;
1963 
1964 	if (fail_cor + fail_gen) {
1965 		/*
1966 		 * if we find an error in a super block, we just report it.
1967 		 * They will get written with the next transaction commit
1968 		 * anyway
1969 		 */
1970 		spin_lock(&sctx->stat_lock);
1971 		++sctx->stat.super_errors;
1972 		spin_unlock(&sctx->stat_lock);
1973 		if (fail_cor)
1974 			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1975 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1976 		else
1977 			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1978 				BTRFS_DEV_STAT_GENERATION_ERRS);
1979 	}
1980 
1981 	return fail_cor + fail_gen;
1982 }
1983 
scrub_block_get(struct scrub_block * sblock)1984 static void scrub_block_get(struct scrub_block *sblock)
1985 {
1986 	refcount_inc(&sblock->refs);
1987 }
1988 
scrub_block_put(struct scrub_block * sblock)1989 static void scrub_block_put(struct scrub_block *sblock)
1990 {
1991 	if (refcount_dec_and_test(&sblock->refs)) {
1992 		int i;
1993 
1994 		if (sblock->sparity)
1995 			scrub_parity_put(sblock->sparity);
1996 
1997 		for (i = 0; i < sblock->page_count; i++)
1998 			scrub_page_put(sblock->pagev[i]);
1999 		kfree(sblock);
2000 	}
2001 }
2002 
scrub_page_get(struct scrub_page * spage)2003 static void scrub_page_get(struct scrub_page *spage)
2004 {
2005 	atomic_inc(&spage->refs);
2006 }
2007 
scrub_page_put(struct scrub_page * spage)2008 static void scrub_page_put(struct scrub_page *spage)
2009 {
2010 	if (atomic_dec_and_test(&spage->refs)) {
2011 		if (spage->page)
2012 			__free_page(spage->page);
2013 		kfree(spage);
2014 	}
2015 }
2016 
scrub_submit(struct scrub_ctx * sctx)2017 static void scrub_submit(struct scrub_ctx *sctx)
2018 {
2019 	struct scrub_bio *sbio;
2020 
2021 	if (sctx->curr == -1)
2022 		return;
2023 
2024 	sbio = sctx->bios[sctx->curr];
2025 	sctx->curr = -1;
2026 	scrub_pending_bio_inc(sctx);
2027 	btrfsic_submit_bio(sbio->bio);
2028 }
2029 
scrub_add_page_to_rd_bio(struct scrub_ctx * sctx,struct scrub_page * spage)2030 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
2031 				    struct scrub_page *spage)
2032 {
2033 	struct scrub_block *sblock = spage->sblock;
2034 	struct scrub_bio *sbio;
2035 	int ret;
2036 
2037 again:
2038 	/*
2039 	 * grab a fresh bio or wait for one to become available
2040 	 */
2041 	while (sctx->curr == -1) {
2042 		spin_lock(&sctx->list_lock);
2043 		sctx->curr = sctx->first_free;
2044 		if (sctx->curr != -1) {
2045 			sctx->first_free = sctx->bios[sctx->curr]->next_free;
2046 			sctx->bios[sctx->curr]->next_free = -1;
2047 			sctx->bios[sctx->curr]->page_count = 0;
2048 			spin_unlock(&sctx->list_lock);
2049 		} else {
2050 			spin_unlock(&sctx->list_lock);
2051 			wait_event(sctx->list_wait, sctx->first_free != -1);
2052 		}
2053 	}
2054 	sbio = sctx->bios[sctx->curr];
2055 	if (sbio->page_count == 0) {
2056 		struct bio *bio;
2057 
2058 		sbio->physical = spage->physical;
2059 		sbio->logical = spage->logical;
2060 		sbio->dev = spage->dev;
2061 		bio = sbio->bio;
2062 		if (!bio) {
2063 			bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio);
2064 			sbio->bio = bio;
2065 		}
2066 
2067 		bio->bi_private = sbio;
2068 		bio->bi_end_io = scrub_bio_end_io;
2069 		bio_set_dev(bio, sbio->dev->bdev);
2070 		bio->bi_iter.bi_sector = sbio->physical >> 9;
2071 		bio->bi_opf = REQ_OP_READ;
2072 		sbio->status = 0;
2073 	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
2074 		   spage->physical ||
2075 		   sbio->logical + sbio->page_count * PAGE_SIZE !=
2076 		   spage->logical ||
2077 		   sbio->dev != spage->dev) {
2078 		scrub_submit(sctx);
2079 		goto again;
2080 	}
2081 
2082 	sbio->pagev[sbio->page_count] = spage;
2083 	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
2084 	if (ret != PAGE_SIZE) {
2085 		if (sbio->page_count < 1) {
2086 			bio_put(sbio->bio);
2087 			sbio->bio = NULL;
2088 			return -EIO;
2089 		}
2090 		scrub_submit(sctx);
2091 		goto again;
2092 	}
2093 
2094 	scrub_block_get(sblock); /* one for the page added to the bio */
2095 	atomic_inc(&sblock->outstanding_pages);
2096 	sbio->page_count++;
2097 	if (sbio->page_count == sctx->pages_per_rd_bio)
2098 		scrub_submit(sctx);
2099 
2100 	return 0;
2101 }
2102 
scrub_missing_raid56_end_io(struct bio * bio)2103 static void scrub_missing_raid56_end_io(struct bio *bio)
2104 {
2105 	struct scrub_block *sblock = bio->bi_private;
2106 	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2107 
2108 	if (bio->bi_status)
2109 		sblock->no_io_error_seen = 0;
2110 
2111 	bio_put(bio);
2112 
2113 	btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
2114 }
2115 
scrub_missing_raid56_worker(struct btrfs_work * work)2116 static void scrub_missing_raid56_worker(struct btrfs_work *work)
2117 {
2118 	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2119 	struct scrub_ctx *sctx = sblock->sctx;
2120 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2121 	u64 logical;
2122 	struct btrfs_device *dev;
2123 
2124 	logical = sblock->pagev[0]->logical;
2125 	dev = sblock->pagev[0]->dev;
2126 
2127 	if (sblock->no_io_error_seen)
2128 		scrub_recheck_block_checksum(sblock);
2129 
2130 	if (!sblock->no_io_error_seen) {
2131 		spin_lock(&sctx->stat_lock);
2132 		sctx->stat.read_errors++;
2133 		spin_unlock(&sctx->stat_lock);
2134 		btrfs_err_rl_in_rcu(fs_info,
2135 			"IO error rebuilding logical %llu for dev %s",
2136 			logical, rcu_str_deref(dev->name));
2137 	} else if (sblock->header_error || sblock->checksum_error) {
2138 		spin_lock(&sctx->stat_lock);
2139 		sctx->stat.uncorrectable_errors++;
2140 		spin_unlock(&sctx->stat_lock);
2141 		btrfs_err_rl_in_rcu(fs_info,
2142 			"failed to rebuild valid logical %llu for dev %s",
2143 			logical, rcu_str_deref(dev->name));
2144 	} else {
2145 		scrub_write_block_to_dev_replace(sblock);
2146 	}
2147 
2148 	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2149 		mutex_lock(&sctx->wr_lock);
2150 		scrub_wr_submit(sctx);
2151 		mutex_unlock(&sctx->wr_lock);
2152 	}
2153 
2154 	scrub_block_put(sblock);
2155 	scrub_pending_bio_dec(sctx);
2156 }
2157 
scrub_missing_raid56_pages(struct scrub_block * sblock)2158 static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2159 {
2160 	struct scrub_ctx *sctx = sblock->sctx;
2161 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2162 	u64 length = sblock->page_count * PAGE_SIZE;
2163 	u64 logical = sblock->pagev[0]->logical;
2164 	struct btrfs_bio *bbio = NULL;
2165 	struct bio *bio;
2166 	struct btrfs_raid_bio *rbio;
2167 	int ret;
2168 	int i;
2169 
2170 	btrfs_bio_counter_inc_blocked(fs_info);
2171 	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2172 			&length, &bbio);
2173 	if (ret || !bbio || !bbio->raid_map)
2174 		goto bbio_out;
2175 
2176 	if (WARN_ON(!sctx->is_dev_replace ||
2177 		    !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2178 		/*
2179 		 * We shouldn't be scrubbing a missing device. Even for dev
2180 		 * replace, we should only get here for RAID 5/6. We either
2181 		 * managed to mount something with no mirrors remaining or
2182 		 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2183 		 */
2184 		goto bbio_out;
2185 	}
2186 
2187 	bio = btrfs_io_bio_alloc(0);
2188 	bio->bi_iter.bi_sector = logical >> 9;
2189 	bio->bi_private = sblock;
2190 	bio->bi_end_io = scrub_missing_raid56_end_io;
2191 
2192 	rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
2193 	if (!rbio)
2194 		goto rbio_out;
2195 
2196 	for (i = 0; i < sblock->page_count; i++) {
2197 		struct scrub_page *spage = sblock->pagev[i];
2198 
2199 		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2200 	}
2201 
2202 	btrfs_init_work(&sblock->work, btrfs_scrub_helper,
2203 			scrub_missing_raid56_worker, NULL, NULL);
2204 	scrub_block_get(sblock);
2205 	scrub_pending_bio_inc(sctx);
2206 	raid56_submit_missing_rbio(rbio);
2207 	return;
2208 
2209 rbio_out:
2210 	bio_put(bio);
2211 bbio_out:
2212 	btrfs_bio_counter_dec(fs_info);
2213 	btrfs_put_bbio(bbio);
2214 	spin_lock(&sctx->stat_lock);
2215 	sctx->stat.malloc_errors++;
2216 	spin_unlock(&sctx->stat_lock);
2217 }
2218 
scrub_pages(struct scrub_ctx * sctx,u64 logical,u64 len,u64 physical,struct btrfs_device * dev,u64 flags,u64 gen,int mirror_num,u8 * csum,int force,u64 physical_for_dev_replace)2219 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2220 		       u64 physical, struct btrfs_device *dev, u64 flags,
2221 		       u64 gen, int mirror_num, u8 *csum, int force,
2222 		       u64 physical_for_dev_replace)
2223 {
2224 	struct scrub_block *sblock;
2225 	int index;
2226 
2227 	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2228 	if (!sblock) {
2229 		spin_lock(&sctx->stat_lock);
2230 		sctx->stat.malloc_errors++;
2231 		spin_unlock(&sctx->stat_lock);
2232 		return -ENOMEM;
2233 	}
2234 
2235 	/* one ref inside this function, plus one for each page added to
2236 	 * a bio later on */
2237 	refcount_set(&sblock->refs, 1);
2238 	sblock->sctx = sctx;
2239 	sblock->no_io_error_seen = 1;
2240 
2241 	for (index = 0; len > 0; index++) {
2242 		struct scrub_page *spage;
2243 		u64 l = min_t(u64, len, PAGE_SIZE);
2244 
2245 		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2246 		if (!spage) {
2247 leave_nomem:
2248 			spin_lock(&sctx->stat_lock);
2249 			sctx->stat.malloc_errors++;
2250 			spin_unlock(&sctx->stat_lock);
2251 			scrub_block_put(sblock);
2252 			return -ENOMEM;
2253 		}
2254 		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2255 		scrub_page_get(spage);
2256 		sblock->pagev[index] = spage;
2257 		spage->sblock = sblock;
2258 		spage->dev = dev;
2259 		spage->flags = flags;
2260 		spage->generation = gen;
2261 		spage->logical = logical;
2262 		spage->physical = physical;
2263 		spage->physical_for_dev_replace = physical_for_dev_replace;
2264 		spage->mirror_num = mirror_num;
2265 		if (csum) {
2266 			spage->have_csum = 1;
2267 			memcpy(spage->csum, csum, sctx->csum_size);
2268 		} else {
2269 			spage->have_csum = 0;
2270 		}
2271 		sblock->page_count++;
2272 		spage->page = alloc_page(GFP_KERNEL);
2273 		if (!spage->page)
2274 			goto leave_nomem;
2275 		len -= l;
2276 		logical += l;
2277 		physical += l;
2278 		physical_for_dev_replace += l;
2279 	}
2280 
2281 	WARN_ON(sblock->page_count == 0);
2282 	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2283 		/*
2284 		 * This case should only be hit for RAID 5/6 device replace. See
2285 		 * the comment in scrub_missing_raid56_pages() for details.
