1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/buffer_head.h>
9 #include <linux/file.h>
10 #include <linux/fs.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/init.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/writeback.h>
18 #include <linux/compat.h>
19 #include <linux/xattr.h>
20 #include <linux/posix_acl.h>
21 #include <linux/falloc.h>
22 #include <linux/slab.h>
23 #include <linux/ratelimit.h>
24 #include <linux/btrfs.h>
25 #include <linux/blkdev.h>
26 #include <linux/posix_acl_xattr.h>
27 #include <linux/uio.h>
28 #include <linux/magic.h>
29 #include <linux/iversion.h>
30 #include <asm/unaligned.h>
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "print-tree.h"
36 #include "ordered-data.h"
37 #include "xattr.h"
38 #include "tree-log.h"
39 #include "volumes.h"
40 #include "compression.h"
41 #include "locking.h"
42 #include "free-space-cache.h"
43 #include "inode-map.h"
44 #include "backref.h"
45 #include "props.h"
46 #include "qgroup.h"
47 #include "dedupe.h"
48
49 struct btrfs_iget_args {
50 struct btrfs_key *location;
51 struct btrfs_root *root;
52 };
53
54 struct btrfs_dio_data {
55 u64 reserve;
56 u64 unsubmitted_oe_range_start;
57 u64 unsubmitted_oe_range_end;
58 int overwrite;
59 };
60
61 static const struct inode_operations btrfs_dir_inode_operations;
62 static const struct inode_operations btrfs_symlink_inode_operations;
63 static const struct inode_operations btrfs_dir_ro_inode_operations;
64 static const struct inode_operations btrfs_special_inode_operations;
65 static const struct inode_operations btrfs_file_inode_operations;
66 static const struct address_space_operations btrfs_aops;
67 static const struct address_space_operations btrfs_symlink_aops;
68 static const struct file_operations btrfs_dir_file_operations;
69 static const struct extent_io_ops btrfs_extent_io_ops;
70
71 static struct kmem_cache *btrfs_inode_cachep;
72 struct kmem_cache *btrfs_trans_handle_cachep;
73 struct kmem_cache *btrfs_path_cachep;
74 struct kmem_cache *btrfs_free_space_cachep;
75 struct kmem_cache *btrfs_free_space_bitmap_cachep;
76
77 #define S_SHIFT 12
78 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
79 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
80 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
81 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
82 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
83 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
84 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
85 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
86 };
87
88 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
89 static int btrfs_truncate(struct inode *inode, bool skip_writeback);
90 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
91 static noinline int cow_file_range(struct inode *inode,
92 struct page *locked_page,
93 u64 start, u64 end, u64 delalloc_end,
94 int *page_started, unsigned long *nr_written,
95 int unlock, struct btrfs_dedupe_hash *hash);
96 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
97 u64 orig_start, u64 block_start,
98 u64 block_len, u64 orig_block_len,
99 u64 ram_bytes, int compress_type,
100 int type);
101
102 static void __endio_write_update_ordered(struct inode *inode,
103 const u64 offset, const u64 bytes,
104 const bool uptodate);
105
106 /*
107 * Cleanup all submitted ordered extents in specified range to handle errors
108 * from the fill_dellaloc() callback.
109 *
110 * NOTE: caller must ensure that when an error happens, it can not call
111 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
112 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
113 * to be released, which we want to happen only when finishing the ordered
114 * extent (btrfs_finish_ordered_io()).
115 */
btrfs_cleanup_ordered_extents(struct inode * inode,struct page * locked_page,u64 offset,u64 bytes)116 static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
117 struct page *locked_page,
118 u64 offset, u64 bytes)
119 {
120 unsigned long index = offset >> PAGE_SHIFT;
121 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
122 u64 page_start = page_offset(locked_page);
123 u64 page_end = page_start + PAGE_SIZE - 1;
124
125 struct page *page;
126
127 while (index <= end_index) {
128 page = find_get_page(inode->i_mapping, index);
129 index++;
130 if (!page)
131 continue;
132 ClearPagePrivate2(page);
133 put_page(page);
134 }
135
136 /*
137 * In case this page belongs to the delalloc range being instantiated
138 * then skip it, since the first page of a range is going to be
139 * properly cleaned up by the caller of run_delalloc_range
140 */
141 if (page_start >= offset && page_end <= (offset + bytes - 1)) {
142 offset += PAGE_SIZE;
143 bytes -= PAGE_SIZE;
144 }
145
146 return __endio_write_update_ordered(inode, offset, bytes, false);
147 }
148
149 static int btrfs_dirty_inode(struct inode *inode);
150
151 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
btrfs_test_inode_set_ops(struct inode * inode)152 void btrfs_test_inode_set_ops(struct inode *inode)
153 {
154 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
155 }
156 #endif
157
btrfs_init_inode_security(struct btrfs_trans_handle * trans,struct inode * inode,struct inode * dir,const struct qstr * qstr)158 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
159 struct inode *inode, struct inode *dir,
160 const struct qstr *qstr)
161 {
162 int err;
163
164 err = btrfs_init_acl(trans, inode, dir);
165 if (!err)
166 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
167 return err;
168 }
169
170 /*
171 * this does all the hard work for inserting an inline extent into
172 * the btree. The caller should have done a btrfs_drop_extents so that
173 * no overlapping inline items exist in the btree
174 */
insert_inline_extent(struct btrfs_trans_handle * trans,struct btrfs_path * path,int extent_inserted,struct btrfs_root * root,struct inode * inode,u64 start,size_t size,size_t compressed_size,int compress_type,struct page ** compressed_pages)175 static int insert_inline_extent(struct btrfs_trans_handle *trans,
176 struct btrfs_path *path, int extent_inserted,
177 struct btrfs_root *root, struct inode *inode,
178 u64 start, size_t size, size_t compressed_size,
179 int compress_type,
180 struct page **compressed_pages)
181 {
182 struct extent_buffer *leaf;
183 struct page *page = NULL;
184 char *kaddr;
185 unsigned long ptr;
186 struct btrfs_file_extent_item *ei;
187 int ret;
188 size_t cur_size = size;
189 unsigned long offset;
190
191 if (compressed_size && compressed_pages)
192 cur_size = compressed_size;
193
194 inode_add_bytes(inode, size);
195
196 if (!extent_inserted) {
197 struct btrfs_key key;
198 size_t datasize;
199
200 key.objectid = btrfs_ino(BTRFS_I(inode));
201 key.offset = start;
202 key.type = BTRFS_EXTENT_DATA_KEY;
203
204 datasize = btrfs_file_extent_calc_inline_size(cur_size);
205 path->leave_spinning = 1;
206 ret = btrfs_insert_empty_item(trans, root, path, &key,
207 datasize);
208 if (ret)
209 goto fail;
210 }
211 leaf = path->nodes[0];
212 ei = btrfs_item_ptr(leaf, path->slots[0],
213 struct btrfs_file_extent_item);
214 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
215 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
216 btrfs_set_file_extent_encryption(leaf, ei, 0);
217 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
218 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
219 ptr = btrfs_file_extent_inline_start(ei);
220
221 if (compress_type != BTRFS_COMPRESS_NONE) {
222 struct page *cpage;
223 int i = 0;
224 while (compressed_size > 0) {
225 cpage = compressed_pages[i];
226 cur_size = min_t(unsigned long, compressed_size,
227 PAGE_SIZE);
228
229 kaddr = kmap_atomic(cpage);
230 write_extent_buffer(leaf, kaddr, ptr, cur_size);
231 kunmap_atomic(kaddr);
232
233 i++;
234 ptr += cur_size;
235 compressed_size -= cur_size;
236 }
237 btrfs_set_file_extent_compression(leaf, ei,
238 compress_type);
239 } else {
240 page = find_get_page(inode->i_mapping,
241 start >> PAGE_SHIFT);
242 btrfs_set_file_extent_compression(leaf, ei, 0);
243 kaddr = kmap_atomic(page);
244 offset = start & (PAGE_SIZE - 1);
245 write_extent_buffer(leaf, kaddr + offset, ptr, size);
246 kunmap_atomic(kaddr);
247 put_page(page);
248 }
249 btrfs_mark_buffer_dirty(leaf);
250 btrfs_release_path(path);
251
252 /*
253 * we're an inline extent, so nobody can
254 * extend the file past i_size without locking
255 * a page we already have locked.
256 *
257 * We must do any isize and inode updates
258 * before we unlock the pages. Otherwise we
259 * could end up racing with unlink.
260 */
261 BTRFS_I(inode)->disk_i_size = inode->i_size;
262 ret = btrfs_update_inode(trans, root, inode);
263
264 fail:
265 return ret;
266 }
267
268
269 /*
270 * conditionally insert an inline extent into the file. This
271 * does the checks required to make sure the data is small enough
272 * to fit as an inline extent.
273 */
cow_file_range_inline(struct inode * inode,u64 start,u64 end,size_t compressed_size,int compress_type,struct page ** compressed_pages)274 static noinline int cow_file_range_inline(struct inode *inode, u64 start,
275 u64 end, size_t compressed_size,
276 int compress_type,
277 struct page **compressed_pages)
278 {
279 struct btrfs_root *root = BTRFS_I(inode)->root;
280 struct btrfs_fs_info *fs_info = root->fs_info;
281 struct btrfs_trans_handle *trans;
282 u64 isize = i_size_read(inode);
283 u64 actual_end = min(end + 1, isize);
284 u64 inline_len = actual_end - start;
285 u64 aligned_end = ALIGN(end, fs_info->sectorsize);
286 u64 data_len = inline_len;
287 int ret;
288 struct btrfs_path *path;
289 int extent_inserted = 0;
290 u32 extent_item_size;
291
292 if (compressed_size)
293 data_len = compressed_size;
294
295 if (start > 0 ||
296 actual_end > fs_info->sectorsize ||
297 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
298 (!compressed_size &&
299 (actual_end & (fs_info->sectorsize - 1)) == 0) ||
300 end + 1 < isize ||
301 data_len > fs_info->max_inline) {
302 return 1;
303 }
304
305 path = btrfs_alloc_path();
306 if (!path)
307 return -ENOMEM;
308
309 trans = btrfs_join_transaction(root);
310 if (IS_ERR(trans)) {
311 btrfs_free_path(path);
312 return PTR_ERR(trans);
313 }
314 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
315
316 if (compressed_size && compressed_pages)
317 extent_item_size = btrfs_file_extent_calc_inline_size(
318 compressed_size);
319 else
320 extent_item_size = btrfs_file_extent_calc_inline_size(
321 inline_len);
322
323 ret = __btrfs_drop_extents(trans, root, inode, path,
324 start, aligned_end, NULL,
325 1, 1, extent_item_size, &extent_inserted);
326 if (ret) {
327 btrfs_abort_transaction(trans, ret);
328 goto out;
329 }
330
331 if (isize > actual_end)
332 inline_len = min_t(u64, isize, actual_end);
333 ret = insert_inline_extent(trans, path, extent_inserted,
334 root, inode, start,
335 inline_len, compressed_size,
336 compress_type, compressed_pages);
337 if (ret && ret != -ENOSPC) {
338 btrfs_abort_transaction(trans, ret);
339 goto out;
340 } else if (ret == -ENOSPC) {
341 ret = 1;
342 goto out;
343 }
344
345 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
346 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
347 out:
348 /*
349 * Don't forget to free the reserved space, as for inlined extent
350 * it won't count as data extent, free them directly here.
351 * And at reserve time, it's always aligned to page size, so
352 * just free one page here.
353 */
354 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
355 btrfs_free_path(path);
356 btrfs_end_transaction(trans);
357 return ret;
358 }
359
360 struct async_extent {
361 u64 start;
362 u64 ram_size;
363 u64 compressed_size;
364 struct page **pages;
365 unsigned long nr_pages;
366 int compress_type;
367 struct list_head list;
368 };
369
370 struct async_cow {
371 struct inode *inode;
372 struct btrfs_root *root;
373 struct page *locked_page;
374 u64 start;
375 u64 end;
376 unsigned int write_flags;
377 struct list_head extents;
378 struct btrfs_work work;
379 };
380
add_async_extent(struct async_cow * cow,u64 start,u64 ram_size,u64 compressed_size,struct page ** pages,unsigned long nr_pages,int compress_type)381 static noinline int add_async_extent(struct async_cow *cow,
382 u64 start, u64 ram_size,
383 u64 compressed_size,
384 struct page **pages,
385 unsigned long nr_pages,
386 int compress_type)
387 {
388 struct async_extent *async_extent;
389
390 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
391 BUG_ON(!async_extent); /* -ENOMEM */
392 async_extent->start = start;
393 async_extent->ram_size = ram_size;
394 async_extent->compressed_size = compressed_size;
395 async_extent->pages = pages;
396 async_extent->nr_pages = nr_pages;
397 async_extent->compress_type = compress_type;
398 list_add_tail(&async_extent->list, &cow->extents);
399 return 0;
400 }
401
402 /*
403 * Check if the inode has flags compatible with compression
404 */
inode_can_compress(struct inode * inode)405 static inline bool inode_can_compress(struct inode *inode)
406 {
407 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW ||
408 BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
409 return false;
410 return true;
411 }
412
413 /*
414 * Check if the inode needs to be submitted to compression, based on mount
415 * options, defragmentation, properties or heuristics.
416 */
inode_need_compress(struct inode * inode,u64 start,u64 end)417 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end)
418 {
419 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
420
421 if (!inode_can_compress(inode)) {
422 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
423 KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
424 btrfs_ino(BTRFS_I(inode)));
425 return 0;
426 }
427 /* force compress */
428 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
429 return 1;
430 /* defrag ioctl */
431 if (BTRFS_I(inode)->defrag_compress)
432 return 1;
433 /* bad compression ratios */
434 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
435 return 0;
436 if (btrfs_test_opt(fs_info, COMPRESS) ||
437 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
438 BTRFS_I(inode)->prop_compress)
439 return btrfs_compress_heuristic(inode, start, end);
440 return 0;
441 }
442
inode_should_defrag(struct btrfs_inode * inode,u64 start,u64 end,u64 num_bytes,u64 small_write)443 static inline void inode_should_defrag(struct btrfs_inode *inode,
444 u64 start, u64 end, u64 num_bytes, u64 small_write)
445 {
446 /* If this is a small write inside eof, kick off a defrag */
447 if (num_bytes < small_write &&
448 (start > 0 || end + 1 < inode->disk_i_size))
449 btrfs_add_inode_defrag(NULL, inode);
450 }
451
452 /*
453 * we create compressed extents in two phases. The first
454 * phase compresses a range of pages that have already been
455 * locked (both pages and state bits are locked).
456 *
457 * This is done inside an ordered work queue, and the compression
458 * is spread across many cpus. The actual IO submission is step
459 * two, and the ordered work queue takes care of making sure that
460 * happens in the same order things were put onto the queue by
461 * writepages and friends.
462 *
463 * If this code finds it can't get good compression, it puts an
464 * entry onto the work queue to write the uncompressed bytes. This
465 * makes sure that both compressed inodes and uncompressed inodes
466 * are written in the same order that the flusher thread sent them
467 * down.
468 */
compress_file_range(struct inode * inode,struct page * locked_page,u64 start,u64 end,struct async_cow * async_cow,int * num_added)469 static noinline void compress_file_range(struct inode *inode,
470 struct page *locked_page,
471 u64 start, u64 end,
472 struct async_cow *async_cow,
473 int *num_added)
474 {
475 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
476 u64 blocksize = fs_info->sectorsize;
477 u64 actual_end;
478 u64 isize = i_size_read(inode);
479 int ret = 0;
480 struct page **pages = NULL;
481 unsigned long nr_pages;
482 unsigned long total_compressed = 0;
483 unsigned long total_in = 0;
484 int i;
485 int will_compress;
486 int compress_type = fs_info->compress_type;
487 int redirty = 0;
488
489 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
490 SZ_16K);
491
492 actual_end = min_t(u64, isize, end + 1);
493 again:
494 will_compress = 0;
495 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
496 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
497 nr_pages = min_t(unsigned long, nr_pages,
498 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
499
500 /*
501 * we don't want to send crud past the end of i_size through
502 * compression, that's just a waste of CPU time. So, if the
503 * end of the file is before the start of our current
504 * requested range of bytes, we bail out to the uncompressed
505 * cleanup code that can deal with all of this.
506 *
507 * It isn't really the fastest way to fix things, but this is a
508 * very uncommon corner.
509 */
510 if (actual_end <= start)
511 goto cleanup_and_bail_uncompressed;
512
513 total_compressed = actual_end - start;
514
515 /*
516 * skip compression for a small file range(<=blocksize) that
517 * isn't an inline extent, since it doesn't save disk space at all.
518 */
519 if (total_compressed <= blocksize &&
520 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
521 goto cleanup_and_bail_uncompressed;
522
523 total_compressed = min_t(unsigned long, total_compressed,
524 BTRFS_MAX_UNCOMPRESSED);
525 total_in = 0;
526 ret = 0;
527
528 /*
529 * we do compression for mount -o compress and when the
530 * inode has not been flagged as nocompress. This flag can
531 * change at any time if we discover bad compression ratios.
532 */
533 if (inode_need_compress(inode, start, end)) {
534 WARN_ON(pages);
535 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
536 if (!pages) {
537 /* just bail out to the uncompressed code */
538 nr_pages = 0;
539 goto cont;
540 }
541
542 if (BTRFS_I(inode)->defrag_compress)
543 compress_type = BTRFS_I(inode)->defrag_compress;
544 else if (BTRFS_I(inode)->prop_compress)
545 compress_type = BTRFS_I(inode)->prop_compress;
546
547 /*
548 * we need to call clear_page_dirty_for_io on each
549 * page in the range. Otherwise applications with the file
550 * mmap'd can wander in and change the page contents while
551 * we are compressing them.
552 *
553 * If the compression fails for any reason, we set the pages
554 * dirty again later on.
555 *
556 * Note that the remaining part is redirtied, the start pointer
557 * has moved, the end is the original one.
558 */
559 if (!redirty) {
560 extent_range_clear_dirty_for_io(inode, start, end);
561 redirty = 1;
562 }
563
564 /* Compression level is applied here and only here */
565 ret = btrfs_compress_pages(
566 compress_type | (fs_info->compress_level << 4),
567 inode->i_mapping, start,
568 pages,
569 &nr_pages,
570 &total_in,
571 &total_compressed);
572
573 if (!ret) {
574 unsigned long offset = total_compressed &
575 (PAGE_SIZE - 1);
576 struct page *page = pages[nr_pages - 1];
577 char *kaddr;
578
579 /* zero the tail end of the last page, we might be
580 * sending it down to disk
581 */
582 if (offset) {
583 kaddr = kmap_atomic(page);
584 memset(kaddr + offset, 0,
585 PAGE_SIZE - offset);
586 kunmap_atomic(kaddr);
587 }
588 will_compress = 1;
589 }
590 }
591 cont:
592 if (start == 0) {
593 /* lets try to make an inline extent */
594 if (ret || total_in < actual_end) {
595 /* we didn't compress the entire range, try
596 * to make an uncompressed inline extent.
597 */
598 ret = cow_file_range_inline(inode, start, end, 0,
599 BTRFS_COMPRESS_NONE, NULL);
600 } else {
601 /* try making a compressed inline extent */
602 ret = cow_file_range_inline(inode, start, end,
603 total_compressed,
604 compress_type, pages);
605 }
606 if (ret <= 0) {
607 unsigned long clear_flags = EXTENT_DELALLOC |
608 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
609 EXTENT_DO_ACCOUNTING;
610 unsigned long page_error_op;
611
612 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
613
614 /*
615 * inline extent creation worked or returned error,
616 * we don't need to create any more async work items.
617 * Unlock and free up our temp pages.
618 *
619 * We use DO_ACCOUNTING here because we need the
620 * delalloc_release_metadata to be done _after_ we drop
621 * our outstanding extent for clearing delalloc for this
622 * range.
623 */
624 extent_clear_unlock_delalloc(inode, start, end, end,
625 NULL, clear_flags,
626 PAGE_UNLOCK |
627 PAGE_CLEAR_DIRTY |
628 PAGE_SET_WRITEBACK |
629 page_error_op |
630 PAGE_END_WRITEBACK);
631
632 /*
633 * Ensure we only free the compressed pages if we have
634 * them allocated, as we can still reach here with
635 * inode_need_compress() == false.
636 */
637 if (pages) {
638 for (i = 0; i < nr_pages; i++) {
639 WARN_ON(pages[i]->mapping);
640 put_page(pages[i]);
641 }
642 kfree(pages);
643 }
644
645 return;
646 }
647 }
648
649 if (will_compress) {
650 /*
651 * we aren't doing an inline extent round the compressed size
652 * up to a block size boundary so the allocator does sane
653 * things
654 */
655 total_compressed = ALIGN(total_compressed, blocksize);
656
657 /*
658 * one last check to make sure the compression is really a
659 * win, compare the page count read with the blocks on disk,
660 * compression must free at least one sector size
661 */
662 total_in = ALIGN(total_in, PAGE_SIZE);
663 if (total_compressed + blocksize <= total_in) {
664 *num_added += 1;
665
666 /*
667 * The async work queues will take care of doing actual
668 * allocation on disk for these compressed pages, and
669 * will submit them to the elevator.
670 */
671 add_async_extent(async_cow, start, total_in,
672 total_compressed, pages, nr_pages,
673 compress_type);
674
675 if (start + total_in < end) {
676 start += total_in;
677 pages = NULL;
678 cond_resched();
679 goto again;
680 }
681 return;
682 }
683 }
684 if (pages) {
685 /*
686 * the compression code ran but failed to make things smaller,
687 * free any pages it allocated and our page pointer array
688 */
689 for (i = 0; i < nr_pages; i++) {
690 WARN_ON(pages[i]->mapping);
691 put_page(pages[i]);
692 }
693 kfree(pages);
694 pages = NULL;
695 total_compressed = 0;
696 nr_pages = 0;
697
698 /* flag the file so we don't compress in the future */
699 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
700 !(BTRFS_I(inode)->prop_compress)) {
701 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
702 }
703 }
704 cleanup_and_bail_uncompressed:
705 /*
706 * No compression, but we still need to write the pages in the file
707 * we've been given so far. redirty the locked page if it corresponds
708 * to our extent and set things up for the async work queue to run
709 * cow_file_range to do the normal delalloc dance.
710 */
711 if (page_offset(locked_page) >= start &&
712 page_offset(locked_page) <= end)
713 __set_page_dirty_nobuffers(locked_page);
714 /* unlocked later on in the async handlers */
715
716 if (redirty)
717 extent_range_redirty_for_io(inode, start, end);
718 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
719 BTRFS_COMPRESS_NONE);
720 *num_added += 1;
721
722 return;
723 }
724
free_async_extent_pages(struct async_extent * async_extent)725 static void free_async_extent_pages(struct async_extent *async_extent)
726 {
727 int i;
728
729 if (!async_extent->pages)
730 return;
731
732 for (i = 0; i < async_extent->nr_pages; i++) {
733 WARN_ON(async_extent->pages[i]->mapping);
734 put_page(async_extent->pages[i]);
735 }
736 kfree(async_extent->pages);
737 async_extent->nr_pages = 0;
738 async_extent->pages = NULL;
739 }
740
741 /*
742 * phase two of compressed writeback. This is the ordered portion
743 * of the code, which only gets called in the order the work was
744 * queued. We walk all the async extents created by compress_file_range
745 * and send them down to the disk.
746 */
submit_compressed_extents(struct inode * inode,struct async_cow * async_cow)747 static noinline void submit_compressed_extents(struct inode *inode,
748 struct async_cow *async_cow)
749 {
750 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
751 struct async_extent *async_extent;
752 u64 alloc_hint = 0;
753 struct btrfs_key ins;
754 struct extent_map *em;
755 struct btrfs_root *root = BTRFS_I(inode)->root;
756 struct extent_io_tree *io_tree;
757 int ret = 0;
758
759 again:
760 while (!list_empty(&async_cow->extents)) {
761 async_extent = list_entry(async_cow->extents.next,
762 struct async_extent, list);
763 list_del(&async_extent->list);
764
765 io_tree = &BTRFS_I(inode)->io_tree;
766
767 retry:
768 /* did the compression code fall back to uncompressed IO? */
769 if (!async_extent->pages) {
770 int page_started = 0;
771 unsigned long nr_written = 0;
772
773 lock_extent(io_tree, async_extent->start,
774 async_extent->start +
775 async_extent->ram_size - 1);
776
777 /* allocate blocks */
778 ret = cow_file_range(inode, async_cow->locked_page,
779 async_extent->start,
780 async_extent->start +
781 async_extent->ram_size - 1,
782 async_extent->start +
783 async_extent->ram_size - 1,
784 &page_started, &nr_written, 0,
785 NULL);
786
787 /* JDM XXX */
788
789 /*
790 * if page_started, cow_file_range inserted an
791 * inline extent and took care of all the unlocking
792 * and IO for us. Otherwise, we need to submit
793 * all those pages down to the drive.
794 */
795 if (!page_started && !ret)
796 extent_write_locked_range(inode,
797 async_extent->start,
798 async_extent->start +
799 async_extent->ram_size - 1,
800 WB_SYNC_ALL);
801 else if (ret)
802 unlock_page(async_cow->locked_page);
803 kfree(async_extent);
804 cond_resched();
805 continue;
806 }
807
808 lock_extent(io_tree, async_extent->start,
809 async_extent->start + async_extent->ram_size - 1);
810
811 ret = btrfs_reserve_extent(root, async_extent->ram_size,
812 async_extent->compressed_size,
813 async_extent->compressed_size,
814 0, alloc_hint, &ins, 1, 1);
815 if (ret) {
816 free_async_extent_pages(async_extent);
817
818 if (ret == -ENOSPC) {
819 unlock_extent(io_tree, async_extent->start,
820 async_extent->start +
821 async_extent->ram_size - 1);
822
823 /*
824 * we need to redirty the pages if we decide to
825 * fallback to uncompressed IO, otherwise we
826 * will not submit these pages down to lower
827 * layers.
828 */
829 extent_range_redirty_for_io(inode,
830 async_extent->start,
831 async_extent->start +
832 async_extent->ram_size - 1);
833
834 goto retry;
835 }
836 goto out_free;
837 }
838 /*
839 * here we're doing allocation and writeback of the
840 * compressed pages
841 */
842 em = create_io_em(inode, async_extent->start,
843 async_extent->ram_size, /* len */
844 async_extent->start, /* orig_start */
845 ins.objectid, /* block_start */
846 ins.offset, /* block_len */
847 ins.offset, /* orig_block_len */
848 async_extent->ram_size, /* ram_bytes */
849 async_extent->compress_type,
850 BTRFS_ORDERED_COMPRESSED);
851 if (IS_ERR(em))
852 /* ret value is not necessary due to void function */
853 goto out_free_reserve;
854 free_extent_map(em);
855
856 ret = btrfs_add_ordered_extent_compress(inode,
857 async_extent->start,
858 ins.objectid,
859 async_extent->ram_size,
860 ins.offset,
861 BTRFS_ORDERED_COMPRESSED,
862 async_extent->compress_type);
863 if (ret) {
864 btrfs_drop_extent_cache(BTRFS_I(inode),
865 async_extent->start,
866 async_extent->start +
867 async_extent->ram_size - 1, 0);
868 goto out_free_reserve;
869 }
870 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
871
872 /*
873 * clear dirty, set writeback and unlock the pages.
874 */
875 extent_clear_unlock_delalloc(inode, async_extent->start,
876 async_extent->start +
877 async_extent->ram_size - 1,
878 async_extent->start +
879 async_extent->ram_size - 1,
880 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
881 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
882 PAGE_SET_WRITEBACK);
883 if (btrfs_submit_compressed_write(inode,
884 async_extent->start,
885 async_extent->ram_size,
886 ins.objectid,
887 ins.offset, async_extent->pages,
888 async_extent->nr_pages,
889 async_cow->write_flags)) {
890 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
891 struct page *p = async_extent->pages[0];
892 const u64 start = async_extent->start;
893 const u64 end = start + async_extent->ram_size - 1;
894
895 p->mapping = inode->i_mapping;
896 tree->ops->writepage_end_io_hook(p, start, end,
897 NULL, 0);
898 p->mapping = NULL;
899 extent_clear_unlock_delalloc(inode, start, end, end,
900 NULL, 0,
901 PAGE_END_WRITEBACK |
902 PAGE_SET_ERROR);
903 free_async_extent_pages(async_extent);
904 }
905 alloc_hint = ins.objectid + ins.offset;
906 kfree(async_extent);
907 cond_resched();
908 }
909 return;
910 out_free_reserve:
911 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
912 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
913 out_free:
914 extent_clear_unlock_delalloc(inode, async_extent->start,
915 async_extent->start +
916 async_extent->ram_size - 1,
917 async_extent->start +
918 async_extent->ram_size - 1,
919 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
920 EXTENT_DELALLOC_NEW |
921 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
922 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
923 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
924 PAGE_SET_ERROR);
925 free_async_extent_pages(async_extent);
926 kfree(async_extent);
927 goto again;
928 }
929
get_extent_allocation_hint(struct inode * inode,u64 start,u64 num_bytes)930 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
931 u64 num_bytes)
932 {
933 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
934 struct extent_map *em;
935 u64 alloc_hint = 0;
936
937 read_lock(&em_tree->lock);
938 em = search_extent_mapping(em_tree, start, num_bytes);
939 if (em) {
940 /*
941 * if block start isn't an actual block number then find the
942 * first block in this inode and use that as a hint. If that
943 * block is also bogus then just don't worry about it.
944 */
945 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
946 free_extent_map(em);
947 em = search_extent_mapping(em_tree, 0, 0);
948 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
949 alloc_hint = em->block_start;
950 if (em)
951 free_extent_map(em);
952 } else {
953 alloc_hint = em->block_start;
954 free_extent_map(em);
955 }
956 }
957 read_unlock(&em_tree->lock);
958
959 return alloc_hint;
960 }
961
962 /*
963 * when extent_io.c finds a delayed allocation range in the file,
964 * the call backs end up in this code. The basic idea is to
965 * allocate extents on disk for the range, and create ordered data structs
966 * in ram to track those extents.
967 *
968 * locked_page is the page that writepage had locked already. We use
969 * it to make sure we don't do extra locks or unlocks.
970 *
971 * *page_started is set to one if we unlock locked_page and do everything
972 * required to start IO on it. It may be clean and already done with
973 * IO when we return.
974 */
cow_file_range(struct inode * inode,struct page * locked_page,u64 start,u64 end,u64 delalloc_end,int * page_started,unsigned long * nr_written,int unlock,struct btrfs_dedupe_hash * hash)975 static noinline int cow_file_range(struct inode *inode,
976 struct page *locked_page,
977 u64 start, u64 end, u64 delalloc_end,
978 int *page_started, unsigned long *nr_written,
979 int unlock, struct btrfs_dedupe_hash *hash)
980 {
981 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
982 struct btrfs_root *root = BTRFS_I(inode)->root;
983 u64 alloc_hint = 0;
984 u64 num_bytes;
985 unsigned long ram_size;
986 u64 cur_alloc_size = 0;
987 u64 min_alloc_size;
988 u64 blocksize = fs_info->sectorsize;
989 struct btrfs_key ins;
990 struct extent_map *em;
991 unsigned clear_bits;
992 unsigned long page_ops;
993 bool extent_reserved = false;
994 int ret = 0;
995
996 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
997 WARN_ON_ONCE(1);
998 ret = -EINVAL;
999 goto out_unlock;
1000 }
1001
1002 num_bytes = ALIGN(end - start + 1, blocksize);
1003 num_bytes = max(blocksize, num_bytes);
1004 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1005
1006 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
1007
1008 if (start == 0) {
1009 /* lets try to make an inline extent */
1010 ret = cow_file_range_inline(inode, start, end, 0,
1011 BTRFS_COMPRESS_NONE, NULL);
1012 if (ret == 0) {
1013 /*
1014 * We use DO_ACCOUNTING here because we need the
1015 * delalloc_release_metadata to be run _after_ we drop
1016 * our outstanding extent for clearing delalloc for this
1017 * range.
