1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/writeback.h>
10 #include <linux/pagemap.h>
11 #include <linux/blkdev.h>
12 #include <linux/uuid.h>
13 #include "ctree.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "locking.h"
17 #include "tree-log.h"
18 #include "inode-map.h"
19 #include "volumes.h"
20 #include "dev-replace.h"
21 #include "qgroup.h"
22
23 #define BTRFS_ROOT_TRANS_TAG 0
24
25 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
26 [TRANS_STATE_RUNNING] = 0U,
27 [TRANS_STATE_BLOCKED] = __TRANS_START,
28 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH),
29 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START |
30 __TRANS_ATTACH |
31 __TRANS_JOIN |
32 __TRANS_JOIN_NOSTART),
33 [TRANS_STATE_UNBLOCKED] = (__TRANS_START |
34 __TRANS_ATTACH |
35 __TRANS_JOIN |
36 __TRANS_JOIN_NOLOCK |
37 __TRANS_JOIN_NOSTART),
38 [TRANS_STATE_COMPLETED] = (__TRANS_START |
39 __TRANS_ATTACH |
40 __TRANS_JOIN |
41 __TRANS_JOIN_NOLOCK |
42 __TRANS_JOIN_NOSTART),
43 };
44
btrfs_put_transaction(struct btrfs_transaction * transaction)45 void btrfs_put_transaction(struct btrfs_transaction *transaction)
46 {
47 WARN_ON(refcount_read(&transaction->use_count) == 0);
48 if (refcount_dec_and_test(&transaction->use_count)) {
49 BUG_ON(!list_empty(&transaction->list));
50 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
51 if (transaction->delayed_refs.pending_csums)
52 btrfs_err(transaction->fs_info,
53 "pending csums is %llu",
54 transaction->delayed_refs.pending_csums);
55 while (!list_empty(&transaction->pending_chunks)) {
56 struct extent_map *em;
57
58 em = list_first_entry(&transaction->pending_chunks,
59 struct extent_map, list);
60 list_del_init(&em->list);
61 free_extent_map(em);
62 }
63 /*
64 * If any block groups are found in ->deleted_bgs then it's
65 * because the transaction was aborted and a commit did not
66 * happen (things failed before writing the new superblock
67 * and calling btrfs_finish_extent_commit()), so we can not
68 * discard the physical locations of the block groups.
69 */
70 while (!list_empty(&transaction->deleted_bgs)) {
71 struct btrfs_block_group_cache *cache;
72
73 cache = list_first_entry(&transaction->deleted_bgs,
74 struct btrfs_block_group_cache,
75 bg_list);
76 list_del_init(&cache->bg_list);
77 btrfs_put_block_group_trimming(cache);
78 btrfs_put_block_group(cache);
79 }
80 kfree(transaction);
81 }
82 }
83
clear_btree_io_tree(struct extent_io_tree * tree)84 static void clear_btree_io_tree(struct extent_io_tree *tree)
85 {
86 spin_lock(&tree->lock);
87 /*
88 * Do a single barrier for the waitqueue_active check here, the state
89 * of the waitqueue should not change once clear_btree_io_tree is
90 * called.
91 */
92 smp_mb();
93 while (!RB_EMPTY_ROOT(&tree->state)) {
94 struct rb_node *node;
95 struct extent_state *state;
96
97 node = rb_first(&tree->state);
98 state = rb_entry(node, struct extent_state, rb_node);
99 rb_erase(&state->rb_node, &tree->state);
100 RB_CLEAR_NODE(&state->rb_node);
101 /*
102 * btree io trees aren't supposed to have tasks waiting for
103 * changes in the flags of extent states ever.
104 */
105 ASSERT(!waitqueue_active(&state->wq));
106 free_extent_state(state);
107
108 cond_resched_lock(&tree->lock);
109 }
110 spin_unlock(&tree->lock);
111 }
112
switch_commit_roots(struct btrfs_transaction * trans)113 static noinline void switch_commit_roots(struct btrfs_transaction *trans)
114 {
115 struct btrfs_fs_info *fs_info = trans->fs_info;
116 struct btrfs_root *root, *tmp;
117
118 down_write(&fs_info->commit_root_sem);
119 list_for_each_entry_safe(root, tmp, &trans->switch_commits,
120 dirty_list) {
121 list_del_init(&root->dirty_list);
122 free_extent_buffer(root->commit_root);
123 root->commit_root = btrfs_root_node(root);
124 if (is_fstree(root->objectid))
125 btrfs_unpin_free_ino(root);
126 clear_btree_io_tree(&root->dirty_log_pages);
127 }
128
129 /* We can free old roots now. */
130 spin_lock(&trans->dropped_roots_lock);
131 while (!list_empty(&trans->dropped_roots)) {
132 root = list_first_entry(&trans->dropped_roots,
133 struct btrfs_root, root_list);
134 list_del_init(&root->root_list);
135 spin_unlock(&trans->dropped_roots_lock);
136 btrfs_drop_and_free_fs_root(fs_info, root);
137 spin_lock(&trans->dropped_roots_lock);
138 }
139 spin_unlock(&trans->dropped_roots_lock);
140 up_write(&fs_info->commit_root_sem);
141 }
142
extwriter_counter_inc(struct btrfs_transaction * trans,unsigned int type)143 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
144 unsigned int type)
145 {
146 if (type & TRANS_EXTWRITERS)
147 atomic_inc(&trans->num_extwriters);
148 }
149
extwriter_counter_dec(struct btrfs_transaction * trans,unsigned int type)150 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
151 unsigned int type)
152 {
153 if (type & TRANS_EXTWRITERS)
154 atomic_dec(&trans->num_extwriters);
155 }
156
extwriter_counter_init(struct btrfs_transaction * trans,unsigned int type)157 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
158 unsigned int type)
159 {
160 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
161 }
162
extwriter_counter_read(struct btrfs_transaction * trans)163 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
164 {
165 return atomic_read(&trans->num_extwriters);
166 }
167
168 /*
169 * either allocate a new transaction or hop into the existing one
170 */
join_transaction(struct btrfs_fs_info * fs_info,unsigned int type)171 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
172 unsigned int type)
173 {
174 struct btrfs_transaction *cur_trans;
175
176 spin_lock(&fs_info->trans_lock);
177 loop:
178 /* The file system has been taken offline. No new transactions. */
179 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
180 spin_unlock(&fs_info->trans_lock);
181 return -EROFS;
182 }
183
184 cur_trans = fs_info->running_transaction;
185 if (cur_trans) {
186 if (cur_trans->aborted) {
187 spin_unlock(&fs_info->trans_lock);
188 return cur_trans->aborted;
189 }
190 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
191 spin_unlock(&fs_info->trans_lock);
192 return -EBUSY;
193 }
194 refcount_inc(&cur_trans->use_count);
195 atomic_inc(&cur_trans->num_writers);
196 extwriter_counter_inc(cur_trans, type);
197 spin_unlock(&fs_info->trans_lock);
198 return 0;
199 }
200 spin_unlock(&fs_info->trans_lock);
201
202 /*
203 * If we are ATTACH or TRANS_JOIN_NOSTART, we just want to catch the
204 * current transaction, and commit it. If there is no transaction, just
205 * return ENOENT.
206 */
207 if (type == TRANS_ATTACH || type == TRANS_JOIN_NOSTART)
208 return -ENOENT;
209
210 /*
211 * JOIN_NOLOCK only happens during the transaction commit, so
212 * it is impossible that ->running_transaction is NULL
213 */
214 BUG_ON(type == TRANS_JOIN_NOLOCK);
215
216 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
217 if (!cur_trans)
218 return -ENOMEM;
219
220 spin_lock(&fs_info->trans_lock);
221 if (fs_info->running_transaction) {
222 /*
223 * someone started a transaction after we unlocked. Make sure
224 * to redo the checks above
225 */
226 kfree(cur_trans);
227 goto loop;
228 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
229 spin_unlock(&fs_info->trans_lock);
230 kfree(cur_trans);
231 return -EROFS;
232 }
233
234 cur_trans->fs_info = fs_info;
235 atomic_set(&cur_trans->num_writers, 1);
236 extwriter_counter_init(cur_trans, type);
237 init_waitqueue_head(&cur_trans->writer_wait);
238 init_waitqueue_head(&cur_trans->commit_wait);
239 init_waitqueue_head(&cur_trans->pending_wait);
240 cur_trans->state = TRANS_STATE_RUNNING;
241 /*
242 * One for this trans handle, one so it will live on until we
243 * commit the transaction.
244 */
245 refcount_set(&cur_trans->use_count, 2);
246 atomic_set(&cur_trans->pending_ordered, 0);
247 cur_trans->flags = 0;
248 cur_trans->start_time = ktime_get_seconds();
249
250 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
251
252 cur_trans->delayed_refs.href_root = RB_ROOT;
253 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
254 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
255
256 /*
257 * although the tree mod log is per file system and not per transaction,
258 * the log must never go across transaction boundaries.