2286 		 */
2287 		scrub_missing_raid56_pages(sblock);
2288 	} else {
2289 		for (index = 0; index < sblock->page_count; index++) {
2290 			struct scrub_page *spage = sblock->pagev[index];
2291 			int ret;
2292 
2293 			ret = scrub_add_page_to_rd_bio(sctx, spage);
2294 			if (ret) {
2295 				scrub_block_put(sblock);
2296 				return ret;
2297 			}
2298 		}
2299 
2300 		if (force)
2301 			scrub_submit(sctx);
2302 	}
2303 
2304 	/* last one frees, either here or in bio completion for last page */
2305 	scrub_block_put(sblock);
2306 	return 0;
2307 }
2308 
scrub_bio_end_io(struct bio * bio)2309 static void scrub_bio_end_io(struct bio *bio)
2310 {
2311 	struct scrub_bio *sbio = bio->bi_private;
2312 	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2313 
2314 	sbio->status = bio->bi_status;
2315 	sbio->bio = bio;
2316 
2317 	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2318 }
2319 
scrub_bio_end_io_worker(struct btrfs_work * work)2320 static void scrub_bio_end_io_worker(struct btrfs_work *work)
2321 {
2322 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2323 	struct scrub_ctx *sctx = sbio->sctx;
2324 	int i;
2325 
2326 	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2327 	if (sbio->status) {
2328 		for (i = 0; i < sbio->page_count; i++) {
2329 			struct scrub_page *spage = sbio->pagev[i];
2330 
2331 			spage->io_error = 1;
2332 			spage->sblock->no_io_error_seen = 0;
2333 		}
2334 	}
2335 
2336 	/* now complete the scrub_block items that have all pages completed */
2337 	for (i = 0; i < sbio->page_count; i++) {
2338 		struct scrub_page *spage = sbio->pagev[i];
2339 		struct scrub_block *sblock = spage->sblock;
2340 
2341 		if (atomic_dec_and_test(&sblock->outstanding_pages))
2342 			scrub_block_complete(sblock);
2343 		scrub_block_put(sblock);
2344 	}
2345 
2346 	bio_put(sbio->bio);
2347 	sbio->bio = NULL;
2348 	spin_lock(&sctx->list_lock);
2349 	sbio->next_free = sctx->first_free;
2350 	sctx->first_free = sbio->index;
2351 	spin_unlock(&sctx->list_lock);
2352 
2353 	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2354 		mutex_lock(&sctx->wr_lock);
2355 		scrub_wr_submit(sctx);
2356 		mutex_unlock(&sctx->wr_lock);
2357 	}
2358 
2359 	scrub_pending_bio_dec(sctx);
2360 }
2361 
__scrub_mark_bitmap(struct scrub_parity * sparity,unsigned long * bitmap,u64 start,u64 len)2362 static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2363 				       unsigned long *bitmap,
2364 				       u64 start, u64 len)
2365 {
2366 	u64 offset;
2367 	u64 nsectors64;
2368 	u32 nsectors;
2369 	int sectorsize = sparity->sctx->fs_info->sectorsize;
2370 
2371 	if (len >= sparity->stripe_len) {
2372 		bitmap_set(bitmap, 0, sparity->nsectors);
2373 		return;
2374 	}
2375 
2376 	start -= sparity->logic_start;
2377 	start = div64_u64_rem(start, sparity->stripe_len, &offset);
2378 	offset = div_u64(offset, sectorsize);
2379 	nsectors64 = div_u64(len, sectorsize);
2380 
2381 	ASSERT(nsectors64 < UINT_MAX);
2382 	nsectors = (u32)nsectors64;
2383 
2384 	if (offset + nsectors <= sparity->nsectors) {
2385 		bitmap_set(bitmap, offset, nsectors);
2386 		return;
2387 	}
2388 
2389 	bitmap_set(bitmap, offset, sparity->nsectors - offset);
2390 	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2391 }
2392 
scrub_parity_mark_sectors_error(struct scrub_parity * sparity,u64 start,u64 len)2393 static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2394 						   u64 start, u64 len)
2395 {
2396 	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2397 }
2398 
scrub_parity_mark_sectors_data(struct scrub_parity * sparity,u64 start,u64 len)2399 static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2400 						  u64 start, u64 len)
2401 {
2402 	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2403 }
2404 
scrub_block_complete(struct scrub_block * sblock)2405 static void scrub_block_complete(struct scrub_block *sblock)
2406 {
2407 	int corrupted = 0;
2408 
2409 	if (!sblock->no_io_error_seen) {
2410 		corrupted = 1;
2411 		scrub_handle_errored_block(sblock);
2412 	} else {
2413 		/*
2414 		 * if has checksum error, write via repair mechanism in
2415 		 * dev replace case, otherwise write here in dev replace
2416 		 * case.