1018 */
1019 extent_clear_unlock_delalloc(inode, start, end,
1020 delalloc_end, NULL,
1021 EXTENT_LOCKED | EXTENT_DELALLOC |
1022 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1023 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1024 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1025 PAGE_END_WRITEBACK);
1026 *nr_written = *nr_written +
1027 (end - start + PAGE_SIZE) / PAGE_SIZE;
1028 *page_started = 1;
1029 goto out;
1030 } else if (ret < 0) {
1031 goto out_unlock;
1032 }
1033 }
1034
1035 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1036 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1037 start + num_bytes - 1, 0);
1038
1039 /*
1040 * Relocation relies on the relocated extents to have exactly the same
1041 * size as the original extents. Normally writeback for relocation data
1042 * extents follows a NOCOW path because relocation preallocates the
1043 * extents. However, due to an operation such as scrub turning a block
1044 * group to RO mode, it may fallback to COW mode, so we must make sure
1045 * an extent allocated during COW has exactly the requested size and can
1046 * not be split into smaller extents, otherwise relocation breaks and
1047 * fails during the stage where it updates the bytenr of file extent
1048 * items.
1049 */
1050 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1051 min_alloc_size = num_bytes;
1052 else
1053 min_alloc_size = fs_info->sectorsize;
1054
1055 while (num_bytes > 0) {
1056 cur_alloc_size = num_bytes;
1057 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1058 min_alloc_size, 0, alloc_hint,
1059 &ins, 1, 1);
1060 if (ret < 0)
1061 goto out_unlock;
1062 cur_alloc_size = ins.offset;
1063 extent_reserved = true;
1064
1065 ram_size = ins.offset;
1066 em = create_io_em(inode, start, ins.offset, /* len */
1067 start, /* orig_start */
1068 ins.objectid, /* block_start */
1069 ins.offset, /* block_len */
1070 ins.offset, /* orig_block_len */
1071 ram_size, /* ram_bytes */
1072 BTRFS_COMPRESS_NONE, /* compress_type */
1073 BTRFS_ORDERED_REGULAR /* type */);
1074 if (IS_ERR(em)) {
1075 ret = PTR_ERR(em);
1076 goto out_reserve;
1077 }
1078 free_extent_map(em);
1079
1080 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1081 ram_size, cur_alloc_size, 0);
1082 if (ret)
1083 goto out_drop_extent_cache;
1084
1085 if (root->root_key.objectid ==
1086 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1087 ret = btrfs_reloc_clone_csums(inode, start,
1088 cur_alloc_size);
1089 /*
1090 * Only drop cache here, and process as normal.
1091 *
1092 * We must not allow extent_clear_unlock_delalloc()
1093 * at out_unlock label to free meta of this ordered
1094 * extent, as its meta should be freed by
1095 * btrfs_finish_ordered_io().
1096 *
1097 * So we must continue until @start is increased to
1098 * skip current ordered extent.
1099 */
1100 if (ret)
1101 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1102 start + ram_size - 1, 0);
1103 }
1104
1105 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1106
1107 /* we're not doing compressed IO, don't unlock the first
1108 * page (which the caller expects to stay locked), don't
1109 * clear any dirty bits and don't set any writeback bits
1110 *
1111 * Do set the Private2 bit so we know this page was properly
1112 * setup for writepage
1113 */
1114 page_ops = unlock ? PAGE_UNLOCK : 0;
1115 page_ops |= PAGE_SET_PRIVATE2;
1116
1117 extent_clear_unlock_delalloc(inode, start,
1118 start + ram_size - 1,
1119 delalloc_end, locked_page,
1120 EXTENT_LOCKED | EXTENT_DELALLOC,
1121 page_ops);
1122 if (num_bytes < cur_alloc_size)
1123 num_bytes = 0;
1124 else
1125 num_bytes -= cur_alloc_size;
1126 alloc_hint = ins.objectid + ins.offset;
1127 start += cur_alloc_size;
1128 extent_reserved = false;
1129
1130 /*
1131 * btrfs_reloc_clone_csums() error, since start is increased
1132 * extent_clear_unlock_delalloc() at out_unlock label won't
1133 * free metadata of current ordered extent, we're OK to exit.
1134 */
1135 if (ret)
1136 goto out_unlock;
1137 }
1138 out:
1139 return ret;
1140
1141 out_drop_extent_cache:
1142 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
1143 out_reserve:
1144 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1145 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1146 out_unlock:
1147 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1148 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1149 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1150 PAGE_END_WRITEBACK;
1151 /*
1152 * If we reserved an extent for our delalloc range (or a subrange) and
1153 * failed to create the respective ordered extent, then it means that
1154 * when we reserved the extent we decremented the extent's size from
1155 * the data space_info's bytes_may_use counter and incremented the
1156 * space_info's bytes_reserved counter by the same amount. We must make
1157 * sure extent_clear_unlock_delalloc() does not try to decrement again
1158 * the data space_info's bytes_may_use counter, therefore we do not pass
1159 * it the flag EXTENT_CLEAR_DATA_RESV.
1160 */
1161 if (extent_reserved) {
1162 extent_clear_unlock_delalloc(inode, start,
1163 start + cur_alloc_size - 1,
1164 start + cur_alloc_size - 1,
1165 locked_page,
1166 clear_bits,
1167 page_ops);
1168 start += cur_alloc_size;
1169 if (start >= end)
1170 goto out;
1171 }
1172 extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1173 locked_page,
1174 clear_bits | EXTENT_CLEAR_DATA_RESV,
1175 page_ops);
1176 goto out;
1177 }
1178
1179 /*
1180 * work queue call back to started compression on a file and pages
1181 */
async_cow_start(struct btrfs_work * work)1182 static noinline void async_cow_start(struct btrfs_work *work)
1183 {
1184 struct async_cow *async_cow;
1185 int num_added = 0;
1186 async_cow = container_of(work, struct async_cow, work);
1187
1188 compress_file_range(async_cow->inode, async_cow->locked_page,
1189 async_cow->start, async_cow->end, async_cow,
1190 &num_added);
1191 if (num_added == 0) {
1192 btrfs_add_delayed_iput(async_cow->inode);
1193 async_cow->inode = NULL;
1194 }
1195 }
1196
1197 /*
1198 * work queue call back to submit previously compressed pages
1199 */
async_cow_submit(struct btrfs_work * work)1200 static noinline void async_cow_submit(struct btrfs_work *work)
1201 {
1202 struct btrfs_fs_info *fs_info;
1203 struct async_cow *async_cow;
1204 struct btrfs_root *root;
1205 unsigned long nr_pages;
1206
1207 async_cow = container_of(work, struct async_cow, work);
1208
1209 root = async_cow->root;
1210 fs_info = root->fs_info;
1211 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1212 PAGE_SHIFT;
1213
1214 /* atomic_sub_return implies a barrier */
1215 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1216 5 * SZ_1M)
1217 cond_wake_up_nomb(&fs_info->async_submit_wait);
1218
1219 if (async_cow->inode)
1220 submit_compressed_extents(async_cow->inode, async_cow);
1221 }
1222
async_cow_free(struct btrfs_work * work)1223 static noinline void async_cow_free(struct btrfs_work *work)
1224 {
1225 struct async_cow *async_cow;
1226 async_cow = container_of(work, struct async_cow, work);
1227 if (async_cow->inode)
1228 btrfs_add_delayed_iput(async_cow->inode);
1229 kfree(async_cow);
1230 }
1231
cow_file_range_async(struct inode * inode,struct page * locked_page,u64 start,u64 end,int * page_started,unsigned long * nr_written,unsigned int write_flags)1232 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1233 u64 start, u64 end, int *page_started,
1234 unsigned long *nr_written,
1235 unsigned int write_flags)
1236 {
1237 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1238 struct async_cow *async_cow;
1239 struct btrfs_root *root = BTRFS_I(inode)->root;
1240 unsigned long nr_pages;
1241 u64 cur_end;
1242
1243 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1244 1, 0, NULL);
1245 while (start < end) {
1246 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1247 BUG_ON(!async_cow); /* -ENOMEM */
1248 async_cow->inode = igrab(inode);
1249 async_cow->root = root;
1250 async_cow->locked_page = locked_page;
1251 async_cow->start = start;
1252 async_cow->write_flags = write_flags;
1253
1254 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1255 !btrfs_test_opt(fs_info, FORCE_COMPRESS))
1256 cur_end = end;
1257 else
1258 cur_end = min(end, start + SZ_512K - 1);
1259
1260 async_cow->end = cur_end;
1261 INIT_LIST_HEAD(&async_cow->extents);
1262
1263 btrfs_init_work(&async_cow->work,
1264 btrfs_delalloc_helper,
1265 async_cow_start, async_cow_submit,
1266 async_cow_free);
1267
1268 nr_pages = (cur_end - start + PAGE_SIZE) >>
1269 PAGE_SHIFT;
1270 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1271
1272 btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work);
1273
1274 *nr_written += nr_pages;
1275 start = cur_end + 1;
1276 }
1277 *page_started = 1;
1278 return 0;
1279 }
1280
csum_exist_in_range(struct btrfs_fs_info * fs_info,u64 bytenr,u64 num_bytes)1281 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1282 u64 bytenr, u64 num_bytes)
1283 {
1284 int ret;
1285 struct btrfs_ordered_sum *sums;
1286 LIST_HEAD(list);
1287
1288 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1289 bytenr + num_bytes - 1, &list, 0);
1290 if (ret == 0 && list_empty(&list))
1291 return 0;
1292
1293 while (!list_empty(&list)) {
1294 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1295 list_del(&sums->list);
1296 kfree(sums);
1297 }
1298 if (ret < 0)
1299 return ret;
1300 return 1;
1301 }
1302
1303 /*
1304 * when nowcow writeback call back. This checks for snapshots or COW copies
1305 * of the extents that exist in the file, and COWs the file as required.
1306 *
1307 * If no cow copies or snapshots exist, we write directly to the existing
1308 * blocks on disk
1309 */
run_delalloc_nocow(struct inode * inode,struct page * locked_page,u64 start,u64 end,int * page_started,int force,unsigned long * nr_written)1310 static noinline int run_delalloc_nocow(struct inode *inode,
1311 struct page *locked_page,
1312 u64 start, u64 end, int *page_started, int force,
1313 unsigned long *nr_written)
1314 {
1315 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1316 struct btrfs_root *root = BTRFS_I(inode)->root;
1317 struct extent_buffer *leaf;
1318 struct btrfs_path *path;
1319 struct btrfs_file_extent_item *fi;
1320 struct btrfs_key found_key;
1321 struct extent_map *em;
1322 u64 cow_start;
1323 u64 cur_offset;
1324 u64 extent_end;
1325 u64 extent_offset;
1326 u64 disk_bytenr;
1327 u64 num_bytes;
1328 u64 disk_num_bytes;
1329 u64 ram_bytes;
1330 int extent_type;
1331 int ret;
1332 int type;
1333 int nocow;
1334 int check_prev = 1;
1335 bool nolock;
1336 u64 ino = btrfs_ino(BTRFS_I(inode));
1337
1338 path = btrfs_alloc_path();
1339 if (!path) {
1340 extent_clear_unlock_delalloc(inode, start, end, end,
1341 locked_page,
1342 EXTENT_LOCKED | EXTENT_DELALLOC |
1343 EXTENT_DO_ACCOUNTING |
1344 EXTENT_DEFRAG, PAGE_UNLOCK |
1345 PAGE_CLEAR_DIRTY |
1346 PAGE_SET_WRITEBACK |
1347 PAGE_END_WRITEBACK);
1348 return -ENOMEM;
1349 }
1350
1351 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
1352
1353 cow_start = (u64)-1;
1354 cur_offset = start;
1355 while (1) {
1356 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1357 cur_offset, 0);
1358 if (ret < 0)
1359 goto error;
1360 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1361 leaf = path->nodes[0];
1362 btrfs_item_key_to_cpu(leaf, &found_key,
1363 path->slots[0] - 1);
1364 if (found_key.objectid == ino &&
1365 found_key.type == BTRFS_EXTENT_DATA_KEY)
1366 path->slots[0]--;
1367 }
1368 check_prev = 0;
1369 next_slot:
1370 leaf = path->nodes[0];
1371 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1372 ret = btrfs_next_leaf(root, path);
1373 if (ret < 0) {
1374 if (cow_start != (u64)-1)
1375 cur_offset = cow_start;
1376 goto error;
1377 }
1378 if (ret > 0)
1379 break;
1380 leaf = path->nodes[0];
1381 }
1382
1383 nocow = 0;
1384 disk_bytenr = 0;
1385 num_bytes = 0;
1386 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1387
1388 if (found_key.objectid > ino)
1389 break;
1390 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1391 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1392 path->slots[0]++;
1393 goto next_slot;
1394 }
1395 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1396 found_key.offset > end)
1397 break;
1398
1399 if (found_key.offset > cur_offset) {
1400 extent_end = found_key.offset;
1401 extent_type = 0;
1402 goto out_check;
1403 }
1404
1405 fi = btrfs_item_ptr(leaf, path->slots[0],
1406 struct btrfs_file_extent_item);
1407 extent_type = btrfs_file_extent_type(leaf, fi);
1408
1409 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1410 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1411 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1412 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1413 extent_offset = btrfs_file_extent_offset(leaf, fi);
1414 extent_end = found_key.offset +
1415 btrfs_file_extent_num_bytes(leaf, fi);
1416 disk_num_bytes =
1417 btrfs_file_extent_disk_num_bytes(leaf, fi);
1418 if (extent_end <= start) {
1419 path->slots[0]++;
1420 goto next_slot;
1421 }
1422 if (disk_bytenr == 0)
1423 goto out_check;
1424 if (btrfs_file_extent_compression(leaf, fi) ||
1425 btrfs_file_extent_encryption(leaf, fi) ||
1426 btrfs_file_extent_other_encoding(leaf, fi))
1427 goto out_check;
1428 /*
1429 * Do the same check as in btrfs_cross_ref_exist but
1430 * without the unnecessary search.
1431 */
1432 if (!nolock &&
1433 btrfs_file_extent_generation(leaf, fi) <=
1434 btrfs_root_last_snapshot(&root->root_item))
1435 goto out_check;
1436 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1437 goto out_check;
1438 if (btrfs_extent_readonly(fs_info, disk_bytenr))
1439 goto out_check;
1440 ret = btrfs_cross_ref_exist(root, ino,
1441 found_key.offset -
1442 extent_offset, disk_bytenr);
1443 if (ret) {
1444 /*
1445 * ret could be -EIO if the above fails to read
1446 * metadata.
1447 */
1448 if (ret < 0) {
1449 if (cow_start != (u64)-1)
1450 cur_offset = cow_start;
1451 goto error;
1452 }
1453
1454 WARN_ON_ONCE(nolock);
1455 goto out_check;
1456 }
1457 disk_bytenr += extent_offset;
1458 disk_bytenr += cur_offset - found_key.offset;
1459 num_bytes = min(end + 1, extent_end) - cur_offset;
1460 /*
1461 * if there are pending snapshots for this root,
1462 * we fall into common COW way.
1463 */
1464 if (!nolock && atomic_read(&root->snapshot_force_cow))
1465 goto out_check;
1466 /*
1467 * force cow if csum exists in the range.
1468 * this ensure that csum for a given extent are
1469 * either valid or do not exist.
1470 */
1471 ret = csum_exist_in_range(fs_info, disk_bytenr,
1472 num_bytes);
1473 if (ret) {
1474 /*
1475 * ret could be -EIO if the above fails to read
1476 * metadata.
1477 */
1478 if (ret < 0) {
1479 if (cow_start != (u64)-1)
1480 cur_offset = cow_start;
1481 goto error;
1482 }
1483 WARN_ON_ONCE(nolock);
1484 goto out_check;
1485 }
1486 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
1487 goto out_check;
1488 nocow = 1;
1489 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1490 extent_end = found_key.offset +
1491 btrfs_file_extent_ram_bytes(leaf, fi);
1492 extent_end = ALIGN(extent_end,
1493 fs_info->sectorsize);
1494 } else {
1495 BUG_ON(1);
1496 }
1497 out_check:
1498 if (extent_end <= start) {
1499 path->slots[0]++;
1500 if (nocow)
1501 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1502 goto next_slot;
1503 }
1504 if (!nocow) {
1505 if (cow_start == (u64)-1)
1506 cow_start = cur_offset;
1507 cur_offset = extent_end;
1508 if (cur_offset > end)
1509 break;
1510 path->slots[0]++;
1511 goto next_slot;
1512 }
1513
1514 btrfs_release_path(path);
1515 if (cow_start != (u64)-1) {
1516 ret = cow_file_range(inode, locked_page,
1517 cow_start, found_key.offset - 1,
1518 end, page_started, nr_written, 1,
1519 NULL);
1520 if (ret) {
1521 if (nocow)
1522 btrfs_dec_nocow_writers(fs_info,
1523 disk_bytenr);
1524 goto error;
1525 }
1526 cow_start = (u64)-1;
1527 }
1528
1529 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1530 u64 orig_start = found_key.offset - extent_offset;
1531
1532 em = create_io_em(inode, cur_offset, num_bytes,
1533 orig_start,
1534 disk_bytenr, /* block_start */
1535 num_bytes, /* block_len */
1536 disk_num_bytes, /* orig_block_len */
1537 ram_bytes, BTRFS_COMPRESS_NONE,
1538 BTRFS_ORDERED_PREALLOC);
1539 if (IS_ERR(em)) {
1540 if (nocow)
1541 btrfs_dec_nocow_writers(fs_info,
1542 disk_bytenr);
1543 ret = PTR_ERR(em);
1544 goto error;
1545 }
1546 free_extent_map(em);
1547 }
1548
1549 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1550 type = BTRFS_ORDERED_PREALLOC;
1551 } else {
1552 type = BTRFS_ORDERED_NOCOW;
1553 }
1554
1555 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1556 num_bytes, num_bytes, type);
1557 if (nocow)
1558 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1559 BUG_ON(ret); /* -ENOMEM */
1560
1561 if (root->root_key.objectid ==
1562 BTRFS_DATA_RELOC_TREE_OBJECTID)
1563 /*
1564 * Error handled later, as we must prevent
1565 * extent_clear_unlock_delalloc() in error handler
1566 * from freeing metadata of created ordered extent.
1567 */
1568 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1569 num_bytes);
1570
1571 extent_clear_unlock_delalloc(inode, cur_offset,
1572 cur_offset + num_bytes - 1, end,
1573 locked_page, EXTENT_LOCKED |
1574 EXTENT_DELALLOC |
1575 EXTENT_CLEAR_DATA_RESV,
1576 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1577
1578 cur_offset = extent_end;
1579
1580 /*
1581 * btrfs_reloc_clone_csums() error, now we're OK to call error
1582 * handler, as metadata for created ordered extent will only
1583 * be freed by btrfs_finish_ordered_io().
1584 */
1585 if (ret)
1586 goto error;
1587 if (cur_offset > end)
1588 break;
1589 }
1590 btrfs_release_path(path);
1591
1592 if (cur_offset <= end && cow_start == (u64)-1)
1593 cow_start = cur_offset;
1594
1595 if (cow_start != (u64)-1) {
1596 cur_offset = end;
1597 ret = cow_file_range(inode, locked_page, cow_start, end, end,
1598 page_started, nr_written, 1, NULL);
1599 if (ret)
1600 goto error;
1601 }
1602
1603 error:
1604 if (ret && cur_offset < end)
1605 extent_clear_unlock_delalloc(inode, cur_offset, end, end,
1606 locked_page, EXTENT_LOCKED |
1607 EXTENT_DELALLOC | EXTENT_DEFRAG |
1608 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1609 PAGE_CLEAR_DIRTY |
1610 PAGE_SET_WRITEBACK |
1611 PAGE_END_WRITEBACK);
1612 btrfs_free_path(path);
1613 return ret;
1614 }
1615
need_force_cow(struct inode * inode,u64 start,u64 end)1616 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1617 {
1618
1619 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1620 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1621 return 0;
1622
1623 /*
1624 * @defrag_bytes is a hint value, no spinlock held here,
1625 * if is not zero, it means the file is defragging.
1626 * Force cow if given extent needs to be defragged.
1627 */
1628 if (BTRFS_I(inode)->defrag_bytes &&
1629 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1630 EXTENT_DEFRAG, 0, NULL))
1631 return 1;
1632
1633 return 0;
1634 }
1635
1636 /*
1637 * Function to process delayed allocation (create CoW) for ranges which are
1638 * being touched for the first time.
1639 */
btrfs_run_delalloc_range(void * private_data,struct page * locked_page,u64 start,u64 end,int * page_started,unsigned long * nr_written,struct writeback_control * wbc)1640 int btrfs_run_delalloc_range(void *private_data, struct page *locked_page,
1641 u64 start, u64 end, int *page_started, unsigned long *nr_written,
1642 struct writeback_control *wbc)
1643 {
1644 struct inode *inode = private_data;
1645 int ret;
1646 int force_cow = need_force_cow(inode, start, end);
1647 unsigned int write_flags = wbc_to_write_flags(wbc);
1648
1649 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1650 ret = run_delalloc_nocow(inode, locked_page, start, end,
1651 page_started, 1, nr_written);
1652 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1653 ret = run_delalloc_nocow(inode, locked_page, start, end,
1654 page_started, 0, nr_written);
1655 } else if (!inode_can_compress(inode) ||
1656 !inode_need_compress(inode, start, end)) {
1657 ret = cow_file_range(inode, locked_page, start, end, end,
1658 page_started, nr_written, 1, NULL);
1659 } else {
1660 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1661 &BTRFS_I(inode)->runtime_flags);
1662 ret = cow_file_range_async(inode, locked_page, start, end,
1663 page_started, nr_written,
1664 write_flags);
1665 }
1666 if (ret)
1667 btrfs_cleanup_ordered_extents(inode, locked_page, start,
1668 end - start + 1);
1669 return ret;
1670 }
1671
btrfs_split_extent_hook(void * private_data,struct extent_state * orig,u64 split)1672 static void btrfs_split_extent_hook(void *private_data,
1673 struct extent_state *orig, u64 split)
1674 {
1675 struct inode *inode = private_data;
1676 u64 size;
1677
1678 /* not delalloc, ignore it */
1679 if (!(orig->state & EXTENT_DELALLOC))
1680 return;
1681
1682 size = orig->end - orig->start + 1;
1683 if (size > BTRFS_MAX_EXTENT_SIZE) {
1684 u32 num_extents;
1685 u64 new_size;
1686
1687 /*
1688 * See the explanation in btrfs_merge_extent_hook, the same
1689 * applies here, just in reverse.
1690 */
1691 new_size = orig->end - split + 1;
1692 num_extents = count_max_extents(new_size);
1693 new_size = split - orig->start;
1694 num_extents += count_max_extents(new_size);
1695 if (count_max_extents(size) >= num_extents)
1696 return;
1697 }
1698
1699 spin_lock(&BTRFS_I(inode)->lock);
1700 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1701 spin_unlock(&BTRFS_I(inode)->lock);
1702 }
1703
1704 /*
1705 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1706 * extents so we can keep track of new extents that are just merged onto old
1707 * extents, such as when we are doing sequential writes, so we can properly
1708 * account for the metadata space we'll need.
1709 */
btrfs_merge_extent_hook(void * private_data,struct extent_state * new,struct extent_state * other)1710 static void btrfs_merge_extent_hook(void *private_data,
1711 struct extent_state *new,
1712 struct extent_state *other)
1713 {
1714 struct inode *inode = private_data;
1715 u64 new_size, old_size;
1716 u32 num_extents;
1717
1718 /* not delalloc, ignore it */
1719 if (!(other->state & EXTENT_DELALLOC))
1720 return;
1721
1722 if (new->start > other->start)
1723 new_size = new->end - other->start + 1;
1724 else
1725 new_size = other->end - new->start + 1;
1726
1727 /* we're not bigger than the max, unreserve the space and go */
1728 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1729 spin_lock(&BTRFS_I(inode)->lock);
1730 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1731 spin_unlock(&BTRFS_I(inode)->lock);
1732 return;
1733 }
1734
1735 /*
1736 * We have to add up either side to figure out how many extents were
1737 * accounted for before we merged into one big extent. If the number of
1738 * extents we accounted for is <= the amount we need for the new range
1739 * then we can return, otherwise drop. Think of it like this
1740 *
1741 * [ 4k][MAX_SIZE]
1742 *
1743 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1744 * need 2 outstanding extents, on one side we have 1 and the other side
1745 * we have 1 so they are == and we can return. But in this case
1746 *
1747 * [MAX_SIZE+4k][MAX_SIZE+4k]
1748 *
1749 * Each range on their own accounts for 2 extents, but merged together
1750 * they are only 3 extents worth of accounting, so we need to drop in
1751 * this case.
1752 */
1753 old_size = other->end - other->start + 1;
1754 num_extents = count_max_extents(old_size);
1755 old_size = new->end - new->start + 1;
1756 num_extents += count_max_extents(old_size);
1757 if (count_max_extents(new_size) >= num_extents)
1758 return;
1759
1760 spin_lock(&BTRFS_I(inode)->lock);
1761 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1762 spin_unlock(&BTRFS_I(inode)->lock);
1763 }
1764
btrfs_add_delalloc_inodes(struct btrfs_root * root,struct inode * inode)1765 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1766 struct inode *inode)
1767 {
1768 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1769
1770 spin_lock(&root->delalloc_lock);
1771 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1772 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1773 &root->delalloc_inodes);
1774 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1775 &BTRFS_I(inode)->runtime_flags);
1776 root->nr_delalloc_inodes++;
1777 if (root->nr_delalloc_inodes == 1) {
1778 spin_lock(&fs_info->delalloc_root_lock);
1779 BUG_ON(!list_empty(&root->delalloc_root));
1780 list_add_tail(&root->delalloc_root,
1781 &fs_info->delalloc_roots);
1782 spin_unlock(&fs_info->delalloc_root_lock);
1783 }
1784 }
1785 spin_unlock(&root->delalloc_lock);
1786 }
1787
1788
__btrfs_del_delalloc_inode(struct btrfs_root * root,struct btrfs_inode * inode)1789 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
1790 struct btrfs_inode *inode)
1791 {
1792 struct btrfs_fs_info *fs_info = root->fs_info;
1793
1794 if (!list_empty(&inode->delalloc_inodes)) {
1795 list_del_init(&inode->delalloc_inodes);
1796 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1797 &inode->runtime_flags);
1798 root->nr_delalloc_inodes--;
1799 if (!root->nr_delalloc_inodes) {
1800 ASSERT(list_empty(&root->delalloc_inodes));
1801 spin_lock(&fs_info->delalloc_root_lock);
1802 BUG_ON(list_empty(&root->delalloc_root));
1803 list_del_init(&root->delalloc_root);
1804 spin_unlock(&fs_info->delalloc_root_lock);
1805 }
1806 }
1807 }
1808
btrfs_del_delalloc_inode(struct btrfs_root * root,struct btrfs_inode * inode)1809 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1810 struct btrfs_inode *inode)
1811 {
1812 spin_lock(&root->delalloc_lock);
1813 __btrfs_del_delalloc_inode(root, inode);
1814 spin_unlock(&root->delalloc_lock);
1815 }
1816
1817 /*
1818 * extent_io.c set_bit_hook, used to track delayed allocation
1819 * bytes in this file, and to maintain the list of inodes that
1820 * have pending delalloc work to be done.
1821 */
btrfs_set_bit_hook(void * private_data,struct extent_state * state,unsigned * bits)1822 static void btrfs_set_bit_hook(void *private_data,
1823 struct extent_state *state, unsigned *bits)
1824 {
1825 struct inode *inode = private_data;
1826
1827 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1828
1829 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1830 WARN_ON(1);
1831 /*
1832 * set_bit and clear bit hooks normally require _irqsave/restore
1833 * but in this case, we are only testing for the DELALLOC
1834 * bit, which is only set or cleared with irqs on
1835 */
1836 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1837 struct btrfs_root *root = BTRFS_I(inode)->root;
1838 u64 len = state->end + 1 - state->start;
1839 u32 num_extents = count_max_extents(len);
1840 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
1841
1842 spin_lock(&BTRFS_I(inode)->lock);
1843 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
1844 spin_unlock(&BTRFS_I(inode)->lock);
1845
1846 /* For sanity tests */
1847 if (btrfs_is_testing(fs_info))
1848 return;
1849
1850 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
1851 fs_info->delalloc_batch);
1852 spin_lock(&BTRFS_I(inode)->lock);
1853 BTRFS_I(inode)->delalloc_bytes += len;
1854 if (*bits & EXTENT_DEFRAG)
1855 BTRFS_I(inode)->defrag_bytes += len;
1856 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1857 &BTRFS_I(inode)->runtime_flags))
1858 btrfs_add_delalloc_inodes(root, inode);
1859 spin_unlock(&BTRFS_I(inode)->lock);
1860 }
1861
1862 if (!(state->state & EXTENT_DELALLOC_NEW) &&
1863 (*bits & EXTENT_DELALLOC_NEW)) {
1864 spin_lock(&BTRFS_I(inode)->lock);
1865 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1866 state->start;
1867 spin_unlock(&BTRFS_I(inode)->lock);
1868 }
1869 }
1870
1871 /*
1872 * extent_io.c clear_bit_hook, see set_bit_hook for why
1873 */
btrfs_clear_bit_hook(void * private_data,struct extent_state * state,unsigned * bits)1874 static void btrfs_clear_bit_hook(void *private_data,
1875 struct extent_state *state,
1876 unsigned *bits)
1877 {
1878 struct btrfs_inode *inode = BTRFS_I((struct inode *)private_data);
1879 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1880 u64 len = state->end + 1 - state->start;
1881 u32 num_extents = count_max_extents(len);
1882
1883 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
1884 spin_lock(&inode->lock);
1885 inode->defrag_bytes -= len;
1886 spin_unlock(&inode->lock);
1887 }
1888
1889 /*
1890 * set_bit and clear bit hooks normally require _irqsave/restore
1891 * but in this case, we are only testing for the DELALLOC
1892 * bit, which is only set or cleared with irqs on
1893 */
1894 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1895 struct btrfs_root *root = inode->root;
1896 bool do_list = !btrfs_is_free_space_inode(inode);
1897
1898 spin_lock(&inode->lock);
1899 btrfs_mod_outstanding_extents(inode, -num_extents);
1900 spin_unlock(&inode->lock);
1901
1902 /*
1903 * We don't reserve metadata space for space cache inodes so we
1904 * don't need to call dellalloc_release_metadata if there is an
1905 * error.
1906 */
1907 if (*bits & EXTENT_CLEAR_META_RESV &&
1908 root != fs_info->tree_root)
1909 btrfs_delalloc_release_metadata(inode, len, false);
1910
1911 /* For sanity tests. */
1912 if (btrfs_is_testing(fs_info))
1913 return;
1914
1915 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
1916 do_list && !(state->state & EXTENT_NORESERVE) &&
1917 (*bits & EXTENT_CLEAR_DATA_RESV))
1918 btrfs_free_reserved_data_space_noquota(
1919 &inode->vfs_inode,
1920 state->start, len);
1921
1922 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
1923 fs_info->delalloc_batch);
1924 spin_lock(&inode->lock);
1925 inode->delalloc_bytes -= len;
1926 if (do_list && inode->delalloc_bytes == 0 &&
1927 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1928 &inode->runtime_flags))
1929 btrfs_del_delalloc_inode(root, inode);
1930 spin_unlock(&inode->lock);
1931 }
1932
1933 if ((state->state & EXTENT_DELALLOC_NEW) &&
1934 (*bits & EXTENT_DELALLOC_NEW)) {
1935 spin_lock(&inode->lock);
1936 ASSERT(inode->new_delalloc_bytes >= len);
1937 inode->new_delalloc_bytes -= len;
1938 spin_unlock(&inode->lock);
1939 }
1940 }
1941
1942 /*
1943 * Merge bio hook, this must check the chunk tree to make sure we don't create
1944 * bios that span stripes or chunks
1945 *
1946 * return 1 if page cannot be merged to bio
1947 * return 0 if page can be merged to bio
1948 * return error otherwise
1949 */
btrfs_merge_bio_hook(struct page * page,unsigned long offset,size_t size,struct bio * bio,unsigned long bio_flags)1950 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1951 size_t size, struct bio *bio,
1952 unsigned long bio_flags)
1953 {
1954 struct inode *inode = page->mapping->host;
1955 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1956 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1957 u64 length = 0;
1958 u64 map_length;
1959 int ret;
1960
1961 if (bio_flags & EXTENT_BIO_COMPRESSED)
1962 return 0;
1963
1964 length = bio->bi_iter.bi_size;
1965 map_length = length;
1966 ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
1967 NULL, 0);
1968 if (ret < 0)
1969 return ret;
1970 if (map_length < length + size)
1971 return 1;
1972 return 0;
1973 }
1974
1975 /*
1976 * in order to insert checksums into the metadata in large chunks,
1977 * we wait until bio submission time. All the pages in the bio are
1978 * checksummed and sums are attached onto the ordered extent record.