259 */
260 smp_mb();
261 if (!list_empty(&fs_info->tree_mod_seq_list))
262 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
263 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
264 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
265 atomic64_set(&fs_info->tree_mod_seq, 0);
266
267 spin_lock_init(&cur_trans->delayed_refs.lock);
268
269 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
270 INIT_LIST_HEAD(&cur_trans->pending_chunks);
271 INIT_LIST_HEAD(&cur_trans->switch_commits);
272 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
273 INIT_LIST_HEAD(&cur_trans->io_bgs);
274 INIT_LIST_HEAD(&cur_trans->dropped_roots);
275 mutex_init(&cur_trans->cache_write_mutex);
276 cur_trans->num_dirty_bgs = 0;
277 spin_lock_init(&cur_trans->dirty_bgs_lock);
278 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
279 spin_lock_init(&cur_trans->dropped_roots_lock);
280 list_add_tail(&cur_trans->list, &fs_info->trans_list);
281 extent_io_tree_init(&cur_trans->dirty_pages,
282 fs_info->btree_inode);
283 fs_info->generation++;
284 cur_trans->transid = fs_info->generation;
285 fs_info->running_transaction = cur_trans;
286 cur_trans->aborted = 0;
287 spin_unlock(&fs_info->trans_lock);
288
289 return 0;
290 }
291
292 /*
293 * this does all the record keeping required to make sure that a reference
294 * counted root is properly recorded in a given transaction. This is required
295 * to make sure the old root from before we joined the transaction is deleted
296 * when the transaction commits
297 */
record_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root,int force)298 static int record_root_in_trans(struct btrfs_trans_handle *trans,
299 struct btrfs_root *root,
300 int force)
301 {
302 struct btrfs_fs_info *fs_info = root->fs_info;
303
304 if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
305 root->last_trans < trans->transid) || force) {
306 WARN_ON(root == fs_info->extent_root);
307 WARN_ON(!force && root->commit_root != root->node);
308
309 /*
310 * see below for IN_TRANS_SETUP usage rules
311 * we have the reloc mutex held now, so there
312 * is only one writer in this function
313 */
314 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
315
316 /* make sure readers find IN_TRANS_SETUP before
317 * they find our root->last_trans update
318 */
319 smp_wmb();
320
321 spin_lock(&fs_info->fs_roots_radix_lock);
322 if (root->last_trans == trans->transid && !force) {
323 spin_unlock(&fs_info->fs_roots_radix_lock);
324 return 0;
325 }
326 radix_tree_tag_set(&fs_info->fs_roots_radix,
327 (unsigned long)root->root_key.objectid,
328 BTRFS_ROOT_TRANS_TAG);
329 spin_unlock(&fs_info->fs_roots_radix_lock);
330 root->last_trans = trans->transid;
331
332 /* this is pretty tricky. We don't want to
333 * take the relocation lock in btrfs_record_root_in_trans
334 * unless we're really doing the first setup for this root in
335 * this transaction.
336 *
337 * Normally we'd use root->last_trans as a flag to decide
338 * if we want to take the expensive mutex.
339 *
340 * But, we have to set root->last_trans before we
341 * init the relocation root, otherwise, we trip over warnings
342 * in ctree.c. The solution used here is to flag ourselves
343 * with root IN_TRANS_SETUP. When this is 1, we're still
344 * fixing up the reloc trees and everyone must wait.
345 *
346 * When this is zero, they can trust root->last_trans and fly
347 * through btrfs_record_root_in_trans without having to take the
348 * lock. smp_wmb() makes sure that all the writes above are
349 * done before we pop in the zero below
350 */
351 btrfs_init_reloc_root(trans, root);
352 smp_mb__before_atomic();
353 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
354 }
355 return 0;
356 }
357
358
btrfs_add_dropped_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)359 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
360 struct btrfs_root *root)
361 {
362 struct btrfs_fs_info *fs_info = root->fs_info;
363 struct btrfs_transaction *cur_trans = trans->transaction;
364
365 /* Add ourselves to the transaction dropped list */
366 spin_lock(&cur_trans->dropped_roots_lock);
367 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
368 spin_unlock(&cur_trans->dropped_roots_lock);
369
370 /* Make sure we don't try to update the root at commit time */
371 spin_lock(&fs_info->fs_roots_radix_lock);
372 radix_tree_tag_clear(&fs_info->fs_roots_radix,
373 (unsigned long)root->root_key.objectid,
374 BTRFS_ROOT_TRANS_TAG);
375 spin_unlock(&fs_info->fs_roots_radix_lock);
376 }
377
btrfs_record_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root)378 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
379 struct btrfs_root *root)
380 {
381 struct btrfs_fs_info *fs_info = root->fs_info;
382
383 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
384 return 0;
385
386 /*
387 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
388 * and barriers
389 */
390 smp_rmb();
391 if (root->last_trans == trans->transid &&
392 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
393 return 0;
394
395 mutex_lock(&fs_info->reloc_mutex);
396 record_root_in_trans(trans, root, 0);
397 mutex_unlock(&fs_info->reloc_mutex);
398
399 return 0;
400 }
401
is_transaction_blocked(struct btrfs_transaction * trans)402 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
403 {
404 return (trans->state >= TRANS_STATE_BLOCKED &&
405 trans->state < TRANS_STATE_UNBLOCKED &&
406 !trans->aborted);
407 }
408
409 /* wait for commit against the current transaction to become unblocked
410 * when this is done, it is safe to start a new transaction, but the current
411 * transaction might not be fully on disk.
412 */
wait_current_trans(struct btrfs_fs_info * fs_info)413 static void wait_current_trans(struct btrfs_fs_info *fs_info)
414 {
415 struct btrfs_transaction *cur_trans;
416
417 spin_lock(&fs_info->trans_lock);
418 cur_trans = fs_info->running_transaction;
419 if (cur_trans && is_transaction_blocked(cur_trans)) {
420 refcount_inc(&cur_trans->use_count);
421 spin_unlock(&fs_info->trans_lock);
422
423 wait_event(fs_info->transaction_wait,
424 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
425 cur_trans->aborted);
426 btrfs_put_transaction(cur_trans);
427 } else {
428 spin_unlock(&fs_info->trans_lock);
429 }
430 }
431
may_wait_transaction(struct btrfs_fs_info * fs_info,int type)432 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
433 {
434 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
435 return 0;
436
437 if (type == TRANS_START)
438 return 1;
439
440 return 0;
441 }
442
need_reserve_reloc_root(struct btrfs_root * root)443 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
444 {
445 struct btrfs_fs_info *fs_info = root->fs_info;
446
447 if (!fs_info->reloc_ctl ||
448 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
449 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
450 root->reloc_root)
451 return false;
452
453 return true;
454 }
455
456 static struct btrfs_trans_handle *
start_transaction(struct btrfs_root * root,unsigned int num_items,unsigned int type,enum btrfs_reserve_flush_enum flush,bool enforce_qgroups)457 start_transaction(struct btrfs_root *root, unsigned int num_items,
458 unsigned int type, enum btrfs_reserve_flush_enum flush,
459 bool enforce_qgroups)
460 {
461 struct btrfs_fs_info *fs_info = root->fs_info;
462
463 struct btrfs_trans_handle *h;
464 struct btrfs_transaction *cur_trans;
465 u64 num_bytes = 0;
466 u64 qgroup_reserved = 0;
467 bool reloc_reserved = false;
468 int ret;
469
470 /* Send isn't supposed to start transactions. */
471 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
472
473 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
474 return ERR_PTR(-EROFS);
475
476 if (current->journal_info) {
477 WARN_ON(type & TRANS_EXTWRITERS);
478 h = current->journal_info;
479 refcount_inc(&h->use_count);
480 WARN_ON(refcount_read(&h->use_count) > 2);
481 h->orig_rsv = h->block_rsv;
482 h->block_rsv = NULL;
483 goto got_it;
484 }
485
486 /*
487 * Do the reservation before we join the transaction so we can do all
488 * the appropriate flushing if need be.
489 */
490 if (num_items && root != fs_info->chunk_root) {
491 qgroup_reserved = num_items * fs_info->nodesize;
492 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
493 enforce_qgroups);
494 if (ret)
495 return ERR_PTR(ret);
496
497 num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
498 /*
499 * Do the reservation for the relocation root creation
500 */
501 if (need_reserve_reloc_root(root)) {
502 num_bytes += fs_info->nodesize;
503 reloc_reserved = true;
504 }
505
506 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
507 num_bytes, flush);
508 if (ret)
509 goto reserve_fail;
510 }
511 again:
512 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
513 if (!h) {
514 ret = -ENOMEM;
515 goto alloc_fail;
516 }
517
518 /*
519 * If we are JOIN_NOLOCK we're already committing a transaction and
520 * waiting on this guy, so we don't need to do the sb_start_intwrite
521 * because we're already holding a ref. We need this because we could
522 * have raced in and did an fsync() on a file which can kick a commit
523 * and then we deadlock with somebody doing a freeze.
524 *
525 * If we are ATTACH, it means we just want to catch the current
526 * transaction and commit it, so we needn't do sb_start_intwrite().
527 */
528 if (type & __TRANS_FREEZABLE)
529 sb_start_intwrite(fs_info->sb);
530
531 if (may_wait_transaction(fs_info, type))
532 wait_current_trans(fs_info);
533
534 do {
535 ret = join_transaction(fs_info, type);
536 if (ret == -EBUSY) {
537 wait_current_trans(fs_info);
538 if (unlikely(type == TRANS_ATTACH ||
539 type == TRANS_JOIN_NOSTART))
540 ret = -ENOENT;
541 }
542 } while (ret == -EBUSY);
543
544 if (ret < 0)
545 goto join_fail;
546
547 cur_trans = fs_info->running_transaction;
548
549 h->transid = cur_trans->transid;
550 h->transaction = cur_trans;
551 h->root = root;
552 refcount_set(&h->use_count, 1);
553 h->fs_info = root->fs_info;
554
555 h->type = type;
556 h->can_flush_pending_bgs = true;
557 INIT_LIST_HEAD(&h->new_bgs);
558
559 smp_mb();
560 if (cur_trans->state >= TRANS_STATE_BLOCKED &&
561 may_wait_transaction(fs_info, type)) {
562 current->journal_info = h;
563 btrfs_commit_transaction(h);
564 goto again;
565 }
566
567 if (num_bytes) {
568 trace_btrfs_space_reservation(fs_info, "transaction",
569 h->transid, num_bytes, 1);
570 h->block_rsv = &fs_info->trans_block_rsv;
571 h->bytes_reserved = num_bytes;
572 h->reloc_reserved = reloc_reserved;
573 }
574
575 got_it:
576 if (!current->journal_info)
577 current->journal_info = h;
578
579 /*
580 * btrfs_record_root_in_trans() needs to alloc new extents, and may
581 * call btrfs_join_transaction() while we're also starting a
582 * transaction.
583 *
584 * Thus it need to be called after current->journal_info initialized,
585 * or we can deadlock.