2417 		 */
2418 		corrupted = scrub_checksum(sblock);
2419 		if (!corrupted && sblock->sctx->is_dev_replace)
2420 			scrub_write_block_to_dev_replace(sblock);
2421 	}
2422 
2423 	if (sblock->sparity && corrupted && !sblock->data_corrected) {
2424 		u64 start = sblock->pagev[0]->logical;
2425 		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2426 			  PAGE_SIZE;
2427 
2428 		scrub_parity_mark_sectors_error(sblock->sparity,
2429 						start, end - start);
2430 	}
2431 }
2432 
scrub_find_csum(struct scrub_ctx * sctx,u64 logical,u8 * csum)2433 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
2434 {
2435 	struct btrfs_ordered_sum *sum = NULL;
2436 	unsigned long index;
2437 	unsigned long num_sectors;
2438 
2439 	while (!list_empty(&sctx->csum_list)) {
2440 		sum = list_first_entry(&sctx->csum_list,
2441 				       struct btrfs_ordered_sum, list);
2442 		if (sum->bytenr > logical)
2443 			return 0;
2444 		if (sum->bytenr + sum->len > logical)
2445 			break;
2446 
2447 		++sctx->stat.csum_discards;
2448 		list_del(&sum->list);
2449 		kfree(sum);
2450 		sum = NULL;
2451 	}
2452 	if (!sum)
2453 		return 0;
2454 
2455 	index = div_u64(logical - sum->bytenr, sctx->fs_info->sectorsize);
2456 	ASSERT(index < UINT_MAX);
2457 
2458 	num_sectors = sum->len / sctx->fs_info->sectorsize;
2459 	memcpy(csum, sum->sums + index, sctx->csum_size);
2460 	if (index == num_sectors - 1) {
2461 		list_del(&sum->list);
2462 		kfree(sum);
2463 	}
2464 	return 1;
2465 }
2466 
2467 /* scrub extent tries to collect up to 64 kB for each bio */
scrub_extent(struct scrub_ctx * sctx,struct map_lookup * map,u64 logical,u64 len,u64 physical,struct btrfs_device * dev,u64 flags,u64 gen,int mirror_num,u64 physical_for_dev_replace)2468 static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2469 			u64 logical, u64 len,
2470 			u64 physical, struct btrfs_device *dev, u64 flags,
2471 			u64 gen, int mirror_num, u64 physical_for_dev_replace)
2472 {
2473 	int ret;
2474 	u8 csum[BTRFS_CSUM_SIZE];
2475 	u32 blocksize;
2476 
2477 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2478 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2479 			blocksize = map->stripe_len;
2480 		else
2481 			blocksize = sctx->fs_info->sectorsize;
2482 		spin_lock(&sctx->stat_lock);
2483 		sctx->stat.data_extents_scrubbed++;
2484 		sctx->stat.data_bytes_scrubbed += len;
2485 		spin_unlock(&sctx->stat_lock);
2486 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2487 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2488 			blocksize = map->stripe_len;
2489 		else
2490 			blocksize = sctx->fs_info->nodesize;
2491 		spin_lock(&sctx->stat_lock);
2492 		sctx->stat.tree_extents_scrubbed++;
2493 		sctx->stat.tree_bytes_scrubbed += len;
2494 		spin_unlock(&sctx->stat_lock);
2495 	} else {
2496 		blocksize = sctx->fs_info->sectorsize;
2497 		WARN_ON(1);
2498 	}
2499 
2500 	while (len) {
2501 		u64 l = min_t(u64, len, blocksize);
2502 		int have_csum = 0;
2503 
2504 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2505 			/* push csums to sbio */
2506 			have_csum = scrub_find_csum(sctx, logical, csum);
2507 			if (have_csum == 0)
2508 				++sctx->stat.no_csum;
2509 		}
2510 		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2511 				  mirror_num, have_csum ? csum : NULL, 0,
2512 				  physical_for_dev_replace);
2513 		if (ret)
2514 			return ret;
2515 		len -= l;
2516 		logical += l;
2517 		physical += l;
2518 		physical_for_dev_replace += l;
2519 	}
2520 	return 0;
2521 }
2522 
scrub_pages_for_parity(struct scrub_parity * sparity,u64 logical,u64 len,u64 physical,struct btrfs_device * dev,u64 flags,u64 gen,int mirror_num,u8 * csum)2523 static int scrub_pages_for_parity(struct scrub_parity *sparity,
2524 				  u64 logical, u64 len,
2525 				  u64 physical, struct btrfs_device *dev,
2526 				  u64 flags, u64 gen, int mirror_num, u8 *csum)
2527 {
2528 	struct scrub_ctx *sctx = sparity->sctx;
2529 	struct scrub_block *sblock;
2530 	int index;
2531 
2532 	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2533 	if (!sblock) {
2534 		spin_lock(&sctx->stat_lock);
2535 		sctx->stat.malloc_errors++;
2536 		spin_unlock(&sctx->stat_lock);
2537 		return -ENOMEM;
2538 	}
2539 
2540 	/* one ref inside this function, plus one for each page added to
2541 	 * a bio later on */
2542 	refcount_set(&sblock->refs, 1);
2543 	sblock->sctx = sctx;
2544 	sblock->no_io_error_seen = 1;
2545 	sblock->sparity = sparity;
2546 	scrub_parity_get(sparity);
2547 
2548 	for (index = 0; len > 0; index++) {
2549 		struct scrub_page *spage;
2550 		u64 l = min_t(u64, len, PAGE_SIZE);
2551 
2552 		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2553 		if (!spage) {
2554 leave_nomem:
2555 			spin_lock(&sctx->stat_lock);
2556 			sctx->stat.malloc_errors++;
2557 			spin_unlock(&sctx->stat_lock);
2558 			scrub_block_put(sblock);
2559 			return -ENOMEM;
2560 		}
2561 		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2562 		/* For scrub block */
2563 		scrub_page_get(spage);
2564 		sblock->pagev[index] = spage;
2565 		/* For scrub parity */
2566 		scrub_page_get(spage);
2567 		list_add_tail(&spage->list, &sparity->spages);
2568 		spage->sblock = sblock;
2569 		spage->dev = dev;
2570 		spage->flags = flags;
2571 		spage->generation = gen;
2572 		spage->logical = logical;
2573 		spage->physical = physical;
2574 		spage->mirror_num = mirror_num;
2575 		if (csum) {
2576 			spage->have_csum = 1;
2577 			memcpy(spage->csum, csum, sctx->csum_size);
2578 		} else {
2579 			spage->have_csum = 0;
2580 		}
2581 		sblock->page_count++;
2582 		spage->page = alloc_page(GFP_KERNEL);
2583 		if (!spage->page)
2584 			goto leave_nomem;
2585 		len -= l;
2586 		logical += l;
2587 		physical += l;
2588 	}
2589 
2590 	WARN_ON(sblock->page_count == 0);
2591 	for (index = 0; index < sblock->page_count; index++) {
2592 		struct scrub_page *spage = sblock->pagev[index];
2593 		int ret;
2594 
2595 		ret = scrub_add_page_to_rd_bio(sctx, spage);
2596 		if (ret) {
2597 			scrub_block_put(sblock);
2598 			return ret;
2599 		}
2600 	}
2601 
2602 	/* last one frees, either here or in bio completion for last page */
2603 	scrub_block_put(sblock);
2604 	return 0;
2605 }
2606 
scrub_extent_for_parity(struct scrub_parity * sparity,u64 logical,u64 len,u64 physical,struct btrfs_device * dev,u64 flags,u64 gen,int mirror_num)2607 static int scrub_extent_for_parity(struct scrub_parity *sparity,
2608 				   u64 logical, u64 len,
2609 				   u64 physical, struct btrfs_device *dev,
2610 				   u64 flags, u64 gen, int mirror_num)
2611 {
2612 	struct scrub_ctx *sctx = sparity->sctx;
2613 	int ret;
2614 	u8 csum[BTRFS_CSUM_SIZE];
2615 	u32 blocksize;
2616 
2617 	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2618 		scrub_parity_mark_sectors_error(sparity, logical, len);
2619 		return 0;
2620 	}
2621 
2622 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2623 		blocksize = sparity->stripe_len;
2624 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2625 		blocksize = sparity->stripe_len;
2626 	} else {
2627 		blocksize = sctx->fs_info->sectorsize;
2628 		WARN_ON(1);
2629 	}
2630 
2631 	while (len) {
2632 		u64 l = min_t(u64, len, blocksize);
2633 		int have_csum = 0;
2634 
2635 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2636 			/* push csums to sbio */
2637 			have_csum = scrub_find_csum(sctx, logical, csum);
2638 			if (have_csum == 0)
2639 				goto skip;
2640 		}
2641 		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2642 					     flags, gen, mirror_num,
2643 					     have_csum ? csum : NULL);
2644 		if (ret)
2645 			return ret;
2646 skip:
2647 		len -= l;
2648 		logical += l;
2649 		physical += l;
2650 	}
2651 	return 0;
2652 }
2653 
2654 /*
2655  * Given a physical address, this will calculate it's
2656  * logical offset. if this is a parity stripe, it will return
2657  * the most left data stripe's logical offset.
2658  *
2659  * return 0 if it is a data stripe, 1 means parity stripe.