1979 *
1980 * At IO completion time the cums attached on the ordered extent record
1981 * are inserted into the btree
1982 */
btrfs_submit_bio_start(void * private_data,struct bio * bio,u64 bio_offset)1983 static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio,
1984 u64 bio_offset)
1985 {
1986 struct inode *inode = private_data;
1987 blk_status_t ret = 0;
1988
1989 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
1990 BUG_ON(ret); /* -ENOMEM */
1991 return 0;
1992 }
1993
1994 /*
1995 * in order to insert checksums into the metadata in large chunks,
1996 * we wait until bio submission time. All the pages in the bio are
1997 * checksummed and sums are attached onto the ordered extent record.
1998 *
1999 * At IO completion time the cums attached on the ordered extent record
2000 * are inserted into the btree
2001 */
btrfs_submit_bio_done(void * private_data,struct bio * bio,int mirror_num)2002 blk_status_t btrfs_submit_bio_done(void *private_data, struct bio *bio,
2003 int mirror_num)
2004 {
2005 struct inode *inode = private_data;
2006 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2007 blk_status_t ret;
2008
2009 ret = btrfs_map_bio(fs_info, bio, mirror_num, 1);
2010 if (ret) {
2011 bio->bi_status = ret;
2012 bio_endio(bio);
2013 }
2014 return ret;
2015 }
2016
2017 /*
2018 * extent_io.c submission hook. This does the right thing for csum calculation
2019 * on write, or reading the csums from the tree before a read.
2020 *
2021 * Rules about async/sync submit,
2022 * a) read: sync submit
2023 *
2024 * b) write without checksum: sync submit
2025 *
2026 * c) write with checksum:
2027 * c-1) if bio is issued by fsync: sync submit
2028 * (sync_writers != 0)
2029 *
2030 * c-2) if root is reloc root: sync submit
2031 * (only in case of buffered IO)
2032 *
2033 * c-3) otherwise: async submit
2034 */
btrfs_submit_bio_hook(void * private_data,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 bio_offset)2035 static blk_status_t btrfs_submit_bio_hook(void *private_data, struct bio *bio,
2036 int mirror_num, unsigned long bio_flags,
2037 u64 bio_offset)
2038 {
2039 struct inode *inode = private_data;
2040 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2041 struct btrfs_root *root = BTRFS_I(inode)->root;
2042 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
2043 blk_status_t ret = 0;
2044 int skip_sum;
2045 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
2046
2047 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
2048
2049 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
2050 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
2051
2052 if (bio_op(bio) != REQ_OP_WRITE) {
2053 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
2054 if (ret)
2055 goto out;
2056
2057 if (bio_flags & EXTENT_BIO_COMPRESSED) {
2058 ret = btrfs_submit_compressed_read(inode, bio,
2059 mirror_num,
2060 bio_flags);
2061 goto out;
2062 } else if (!skip_sum) {
2063 ret = btrfs_lookup_bio_sums(inode, bio, NULL);
2064 if (ret)
2065 goto out;
2066 }
2067 goto mapit;
2068 } else if (async && !skip_sum) {
2069 /* csum items have already been cloned */
2070 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2071 goto mapit;
2072 /* we're doing a write, do the async checksumming */
2073 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
2074 bio_offset, inode,
2075 btrfs_submit_bio_start);
2076 goto out;
2077 } else if (!skip_sum) {
2078 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
2079 if (ret)
2080 goto out;
2081 }
2082
2083 mapit:
2084 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
2085
2086 out:
2087 if (ret) {
2088 bio->bi_status = ret;
2089 bio_endio(bio);
2090 }
2091 return ret;
2092 }
2093
2094 /*
2095 * given a list of ordered sums record them in the inode. This happens
2096 * at IO completion time based on sums calculated at bio submission time.
2097 */
add_pending_csums(struct btrfs_trans_handle * trans,struct inode * inode,struct list_head * list)2098 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
2099 struct inode *inode, struct list_head *list)
2100 {
2101 struct btrfs_ordered_sum *sum;
2102 int ret;
2103
2104 list_for_each_entry(sum, list, list) {
2105 trans->adding_csums = true;
2106 ret = btrfs_csum_file_blocks(trans,
2107 BTRFS_I(inode)->root->fs_info->csum_root, sum);
2108 trans->adding_csums = false;
2109 if (ret)
2110 return ret;
2111 }
2112 return 0;
2113 }
2114
btrfs_set_extent_delalloc(struct inode * inode,u64 start,u64 end,unsigned int extra_bits,struct extent_state ** cached_state,int dedupe)2115 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
2116 unsigned int extra_bits,
2117 struct extent_state **cached_state, int dedupe)
2118 {
2119 WARN_ON((end & (PAGE_SIZE - 1)) == 0);
2120 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2121 extra_bits, cached_state);
2122 }
2123
2124 /* see btrfs_writepage_start_hook for details on why this is required */
2125 struct btrfs_writepage_fixup {
2126 struct page *page;
2127 struct btrfs_work work;
2128 };
2129
btrfs_writepage_fixup_worker(struct btrfs_work * work)2130 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2131 {
2132 struct btrfs_writepage_fixup *fixup;
2133 struct btrfs_ordered_extent *ordered;
2134 struct extent_state *cached_state = NULL;
2135 struct extent_changeset *data_reserved = NULL;
2136 struct page *page;
2137 struct inode *inode;
2138 u64 page_start;
2139 u64 page_end;
2140 int ret;
2141
2142 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2143 page = fixup->page;
2144 again:
2145 lock_page(page);
2146 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2147 ClearPageChecked(page);
2148 goto out_page;
2149 }
2150
2151 inode = page->mapping->host;
2152 page_start = page_offset(page);
2153 page_end = page_offset(page) + PAGE_SIZE - 1;
2154
2155 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
2156 &cached_state);
2157
2158 /* already ordered? We're done */
2159 if (PagePrivate2(page))
2160 goto out;
2161
2162 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
2163 PAGE_SIZE);
2164 if (ordered) {
2165 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2166 page_end, &cached_state);
2167 unlock_page(page);
2168 btrfs_start_ordered_extent(inode, ordered, 1);
2169 btrfs_put_ordered_extent(ordered);
2170 goto again;
2171 }
2172
2173 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2174 PAGE_SIZE);
2175 if (ret) {
2176 mapping_set_error(page->mapping, ret);
2177 end_extent_writepage(page, ret, page_start, page_end);
2178 ClearPageChecked(page);
2179 goto out;
2180 }
2181
2182 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2183 &cached_state, 0);
2184 if (ret) {
2185 mapping_set_error(page->mapping, ret);
2186 end_extent_writepage(page, ret, page_start, page_end);
2187 ClearPageChecked(page);
2188 goto out_reserved;
2189 }
2190
2191 ClearPageChecked(page);
2192 set_page_dirty(page);
2193 out_reserved:
2194 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
2195 if (ret)
2196 btrfs_delalloc_release_space(inode, data_reserved, page_start,
2197 PAGE_SIZE, true);
2198 out:
2199 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2200 &cached_state);
2201 out_page:
2202 unlock_page(page);
2203 put_page(page);
2204 kfree(fixup);
2205 extent_changeset_free(data_reserved);
2206 }
2207
2208 /*
2209 * There are a few paths in the higher layers of the kernel that directly
2210 * set the page dirty bit without asking the filesystem if it is a
2211 * good idea. This causes problems because we want to make sure COW
2212 * properly happens and the data=ordered rules are followed.
2213 *
2214 * In our case any range that doesn't have the ORDERED bit set
2215 * hasn't been properly setup for IO. We kick off an async process
2216 * to fix it up. The async helper will wait for ordered extents, set
2217 * the delalloc bit and make it safe to write the page.
2218 */
btrfs_writepage_start_hook(struct page * page,u64 start,u64 end)2219 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
2220 {
2221 struct inode *inode = page->mapping->host;
2222 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2223 struct btrfs_writepage_fixup *fixup;
2224
2225 /* this page is properly in the ordered list */
2226 if (TestClearPagePrivate2(page))
2227 return 0;
2228
2229 if (PageChecked(page))
2230 return -EAGAIN;
2231
2232 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2233 if (!fixup)
2234 return -EAGAIN;
2235
2236 SetPageChecked(page);
2237 get_page(page);
2238 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2239 btrfs_writepage_fixup_worker, NULL, NULL);
2240 fixup->page = page;
2241 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2242 return -EBUSY;
2243 }
2244
insert_reserved_file_extent(struct btrfs_trans_handle * trans,struct inode * inode,u64 file_pos,u64 disk_bytenr,u64 disk_num_bytes,u64 num_bytes,u64 ram_bytes,u8 compression,u8 encryption,u16 other_encoding,int extent_type)2245 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2246 struct inode *inode, u64 file_pos,
2247 u64 disk_bytenr, u64 disk_num_bytes,
2248 u64 num_bytes, u64 ram_bytes,
2249 u8 compression, u8 encryption,
2250 u16 other_encoding, int extent_type)
2251 {
2252 struct btrfs_root *root = BTRFS_I(inode)->root;
2253 struct btrfs_file_extent_item *fi;
2254 struct btrfs_path *path;
2255 struct extent_buffer *leaf;
2256 struct btrfs_key ins;
2257 u64 qg_released;
2258 int extent_inserted = 0;
2259 int ret;
2260
2261 path = btrfs_alloc_path();
2262 if (!path)
2263 return -ENOMEM;
2264
2265 /*
2266 * we may be replacing one extent in the tree with another.
2267 * The new extent is pinned in the extent map, and we don't want
2268 * to drop it from the cache until it is completely in the btree.
2269 *
2270 * So, tell btrfs_drop_extents to leave this extent in the cache.
2271 * the caller is expected to unpin it and allow it to be merged
2272 * with the others.
2273 */
2274 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2275 file_pos + num_bytes, NULL, 0,
2276 1, sizeof(*fi), &extent_inserted);
2277 if (ret)
2278 goto out;
2279
2280 if (!extent_inserted) {
2281 ins.objectid = btrfs_ino(BTRFS_I(inode));
2282 ins.offset = file_pos;
2283 ins.type = BTRFS_EXTENT_DATA_KEY;
2284
2285 path->leave_spinning = 1;
2286 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2287 sizeof(*fi));
2288 if (ret)
2289 goto out;
2290 }
2291 leaf = path->nodes[0];
2292 fi = btrfs_item_ptr(leaf, path->slots[0],
2293 struct btrfs_file_extent_item);
2294 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2295 btrfs_set_file_extent_type(leaf, fi, extent_type);
2296 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2297 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2298 btrfs_set_file_extent_offset(leaf, fi, 0);
2299 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2300 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2301 btrfs_set_file_extent_compression(leaf, fi, compression);
2302 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2303 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2304
2305 btrfs_mark_buffer_dirty(leaf);
2306 btrfs_release_path(path);
2307
2308 inode_add_bytes(inode, num_bytes);
2309
2310 ins.objectid = disk_bytenr;
2311 ins.offset = disk_num_bytes;
2312 ins.type = BTRFS_EXTENT_ITEM_KEY;
2313
2314 /*
2315 * Release the reserved range from inode dirty range map, as it is
2316 * already moved into delayed_ref_head
2317 */
2318 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2319 if (ret < 0)
2320 goto out;
2321 qg_released = ret;
2322 ret = btrfs_alloc_reserved_file_extent(trans, root,
2323 btrfs_ino(BTRFS_I(inode)),
2324 file_pos, qg_released, &ins);
2325 out:
2326 btrfs_free_path(path);
2327
2328 return ret;
2329 }
2330
2331 /* snapshot-aware defrag */
2332 struct sa_defrag_extent_backref {
2333 struct rb_node node;
2334 struct old_sa_defrag_extent *old;
2335 u64 root_id;
2336 u64 inum;
2337 u64 file_pos;
2338 u64 extent_offset;
2339 u64 num_bytes;
2340 u64 generation;
2341 };
2342
2343 struct old_sa_defrag_extent {
2344 struct list_head list;
2345 struct new_sa_defrag_extent *new;
2346
2347 u64 extent_offset;
2348 u64 bytenr;
2349 u64 offset;
2350 u64 len;
2351 int count;
2352 };
2353
2354 struct new_sa_defrag_extent {
2355 struct rb_root root;
2356 struct list_head head;
2357 struct btrfs_path *path;
2358 struct inode *inode;
2359 u64 file_pos;
2360 u64 len;
2361 u64 bytenr;
2362 u64 disk_len;
2363 u8 compress_type;
2364 };
2365
backref_comp(struct sa_defrag_extent_backref * b1,struct sa_defrag_extent_backref * b2)2366 static int backref_comp(struct sa_defrag_extent_backref *b1,
2367 struct sa_defrag_extent_backref *b2)
2368 {
2369 if (b1->root_id < b2->root_id)
2370 return -1;
2371 else if (b1->root_id > b2->root_id)
2372 return 1;
2373
2374 if (b1->inum < b2->inum)
2375 return -1;
2376 else if (b1->inum > b2->inum)
2377 return 1;
2378
2379 if (b1->file_pos < b2->file_pos)
2380 return -1;
2381 else if (b1->file_pos > b2->file_pos)
2382 return 1;
2383
2384 /*
2385 * [------------------------------] ===> (a range of space)
2386 * |<--->| |<---->| =============> (fs/file tree A)
2387 * |<---------------------------->| ===> (fs/file tree B)
2388 *
2389 * A range of space can refer to two file extents in one tree while
2390 * refer to only one file extent in another tree.
2391 *
2392 * So we may process a disk offset more than one time(two extents in A)
2393 * and locate at the same extent(one extent in B), then insert two same
2394 * backrefs(both refer to the extent in B).
2395 */
2396 return 0;
2397 }
2398
backref_insert(struct rb_root * root,struct sa_defrag_extent_backref * backref)2399 static void backref_insert(struct rb_root *root,
2400 struct sa_defrag_extent_backref *backref)
2401 {
2402 struct rb_node **p = &root->rb_node;
2403 struct rb_node *parent = NULL;
2404 struct sa_defrag_extent_backref *entry;
2405 int ret;
2406
2407 while (*p) {
2408 parent = *p;
2409 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2410
2411 ret = backref_comp(backref, entry);
2412 if (ret < 0)
2413 p = &(*p)->rb_left;
2414 else
2415 p = &(*p)->rb_right;
2416 }
2417
2418 rb_link_node(&backref->node, parent, p);
2419 rb_insert_color(&backref->node, root);
2420 }
2421
2422 /*
2423 * Note the backref might has changed, and in this case we just return 0.
2424 */
record_one_backref(u64 inum,u64 offset,u64 root_id,void * ctx)2425 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2426 void *ctx)
2427 {
2428 struct btrfs_file_extent_item *extent;
2429 struct old_sa_defrag_extent *old = ctx;
2430 struct new_sa_defrag_extent *new = old->new;
2431 struct btrfs_path *path = new->path;
2432 struct btrfs_key key;
2433 struct btrfs_root *root;
2434 struct sa_defrag_extent_backref *backref;
2435 struct extent_buffer *leaf;
2436 struct inode *inode = new->inode;
2437 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2438 int slot;
2439 int ret;
2440 u64 extent_offset;
2441 u64 num_bytes;
2442
2443 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2444 inum == btrfs_ino(BTRFS_I(inode)))
2445 return 0;
2446
2447 key.objectid = root_id;
2448 key.type = BTRFS_ROOT_ITEM_KEY;
2449 key.offset = (u64)-1;
2450
2451 root = btrfs_read_fs_root_no_name(fs_info, &key);
2452 if (IS_ERR(root)) {
2453 if (PTR_ERR(root) == -ENOENT)
2454 return 0;
2455 WARN_ON(1);
2456 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
2457 inum, offset, root_id);
2458 return PTR_ERR(root);
2459 }
2460
2461 key.objectid = inum;
2462 key.type = BTRFS_EXTENT_DATA_KEY;
2463 if (offset > (u64)-1 << 32)
2464 key.offset = 0;
2465 else
2466 key.offset = offset;
2467
2468 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2469 if (WARN_ON(ret < 0))
2470 return ret;
2471 ret = 0;
2472
2473 while (1) {
2474 cond_resched();
2475
2476 leaf = path->nodes[0];
2477 slot = path->slots[0];
2478
2479 if (slot >= btrfs_header_nritems(leaf)) {
2480 ret = btrfs_next_leaf(root, path);
2481 if (ret < 0) {
2482 goto out;
2483 } else if (ret > 0) {
2484 ret = 0;
2485 goto out;
2486 }
2487 continue;
2488 }
2489
2490 path->slots[0]++;
2491
2492 btrfs_item_key_to_cpu(leaf, &key, slot);
2493
2494 if (key.objectid > inum)
2495 goto out;
2496
2497 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2498 continue;
2499
2500 extent = btrfs_item_ptr(leaf, slot,
2501 struct btrfs_file_extent_item);
2502
2503 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2504 continue;
2505
2506 /*
2507 * 'offset' refers to the exact key.offset,
2508 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2509 * (key.offset - extent_offset).
2510 */
2511 if (key.offset != offset)
2512 continue;
2513
2514 extent_offset = btrfs_file_extent_offset(leaf, extent);
2515 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2516
2517 if (extent_offset >= old->extent_offset + old->offset +
2518 old->len || extent_offset + num_bytes <=
2519 old->extent_offset + old->offset)
2520 continue;
2521 break;
2522 }
2523
2524 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2525 if (!backref) {
2526 ret = -ENOENT;
2527 goto out;
2528 }
2529
2530 backref->root_id = root_id;
2531 backref->inum = inum;
2532 backref->file_pos = offset;
2533 backref->num_bytes = num_bytes;
2534 backref->extent_offset = extent_offset;
2535 backref->generation = btrfs_file_extent_generation(leaf, extent);
2536 backref->old = old;
2537 backref_insert(&new->root, backref);
2538 old->count++;
2539 out:
2540 btrfs_release_path(path);
2541 WARN_ON(ret);
2542 return ret;
2543 }
2544
record_extent_backrefs(struct btrfs_path * path,struct new_sa_defrag_extent * new)2545 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2546 struct new_sa_defrag_extent *new)
2547 {
2548 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2549 struct old_sa_defrag_extent *old, *tmp;
2550 int ret;
2551
2552 new->path = path;
2553
2554 list_for_each_entry_safe(old, tmp, &new->head, list) {
2555 ret = iterate_inodes_from_logical(old->bytenr +
2556 old->extent_offset, fs_info,
2557 path, record_one_backref,
2558 old, false);
2559 if (ret < 0 && ret != -ENOENT)
2560 return false;
2561
2562 /* no backref to be processed for this extent */
2563 if (!old->count) {
2564 list_del(&old->list);
2565 kfree(old);
2566 }
2567 }
2568
2569 if (list_empty(&new->head))
2570 return false;
2571
2572 return true;
2573 }
2574
relink_is_mergable(struct extent_buffer * leaf,struct btrfs_file_extent_item * fi,struct new_sa_defrag_extent * new)2575 static int relink_is_mergable(struct extent_buffer *leaf,
2576 struct btrfs_file_extent_item *fi,
2577 struct new_sa_defrag_extent *new)
2578 {
2579 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2580 return 0;
2581
2582 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2583 return 0;
2584
2585 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2586 return 0;
2587
2588 if (btrfs_file_extent_encryption(leaf, fi) ||
2589 btrfs_file_extent_other_encoding(leaf, fi))
2590 return 0;
2591
2592 return 1;
2593 }
2594
2595 /*
2596 * Note the backref might has changed, and in this case we just return 0.
2597 */
relink_extent_backref(struct btrfs_path * path,struct sa_defrag_extent_backref * prev,struct sa_defrag_extent_backref * backref)2598 static noinline int relink_extent_backref(struct btrfs_path *path,
2599 struct sa_defrag_extent_backref *prev,
2600 struct sa_defrag_extent_backref *backref)
2601 {
2602 struct btrfs_file_extent_item *extent;
2603 struct btrfs_file_extent_item *item;
2604 struct btrfs_ordered_extent *ordered;
2605 struct btrfs_trans_handle *trans;
2606 struct btrfs_root *root;
2607 struct btrfs_key key;
2608 struct extent_buffer *leaf;
2609 struct old_sa_defrag_extent *old = backref->old;
2610 struct new_sa_defrag_extent *new = old->new;
2611 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2612 struct inode *inode;
2613 struct extent_state *cached = NULL;
2614 int ret = 0;
2615 u64 start;
2616 u64 len;
2617 u64 lock_start;
2618 u64 lock_end;
2619 bool merge = false;
2620 int index;
2621
2622 if (prev && prev->root_id == backref->root_id &&
2623 prev->inum == backref->inum &&
2624 prev->file_pos + prev->num_bytes == backref->file_pos)
2625 merge = true;
2626
2627 /* step 1: get root */
2628 key.objectid = backref->root_id;
2629 key.type = BTRFS_ROOT_ITEM_KEY;
2630 key.offset = (u64)-1;
2631
2632 index = srcu_read_lock(&fs_info->subvol_srcu);
2633
2634 root = btrfs_read_fs_root_no_name(fs_info, &key);
2635 if (IS_ERR(root)) {
2636 srcu_read_unlock(&fs_info->subvol_srcu, index);
2637 if (PTR_ERR(root) == -ENOENT)
2638 return 0;
2639 return PTR_ERR(root);
2640 }
2641
2642 if (btrfs_root_readonly(root)) {
2643 srcu_read_unlock(&fs_info->subvol_srcu, index);
2644 return 0;
2645 }
2646
2647 /* step 2: get inode */
2648 key.objectid = backref->inum;
2649 key.type = BTRFS_INODE_ITEM_KEY;
2650 key.offset = 0;
2651
2652 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2653 if (IS_ERR(inode)) {
2654 srcu_read_unlock(&fs_info->subvol_srcu, index);
2655 return 0;
2656 }
2657
2658 srcu_read_unlock(&fs_info->subvol_srcu, index);
2659
2660 /* step 3: relink backref */
2661 lock_start = backref->file_pos;
2662 lock_end = backref->file_pos + backref->num_bytes - 1;
2663 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2664 &cached);
2665
2666 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2667 if (ordered) {
2668 btrfs_put_ordered_extent(ordered);
2669 goto out_unlock;
2670 }
2671
2672 trans = btrfs_join_transaction(root);
2673 if (IS_ERR(trans)) {
2674 ret = PTR_ERR(trans);
2675 goto out_unlock;
2676 }
2677
2678 key.objectid = backref->inum;
2679 key.type = BTRFS_EXTENT_DATA_KEY;
2680 key.offset = backref->file_pos;
2681
2682 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2683 if (ret < 0) {
2684 goto out_free_path;
2685 } else if (ret > 0) {
2686 ret = 0;
2687 goto out_free_path;
2688 }
2689
2690 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2691 struct btrfs_file_extent_item);
2692
2693 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2694 backref->generation)
2695 goto out_free_path;
2696
2697 btrfs_release_path(path);
2698
2699 start = backref->file_pos;
2700 if (backref->extent_offset < old->extent_offset + old->offset)
2701 start += old->extent_offset + old->offset -
2702 backref->extent_offset;
2703
2704 len = min(backref->extent_offset + backref->num_bytes,
2705 old->extent_offset + old->offset + old->len);
2706 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2707
2708 ret = btrfs_drop_extents(trans, root, inode, start,
2709 start + len, 1);
2710 if (ret)
2711 goto out_free_path;
2712 again:
2713 key.objectid = btrfs_ino(BTRFS_I(inode));
2714 key.type = BTRFS_EXTENT_DATA_KEY;
2715 key.offset = start;
2716
2717 path->leave_spinning = 1;
2718 if (merge) {
2719 struct btrfs_file_extent_item *fi;
2720 u64 extent_len;
2721 struct btrfs_key found_key;
2722
2723 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2724 if (ret < 0)
2725 goto out_free_path;
2726
2727 path->slots[0]--;
2728 leaf = path->nodes[0];
2729 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2730
2731 fi = btrfs_item_ptr(leaf, path->slots[0],
2732 struct btrfs_file_extent_item);
2733 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2734
2735 if (extent_len + found_key.offset == start &&
2736 relink_is_mergable(leaf, fi, new)) {
2737 btrfs_set_file_extent_num_bytes(leaf, fi,
2738 extent_len + len);
2739 btrfs_mark_buffer_dirty(leaf);
2740 inode_add_bytes(inode, len);
2741
2742 ret = 1;
2743 goto out_free_path;
2744 } else {
2745 merge = false;
2746 btrfs_release_path(path);
2747 goto again;
2748 }
2749 }
2750
2751 ret = btrfs_insert_empty_item(trans, root, path, &key,
2752 sizeof(*extent));
2753 if (ret) {
2754 btrfs_abort_transaction(trans, ret);
2755 goto out_free_path;
2756 }
2757
2758 leaf = path->nodes[0];
2759 item = btrfs_item_ptr(leaf, path->slots[0],
2760 struct btrfs_file_extent_item);
2761 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2762 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2763 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2764 btrfs_set_file_extent_num_bytes(leaf, item, len);
2765 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2766 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2767 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2768 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2769 btrfs_set_file_extent_encryption(leaf, item, 0);
2770 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2771
2772 btrfs_mark_buffer_dirty(leaf);
2773 inode_add_bytes(inode, len);
2774 btrfs_release_path(path);
2775
2776 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2777 new->disk_len, 0,
2778 backref->root_id, backref->inum,
2779 new->file_pos); /* start - extent_offset */
2780 if (ret) {
2781 btrfs_abort_transaction(trans, ret);
2782 goto out_free_path;
2783 }
2784
2785 ret = 1;
2786 out_free_path:
2787 btrfs_release_path(path);
2788 path->leave_spinning = 0;
2789 btrfs_end_transaction(trans);
2790 out_unlock:
2791 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2792 &cached);
2793 iput(inode);
2794 return ret;
2795 }
2796
free_sa_defrag_extent(struct new_sa_defrag_extent * new)2797 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2798 {
2799 struct old_sa_defrag_extent *old, *tmp;
2800
2801 if (!new)
2802 return;
2803
2804 list_for_each_entry_safe(old, tmp, &new->head, list) {
2805 kfree(old);
2806 }
2807 kfree(new);
2808 }
2809
relink_file_extents(struct new_sa_defrag_extent * new)2810 static void relink_file_extents(struct new_sa_defrag_extent *new)
2811 {
2812 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2813 struct btrfs_path *path;
2814 struct sa_defrag_extent_backref *backref;
2815 struct sa_defrag_extent_backref *prev = NULL;
2816 struct inode *inode;
2817 struct rb_node *node;
2818 int ret;
2819
2820 inode = new->inode;
2821
2822 path = btrfs_alloc_path();
2823 if (!path)
2824 return;
2825
2826 if (!record_extent_backrefs(path, new)) {
2827 btrfs_free_path(path);
2828 goto out;
2829 }
2830 btrfs_release_path(path);
2831
2832 while (1) {
2833 node = rb_first(&new->root);
2834 if (!node)
2835 break;
2836 rb_erase(node, &new->root);
2837
2838 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2839
2840 ret = relink_extent_backref(path, prev, backref);
2841 WARN_ON(ret < 0);
2842
2843 kfree(prev);
2844
2845 if (ret == 1)
2846 prev = backref;
2847 else
2848 prev = NULL;
2849 cond_resched();
2850 }
2851 kfree(prev);
2852
2853 btrfs_free_path(path);
2854 out:
2855 free_sa_defrag_extent(new);
2856
2857 atomic_dec(&fs_info->defrag_running);
2858 wake_up(&fs_info->transaction_wait);
2859 }
2860
2861 static struct new_sa_defrag_extent *
record_old_file_extents(struct inode * inode,struct btrfs_ordered_extent * ordered)2862 record_old_file_extents(struct inode *inode,
2863 struct btrfs_ordered_extent *ordered)
2864 {
2865 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2866 struct btrfs_root *root = BTRFS_I(inode)->root;
2867 struct btrfs_path *path;
2868 struct btrfs_key key;
2869 struct old_sa_defrag_extent *old;
2870 struct new_sa_defrag_extent *new;
2871 int ret;
2872
2873 new = kmalloc(sizeof(*new), GFP_NOFS);
2874 if (!new)
2875 return NULL;
2876
2877 new->inode = inode;
2878 new->file_pos = ordered->file_offset;
2879 new->len = ordered->len;
2880 new->bytenr = ordered->start;
2881 new->disk_len = ordered->disk_len;
2882 new->compress_type = ordered->compress_type;
2883 new->root = RB_ROOT;
2884 INIT_LIST_HEAD(&new->head);
2885
2886 path = btrfs_alloc_path();
2887 if (!path)
2888 goto out_kfree;
2889
2890 key.objectid = btrfs_ino(BTRFS_I(inode));
2891 key.type = BTRFS_EXTENT_DATA_KEY;
2892 key.offset = new->file_pos;
2893
2894 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2895 if (ret < 0)
2896 goto out_free_path;
2897 if (ret > 0 && path->slots[0] > 0)
2898 path->slots[0]--;
2899
2900 /* find out all the old extents for the file range */
2901 while (1) {
2902 struct btrfs_file_extent_item *extent;
2903 struct extent_buffer *l;
2904 int slot;
2905 u64 num_bytes;
2906 u64 offset;
2907 u64 end;
2908 u64 disk_bytenr;
2909 u64 extent_offset;
2910
2911 l = path->nodes[0];
2912 slot = path->slots[0];
2913
2914 if (slot >= btrfs_header_nritems(l)) {
2915 ret = btrfs_next_leaf(root, path);
2916 if (ret < 0)
2917 goto out_free_path;
2918 else if (ret > 0)
2919 break;
2920 continue;
2921 }
2922
2923 btrfs_item_key_to_cpu(l, &key, slot);
2924
2925 if (key.objectid != btrfs_ino(BTRFS_I(inode)))
2926 break;
2927 if (key.type != BTRFS_EXTENT_DATA_KEY)
2928 break;
2929 if (key.offset >= new->file_pos + new->len)
2930 break;
2931
2932 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2933
2934 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2935 if (key.offset + num_bytes < new->file_pos)
2936 goto next;
2937
2938 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2939 if (!disk_bytenr)
2940 goto next;
2941
2942 extent_offset = btrfs_file_extent_offset(l, extent);
2943
2944 old = kmalloc(sizeof(*old), GFP_NOFS);
2945 if (!old)
2946 goto out_free_path;
2947
2948 offset = max(new->file_pos, key.offset);
2949 end = min(new->file_pos + new->len, key.offset + num_bytes);
2950
2951 old->bytenr = disk_bytenr;
2952 old->extent_offset = extent_offset;
2953 old->offset = offset - key.offset;
2954 old->len = end - offset;
2955 old->new = new;
2956 old->count = 0;
2957 list_add_tail(&old->list, &new->head);
2958 next:
2959 path->slots[0]++;
2960 cond_resched();
2961 }
2962
2963 btrfs_free_path(path);
2964 atomic_inc(&fs_info->defrag_running);
2965
2966 return new;
2967
2968 out_free_path:
2969 btrfs_free_path(path);
2970 out_kfree:
2971 free_sa_defrag_extent(new);
2972 return NULL;
2973 }
2974
btrfs_release_delalloc_bytes(struct btrfs_fs_info * fs_info,u64 start,u64 len)2975 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2976 u64 start, u64 len)
2977 {
2978 struct btrfs_block_group_cache *cache;
2979
2980 cache = btrfs_lookup_block_group(fs_info, start);
2981 ASSERT(cache);
2982
2983 spin_lock(&cache->lock);
2984 cache->delalloc_bytes -= len;
2985 spin_unlock(&cache->lock);
2986
2987 btrfs_put_block_group(cache);
2988 }
2989
2990 /* as ordered data IO finishes, this gets called so we can finish
2991 * an ordered extent if the range of bytes in the file it covers are
2992 * fully written.