586 */
587 btrfs_record_root_in_trans(h, root);
588
589 return h;
590
591 join_fail:
592 if (type & __TRANS_FREEZABLE)
593 sb_end_intwrite(fs_info->sb);
594 kmem_cache_free(btrfs_trans_handle_cachep, h);
595 alloc_fail:
596 if (num_bytes)
597 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
598 num_bytes);
599 reserve_fail:
600 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
601 return ERR_PTR(ret);
602 }
603
btrfs_start_transaction(struct btrfs_root * root,unsigned int num_items)604 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
605 unsigned int num_items)
606 {
607 return start_transaction(root, num_items, TRANS_START,
608 BTRFS_RESERVE_FLUSH_ALL, true);
609 }
610
btrfs_start_transaction_fallback_global_rsv(struct btrfs_root * root,unsigned int num_items,int min_factor)611 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
612 struct btrfs_root *root,
613 unsigned int num_items,
614 int min_factor)
615 {
616 struct btrfs_fs_info *fs_info = root->fs_info;
617 struct btrfs_trans_handle *trans;
618 u64 num_bytes;
619 int ret;
620
621 /*
622 * We have two callers: unlink and block group removal. The
623 * former should succeed even if we will temporarily exceed
624 * quota and the latter operates on the extent root so
625 * qgroup enforcement is ignored anyway.
626 */
627 trans = start_transaction(root, num_items, TRANS_START,
628 BTRFS_RESERVE_FLUSH_ALL, false);
629 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
630 return trans;
631
632 trans = btrfs_start_transaction(root, 0);
633 if (IS_ERR(trans))
634 return trans;
635
636 num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
637 ret = btrfs_cond_migrate_bytes(fs_info, &fs_info->trans_block_rsv,
638 num_bytes, min_factor);
639 if (ret) {
640 btrfs_end_transaction(trans);
641 return ERR_PTR(ret);
642 }
643
644 trans->block_rsv = &fs_info->trans_block_rsv;
645 trans->bytes_reserved = num_bytes;
646 trace_btrfs_space_reservation(fs_info, "transaction",
647 trans->transid, num_bytes, 1);
648
649 return trans;
650 }
651
btrfs_join_transaction(struct btrfs_root * root)652 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
653 {
654 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
655 true);
656 }
657
btrfs_join_transaction_nolock(struct btrfs_root * root)658 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
659 {
660 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
661 BTRFS_RESERVE_NO_FLUSH, true);
662 }
663
664 /*
665 * Similar to regular join but it never starts a transaction when none is
666 * running or after waiting for the current one to finish.
667 */
btrfs_join_transaction_nostart(struct btrfs_root * root)668 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
669 {
670 return start_transaction(root, 0, TRANS_JOIN_NOSTART,
671 BTRFS_RESERVE_NO_FLUSH, true);
672 }
673
674 /*
675 * btrfs_attach_transaction() - catch the running transaction
676 *
677 * It is used when we want to commit the current the transaction, but
678 * don't want to start a new one.
679 *
680 * Note: If this function return -ENOENT, it just means there is no
681 * running transaction. But it is possible that the inactive transaction
682 * is still in the memory, not fully on disk. If you hope there is no
683 * inactive transaction in the fs when -ENOENT is returned, you should
684 * invoke
685 * btrfs_attach_transaction_barrier()
686 */
btrfs_attach_transaction(struct btrfs_root * root)687 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
688 {
689 return start_transaction(root, 0, TRANS_ATTACH,
690 BTRFS_RESERVE_NO_FLUSH, true);
691 }
692
693 /*
694 * btrfs_attach_transaction_barrier() - catch the running transaction
695 *
696 * It is similar to the above function, the differentia is this one
697 * will wait for all the inactive transactions until they fully
698 * complete.
699 */
700 struct btrfs_trans_handle *
btrfs_attach_transaction_barrier(struct btrfs_root * root)701 btrfs_attach_transaction_barrier(struct btrfs_root *root)
702 {
703 struct btrfs_trans_handle *trans;
704
705 trans = start_transaction(root, 0, TRANS_ATTACH,
706 BTRFS_RESERVE_NO_FLUSH, true);
707 if (trans == ERR_PTR(-ENOENT)) {
708 int ret;
709
710 ret = btrfs_wait_for_commit(root->fs_info, 0);
711 if (ret)
712 return ERR_PTR(ret);
713 }
714
715 return trans;
716 }
717
718 /* wait for a transaction commit to be fully complete */
wait_for_commit(struct btrfs_transaction * commit)719 static noinline void wait_for_commit(struct btrfs_transaction *commit)
720 {
721 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
722 }
723
btrfs_wait_for_commit(struct btrfs_fs_info * fs_info,u64 transid)724 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
725 {
726 struct btrfs_transaction *cur_trans = NULL, *t;
727 int ret = 0;
728
729 if (transid) {
730 if (transid <= fs_info->last_trans_committed)
731 goto out;
732
733 /* find specified transaction */
734 spin_lock(&fs_info->trans_lock);
735 list_for_each_entry(t, &fs_info->trans_list, list) {
736 if (t->transid == transid) {
737 cur_trans = t;
738 refcount_inc(&cur_trans->use_count);
739 ret = 0;
740 break;
741 }
742 if (t->transid > transid) {
743 ret = 0;
744 break;
745 }
746 }
747 spin_unlock(&fs_info->trans_lock);
748
749 /*
750 * The specified transaction doesn't exist, or we
751 * raced with btrfs_commit_transaction
752 */
753 if (!cur_trans) {
754 if (transid > fs_info->last_trans_committed)
755 ret = -EINVAL;
756 goto out;
757 }
758 } else {
759 /* find newest transaction that is committing | committed */
760 spin_lock(&fs_info->trans_lock);
761 list_for_each_entry_reverse(t, &fs_info->trans_list,
762 list) {
763 if (t->state >= TRANS_STATE_COMMIT_START) {
764 if (t->state == TRANS_STATE_COMPLETED)
765 break;
766 cur_trans = t;
767 refcount_inc(&cur_trans->use_count);
768 break;
769 }
770 }
771 spin_unlock(&fs_info->trans_lock);
772 if (!cur_trans)
773 goto out; /* nothing committing|committed */
774 }
775
776 wait_for_commit(cur_trans);
777 btrfs_put_transaction(cur_trans);
778 out:
779 return ret;
780 }
781
btrfs_throttle(struct btrfs_fs_info * fs_info)782 void btrfs_throttle(struct btrfs_fs_info *fs_info)
783 {
784 wait_current_trans(fs_info);
785 }
786
should_end_transaction(struct btrfs_trans_handle * trans)787 static int should_end_transaction(struct btrfs_trans_handle *trans)
788 {
789 struct btrfs_fs_info *fs_info = trans->fs_info;
790
791 if (btrfs_check_space_for_delayed_refs(trans, fs_info))
792 return 1;
793
794 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
795 }
796
btrfs_should_end_transaction(struct btrfs_trans_handle * trans)797 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
798 {
799 struct btrfs_transaction *cur_trans = trans->transaction;
800 int updates;
801 int err;
802
803 smp_mb();
804 if (cur_trans->state >= TRANS_STATE_BLOCKED ||
805 cur_trans->delayed_refs.flushing)
806 return 1;
807
808 updates = trans->delayed_ref_updates;
809 trans->delayed_ref_updates = 0;
810 if (updates) {
811 err = btrfs_run_delayed_refs(trans, updates * 2);
812 if (err) /* Error code will also eval true */
813 return err;
814 }
815
816 return should_end_transaction(trans);
817 }
818
btrfs_trans_release_metadata(struct btrfs_trans_handle * trans)819 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
820
821 {
822 struct btrfs_fs_info *fs_info = trans->fs_info;
823
824 if (!trans->block_rsv) {
825 ASSERT(!trans->bytes_reserved);
826 return;
827 }
828
829 if (!trans->bytes_reserved)
830 return;
831
832 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
833 trace_btrfs_space_reservation(fs_info, "transaction",
834 trans->transid, trans->bytes_reserved, 0);
835 btrfs_block_rsv_release(fs_info, trans->block_rsv,
836 trans->bytes_reserved);
837 trans->bytes_reserved = 0;
838 }
839
__btrfs_end_transaction(struct btrfs_trans_handle * trans,int throttle)840 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
841 int throttle)
842 {
843 struct btrfs_fs_info *info = trans->fs_info;
844 struct btrfs_transaction *cur_trans = trans->transaction;
845 u64 transid = trans->transid;
846 unsigned long cur = trans->delayed_ref_updates;
847 int lock = (trans->type != TRANS_JOIN_NOLOCK);
848 int err = 0;
849 int must_run_delayed_refs = 0;
850
851 if (refcount_read(&trans->use_count) > 1) {
852 refcount_dec(&trans->use_count);
853 trans->block_rsv = trans->orig_rsv;
854 return 0;
855 }
856
857 btrfs_trans_release_metadata(trans);
858 trans->block_rsv = NULL;
859
860 if (!list_empty(&trans->new_bgs))
861 btrfs_create_pending_block_groups(trans);
862
863 trans->delayed_ref_updates = 0;
864 if (!trans->sync) {
865 must_run_delayed_refs =
866 btrfs_should_throttle_delayed_refs(trans, info);
867 cur = max_t(unsigned long, cur, 32);
868
869 /*
870 * don't make the caller wait if they are from a NOLOCK
871 * or ATTACH transaction, it will deadlock with commit
872 */
873 if (must_run_delayed_refs == 1 &&
874 (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
875 must_run_delayed_refs = 2;
876 }
877
878 btrfs_trans_release_metadata(trans);
879 trans->block_rsv = NULL;
880
881 if (!list_empty(&trans->new_bgs))
882 btrfs_create_pending_block_groups(trans);
883
884 btrfs_trans_release_chunk_metadata(trans);
885
886 if (lock && should_end_transaction(trans) &&
887 READ_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
888 spin_lock(&info->trans_lock);
889 if (cur_trans->state == TRANS_STATE_RUNNING)
890 cur_trans->state = TRANS_STATE_BLOCKED;
891 spin_unlock(&info->trans_lock);
892 }
893
894 if (lock && READ_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
895 if (throttle)
896 return btrfs_commit_transaction(trans);
897 else
898 wake_up_process(info->transaction_kthread);
899 }
900
901 if (trans->type & __TRANS_FREEZABLE)
902 sb_end_intwrite(info->sb);
903
904 WARN_ON(cur_trans != info->running_transaction);
905 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
906 atomic_dec(&cur_trans->num_writers);
907 extwriter_counter_dec(cur_trans, trans->type);
908
909 cond_wake_up(&cur_trans->writer_wait);
910 btrfs_put_transaction(cur_trans);
911
912 if (current->journal_info == trans)
913 current->journal_info = NULL;
914
915 if (throttle)
916 btrfs_run_delayed_iputs(info);
917
918 if (trans->aborted ||
919 test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
920 wake_up_process(info->transaction_kthread);
921 err = -EIO;
922 }
923
924 kmem_cache_free(btrfs_trans_handle_cachep, trans);
925 if (must_run_delayed_refs) {
926 btrfs_async_run_delayed_refs(info, cur, transid,
927 must_run_delayed_refs == 1);
928 }
929 return err;
930 }
931
btrfs_end_transaction(struct btrfs_trans_handle * trans)932 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
933 {
934 return __btrfs_end_transaction(trans, 0);
935 }
936
btrfs_end_transaction_throttle(struct btrfs_trans_handle * trans)937 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
938 {
939 return __btrfs_end_transaction(trans, 1);
940 }
941
942 /*
943 * when btree blocks are allocated, they have some corresponding bits set for
944 * them in one of two extent_io trees. This is used to make sure all of
945 * those extents are sent to disk but does not wait on them
946 */
btrfs_write_marked_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages,int mark)947 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
948 struct extent_io_tree *dirty_pages, int mark)
949 {
950 int err = 0;
951 int werr = 0;
952 struct address_space *mapping = fs_info->btree_inode->i_mapping;
953 struct extent_state *cached_state = NULL;
954 u64 start = 0;
955 u64 end;
956
957 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
958 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
959 mark, &cached_state)) {
960 bool wait_writeback = false;
961
962 err = convert_extent_bit(dirty_pages, start, end,
963 EXTENT_NEED_WAIT,
964 mark, &cached_state);
965 /*
966 * convert_extent_bit can return -ENOMEM, which is most of the
967 * time a temporary error. So when it happens, ignore the error
968 * and wait for writeback of this range to finish - because we
969 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
970 * to __btrfs_wait_marked_extents() would not know that
971 * writeback for this range started and therefore wouldn't
972 * wait for it to finish - we don't want to commit a
973 * superblock that points to btree nodes/leafs for which
974 * writeback hasn't finished yet (and without errors).