2660  */
get_raid56_logic_offset(u64 physical,int num,struct map_lookup * map,u64 * offset,u64 * stripe_start)2661 static int get_raid56_logic_offset(u64 physical, int num,
2662 				   struct map_lookup *map, u64 *offset,
2663 				   u64 *stripe_start)
2664 {
2665 	int i;
2666 	int j = 0;
2667 	u64 stripe_nr;
2668 	u64 last_offset;
2669 	u32 stripe_index;
2670 	u32 rot;
2671 
2672 	last_offset = (physical - map->stripes[num].physical) *
2673 		      nr_data_stripes(map);
2674 	if (stripe_start)
2675 		*stripe_start = last_offset;
2676 
2677 	*offset = last_offset;
2678 	for (i = 0; i < nr_data_stripes(map); i++) {
2679 		*offset = last_offset + i * map->stripe_len;
2680 
2681 		stripe_nr = div64_u64(*offset, map->stripe_len);
2682 		stripe_nr = div_u64(stripe_nr, nr_data_stripes(map));
2683 
2684 		/* Work out the disk rotation on this stripe-set */
2685 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2686 		/* calculate which stripe this data locates */
2687 		rot += i;
2688 		stripe_index = rot % map->num_stripes;
2689 		if (stripe_index == num)
2690 			return 0;
2691 		if (stripe_index < num)
2692 			j++;
2693 	}
2694 	*offset = last_offset + j * map->stripe_len;
2695 	return 1;
2696 }
2697 
scrub_free_parity(struct scrub_parity * sparity)2698 static void scrub_free_parity(struct scrub_parity *sparity)
2699 {
2700 	struct scrub_ctx *sctx = sparity->sctx;
2701 	struct scrub_page *curr, *next;
2702 	int nbits;
2703 
2704 	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
2705 	if (nbits) {
2706 		spin_lock(&sctx->stat_lock);
2707 		sctx->stat.read_errors += nbits;
2708 		sctx->stat.uncorrectable_errors += nbits;
2709 		spin_unlock(&sctx->stat_lock);
2710 	}
2711 
2712 	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
2713 		list_del_init(&curr->list);
2714 		scrub_page_put(curr);
2715 	}
2716 
2717 	kfree(sparity);
2718 }
2719 
scrub_parity_bio_endio_worker(struct btrfs_work * work)2720 static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
2721 {
2722 	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
2723 						    work);
2724 	struct scrub_ctx *sctx = sparity->sctx;
2725 
2726 	scrub_free_parity(sparity);
2727 	scrub_pending_bio_dec(sctx);
2728 }
2729 
scrub_parity_bio_endio(struct bio * bio)2730 static void scrub_parity_bio_endio(struct bio *bio)
2731 {
2732 	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2733 	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2734 
2735 	if (bio->bi_status)
2736 		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2737 			  sparity->nsectors);
2738 
2739 	bio_put(bio);
2740 
2741 	btrfs_init_work(&sparity->work, btrfs_scrubparity_helper,
2742 			scrub_parity_bio_endio_worker, NULL, NULL);
2743 	btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
2744 }
2745 
scrub_parity_check_and_repair(struct scrub_parity * sparity)2746 static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
2747 {
2748 	struct scrub_ctx *sctx = sparity->sctx;
2749 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2750 	struct bio *bio;
2751 	struct btrfs_raid_bio *rbio;
2752 	struct btrfs_bio *bbio = NULL;
2753 	u64 length;
2754 	int ret;
2755 
2756 	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
2757 			   sparity->nsectors))
2758 		goto out;
2759 
2760 	length = sparity->logic_end - sparity->logic_start;
2761 
2762 	btrfs_bio_counter_inc_blocked(fs_info);
2763 	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2764 			       &length, &bbio);
2765 	if (ret || !bbio || !bbio->raid_map)
2766 		goto bbio_out;
2767 
2768 	bio = btrfs_io_bio_alloc(0);
2769 	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
2770 	bio->bi_private = sparity;
2771 	bio->bi_end_io = scrub_parity_bio_endio;
2772 
2773 	rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
2774 					      length, sparity->scrub_dev,
2775 					      sparity->dbitmap,
2776 					      sparity->nsectors);
2777 	if (!rbio)
2778 		goto rbio_out;
2779 
2780 	scrub_pending_bio_inc(sctx);
2781 	raid56_parity_submit_scrub_rbio(rbio);
2782 	return;
2783 
2784 rbio_out:
2785 	bio_put(bio);
2786 bbio_out:
2787 	btrfs_bio_counter_dec(fs_info);
2788 	btrfs_put_bbio(bbio);
2789 	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2790 		  sparity->nsectors);
2791 	spin_lock(&sctx->stat_lock);
2792 	sctx->stat.malloc_errors++;
2793 	spin_unlock(&sctx->stat_lock);
2794 out:
2795 	scrub_free_parity(sparity);
2796 }
2797 
scrub_calc_parity_bitmap_len(int nsectors)2798 static inline int scrub_calc_parity_bitmap_len(int nsectors)
2799 {
2800 	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
2801 }
2802 
scrub_parity_get(struct scrub_parity * sparity)2803 static void scrub_parity_get(struct scrub_parity *sparity)
2804 {
2805 	refcount_inc(&sparity->refs);
2806 }
2807 
scrub_parity_put(struct scrub_parity * sparity)2808 static void scrub_parity_put(struct scrub_parity *sparity)
2809 {
2810 	if (!refcount_dec_and_test(&sparity->refs))
2811 		return;
2812 
2813 	scrub_parity_check_and_repair(sparity);
2814 }
2815 
scrub_raid56_parity(struct scrub_ctx * sctx,struct map_lookup * map,struct btrfs_device * sdev,struct btrfs_path * path,u64 logic_start,u64 logic_end)2816 static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
2817 						  struct map_lookup *map,
2818 						  struct btrfs_device *sdev,
2819 						  struct btrfs_path *path,
2820 						  u64 logic_start,
2821 						  u64 logic_end)
2822 {
2823 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2824 	struct btrfs_root *root = fs_info->extent_root;
2825 	struct btrfs_root *csum_root = fs_info->csum_root;
2826 	struct btrfs_extent_item *extent;
2827 	struct btrfs_bio *bbio = NULL;
2828 	u64 flags;
2829 	int ret;
2830 	int slot;
2831 	struct extent_buffer *l;
2832 	struct btrfs_key key;
2833 	u64 generation;
2834 	u64 extent_logical;
2835 	u64 extent_physical;
2836 	u64 extent_len;
2837 	u64 mapped_length;
2838 	struct btrfs_device *extent_dev;
2839 	struct scrub_parity *sparity;
2840 	int nsectors;
2841 	int bitmap_len;
2842 	int extent_mirror_num;
2843 	int stop_loop = 0;
2844 
2845 	nsectors = div_u64(map->stripe_len, fs_info->sectorsize);
2846 	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
2847 	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
2848 			  GFP_NOFS);
2849 	if (!sparity) {
2850 		spin_lock(&sctx->stat_lock);
2851 		sctx->stat.malloc_errors++;
2852 		spin_unlock(&sctx->stat_lock);
2853 		return -ENOMEM;
2854 	}
2855 
2856 	sparity->stripe_len = map->stripe_len;
2857 	sparity->nsectors = nsectors;
2858 	sparity->sctx = sctx;
2859 	sparity->scrub_dev = sdev;
2860 	sparity->logic_start = logic_start;
2861 	sparity->logic_end = logic_end;
2862 	refcount_set(&sparity->refs, 1);
2863 	INIT_LIST_HEAD(&sparity->spages);
2864 	sparity->dbitmap = sparity->bitmap;
2865 	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
2866 
2867 	ret = 0;
2868 	while (logic_start < logic_end) {
2869 		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2870 			key.type = BTRFS_METADATA_ITEM_KEY;
2871 		else
2872 			key.type = BTRFS_EXTENT_ITEM_KEY;
2873 		key.objectid = logic_start;
2874 		key.offset = (u64)-1;
2875 
2876 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2877 		if (ret < 0)
2878 			goto out;
2879 
2880 		if (ret > 0) {
2881 			ret = btrfs_previous_extent_item(root, path, 0);
2882 			if (ret < 0)
2883 				goto out;
2884 			if (ret > 0) {
2885 				btrfs_release_path(path);
2886 				ret = btrfs_search_slot(NULL, root, &key,
2887 							path, 0, 0);
2888 				if (ret < 0)
2889 					goto out;
2890 			}
2891 		}
2892 
2893 		stop_loop = 0;
2894 		while (1) {
2895 			u64 bytes;
2896 
2897 			l = path->nodes[0];
2898 			slot = path->slots[0];
2899 			if (slot >= btrfs_header_nritems(l)) {
2900 				ret = btrfs_next_leaf(root, path);
2901 				if (ret == 0)
2902 					continue;
2903 				if (ret < 0)
2904 					goto out;
2905 
2906 				stop_loop = 1;
2907 				break;
2908 			}
2909 			btrfs_item_key_to_cpu(l, &key, slot);
2910 
2911 			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2912 			    key.type != BTRFS_METADATA_ITEM_KEY)
2913 				goto next;
2914 
2915 			if (key.type == BTRFS_METADATA_ITEM_KEY)
2916 				bytes = fs_info->nodesize;
2917 			else
2918 				bytes = key.offset;
2919 
2920 			if (key.objectid + bytes <= logic_start)
2921 				goto next;
2922 
2923 			if (key.objectid >= logic_end) {
2924 				stop_loop = 1;
2925 				break;
2926 			}
2927 
2928 			while (key.objectid >= logic_start + map->stripe_len)
2929 				logic_start += map->stripe_len;
2930 
2931 			extent = btrfs_item_ptr(l, slot,
2932 						struct btrfs_extent_item);
2933 			flags = btrfs_extent_flags(l, extent);
2934 			generation = btrfs_extent_generation(l, extent);
2935 
2936 			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
2937 			    (key.objectid < logic_start ||
2938 			     key.objectid + bytes >
2939 			     logic_start + map->stripe_len)) {
2940 				btrfs_err(fs_info,
2941 					  "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
2942 					  key.objectid, logic_start);
2943 				spin_lock(&sctx->stat_lock);
2944 				sctx->stat.uncorrectable_errors++;
2945 				spin_unlock(&sctx->stat_lock);
2946 				goto next;
2947 			}
2948 again:
2949 			extent_logical = key.objectid;
2950 			extent_len = bytes;
2951 
2952 			if (extent_logical < logic_start) {
2953 				extent_len -= logic_start - extent_logical;
2954 				extent_logical = logic_start;
2955 			}
2956 
2957 			if (extent_logical + extent_len >
2958 			    logic_start + map->stripe_len)
2959 				extent_len = logic_start + map->stripe_len -
2960 					     extent_logical;
2961 
2962 			scrub_parity_mark_sectors_data(sparity, extent_logical,
2963 						       extent_len);
2964 
2965 			mapped_length = extent_len;
2966 			bbio = NULL;
2967 			ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
2968 					extent_logical, &mapped_length, &bbio,
2969 					0);
2970 			if (!ret) {
2971 				if (!bbio || mapped_length < extent_len)
2972 					ret = -EIO;
2973 			}
2974 			if (ret) {
2975 				btrfs_put_bbio(bbio);
2976 				goto out;
2977 			}
2978 			extent_physical = bbio->stripes[0].physical;
2979 			extent_mirror_num = bbio->mirror_num;
2980 			extent_dev = bbio->stripes[0].dev;
2981 			btrfs_put_bbio(bbio);
2982 
2983 			ret = btrfs_lookup_csums_range(csum_root,
2984 						extent_logical,
2985 						extent_logical + extent_len - 1,
2986 						&sctx->csum_list, 1);
2987 			if (ret)
2988 				goto out;
2989 
2990 			ret = scrub_extent_for_parity(sparity, extent_logical,
2991 						      extent_len,
2992 						      extent_physical,
2993 						      extent_dev, flags,
2994 						      generation,
2995 						      extent_mirror_num);
2996 
2997 			scrub_free_csums(sctx);
2998 
2999 			if (ret)
3000 				goto out;
3001 