2993 */
btrfs_finish_ordered_io(struct btrfs_ordered_extent * ordered_extent)2994 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2995 {
2996 struct inode *inode = ordered_extent->inode;
2997 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2998 struct btrfs_root *root = BTRFS_I(inode)->root;
2999 struct btrfs_trans_handle *trans = NULL;
3000 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3001 struct extent_state *cached_state = NULL;
3002 struct new_sa_defrag_extent *new = NULL;
3003 int compress_type = 0;
3004 int ret = 0;
3005 u64 logical_len = ordered_extent->len;
3006 bool nolock;
3007 bool truncated = false;
3008 bool range_locked = false;
3009 bool clear_new_delalloc_bytes = false;
3010 bool clear_reserved_extent = true;
3011
3012 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3013 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3014 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
3015 clear_new_delalloc_bytes = true;
3016
3017 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
3018
3019 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3020 ret = -EIO;
3021 goto out;
3022 }
3023
3024 btrfs_free_io_failure_record(BTRFS_I(inode),
3025 ordered_extent->file_offset,
3026 ordered_extent->file_offset +
3027 ordered_extent->len - 1);
3028
3029 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3030 truncated = true;
3031 logical_len = ordered_extent->truncated_len;
3032 /* Truncated the entire extent, don't bother adding */
3033 if (!logical_len)
3034 goto out;
3035 }
3036
3037 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3038 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
3039
3040 /*
3041 * For mwrite(mmap + memset to write) case, we still reserve
3042 * space for NOCOW range.
3043 * As NOCOW won't cause a new delayed ref, just free the space
3044 */
3045 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3046 ordered_extent->len);
3047 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3048 if (nolock)
3049 trans = btrfs_join_transaction_nolock(root);
3050 else
3051 trans = btrfs_join_transaction(root);
3052 if (IS_ERR(trans)) {
3053 ret = PTR_ERR(trans);
3054 trans = NULL;
3055 goto out;
3056 }
3057 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
3058 ret = btrfs_update_inode_fallback(trans, root, inode);
3059 if (ret) /* -ENOMEM or corruption */
3060 btrfs_abort_transaction(trans, ret);
3061 goto out;
3062 }
3063
3064 range_locked = true;
3065 lock_extent_bits(io_tree, ordered_extent->file_offset,
3066 ordered_extent->file_offset + ordered_extent->len - 1,
3067 &cached_state);
3068
3069 ret = test_range_bit(io_tree, ordered_extent->file_offset,
3070 ordered_extent->file_offset + ordered_extent->len - 1,
3071 EXTENT_DEFRAG, 0, cached_state);
3072 if (ret) {
3073 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
3074 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
3075 /* the inode is shared */
3076 new = record_old_file_extents(inode, ordered_extent);
3077
3078 clear_extent_bit(io_tree, ordered_extent->file_offset,
3079 ordered_extent->file_offset + ordered_extent->len - 1,
3080 EXTENT_DEFRAG, 0, 0, &cached_state);
3081 }
3082
3083 if (nolock)
3084 trans = btrfs_join_transaction_nolock(root);
3085 else
3086 trans = btrfs_join_transaction(root);
3087 if (IS_ERR(trans)) {
3088 ret = PTR_ERR(trans);
3089 trans = NULL;
3090 goto out;
3091 }
3092
3093 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
3094
3095 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3096 compress_type = ordered_extent->compress_type;
3097 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3098 BUG_ON(compress_type);
3099 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3100 ordered_extent->len);
3101 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
3102 ordered_extent->file_offset,
3103 ordered_extent->file_offset +
3104 logical_len);
3105 } else {
3106 BUG_ON(root == fs_info->tree_root);
3107 ret = insert_reserved_file_extent(trans, inode,
3108 ordered_extent->file_offset,
3109 ordered_extent->start,
3110 ordered_extent->disk_len,
3111 logical_len, logical_len,
3112 compress_type, 0, 0,
3113 BTRFS_FILE_EXTENT_REG);
3114 if (!ret) {
3115 clear_reserved_extent = false;
3116 btrfs_release_delalloc_bytes(fs_info,
3117 ordered_extent->start,
3118 ordered_extent->disk_len);
3119 }
3120 }
3121 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3122 ordered_extent->file_offset, ordered_extent->len,
3123 trans->transid);
3124 if (ret < 0) {
3125 btrfs_abort_transaction(trans, ret);
3126 goto out;
3127 }
3128
3129 ret = add_pending_csums(trans, inode, &ordered_extent->list);
3130 if (ret) {
3131 btrfs_abort_transaction(trans, ret);
3132 goto out;
3133 }
3134
3135 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3136 ret = btrfs_update_inode_fallback(trans, root, inode);
3137 if (ret) { /* -ENOMEM or corruption */
3138 btrfs_abort_transaction(trans, ret);
3139 goto out;
3140 }
3141 ret = 0;
3142 out:
3143 if (range_locked || clear_new_delalloc_bytes) {
3144 unsigned int clear_bits = 0;
3145
3146 if (range_locked)
3147 clear_bits |= EXTENT_LOCKED;
3148 if (clear_new_delalloc_bytes)
3149 clear_bits |= EXTENT_DELALLOC_NEW;
3150 clear_extent_bit(&BTRFS_I(inode)->io_tree,
3151 ordered_extent->file_offset,
3152 ordered_extent->file_offset +
3153 ordered_extent->len - 1,
3154 clear_bits,
3155 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
3156 0, &cached_state);
3157 }
3158
3159 if (trans)
3160 btrfs_end_transaction(trans);
3161
3162 if (ret || truncated) {
3163 u64 start, end;
3164
3165 /*
3166 * If we failed to finish this ordered extent for any reason we
3167 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
3168 * extent, and mark the inode with the error if it wasn't
3169 * already set. Any error during writeback would have already
3170 * set the mapping error, so we need to set it if we're the ones
3171 * marking this ordered extent as failed.
3172 */
3173 if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR,
3174 &ordered_extent->flags))
3175 mapping_set_error(ordered_extent->inode->i_mapping, -EIO);
3176
3177 if (truncated)
3178 start = ordered_extent->file_offset + logical_len;
3179 else
3180 start = ordered_extent->file_offset;
3181 end = ordered_extent->file_offset + ordered_extent->len - 1;
3182 clear_extent_uptodate(io_tree, start, end, NULL);
3183
3184 /* Drop the cache for the part of the extent we didn't write. */
3185 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3186
3187 /*
3188 * If the ordered extent had an IOERR or something else went
3189 * wrong we need to return the space for this ordered extent
3190 * back to the allocator. We only free the extent in the
3191 * truncated case if we didn't write out the extent at all.
3192 *
3193 * If we made it past insert_reserved_file_extent before we
3194 * errored out then we don't need to do this as the accounting
3195 * has already been done.
3196 */
3197 if ((ret || !logical_len) &&
3198 clear_reserved_extent &&
3199 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3200 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3201 btrfs_free_reserved_extent(fs_info,
3202 ordered_extent->start,
3203 ordered_extent->disk_len, 1);
3204 }
3205
3206
3207 /*
3208 * This needs to be done to make sure anybody waiting knows we are done
3209 * updating everything for this ordered extent.
3210 */
3211 btrfs_remove_ordered_extent(inode, ordered_extent);
3212
3213 /* for snapshot-aware defrag */
3214 if (new) {
3215 if (ret) {
3216 free_sa_defrag_extent(new);
3217 atomic_dec(&fs_info->defrag_running);
3218 } else {
3219 relink_file_extents(new);
3220 }
3221 }
3222
3223 /* once for us */
3224 btrfs_put_ordered_extent(ordered_extent);
3225 /* once for the tree */
3226 btrfs_put_ordered_extent(ordered_extent);
3227
3228 return ret;
3229 }
3230
finish_ordered_fn(struct btrfs_work * work)3231 static void finish_ordered_fn(struct btrfs_work *work)
3232 {
3233 struct btrfs_ordered_extent *ordered_extent;
3234 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3235 btrfs_finish_ordered_io(ordered_extent);
3236 }
3237
btrfs_writepage_end_io_hook(struct page * page,u64 start,u64 end,struct extent_state * state,int uptodate)3238 static void btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
3239 struct extent_state *state, int uptodate)
3240 {
3241 struct inode *inode = page->mapping->host;
3242 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3243 struct btrfs_ordered_extent *ordered_extent = NULL;
3244 struct btrfs_workqueue *wq;
3245 btrfs_work_func_t func;
3246
3247 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3248
3249 ClearPagePrivate2(page);
3250 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3251 end - start + 1, uptodate))
3252 return;
3253
3254 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
3255 wq = fs_info->endio_freespace_worker;
3256 func = btrfs_freespace_write_helper;
3257 } else {
3258 wq = fs_info->endio_write_workers;
3259 func = btrfs_endio_write_helper;
3260 }
3261
3262 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3263 NULL);
3264 btrfs_queue_work(wq, &ordered_extent->work);
3265 }
3266
__readpage_endio_check(struct inode * inode,struct btrfs_io_bio * io_bio,int icsum,struct page * page,int pgoff,u64 start,size_t len)3267 static int __readpage_endio_check(struct inode *inode,
3268 struct btrfs_io_bio *io_bio,
3269 int icsum, struct page *page,
3270 int pgoff, u64 start, size_t len)
3271 {
3272 char *kaddr;
3273 u32 csum_expected;
3274 u32 csum = ~(u32)0;
3275
3276 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3277
3278 kaddr = kmap_atomic(page);
3279 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
3280 btrfs_csum_final(csum, (u8 *)&csum);
3281 if (csum != csum_expected)
3282 goto zeroit;
3283
3284 kunmap_atomic(kaddr);
3285 return 0;
3286 zeroit:
3287 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3288 io_bio->mirror_num);
3289 memset(kaddr + pgoff, 1, len);
3290 flush_dcache_page(page);
3291 kunmap_atomic(kaddr);
3292 return -EIO;
3293 }
3294
3295 /*
3296 * when reads are done, we need to check csums to verify the data is correct
3297 * if there's a match, we allow the bio to finish. If not, the code in
3298 * extent_io.c will try to find good copies for us.
3299 */
btrfs_readpage_end_io_hook(struct btrfs_io_bio * io_bio,u64 phy_offset,struct page * page,u64 start,u64 end,int mirror)3300 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3301 u64 phy_offset, struct page *page,
3302 u64 start, u64 end, int mirror)
3303 {
3304 size_t offset = start - page_offset(page);
3305 struct inode *inode = page->mapping->host;
3306 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3307 struct btrfs_root *root = BTRFS_I(inode)->root;
3308
3309 if (PageChecked(page)) {
3310 ClearPageChecked(page);
3311 return 0;
3312 }
3313
3314 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3315 return 0;
3316
3317 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3318 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3319 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3320 return 0;
3321 }
3322
3323 phy_offset >>= inode->i_sb->s_blocksize_bits;
3324 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3325 start, (size_t)(end - start + 1));
3326 }
3327
3328 /*
3329 * btrfs_add_delayed_iput - perform a delayed iput on @inode
3330 *
3331 * @inode: The inode we want to perform iput on
3332 *
3333 * This function uses the generic vfs_inode::i_count to track whether we should
3334 * just decrement it (in case it's > 1) or if this is the last iput then link
3335 * the inode to the delayed iput machinery. Delayed iputs are processed at
3336 * transaction commit time/superblock commit/cleaner kthread.
3337 */
btrfs_add_delayed_iput(struct inode * inode)3338 void btrfs_add_delayed_iput(struct inode *inode)
3339 {
3340 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3341 struct btrfs_inode *binode = BTRFS_I(inode);
3342
3343 if (atomic_add_unless(&inode->i_count, -1, 1))
3344 return;
3345
3346 spin_lock(&fs_info->delayed_iput_lock);
3347 ASSERT(list_empty(&binode->delayed_iput));
3348 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3349 spin_unlock(&fs_info->delayed_iput_lock);
3350 }
3351
btrfs_run_delayed_iputs(struct btrfs_fs_info * fs_info)3352 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3353 {
3354
3355 spin_lock(&fs_info->delayed_iput_lock);
3356 while (!list_empty(&fs_info->delayed_iputs)) {
3357 struct btrfs_inode *inode;
3358
3359 inode = list_first_entry(&fs_info->delayed_iputs,
3360 struct btrfs_inode, delayed_iput);
3361 list_del_init(&inode->delayed_iput);
3362 spin_unlock(&fs_info->delayed_iput_lock);
3363 iput(&inode->vfs_inode);
3364 spin_lock(&fs_info->delayed_iput_lock);
3365 }
3366 spin_unlock(&fs_info->delayed_iput_lock);
3367 }
3368
3369 /*
3370 * This creates an orphan entry for the given inode in case something goes wrong
3371 * in the middle of an unlink.
3372 */
btrfs_orphan_add(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3373 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3374 struct btrfs_inode *inode)
3375 {
3376 int ret;
3377
3378 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3379 if (ret && ret != -EEXIST) {
3380 btrfs_abort_transaction(trans, ret);
3381 return ret;
3382 }
3383
3384 return 0;
3385 }
3386
3387 /*
3388 * We have done the delete so we can go ahead and remove the orphan item for
3389 * this particular inode.
3390 */
btrfs_orphan_del(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3391 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3392 struct btrfs_inode *inode)
3393 {
3394 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3395 }
3396
3397 /*
3398 * this cleans up any orphans that may be left on the list from the last use
3399 * of this root.
3400 */
btrfs_orphan_cleanup(struct btrfs_root * root)3401 int btrfs_orphan_cleanup(struct btrfs_root *root)
3402 {
3403 struct btrfs_fs_info *fs_info = root->fs_info;
3404 struct btrfs_path *path;
3405 struct extent_buffer *leaf;
3406 struct btrfs_key key, found_key;
3407 struct btrfs_trans_handle *trans;
3408 struct inode *inode;
3409 u64 last_objectid = 0;
3410 int ret = 0, nr_unlink = 0;
3411
3412 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3413 return 0;
3414
3415 path = btrfs_alloc_path();
3416 if (!path) {
3417 ret = -ENOMEM;
3418 goto out;
3419 }
3420 path->reada = READA_BACK;
3421
3422 key.objectid = BTRFS_ORPHAN_OBJECTID;
3423 key.type = BTRFS_ORPHAN_ITEM_KEY;
3424 key.offset = (u64)-1;
3425
3426 while (1) {
3427 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3428 if (ret < 0)
3429 goto out;
3430
3431 /*
3432 * if ret == 0 means we found what we were searching for, which
3433 * is weird, but possible, so only screw with path if we didn't
3434 * find the key and see if we have stuff that matches
3435 */
3436 if (ret > 0) {
3437 ret = 0;
3438 if (path->slots[0] == 0)
3439 break;
3440 path->slots[0]--;
3441 }
3442
3443 /* pull out the item */
3444 leaf = path->nodes[0];
3445 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3446
3447 /* make sure the item matches what we want */
3448 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3449 break;
3450 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3451 break;
3452
3453 /* release the path since we're done with it */
3454 btrfs_release_path(path);
3455
3456 /*
3457 * this is where we are basically btrfs_lookup, without the
3458 * crossing root thing. we store the inode number in the
3459 * offset of the orphan item.
3460 */
3461
3462 if (found_key.offset == last_objectid) {
3463 btrfs_err(fs_info,
3464 "Error removing orphan entry, stopping orphan cleanup");
3465 ret = -EINVAL;
3466 goto out;
3467 }
3468
3469 last_objectid = found_key.offset;
3470
3471 found_key.objectid = found_key.offset;
3472 found_key.type = BTRFS_INODE_ITEM_KEY;
3473 found_key.offset = 0;
3474 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
3475 ret = PTR_ERR_OR_ZERO(inode);
3476 if (ret && ret != -ENOENT)
3477 goto out;
3478
3479 if (ret == -ENOENT && root == fs_info->tree_root) {
3480 struct btrfs_root *dead_root;
3481 struct btrfs_fs_info *fs_info = root->fs_info;
3482 int is_dead_root = 0;
3483
3484 /*
3485 * this is an orphan in the tree root. Currently these
3486 * could come from 2 sources:
3487 * a) a snapshot deletion in progress
3488 * b) a free space cache inode
3489 * We need to distinguish those two, as the snapshot
3490 * orphan must not get deleted.
3491 * find_dead_roots already ran before us, so if this
3492 * is a snapshot deletion, we should find the root
3493 * in the dead_roots list
3494 */
3495 spin_lock(&fs_info->trans_lock);
3496 list_for_each_entry(dead_root, &fs_info->dead_roots,
3497 root_list) {
3498 if (dead_root->root_key.objectid ==
3499 found_key.objectid) {
3500 is_dead_root = 1;
3501 break;
3502 }
3503 }
3504 spin_unlock(&fs_info->trans_lock);
3505 if (is_dead_root) {
3506 /* prevent this orphan from being found again */
3507 key.offset = found_key.objectid - 1;
3508 continue;
3509 }
3510
3511 }
3512
3513 /*
3514 * If we have an inode with links, there are a couple of
3515 * possibilities. Old kernels (before v3.12) used to create an
3516 * orphan item for truncate indicating that there were possibly
3517 * extent items past i_size that needed to be deleted. In v3.12,
3518 * truncate was changed to update i_size in sync with the extent
3519 * items, but the (useless) orphan item was still created. Since
3520 * v4.18, we don't create the orphan item for truncate at all.
3521 *
3522 * So, this item could mean that we need to do a truncate, but
3523 * only if this filesystem was last used on a pre-v3.12 kernel
3524 * and was not cleanly unmounted. The odds of that are quite
3525 * slim, and it's a pain to do the truncate now, so just delete
3526 * the orphan item.
3527 *
3528 * It's also possible that this orphan item was supposed to be
3529 * deleted but wasn't. The inode number may have been reused,
3530 * but either way, we can delete the orphan item.
3531 */
3532 if (ret == -ENOENT || inode->i_nlink) {
3533 if (!ret)
3534 iput(inode);
3535 trans = btrfs_start_transaction(root, 1);
3536 if (IS_ERR(trans)) {
3537 ret = PTR_ERR(trans);
3538 goto out;
3539 }
3540 btrfs_debug(fs_info, "auto deleting %Lu",
3541 found_key.objectid);
3542 ret = btrfs_del_orphan_item(trans, root,
3543 found_key.objectid);
3544 btrfs_end_transaction(trans);
3545 if (ret)
3546 goto out;
3547 continue;
3548 }
3549
3550 nr_unlink++;
3551
3552 /* this will do delete_inode and everything for us */
3553 iput(inode);
3554 if (ret)
3555 goto out;
3556 }
3557 /* release the path since we're done with it */
3558 btrfs_release_path(path);
3559
3560 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3561
3562 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3563 trans = btrfs_join_transaction(root);
3564 if (!IS_ERR(trans))
3565 btrfs_end_transaction(trans);
3566 }
3567
3568 if (nr_unlink)
3569 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3570
3571 out:
3572 if (ret)
3573 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3574 btrfs_free_path(path);
3575 return ret;
3576 }
3577
3578 /*
3579 * very simple check to peek ahead in the leaf looking for xattrs. If we
3580 * don't find any xattrs, we know there can't be any acls.
3581 *
3582 * slot is the slot the inode is in, objectid is the objectid of the inode
3583 */
acls_after_inode_item(struct extent_buffer * leaf,int slot,u64 objectid,int * first_xattr_slot)3584 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3585 int slot, u64 objectid,
3586 int *first_xattr_slot)
3587 {
3588 u32 nritems = btrfs_header_nritems(leaf);
3589 struct btrfs_key found_key;
3590 static u64 xattr_access = 0;
3591 static u64 xattr_default = 0;
3592 int scanned = 0;
3593
3594 if (!xattr_access) {
3595 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3596 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3597 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3598 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3599 }
3600
3601 slot++;
3602 *first_xattr_slot = -1;
3603 while (slot < nritems) {
3604 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3605
3606 /* we found a different objectid, there must not be acls */
3607 if (found_key.objectid != objectid)
3608 return 0;
3609
3610 /* we found an xattr, assume we've got an acl */
3611 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3612 if (*first_xattr_slot == -1)
3613 *first_xattr_slot = slot;
3614 if (found_key.offset == xattr_access ||
3615 found_key.offset == xattr_default)
3616 return 1;
3617 }
3618
3619 /*
3620 * we found a key greater than an xattr key, there can't
3621 * be any acls later on
3622 */
3623 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3624 return 0;
3625
3626 slot++;
3627 scanned++;
3628
3629 /*
3630 * it goes inode, inode backrefs, xattrs, extents,
3631 * so if there are a ton of hard links to an inode there can
3632 * be a lot of backrefs. Don't waste time searching too hard,
3633 * this is just an optimization
3634 */
3635 if (scanned >= 8)
3636 break;
3637 }
3638 /* we hit the end of the leaf before we found an xattr or
3639 * something larger than an xattr. We have to assume the inode
3640 * has acls
3641 */
3642 if (*first_xattr_slot == -1)
3643 *first_xattr_slot = slot;
3644 return 1;
3645 }
3646
3647 /*
3648 * read an inode from the btree into the in-memory inode
3649 */
btrfs_read_locked_inode(struct inode * inode,struct btrfs_path * in_path)3650 static int btrfs_read_locked_inode(struct inode *inode,
3651 struct btrfs_path *in_path)
3652 {
3653 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3654 struct btrfs_path *path = in_path;
3655 struct extent_buffer *leaf;
3656 struct btrfs_inode_item *inode_item;
3657 struct btrfs_root *root = BTRFS_I(inode)->root;
3658 struct btrfs_key location;
3659 unsigned long ptr;
3660 int maybe_acls;
3661 u32 rdev;
3662 int ret;
3663 bool filled = false;
3664 int first_xattr_slot;
3665
3666 ret = btrfs_fill_inode(inode, &rdev);
3667 if (!ret)
3668 filled = true;
3669
3670 if (!path) {
3671 path = btrfs_alloc_path();
3672 if (!path)
3673 return -ENOMEM;
3674 }
3675
3676 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3677
3678 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3679 if (ret) {
3680 if (path != in_path)
3681 btrfs_free_path(path);
3682 return ret;
3683 }
3684
3685 leaf = path->nodes[0];
3686
3687 if (filled)
3688 goto cache_index;
3689
3690 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3691 struct btrfs_inode_item);
3692 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3693 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3694 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3695 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3696 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3697
3698 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3699 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3700
3701 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3702 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3703
3704 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3705 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3706
3707 BTRFS_I(inode)->i_otime.tv_sec =
3708 btrfs_timespec_sec(leaf, &inode_item->otime);
3709 BTRFS_I(inode)->i_otime.tv_nsec =
3710 btrfs_timespec_nsec(leaf, &inode_item->otime);
3711
3712 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3713 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3714 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3715
3716 inode_set_iversion_queried(inode,
3717 btrfs_inode_sequence(leaf, inode_item));
3718 inode->i_generation = BTRFS_I(inode)->generation;
3719 inode->i_rdev = 0;
3720 rdev = btrfs_inode_rdev(leaf, inode_item);
3721
3722 BTRFS_I(inode)->index_cnt = (u64)-1;
3723 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3724
3725 cache_index:
3726 /*
3727 * If we were modified in the current generation and evicted from memory
3728 * and then re-read we need to do a full sync since we don't have any
3729 * idea about which extents were modified before we were evicted from
3730 * cache.
3731 *
3732 * This is required for both inode re-read from disk and delayed inode
3733 * in delayed_nodes_tree.
3734 */
3735 if (BTRFS_I(inode)->last_trans == fs_info->generation)
3736 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3737 &BTRFS_I(inode)->runtime_flags);
3738
3739 /*
3740 * We don't persist the id of the transaction where an unlink operation
3741 * against the inode was last made. So here we assume the inode might
3742 * have been evicted, and therefore the exact value of last_unlink_trans
3743 * lost, and set it to last_trans to avoid metadata inconsistencies
3744 * between the inode and its parent if the inode is fsync'ed and the log
3745 * replayed. For example, in the scenario:
3746 *
3747 * touch mydir/foo
3748 * ln mydir/foo mydir/bar
3749 * sync
3750 * unlink mydir/bar
3751 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3752 * xfs_io -c fsync mydir/foo
3753 * <power failure>
3754 * mount fs, triggers fsync log replay
3755 *
3756 * We must make sure that when we fsync our inode foo we also log its
3757 * parent inode, otherwise after log replay the parent still has the
3758 * dentry with the "bar" name but our inode foo has a link count of 1
3759 * and doesn't have an inode ref with the name "bar" anymore.
3760 *
3761 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3762 * but it guarantees correctness at the expense of occasional full
3763 * transaction commits on fsync if our inode is a directory, or if our
3764 * inode is not a directory, logging its parent unnecessarily.
3765 */
3766 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3767 /*
3768 * Similar reasoning for last_link_trans, needs to be set otherwise
3769 * for a case like the following:
3770 *
3771 * mkdir A
3772 * touch foo
3773 * ln foo A/bar
3774 * echo 2 > /proc/sys/vm/drop_caches
3775 * fsync foo
3776 * <power failure>
3777 *
3778 * Would result in link bar and directory A not existing after the power
3779 * failure.
3780 */
3781 BTRFS_I(inode)->last_link_trans = BTRFS_I(inode)->last_trans;
3782
3783 path->slots[0]++;
3784 if (inode->i_nlink != 1 ||
3785 path->slots[0] >= btrfs_header_nritems(leaf))
3786 goto cache_acl;
3787
3788 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3789 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3790 goto cache_acl;
3791
3792 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3793 if (location.type == BTRFS_INODE_REF_KEY) {
3794 struct btrfs_inode_ref *ref;
3795
3796 ref = (struct btrfs_inode_ref *)ptr;
3797 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3798 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3799 struct btrfs_inode_extref *extref;
3800
3801 extref = (struct btrfs_inode_extref *)ptr;
3802 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3803 extref);
3804 }
3805 cache_acl:
3806 /*
3807 * try to precache a NULL acl entry for files that don't have
3808 * any xattrs or acls
3809 */
3810 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3811 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3812 if (first_xattr_slot != -1) {
3813 path->slots[0] = first_xattr_slot;
3814 ret = btrfs_load_inode_props(inode, path);
3815 if (ret)
3816 btrfs_err(fs_info,
3817 "error loading props for ino %llu (root %llu): %d",
3818 btrfs_ino(BTRFS_I(inode)),
3819 root->root_key.objectid, ret);
3820 }
3821 if (path != in_path)
3822 btrfs_free_path(path);
3823
3824 if (!maybe_acls)
3825 cache_no_acl(inode);
3826
3827 switch (inode->i_mode & S_IFMT) {
3828 case S_IFREG:
3829 inode->i_mapping->a_ops = &btrfs_aops;
3830 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3831 inode->i_fop = &btrfs_file_operations;
3832 inode->i_op = &btrfs_file_inode_operations;
3833 break;
3834 case S_IFDIR:
3835 inode->i_fop = &btrfs_dir_file_operations;
3836 inode->i_op = &btrfs_dir_inode_operations;
3837 break;
3838 case S_IFLNK:
3839 inode->i_op = &btrfs_symlink_inode_operations;
3840 inode_nohighmem(inode);
3841 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3842 break;
3843 default:
3844 inode->i_op = &btrfs_special_inode_operations;
3845 init_special_inode(inode, inode->i_mode, rdev);
3846 break;
3847 }
3848
3849 btrfs_sync_inode_flags_to_i_flags(inode);
3850 return 0;
3851 }
3852
3853 /*
3854 * given a leaf and an inode, copy the inode fields into the leaf
3855 */
fill_inode_item(struct btrfs_trans_handle * trans,struct extent_buffer * leaf,struct btrfs_inode_item * item,struct inode * inode)3856 static void fill_inode_item(struct btrfs_trans_handle *trans,
3857 struct extent_buffer *leaf,
3858 struct btrfs_inode_item *item,
3859 struct inode *inode)
3860 {
3861 struct btrfs_map_token token;
3862
3863 btrfs_init_map_token(&token);
3864
3865 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3866 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3867 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3868 &token);
3869 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3870 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3871
3872 btrfs_set_token_timespec_sec(leaf, &item->atime,
3873 inode->i_atime.tv_sec, &token);
3874 btrfs_set_token_timespec_nsec(leaf, &item->atime,
3875 inode->i_atime.tv_nsec, &token);
3876
3877 btrfs_set_token_timespec_sec(leaf, &item->mtime,
3878 inode->i_mtime.tv_sec, &token);
3879 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3880 inode->i_mtime.tv_nsec, &token);
3881
3882 btrfs_set_token_timespec_sec(leaf, &item->ctime,
3883 inode->i_ctime.tv_sec, &token);
3884 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3885 inode->i_ctime.tv_nsec, &token);
3886
3887 btrfs_set_token_timespec_sec(leaf, &item->otime,
3888 BTRFS_I(inode)->i_otime.tv_sec, &token);
3889 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3890 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3891
3892 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3893 &token);
3894 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3895 &token);
3896 btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode),
3897 &token);
3898 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3899 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3900 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3901 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3902 }
3903
3904 /*
3905 * copy everything in the in-memory inode into the btree.
3906 */
btrfs_update_inode_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)3907 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3908 struct btrfs_root *root, struct inode *inode)
3909 {
3910 struct btrfs_inode_item *inode_item;
3911 struct btrfs_path *path;
3912 struct extent_buffer *leaf;
3913 int ret;
3914
3915 path = btrfs_alloc_path();
3916 if (!path)
3917 return -ENOMEM;
3918
3919 path->leave_spinning = 1;
3920 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3921 1);
3922 if (ret) {
3923 if (ret > 0)
3924 ret = -ENOENT;
3925 goto failed;
3926 }
3927
3928 leaf = path->nodes[0];
3929 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3930 struct btrfs_inode_item);
3931
3932 fill_inode_item(trans, leaf, inode_item, inode);
3933 btrfs_mark_buffer_dirty(leaf);
3934 btrfs_set_inode_last_trans(trans, inode);
3935 ret = 0;
3936 failed:
3937 btrfs_free_path(path);
3938 return ret;
3939 }
3940
3941 /*
3942 * copy everything in the in-memory inode into the btree.
3943 */
btrfs_update_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)3944 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3945 struct btrfs_root *root, struct inode *inode)
3946 {
3947 struct btrfs_fs_info *fs_info = root->fs_info;
3948 int ret;
3949
3950 /*
3951 * If the inode is a free space inode, we can deadlock during commit
3952 * if we put it into the delayed code.
3953 *
3954 * The data relocation inode should also be directly updated
3955 * without delay
3956 */
3957 if (!btrfs_is_free_space_inode(BTRFS_I(inode))
3958 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3959 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
3960 btrfs_update_root_times(trans, root);
3961
3962 ret = btrfs_delayed_update_inode(trans, root, inode);
3963 if (!ret)
3964 btrfs_set_inode_last_trans(trans, inode);
3965 return ret;
3966 }
3967
3968 return btrfs_update_inode_item(trans, root, inode);
3969 }
3970
btrfs_update_inode_fallback(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)3971 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3972 struct btrfs_root *root,
3973 struct inode *inode)
3974 {
3975 int ret;
3976
3977 ret = btrfs_update_inode(trans, root, inode);
3978 if (ret == -ENOSPC)
3979 return btrfs_update_inode_item(trans, root, inode);
3980 return ret;
3981 }
3982
3983 /*
3984 * unlink helper that gets used here in inode.c and in the tree logging
3985 * recovery code. It remove a link in a directory with a given name, and
3986 * also drops the back refs in the inode to the directory
3987 */
__btrfs_unlink_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * dir,struct btrfs_inode * inode,const char * name,int name_len)3988 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3989 struct btrfs_root *root,
3990 struct btrfs_inode *dir,
3991 struct btrfs_inode *inode,
3992 const char *name, int name_len)
3993 {
3994 struct btrfs_fs_info *fs_info = root->fs_info;
3995 struct btrfs_path *path;
3996 int ret = 0;
3997 struct extent_buffer *leaf;
3998 struct btrfs_dir_item *di;
3999 struct btrfs_key key;
4000 u64 index;
4001 u64 ino = btrfs_ino(inode);
4002 u64 dir_ino = btrfs_ino(dir);
4003
4004 path = btrfs_alloc_path();
4005 if (!path) {
4006 ret = -ENOMEM;
4007 goto out;
4008 }
4009
4010 path->leave_spinning = 1;
4011 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4012 name, name_len, -1);
4013 if (IS_ERR(di)) {
4014 ret = PTR_ERR(di);
4015 goto err;
4016 }
4017 if (!di) {
4018 ret = -ENOENT;
4019 goto err;
4020 }
4021 leaf = path->nodes[0];
4022 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4023 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4024 if (ret)
4025 goto err;
4026 btrfs_release_path(path);
4027
4028 /*
4029 * If we don't have dir index, we have to get it by looking up
4030 * the inode ref, since we get the inode ref, remove it directly,
4031 * it is unnecessary to do delayed deletion.