975 * We cleanup any entries left in the io tree when committing
976 * the transaction (through clear_btree_io_tree()).
977 */
978 if (err == -ENOMEM) {
979 err = 0;
980 wait_writeback = true;
981 }
982 if (!err)
983 err = filemap_fdatawrite_range(mapping, start, end);
984 if (err)
985 werr = err;
986 else if (wait_writeback)
987 werr = filemap_fdatawait_range(mapping, start, end);
988 free_extent_state(cached_state);
989 cached_state = NULL;
990 cond_resched();
991 start = end + 1;
992 }
993 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
994 return werr;
995 }
996
997 /*
998 * when btree blocks are allocated, they have some corresponding bits set for
999 * them in one of two extent_io trees. This is used to make sure all of
1000 * those extents are on disk for transaction or log commit. We wait
1001 * on all the pages and clear them from the dirty pages state tree
1002 */
__btrfs_wait_marked_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages)1003 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1004 struct extent_io_tree *dirty_pages)
1005 {
1006 int err = 0;
1007 int werr = 0;
1008 struct address_space *mapping = fs_info->btree_inode->i_mapping;
1009 struct extent_state *cached_state = NULL;
1010 u64 start = 0;
1011 u64 end;
1012
1013 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1014 EXTENT_NEED_WAIT, &cached_state)) {
1015 /*
1016 * Ignore -ENOMEM errors returned by clear_extent_bit().
1017 * When committing the transaction, we'll remove any entries
1018 * left in the io tree. For a log commit, we don't remove them
1019 * after committing the log because the tree can be accessed
1020 * concurrently - we do it only at transaction commit time when
1021 * it's safe to do it (through clear_btree_io_tree()).
1022 */
1023 err = clear_extent_bit(dirty_pages, start, end,
1024 EXTENT_NEED_WAIT, 0, 0, &cached_state);
1025 if (err == -ENOMEM)
1026 err = 0;
1027 if (!err)
1028 err = filemap_fdatawait_range(mapping, start, end);
1029 if (err)
1030 werr = err;
1031 free_extent_state(cached_state);
1032 cached_state = NULL;
1033 cond_resched();
1034 start = end + 1;
1035 }
1036 if (err)
1037 werr = err;
1038 return werr;
1039 }
1040
btrfs_wait_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages)1041 int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1042 struct extent_io_tree *dirty_pages)
1043 {
1044 bool errors = false;
1045 int err;
1046
1047 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1048 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1049 errors = true;
1050
1051 if (errors && !err)
1052 err = -EIO;
1053 return err;
1054 }
1055
btrfs_wait_tree_log_extents(struct btrfs_root * log_root,int mark)1056 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1057 {
1058 struct btrfs_fs_info *fs_info = log_root->fs_info;
1059 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1060 bool errors = false;
1061 int err;
1062
1063 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1064
1065 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1066 if ((mark & EXTENT_DIRTY) &&
1067 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1068 errors = true;
1069
1070 if ((mark & EXTENT_NEW) &&
1071 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1072 errors = true;
1073
1074 if (errors && !err)
1075 err = -EIO;
1076 return err;
1077 }
1078
1079 /*
1080 * When btree blocks are allocated the corresponding extents are marked dirty.
1081 * This function ensures such extents are persisted on disk for transaction or
1082 * log commit.
1083 *
1084 * @trans: transaction whose dirty pages we'd like to write
1085 */
btrfs_write_and_wait_transaction(struct btrfs_trans_handle * trans)1086 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1087 {
1088 int ret;
1089 int ret2;
1090 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1091 struct btrfs_fs_info *fs_info = trans->fs_info;
1092 struct blk_plug plug;
1093
1094 blk_start_plug(&plug);
1095 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1096 blk_finish_plug(&plug);
1097 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1098
1099 clear_btree_io_tree(&trans->transaction->dirty_pages);
1100
1101 if (ret)
1102 return ret;
1103 else if (ret2)
1104 return ret2;
1105 else
1106 return 0;
1107 }
1108
1109 /*
1110 * this is used to update the root pointer in the tree of tree roots.
1111 *
1112 * But, in the case of the extent allocation tree, updating the root
1113 * pointer may allocate blocks which may change the root of the extent
1114 * allocation tree.
1115 *
1116 * So, this loops and repeats and makes sure the cowonly root didn't
1117 * change while the root pointer was being updated in the metadata.
1118 */
update_cowonly_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)1119 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1120 struct btrfs_root *root)
1121 {
1122 int ret;
1123 u64 old_root_bytenr;
1124 u64 old_root_used;
1125 struct btrfs_fs_info *fs_info = root->fs_info;
1126 struct btrfs_root *tree_root = fs_info->tree_root;
1127
1128 old_root_used = btrfs_root_used(&root->root_item);
1129
1130 while (1) {
1131 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1132 if (old_root_bytenr == root->node->start &&
1133 old_root_used == btrfs_root_used(&root->root_item))
1134 break;
1135
1136 btrfs_set_root_node(&root->root_item, root->node);
1137 ret = btrfs_update_root(trans, tree_root,
1138 &root->root_key,
1139 &root->root_item);
1140 if (ret)
1141 return ret;
1142
1143 old_root_used = btrfs_root_used(&root->root_item);
1144 }
1145
1146 return 0;
1147 }
1148
1149 /*
1150 * update all the cowonly tree roots on disk
1151 *
1152 * The error handling in this function may not be obvious. Any of the
1153 * failures will cause the file system to go offline. We still need
1154 * to clean up the delayed refs.