3002 			if (extent_logical + extent_len <
3003 			    key.objectid + bytes) {
3004 				logic_start += map->stripe_len;
3005 
3006 				if (logic_start >= logic_end) {
3007 					stop_loop = 1;
3008 					break;
3009 				}
3010 
3011 				if (logic_start < key.objectid + bytes) {
3012 					cond_resched();
3013 					goto again;
3014 				}
3015 			}
3016 next:
3017 			path->slots[0]++;
3018 		}
3019 
3020 		btrfs_release_path(path);
3021 
3022 		if (stop_loop)
3023 			break;
3024 
3025 		logic_start += map->stripe_len;
3026 	}
3027 out:
3028 	if (ret < 0)
3029 		scrub_parity_mark_sectors_error(sparity, logic_start,
3030 						logic_end - logic_start);
3031 	scrub_parity_put(sparity);
3032 	scrub_submit(sctx);
3033 	mutex_lock(&sctx->wr_lock);
3034 	scrub_wr_submit(sctx);
3035 	mutex_unlock(&sctx->wr_lock);
3036 
3037 	btrfs_release_path(path);
3038 	return ret < 0 ? ret : 0;
3039 }
3040 
scrub_stripe(struct scrub_ctx * sctx,struct map_lookup * map,struct btrfs_device * scrub_dev,int num,u64 base,u64 length)3041 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3042 					   struct map_lookup *map,
3043 					   struct btrfs_device *scrub_dev,
3044 					   int num, u64 base, u64 length)
3045 {
3046 	struct btrfs_path *path, *ppath;
3047 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3048 	struct btrfs_root *root = fs_info->extent_root;
3049 	struct btrfs_root *csum_root = fs_info->csum_root;
3050 	struct btrfs_extent_item *extent;
3051 	struct blk_plug plug;
3052 	u64 flags;
3053 	int ret;
3054 	int slot;
3055 	u64 nstripes;
3056 	struct extent_buffer *l;
3057 	u64 physical;
3058 	u64 logical;
3059 	u64 logic_end;
3060 	u64 physical_end;
3061 	u64 generation;
3062 	int mirror_num;
3063 	struct reada_control *reada1;
3064 	struct reada_control *reada2;
3065 	struct btrfs_key key;
3066 	struct btrfs_key key_end;
3067 	u64 increment = map->stripe_len;
3068 	u64 offset;
3069 	u64 extent_logical;
3070 	u64 extent_physical;
3071 	u64 extent_len;
3072 	u64 stripe_logical;
3073 	u64 stripe_end;
3074 	struct btrfs_device *extent_dev;
3075 	int extent_mirror_num;
3076 	int stop_loop = 0;
3077 
3078 	physical = map->stripes[num].physical;
3079 	offset = 0;
3080 	nstripes = div64_u64(length, map->stripe_len);
3081 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3082 		offset = map->stripe_len * num;
3083 		increment = map->stripe_len * map->num_stripes;
3084 		mirror_num = 1;
3085 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3086 		int factor = map->num_stripes / map->sub_stripes;
3087 		offset = map->stripe_len * (num / map->sub_stripes);
3088 		increment = map->stripe_len * factor;
3089 		mirror_num = num % map->sub_stripes + 1;
3090 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3091 		increment = map->stripe_len;
3092 		mirror_num = num % map->num_stripes + 1;
3093 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3094 		increment = map->stripe_len;
3095 		mirror_num = num % map->num_stripes + 1;
3096 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3097 		get_raid56_logic_offset(physical, num, map, &offset, NULL);
3098 		increment = map->stripe_len * nr_data_stripes(map);
3099 		mirror_num = 1;
3100 	} else {
3101 		increment = map->stripe_len;
3102 		mirror_num = 1;
3103 	}
3104 
3105 	path = btrfs_alloc_path();
3106 	if (!path)
3107 		return -ENOMEM;
3108 
3109 	ppath = btrfs_alloc_path();
3110 	if (!ppath) {
3111 		btrfs_free_path(path);
3112 		return -ENOMEM;
3113 	}
3114 
3115 	/*
3116 	 * work on commit root. The related disk blocks are static as
3117 	 * long as COW is applied. This means, it is save to rewrite
3118 	 * them to repair disk errors without any race conditions
3119 	 */
3120 	path->search_commit_root = 1;
3121 	path->skip_locking = 1;
3122 
3123 	ppath->search_commit_root = 1;
3124 	ppath->skip_locking = 1;
3125 	/*
3126 	 * trigger the readahead for extent tree csum tree and wait for
3127 	 * completion. During readahead, the scrub is officially paused
3128 	 * to not hold off transaction commits
3129 	 */
3130 	logical = base + offset;
3131 	physical_end = physical + nstripes * map->stripe_len;
3132 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3133 		get_raid56_logic_offset(physical_end, num,
3134 					map, &logic_end, NULL);
3135 		logic_end += base;
3136 	} else {
3137 		logic_end = logical + increment * nstripes;
3138 	}
3139 	wait_event(sctx->list_wait,
3140 		   atomic_read(&sctx->bios_in_flight) == 0);
3141 	scrub_blocked_if_needed(fs_info);
3142 
3143 	/* FIXME it might be better to start readahead at commit root */
3144 	key.objectid = logical;
3145 	key.type = BTRFS_EXTENT_ITEM_KEY;
3146 	key.offset = (u64)0;
3147 	key_end.objectid = logic_end;
3148 	key_end.type = BTRFS_METADATA_ITEM_KEY;
3149 	key_end.offset = (u64)-1;
3150 	reada1 = btrfs_reada_add(root, &key, &key_end);
3151 
3152 	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3153 	key.type = BTRFS_EXTENT_CSUM_KEY;
3154 	key.offset = logical;
3155 	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3156 	key_end.type = BTRFS_EXTENT_CSUM_KEY;
3157 	key_end.offset = logic_end;
3158 	reada2 = btrfs_reada_add(csum_root, &key, &key_end);
3159 
3160 	if (!IS_ERR(reada1))
3161 		btrfs_reada_wait(reada1);
3162 	if (!IS_ERR(reada2))
3163 		btrfs_reada_wait(reada2);
3164 
3165 
3166 	/*
3167 	 * collect all data csums for the stripe to avoid seeking during
3168 	 * the scrub. This might currently (crc32) end up to be about 1MB
3169 	 */
3170 	blk_start_plug(&plug);
3171 
3172 	/*
3173 	 * now find all extents for each stripe and scrub them
3174 	 */
3175 	ret = 0;
3176 	while (physical < physical_end) {
3177 		/*
3178 		 * canceled?
3179 		 */
3180 		if (atomic_read(&fs_info->scrub_cancel_req) ||
3181 		    atomic_read(&sctx->cancel_req)) {
3182 			ret = -ECANCELED;
3183 			goto out;
3184 		}
3185 		/*
3186 		 * check to see if we have to pause
3187 		 */
3188 		if (atomic_read(&fs_info->scrub_pause_req)) {
3189 			/* push queued extents */
3190 			sctx->flush_all_writes = true;
3191 			scrub_submit(sctx);
3192 			mutex_lock(&sctx->wr_lock);
3193 			scrub_wr_submit(sctx);
3194 			mutex_unlock(&sctx->wr_lock);
3195 			wait_event(sctx->list_wait,
3196 				   atomic_read(&sctx->bios_in_flight) == 0);
3197 			sctx->flush_all_writes = false;
3198 			scrub_blocked_if_needed(fs_info);
3199 		}
3200 
3201 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3202 			ret = get_raid56_logic_offset(physical, num, map,
3203 						      &logical,
3204 						      &stripe_logical);
3205 			logical += base;
3206 			if (ret) {
3207 				/* it is parity strip */
3208 				stripe_logical += base;
3209 				stripe_end = stripe_logical + increment;
3210 				ret = scrub_raid56_parity(sctx, map, scrub_dev,
3211 							  ppath, stripe_logical,
3212 							  stripe_end);
3213 				if (ret)
3214 					goto out;
3215 				goto skip;
3216 			}
3217 		}
3218 
3219 		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3220 			key.type = BTRFS_METADATA_ITEM_KEY;
3221 		else
3222 			key.type = BTRFS_EXTENT_ITEM_KEY;
3223 		key.objectid = logical;
3224 		key.offset = (u64)-1;
3225 
3226 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3227 		if (ret < 0)
3228 			goto out;
3229 
3230 		if (ret > 0) {
3231 			ret = btrfs_previous_extent_item(root, path, 0);
3232 			if (ret < 0)
3233 				goto out;
3234 			if (ret > 0) {
3235 				/* there's no smaller item, so stick with the
3236 				 * larger one */
3237 				btrfs_release_path(path);
3238 				ret = btrfs_search_slot(NULL, root, &key,
3239 							path, 0, 0);
3240 				if (ret < 0)
3241 					goto out;
3242 			}
3243 		}
3244 
3245 		stop_loop = 0;
3246 		while (1) {
3247 			u64 bytes;
3248 
3249 			l = path->nodes[0];
3250 			slot = path->slots[0];
3251 			if (slot >= btrfs_header_nritems(l)) {
3252 				ret = btrfs_next_leaf(root, path);
3253 				if (ret == 0)
3254 					continue;
3255 				if (ret < 0)
3256 					goto out;
3257 
3258 				stop_loop = 1;
3259 				break;
3260 			}
3261 			btrfs_item_key_to_cpu(l, &key, slot);
3262 
3263 			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3264 			    key.type != BTRFS_METADATA_ITEM_KEY)
3265 				goto next;
3266 
3267 			if (key.type == BTRFS_METADATA_ITEM_KEY)
3268 				bytes = fs_info->nodesize;
3269 			else
3270 				bytes = key.offset;
3271 
3272 			if (key.objectid + bytes <= logical)
3273 				goto next;
3274 
3275 			if (key.objectid >= logical + map->stripe_len) {
3276 				/* out of this device extent */
3277 				if (key.objectid >= logic_end)
3278 					stop_loop = 1;
3279 				break;
3280 			}
3281 
3282 			extent = btrfs_item_ptr(l, slot,
3283 						struct btrfs_extent_item);
3284 			flags = btrfs_extent_flags(l, extent);
3285 			generation = btrfs_extent_generation(l, extent);
3286 
3287 			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3288 			    (key.objectid < logical ||
3289 			     key.objectid + bytes >
3290 			     logical + map->stripe_len)) {
3291 				btrfs_err(fs_info,
3292 					   "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3293 				       key.objectid, logical);
3294 				spin_lock(&sctx->stat_lock);
3295 				sctx->stat.uncorrectable_errors++;
3296 				spin_unlock(&sctx->stat_lock);
3297 				goto next;
3298 			}
3299 
3300 again:
3301 			extent_logical = key.objectid;
3302 			extent_len = bytes;
3303 
3304 			/*
3305 			 * trim extent to this stripe
3306 			 */
3307 			if (extent_logical < logical) {
3308 				extent_len -= logical - extent_logical;
3309 				extent_logical = logical;
3310 			}
3311 			if (extent_logical + extent_len >
3312 			    logical + map->stripe_len) {
3313 				extent_len = logical + map->stripe_len -
3314 					     extent_logical;
3315 			}
3316 
3317 			extent_physical = extent_logical - logical + physical;
3318 			extent_dev = scrub_dev;
3319 			extent_mirror_num = mirror_num;
3320 			if (sctx->is_dev_replace)
3321 				scrub_remap_extent(fs_info, extent_logical,
3322 						   extent_len, &extent_physical,
3323 						   &extent_dev,
3324 						   &extent_mirror_num);
3325 
3326 			ret = btrfs_lookup_csums_range(csum_root,
3327 						       extent_logical,
3328 						       extent_logical +
3329 						       extent_len - 1,
3330 						       &sctx->csum_list, 1);
3331 			if (ret)
3332 				goto out;
3333 
3334 			ret = scrub_extent(sctx, map, extent_logical, extent_len,
3335 					   extent_physical, extent_dev, flags,
3336 					   generation, extent_mirror_num,
3337 					   extent_logical - logical + physical);
3338 
3339 			scrub_free_csums(sctx);
3340 
3341 			if (ret)
3342 				goto out;
3343 
3344 			if (extent_logical + extent_len <
3345 			    key.objectid + bytes) {
3346 				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3347 					/*
3348 					 * loop until we find next data stripe
3349 					 * or we have finished all stripes.