4032 *
4033 * But if we have dir index, needn't search inode ref to get it.
4034 * Since the inode ref is close to the inode item, it is better
4035 * that we delay to delete it, and just do this deletion when
4036 * we update the inode item.
4037 */
4038 if (inode->dir_index) {
4039 ret = btrfs_delayed_delete_inode_ref(inode);
4040 if (!ret) {
4041 index = inode->dir_index;
4042 goto skip_backref;
4043 }
4044 }
4045
4046 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4047 dir_ino, &index);
4048 if (ret) {
4049 btrfs_info(fs_info,
4050 "failed to delete reference to %.*s, inode %llu parent %llu",
4051 name_len, name, ino, dir_ino);
4052 btrfs_abort_transaction(trans, ret);
4053 goto err;
4054 }
4055 skip_backref:
4056 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4057 if (ret) {
4058 btrfs_abort_transaction(trans, ret);
4059 goto err;
4060 }
4061
4062 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
4063 dir_ino);
4064 if (ret != 0 && ret != -ENOENT) {
4065 btrfs_abort_transaction(trans, ret);
4066 goto err;
4067 }
4068
4069 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
4070 index);
4071 if (ret == -ENOENT)
4072 ret = 0;
4073 else if (ret)
4074 btrfs_abort_transaction(trans, ret);
4075 err:
4076 btrfs_free_path(path);
4077 if (ret)
4078 goto out;
4079
4080 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4081 inode_inc_iversion(&inode->vfs_inode);
4082 inode_inc_iversion(&dir->vfs_inode);
4083 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
4084 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4085 ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
4086 out:
4087 return ret;
4088 }
4089
btrfs_unlink_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * dir,struct btrfs_inode * inode,const char * name,int name_len)4090 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4091 struct btrfs_root *root,
4092 struct btrfs_inode *dir, struct btrfs_inode *inode,
4093 const char *name, int name_len)
4094 {
4095 int ret;
4096 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4097 if (!ret) {
4098 drop_nlink(&inode->vfs_inode);
4099 ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
4100 }
4101 return ret;
4102 }
4103
4104 /*
4105 * helper to start transaction for unlink and rmdir.
4106 *
4107 * unlink and rmdir are special in btrfs, they do not always free space, so
4108 * if we cannot make our reservations the normal way try and see if there is
4109 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4110 * allow the unlink to occur.
4111 */
__unlink_start_trans(struct inode * dir)4112 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4113 {
4114 struct btrfs_root *root = BTRFS_I(dir)->root;
4115
4116 /*
4117 * 1 for the possible orphan item
4118 * 1 for the dir item
4119 * 1 for the dir index
4120 * 1 for the inode ref
4121 * 1 for the inode
4122 */
4123 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
4124 }
4125
btrfs_unlink(struct inode * dir,struct dentry * dentry)4126 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4127 {
4128 struct btrfs_root *root = BTRFS_I(dir)->root;
4129 struct btrfs_trans_handle *trans;
4130 struct inode *inode = d_inode(dentry);
4131 int ret;
4132
4133 trans = __unlink_start_trans(dir);
4134 if (IS_ERR(trans))
4135 return PTR_ERR(trans);
4136
4137 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4138 0);
4139
4140 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4141 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4142 dentry->d_name.len);
4143 if (ret)
4144 goto out;
4145
4146 if (inode->i_nlink == 0) {
4147 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4148 if (ret)
4149 goto out;
4150 }
4151
4152 out:
4153 btrfs_end_transaction(trans);
4154 btrfs_btree_balance_dirty(root->fs_info);
4155 return ret;
4156 }
4157
btrfs_unlink_subvol(struct btrfs_trans_handle * trans,struct inode * dir,struct dentry * dentry)4158 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4159 struct inode *dir, struct dentry *dentry)
4160 {
4161 struct btrfs_root *root = BTRFS_I(dir)->root;
4162 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4163 struct btrfs_path *path;
4164 struct extent_buffer *leaf;
4165 struct btrfs_dir_item *di;
4166 struct btrfs_key key;
4167 const char *name = dentry->d_name.name;
4168 int name_len = dentry->d_name.len;
4169 u64 index;
4170 int ret;
4171 u64 objectid;
4172 u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4173
4174 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4175 objectid = inode->root->root_key.objectid;
4176 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4177 objectid = inode->location.objectid;
4178 } else {
4179 WARN_ON(1);
4180 return -EINVAL;
4181 }
4182
4183 path = btrfs_alloc_path();
4184 if (!path)
4185 return -ENOMEM;
4186
4187 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4188 name, name_len, -1);
4189 if (IS_ERR_OR_NULL(di)) {
4190 if (!di)
4191 ret = -ENOENT;
4192 else
4193 ret = PTR_ERR(di);
4194 goto out;
4195 }
4196
4197 leaf = path->nodes[0];
4198 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4199 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4200 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4201 if (ret) {
4202 btrfs_abort_transaction(trans, ret);
4203 goto out;
4204 }
4205 btrfs_release_path(path);
4206
4207 /*
4208 * This is a placeholder inode for a subvolume we didn't have a
4209 * reference to at the time of the snapshot creation. In the meantime
4210 * we could have renamed the real subvol link into our snapshot, so
4211 * depending on btrfs_del_root_ref to return -ENOENT here is incorret.
4212 * Instead simply lookup the dir_index_item for this entry so we can
4213 * remove it. Otherwise we know we have a ref to the root and we can
4214 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4215 */
4216 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4217 di = btrfs_search_dir_index_item(root, path, dir_ino,
4218 name, name_len);
4219 if (IS_ERR_OR_NULL(di)) {
4220 if (!di)
4221 ret = -ENOENT;
4222 else
4223 ret = PTR_ERR(di);
4224 btrfs_abort_transaction(trans, ret);
4225 goto out;
4226 }
4227
4228 leaf = path->nodes[0];
4229 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4230 index = key.offset;
4231 btrfs_release_path(path);
4232 } else {
4233 ret = btrfs_del_root_ref(trans, objectid,
4234 root->root_key.objectid, dir_ino,
4235 &index, name, name_len);
4236 if (ret) {
4237 btrfs_abort_transaction(trans, ret);
4238 goto out;
4239 }
4240 }
4241
4242 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
4243 if (ret) {
4244 btrfs_abort_transaction(trans, ret);
4245 goto out;
4246 }
4247
4248 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
4249 inode_inc_iversion(dir);
4250 dir->i_mtime = dir->i_ctime = current_time(dir);
4251 ret = btrfs_update_inode_fallback(trans, root, dir);
4252 if (ret)
4253 btrfs_abort_transaction(trans, ret);
4254 out:
4255 btrfs_free_path(path);
4256 return ret;
4257 }
4258
4259 /*
4260 * Helper to check if the subvolume references other subvolumes or if it's
4261 * default.
4262 */
may_destroy_subvol(struct btrfs_root * root)4263 static noinline int may_destroy_subvol(struct btrfs_root *root)
4264 {
4265 struct btrfs_fs_info *fs_info = root->fs_info;
4266 struct btrfs_path *path;
4267 struct btrfs_dir_item *di;
4268 struct btrfs_key key;
4269 u64 dir_id;
4270 int ret;
4271
4272 path = btrfs_alloc_path();
4273 if (!path)
4274 return -ENOMEM;
4275
4276 /* Make sure this root isn't set as the default subvol */
4277 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4278 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4279 dir_id, "default", 7, 0);
4280 if (di && !IS_ERR(di)) {
4281 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4282 if (key.objectid == root->root_key.objectid) {
4283 ret = -EPERM;
4284 btrfs_err(fs_info,
4285 "deleting default subvolume %llu is not allowed",
4286 key.objectid);
4287 goto out;
4288 }
4289 btrfs_release_path(path);
4290 }
4291
4292 key.objectid = root->root_key.objectid;
4293 key.type = BTRFS_ROOT_REF_KEY;
4294 key.offset = (u64)-1;
4295
4296 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4297 if (ret < 0)
4298 goto out;
4299 BUG_ON(ret == 0);
4300
4301 ret = 0;
4302 if (path->slots[0] > 0) {
4303 path->slots[0]--;
4304 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4305 if (key.objectid == root->root_key.objectid &&
4306 key.type == BTRFS_ROOT_REF_KEY)
4307 ret = -ENOTEMPTY;
4308 }
4309 out:
4310 btrfs_free_path(path);
4311 return ret;
4312 }
4313
4314 /* Delete all dentries for inodes belonging to the root */
btrfs_prune_dentries(struct btrfs_root * root)4315 static void btrfs_prune_dentries(struct btrfs_root *root)
4316 {
4317 struct btrfs_fs_info *fs_info = root->fs_info;
4318 struct rb_node *node;
4319 struct rb_node *prev;
4320 struct btrfs_inode *entry;
4321 struct inode *inode;
4322 u64 objectid = 0;
4323
4324 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
4325 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4326
4327 spin_lock(&root->inode_lock);
4328 again:
4329 node = root->inode_tree.rb_node;
4330 prev = NULL;
4331 while (node) {
4332 prev = node;
4333 entry = rb_entry(node, struct btrfs_inode, rb_node);
4334
4335 if (objectid < btrfs_ino(entry))
4336 node = node->rb_left;
4337 else if (objectid > btrfs_ino(entry))
4338 node = node->rb_right;
4339 else
4340 break;
4341 }
4342 if (!node) {
4343 while (prev) {
4344 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4345 if (objectid <= btrfs_ino(entry)) {
4346 node = prev;
4347 break;
4348 }
4349 prev = rb_next(prev);
4350 }
4351 }
4352 while (node) {
4353 entry = rb_entry(node, struct btrfs_inode, rb_node);
4354 objectid = btrfs_ino(entry) + 1;
4355 inode = igrab(&entry->vfs_inode);
4356 if (inode) {
4357 spin_unlock(&root->inode_lock);
4358 if (atomic_read(&inode->i_count) > 1)
4359 d_prune_aliases(inode);
4360 /*
4361 * btrfs_drop_inode will have it removed from the inode
4362 * cache when its usage count hits zero.
4363 */
4364 iput(inode);
4365 cond_resched();
4366 spin_lock(&root->inode_lock);
4367 goto again;
4368 }
4369
4370 if (cond_resched_lock(&root->inode_lock))
4371 goto again;
4372
4373 node = rb_next(node);
4374 }
4375 spin_unlock(&root->inode_lock);
4376 }
4377
btrfs_delete_subvolume(struct inode * dir,struct dentry * dentry)4378 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
4379 {
4380 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4381 struct btrfs_root *root = BTRFS_I(dir)->root;
4382 struct inode *inode = d_inode(dentry);
4383 struct btrfs_root *dest = BTRFS_I(inode)->root;
4384 struct btrfs_trans_handle *trans;
4385 struct btrfs_block_rsv block_rsv;
4386 u64 root_flags;
4387 int ret;
4388 int err;
4389
4390 /*
4391 * Don't allow to delete a subvolume with send in progress. This is
4392 * inside the inode lock so the error handling that has to drop the bit
4393 * again is not run concurrently.
4394 */
4395 spin_lock(&dest->root_item_lock);
4396 root_flags = btrfs_root_flags(&dest->root_item);
4397 if (dest->send_in_progress == 0) {
4398 btrfs_set_root_flags(&dest->root_item,
4399 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4400 spin_unlock(&dest->root_item_lock);
4401 } else {
4402 spin_unlock(&dest->root_item_lock);
4403 btrfs_warn(fs_info,
4404 "attempt to delete subvolume %llu during send",
4405 dest->root_key.objectid);
4406 return -EPERM;
4407 }
4408
4409 down_write(&fs_info->subvol_sem);
4410
4411 err = may_destroy_subvol(dest);
4412 if (err)
4413 goto out_up_write;
4414
4415 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4416 /*
4417 * One for dir inode,
4418 * two for dir entries,
4419 * two for root ref/backref.
4420 */
4421 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4422 if (err)
4423 goto out_up_write;
4424
4425 trans = btrfs_start_transaction(root, 0);
4426 if (IS_ERR(trans)) {
4427 err = PTR_ERR(trans);
4428 goto out_release;
4429 }
4430 trans->block_rsv = &block_rsv;
4431 trans->bytes_reserved = block_rsv.size;
4432
4433 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4434
4435 ret = btrfs_unlink_subvol(trans, dir, dentry);
4436 if (ret) {
4437 err = ret;
4438 btrfs_abort_transaction(trans, ret);
4439 goto out_end_trans;
4440 }
4441
4442 btrfs_record_root_in_trans(trans, dest);
4443
4444 memset(&dest->root_item.drop_progress, 0,
4445 sizeof(dest->root_item.drop_progress));
4446 dest->root_item.drop_level = 0;
4447 btrfs_set_root_refs(&dest->root_item, 0);
4448
4449 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4450 ret = btrfs_insert_orphan_item(trans,
4451 fs_info->tree_root,
4452 dest->root_key.objectid);
4453 if (ret) {
4454 btrfs_abort_transaction(trans, ret);
4455 err = ret;
4456 goto out_end_trans;
4457 }
4458 }
4459
4460 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4461 BTRFS_UUID_KEY_SUBVOL,
4462 dest->root_key.objectid);
4463 if (ret && ret != -ENOENT) {
4464 btrfs_abort_transaction(trans, ret);
4465 err = ret;
4466 goto out_end_trans;
4467 }
4468 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4469 ret = btrfs_uuid_tree_remove(trans,
4470 dest->root_item.received_uuid,
4471 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4472 dest->root_key.objectid);
4473 if (ret && ret != -ENOENT) {
4474 btrfs_abort_transaction(trans, ret);
4475 err = ret;
4476 goto out_end_trans;
4477 }
4478 }
4479
4480 free_anon_bdev(dest->anon_dev);
4481 dest->anon_dev = 0;
4482 out_end_trans:
4483 trans->block_rsv = NULL;
4484 trans->bytes_reserved = 0;
4485 ret = btrfs_end_transaction(trans);
4486 if (ret && !err)
4487 err = ret;
4488 inode->i_flags |= S_DEAD;
4489 out_release:
4490 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
4491 out_up_write:
4492 up_write(&fs_info->subvol_sem);
4493 if (err) {
4494 spin_lock(&dest->root_item_lock);
4495 root_flags = btrfs_root_flags(&dest->root_item);
4496 btrfs_set_root_flags(&dest->root_item,
4497 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4498 spin_unlock(&dest->root_item_lock);
4499 } else {
4500 d_invalidate(dentry);
4501 btrfs_prune_dentries(dest);
4502 ASSERT(dest->send_in_progress == 0);
4503
4504 /* the last ref */
4505 if (dest->ino_cache_inode) {
4506 iput(dest->ino_cache_inode);
4507 dest->ino_cache_inode = NULL;
4508 }
4509 }
4510
4511 return err;
4512 }
4513
btrfs_rmdir(struct inode * dir,struct dentry * dentry)4514 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4515 {
4516 struct inode *inode = d_inode(dentry);
4517 int err = 0;
4518 struct btrfs_root *root = BTRFS_I(dir)->root;
4519 struct btrfs_trans_handle *trans;
4520 u64 last_unlink_trans;
4521
4522 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4523 return -ENOTEMPTY;
4524 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
4525 return btrfs_delete_subvolume(dir, dentry);
4526
4527 trans = __unlink_start_trans(dir);
4528 if (IS_ERR(trans))
4529 return PTR_ERR(trans);
4530
4531 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4532 err = btrfs_unlink_subvol(trans, dir, dentry);
4533 goto out;
4534 }
4535
4536 err = btrfs_orphan_add(trans, BTRFS_I(inode));
4537 if (err)
4538 goto out;
4539
4540 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4541
4542 /* now the directory is empty */
4543 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4544 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4545 dentry->d_name.len);
4546 if (!err) {
4547 btrfs_i_size_write(BTRFS_I(inode), 0);
4548 /*
4549 * Propagate the last_unlink_trans value of the deleted dir to
4550 * its parent directory. This is to prevent an unrecoverable
4551 * log tree in the case we do something like this:
4552 * 1) create dir foo
4553 * 2) create snapshot under dir foo
4554 * 3) delete the snapshot
4555 * 4) rmdir foo
4556 * 5) mkdir foo
4557 * 6) fsync foo or some file inside foo
4558 */
4559 if (last_unlink_trans >= trans->transid)
4560 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4561 }
4562 out:
4563 btrfs_end_transaction(trans);
4564 btrfs_btree_balance_dirty(root->fs_info);
4565
4566 return err;
4567 }
4568
truncate_space_check(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytes_deleted)4569 static int truncate_space_check(struct btrfs_trans_handle *trans,
4570 struct btrfs_root *root,
4571 u64 bytes_deleted)
4572 {
4573 struct btrfs_fs_info *fs_info = root->fs_info;
4574 int ret;
4575
4576 /*
4577 * This is only used to apply pressure to the enospc system, we don't
4578 * intend to use this reservation at all.
4579 */
4580 bytes_deleted = btrfs_csum_bytes_to_leaves(fs_info, bytes_deleted);
4581 bytes_deleted *= fs_info->nodesize;
4582 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
4583 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
4584 if (!ret) {
4585 trace_btrfs_space_reservation(fs_info, "transaction",
4586 trans->transid,
4587 bytes_deleted, 1);
4588 trans->bytes_reserved += bytes_deleted;
4589 }
4590 return ret;
4591
4592 }
4593
4594 /*
4595 * Return this if we need to call truncate_block for the last bit of the
4596 * truncate.
4597 */
4598 #define NEED_TRUNCATE_BLOCK 1
4599
4600 /*
4601 * this can truncate away extent items, csum items and directory items.
4602 * It starts at a high offset and removes keys until it can't find
4603 * any higher than new_size
4604 *
4605 * csum items that cross the new i_size are truncated to the new size
4606 * as well.
4607 *
4608 * min_type is the minimum key type to truncate down to. If set to 0, this
4609 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4610 */
btrfs_truncate_inode_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,u64 new_size,u32 min_type)4611 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4612 struct btrfs_root *root,
4613 struct inode *inode,
4614 u64 new_size, u32 min_type)
4615 {
4616 struct btrfs_fs_info *fs_info = root->fs_info;
4617 struct btrfs_path *path;
4618 struct extent_buffer *leaf;
4619 struct btrfs_file_extent_item *fi;
4620 struct btrfs_key key;
4621 struct btrfs_key found_key;
4622 u64 extent_start = 0;
4623 u64 extent_num_bytes = 0;
4624 u64 extent_offset = 0;
4625 u64 item_end = 0;
4626 u64 last_size = new_size;
4627 u32 found_type = (u8)-1;
4628 int found_extent;
4629 int del_item;
4630 int pending_del_nr = 0;
4631 int pending_del_slot = 0;
4632 int extent_type = -1;
4633 int ret;
4634 u64 ino = btrfs_ino(BTRFS_I(inode));
4635 u64 bytes_deleted = 0;
4636 bool be_nice = false;
4637 bool should_throttle = false;
4638 bool should_end = false;
4639
4640 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4641
4642 /*
4643 * for non-free space inodes and ref cows, we want to back off from
4644 * time to time
4645 */
4646 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
4647 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4648 be_nice = true;
4649
4650 path = btrfs_alloc_path();
4651 if (!path)
4652 return -ENOMEM;
4653 path->reada = READA_BACK;
4654
4655 /*
4656 * We want to drop from the next block forward in case this new size is
4657 * not block aligned since we will be keeping the last block of the
4658 * extent just the way it is.
4659 */
4660 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4661 root == fs_info->tree_root)
4662 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
4663 fs_info->sectorsize),
4664 (u64)-1, 0);
4665
4666 /*
4667 * This function is also used to drop the items in the log tree before
4668 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4669 * it is used to drop the loged items. So we shouldn't kill the delayed
4670 * items.
4671 */
4672 if (min_type == 0 && root == BTRFS_I(inode)->root)
4673 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
4674
4675 key.objectid = ino;
4676 key.offset = (u64)-1;
4677 key.type = (u8)-1;
4678
4679 search_again:
4680 /*
4681 * with a 16K leaf size and 128MB extents, you can actually queue
4682 * up a huge file in a single leaf. Most of the time that
4683 * bytes_deleted is > 0, it will be huge by the time we get here
4684 */
4685 if (be_nice && bytes_deleted > SZ_32M &&
4686 btrfs_should_end_transaction(trans)) {
4687 ret = -EAGAIN;
4688 goto out;
4689 }
4690
4691 path->leave_spinning = 1;
4692 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4693 if (ret < 0)
4694 goto out;
4695
4696 if (ret > 0) {
4697 ret = 0;
4698 /* there are no items in the tree for us to truncate, we're
4699 * done
4700 */
4701 if (path->slots[0] == 0)
4702 goto out;
4703 path->slots[0]--;
4704 }
4705
4706 while (1) {
4707 fi = NULL;
4708 leaf = path->nodes[0];
4709 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4710 found_type = found_key.type;
4711
4712 if (found_key.objectid != ino)
4713 break;
4714
4715 if (found_type < min_type)
4716 break;
4717
4718 item_end = found_key.offset;
4719 if (found_type == BTRFS_EXTENT_DATA_KEY) {
4720 fi = btrfs_item_ptr(leaf, path->slots[0],
4721 struct btrfs_file_extent_item);
4722 extent_type = btrfs_file_extent_type(leaf, fi);
4723 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4724 item_end +=
4725 btrfs_file_extent_num_bytes(leaf, fi);
4726
4727 trace_btrfs_truncate_show_fi_regular(
4728 BTRFS_I(inode), leaf, fi,
4729 found_key.offset);
4730 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4731 item_end += btrfs_file_extent_ram_bytes(leaf,
4732 fi);
4733
4734 trace_btrfs_truncate_show_fi_inline(
4735 BTRFS_I(inode), leaf, fi, path->slots[0],
4736 found_key.offset);
4737 }
4738 item_end--;
4739 }
4740 if (found_type > min_type) {
4741 del_item = 1;
4742 } else {
4743 if (item_end < new_size)
4744 break;
4745 if (found_key.offset >= new_size)
4746 del_item = 1;
4747 else
4748 del_item = 0;
4749 }
4750 found_extent = 0;
4751 /* FIXME, shrink the extent if the ref count is only 1 */
4752 if (found_type != BTRFS_EXTENT_DATA_KEY)
4753 goto delete;
4754
4755 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4756 u64 num_dec;
4757 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4758 if (!del_item) {
4759 u64 orig_num_bytes =
4760 btrfs_file_extent_num_bytes(leaf, fi);
4761 extent_num_bytes = ALIGN(new_size -
4762 found_key.offset,
4763 fs_info->sectorsize);
4764 btrfs_set_file_extent_num_bytes(leaf, fi,
4765 extent_num_bytes);
4766 num_dec = (orig_num_bytes -
4767 extent_num_bytes);
4768 if (test_bit(BTRFS_ROOT_REF_COWS,
4769 &root->state) &&
4770 extent_start != 0)
4771 inode_sub_bytes(inode, num_dec);
4772 btrfs_mark_buffer_dirty(leaf);
4773 } else {
4774 extent_num_bytes =
4775 btrfs_file_extent_disk_num_bytes(leaf,
4776 fi);
4777 extent_offset = found_key.offset -
4778 btrfs_file_extent_offset(leaf, fi);
4779
4780 /* FIXME blocksize != 4096 */
4781 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4782 if (extent_start != 0) {
4783 found_extent = 1;
4784 if (test_bit(BTRFS_ROOT_REF_COWS,
4785 &root->state))
4786 inode_sub_bytes(inode, num_dec);
4787 }
4788 }
4789 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4790 /*
4791 * we can't truncate inline items that have had
4792 * special encodings
4793 */
4794 if (!del_item &&
4795 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4796 btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4797 btrfs_file_extent_compression(leaf, fi) == 0) {
4798 u32 size = (u32)(new_size - found_key.offset);
4799
4800 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4801 size = btrfs_file_extent_calc_inline_size(size);
4802 btrfs_truncate_item(root->fs_info, path, size, 1);
4803 } else if (!del_item) {
4804 /*
4805 * We have to bail so the last_size is set to
4806 * just before this extent.
4807 */
4808 ret = NEED_TRUNCATE_BLOCK;
4809 break;
4810 }
4811
4812 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4813 inode_sub_bytes(inode, item_end + 1 - new_size);
4814 }
4815 delete:
4816 if (del_item)
4817 last_size = found_key.offset;
4818 else
4819 last_size = new_size;
4820 if (del_item) {
4821 if (!pending_del_nr) {
4822 /* no pending yet, add ourselves */
4823 pending_del_slot = path->slots[0];
4824 pending_del_nr = 1;
4825 } else if (pending_del_nr &&
4826 path->slots[0] + 1 == pending_del_slot) {
4827 /* hop on the pending chunk */
4828 pending_del_nr++;
4829 pending_del_slot = path->slots[0];
4830 } else {
4831 BUG();
4832 }
4833 } else {
4834 break;
4835 }
4836 should_throttle = false;
4837
4838 if (found_extent &&
4839 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4840 root == fs_info->tree_root)) {
4841 btrfs_set_path_blocking(path);
4842 bytes_deleted += extent_num_bytes;
4843 ret = btrfs_free_extent(trans, root, extent_start,
4844 extent_num_bytes, 0,
4845 btrfs_header_owner(leaf),
4846 ino, extent_offset);
4847 if (ret) {
4848 btrfs_abort_transaction(trans, ret);
4849 break;
4850 }
4851 if (btrfs_should_throttle_delayed_refs(trans, fs_info))
4852 btrfs_async_run_delayed_refs(fs_info,
4853 trans->delayed_ref_updates * 2,
4854 trans->transid, 0);
4855 if (be_nice) {
4856 if (truncate_space_check(trans, root,
4857 extent_num_bytes)) {
4858 should_end = true;
4859 }
4860 if (btrfs_should_throttle_delayed_refs(trans,
4861 fs_info))
4862 should_throttle = true;
4863 }
4864 }
4865
4866 if (found_type == BTRFS_INODE_ITEM_KEY)
4867 break;
4868
4869 if (path->slots[0] == 0 ||
4870 path->slots[0] != pending_del_slot ||
4871 should_throttle || should_end) {
4872 if (pending_del_nr) {
4873 ret = btrfs_del_items(trans, root, path,
4874 pending_del_slot,
4875 pending_del_nr);
4876 if (ret) {
4877 btrfs_abort_transaction(trans, ret);
4878 break;
4879 }
4880 pending_del_nr = 0;
4881 }
4882 btrfs_release_path(path);
4883 if (should_throttle) {
4884 unsigned long updates = trans->delayed_ref_updates;
4885 if (updates) {
4886 trans->delayed_ref_updates = 0;
4887 ret = btrfs_run_delayed_refs(trans,
4888 updates * 2);
4889 if (ret)
4890 break;
4891 }
4892 }
4893 /*
4894 * if we failed to refill our space rsv, bail out
4895 * and let the transaction restart
4896 */
4897 if (should_end) {
4898 ret = -EAGAIN;
4899 break;
4900 }
4901 goto search_again;
4902 } else {
4903 path->slots[0]--;
4904 }
4905 }
4906 out:
4907 if (ret >= 0 && pending_del_nr) {
4908 int err;
4909
4910 err = btrfs_del_items(trans, root, path, pending_del_slot,
4911 pending_del_nr);
4912 if (err) {
4913 btrfs_abort_transaction(trans, err);
4914 ret = err;
4915 }
4916 }
4917 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4918 ASSERT(last_size >= new_size);
4919 if (!ret && last_size > new_size)
4920 last_size = new_size;
4921 btrfs_ordered_update_i_size(inode, last_size, NULL);
4922 }
4923
4924 btrfs_free_path(path);
4925
4926 if (be_nice && bytes_deleted > SZ_32M && (ret >= 0 || ret == -EAGAIN)) {
4927 unsigned long updates = trans->delayed_ref_updates;
4928 int err;
4929
4930 if (updates) {
4931 trans->delayed_ref_updates = 0;
4932 err = btrfs_run_delayed_refs(trans, updates * 2);
4933 if (err)
4934 ret = err;
4935 }
4936 }
4937 return ret;
4938 }
4939
4940 /*
4941 * btrfs_truncate_block - read, zero a chunk and write a block
4942 * @inode - inode that we're zeroing
4943 * @from - the offset to start zeroing
4944 * @len - the length to zero, 0 to zero the entire range respective to the
4945 * offset
4946 * @front - zero up to the offset instead of from the offset on
4947 *
4948 * This will find the block for the "from" offset and cow the block and zero the
4949 * part we want to zero. This is used with truncate and hole punching.
4950 */
btrfs_truncate_block(struct inode * inode,loff_t from,loff_t len,int front)4951 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4952 int front)
4953 {
4954 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4955 struct address_space *mapping = inode->i_mapping;
4956 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4957 struct btrfs_ordered_extent *ordered;
4958 struct extent_state *cached_state = NULL;
4959 struct extent_changeset *data_reserved = NULL;
4960 char *kaddr;
4961 u32 blocksize = fs_info->sectorsize;
4962 pgoff_t index = from >> PAGE_SHIFT;
4963 unsigned offset = from & (blocksize - 1);
4964 struct page *page;
4965 gfp_t mask = btrfs_alloc_write_mask(mapping);
4966 int ret = 0;
4967 u64 block_start;
4968 u64 block_end;
4969
4970 if (IS_ALIGNED(offset, blocksize) &&
4971 (!len || IS_ALIGNED(len, blocksize)))
4972 goto out;
4973
4974 block_start = round_down(from, blocksize);
4975 block_end = block_start + blocksize - 1;
4976
4977 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
4978 block_start, blocksize);
4979 if (ret)
4980 goto out;
4981
4982 again:
4983 page = find_or_create_page(mapping, index, mask);
4984 if (!page) {
4985 btrfs_delalloc_release_space(inode, data_reserved,
4986 block_start, blocksize, true);
4987 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
4988 ret = -ENOMEM;
4989 goto out;
4990 }
4991
4992 if (!PageUptodate(page)) {
4993 ret = btrfs_readpage(NULL, page);
4994 lock_page(page);
4995 if (page->mapping != mapping) {
4996 unlock_page(page);
4997 put_page(page);
4998 goto again;
4999 }
5000 if (!PageUptodate(page)) {
5001 ret = -EIO;
5002 goto out_unlock;
5003 }
5004 }
5005 wait_on_page_writeback(page);
5006
5007 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
5008 set_page_extent_mapped(page);
5009
5010 ordered = btrfs_lookup_ordered_extent(inode, block_start);
5011 if (ordered) {
5012 unlock_extent_cached(io_tree, block_start, block_end,
5013 &cached_state);
5014 unlock_page(page);
5015 put_page(page);
5016 btrfs_start_ordered_extent(inode, ordered, 1);
5017 btrfs_put_ordered_extent(ordered);
5018 goto again;
5019 }
5020
5021 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
5022 EXTENT_DIRTY | EXTENT_DELALLOC |
5023 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
5024 0, 0, &cached_state);
5025
5026 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
5027 &cached_state, 0);
5028 if (ret) {
5029 unlock_extent_cached(io_tree, block_start, block_end,
5030 &cached_state);
5031 goto out_unlock;
5032 }
5033
5034 if (offset != blocksize) {
5035 if (!len)
5036 len = blocksize - offset;
5037 kaddr = kmap(page);
5038 if (front)
5039 memset(kaddr + (block_start - page_offset(page)),
5040 0, offset);
5041 else
5042 memset(kaddr + (block_start - page_offset(page)) + offset,
5043 0, len);
5044 flush_dcache_page(page);
5045 kunmap(page);
5046 }
5047 ClearPageChecked(page);
5048 set_page_dirty(page);
5049 unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
5050
5051 out_unlock:
5052 if (ret)
5053 btrfs_delalloc_release_space(inode, data_reserved, block_start,
5054 blocksize, true);
5055 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
5056 unlock_page(page);
5057 put_page(page);
5058 out:
5059 extent_changeset_free(data_reserved);
5060 return ret;
5061 }
5062
maybe_insert_hole(struct btrfs_root * root,struct inode * inode,u64 offset,u64 len)5063 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
5064 u64 offset, u64 len)
5065 {
5066 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5067 struct btrfs_trans_handle *trans;
5068 int ret;
5069
5070 /*
5071 * Still need to make sure the inode looks like it's been updated so
5072 * that any holes get logged if we fsync.