1155 */
commit_cowonly_roots(struct btrfs_trans_handle * trans)1156 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1157 {
1158 struct btrfs_fs_info *fs_info = trans->fs_info;
1159 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1160 struct list_head *io_bgs = &trans->transaction->io_bgs;
1161 struct list_head *next;
1162 struct extent_buffer *eb;
1163 int ret;
1164
1165 eb = btrfs_lock_root_node(fs_info->tree_root);
1166 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1167 0, &eb);
1168 btrfs_tree_unlock(eb);
1169 free_extent_buffer(eb);
1170
1171 if (ret)
1172 return ret;
1173
1174 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1175 if (ret)
1176 return ret;
1177
1178 ret = btrfs_run_dev_stats(trans, fs_info);
1179 if (ret)
1180 return ret;
1181 ret = btrfs_run_dev_replace(trans, fs_info);
1182 if (ret)
1183 return ret;
1184 ret = btrfs_run_qgroups(trans);
1185 if (ret)
1186 return ret;
1187
1188 ret = btrfs_setup_space_cache(trans, fs_info);
1189 if (ret)
1190 return ret;
1191
1192 /* run_qgroups might have added some more refs */
1193 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1194 if (ret)
1195 return ret;
1196 again:
1197 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1198 struct btrfs_root *root;
1199 next = fs_info->dirty_cowonly_roots.next;
1200 list_del_init(next);
1201 root = list_entry(next, struct btrfs_root, dirty_list);
1202 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1203
1204 if (root != fs_info->extent_root)
1205 list_add_tail(&root->dirty_list,
1206 &trans->transaction->switch_commits);
1207 ret = update_cowonly_root(trans, root);
1208 if (ret)
1209 return ret;
1210 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1211 if (ret)
1212 return ret;
1213 }
1214
1215 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1216 ret = btrfs_write_dirty_block_groups(trans, fs_info);
1217 if (ret)
1218 return ret;
1219 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1220 if (ret)
1221 return ret;
1222 }
1223
1224 if (!list_empty(&fs_info->dirty_cowonly_roots))
1225 goto again;
1226
1227 list_add_tail(&fs_info->extent_root->dirty_list,
1228 &trans->transaction->switch_commits);
1229 btrfs_after_dev_replace_commit(fs_info);
1230
1231 return 0;
1232 }
1233
1234 /*
1235 * dead roots are old snapshots that need to be deleted. This allocates
1236 * a dirty root struct and adds it into the list of dead roots that need to
1237 * be deleted
1238 */
btrfs_add_dead_root(struct btrfs_root * root)1239 void btrfs_add_dead_root(struct btrfs_root *root)
1240 {
1241 struct btrfs_fs_info *fs_info = root->fs_info;
1242
1243 spin_lock(&fs_info->trans_lock);
1244 if (list_empty(&root->root_list))
1245 list_add_tail(&root->root_list, &fs_info->dead_roots);
1246 spin_unlock(&fs_info->trans_lock);
1247 }
1248
1249 /*
1250 * update all the cowonly tree roots on disk
1251 */
commit_fs_roots(struct btrfs_trans_handle * trans)1252 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1253 {
1254 struct btrfs_fs_info *fs_info = trans->fs_info;
1255 struct btrfs_root *gang[8];
1256 int i;
1257 int ret;
1258
1259 spin_lock(&fs_info->fs_roots_radix_lock);
1260 while (1) {
1261 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1262 (void **)gang, 0,
1263 ARRAY_SIZE(gang),
1264 BTRFS_ROOT_TRANS_TAG);
1265 if (ret == 0)
1266 break;
1267 for (i = 0; i < ret; i++) {
1268 struct btrfs_root *root = gang[i];
1269 int ret2;
1270
1271 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1272 (unsigned long)root->root_key.objectid,
1273 BTRFS_ROOT_TRANS_TAG);
1274 spin_unlock(&fs_info->fs_roots_radix_lock);
1275
1276 btrfs_free_log(trans, root);
1277 btrfs_update_reloc_root(trans, root);
1278
1279 btrfs_save_ino_cache(root, trans);
1280
1281 /* see comments in should_cow_block() */
1282 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1283 smp_mb__after_atomic();
1284
1285 if (root->commit_root != root->node) {
1286 list_add_tail(&root->dirty_list,
1287 &trans->transaction->switch_commits);
1288 btrfs_set_root_node(&root->root_item,
1289 root->node);
1290 }
1291
1292 ret2 = btrfs_update_root(trans, fs_info->tree_root,
1293 &root->root_key,
1294 &root->root_item);
1295 if (ret2)
1296 return ret2;
1297 spin_lock(&fs_info->fs_roots_radix_lock);
1298 btrfs_qgroup_free_meta_all_pertrans(root);
1299 }
1300 }
1301 spin_unlock(&fs_info->fs_roots_radix_lock);
1302 return 0;
1303 }
1304
1305 /*
1306 * defrag a given btree.
1307 * Every leaf in the btree is read and defragged.
1308 */
btrfs_defrag_root(struct btrfs_root * root)1309 int btrfs_defrag_root(struct btrfs_root *root)
1310 {
1311 struct btrfs_fs_info *info = root->fs_info;
1312 struct btrfs_trans_handle *trans;
1313 int ret;
1314
1315 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1316 return 0;
1317
1318 while (1) {
1319 trans = btrfs_start_transaction(root, 0);
1320 if (IS_ERR(trans)) {
1321 ret = PTR_ERR(trans);
1322 break;
1323 }
1324
1325 ret = btrfs_defrag_leaves(trans, root);
1326
1327 btrfs_end_transaction(trans);
1328 btrfs_btree_balance_dirty(info);
1329 cond_resched();
1330
1331 if (btrfs_fs_closing(info) || ret != -EAGAIN)
1332 break;
1333
1334 if (btrfs_defrag_cancelled(info)) {
1335 btrfs_debug(info, "defrag_root cancelled");
1336 ret = -EAGAIN;
1337 break;
1338 }
1339 }
1340 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1341 return ret;
1342 }
1343
1344 /*
1345 * Do all special snapshot related qgroup dirty hack.
1346 *
1347 * Will do all needed qgroup inherit and dirty hack like switch commit
1348 * roots inside one transaction and write all btree into disk, to make
1349 * qgroup works.
1350 */
qgroup_account_snapshot(struct btrfs_trans_handle * trans,struct btrfs_root * src,struct btrfs_root * parent,struct btrfs_qgroup_inherit * inherit,u64 dst_objectid)1351 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1352 struct btrfs_root *src,
1353 struct btrfs_root *parent,
1354 struct btrfs_qgroup_inherit *inherit,
1355 u64 dst_objectid)
1356 {
1357 struct btrfs_fs_info *fs_info = src->fs_info;
1358 int ret;
1359
1360 /*
1361 * Save some performance in the case that qgroups are not
1362 * enabled. If this check races with the ioctl, rescan will
1363 * kick in anyway.
1364 */
1365 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1366 return 0;
1367
1368 /*
1369 * Ensure dirty @src will be commited. Or, after comming
1370 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1371 * recorded root will never be updated again, causing an outdated root
1372 * item.
1373 */
1374 record_root_in_trans(trans, src, 1);
1375
1376 /*
1377 * We are going to commit transaction, see btrfs_commit_transaction()
1378 * comment for reason locking tree_log_mutex
1379 */
1380 mutex_lock(&fs_info->tree_log_mutex);
1381
1382 ret = commit_fs_roots(trans);
1383 if (ret)
1384 goto out;
1385 ret = btrfs_qgroup_account_extents(trans);
1386 if (ret < 0)
1387 goto out;
1388
1389 /* Now qgroup are all updated, we can inherit it to new qgroups */
1390 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1391 inherit);
1392 if (ret < 0)
1393 goto out;
1394
1395 /*
1396 * Now we do a simplified commit transaction, which will:
1397 * 1) commit all subvolume and extent tree
1398 * To ensure all subvolume and extent tree have a valid
1399 * commit_root to accounting later insert_dir_item()
1400 * 2) write all btree blocks onto disk
1401 * This is to make sure later btree modification will be cowed
1402 * Or commit_root can be populated and cause wrong qgroup numbers
1403 * In this simplified commit, we don't really care about other trees
1404 * like chunk and root tree, as they won't affect qgroup.
1405 * And we don't write super to avoid half committed status.
1406 */
1407 ret = commit_cowonly_roots(trans);
1408 if (ret)
1409 goto out;
1410 switch_commit_roots(trans->transaction);
1411 ret = btrfs_write_and_wait_transaction(trans);
1412 if (ret)
1413 btrfs_handle_fs_error(fs_info, ret,
1414 "Error while writing out transaction for qgroup");
1415
1416 out:
1417 mutex_unlock(&fs_info->tree_log_mutex);
1418
1419 /*
1420 * Force parent root to be updated, as we recorded it before so its
1421 * last_trans == cur_transid.
1422 * Or it won't be committed again onto disk after later
1423 * insert_dir_item()
1424 */
1425 if (!ret)
1426 record_root_in_trans(trans, parent, 1);
1427 return ret;
1428 }
1429
1430 /*
1431 * new snapshots need to be created at a very specific time in the
1432 * transaction commit. This does the actual creation.
1433 *
1434 * Note:
1435 * If the error which may affect the commitment of the current transaction
1436 * happens, we should return the error number. If the error which just affect
1437 * the creation of the pending snapshots, just return 0.
1438 */
create_pending_snapshot(struct btrfs_trans_handle * trans,struct btrfs_pending_snapshot * pending)1439 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1440 struct btrfs_pending_snapshot *pending)
1441 {
1442
1443 struct btrfs_fs_info *fs_info = trans->fs_info;
1444 struct btrfs_key key;
1445 struct btrfs_root_item *new_root_item;
1446 struct btrfs_root *tree_root = fs_info->tree_root;
1447 struct btrfs_root *root = pending->root;
1448 struct btrfs_root *parent_root;
1449 struct btrfs_block_rsv *rsv;
1450 struct inode *parent_inode;
1451 struct btrfs_path *path;
1452 struct btrfs_dir_item *dir_item;
1453 struct dentry *dentry;
1454 struct extent_buffer *tmp;
1455 struct extent_buffer *old;
1456 struct timespec64 cur_time;
1457 int ret = 0;
1458 u64 to_reserve = 0;
1459 u64 index = 0;
1460 u64 objectid;
1461 u64 root_flags;
1462 uuid_le new_uuid;
1463
1464 ASSERT(pending->path);
1465 path = pending->path;
1466
1467 ASSERT(pending->root_item);
1468 new_root_item = pending->root_item;
1469
1470 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1471 if (pending->error)
1472 goto no_free_objectid;
1473
1474 /*
1475 * Make qgroup to skip current new snapshot's qgroupid, as it is
1476 * accounted by later btrfs_qgroup_inherit().