3350 					 */
3351 loop:
3352 					physical += map->stripe_len;
3353 					ret = get_raid56_logic_offset(physical,
3354 							num, map, &logical,
3355 							&stripe_logical);
3356 					logical += base;
3357 
3358 					if (ret && physical < physical_end) {
3359 						stripe_logical += base;
3360 						stripe_end = stripe_logical +
3361 								increment;
3362 						ret = scrub_raid56_parity(sctx,
3363 							map, scrub_dev, ppath,
3364 							stripe_logical,
3365 							stripe_end);
3366 						if (ret)
3367 							goto out;
3368 						goto loop;
3369 					}
3370 				} else {
3371 					physical += map->stripe_len;
3372 					logical += increment;
3373 				}
3374 				if (logical < key.objectid + bytes) {
3375 					cond_resched();
3376 					goto again;
3377 				}
3378 
3379 				if (physical >= physical_end) {
3380 					stop_loop = 1;
3381 					break;
3382 				}
3383 			}
3384 next:
3385 			path->slots[0]++;
3386 		}
3387 		btrfs_release_path(path);
3388 skip:
3389 		logical += increment;
3390 		physical += map->stripe_len;
3391 		spin_lock(&sctx->stat_lock);
3392 		if (stop_loop)
3393 			sctx->stat.last_physical = map->stripes[num].physical +
3394 						   length;
3395 		else
3396 			sctx->stat.last_physical = physical;
3397 		spin_unlock(&sctx->stat_lock);
3398 		if (stop_loop)
3399 			break;
3400 	}
3401 out:
3402 	/* push queued extents */
3403 	scrub_submit(sctx);
3404 	mutex_lock(&sctx->wr_lock);
3405 	scrub_wr_submit(sctx);
3406 	mutex_unlock(&sctx->wr_lock);
3407 
3408 	blk_finish_plug(&plug);
3409 	btrfs_free_path(path);
3410 	btrfs_free_path(ppath);
3411 	return ret < 0 ? ret : 0;
3412 }
3413 
scrub_chunk(struct scrub_ctx * sctx,struct btrfs_device * scrub_dev,u64 chunk_offset,u64 length,u64 dev_offset,struct btrfs_block_group_cache * cache)3414 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3415 					  struct btrfs_device *scrub_dev,
3416 					  u64 chunk_offset, u64 length,
3417 					  u64 dev_offset,
3418 					  struct btrfs_block_group_cache *cache)
3419 {
3420 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3421 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
3422 	struct map_lookup *map;
3423 	struct extent_map *em;
3424 	int i;
3425 	int ret = 0;
3426 
3427 	read_lock(&map_tree->map_tree.lock);
3428 	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
3429 	read_unlock(&map_tree->map_tree.lock);
3430 
3431 	if (!em) {
3432 		/*
3433 		 * Might have been an unused block group deleted by the cleaner
3434 		 * kthread or relocation.
3435 		 */
3436 		spin_lock(&cache->lock);
3437 		if (!cache->removed)
3438 			ret = -EINVAL;
3439 		spin_unlock(&cache->lock);
3440 
3441 		return ret;
3442 	}
3443 
3444 	map = em->map_lookup;
3445 	if (em->start != chunk_offset)
3446 		goto out;
3447 
3448 	if (em->len < length)
3449 		goto out;
3450 
3451 	for (i = 0; i < map->num_stripes; ++i) {
3452 		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3453 		    map->stripes[i].physical == dev_offset) {
3454 			ret = scrub_stripe(sctx, map, scrub_dev, i,
3455 					   chunk_offset, length);
3456 			if (ret)
3457 				goto out;
3458 		}
3459 	}
3460 out:
3461 	free_extent_map(em);
3462 
3463 	return ret;
3464 }
3465 
3466 static noinline_for_stack
scrub_enumerate_chunks(struct scrub_ctx * sctx,struct btrfs_device * scrub_dev,u64 start,u64 end)3467 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3468 			   struct btrfs_device *scrub_dev, u64 start, u64 end)
3469 {
3470 	struct btrfs_dev_extent *dev_extent = NULL;
3471 	struct btrfs_path *path;
3472 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3473 	struct btrfs_root *root = fs_info->dev_root;
3474 	u64 length;
3475 	u64 chunk_offset;
3476 	int ret = 0;
3477 	int ro_set;
3478 	int slot;
3479 	struct extent_buffer *l;
3480 	struct btrfs_key key;
3481 	struct btrfs_key found_key;
3482 	struct btrfs_block_group_cache *cache;
3483 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3484 
3485 	path = btrfs_alloc_path();
3486 	if (!path)
3487 		return -ENOMEM;
3488 
3489 	path->reada = READA_FORWARD;
3490 	path->search_commit_root = 1;
3491 	path->skip_locking = 1;
3492 
3493 	key.objectid = scrub_dev->devid;
3494 	key.offset = 0ull;
3495 	key.type = BTRFS_DEV_EXTENT_KEY;
3496 
3497 	while (1) {
3498 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3499 		if (ret < 0)
3500 			break;
3501 		if (ret > 0) {
3502 			if (path->slots[0] >=
3503 			    btrfs_header_nritems(path->nodes[0])) {
3504 				ret = btrfs_next_leaf(root, path);
3505 				if (ret < 0)
3506 					break;
3507 				if (ret > 0) {
3508 					ret = 0;
3509 					break;
3510 				}
3511 			} else {
3512 				ret = 0;
3513 			}
3514 		}
3515 
3516 		l = path->nodes[0];
3517 		slot = path->slots[0];
3518 
3519 		btrfs_item_key_to_cpu(l, &found_key, slot);
3520 
3521 		if (found_key.objectid != scrub_dev->devid)
3522 			break;
3523 
3524 		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3525 			break;
3526 
3527 		if (found_key.offset >= end)
3528 			break;
3529 
3530 		if (found_key.offset < key.offset)
3531 			break;
3532 
3533 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3534 		length = btrfs_dev_extent_length(l, dev_extent);
3535 
3536 		if (found_key.offset + length <= start)
3537 			goto skip;
3538 
3539 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3540 
3541 		/*
3542 		 * get a reference on the corresponding block group to prevent
3543 		 * the chunk from going away while we scrub it
3544 		 */
3545 		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3546 
3547 		/* some chunks are removed but not committed to disk yet,
3548 		 * continue scrubbing */
3549 		if (!cache)
3550 			goto skip;
3551 
3552 		/*
3553 		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3554 		 * to avoid deadlock caused by:
3555 		 * btrfs_inc_block_group_ro()
3556 		 * -> btrfs_wait_for_commit()
3557 		 * -> btrfs_commit_transaction()
3558 		 * -> btrfs_scrub_pause()
3559 		 */
3560 		scrub_pause_on(fs_info);
3561 		ret = btrfs_inc_block_group_ro(cache);
3562 		if (!ret && sctx->is_dev_replace) {
3563 			/*
3564 			 * If we are doing a device replace wait for any tasks
3565 			 * that started dellaloc right before we set the block
3566 			 * group to RO mode, as they might have just allocated
3567 			 * an extent from it or decided they could do a nocow
3568 			 * write. And if any such tasks did that, wait for their
3569 			 * ordered extents to complete and then commit the
3570 			 * current transaction, so that we can later see the new
3571 			 * extent items in the extent tree - the ordered extents
3572 			 * create delayed data references (for cow writes) when
3573 			 * they complete, which will be run and insert the
3574 			 * corresponding extent items into the extent tree when
3575 			 * we commit the transaction they used when running
3576 			 * inode.c:btrfs_finish_ordered_io(). We later use
3577 			 * the commit root of the extent tree to find extents
3578 			 * to copy from the srcdev into the tgtdev, and we don't
3579 			 * want to miss any new extents.