5073 */
5074 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
5075 BTRFS_I(inode)->last_trans = fs_info->generation;
5076 BTRFS_I(inode)->last_sub_trans = root->log_transid;
5077 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
5078 return 0;
5079 }
5080
5081 /*
5082 * 1 - for the one we're dropping
5083 * 1 - for the one we're adding
5084 * 1 - for updating the inode.
5085 */
5086 trans = btrfs_start_transaction(root, 3);
5087 if (IS_ERR(trans))
5088 return PTR_ERR(trans);
5089
5090 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
5091 if (ret) {
5092 btrfs_abort_transaction(trans, ret);
5093 btrfs_end_transaction(trans);
5094 return ret;
5095 }
5096
5097 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
5098 offset, 0, 0, len, 0, len, 0, 0, 0);
5099 if (ret)
5100 btrfs_abort_transaction(trans, ret);
5101 else
5102 btrfs_update_inode(trans, root, inode);
5103 btrfs_end_transaction(trans);
5104 return ret;
5105 }
5106
5107 /*
5108 * This function puts in dummy file extents for the area we're creating a hole
5109 * for. So if we are truncating this file to a larger size we need to insert
5110 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
5111 * the range between oldsize and size
5112 */
btrfs_cont_expand(struct inode * inode,loff_t oldsize,loff_t size)5113 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
5114 {
5115 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5116 struct btrfs_root *root = BTRFS_I(inode)->root;
5117 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5118 struct extent_map *em = NULL;
5119 struct extent_state *cached_state = NULL;
5120 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5121 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
5122 u64 block_end = ALIGN(size, fs_info->sectorsize);
5123 u64 last_byte;
5124 u64 cur_offset;
5125 u64 hole_size;
5126 int err = 0;
5127
5128 /*
5129 * If our size started in the middle of a block we need to zero out the
5130 * rest of the block before we expand the i_size, otherwise we could
5131 * expose stale data.
5132 */
5133 err = btrfs_truncate_block(inode, oldsize, 0, 0);
5134 if (err)
5135 return err;
5136
5137 if (size <= hole_start)
5138 return 0;
5139
5140 while (1) {
5141 struct btrfs_ordered_extent *ordered;
5142
5143 lock_extent_bits(io_tree, hole_start, block_end - 1,
5144 &cached_state);
5145 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start,
5146 block_end - hole_start);
5147 if (!ordered)
5148 break;
5149 unlock_extent_cached(io_tree, hole_start, block_end - 1,
5150 &cached_state);
5151 btrfs_start_ordered_extent(inode, ordered, 1);
5152 btrfs_put_ordered_extent(ordered);
5153 }
5154
5155 cur_offset = hole_start;
5156 while (1) {
5157 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
5158 block_end - cur_offset, 0);
5159 if (IS_ERR(em)) {
5160 err = PTR_ERR(em);
5161 em = NULL;
5162 break;
5163 }
5164 last_byte = min(extent_map_end(em), block_end);
5165 last_byte = ALIGN(last_byte, fs_info->sectorsize);
5166 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5167 struct extent_map *hole_em;
5168 hole_size = last_byte - cur_offset;
5169
5170 err = maybe_insert_hole(root, inode, cur_offset,
5171 hole_size);
5172 if (err)
5173 break;
5174 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5175 cur_offset + hole_size - 1, 0);
5176 hole_em = alloc_extent_map();
5177 if (!hole_em) {
5178 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5179 &BTRFS_I(inode)->runtime_flags);
5180 goto next;
5181 }
5182 hole_em->start = cur_offset;
5183 hole_em->len = hole_size;
5184 hole_em->orig_start = cur_offset;
5185
5186 hole_em->block_start = EXTENT_MAP_HOLE;
5187 hole_em->block_len = 0;
5188 hole_em->orig_block_len = 0;
5189 hole_em->ram_bytes = hole_size;
5190 hole_em->bdev = fs_info->fs_devices->latest_bdev;
5191 hole_em->compress_type = BTRFS_COMPRESS_NONE;
5192 hole_em->generation = fs_info->generation;
5193
5194 while (1) {
5195 write_lock(&em_tree->lock);
5196 err = add_extent_mapping(em_tree, hole_em, 1);
5197 write_unlock(&em_tree->lock);
5198 if (err != -EEXIST)
5199 break;
5200 btrfs_drop_extent_cache(BTRFS_I(inode),
5201 cur_offset,
5202 cur_offset +
5203 hole_size - 1, 0);
5204 }
5205 free_extent_map(hole_em);
5206 }
5207 next:
5208 free_extent_map(em);
5209 em = NULL;
5210 cur_offset = last_byte;
5211 if (cur_offset >= block_end)
5212 break;
5213 }
5214 free_extent_map(em);
5215 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
5216 return err;
5217 }
5218
btrfs_setsize(struct inode * inode,struct iattr * attr)5219 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5220 {
5221 struct btrfs_root *root = BTRFS_I(inode)->root;
5222 struct btrfs_trans_handle *trans;
5223 loff_t oldsize = i_size_read(inode);
5224 loff_t newsize = attr->ia_size;
5225 int mask = attr->ia_valid;
5226 int ret;
5227
5228 /*
5229 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5230 * special case where we need to update the times despite not having
5231 * these flags set. For all other operations the VFS set these flags
5232 * explicitly if it wants a timestamp update.
5233 */
5234 if (newsize != oldsize) {
5235 inode_inc_iversion(inode);
5236 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5237 inode->i_ctime = inode->i_mtime =
5238 current_time(inode);
5239 }
5240
5241 if (newsize > oldsize) {
5242 /*
5243 * Don't do an expanding truncate while snapshotting is ongoing.
5244 * This is to ensure the snapshot captures a fully consistent
5245 * state of this file - if the snapshot captures this expanding
5246 * truncation, it must capture all writes that happened before
5247 * this truncation.
5248 */
5249 btrfs_wait_for_snapshot_creation(root);
5250 ret = btrfs_cont_expand(inode, oldsize, newsize);
5251 if (ret) {
5252 btrfs_end_write_no_snapshotting(root);
5253 return ret;
5254 }
5255
5256 trans = btrfs_start_transaction(root, 1);
5257 if (IS_ERR(trans)) {
5258 btrfs_end_write_no_snapshotting(root);
5259 return PTR_ERR(trans);
5260 }
5261
5262 i_size_write(inode, newsize);
5263 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
5264 pagecache_isize_extended(inode, oldsize, newsize);
5265 ret = btrfs_update_inode(trans, root, inode);
5266 btrfs_end_write_no_snapshotting(root);
5267 btrfs_end_transaction(trans);
5268 } else {
5269
5270 /*
5271 * We're truncating a file that used to have good data down to
5272 * zero. Make sure it gets into the ordered flush list so that
5273 * any new writes get down to disk quickly.
5274 */
5275 if (newsize == 0)
5276 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5277 &BTRFS_I(inode)->runtime_flags);
5278
5279 truncate_setsize(inode, newsize);
5280
5281 /* Disable nonlocked read DIO to avoid the end less truncate */
5282 btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
5283 inode_dio_wait(inode);
5284 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
5285
5286 ret = btrfs_truncate(inode, newsize == oldsize);
5287 if (ret && inode->i_nlink) {
5288 int err;
5289
5290 /*
5291 * Truncate failed, so fix up the in-memory size. We
5292 * adjusted disk_i_size down as we removed extents, so
5293 * wait for disk_i_size to be stable and then update the
5294 * in-memory size to match.
5295 */
5296 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5297 if (err)
5298 return err;
5299 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5300 }
5301 }
5302
5303 return ret;
5304 }
5305
btrfs_setattr(struct dentry * dentry,struct iattr * attr)5306 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5307 {
5308 struct inode *inode = d_inode(dentry);
5309 struct btrfs_root *root = BTRFS_I(inode)->root;
5310 int err;
5311
5312 if (btrfs_root_readonly(root))
5313 return -EROFS;
5314
5315 err = setattr_prepare(dentry, attr);
5316 if (err)
5317 return err;
5318
5319 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5320 err = btrfs_setsize(inode, attr);
5321 if (err)
5322 return err;
5323 }
5324
5325 if (attr->ia_valid) {
5326 setattr_copy(inode, attr);
5327 inode_inc_iversion(inode);
5328 err = btrfs_dirty_inode(inode);
5329
5330 if (!err && attr->ia_valid & ATTR_MODE)
5331 err = posix_acl_chmod(inode, inode->i_mode);
5332 }
5333
5334 return err;
5335 }
5336
5337 /*
5338 * While truncating the inode pages during eviction, we get the VFS calling
5339 * btrfs_invalidatepage() against each page of the inode. This is slow because
5340 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5341 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5342 * extent_state structures over and over, wasting lots of time.
5343 *
5344 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5345 * those expensive operations on a per page basis and do only the ordered io
5346 * finishing, while we release here the extent_map and extent_state structures,
5347 * without the excessive merging and splitting.
5348 */
evict_inode_truncate_pages(struct inode * inode)5349 static void evict_inode_truncate_pages(struct inode *inode)
5350 {
5351 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5352 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5353 struct rb_node *node;
5354
5355 ASSERT(inode->i_state & I_FREEING);
5356 truncate_inode_pages_final(&inode->i_data);
5357
5358 write_lock(&map_tree->lock);
5359 while (!RB_EMPTY_ROOT(&map_tree->map)) {
5360 struct extent_map *em;
5361
5362 node = rb_first(&map_tree->map);
5363 em = rb_entry(node, struct extent_map, rb_node);
5364 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5365 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5366 remove_extent_mapping(map_tree, em);
5367 free_extent_map(em);
5368 if (need_resched()) {
5369 write_unlock(&map_tree->lock);
5370 cond_resched();
5371 write_lock(&map_tree->lock);
5372 }
5373 }
5374 write_unlock(&map_tree->lock);
5375
5376 /*
5377 * Keep looping until we have no more ranges in the io tree.
5378 * We can have ongoing bios started by readpages (called from readahead)
5379 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5380 * still in progress (unlocked the pages in the bio but did not yet
5381 * unlocked the ranges in the io tree). Therefore this means some
5382 * ranges can still be locked and eviction started because before
5383 * submitting those bios, which are executed by a separate task (work
5384 * queue kthread), inode references (inode->i_count) were not taken
5385 * (which would be dropped in the end io callback of each bio).
5386 * Therefore here we effectively end up waiting for those bios and
5387 * anyone else holding locked ranges without having bumped the inode's
5388 * reference count - if we don't do it, when they access the inode's
5389 * io_tree to unlock a range it may be too late, leading to an
5390 * use-after-free issue.
5391 */
5392 spin_lock(&io_tree->lock);
5393 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5394 struct extent_state *state;
5395 struct extent_state *cached_state = NULL;
5396 u64 start;
5397 u64 end;
5398 unsigned state_flags;
5399
5400 node = rb_first(&io_tree->state);
5401 state = rb_entry(node, struct extent_state, rb_node);
5402 start = state->start;
5403 end = state->end;
5404 state_flags = state->state;
5405 spin_unlock(&io_tree->lock);
5406
5407 lock_extent_bits(io_tree, start, end, &cached_state);
5408
5409 /*
5410 * If still has DELALLOC flag, the extent didn't reach disk,
5411 * and its reserved space won't be freed by delayed_ref.
5412 * So we need to free its reserved space here.
5413 * (Refer to comment in btrfs_invalidatepage, case 2)
5414 *
5415 * Note, end is the bytenr of last byte, so we need + 1 here.
5416 */
5417 if (state_flags & EXTENT_DELALLOC)
5418 btrfs_qgroup_free_data(inode, NULL, start, end - start + 1);
5419
5420 clear_extent_bit(io_tree, start, end,
5421 EXTENT_LOCKED | EXTENT_DIRTY |
5422 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5423 EXTENT_DEFRAG, 1, 1, &cached_state);
5424
5425 cond_resched();
5426 spin_lock(&io_tree->lock);
5427 }
5428 spin_unlock(&io_tree->lock);
5429 }
5430
evict_refill_and_join(struct btrfs_root * root,struct btrfs_block_rsv * rsv,u64 min_size)5431 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5432 struct btrfs_block_rsv *rsv,
5433 u64 min_size)
5434 {
5435 struct btrfs_fs_info *fs_info = root->fs_info;
5436 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5437 int failures = 0;
5438
5439 for (;;) {
5440 struct btrfs_trans_handle *trans;
5441 int ret;
5442
5443 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5444 BTRFS_RESERVE_FLUSH_LIMIT);
5445
5446 if (ret && ++failures > 2) {
5447 btrfs_warn(fs_info,
5448 "could not allocate space for a delete; will truncate on mount");
5449 return ERR_PTR(-ENOSPC);
5450 }
5451
5452 trans = btrfs_join_transaction(root);
5453 if (IS_ERR(trans) || !ret)
5454 return trans;
5455
5456 /*
5457 * Try to steal from the global reserve if there is space for
5458 * it.
5459 */
5460 if (!btrfs_check_space_for_delayed_refs(trans, fs_info) &&
5461 !btrfs_block_rsv_migrate(global_rsv, rsv, min_size, 0))
5462 return trans;
5463
5464 /* If not, commit and try again. */
5465 ret = btrfs_commit_transaction(trans);
5466 if (ret)
5467 return ERR_PTR(ret);
5468 }
5469 }
5470
btrfs_evict_inode(struct inode * inode)5471 void btrfs_evict_inode(struct inode *inode)
5472 {
5473 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5474 struct btrfs_trans_handle *trans;
5475 struct btrfs_root *root = BTRFS_I(inode)->root;
5476 struct btrfs_block_rsv *rsv;
5477 u64 min_size;
5478 int ret;
5479
5480 trace_btrfs_inode_evict(inode);
5481
5482 if (!root) {
5483 clear_inode(inode);
5484 return;
5485 }
5486
5487 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
5488
5489 evict_inode_truncate_pages(inode);
5490
5491 if (inode->i_nlink &&
5492 ((btrfs_root_refs(&root->root_item) != 0 &&
5493 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5494 btrfs_is_free_space_inode(BTRFS_I(inode))))
5495 goto no_delete;
5496
5497 if (is_bad_inode(inode))
5498 goto no_delete;
5499 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
5500 if (!special_file(inode->i_mode))
5501 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5502
5503 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5504
5505 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5506 goto no_delete;
5507
5508 if (inode->i_nlink > 0) {
5509 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5510 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5511 goto no_delete;
5512 }
5513
5514 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5515 if (ret)
5516 goto no_delete;
5517
5518 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5519 if (!rsv)
5520 goto no_delete;
5521 rsv->size = min_size;
5522 rsv->failfast = 1;
5523
5524 btrfs_i_size_write(BTRFS_I(inode), 0);
5525
5526 while (1) {
5527 trans = evict_refill_and_join(root, rsv, min_size);
5528 if (IS_ERR(trans))
5529 goto free_rsv;
5530
5531 trans->block_rsv = rsv;
5532
5533 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5534 trans->block_rsv = &fs_info->trans_block_rsv;
5535 btrfs_end_transaction(trans);
5536 btrfs_btree_balance_dirty(fs_info);
5537 if (ret && ret != -ENOSPC && ret != -EAGAIN)
5538 goto free_rsv;
5539 else if (!ret)
5540 break;
5541 }
5542
5543 /*
5544 * Errors here aren't a big deal, it just means we leave orphan items in
5545 * the tree. They will be cleaned up on the next mount. If the inode
5546 * number gets reused, cleanup deletes the orphan item without doing
5547 * anything, and unlink reuses the existing orphan item.
5548 *
5549 * If it turns out that we are dropping too many of these, we might want
5550 * to add a mechanism for retrying these after a commit.
5551 */
5552 trans = evict_refill_and_join(root, rsv, min_size);
5553 if (!IS_ERR(trans)) {
5554 trans->block_rsv = rsv;
5555 btrfs_orphan_del(trans, BTRFS_I(inode));
5556 trans->block_rsv = &fs_info->trans_block_rsv;
5557 btrfs_end_transaction(trans);
5558 }
5559
5560 if (!(root == fs_info->tree_root ||
5561 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5562 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
5563
5564 free_rsv:
5565 btrfs_free_block_rsv(fs_info, rsv);
5566 no_delete:
5567 /*
5568 * If we didn't successfully delete, the orphan item will still be in
5569 * the tree and we'll retry on the next mount. Again, we might also want
5570 * to retry these periodically in the future.
5571 */
5572 btrfs_remove_delayed_node(BTRFS_I(inode));
5573 clear_inode(inode);
5574 }
5575
5576 /*
5577 * Return the key found in the dir entry in the location pointer, fill @type
5578 * with BTRFS_FT_*, and return 0.
5579 *
5580 * If no dir entries were found, returns -ENOENT.
5581 * If found a corrupted location in dir entry, returns -EUCLEAN.
5582 */
btrfs_inode_by_name(struct inode * dir,struct dentry * dentry,struct btrfs_key * location,u8 * type)5583 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5584 struct btrfs_key *location, u8 *type)
5585 {
5586 const char *name = dentry->d_name.name;
5587 int namelen = dentry->d_name.len;
5588 struct btrfs_dir_item *di;
5589 struct btrfs_path *path;
5590 struct btrfs_root *root = BTRFS_I(dir)->root;
5591 int ret = 0;
5592
5593 path = btrfs_alloc_path();
5594 if (!path)
5595 return -ENOMEM;
5596
5597 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5598 name, namelen, 0);
5599 if (!di) {
5600 ret = -ENOENT;
5601 goto out;
5602 }
5603 if (IS_ERR(di)) {
5604 ret = PTR_ERR(di);
5605 goto out;
5606 }
5607
5608 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5609 if (location->type != BTRFS_INODE_ITEM_KEY &&
5610 location->type != BTRFS_ROOT_ITEM_KEY) {
5611 ret = -EUCLEAN;
5612 btrfs_warn(root->fs_info,
5613 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5614 __func__, name, btrfs_ino(BTRFS_I(dir)),
5615 location->objectid, location->type, location->offset);
5616 }
5617 if (!ret)
5618 *type = btrfs_dir_type(path->nodes[0], di);
5619 out:
5620 btrfs_free_path(path);
5621 return ret;
5622 }
5623
5624 /*
5625 * when we hit a tree root in a directory, the btrfs part of the inode
5626 * needs to be changed to reflect the root directory of the tree root. This
5627 * is kind of like crossing a mount point.
5628 */
fixup_tree_root_location(struct btrfs_fs_info * fs_info,struct inode * dir,struct dentry * dentry,struct btrfs_key * location,struct btrfs_root ** sub_root)5629 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5630 struct inode *dir,
5631 struct dentry *dentry,
5632 struct btrfs_key *location,
5633 struct btrfs_root **sub_root)
5634 {
5635 struct btrfs_path *path;
5636 struct btrfs_root *new_root;
5637 struct btrfs_root_ref *ref;
5638 struct extent_buffer *leaf;
5639 struct btrfs_key key;
5640 int ret;
5641 int err = 0;
5642
5643 path = btrfs_alloc_path();
5644 if (!path) {
5645 err = -ENOMEM;
5646 goto out;
5647 }
5648
5649 err = -ENOENT;
5650 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5651 key.type = BTRFS_ROOT_REF_KEY;
5652 key.offset = location->objectid;
5653
5654 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5655 if (ret) {
5656 if (ret < 0)
5657 err = ret;
5658 goto out;
5659 }
5660
5661 leaf = path->nodes[0];
5662 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5663 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5664 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5665 goto out;
5666
5667 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5668 (unsigned long)(ref + 1),
5669 dentry->d_name.len);
5670 if (ret)
5671 goto out;
5672
5673 btrfs_release_path(path);
5674
5675 new_root = btrfs_read_fs_root_no_name(fs_info, location);
5676 if (IS_ERR(new_root)) {
5677 err = PTR_ERR(new_root);
5678 goto out;
5679 }
5680
5681 *sub_root = new_root;
5682 location->objectid = btrfs_root_dirid(&new_root->root_item);
5683 location->type = BTRFS_INODE_ITEM_KEY;
5684 location->offset = 0;
5685 err = 0;
5686 out:
5687 btrfs_free_path(path);
5688 return err;
5689 }
5690
inode_tree_add(struct inode * inode)5691 static void inode_tree_add(struct inode *inode)
5692 {
5693 struct btrfs_root *root = BTRFS_I(inode)->root;
5694 struct btrfs_inode *entry;
5695 struct rb_node **p;
5696 struct rb_node *parent;
5697 struct rb_node *new = &BTRFS_I(inode)->rb_node;
5698 u64 ino = btrfs_ino(BTRFS_I(inode));
5699
5700 if (inode_unhashed(inode))
5701 return;
5702 parent = NULL;
5703 spin_lock(&root->inode_lock);
5704 p = &root->inode_tree.rb_node;
5705 while (*p) {
5706 parent = *p;
5707 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5708
5709 if (ino < btrfs_ino(entry))
5710 p = &parent->rb_left;
5711 else if (ino > btrfs_ino(entry))
5712 p = &parent->rb_right;
5713 else {
5714 WARN_ON(!(entry->vfs_inode.i_state &
5715 (I_WILL_FREE | I_FREEING)));
5716 rb_replace_node(parent, new, &root->inode_tree);
5717 RB_CLEAR_NODE(parent);
5718 spin_unlock(&root->inode_lock);
5719 return;
5720 }
5721 }
5722 rb_link_node(new, parent, p);
5723 rb_insert_color(new, &root->inode_tree);
5724 spin_unlock(&root->inode_lock);
5725 }
5726
inode_tree_del(struct inode * inode)5727 static void inode_tree_del(struct inode *inode)
5728 {
5729 struct btrfs_root *root = BTRFS_I(inode)->root;
5730 int empty = 0;
5731
5732 spin_lock(&root->inode_lock);
5733 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5734 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5735 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5736 empty = RB_EMPTY_ROOT(&root->inode_tree);
5737 }
5738 spin_unlock(&root->inode_lock);
5739
5740 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5741 spin_lock(&root->inode_lock);
5742 empty = RB_EMPTY_ROOT(&root->inode_tree);
5743 spin_unlock(&root->inode_lock);
5744 if (empty)
5745 btrfs_add_dead_root(root);
5746 }
5747 }
5748
5749
btrfs_init_locked_inode(struct inode * inode,void * p)5750 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5751 {
5752 struct btrfs_iget_args *args = p;
5753 inode->i_ino = args->location->objectid;
5754 memcpy(&BTRFS_I(inode)->location, args->location,
5755 sizeof(*args->location));
5756 BTRFS_I(inode)->root = args->root;
5757 return 0;
5758 }
5759
btrfs_find_actor(struct inode * inode,void * opaque)5760 static int btrfs_find_actor(struct inode *inode, void *opaque)
5761 {
5762 struct btrfs_iget_args *args = opaque;
5763 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5764 args->root == BTRFS_I(inode)->root;
5765 }
5766
btrfs_iget_locked(struct super_block * s,struct btrfs_key * location,struct btrfs_root * root)5767 static struct inode *btrfs_iget_locked(struct super_block *s,
5768 struct btrfs_key *location,
5769 struct btrfs_root *root)
5770 {
5771 struct inode *inode;
5772 struct btrfs_iget_args args;
5773 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5774
5775 args.location = location;
5776 args.root = root;
5777
5778 inode = iget5_locked(s, hashval, btrfs_find_actor,
5779 btrfs_init_locked_inode,
5780 (void *)&args);
5781 return inode;
5782 }
5783
5784 /* Get an inode object given its location and corresponding root.
5785 * Returns in *is_new if the inode was read from disk
5786 */
btrfs_iget_path(struct super_block * s,struct btrfs_key * location,struct btrfs_root * root,int * new,struct btrfs_path * path)5787 struct inode *btrfs_iget_path(struct super_block *s, struct btrfs_key *location,
5788 struct btrfs_root *root, int *new,
5789 struct btrfs_path *path)
5790 {
5791 struct inode *inode;
5792
5793 inode = btrfs_iget_locked(s, location, root);
5794 if (!inode)
5795 return ERR_PTR(-ENOMEM);
5796
5797 if (inode->i_state & I_NEW) {
5798 int ret;
5799
5800 ret = btrfs_read_locked_inode(inode, path);
5801 if (!ret) {
5802 inode_tree_add(inode);
5803 unlock_new_inode(inode);
5804 if (new)
5805 *new = 1;
5806 } else {
5807 iget_failed(inode);
5808 /*
5809 * ret > 0 can come from btrfs_search_slot called by
5810 * btrfs_read_locked_inode, this means the inode item
5811 * was not found.
5812 */
5813 if (ret > 0)
5814 ret = -ENOENT;
5815 inode = ERR_PTR(ret);
5816 }
5817 }
5818
5819 return inode;
5820 }
5821
btrfs_iget(struct super_block * s,struct btrfs_key * location,struct btrfs_root * root,int * new)5822 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5823 struct btrfs_root *root, int *new)
5824 {
5825 return btrfs_iget_path(s, location, root, new, NULL);
5826 }
5827
new_simple_dir(struct super_block * s,struct btrfs_key * key,struct btrfs_root * root)5828 static struct inode *new_simple_dir(struct super_block *s,
5829 struct btrfs_key *key,
5830 struct btrfs_root *root)
5831 {
5832 struct inode *inode = new_inode(s);
5833
5834 if (!inode)
5835 return ERR_PTR(-ENOMEM);
5836
5837 BTRFS_I(inode)->root = root;
5838 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5839 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5840
5841 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5842 inode->i_op = &btrfs_dir_ro_inode_operations;
5843 inode->i_opflags &= ~IOP_XATTR;
5844 inode->i_fop = &simple_dir_operations;
5845 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5846 inode->i_mtime = current_time(inode);
5847 inode->i_atime = inode->i_mtime;
5848 inode->i_ctime = inode->i_mtime;
5849 BTRFS_I(inode)->i_otime = inode->i_mtime;
5850
5851 return inode;
5852 }
5853
btrfs_inode_type(struct inode * inode)5854 static inline u8 btrfs_inode_type(struct inode *inode)
5855 {
5856 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
5857 }
5858
btrfs_lookup_dentry(struct inode * dir,struct dentry * dentry)5859 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5860 {
5861 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5862 struct inode *inode;
5863 struct btrfs_root *root = BTRFS_I(dir)->root;
5864 struct btrfs_root *sub_root = root;
5865 struct btrfs_key location;
5866 u8 di_type = 0;
5867 int index;
5868 int ret = 0;
5869
5870 if (dentry->d_name.len > BTRFS_NAME_LEN)
5871 return ERR_PTR(-ENAMETOOLONG);
5872
5873 ret = btrfs_inode_by_name(dir, dentry, &location, &di_type);
5874 if (ret < 0)
5875 return ERR_PTR(ret);
5876
5877 if (location.type == BTRFS_INODE_ITEM_KEY) {
5878 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5879 if (IS_ERR(inode))
5880 return inode;
5881
5882 /* Do extra check against inode mode with di_type */
5883 if (btrfs_inode_type(inode) != di_type) {
5884 btrfs_crit(fs_info,
5885 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5886 inode->i_mode, btrfs_inode_type(inode),
5887 di_type);
5888 iput(inode);
5889 return ERR_PTR(-EUCLEAN);
5890 }
5891 return inode;
5892 }
5893
5894 index = srcu_read_lock(&fs_info->subvol_srcu);
5895 ret = fixup_tree_root_location(fs_info, dir, dentry,
5896 &location, &sub_root);
5897 if (ret < 0) {
5898 if (ret != -ENOENT)
5899 inode = ERR_PTR(ret);
5900 else
5901 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5902 } else {
5903 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5904 }
5905 srcu_read_unlock(&fs_info->subvol_srcu, index);
5906
5907 if (!IS_ERR(inode) && root != sub_root) {
5908 down_read(&fs_info->cleanup_work_sem);
5909 if (!sb_rdonly(inode->i_sb))
5910 ret = btrfs_orphan_cleanup(sub_root);
5911 up_read(&fs_info->cleanup_work_sem);
5912 if (ret) {
5913 iput(inode);
5914 inode = ERR_PTR(ret);
5915 }
5916 }
5917
5918 return inode;
5919 }
5920
btrfs_dentry_delete(const struct dentry * dentry)5921 static int btrfs_dentry_delete(const struct dentry *dentry)
5922 {
5923 struct btrfs_root *root;
5924 struct inode *inode = d_inode(dentry);
5925
5926 if (!inode && !IS_ROOT(dentry))
5927 inode = d_inode(dentry->d_parent);
5928
5929 if (inode) {
5930 root = BTRFS_I(inode)->root;
5931 if (btrfs_root_refs(&root->root_item) == 0)
5932 return 1;
5933
5934 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5935 return 1;
5936 }
5937 return 0;
5938 }
5939
btrfs_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)5940 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5941 unsigned int flags)
5942 {
5943 struct inode *inode;
5944
5945 inode = btrfs_lookup_dentry(dir, dentry);
5946 if (IS_ERR(inode)) {
5947 if (PTR_ERR(inode) == -ENOENT)
5948 inode = NULL;
5949 else
5950 return ERR_CAST(inode);
5951 }
5952
5953 return d_splice_alias(inode, dentry);
5954 }
5955
5956 unsigned char btrfs_filetype_table[] = {
5957 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5958 };
5959
5960 /*
5961 * All this infrastructure exists because dir_emit can fault, and we are holding
5962 * the tree lock when doing readdir. For now just allocate a buffer and copy
5963 * our information into that, and then dir_emit from the buffer. This is
5964 * similar to what NFS does, only we don't keep the buffer around in pagecache
5965 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5966 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5967 * tree lock.