1477 */
1478 btrfs_set_skip_qgroup(trans, objectid);
1479
1480 btrfs_reloc_pre_snapshot(pending, &to_reserve);
1481
1482 if (to_reserve > 0) {
1483 pending->error = btrfs_block_rsv_add(root,
1484 &pending->block_rsv,
1485 to_reserve,
1486 BTRFS_RESERVE_NO_FLUSH);
1487 if (pending->error)
1488 goto clear_skip_qgroup;
1489 }
1490
1491 key.objectid = objectid;
1492 key.offset = (u64)-1;
1493 key.type = BTRFS_ROOT_ITEM_KEY;
1494
1495 rsv = trans->block_rsv;
1496 trans->block_rsv = &pending->block_rsv;
1497 trans->bytes_reserved = trans->block_rsv->reserved;
1498 trace_btrfs_space_reservation(fs_info, "transaction",
1499 trans->transid,
1500 trans->bytes_reserved, 1);
1501 dentry = pending->dentry;
1502 parent_inode = pending->dir;
1503 parent_root = BTRFS_I(parent_inode)->root;
1504 record_root_in_trans(trans, parent_root, 0);
1505
1506 cur_time = current_time(parent_inode);
1507
1508 /*
1509 * insert the directory item
1510 */
1511 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1512 BUG_ON(ret); /* -ENOMEM */
1513
1514 /* check if there is a file/dir which has the same name. */
1515 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1516 btrfs_ino(BTRFS_I(parent_inode)),
1517 dentry->d_name.name,
1518 dentry->d_name.len, 0);
1519 if (dir_item != NULL && !IS_ERR(dir_item)) {
1520 pending->error = -EEXIST;
1521 goto dir_item_existed;
1522 } else if (IS_ERR(dir_item)) {
1523 ret = PTR_ERR(dir_item);
1524 btrfs_abort_transaction(trans, ret);
1525 goto fail;
1526 }
1527 btrfs_release_path(path);
1528
1529 /*
1530 * pull in the delayed directory update
1531 * and the delayed inode item
1532 * otherwise we corrupt the FS during
1533 * snapshot
1534 */
1535 ret = btrfs_run_delayed_items(trans);
1536 if (ret) { /* Transaction aborted */
1537 btrfs_abort_transaction(trans, ret);
1538 goto fail;
1539 }
1540
1541 record_root_in_trans(trans, root, 0);
1542 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1543 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1544 btrfs_check_and_init_root_item(new_root_item);
1545
1546 root_flags = btrfs_root_flags(new_root_item);
1547 if (pending->readonly)
1548 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1549 else
1550 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1551 btrfs_set_root_flags(new_root_item, root_flags);
1552
1553 btrfs_set_root_generation_v2(new_root_item,
1554 trans->transid);
1555 uuid_le_gen(&new_uuid);
1556 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1557 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1558 BTRFS_UUID_SIZE);
1559 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1560 memset(new_root_item->received_uuid, 0,
1561 sizeof(new_root_item->received_uuid));
1562 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1563 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1564 btrfs_set_root_stransid(new_root_item, 0);
1565 btrfs_set_root_rtransid(new_root_item, 0);
1566 }
1567 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1568 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1569 btrfs_set_root_otransid(new_root_item, trans->transid);
1570
1571 old = btrfs_lock_root_node(root);
1572 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1573 if (ret) {
1574 btrfs_tree_unlock(old);
1575 free_extent_buffer(old);
1576 btrfs_abort_transaction(trans, ret);
1577 goto fail;
1578 }
1579
1580 btrfs_set_lock_blocking(old);
1581
1582 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1583 /* clean up in any case */
1584 btrfs_tree_unlock(old);
1585 free_extent_buffer(old);
1586 if (ret) {
1587 btrfs_abort_transaction(trans, ret);
1588 goto fail;
1589 }
1590 /* see comments in should_cow_block() */
1591 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1592 smp_wmb();
1593
1594 btrfs_set_root_node(new_root_item, tmp);
1595 /* record when the snapshot was created in key.offset */
1596 key.offset = trans->transid;
1597 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1598 btrfs_tree_unlock(tmp);
1599 free_extent_buffer(tmp);
1600 if (ret) {
1601 btrfs_abort_transaction(trans, ret);
1602 goto fail;
1603 }
1604
1605 /*
1606 * insert root back/forward references
1607 */
1608 ret = btrfs_add_root_ref(trans, objectid,
1609 parent_root->root_key.objectid,
1610 btrfs_ino(BTRFS_I(parent_inode)), index,
1611 dentry->d_name.name, dentry->d_name.len);
1612 if (ret) {
1613 btrfs_abort_transaction(trans, ret);
1614 goto fail;
1615 }
1616
1617 key.offset = (u64)-1;
1618 pending->snap = btrfs_read_fs_root_no_name(fs_info, &key);
1619 if (IS_ERR(pending->snap)) {
1620 ret = PTR_ERR(pending->snap);
1621 btrfs_abort_transaction(trans, ret);
1622 goto fail;
1623 }
1624
1625 ret = btrfs_reloc_post_snapshot(trans, pending);
1626 if (ret) {
1627 btrfs_abort_transaction(trans, ret);
1628 goto fail;
1629 }
1630
1631 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1632 if (ret) {
1633 btrfs_abort_transaction(trans, ret);
1634 goto fail;
1635 }
1636
1637 /*
1638 * Do special qgroup accounting for snapshot, as we do some qgroup
1639 * snapshot hack to do fast snapshot.
1640 * To co-operate with that hack, we do hack again.
1641 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1642 */
1643 ret = qgroup_account_snapshot(trans, root, parent_root,
1644 pending->inherit, objectid);
1645 if (ret < 0)
1646 goto fail;
1647
1648 ret = btrfs_insert_dir_item(trans, parent_root,
1649 dentry->d_name.name, dentry->d_name.len,
1650 BTRFS_I(parent_inode), &key,
1651 BTRFS_FT_DIR, index);
1652 /* We have check then name at the beginning, so it is impossible. */
1653 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1654 if (ret) {
1655 btrfs_abort_transaction(trans, ret);
1656 goto fail;
1657 }
1658
1659 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1660 dentry->d_name.len * 2);
1661 parent_inode->i_mtime = parent_inode->i_ctime =
1662 current_time(parent_inode);
1663 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1664 if (ret) {
1665 btrfs_abort_transaction(trans, ret);
1666 goto fail;
1667 }
1668 ret = btrfs_uuid_tree_add(trans, new_uuid.b, BTRFS_UUID_KEY_SUBVOL,
1669 objectid);
1670 if (ret) {
1671 btrfs_abort_transaction(trans, ret);
1672 goto fail;
1673 }
1674 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1675 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1676 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1677 objectid);
1678 if (ret && ret != -EEXIST) {
1679 btrfs_abort_transaction(trans, ret);
1680 goto fail;
1681 }
1682 }
1683
1684 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1685 if (ret) {
1686 btrfs_abort_transaction(trans, ret);
1687 goto fail;
1688 }
1689
1690 fail:
1691 pending->error = ret;
1692 dir_item_existed:
1693 trans->block_rsv = rsv;
1694 trans->bytes_reserved = 0;
1695 clear_skip_qgroup:
1696 btrfs_clear_skip_qgroup(trans);
1697 no_free_objectid:
1698 kfree(new_root_item);
1699 pending->root_item = NULL;
1700 btrfs_free_path(path);
1701 pending->path = NULL;
1702
1703 return ret;
1704 }
1705
1706 /*
1707 * create all the snapshots we've scheduled for creation
1708 */
create_pending_snapshots(struct btrfs_trans_handle * trans)1709 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1710 {
1711 struct btrfs_pending_snapshot *pending, *next;
1712 struct list_head *head = &trans->transaction->pending_snapshots;
1713 int ret = 0;
1714
1715 list_for_each_entry_safe(pending, next, head, list) {
1716 list_del(&pending->list);
1717 ret = create_pending_snapshot(trans, pending);
1718 if (ret)
1719 break;
1720 }
1721 return ret;
1722 }
1723
update_super_roots(struct btrfs_fs_info * fs_info)1724 static void update_super_roots(struct btrfs_fs_info *fs_info)
1725 {
1726 struct btrfs_root_item *root_item;
1727 struct btrfs_super_block *super;
1728
1729 super = fs_info->super_copy;
1730
1731 root_item = &fs_info->chunk_root->root_item;
1732 super->chunk_root = root_item->bytenr;
1733 super->chunk_root_generation = root_item->generation;
1734 super->chunk_root_level = root_item->level;
1735
1736 root_item = &fs_info->tree_root->root_item;
1737 super->root = root_item->bytenr;
1738 super->generation = root_item->generation;
1739 super->root_level = root_item->level;
1740 if (btrfs_test_opt(fs_info, SPACE_CACHE))
1741 super->cache_generation = root_item->generation;
1742 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1743 super->uuid_tree_generation = root_item->generation;
1744 }
1745
btrfs_transaction_in_commit(struct btrfs_fs_info * info)1746 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1747 {
1748 struct btrfs_transaction *trans;
1749 int ret = 0;
1750
1751 spin_lock(&info->trans_lock);
1752 trans = info->running_transaction;
1753 if (trans)
1754 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1755 spin_unlock(&info->trans_lock);
1756 return ret;
1757 }
1758
btrfs_transaction_blocked(struct btrfs_fs_info * info)1759 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1760 {
1761 struct btrfs_transaction *trans;
1762 int ret = 0;
1763
1764 spin_lock(&info->trans_lock);
1765 trans = info->running_transaction;
1766 if (trans)
1767 ret = is_transaction_blocked(trans);
1768 spin_unlock(&info->trans_lock);
1769 return ret;
1770 }
1771
1772 /*
1773 * wait for the current transaction commit to start and block subsequent
1774 * transaction joins
1775 */
wait_current_trans_commit_start(struct btrfs_fs_info * fs_info,struct btrfs_transaction * trans)1776 static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
1777 struct btrfs_transaction *trans)
1778 {
1779 wait_event(fs_info->transaction_blocked_wait,
1780 trans->state >= TRANS_STATE_COMMIT_START || trans->aborted);
1781 }
1782
1783 /*
1784 * wait for the current transaction to start and then become unblocked.
1785 * caller holds ref.
1786 */
wait_current_trans_commit_start_and_unblock(struct btrfs_fs_info * fs_info,struct btrfs_transaction * trans)1787 static void wait_current_trans_commit_start_and_unblock(
1788 struct btrfs_fs_info *fs_info,
1789 struct btrfs_transaction *trans)
1790 {
1791 wait_event(fs_info->transaction_wait,
1792 trans->state >= TRANS_STATE_UNBLOCKED || trans->aborted);
1793 }
1794
1795 /*
1796 * commit transactions asynchronously. once btrfs_commit_transaction_async
1797 * returns, any subsequent transaction will not be allowed to join.
1798 */
1799 struct btrfs_async_commit {
1800 struct btrfs_trans_handle *newtrans;
1801 struct work_struct work;
1802 };
1803
do_async_commit(struct work_struct * work)1804 static void do_async_commit(struct work_struct *work)
1805 {
1806 struct btrfs_async_commit *ac =
1807 container_of(work, struct btrfs_async_commit, work);
1808
1809 /*
1810 * We've got freeze protection passed with the transaction.
1811 * Tell lockdep about it.