3580 			 */
3581 			btrfs_wait_block_group_reservations(cache);
3582 			btrfs_wait_nocow_writers(cache);
3583 			ret = btrfs_wait_ordered_roots(fs_info, U64_MAX,
3584 						       cache->key.objectid,
3585 						       cache->key.offset);
3586 			if (ret > 0) {
3587 				struct btrfs_trans_handle *trans;
3588 
3589 				trans = btrfs_join_transaction(root);
3590 				if (IS_ERR(trans))
3591 					ret = PTR_ERR(trans);
3592 				else
3593 					ret = btrfs_commit_transaction(trans);
3594 				if (ret) {
3595 					scrub_pause_off(fs_info);
3596 					btrfs_put_block_group(cache);
3597 					break;
3598 				}
3599 			}
3600 		}
3601 		scrub_pause_off(fs_info);
3602 
3603 		if (ret == 0) {
3604 			ro_set = 1;
3605 		} else if (ret == -ENOSPC) {
3606 			/*
3607 			 * btrfs_inc_block_group_ro return -ENOSPC when it
3608 			 * failed in creating new chunk for metadata.
3609 			 * It is not a problem for scrub/replace, because
3610 			 * metadata are always cowed, and our scrub paused
3611 			 * commit_transactions.
3612 			 */
3613 			ro_set = 0;
3614 		} else {
3615 			btrfs_warn(fs_info,
3616 				   "failed setting block group ro: %d", ret);
3617 			btrfs_put_block_group(cache);
3618 			break;
3619 		}
3620 
3621 		btrfs_dev_replace_write_lock(&fs_info->dev_replace);
3622 		dev_replace->cursor_right = found_key.offset + length;
3623 		dev_replace->cursor_left = found_key.offset;
3624 		dev_replace->item_needs_writeback = 1;
3625 		btrfs_dev_replace_write_unlock(&fs_info->dev_replace);
3626 		ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3627 				  found_key.offset, cache);
3628 
3629 		/*
3630 		 * flush, submit all pending read and write bios, afterwards
3631 		 * wait for them.
3632 		 * Note that in the dev replace case, a read request causes
3633 		 * write requests that are submitted in the read completion
3634 		 * worker. Therefore in the current situation, it is required
3635 		 * that all write requests are flushed, so that all read and
3636 		 * write requests are really completed when bios_in_flight
3637 		 * changes to 0.
3638 		 */
3639 		sctx->flush_all_writes = true;
3640 		scrub_submit(sctx);
3641 		mutex_lock(&sctx->wr_lock);
3642 		scrub_wr_submit(sctx);
3643 		mutex_unlock(&sctx->wr_lock);
3644 
3645 		wait_event(sctx->list_wait,
3646 			   atomic_read(&sctx->bios_in_flight) == 0);
3647 
3648 		scrub_pause_on(fs_info);
3649 
3650 		/*
3651 		 * must be called before we decrease @scrub_paused.
3652 		 * make sure we don't block transaction commit while
3653 		 * we are waiting pending workers finished.
3654 		 */
3655 		wait_event(sctx->list_wait,
3656 			   atomic_read(&sctx->workers_pending) == 0);
3657 		sctx->flush_all_writes = false;
3658 
3659 		scrub_pause_off(fs_info);
3660 
3661 		btrfs_dev_replace_write_lock(&fs_info->dev_replace);
3662 		dev_replace->cursor_left = dev_replace->cursor_right;
3663 		dev_replace->item_needs_writeback = 1;
3664 		btrfs_dev_replace_write_unlock(&fs_info->dev_replace);
3665 
3666 		if (ro_set)
3667 			btrfs_dec_block_group_ro(cache);
3668 
3669 		/*
3670 		 * We might have prevented the cleaner kthread from deleting
3671 		 * this block group if it was already unused because we raced
3672 		 * and set it to RO mode first. So add it back to the unused
3673 		 * list, otherwise it might not ever be deleted unless a manual
3674 		 * balance is triggered or it becomes used and unused again.
3675 		 */
3676 		spin_lock(&cache->lock);
3677 		if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3678 		    btrfs_block_group_used(&cache->item) == 0) {
3679 			spin_unlock(&cache->lock);
3680 			btrfs_mark_bg_unused(cache);
3681 		} else {
3682 			spin_unlock(&cache->lock);
3683 		}
3684 
3685 		btrfs_put_block_group(cache);
3686 		if (ret)
3687 			break;
3688 		if (sctx->is_dev_replace &&
3689 		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3690 			ret = -EIO;
3691 			break;
3692 		}
3693 		if (sctx->stat.malloc_errors > 0) {
3694 			ret = -ENOMEM;
3695 			break;
3696 		}
3697 skip:
3698 		key.offset = found_key.offset + length;
3699 		btrfs_release_path(path);
3700 	}
3701 
3702 	btrfs_free_path(path);
3703 
3704 	return ret;
3705 }
3706 
scrub_supers(struct scrub_ctx * sctx,struct btrfs_device * scrub_dev)3707 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
3708 					   struct btrfs_device *scrub_dev)
3709 {
3710 	int	i;
3711 	u64	bytenr;
3712 	u64	gen;
3713 	int	ret;
3714 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3715 
3716 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3717 		return -EIO;
3718 
3719 	/* Seed devices of a new filesystem has their own generation. */
3720 	if (scrub_dev->fs_devices != fs_info->fs_devices)
3721 		gen = scrub_dev->generation;
3722 	else
3723 		gen = fs_info->last_trans_committed;
3724 
3725 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
3726 		bytenr = btrfs_sb_offset(i);
3727 		if (bytenr + BTRFS_SUPER_INFO_SIZE >
3728 		    scrub_dev->commit_total_bytes)
3729 			break;
3730 
3731 		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3732 				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3733 				  NULL, 1, bytenr);
3734 		if (ret)
3735 			return ret;
3736 	}
3737 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3738 
3739 	return 0;
3740 }
3741 
3742 /*
3743  * get a reference count on fs_info->scrub_workers. start worker if necessary
3744  */
scrub_workers_get(struct btrfs_fs_info * fs_info,int is_dev_replace)3745 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
3746 						int is_dev_replace)
3747 {
3748 	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
3749 	int max_active = fs_info->thread_pool_size;
3750 
3751 	if (fs_info->scrub_workers_refcnt == 0) {
3752 		fs_info->scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub",
3753 				flags, is_dev_replace ? 1 : max_active, 4);
3754 		if (!fs_info->scrub_workers)
3755 			goto fail_scrub_workers;
3756 
3757 		fs_info->scrub_wr_completion_workers =
3758 			btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
3759 					      max_active, 2);
3760 		if (!fs_info->scrub_wr_completion_workers)
3761 			goto fail_scrub_wr_completion_workers;
3762 
3763 		fs_info->scrub_parity_workers =
3764 			btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
3765 					      max_active, 2);
3766 		if (!fs_info->scrub_parity_workers)
3767 			goto fail_scrub_parity_workers;
3768 	}
3769 	++fs_info->scrub_workers_refcnt;
3770 	return 0;
3771 
3772 fail_scrub_parity_workers:
3773 	btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
3774 fail_scrub_wr_completion_workers:
3775 	btrfs_destroy_workqueue(fs_info->scrub_workers);
3776 fail_scrub_workers:
3777 	return -ENOMEM;
3778 }
3779 
btrfs_scrub_dev(struct btrfs_fs_info * fs_info,u64 devid,u64 start,u64 end,struct btrfs_scrub_progress * progress,int readonly,int is_dev_replace)3780 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3781 		    u64 end, struct btrfs_scrub_progress *progress,
3782 		    int readonly, int is_dev_replace)
3783 {
3784 	struct scrub_ctx *sctx;
3785 	int ret;
3786 	struct btrfs_device *dev;
3787 	unsigned int nofs_flag;
3788 	struct btrfs_workqueue *scrub_workers = NULL;
3789 	struct btrfs_workqueue *scrub_wr_comp = NULL;
3790 	struct btrfs_workqueue *scrub_parity = NULL;
3791 
3792 	if (btrfs_fs_closing(fs_info))
3793 		return -EINVAL;
3794 
3795 	if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
3796 		/*
3797 		 * in this case scrub is unable to calculate the checksum
3798 		 * the way scrub is implemented. Do not handle this
3799 		 * situation at all because it won't ever happen.