5968 */
btrfs_opendir(struct inode * inode,struct file * file)5969 static int btrfs_opendir(struct inode *inode, struct file *file)
5970 {
5971 struct btrfs_file_private *private;
5972
5973 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5974 if (!private)
5975 return -ENOMEM;
5976 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5977 if (!private->filldir_buf) {
5978 kfree(private);
5979 return -ENOMEM;
5980 }
5981 file->private_data = private;
5982 return 0;
5983 }
5984
5985 struct dir_entry {
5986 u64 ino;
5987 u64 offset;
5988 unsigned type;
5989 int name_len;
5990 };
5991
btrfs_filldir(void * addr,int entries,struct dir_context * ctx)5992 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5993 {
5994 while (entries--) {
5995 struct dir_entry *entry = addr;
5996 char *name = (char *)(entry + 1);
5997
5998 ctx->pos = get_unaligned(&entry->offset);
5999 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
6000 get_unaligned(&entry->ino),
6001 get_unaligned(&entry->type)))
6002 return 1;
6003 addr += sizeof(struct dir_entry) +
6004 get_unaligned(&entry->name_len);
6005 ctx->pos++;
6006 }
6007 return 0;
6008 }
6009
btrfs_real_readdir(struct file * file,struct dir_context * ctx)6010 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
6011 {
6012 struct inode *inode = file_inode(file);
6013 struct btrfs_root *root = BTRFS_I(inode)->root;
6014 struct btrfs_file_private *private = file->private_data;
6015 struct btrfs_dir_item *di;
6016 struct btrfs_key key;
6017 struct btrfs_key found_key;
6018 struct btrfs_path *path;
6019 void *addr;
6020 struct list_head ins_list;
6021 struct list_head del_list;
6022 int ret;
6023 struct extent_buffer *leaf;
6024 int slot;
6025 char *name_ptr;
6026 int name_len;
6027 int entries = 0;
6028 int total_len = 0;
6029 bool put = false;
6030 struct btrfs_key location;
6031
6032 if (!dir_emit_dots(file, ctx))
6033 return 0;
6034
6035 path = btrfs_alloc_path();
6036 if (!path)
6037 return -ENOMEM;
6038
6039 addr = private->filldir_buf;
6040 path->reada = READA_FORWARD;
6041
6042 INIT_LIST_HEAD(&ins_list);
6043 INIT_LIST_HEAD(&del_list);
6044 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
6045
6046 again:
6047 key.type = BTRFS_DIR_INDEX_KEY;
6048 key.offset = ctx->pos;
6049 key.objectid = btrfs_ino(BTRFS_I(inode));
6050
6051 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6052 if (ret < 0)
6053 goto err;
6054
6055 while (1) {
6056 struct dir_entry *entry;
6057
6058 leaf = path->nodes[0];
6059 slot = path->slots[0];
6060 if (slot >= btrfs_header_nritems(leaf)) {
6061 ret = btrfs_next_leaf(root, path);
6062 if (ret < 0)
6063 goto err;
6064 else if (ret > 0)
6065 break;
6066 continue;
6067 }
6068
6069 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6070
6071 if (found_key.objectid != key.objectid)
6072 break;
6073 if (found_key.type != BTRFS_DIR_INDEX_KEY)
6074 break;
6075 if (found_key.offset < ctx->pos)
6076 goto next;
6077 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
6078 goto next;
6079 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
6080 name_len = btrfs_dir_name_len(leaf, di);
6081 if ((total_len + sizeof(struct dir_entry) + name_len) >=
6082 PAGE_SIZE) {
6083 btrfs_release_path(path);
6084 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6085 if (ret)
6086 goto nopos;
6087 addr = private->filldir_buf;
6088 entries = 0;
6089 total_len = 0;
6090 goto again;
6091 }
6092
6093 entry = addr;
6094 put_unaligned(name_len, &entry->name_len);
6095 name_ptr = (char *)(entry + 1);
6096 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
6097 name_len);
6098 put_unaligned(btrfs_filetype_table[btrfs_dir_type(leaf, di)],
6099 &entry->type);
6100 btrfs_dir_item_key_to_cpu(leaf, di, &location);
6101 put_unaligned(location.objectid, &entry->ino);
6102 put_unaligned(found_key.offset, &entry->offset);
6103 entries++;
6104 addr += sizeof(struct dir_entry) + name_len;
6105 total_len += sizeof(struct dir_entry) + name_len;
6106 next:
6107 path->slots[0]++;
6108 }
6109 btrfs_release_path(path);
6110
6111 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6112 if (ret)
6113 goto nopos;
6114
6115 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
6116 if (ret)
6117 goto nopos;
6118
6119 /*
6120 * Stop new entries from being returned after we return the last
6121 * entry.
6122 *
6123 * New directory entries are assigned a strictly increasing
6124 * offset. This means that new entries created during readdir
6125 * are *guaranteed* to be seen in the future by that readdir.
6126 * This has broken buggy programs which operate on names as
6127 * they're returned by readdir. Until we re-use freed offsets
6128 * we have this hack to stop new entries from being returned
6129 * under the assumption that they'll never reach this huge
6130 * offset.
6131 *
6132 * This is being careful not to overflow 32bit loff_t unless the
6133 * last entry requires it because doing so has broken 32bit apps
6134 * in the past.
6135 */
6136 if (ctx->pos >= INT_MAX)
6137 ctx->pos = LLONG_MAX;
6138 else
6139 ctx->pos = INT_MAX;
6140 nopos:
6141 ret = 0;
6142 err:
6143 if (put)
6144 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
6145 btrfs_free_path(path);
6146 return ret;
6147 }
6148
6149 /*
6150 * This is somewhat expensive, updating the tree every time the
6151 * inode changes. But, it is most likely to find the inode in cache.
6152 * FIXME, needs more benchmarking...there are no reasons other than performance
6153 * to keep or drop this code.
6154 */
btrfs_dirty_inode(struct inode * inode)6155 static int btrfs_dirty_inode(struct inode *inode)
6156 {
6157 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6158 struct btrfs_root *root = BTRFS_I(inode)->root;
6159 struct btrfs_trans_handle *trans;
6160 int ret;
6161
6162 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6163 return 0;
6164
6165 trans = btrfs_join_transaction(root);
6166 if (IS_ERR(trans))
6167 return PTR_ERR(trans);
6168
6169 ret = btrfs_update_inode(trans, root, inode);
6170 if (ret && ret == -ENOSPC) {
6171 /* whoops, lets try again with the full transaction */
6172 btrfs_end_transaction(trans);
6173 trans = btrfs_start_transaction(root, 1);
6174 if (IS_ERR(trans))
6175 return PTR_ERR(trans);
6176
6177 ret = btrfs_update_inode(trans, root, inode);
6178 }
6179 btrfs_end_transaction(trans);
6180 if (BTRFS_I(inode)->delayed_node)
6181 btrfs_balance_delayed_items(fs_info);
6182
6183 return ret;
6184 }
6185
6186 /*
6187 * This is a copy of file_update_time. We need this so we can return error on
6188 * ENOSPC for updating the inode in the case of file write and mmap writes.
6189 */
btrfs_update_time(struct inode * inode,struct timespec64 * now,int flags)6190 static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
6191 int flags)
6192 {
6193 struct btrfs_root *root = BTRFS_I(inode)->root;
6194 bool dirty = flags & ~S_VERSION;
6195
6196 if (btrfs_root_readonly(root))
6197 return -EROFS;
6198
6199 if (flags & S_VERSION)
6200 dirty |= inode_maybe_inc_iversion(inode, dirty);
6201 if (flags & S_CTIME)
6202 inode->i_ctime = *now;
6203 if (flags & S_MTIME)
6204 inode->i_mtime = *now;
6205 if (flags & S_ATIME)
6206 inode->i_atime = *now;
6207 return dirty ? btrfs_dirty_inode(inode) : 0;
6208 }
6209
6210 /*
6211 * find the highest existing sequence number in a directory
6212 * and then set the in-memory index_cnt variable to reflect
6213 * free sequence numbers
6214 */
btrfs_set_inode_index_count(struct btrfs_inode * inode)6215 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
6216 {
6217 struct btrfs_root *root = inode->root;
6218 struct btrfs_key key, found_key;
6219 struct btrfs_path *path;
6220 struct extent_buffer *leaf;
6221 int ret;
6222
6223 key.objectid = btrfs_ino(inode);
6224 key.type = BTRFS_DIR_INDEX_KEY;
6225 key.offset = (u64)-1;
6226
6227 path = btrfs_alloc_path();
6228 if (!path)
6229 return -ENOMEM;
6230
6231 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6232 if (ret < 0)
6233 goto out;
6234 /* FIXME: we should be able to handle this */
6235 if (ret == 0)
6236 goto out;
6237 ret = 0;
6238
6239 /*
6240 * MAGIC NUMBER EXPLANATION:
6241 * since we search a directory based on f_pos we have to start at 2
6242 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6243 * else has to start at 2
6244 */
6245 if (path->slots[0] == 0) {
6246 inode->index_cnt = 2;
6247 goto out;
6248 }
6249
6250 path->slots[0]--;
6251
6252 leaf = path->nodes[0];
6253 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6254
6255 if (found_key.objectid != btrfs_ino(inode) ||
6256 found_key.type != BTRFS_DIR_INDEX_KEY) {
6257 inode->index_cnt = 2;
6258 goto out;
6259 }
6260
6261 inode->index_cnt = found_key.offset + 1;
6262 out:
6263 btrfs_free_path(path);
6264 return ret;
6265 }
6266
6267 /*
6268 * helper to find a free sequence number in a given directory. This current
6269 * code is very simple, later versions will do smarter things in the btree
6270 */
btrfs_set_inode_index(struct btrfs_inode * dir,u64 * index)6271 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6272 {
6273 int ret = 0;
6274
6275 if (dir->index_cnt == (u64)-1) {
6276 ret = btrfs_inode_delayed_dir_index_count(dir);
6277 if (ret) {
6278 ret = btrfs_set_inode_index_count(dir);
6279 if (ret)
6280 return ret;
6281 }
6282 }
6283
6284 *index = dir->index_cnt;
6285 dir->index_cnt++;
6286
6287 return ret;
6288 }
6289
btrfs_insert_inode_locked(struct inode * inode)6290 static int btrfs_insert_inode_locked(struct inode *inode)
6291 {
6292 struct btrfs_iget_args args;
6293 args.location = &BTRFS_I(inode)->location;
6294 args.root = BTRFS_I(inode)->root;
6295
6296 return insert_inode_locked4(inode,
6297 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6298 btrfs_find_actor, &args);
6299 }
6300
6301 /*
6302 * Inherit flags from the parent inode.
6303 *
6304 * Currently only the compression flags and the cow flags are inherited.
6305 */
btrfs_inherit_iflags(struct inode * inode,struct inode * dir)6306 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6307 {
6308 unsigned int flags;
6309
6310 if (!dir)
6311 return;
6312
6313 flags = BTRFS_I(dir)->flags;
6314
6315 if (flags & BTRFS_INODE_NOCOMPRESS) {
6316 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6317 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6318 } else if (flags & BTRFS_INODE_COMPRESS) {
6319 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6320 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6321 }
6322
6323 if (flags & BTRFS_INODE_NODATACOW) {
6324 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6325 if (S_ISREG(inode->i_mode))
6326 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6327 }
6328
6329 btrfs_sync_inode_flags_to_i_flags(inode);
6330 }
6331
btrfs_new_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * dir,const char * name,int name_len,u64 ref_objectid,u64 objectid,umode_t mode,u64 * index)6332 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6333 struct btrfs_root *root,
6334 struct inode *dir,
6335 const char *name, int name_len,
6336 u64 ref_objectid, u64 objectid,
6337 umode_t mode, u64 *index)
6338 {
6339 struct btrfs_fs_info *fs_info = root->fs_info;
6340 struct inode *inode;
6341 struct btrfs_inode_item *inode_item;
6342 struct btrfs_key *location;
6343 struct btrfs_path *path;
6344 struct btrfs_inode_ref *ref;
6345 struct btrfs_key key[2];
6346 u32 sizes[2];
6347 int nitems = name ? 2 : 1;
6348 unsigned long ptr;
6349 int ret;
6350
6351 path = btrfs_alloc_path();
6352 if (!path)
6353 return ERR_PTR(-ENOMEM);
6354
6355 inode = new_inode(fs_info->sb);
6356 if (!inode) {
6357 btrfs_free_path(path);
6358 return ERR_PTR(-ENOMEM);
6359 }
6360
6361 /*
6362 * O_TMPFILE, set link count to 0, so that after this point,
6363 * we fill in an inode item with the correct link count.
6364 */
6365 if (!name)
6366 set_nlink(inode, 0);
6367
6368 /*
6369 * we have to initialize this early, so we can reclaim the inode
6370 * number if we fail afterwards in this function.
6371 */
6372 inode->i_ino = objectid;
6373
6374 if (dir && name) {
6375 trace_btrfs_inode_request(dir);
6376
6377 ret = btrfs_set_inode_index(BTRFS_I(dir), index);
6378 if (ret) {
6379 btrfs_free_path(path);
6380 iput(inode);
6381 return ERR_PTR(ret);
6382 }
6383 } else if (dir) {
6384 *index = 0;
6385 }
6386 /*
6387 * index_cnt is ignored for everything but a dir,
6388 * btrfs_set_inode_index_count has an explanation for the magic
6389 * number
6390 */
6391 BTRFS_I(inode)->index_cnt = 2;
6392 BTRFS_I(inode)->dir_index = *index;
6393 BTRFS_I(inode)->root = root;
6394 BTRFS_I(inode)->generation = trans->transid;
6395 inode->i_generation = BTRFS_I(inode)->generation;
6396
6397 /*
6398 * We could have gotten an inode number from somebody who was fsynced
6399 * and then removed in this same transaction, so let's just set full
6400 * sync since it will be a full sync anyway and this will blow away the
6401 * old info in the log.
6402 */
6403 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6404
6405 key[0].objectid = objectid;
6406 key[0].type = BTRFS_INODE_ITEM_KEY;
6407 key[0].offset = 0;
6408
6409 sizes[0] = sizeof(struct btrfs_inode_item);
6410
6411 if (name) {
6412 /*
6413 * Start new inodes with an inode_ref. This is slightly more
6414 * efficient for small numbers of hard links since they will
6415 * be packed into one item. Extended refs will kick in if we
6416 * add more hard links than can fit in the ref item.
6417 */
6418 key[1].objectid = objectid;
6419 key[1].type = BTRFS_INODE_REF_KEY;
6420 key[1].offset = ref_objectid;
6421
6422 sizes[1] = name_len + sizeof(*ref);
6423 }
6424
6425 location = &BTRFS_I(inode)->location;
6426 location->objectid = objectid;
6427 location->offset = 0;
6428 location->type = BTRFS_INODE_ITEM_KEY;
6429
6430 ret = btrfs_insert_inode_locked(inode);
6431 if (ret < 0) {
6432 iput(inode);
6433 goto fail;
6434 }
6435
6436 path->leave_spinning = 1;
6437 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6438 if (ret != 0)
6439 goto fail_unlock;
6440
6441 inode_init_owner(inode, dir, mode);
6442 inode_set_bytes(inode, 0);
6443
6444 inode->i_mtime = current_time(inode);
6445 inode->i_atime = inode->i_mtime;
6446 inode->i_ctime = inode->i_mtime;
6447 BTRFS_I(inode)->i_otime = inode->i_mtime;
6448
6449 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6450 struct btrfs_inode_item);
6451 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6452 sizeof(*inode_item));
6453 fill_inode_item(trans, path->nodes[0], inode_item, inode);
6454
6455 if (name) {
6456 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6457 struct btrfs_inode_ref);
6458 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6459 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6460 ptr = (unsigned long)(ref + 1);
6461 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6462 }
6463
6464 btrfs_mark_buffer_dirty(path->nodes[0]);
6465 btrfs_free_path(path);
6466
6467 btrfs_inherit_iflags(inode, dir);
6468
6469 if (S_ISREG(mode)) {
6470 if (btrfs_test_opt(fs_info, NODATASUM))
6471 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6472 if (btrfs_test_opt(fs_info, NODATACOW))
6473 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6474 BTRFS_INODE_NODATASUM;
6475 }
6476
6477 inode_tree_add(inode);
6478
6479 trace_btrfs_inode_new(inode);
6480 btrfs_set_inode_last_trans(trans, inode);
6481
6482 btrfs_update_root_times(trans, root);
6483
6484 ret = btrfs_inode_inherit_props(trans, inode, dir);
6485 if (ret)
6486 btrfs_err(fs_info,
6487 "error inheriting props for ino %llu (root %llu): %d",
6488 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6489
6490 return inode;
6491
6492 fail_unlock:
6493 discard_new_inode(inode);
6494 fail:
6495 if (dir && name)
6496 BTRFS_I(dir)->index_cnt--;
6497 btrfs_free_path(path);
6498 return ERR_PTR(ret);
6499 }
6500
6501 /*
6502 * utility function to add 'inode' into 'parent_inode' with
6503 * a give name and a given sequence number.
6504 * if 'add_backref' is true, also insert a backref from the
6505 * inode to the parent directory.
6506 */
btrfs_add_link(struct btrfs_trans_handle * trans,struct btrfs_inode * parent_inode,struct btrfs_inode * inode,const char * name,int name_len,int add_backref,u64 index)6507 int btrfs_add_link(struct btrfs_trans_handle *trans,
6508 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6509 const char *name, int name_len, int add_backref, u64 index)
6510 {
6511 int ret = 0;
6512 struct btrfs_key key;
6513 struct btrfs_root *root = parent_inode->root;
6514 u64 ino = btrfs_ino(inode);
6515 u64 parent_ino = btrfs_ino(parent_inode);
6516
6517 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6518 memcpy(&key, &inode->root->root_key, sizeof(key));
6519 } else {
6520 key.objectid = ino;
6521 key.type = BTRFS_INODE_ITEM_KEY;
6522 key.offset = 0;
6523 }
6524
6525 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6526 ret = btrfs_add_root_ref(trans, key.objectid,
6527 root->root_key.objectid, parent_ino,
6528 index, name, name_len);
6529 } else if (add_backref) {
6530 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6531 parent_ino, index);
6532 }
6533
6534 /* Nothing to clean up yet */
6535 if (ret)
6536 return ret;
6537
6538 ret = btrfs_insert_dir_item(trans, root, name, name_len,
6539 parent_inode, &key,
6540 btrfs_inode_type(&inode->vfs_inode), index);
6541 if (ret == -EEXIST || ret == -EOVERFLOW)
6542 goto fail_dir_item;
6543 else if (ret) {
6544 btrfs_abort_transaction(trans, ret);
6545 return ret;
6546 }
6547
6548 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6549 name_len * 2);
6550 inode_inc_iversion(&parent_inode->vfs_inode);
6551 /*
6552 * If we are replaying a log tree, we do not want to update the mtime
6553 * and ctime of the parent directory with the current time, since the
6554 * log replay procedure is responsible for setting them to their correct
6555 * values (the ones it had when the fsync was done).
6556 */
6557 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6558 struct timespec64 now = current_time(&parent_inode->vfs_inode);
6559
6560 parent_inode->vfs_inode.i_mtime = now;
6561 parent_inode->vfs_inode.i_ctime = now;
6562 }
6563 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
6564 if (ret)
6565 btrfs_abort_transaction(trans, ret);
6566 return ret;
6567
6568 fail_dir_item:
6569 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6570 u64 local_index;
6571 int err;
6572 err = btrfs_del_root_ref(trans, key.objectid,
6573 root->root_key.objectid, parent_ino,
6574 &local_index, name, name_len);
6575 if (err)
6576 btrfs_abort_transaction(trans, err);
6577 } else if (add_backref) {
6578 u64 local_index;
6579 int err;
6580
6581 err = btrfs_del_inode_ref(trans, root, name, name_len,
6582 ino, parent_ino, &local_index);
6583 if (err)
6584 btrfs_abort_transaction(trans, err);
6585 }
6586
6587 /* Return the original error code */
6588 return ret;
6589 }
6590
btrfs_add_nondir(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct dentry * dentry,struct btrfs_inode * inode,int backref,u64 index)6591 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6592 struct btrfs_inode *dir, struct dentry *dentry,
6593 struct btrfs_inode *inode, int backref, u64 index)
6594 {
6595 int err = btrfs_add_link(trans, dir, inode,
6596 dentry->d_name.name, dentry->d_name.len,
6597 backref, index);
6598 if (err > 0)
6599 err = -EEXIST;
6600 return err;
6601 }
6602
btrfs_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t rdev)6603 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6604 umode_t mode, dev_t rdev)
6605 {
6606 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6607 struct btrfs_trans_handle *trans;
6608 struct btrfs_root *root = BTRFS_I(dir)->root;
6609 struct inode *inode = NULL;
6610 int err;
6611 u64 objectid;
6612 u64 index = 0;
6613
6614 /*
6615 * 2 for inode item and ref
6616 * 2 for dir items
6617 * 1 for xattr if selinux is on
6618 */
6619 trans = btrfs_start_transaction(root, 5);
6620 if (IS_ERR(trans))
6621 return PTR_ERR(trans);
6622
6623 err = btrfs_find_free_objectid(root, &objectid);
6624 if (err)
6625 goto out_unlock;
6626
6627 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6628 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6629 mode, &index);
6630 if (IS_ERR(inode)) {
6631 err = PTR_ERR(inode);
6632 inode = NULL;
6633 goto out_unlock;
6634 }
6635
6636 /*
6637 * If the active LSM wants to access the inode during
6638 * d_instantiate it needs these. Smack checks to see
6639 * if the filesystem supports xattrs by looking at the
6640 * ops vector.
6641 */
6642 inode->i_op = &btrfs_special_inode_operations;
6643 init_special_inode(inode, inode->i_mode, rdev);
6644
6645 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6646 if (err)
6647 goto out_unlock;
6648
6649 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6650 0, index);
6651 if (err)
6652 goto out_unlock;
6653
6654 btrfs_update_inode(trans, root, inode);
6655 d_instantiate_new(dentry, inode);
6656
6657 out_unlock:
6658 btrfs_end_transaction(trans);
6659 btrfs_btree_balance_dirty(fs_info);
6660 if (err && inode) {
6661 inode_dec_link_count(inode);
6662 discard_new_inode(inode);
6663 }
6664 return err;
6665 }
6666
btrfs_create(struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)6667 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6668 umode_t mode, bool excl)
6669 {
6670 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6671 struct btrfs_trans_handle *trans;
6672 struct btrfs_root *root = BTRFS_I(dir)->root;
6673 struct inode *inode = NULL;
6674 int err;
6675 u64 objectid;
6676 u64 index = 0;
6677
6678 /*
6679 * 2 for inode item and ref
6680 * 2 for dir items
6681 * 1 for xattr if selinux is on
6682 */
6683 trans = btrfs_start_transaction(root, 5);
6684 if (IS_ERR(trans))
6685 return PTR_ERR(trans);
6686
6687 err = btrfs_find_free_objectid(root, &objectid);
6688 if (err)
6689 goto out_unlock;
6690
6691 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6692 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6693 mode, &index);
6694 if (IS_ERR(inode)) {
6695 err = PTR_ERR(inode);
6696 inode = NULL;
6697 goto out_unlock;
6698 }
6699 /*
6700 * If the active LSM wants to access the inode during
6701 * d_instantiate it needs these. Smack checks to see
6702 * if the filesystem supports xattrs by looking at the
6703 * ops vector.
6704 */
6705 inode->i_fop = &btrfs_file_operations;
6706 inode->i_op = &btrfs_file_inode_operations;
6707 inode->i_mapping->a_ops = &btrfs_aops;
6708
6709 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6710 if (err)
6711 goto out_unlock;
6712
6713 err = btrfs_update_inode(trans, root, inode);
6714 if (err)
6715 goto out_unlock;
6716
6717 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6718 0, index);
6719 if (err)
6720 goto out_unlock;
6721
6722 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6723 d_instantiate_new(dentry, inode);
6724
6725 out_unlock:
6726 btrfs_end_transaction(trans);
6727 if (err && inode) {
6728 inode_dec_link_count(inode);
6729 discard_new_inode(inode);
6730 }
6731 btrfs_btree_balance_dirty(fs_info);
6732 return err;
6733 }
6734
btrfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)6735 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6736 struct dentry *dentry)
6737 {
6738 struct btrfs_trans_handle *trans = NULL;
6739 struct btrfs_root *root = BTRFS_I(dir)->root;
6740 struct inode *inode = d_inode(old_dentry);
6741 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6742 u64 index;
6743 int err;
6744 int drop_inode = 0;
6745
6746 /* do not allow sys_link's with other subvols of the same device */
6747 if (root->objectid != BTRFS_I(inode)->root->objectid)
6748 return -EXDEV;
6749
6750 if (inode->i_nlink >= BTRFS_LINK_MAX)
6751 return -EMLINK;
6752
6753 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6754 if (err)
6755 goto fail;
6756
6757 /*
6758 * 2 items for inode and inode ref
6759 * 2 items for dir items
6760 * 1 item for parent inode
6761 * 1 item for orphan item deletion if O_TMPFILE
6762 */
6763 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6764 if (IS_ERR(trans)) {
6765 err = PTR_ERR(trans);
6766 trans = NULL;
6767 goto fail;
6768 }
6769
6770 /* There are several dir indexes for this inode, clear the cache. */
6771 BTRFS_I(inode)->dir_index = 0ULL;
6772 inc_nlink(inode);
6773 inode_inc_iversion(inode);
6774 inode->i_ctime = current_time(inode);
6775 ihold(inode);
6776 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6777
6778 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6779 1, index);
6780
6781 if (err) {
6782 drop_inode = 1;
6783 } else {
6784 struct dentry *parent = dentry->d_parent;
6785 int ret;
6786
6787 err = btrfs_update_inode(trans, root, inode);
6788 if (err)
6789 goto fail;
6790 if (inode->i_nlink == 1) {
6791 /*
6792 * If new hard link count is 1, it's a file created
6793 * with open(2) O_TMPFILE flag.
6794 */
6795 err = btrfs_orphan_del(trans, BTRFS_I(inode));
6796 if (err)
6797 goto fail;
6798 }
6799 BTRFS_I(inode)->last_link_trans = trans->transid;
6800 d_instantiate(dentry, inode);
6801 ret = btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent,
6802 true, NULL);
6803 if (ret == BTRFS_NEED_TRANS_COMMIT) {
6804 err = btrfs_commit_transaction(trans);
6805 trans = NULL;
6806 }
6807 }
6808
6809 fail:
6810 if (trans)
6811 btrfs_end_transaction(trans);
6812 if (drop_inode) {
6813 inode_dec_link_count(inode);
6814 iput(inode);
6815 }
6816 btrfs_btree_balance_dirty(fs_info);
6817 return err;
6818 }
6819
btrfs_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)6820 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6821 {
6822 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6823 struct inode *inode = NULL;
6824 struct btrfs_trans_handle *trans;
6825 struct btrfs_root *root = BTRFS_I(dir)->root;
6826 int err = 0;
6827 int drop_on_err = 0;
6828 u64 objectid = 0;
6829 u64 index = 0;
6830
6831 /*
6832 * 2 items for inode and ref
6833 * 2 items for dir items
6834 * 1 for xattr if selinux is on
6835 */
6836 trans = btrfs_start_transaction(root, 5);
6837 if (IS_ERR(trans))
6838 return PTR_ERR(trans);
6839
6840 err = btrfs_find_free_objectid(root, &objectid);
6841 if (err)
6842 goto out_fail;
6843
6844 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6845 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6846 S_IFDIR | mode, &index);
6847 if (IS_ERR(inode)) {
6848 err = PTR_ERR(inode);
6849 inode = NULL;
6850 goto out_fail;
6851 }
6852
6853 drop_on_err = 1;
6854 /* these must be set before we unlock the inode */
6855 inode->i_op = &btrfs_dir_inode_operations;
6856 inode->i_fop = &btrfs_dir_file_operations;
6857
6858 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6859 if (err)
6860 goto out_fail;
6861
6862 btrfs_i_size_write(BTRFS_I(inode), 0);
6863 err = btrfs_update_inode(trans, root, inode);
6864 if (err)
6865 goto out_fail;
6866
6867 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6868 dentry->d_name.name,
6869 dentry->d_name.len, 0, index);
6870 if (err)
6871 goto out_fail;
6872
6873 d_instantiate_new(dentry, inode);
6874 drop_on_err = 0;
6875
6876 out_fail:
6877 btrfs_end_transaction(trans);
6878 if (err && inode) {
6879 inode_dec_link_count(inode);
6880 discard_new_inode(inode);
6881 }
6882 btrfs_btree_balance_dirty(fs_info);
6883 return err;
6884 }
6885
uncompress_inline(struct btrfs_path * path,struct page * page,size_t pg_offset,u64 extent_offset,struct btrfs_file_extent_item * item)6886 static noinline int uncompress_inline(struct btrfs_path *path,
6887 struct page *page,
6888 size_t pg_offset, u64 extent_offset,
6889 struct btrfs_file_extent_item *item)
6890 {
6891 int ret;
6892 struct extent_buffer *leaf = path->nodes[0];
6893 char *tmp;
6894 size_t max_size;
6895 unsigned long inline_size;
6896 unsigned long ptr;
6897 int compress_type;
6898
6899 WARN_ON(pg_offset != 0);
6900 compress_type = btrfs_file_extent_compression(leaf, item);
6901 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6902 inline_size = btrfs_file_extent_inline_item_len(leaf,
6903 btrfs_item_nr(path->slots[0]));
6904 tmp = kmalloc(inline_size, GFP_NOFS);
6905 if (!tmp)
6906 return -ENOMEM;
6907 ptr = btrfs_file_extent_inline_start(item);
6908
6909 read_extent_buffer(leaf, tmp, ptr, inline_size);
6910
6911 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6912 ret = btrfs_decompress(compress_type, tmp, page,
6913 extent_offset, inline_size, max_size);
6914
6915 /*
6916 * decompression code contains a memset to fill in any space between the end
6917 * of the uncompressed data and the end of max_size in case the decompressed
6918 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6919 * the end of an inline extent and the beginning of the next block, so we
6920 * cover that region here.
6921 */
6922
6923 if (max_size + pg_offset < PAGE_SIZE) {
6924 char *map = kmap(page);
6925 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6926 kunmap(page);
6927 }
6928 kfree(tmp);
6929 return ret;
6930 }
6931
6932 /*
6933 * a bit scary, this does extent mapping from logical file offset to the disk.
6934 * the ugly parts come from merging extents from the disk with the in-ram
6935 * representation. This gets more complex because of the data=ordered code,
6936 * where the in-ram extents might be locked pending data=ordered completion.
6937 *
6938 * This also copies inline extents directly into the page.
6939 */
btrfs_get_extent(struct btrfs_inode * inode,struct page * page,size_t pg_offset,u64 start,u64 len,int create)6940 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6941 struct page *page,
6942 size_t pg_offset, u64 start, u64 len,
6943 int create)
6944 {
6945 struct btrfs_fs_info *fs_info = inode->root->fs_info;
6946 int ret;
6947 int err = 0;
6948 u64 extent_start = 0;
6949 u64 extent_end = 0;
6950 u64 objectid = btrfs_ino(inode);
6951 u32 found_type;
6952 struct btrfs_path *path = NULL;
6953 struct btrfs_root *root = inode->root;
6954 struct btrfs_file_extent_item *item;
6955 struct extent_buffer *leaf;
6956 struct btrfs_key found_key;
6957 struct extent_map *em = NULL;
6958 struct extent_map_tree *em_tree = &inode->extent_tree;
6959 struct extent_io_tree *io_tree = &inode->io_tree;
6960 const bool new_inline = !page || create;
6961
6962 read_lock(&em_tree->lock);
6963 em = lookup_extent_mapping(em_tree, start, len);
6964 if (em)
6965 em->bdev = fs_info->fs_devices->latest_bdev;
6966 read_unlock(&em_tree->lock);
6967
6968 if (em) {
6969 if (em->start > start || em->start + em->len <= start)
6970 free_extent_map(em);
6971 else if (em->block_start == EXTENT_MAP_INLINE && page)
6972 free_extent_map(em);
6973 else
6974 goto out;
6975 }
6976 em = alloc_extent_map();
6977 if (!em) {
6978 err = -ENOMEM;
6979 goto out;
6980 }
6981 em->bdev = fs_info->fs_devices->latest_bdev;
6982 em->start = EXTENT_MAP_HOLE;
6983 em->orig_start = EXTENT_MAP_HOLE;
6984 em->len = (u64)-1;
6985 em->block_len = (u64)-1;
6986
6987 if (!path) {
6988 path = btrfs_alloc_path();
6989 if (!path) {
6990 err = -ENOMEM;
6991 goto out;
6992 }
6993 /*
6994 * Chances are we'll be called again, so go ahead and do
6995 * readahead
6996 */
6997 path->reada = READA_FORWARD;
6998 }
6999
7000 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
7001 if (ret < 0) {
7002 err = ret;
7003 goto out;
7004 }
7005
7006 if (ret != 0) {
7007 if (path->slots[0] == 0)
7008 goto not_found;
7009 path->slots[0]--;
7010 }
7011
7012 leaf = path->nodes[0];
7013 item = btrfs_item_ptr(leaf, path->slots[0],
7014 struct btrfs_file_extent_item);
7015 /* are we inside the extent that was found? */
7016 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7017 found_type = found_key.type;
7018 if (found_key.objectid != objectid ||
7019 found_type != BTRFS_EXTENT_DATA_KEY) {
7020 /*
7021 * If we backup past the first extent we want to move forward
7022 * and see if there is an extent in front of us, otherwise we'll
7023 * say there is a hole for our whole search range which can
7024 * cause problems.