1812 */
1813 if (ac->newtrans->type & __TRANS_FREEZABLE)
1814 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1815
1816 current->journal_info = ac->newtrans;
1817
1818 btrfs_commit_transaction(ac->newtrans);
1819 kfree(ac);
1820 }
1821
btrfs_commit_transaction_async(struct btrfs_trans_handle * trans,int wait_for_unblock)1822 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1823 int wait_for_unblock)
1824 {
1825 struct btrfs_fs_info *fs_info = trans->fs_info;
1826 struct btrfs_async_commit *ac;
1827 struct btrfs_transaction *cur_trans;
1828
1829 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1830 if (!ac)
1831 return -ENOMEM;
1832
1833 INIT_WORK(&ac->work, do_async_commit);
1834 ac->newtrans = btrfs_join_transaction(trans->root);
1835 if (IS_ERR(ac->newtrans)) {
1836 int err = PTR_ERR(ac->newtrans);
1837 kfree(ac);
1838 return err;
1839 }
1840
1841 /* take transaction reference */
1842 cur_trans = trans->transaction;
1843 refcount_inc(&cur_trans->use_count);
1844
1845 btrfs_end_transaction(trans);
1846
1847 /*
1848 * Tell lockdep we've released the freeze rwsem, since the
1849 * async commit thread will be the one to unlock it.
1850 */
1851 if (ac->newtrans->type & __TRANS_FREEZABLE)
1852 __sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1853
1854 schedule_work(&ac->work);
1855
1856 /* wait for transaction to start and unblock */
1857 if (wait_for_unblock)
1858 wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
1859 else
1860 wait_current_trans_commit_start(fs_info, cur_trans);
1861
1862 if (current->journal_info == trans)
1863 current->journal_info = NULL;
1864
1865 btrfs_put_transaction(cur_trans);
1866 return 0;
1867 }
1868
1869
cleanup_transaction(struct btrfs_trans_handle * trans,int err)1870 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1871 {
1872 struct btrfs_fs_info *fs_info = trans->fs_info;
1873 struct btrfs_transaction *cur_trans = trans->transaction;
1874 DEFINE_WAIT(wait);
1875
1876 WARN_ON(refcount_read(&trans->use_count) > 1);
1877
1878 btrfs_abort_transaction(trans, err);
1879
1880 spin_lock(&fs_info->trans_lock);
1881
1882 /*
1883 * If the transaction is removed from the list, it means this
1884 * transaction has been committed successfully, so it is impossible
1885 * to call the cleanup function.
1886 */
1887 BUG_ON(list_empty(&cur_trans->list));
1888
1889 list_del_init(&cur_trans->list);
1890 if (cur_trans == fs_info->running_transaction) {
1891 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1892 spin_unlock(&fs_info->trans_lock);
1893 wait_event(cur_trans->writer_wait,
1894 atomic_read(&cur_trans->num_writers) == 1);
1895
1896 spin_lock(&fs_info->trans_lock);
1897 }
1898 spin_unlock(&fs_info->trans_lock);
1899
1900 btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1901
1902 spin_lock(&fs_info->trans_lock);
1903 if (cur_trans == fs_info->running_transaction)
1904 fs_info->running_transaction = NULL;
1905 spin_unlock(&fs_info->trans_lock);
1906
1907 if (trans->type & __TRANS_FREEZABLE)
1908 sb_end_intwrite(fs_info->sb);
1909 btrfs_put_transaction(cur_trans);
1910 btrfs_put_transaction(cur_trans);
1911
1912 trace_btrfs_transaction_commit(trans->root);
1913
1914 if (current->journal_info == trans)
1915 current->journal_info = NULL;
1916 btrfs_scrub_cancel(fs_info);
1917
1918 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1919 }
1920
btrfs_start_delalloc_flush(struct btrfs_fs_info * fs_info)1921 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1922 {
1923 /*
1924 * We use writeback_inodes_sb here because if we used
1925 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
1926 * Currently are holding the fs freeze lock, if we do an async flush
1927 * we'll do btrfs_join_transaction() and deadlock because we need to
1928 * wait for the fs freeze lock. Using the direct flushing we benefit
1929 * from already being in a transaction and our join_transaction doesn't
1930 * have to re-take the fs freeze lock.
1931 */
1932 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1933 writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
1934 return 0;
1935 }
1936
btrfs_wait_delalloc_flush(struct btrfs_fs_info * fs_info)1937 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1938 {
1939 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1940 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1941 }
1942
1943 static inline void
btrfs_wait_pending_ordered(struct btrfs_transaction * cur_trans)1944 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans)
1945 {
1946 wait_event(cur_trans->pending_wait,
1947 atomic_read(&cur_trans->pending_ordered) == 0);
1948 }
1949
btrfs_commit_transaction(struct btrfs_trans_handle * trans)1950 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
1951 {
1952 struct btrfs_fs_info *fs_info = trans->fs_info;
1953 struct btrfs_transaction *cur_trans = trans->transaction;
1954 struct btrfs_transaction *prev_trans = NULL;
1955 int ret;
1956
1957 /*
1958 * Some places just start a transaction to commit it. We need to make
1959 * sure that if this commit fails that the abort code actually marks the
1960 * transaction as failed, so set trans->dirty to make the abort code do
1961 * the right thing.
1962 */
1963 trans->dirty = true;
1964
1965 /* Stop the commit early if ->aborted is set */
1966 if (unlikely(READ_ONCE(cur_trans->aborted))) {
1967 ret = cur_trans->aborted;
1968 btrfs_end_transaction(trans);
1969 return ret;
1970 }
1971
1972 btrfs_trans_release_metadata(trans);
1973 trans->block_rsv = NULL;
1974
1975 /* make a pass through all the delayed refs we have so far
1976 * any runnings procs may add more while we are here
1977 */
1978 ret = btrfs_run_delayed_refs(trans, 0);
1979 if (ret) {
1980 btrfs_end_transaction(trans);
1981 return ret;
1982 }
1983
1984 cur_trans = trans->transaction;
1985
1986 /*
1987 * set the flushing flag so procs in this transaction have to
1988 * start sending their work down.
1989 */
1990 cur_trans->delayed_refs.flushing = 1;
1991 smp_wmb();
1992
1993 if (!list_empty(&trans->new_bgs))
1994 btrfs_create_pending_block_groups(trans);
1995
1996 ret = btrfs_run_delayed_refs(trans, 0);
1997 if (ret) {
1998 btrfs_end_transaction(trans);
1999 return ret;
2000 }
2001
2002 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2003 int run_it = 0;
2004
2005 /* this mutex is also taken before trying to set
2006 * block groups readonly. We need to make sure
2007 * that nobody has set a block group readonly
2008 * after a extents from that block group have been
2009 * allocated for cache files. btrfs_set_block_group_ro
2010 * will wait for the transaction to commit if it
2011 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2012 *
2013 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2014 * only one process starts all the block group IO. It wouldn't
2015 * hurt to have more than one go through, but there's no
2016 * real advantage to it either.
2017 */
2018 mutex_lock(&fs_info->ro_block_group_mutex);
2019 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2020 &cur_trans->flags))
2021 run_it = 1;
2022 mutex_unlock(&fs_info->ro_block_group_mutex);
2023
2024 if (run_it) {
2025 ret = btrfs_start_dirty_block_groups(trans);
2026 if (ret) {
2027 btrfs_end_transaction(trans);
2028 return ret;
2029 }
2030 }
2031 }
2032
2033 spin_lock(&fs_info->trans_lock);
2034 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2035 spin_unlock(&fs_info->trans_lock);
2036 refcount_inc(&cur_trans->use_count);
2037 ret = btrfs_end_transaction(trans);
2038
2039 wait_for_commit(cur_trans);
2040
2041 if (unlikely(cur_trans->aborted))
2042 ret = cur_trans->aborted;
2043
2044 btrfs_put_transaction(cur_trans);
2045
2046 return ret;
2047 }
2048
2049 cur_trans->state = TRANS_STATE_COMMIT_START;
2050 wake_up(&fs_info->transaction_blocked_wait);
2051
2052 if (cur_trans->list.prev != &fs_info->trans_list) {
2053 prev_trans = list_entry(cur_trans->list.prev,
2054 struct btrfs_transaction, list);
2055 if (prev_trans->state != TRANS_STATE_COMPLETED) {
2056 refcount_inc(&prev_trans->use_count);
2057 spin_unlock(&fs_info->trans_lock);
2058
2059 wait_for_commit(prev_trans);
2060 ret = prev_trans->aborted;
2061
2062 btrfs_put_transaction(prev_trans);
2063 if (ret)
2064 goto cleanup_transaction;
2065 } else {
2066 spin_unlock(&fs_info->trans_lock);
2067 }
2068 } else {
2069 spin_unlock(&fs_info->trans_lock);
2070 /*
2071 * The previous transaction was aborted and was already removed
2072 * from the list of transactions at fs_info->trans_list. So we
2073 * abort to prevent writing a new superblock that reflects a
2074 * corrupt state (pointing to trees with unwritten nodes/leafs).
2075 */
2076 if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) {
2077 ret = -EROFS;
2078 goto cleanup_transaction;
2079 }
2080 }
2081
2082 extwriter_counter_dec(cur_trans, trans->type);
2083
2084 ret = btrfs_start_delalloc_flush(fs_info);
2085 if (ret)
2086 goto cleanup_transaction;
2087
2088 ret = btrfs_run_delayed_items(trans);
2089 if (ret)
2090 goto cleanup_transaction;
2091
2092 wait_event(cur_trans->writer_wait,
2093 extwriter_counter_read(cur_trans) == 0);
2094
2095 /* some pending stuffs might be added after the previous flush. */
2096 ret = btrfs_run_delayed_items(trans);
2097 if (ret)
2098 goto cleanup_transaction;
2099
2100 btrfs_wait_delalloc_flush(fs_info);
2101
2102 btrfs_wait_pending_ordered(cur_trans);
2103
2104 btrfs_scrub_pause(fs_info);
2105 /*
2106 * Ok now we need to make sure to block out any other joins while we
2107 * commit the transaction. We could have started a join before setting
2108 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2109 */
2110 spin_lock(&fs_info->trans_lock);
2111 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2112 spin_unlock(&fs_info->trans_lock);
2113 wait_event(cur_trans->writer_wait,
2114 atomic_read(&cur_trans->num_writers) == 1);
2115
2116 /* ->aborted might be set after the previous check, so check it */
2117 if (unlikely(READ_ONCE(cur_trans->aborted))) {
2118 ret = cur_trans->aborted;
2119 goto scrub_continue;
2120 }
2121 /*
2122 * the reloc mutex makes sure that we stop
2123 * the balancing code from coming in and moving
2124 * extents around in the middle of the commit
2125 */
2126 mutex_lock(&fs_info->reloc_mutex);
2127
2128 /*
2129 * We needn't worry about the delayed items because we will
2130 * deal with them in create_pending_snapshot(), which is the
2131 * core function of the snapshot creation.