3800 		 */
3801 		btrfs_err(fs_info,
3802 			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
3803 		       fs_info->nodesize,
3804 		       BTRFS_STRIPE_LEN);
3805 		return -EINVAL;
3806 	}
3807 
3808 	if (fs_info->sectorsize != PAGE_SIZE) {
3809 		/* not supported for data w/o checksums */
3810 		btrfs_err_rl(fs_info,
3811 			   "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
3812 		       fs_info->sectorsize, PAGE_SIZE);
3813 		return -EINVAL;
3814 	}
3815 
3816 	if (fs_info->nodesize >
3817 	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
3818 	    fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
3819 		/*
3820 		 * would exhaust the array bounds of pagev member in
3821 		 * struct scrub_block
3822 		 */
3823 		btrfs_err(fs_info,
3824 			  "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
3825 		       fs_info->nodesize,
3826 		       SCRUB_MAX_PAGES_PER_BLOCK,
3827 		       fs_info->sectorsize,
3828 		       SCRUB_MAX_PAGES_PER_BLOCK);
3829 		return -EINVAL;
3830 	}
3831 
3832 	/* Allocate outside of device_list_mutex */
3833 	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
3834 	if (IS_ERR(sctx))
3835 		return PTR_ERR(sctx);
3836 
3837 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3838 	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
3839 	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
3840 		     !is_dev_replace)) {
3841 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3842 		ret = -ENODEV;
3843 		goto out_free_ctx;
3844 	}
3845 
3846 	if (!is_dev_replace && !readonly &&
3847 	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
3848 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3849 		btrfs_err_in_rcu(fs_info, "scrub: device %s is not writable",
3850 				rcu_str_deref(dev->name));
3851 		ret = -EROFS;
3852 		goto out_free_ctx;
3853 	}
3854 
3855 	mutex_lock(&fs_info->scrub_lock);
3856 	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3857 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
3858 		mutex_unlock(&fs_info->scrub_lock);
3859 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3860 		ret = -EIO;
3861 		goto out_free_ctx;
3862 	}
3863 
3864 	btrfs_dev_replace_read_lock(&fs_info->dev_replace);
3865 	if (dev->scrub_ctx ||
3866 	    (!is_dev_replace &&
3867 	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
3868 		btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
3869 		mutex_unlock(&fs_info->scrub_lock);
3870 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3871 		ret = -EINPROGRESS;
3872 		goto out_free_ctx;
3873 	}
3874 	btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
3875 
3876 	ret = scrub_workers_get(fs_info, is_dev_replace);
3877 	if (ret) {
3878 		mutex_unlock(&fs_info->scrub_lock);
3879 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3880 		goto out_free_ctx;
3881 	}
3882 
3883 	sctx->readonly = readonly;
3884 	dev->scrub_ctx = sctx;
3885 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3886 
3887 	/*
3888 	 * checking @scrub_pause_req here, we can avoid
3889 	 * race between committing transaction and scrubbing.
3890 	 */
3891 	__scrub_blocked_if_needed(fs_info);
3892 	atomic_inc(&fs_info->scrubs_running);
3893 	mutex_unlock(&fs_info->scrub_lock);
3894 
3895 	/*
3896 	 * In order to avoid deadlock with reclaim when there is a transaction
3897 	 * trying to pause scrub, make sure we use GFP_NOFS for all the
3898 	 * allocations done at btrfs_scrub_pages() and scrub_pages_for_parity()
3899 	 * invoked by our callees. The pausing request is done when the
3900 	 * transaction commit starts, and it blocks the transaction until scrub
3901 	 * is paused (done at specific points at scrub_stripe() or right above
3902 	 * before incrementing fs_info->scrubs_running).
3903 	 */
3904 	nofs_flag = memalloc_nofs_save();
3905 	if (!is_dev_replace) {
3906 		/*
3907 		 * by holding device list mutex, we can
3908 		 * kick off writing super in log tree sync.
3909 		 */
3910 		mutex_lock(&fs_info->fs_devices->device_list_mutex);
3911 		ret = scrub_supers(sctx, dev);
3912 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3913 	}
3914 
3915 	if (!ret)
3916 		ret = scrub_enumerate_chunks(sctx, dev, start, end);
3917 	memalloc_nofs_restore(nofs_flag);
3918 
3919 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3920 	atomic_dec(&fs_info->scrubs_running);
3921 	wake_up(&fs_info->scrub_pause_wait);
3922 
3923 	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3924 
3925 	if (progress)
3926 		memcpy(progress, &sctx->stat, sizeof(*progress));
3927 
3928 	mutex_lock(&fs_info->scrub_lock);
3929 	dev->scrub_ctx = NULL;
3930 	if (--fs_info->scrub_workers_refcnt == 0) {
3931 		scrub_workers = fs_info->scrub_workers;
3932 		scrub_wr_comp = fs_info->scrub_wr_completion_workers;
3933 		scrub_parity = fs_info->scrub_parity_workers;
3934 	}
3935 	mutex_unlock(&fs_info->scrub_lock);
3936 
3937 	btrfs_destroy_workqueue(scrub_workers);
3938 	btrfs_destroy_workqueue(scrub_wr_comp);
3939 	btrfs_destroy_workqueue(scrub_parity);
3940 	scrub_put_ctx(sctx);
3941 
3942 	return ret;
3943 
3944 out_free_ctx:
3945 	scrub_free_ctx(sctx);
3946 
3947 	return ret;
3948 }
3949 
btrfs_scrub_pause(struct btrfs_fs_info * fs_info)3950 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
3951 {
3952 	mutex_lock(&fs_info->scrub_lock);
3953 	atomic_inc(&fs_info->scrub_pause_req);
3954 	while (atomic_read(&fs_info->scrubs_paused) !=
3955 	       atomic_read(&fs_info->scrubs_running)) {
3956 		mutex_unlock(&fs_info->scrub_lock);
3957 		wait_event(fs_info->scrub_pause_wait,
3958 			   atomic_read(&fs_info->scrubs_paused) ==
3959 			   atomic_read(&fs_info->scrubs_running));
3960 		mutex_lock(&fs_info->scrub_lock);
3961 	}
3962 	mutex_unlock(&fs_info->scrub_lock);
3963 }
3964 
btrfs_scrub_continue(struct btrfs_fs_info * fs_info)3965 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
3966 {
3967 	atomic_dec(&fs_info->scrub_pause_req);
3968 	wake_up(&fs_info->scrub_pause_wait);
3969 }
3970 
btrfs_scrub_cancel(struct btrfs_fs_info * fs_info)3971 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3972 {
3973 	mutex_lock(&fs_info->scrub_lock);
3974 	if (!atomic_read(&fs_info->scrubs_running)) {
3975 		mutex_unlock(&fs_info->scrub_lock);
3976 		return -ENOTCONN;
3977 	}
3978 
3979 	atomic_inc(&fs_info->scrub_cancel_req);
3980 	while (atomic_read(&fs_info->scrubs_running)) {
3981 		mutex_unlock(&fs_info->scrub_lock);
3982 		wait_event(fs_info->scrub_pause_wait,
3983 			   atomic_read(&fs_info->scrubs_running) == 0);
3984 		mutex_lock(&fs_info->scrub_lock);
3985 	}
3986 	atomic_dec(&fs_info->scrub_cancel_req);
3987 	mutex_unlock(&fs_info->scrub_lock);
3988 
3989 	return 0;
3990 }
3991 
btrfs_scrub_cancel_dev(struct btrfs_fs_info * fs_info,struct btrfs_device * dev)3992 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
3993 			   struct btrfs_device *dev)
3994 {
3995 	struct scrub_ctx *sctx;
3996 
3997 	mutex_lock(&fs_info->scrub_lock);
3998 	sctx = dev->scrub_ctx;
3999 	if (!sctx) {
4000 		mutex_unlock(&fs_info->scrub_lock);
4001 		return -ENOTCONN;
4002 	}
4003 	atomic_inc(&sctx->cancel_req);
4004 	while (dev->scrub_ctx) {
4005 		mutex_unlock(&fs_info->scrub_lock);
4006 		wait_event(fs_info->scrub_pause_wait,
4007 			   dev->scrub_ctx == NULL);
4008 		mutex_lock(&fs_info->scrub_lock);
4009 	}
4010 	mutex_unlock(&fs_info->scrub_lock);
4011 
4012 	return 0;
4013 }
4014 
btrfs_scrub_progress(struct btrfs_fs_info * fs_info,u64 devid,struct btrfs_scrub_progress * progress)4015 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
4016 			 struct btrfs_scrub_progress *progress)
4017 {
4018 	struct btrfs_device *dev;
4019 	struct scrub_ctx *sctx = NULL;
4020 
4021 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4022 	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
4023 	if (dev)
4024 		sctx = dev->scrub_ctx;
4025 	if (sctx)
4026 		memcpy(progress, &sctx->stat, sizeof(*progress));
4027 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4028 
4029 	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
4030 }
4031 
scrub_remap_extent(struct btrfs_fs_info * fs_info,u64 extent_logical,u64 extent_len,u64 * extent_physical,struct btrfs_device ** extent_dev,int * extent_mirror_num)4032 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4033 			       u64 extent_logical, u64 extent_len,
4034 			       u64 *extent_physical,
4035 			       struct btrfs_device **extent_dev,
4036 			       int *extent_mirror_num)
4037 {
4038 	u64 mapped_length;
4039 	struct btrfs_bio *bbio = NULL;
4040 	int ret;
4041 
4042 	mapped_length = extent_len;
4043 	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4044 			      &mapped_length, &bbio, 0);
4045 	if (ret || !bbio || mapped_length < extent_len ||
4046 	    !bbio->stripes[0].dev->bdev) {
4047 		btrfs_put_bbio(bbio);
4048 		return;
4049 	}
4050 
4051 	*extent_physical = bbio->stripes[0].physical;
4052 	*extent_mirror_num = bbio->mirror_num;
4053 	*extent_dev = bbio->stripes[0].dev;
4054 	btrfs_put_bbio(bbio);
4055 }
4056