2132 */
2133 ret = create_pending_snapshots(trans);
2134 if (ret) {
2135 mutex_unlock(&fs_info->reloc_mutex);
2136 goto scrub_continue;
2137 }
2138
2139 /*
2140 * We insert the dir indexes of the snapshots and update the inode
2141 * of the snapshots' parents after the snapshot creation, so there
2142 * are some delayed items which are not dealt with. Now deal with
2143 * them.
2144 *
2145 * We needn't worry that this operation will corrupt the snapshots,
2146 * because all the tree which are snapshoted will be forced to COW
2147 * the nodes and leaves.
2148 */
2149 ret = btrfs_run_delayed_items(trans);
2150 if (ret) {
2151 mutex_unlock(&fs_info->reloc_mutex);
2152 goto scrub_continue;
2153 }
2154
2155 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2156 if (ret) {
2157 mutex_unlock(&fs_info->reloc_mutex);
2158 goto scrub_continue;
2159 }
2160
2161 /*
2162 * make sure none of the code above managed to slip in a
2163 * delayed item
2164 */
2165 btrfs_assert_delayed_root_empty(fs_info);
2166
2167 WARN_ON(cur_trans != trans->transaction);
2168
2169 /* btrfs_commit_tree_roots is responsible for getting the
2170 * various roots consistent with each other. Every pointer
2171 * in the tree of tree roots has to point to the most up to date
2172 * root for every subvolume and other tree. So, we have to keep
2173 * the tree logging code from jumping in and changing any
2174 * of the trees.
2175 *
2176 * At this point in the commit, there can't be any tree-log
2177 * writers, but a little lower down we drop the trans mutex
2178 * and let new people in. By holding the tree_log_mutex
2179 * from now until after the super is written, we avoid races
2180 * with the tree-log code.
2181 */
2182 mutex_lock(&fs_info->tree_log_mutex);
2183
2184 ret = commit_fs_roots(trans);
2185 if (ret) {
2186 mutex_unlock(&fs_info->tree_log_mutex);
2187 mutex_unlock(&fs_info->reloc_mutex);
2188 goto scrub_continue;
2189 }
2190
2191 /*
2192 * Since the transaction is done, we can apply the pending changes
2193 * before the next transaction.
2194 */
2195 btrfs_apply_pending_changes(fs_info);
2196
2197 /* commit_fs_roots gets rid of all the tree log roots, it is now
2198 * safe to free the root of tree log roots
2199 */
2200 btrfs_free_log_root_tree(trans, fs_info);
2201
2202 /*
2203 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates
2204 * new delayed refs. Must handle them or qgroup can be wrong.
2205 */
2206 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2207 if (ret) {
2208 mutex_unlock(&fs_info->tree_log_mutex);
2209 mutex_unlock(&fs_info->reloc_mutex);
2210 goto scrub_continue;
2211 }
2212
2213 /*
2214 * Since fs roots are all committed, we can get a quite accurate
2215 * new_roots. So let's do quota accounting.
2216 */
2217 ret = btrfs_qgroup_account_extents(trans);
2218 if (ret < 0) {
2219 mutex_unlock(&fs_info->tree_log_mutex);
2220 mutex_unlock(&fs_info->reloc_mutex);
2221 goto scrub_continue;
2222 }
2223
2224 ret = commit_cowonly_roots(trans);
2225 if (ret) {
2226 mutex_unlock(&fs_info->tree_log_mutex);
2227 mutex_unlock(&fs_info->reloc_mutex);
2228 goto scrub_continue;
2229 }
2230
2231 /*
2232 * The tasks which save the space cache and inode cache may also
2233 * update ->aborted, check it.
2234 */
2235 if (unlikely(READ_ONCE(cur_trans->aborted))) {
2236 ret = cur_trans->aborted;
2237 mutex_unlock(&fs_info->tree_log_mutex);
2238 mutex_unlock(&fs_info->reloc_mutex);
2239 goto scrub_continue;
2240 }
2241
2242 btrfs_prepare_extent_commit(fs_info);
2243
2244 cur_trans = fs_info->running_transaction;
2245
2246 btrfs_set_root_node(&fs_info->tree_root->root_item,
2247 fs_info->tree_root->node);
2248 list_add_tail(&fs_info->tree_root->dirty_list,
2249 &cur_trans->switch_commits);
2250
2251 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2252 fs_info->chunk_root->node);
2253 list_add_tail(&fs_info->chunk_root->dirty_list,
2254 &cur_trans->switch_commits);
2255
2256 switch_commit_roots(cur_trans);
2257
2258 ASSERT(list_empty(&cur_trans->dirty_bgs));
2259 ASSERT(list_empty(&cur_trans->io_bgs));
2260 update_super_roots(fs_info);
2261
2262 btrfs_set_super_log_root(fs_info->super_copy, 0);
2263 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2264 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2265 sizeof(*fs_info->super_copy));
2266
2267 btrfs_update_commit_device_size(fs_info);
2268 btrfs_update_commit_device_bytes_used(cur_trans);
2269
2270 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2271 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2272
2273 btrfs_trans_release_chunk_metadata(trans);
2274
2275 spin_lock(&fs_info->trans_lock);
2276 cur_trans->state = TRANS_STATE_UNBLOCKED;
2277 fs_info->running_transaction = NULL;
2278 spin_unlock(&fs_info->trans_lock);
2279 mutex_unlock(&fs_info->reloc_mutex);
2280
2281 wake_up(&fs_info->transaction_wait);
2282
2283 ret = btrfs_write_and_wait_transaction(trans);
2284 if (ret) {
2285 btrfs_handle_fs_error(fs_info, ret,
2286 "Error while writing out transaction");
2287 mutex_unlock(&fs_info->tree_log_mutex);
2288 goto scrub_continue;
2289 }
2290
2291 ret = write_all_supers(fs_info, 0);
2292 /*
2293 * the super is written, we can safely allow the tree-loggers
2294 * to go about their business
2295 */
2296 mutex_unlock(&fs_info->tree_log_mutex);
2297 if (ret)
2298 goto scrub_continue;
2299
2300 btrfs_finish_extent_commit(trans);
2301
2302 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2303 btrfs_clear_space_info_full(fs_info);
2304
2305 fs_info->last_trans_committed = cur_trans->transid;
2306 /*
2307 * We needn't acquire the lock here because there is no other task
2308 * which can change it.
2309 */
2310 cur_trans->state = TRANS_STATE_COMPLETED;
2311 wake_up(&cur_trans->commit_wait);
2312 clear_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags);
2313
2314 spin_lock(&fs_info->trans_lock);
2315 list_del_init(&cur_trans->list);
2316 spin_unlock(&fs_info->trans_lock);
2317
2318 btrfs_put_transaction(cur_trans);
2319 btrfs_put_transaction(cur_trans);
2320
2321 if (trans->type & __TRANS_FREEZABLE)
2322 sb_end_intwrite(fs_info->sb);
2323
2324 trace_btrfs_transaction_commit(trans->root);
2325
2326 btrfs_scrub_continue(fs_info);
2327
2328 if (current->journal_info == trans)
2329 current->journal_info = NULL;
2330
2331 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2332
2333 return ret;
2334
2335 scrub_continue:
2336 btrfs_scrub_continue(fs_info);
2337 cleanup_transaction:
2338 btrfs_trans_release_metadata(trans);
2339 btrfs_trans_release_chunk_metadata(trans);
2340 trans->block_rsv = NULL;
2341 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2342 if (current->journal_info == trans)
2343 current->journal_info = NULL;
2344 cleanup_transaction(trans, ret);
2345
2346 return ret;
2347 }
2348
2349 /*
2350 * return < 0 if error
2351 * 0 if there are no more dead_roots at the time of call
2352 * 1 there are more to be processed, call me again
2353 *
2354 * The return value indicates there are certainly more snapshots to delete, but
2355 * if there comes a new one during processing, it may return 0. We don't mind,
2356 * because btrfs_commit_super will poke cleaner thread and it will process it a
2357 * few seconds later.
2358 */
btrfs_clean_one_deleted_snapshot(struct btrfs_root * root)2359 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2360 {
2361 int ret;
2362 struct btrfs_fs_info *fs_info = root->fs_info;
2363
2364 spin_lock(&fs_info->trans_lock);
2365 if (list_empty(&fs_info->dead_roots)) {
2366 spin_unlock(&fs_info->trans_lock);
2367 return 0;
2368 }
2369 root = list_first_entry(&fs_info->dead_roots,
2370 struct btrfs_root, root_list);
2371 list_del_init(&root->root_list);
2372 spin_unlock(&fs_info->trans_lock);
2373
2374 btrfs_debug(fs_info, "cleaner removing %llu", root->objectid);
2375
2376 btrfs_kill_all_delayed_nodes(root);
2377
2378 if (btrfs_header_backref_rev(root->node) <
2379 BTRFS_MIXED_BACKREF_REV)
2380 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2381 else
2382 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2383
2384 return (ret < 0) ? 0 : 1;
2385 }
2386
btrfs_apply_pending_changes(struct btrfs_fs_info * fs_info)2387 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2388 {
2389 unsigned long prev;
2390 unsigned long bit;
2391
2392 prev = xchg(&fs_info->pending_changes, 0);
2393 if (!prev)
2394 return;
2395
2396 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2397 if (prev & bit)
2398 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2399 prev &= ~bit;
2400
2401 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2402 if (prev & bit)
2403 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2404 prev &= ~bit;
2405
2406 bit = 1 << BTRFS_PENDING_COMMIT;
2407 if (prev & bit)
2408 btrfs_debug(fs_info, "pending commit done");
2409 prev &= ~bit;
2410
2411 if (prev)
2412 btrfs_warn(fs_info,
2413 "unknown pending changes left 0x%lx, ignoring", prev);
2414 }
2415