7025 */
7026 extent_end = start;
7027 goto next;
7028 }
7029
7030 found_type = btrfs_file_extent_type(leaf, item);
7031 extent_start = found_key.offset;
7032 if (found_type == BTRFS_FILE_EXTENT_REG ||
7033 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7034 /* Only regular file could have regular/prealloc extent */
7035 if (!S_ISREG(inode->vfs_inode.i_mode)) {
7036 err = -EUCLEAN;
7037 btrfs_crit(fs_info,
7038 "regular/prealloc extent found for non-regular inode %llu",
7039 btrfs_ino(inode));
7040 goto out;
7041 }
7042 extent_end = extent_start +
7043 btrfs_file_extent_num_bytes(leaf, item);
7044
7045 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
7046 extent_start);
7047 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
7048 size_t size;
7049
7050 size = btrfs_file_extent_ram_bytes(leaf, item);
7051 extent_end = ALIGN(extent_start + size,
7052 fs_info->sectorsize);
7053
7054 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
7055 path->slots[0],
7056 extent_start);
7057 }
7058 next:
7059 if (start >= extent_end) {
7060 path->slots[0]++;
7061 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
7062 ret = btrfs_next_leaf(root, path);
7063 if (ret < 0) {
7064 err = ret;
7065 goto out;
7066 }
7067 if (ret > 0)
7068 goto not_found;
7069 leaf = path->nodes[0];
7070 }
7071 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7072 if (found_key.objectid != objectid ||
7073 found_key.type != BTRFS_EXTENT_DATA_KEY)
7074 goto not_found;
7075 if (start + len <= found_key.offset)
7076 goto not_found;
7077 if (start > found_key.offset)
7078 goto next;
7079 em->start = start;
7080 em->orig_start = start;
7081 em->len = found_key.offset - start;
7082 goto not_found_em;
7083 }
7084
7085 btrfs_extent_item_to_extent_map(inode, path, item,
7086 new_inline, em);
7087
7088 if (found_type == BTRFS_FILE_EXTENT_REG ||
7089 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7090 goto insert;
7091 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
7092 unsigned long ptr;
7093 char *map;
7094 size_t size;
7095 size_t extent_offset;
7096 size_t copy_size;
7097
7098 if (new_inline)
7099 goto out;
7100
7101 size = btrfs_file_extent_ram_bytes(leaf, item);
7102 extent_offset = page_offset(page) + pg_offset - extent_start;
7103 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
7104 size - extent_offset);
7105 em->start = extent_start + extent_offset;
7106 em->len = ALIGN(copy_size, fs_info->sectorsize);
7107 em->orig_block_len = em->len;
7108 em->orig_start = em->start;
7109 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
7110 if (!PageUptodate(page)) {
7111 if (btrfs_file_extent_compression(leaf, item) !=
7112 BTRFS_COMPRESS_NONE) {
7113 ret = uncompress_inline(path, page, pg_offset,
7114 extent_offset, item);
7115 if (ret) {
7116 err = ret;
7117 goto out;
7118 }
7119 } else {
7120 map = kmap(page);
7121 read_extent_buffer(leaf, map + pg_offset, ptr,
7122 copy_size);
7123 if (pg_offset + copy_size < PAGE_SIZE) {
7124 memset(map + pg_offset + copy_size, 0,
7125 PAGE_SIZE - pg_offset -
7126 copy_size);
7127 }
7128 kunmap(page);
7129 }
7130 flush_dcache_page(page);
7131 }
7132 set_extent_uptodate(io_tree, em->start,
7133 extent_map_end(em) - 1, NULL, GFP_NOFS);
7134 goto insert;
7135 }
7136 not_found:
7137 em->start = start;
7138 em->orig_start = start;
7139 em->len = len;
7140 not_found_em:
7141 em->block_start = EXTENT_MAP_HOLE;
7142 insert:
7143 btrfs_release_path(path);
7144 if (em->start > start || extent_map_end(em) <= start) {
7145 btrfs_err(fs_info,
7146 "bad extent! em: [%llu %llu] passed [%llu %llu]",
7147 em->start, em->len, start, len);
7148 err = -EIO;
7149 goto out;
7150 }
7151
7152 err = 0;
7153 write_lock(&em_tree->lock);
7154 err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
7155 write_unlock(&em_tree->lock);
7156 out:
7157
7158 trace_btrfs_get_extent(root, inode, em);
7159
7160 btrfs_free_path(path);
7161 if (err) {
7162 free_extent_map(em);
7163 return ERR_PTR(err);
7164 }
7165 BUG_ON(!em); /* Error is always set */
7166 return em;
7167 }
7168
btrfs_get_extent_fiemap(struct btrfs_inode * inode,struct page * page,size_t pg_offset,u64 start,u64 len,int create)7169 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
7170 struct page *page,
7171 size_t pg_offset, u64 start, u64 len,
7172 int create)
7173 {
7174 struct extent_map *em;
7175 struct extent_map *hole_em = NULL;
7176 u64 range_start = start;
7177 u64 end;
7178 u64 found;
7179 u64 found_end;
7180 int err = 0;
7181
7182 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7183 if (IS_ERR(em))
7184 return em;
7185 /*
7186 * If our em maps to:
7187 * - a hole or
7188 * - a pre-alloc extent,
7189 * there might actually be delalloc bytes behind it.
7190 */
7191 if (em->block_start != EXTENT_MAP_HOLE &&
7192 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7193 return em;
7194 else
7195 hole_em = em;
7196
7197 /* check to see if we've wrapped (len == -1 or similar) */
7198 end = start + len;
7199 if (end < start)
7200 end = (u64)-1;
7201 else
7202 end -= 1;
7203
7204 em = NULL;
7205
7206 /* ok, we didn't find anything, lets look for delalloc */
7207 found = count_range_bits(&inode->io_tree, &range_start,
7208 end, len, EXTENT_DELALLOC, 1);
7209 found_end = range_start + found;
7210 if (found_end < range_start)
7211 found_end = (u64)-1;
7212
7213 /*
7214 * we didn't find anything useful, return
7215 * the original results from get_extent()
7216 */
7217 if (range_start > end || found_end <= start) {
7218 em = hole_em;
7219 hole_em = NULL;
7220 goto out;
7221 }
7222
7223 /* adjust the range_start to make sure it doesn't
7224 * go backwards from the start they passed in
7225 */
7226 range_start = max(start, range_start);
7227 found = found_end - range_start;
7228
7229 if (found > 0) {
7230 u64 hole_start = start;
7231 u64 hole_len = len;
7232
7233 em = alloc_extent_map();
7234 if (!em) {
7235 err = -ENOMEM;
7236 goto out;
7237 }
7238 /*
7239 * when btrfs_get_extent can't find anything it
7240 * returns one huge hole
7241 *
7242 * make sure what it found really fits our range, and
7243 * adjust to make sure it is based on the start from
7244 * the caller
7245 */
7246 if (hole_em) {
7247 u64 calc_end = extent_map_end(hole_em);
7248
7249 if (calc_end <= start || (hole_em->start > end)) {
7250 free_extent_map(hole_em);
7251 hole_em = NULL;
7252 } else {
7253 hole_start = max(hole_em->start, start);
7254 hole_len = calc_end - hole_start;
7255 }
7256 }
7257 em->bdev = NULL;
7258 if (hole_em && range_start > hole_start) {
7259 /* our hole starts before our delalloc, so we
7260 * have to return just the parts of the hole
7261 * that go until the delalloc starts
7262 */
7263 em->len = min(hole_len,
7264 range_start - hole_start);
7265 em->start = hole_start;
7266 em->orig_start = hole_start;
7267 /*
7268 * don't adjust block start at all,
7269 * it is fixed at EXTENT_MAP_HOLE
7270 */
7271 em->block_start = hole_em->block_start;
7272 em->block_len = hole_len;
7273 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7274 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7275 } else {
7276 em->start = range_start;
7277 em->len = found;
7278 em->orig_start = range_start;
7279 em->block_start = EXTENT_MAP_DELALLOC;
7280 em->block_len = found;
7281 }
7282 } else {
7283 return hole_em;
7284 }
7285 out:
7286
7287 free_extent_map(hole_em);
7288 if (err) {
7289 free_extent_map(em);
7290 return ERR_PTR(err);
7291 }
7292 return em;
7293 }
7294
btrfs_create_dio_extent(struct inode * inode,const u64 start,const u64 len,const u64 orig_start,const u64 block_start,const u64 block_len,const u64 orig_block_len,const u64 ram_bytes,const int type)7295 static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7296 const u64 start,
7297 const u64 len,
7298 const u64 orig_start,
7299 const u64 block_start,
7300 const u64 block_len,
7301 const u64 orig_block_len,
7302 const u64 ram_bytes,
7303 const int type)
7304 {
7305 struct extent_map *em = NULL;
7306 int ret;
7307
7308 if (type != BTRFS_ORDERED_NOCOW) {
7309 em = create_io_em(inode, start, len, orig_start,
7310 block_start, block_len, orig_block_len,
7311 ram_bytes,
7312 BTRFS_COMPRESS_NONE, /* compress_type */
7313 type);
7314 if (IS_ERR(em))
7315 goto out;
7316 }
7317 ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7318 len, block_len, type);
7319 if (ret) {
7320 if (em) {
7321 free_extent_map(em);
7322 btrfs_drop_extent_cache(BTRFS_I(inode), start,
7323 start + len - 1, 0);
7324 }
7325 em = ERR_PTR(ret);
7326 }
7327 out:
7328
7329 return em;
7330 }
7331
btrfs_new_extent_direct(struct inode * inode,u64 start,u64 len)7332 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7333 u64 start, u64 len)
7334 {
7335 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7336 struct btrfs_root *root = BTRFS_I(inode)->root;
7337 struct extent_map *em;
7338 struct btrfs_key ins;
7339 u64 alloc_hint;
7340 int ret;
7341
7342 alloc_hint = get_extent_allocation_hint(inode, start, len);
7343 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7344 0, alloc_hint, &ins, 1, 1);
7345 if (ret)
7346 return ERR_PTR(ret);
7347
7348 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7349 ins.objectid, ins.offset, ins.offset,
7350 ins.offset, BTRFS_ORDERED_REGULAR);
7351 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7352 if (IS_ERR(em))
7353 btrfs_free_reserved_extent(fs_info, ins.objectid,
7354 ins.offset, 1);
7355
7356 return em;
7357 }
7358
7359 /*
7360 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7361 * block must be cow'd
7362 */
can_nocow_extent(struct inode * inode,u64 offset,u64 * len,u64 * orig_start,u64 * orig_block_len,u64 * ram_bytes)7363 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7364 u64 *orig_start, u64 *orig_block_len,
7365 u64 *ram_bytes)
7366 {
7367 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7368 struct btrfs_path *path;
7369 int ret;
7370 struct extent_buffer *leaf;
7371 struct btrfs_root *root = BTRFS_I(inode)->root;
7372 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7373 struct btrfs_file_extent_item *fi;
7374 struct btrfs_key key;
7375 u64 disk_bytenr;
7376 u64 backref_offset;
7377 u64 extent_end;
7378 u64 num_bytes;
7379 int slot;
7380 int found_type;
7381 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7382
7383 path = btrfs_alloc_path();
7384 if (!path)
7385 return -ENOMEM;
7386
7387 ret = btrfs_lookup_file_extent(NULL, root, path,
7388 btrfs_ino(BTRFS_I(inode)), offset, 0);
7389 if (ret < 0)
7390 goto out;
7391
7392 slot = path->slots[0];
7393 if (ret == 1) {
7394 if (slot == 0) {
7395 /* can't find the item, must cow */
7396 ret = 0;
7397 goto out;
7398 }
7399 slot--;
7400 }
7401 ret = 0;
7402 leaf = path->nodes[0];
7403 btrfs_item_key_to_cpu(leaf, &key, slot);
7404 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7405 key.type != BTRFS_EXTENT_DATA_KEY) {
7406 /* not our file or wrong item type, must cow */
7407 goto out;
7408 }
7409
7410 if (key.offset > offset) {
7411 /* Wrong offset, must cow */
7412 goto out;
7413 }
7414
7415 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7416 found_type = btrfs_file_extent_type(leaf, fi);
7417 if (found_type != BTRFS_FILE_EXTENT_REG &&
7418 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7419 /* not a regular extent, must cow */
7420 goto out;
7421 }
7422
7423 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7424 goto out;
7425
7426 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7427 if (extent_end <= offset)
7428 goto out;
7429
7430 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7431 if (disk_bytenr == 0)
7432 goto out;
7433
7434 if (btrfs_file_extent_compression(leaf, fi) ||
7435 btrfs_file_extent_encryption(leaf, fi) ||
7436 btrfs_file_extent_other_encoding(leaf, fi))
7437 goto out;
7438
7439 /*
7440 * Do the same check as in btrfs_cross_ref_exist but without the
7441 * unnecessary search.
7442 */
7443 if (btrfs_file_extent_generation(leaf, fi) <=
7444 btrfs_root_last_snapshot(&root->root_item))
7445 goto out;
7446
7447 backref_offset = btrfs_file_extent_offset(leaf, fi);
7448
7449 if (orig_start) {
7450 *orig_start = key.offset - backref_offset;
7451 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7452 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7453 }
7454
7455 if (btrfs_extent_readonly(fs_info, disk_bytenr))
7456 goto out;
7457
7458 num_bytes = min(offset + *len, extent_end) - offset;
7459 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7460 u64 range_end;
7461
7462 range_end = round_up(offset + num_bytes,
7463 root->fs_info->sectorsize) - 1;
7464 ret = test_range_bit(io_tree, offset, range_end,
7465 EXTENT_DELALLOC, 0, NULL);
7466 if (ret) {
7467 ret = -EAGAIN;
7468 goto out;
7469 }
7470 }
7471
7472 btrfs_release_path(path);
7473
7474 /*
7475 * look for other files referencing this extent, if we
7476 * find any we must cow
7477 */
7478
7479 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7480 key.offset - backref_offset, disk_bytenr);
7481 if (ret) {
7482 ret = 0;
7483 goto out;
7484 }
7485
7486 /*
7487 * adjust disk_bytenr and num_bytes to cover just the bytes
7488 * in this extent we are about to write. If there
7489 * are any csums in that range we have to cow in order
7490 * to keep the csums correct
7491 */
7492 disk_bytenr += backref_offset;
7493 disk_bytenr += offset - key.offset;
7494 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7495 goto out;
7496 /*
7497 * all of the above have passed, it is safe to overwrite this extent
7498 * without cow
7499 */
7500 *len = num_bytes;
7501 ret = 1;
7502 out:
7503 btrfs_free_path(path);
7504 return ret;
7505 }
7506
lock_extent_direct(struct inode * inode,u64 lockstart,u64 lockend,struct extent_state ** cached_state,int writing)7507 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7508 struct extent_state **cached_state, int writing)
7509 {
7510 struct btrfs_ordered_extent *ordered;
7511 int ret = 0;
7512
7513 while (1) {
7514 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7515 cached_state);
7516 /*
7517 * We're concerned with the entire range that we're going to be
7518 * doing DIO to, so we need to make sure there's no ordered
7519 * extents in this range.
7520 */
7521 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7522 lockend - lockstart + 1);
7523
7524 /*
7525 * We need to make sure there are no buffered pages in this
7526 * range either, we could have raced between the invalidate in
7527 * generic_file_direct_write and locking the extent. The
7528 * invalidate needs to happen so that reads after a write do not
7529 * get stale data.
7530 */
7531 if (!ordered &&
7532 (!writing || !filemap_range_has_page(inode->i_mapping,
7533 lockstart, lockend)))
7534 break;
7535
7536 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7537 cached_state);
7538
7539 if (ordered) {
7540 /*
7541 * If we are doing a DIO read and the ordered extent we
7542 * found is for a buffered write, we can not wait for it
7543 * to complete and retry, because if we do so we can
7544 * deadlock with concurrent buffered writes on page
7545 * locks. This happens only if our DIO read covers more
7546 * than one extent map, if at this point has already
7547 * created an ordered extent for a previous extent map
7548 * and locked its range in the inode's io tree, and a
7549 * concurrent write against that previous extent map's
7550 * range and this range started (we unlock the ranges
7551 * in the io tree only when the bios complete and
7552 * buffered writes always lock pages before attempting
7553 * to lock range in the io tree).
7554 */
7555 if (writing ||
7556 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7557 btrfs_start_ordered_extent(inode, ordered, 1);
7558 else
7559 ret = -ENOTBLK;
7560 btrfs_put_ordered_extent(ordered);
7561 } else {
7562 /*
7563 * We could trigger writeback for this range (and wait
7564 * for it to complete) and then invalidate the pages for
7565 * this range (through invalidate_inode_pages2_range()),
7566 * but that can lead us to a deadlock with a concurrent
7567 * call to readpages() (a buffered read or a defrag call
7568 * triggered a readahead) on a page lock due to an
7569 * ordered dio extent we created before but did not have
7570 * yet a corresponding bio submitted (whence it can not
7571 * complete), which makes readpages() wait for that
7572 * ordered extent to complete while holding a lock on
7573 * that page.
7574 */
7575 ret = -ENOTBLK;
7576 }
7577
7578 if (ret)
7579 break;
7580
7581 cond_resched();
7582 }
7583
7584 return ret;
7585 }
7586
7587 /* The callers of this must take lock_extent() */
create_io_em(struct inode * inode,u64 start,u64 len,u64 orig_start,u64 block_start,u64 block_len,u64 orig_block_len,u64 ram_bytes,int compress_type,int type)7588 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7589 u64 orig_start, u64 block_start,
7590 u64 block_len, u64 orig_block_len,
7591 u64 ram_bytes, int compress_type,
7592 int type)
7593 {
7594 struct extent_map_tree *em_tree;
7595 struct extent_map *em;
7596 struct btrfs_root *root = BTRFS_I(inode)->root;
7597 int ret;
7598
7599 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7600 type == BTRFS_ORDERED_COMPRESSED ||
7601 type == BTRFS_ORDERED_NOCOW ||
7602 type == BTRFS_ORDERED_REGULAR);
7603
7604 em_tree = &BTRFS_I(inode)->extent_tree;
7605 em = alloc_extent_map();
7606 if (!em)
7607 return ERR_PTR(-ENOMEM);
7608
7609 em->start = start;
7610 em->orig_start = orig_start;
7611 em->len = len;
7612 em->block_len = block_len;
7613 em->block_start = block_start;
7614 em->bdev = root->fs_info->fs_devices->latest_bdev;
7615 em->orig_block_len = orig_block_len;
7616 em->ram_bytes = ram_bytes;
7617 em->generation = -1;
7618 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7619 if (type == BTRFS_ORDERED_PREALLOC) {
7620 set_bit(EXTENT_FLAG_FILLING, &em->flags);
7621 } else if (type == BTRFS_ORDERED_COMPRESSED) {
7622 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7623 em->compress_type = compress_type;
7624 }
7625
7626 do {
7627 btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
7628 em->start + em->len - 1, 0);
7629 write_lock(&em_tree->lock);
7630 ret = add_extent_mapping(em_tree, em, 1);
7631 write_unlock(&em_tree->lock);
7632 /*
7633 * The caller has taken lock_extent(), who could race with us
7634 * to add em?
7635 */
7636 } while (ret == -EEXIST);
7637
7638 if (ret) {
7639 free_extent_map(em);
7640 return ERR_PTR(ret);
7641 }
7642
7643 /* em got 2 refs now, callers needs to do free_extent_map once. */
7644 return em;
7645 }
7646
7647
btrfs_get_blocks_direct_read(struct extent_map * em,struct buffer_head * bh_result,struct inode * inode,u64 start,u64 len)7648 static int btrfs_get_blocks_direct_read(struct extent_map *em,
7649 struct buffer_head *bh_result,
7650 struct inode *inode,
7651 u64 start, u64 len)
7652 {
7653 if (em->block_start == EXTENT_MAP_HOLE ||
7654 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7655 return -ENOENT;
7656
7657 len = min(len, em->len - (start - em->start));
7658
7659 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7660 inode->i_blkbits;
7661 bh_result->b_size = len;
7662 bh_result->b_bdev = em->bdev;
7663 set_buffer_mapped(bh_result);
7664
7665 return 0;
7666 }
7667
btrfs_get_blocks_direct_write(struct extent_map ** map,struct buffer_head * bh_result,struct inode * inode,struct btrfs_dio_data * dio_data,u64 start,u64 len)7668 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7669 struct buffer_head *bh_result,
7670 struct inode *inode,
7671 struct btrfs_dio_data *dio_data,
7672 u64 start, u64 len)
7673 {
7674 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7675 struct extent_map *em = *map;
7676 int ret = 0;
7677
7678 /*
7679 * We don't allocate a new extent in the following cases
7680 *
7681 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7682 * existing extent.
7683 * 2) The extent is marked as PREALLOC. We're good to go here and can
7684 * just use the extent.
7685 *
7686 */
7687 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7688 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7689 em->block_start != EXTENT_MAP_HOLE)) {
7690 int type;
7691 u64 block_start, orig_start, orig_block_len, ram_bytes;
7692
7693 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7694 type = BTRFS_ORDERED_PREALLOC;
7695 else
7696 type = BTRFS_ORDERED_NOCOW;
7697 len = min(len, em->len - (start - em->start));
7698 block_start = em->block_start + (start - em->start);
7699
7700 if (can_nocow_extent(inode, start, &len, &orig_start,
7701 &orig_block_len, &ram_bytes) == 1 &&
7702 btrfs_inc_nocow_writers(fs_info, block_start)) {
7703 struct extent_map *em2;
7704
7705 em2 = btrfs_create_dio_extent(inode, start, len,
7706 orig_start, block_start,
7707 len, orig_block_len,
7708 ram_bytes, type);
7709 btrfs_dec_nocow_writers(fs_info, block_start);
7710 if (type == BTRFS_ORDERED_PREALLOC) {
7711 free_extent_map(em);
7712 *map = em = em2;
7713 }
7714
7715 if (em2 && IS_ERR(em2)) {
7716 ret = PTR_ERR(em2);
7717 goto out;
7718 }
7719 /*
7720 * For inode marked NODATACOW or extent marked PREALLOC,
7721 * use the existing or preallocated extent, so does not
7722 * need to adjust btrfs_space_info's bytes_may_use.
7723 */
7724 btrfs_free_reserved_data_space_noquota(inode, start,
7725 len);
7726 goto skip_cow;
7727 }
7728 }
7729
7730 /* this will cow the extent */
7731 len = bh_result->b_size;
7732 free_extent_map(em);
7733 *map = em = btrfs_new_extent_direct(inode, start, len);
7734 if (IS_ERR(em)) {
7735 ret = PTR_ERR(em);
7736 goto out;
7737 }
7738
7739 len = min(len, em->len - (start - em->start));
7740
7741 skip_cow:
7742 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7743 inode->i_blkbits;
7744 bh_result->b_size = len;
7745 bh_result->b_bdev = em->bdev;
7746 set_buffer_mapped(bh_result);
7747
7748 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7749 set_buffer_new(bh_result);
7750
7751 /*
7752 * Need to update the i_size under the extent lock so buffered
7753 * readers will get the updated i_size when we unlock.
7754 */
7755 if (!dio_data->overwrite && start + len > i_size_read(inode))
7756 i_size_write(inode, start + len);
7757
7758 WARN_ON(dio_data->reserve < len);
7759 dio_data->reserve -= len;
7760 dio_data->unsubmitted_oe_range_end = start + len;
7761 current->journal_info = dio_data;
7762 out:
7763 return ret;
7764 }
7765
btrfs_get_blocks_direct(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)7766 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7767 struct buffer_head *bh_result, int create)
7768 {
7769 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7770 struct extent_map *em;
7771 struct extent_state *cached_state = NULL;
7772 struct btrfs_dio_data *dio_data = NULL;
7773 u64 start = iblock << inode->i_blkbits;
7774 u64 lockstart, lockend;
7775 u64 len = bh_result->b_size;
7776 int unlock_bits = EXTENT_LOCKED;
7777 int ret = 0;
7778
7779 if (create)
7780 unlock_bits |= EXTENT_DIRTY;
7781 else
7782 len = min_t(u64, len, fs_info->sectorsize);
7783
7784 lockstart = start;
7785 lockend = start + len - 1;
7786
7787 if (current->journal_info) {
7788 /*
7789 * Need to pull our outstanding extents and set journal_info to NULL so
7790 * that anything that needs to check if there's a transaction doesn't get
7791 * confused.
7792 */
7793 dio_data = current->journal_info;
7794 current->journal_info = NULL;
7795 }
7796
7797 /*
7798 * If this errors out it's because we couldn't invalidate pagecache for
7799 * this range and we need to fallback to buffered.
7800 */
7801 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7802 create)) {
7803 ret = -ENOTBLK;
7804 goto err;
7805 }
7806
7807 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
7808 if (IS_ERR(em)) {
7809 ret = PTR_ERR(em);
7810 goto unlock_err;
7811 }
7812
7813 /*
7814 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7815 * io. INLINE is special, and we could probably kludge it in here, but
7816 * it's still buffered so for safety lets just fall back to the generic
7817 * buffered path.
7818 *
7819 * For COMPRESSED we _have_ to read the entire extent in so we can
7820 * decompress it, so there will be buffering required no matter what we
7821 * do, so go ahead and fallback to buffered.
7822 *
7823 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7824 * to buffered IO. Don't blame me, this is the price we pay for using
7825 * the generic code.
7826 */
7827 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7828 em->block_start == EXTENT_MAP_INLINE) {
7829 free_extent_map(em);
7830 ret = -ENOTBLK;
7831 goto unlock_err;
7832 }
7833
7834 if (create) {
7835 ret = btrfs_get_blocks_direct_write(&em, bh_result, inode,
7836 dio_data, start, len);
7837 if (ret < 0)
7838 goto unlock_err;
7839
7840 /* clear and unlock the entire range */
7841 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7842 unlock_bits, 1, 0, &cached_state);
7843 } else {
7844 ret = btrfs_get_blocks_direct_read(em, bh_result, inode,
7845 start, len);
7846 /* Can be negative only if we read from a hole */
7847 if (ret < 0) {
7848 ret = 0;
7849 free_extent_map(em);
7850 goto unlock_err;
7851 }
7852 /*
7853 * We need to unlock only the end area that we aren't using.
7854 * The rest is going to be unlocked by the endio routine.
7855 */
7856 lockstart = start + bh_result->b_size;
7857 if (lockstart < lockend) {
7858 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7859 lockend, unlock_bits, 1, 0,
7860 &cached_state);
7861 } else {
7862 free_extent_state(cached_state);
7863 }
7864 }
7865
7866 free_extent_map(em);
7867
7868 return 0;
7869
7870 unlock_err:
7871 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7872 unlock_bits, 1, 0, &cached_state);
7873 err:
7874 if (dio_data)
7875 current->journal_info = dio_data;
7876 return ret;
7877 }
7878
submit_dio_repair_bio(struct inode * inode,struct bio * bio,int mirror_num)7879 static inline blk_status_t submit_dio_repair_bio(struct inode *inode,
7880 struct bio *bio,
7881 int mirror_num)
7882 {
7883 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7884 blk_status_t ret;
7885
7886 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7887
7888 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
7889 if (ret)
7890 return ret;
7891
7892 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
7893
7894 return ret;
7895 }
7896
btrfs_check_dio_repairable(struct inode * inode,struct bio * failed_bio,struct io_failure_record * failrec,int failed_mirror)7897 static int btrfs_check_dio_repairable(struct inode *inode,
7898 struct bio *failed_bio,
7899 struct io_failure_record *failrec,
7900 int failed_mirror)
7901 {
7902 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7903 int num_copies;
7904
7905 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
7906 if (num_copies == 1) {
7907 /*
7908 * we only have a single copy of the data, so don't bother with
7909 * all the retry and error correction code that follows. no
7910 * matter what the error is, it is very likely to persist.
7911 */
7912 btrfs_debug(fs_info,
7913 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7914 num_copies, failrec->this_mirror, failed_mirror);
7915 return 0;
7916 }
7917
7918 failrec->failed_mirror = failed_mirror;
7919 failrec->this_mirror++;
7920 if (failrec->this_mirror == failed_mirror)
7921 failrec->this_mirror++;
7922
7923 if (failrec->this_mirror > num_copies) {
7924 btrfs_debug(fs_info,
7925 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7926 num_copies, failrec->this_mirror, failed_mirror);
7927 return 0;
7928 }
7929
7930 return 1;
7931 }
7932
dio_read_error(struct inode * inode,struct bio * failed_bio,struct page * page,unsigned int pgoff,u64 start,u64 end,int failed_mirror,bio_end_io_t * repair_endio,void * repair_arg)7933 static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio,
7934 struct page *page, unsigned int pgoff,
7935 u64 start, u64 end, int failed_mirror,
7936 bio_end_io_t *repair_endio, void *repair_arg)
7937 {
7938 struct io_failure_record *failrec;
7939 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7940 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
7941 struct bio *bio;
7942 int isector;
7943 unsigned int read_mode = 0;
7944 int segs;
7945 int ret;
7946 blk_status_t status;
7947 struct bio_vec bvec;
7948
7949 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
7950
7951 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7952 if (ret)
7953 return errno_to_blk_status(ret);
7954
7955 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7956 failed_mirror);
7957 if (!ret) {
7958 free_io_failure(failure_tree, io_tree, failrec);
7959 return BLK_STS_IOERR;
7960 }
7961
7962 segs = bio_segments(failed_bio);
7963 bio_get_first_bvec(failed_bio, &bvec);
7964 if (segs > 1 ||
7965 (bvec.bv_len > btrfs_inode_sectorsize(inode)))
7966 read_mode |= REQ_FAILFAST_DEV;
7967
7968 isector = start - btrfs_io_bio(failed_bio)->logical;
7969 isector >>= inode->i_sb->s_blocksize_bits;
7970 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7971 pgoff, isector, repair_endio, repair_arg);
7972 bio->bi_opf = REQ_OP_READ | read_mode;
7973
7974 btrfs_debug(BTRFS_I(inode)->root->fs_info,
7975 "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d",
7976 read_mode, failrec->this_mirror, failrec->in_validation);
7977
7978 status = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
7979 if (status) {
7980 free_io_failure(failure_tree, io_tree, failrec);
7981 bio_put(bio);
7982 }
7983
7984 return status;
7985 }
7986
7987 struct btrfs_retry_complete {
7988 struct completion done;
7989 struct inode *inode;
7990 u64 start;
7991 int uptodate;
7992 };
7993
btrfs_retry_endio_nocsum(struct bio * bio)7994 static void btrfs_retry_endio_nocsum(struct bio *bio)
7995 {
7996 struct btrfs_retry_complete *done = bio->bi_private;
7997 struct inode *inode = done->inode;
7998 struct bio_vec *bvec;
7999 struct extent_io_tree *io_tree, *failure_tree;
8000 int i;
8001
8002 if (bio->bi_status)
8003 goto end;
8004
8005 ASSERT(bio->bi_vcnt == 1);
8006 io_tree = &BTRFS_I(inode)->io_tree;
8007 failure_tree = &BTRFS_I(inode)->io_failure_tree;
8008 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode));
8009
8010 done->uptodate = 1;
8011 ASSERT(!bio_flagged(bio, BIO_CLONED));
8012 bio_for_each_segment_all(bvec, bio, i)
8013 clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree,
8014 io_tree, done->start, bvec->bv_page,
8015 btrfs_ino(BTRFS_I(inode)), 0);
8016 end:
8017 complete(&done->done);
8018 bio_put(bio);
8019 }
8020
__btrfs_correct_data_nocsum(struct inode * inode,struct btrfs_io_bio * io_bio)8021 static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode,
8022 struct btrfs_io_bio *io_bio)
8023 {
8024 struct btrfs_fs_info *fs_info;
8025 struct bio_vec bvec;
8026 struct bvec_iter iter;
8027 struct btrfs_retry_complete done;
8028 u64 start;
8029 unsigned int pgoff;
8030 u32 sectorsize;
8031 int nr_sectors;
8032 blk_status_t ret;
8033 blk_status_t err = BLK_STS_OK;
8034
8035 fs_info = BTRFS_I(inode)->root->fs_info;
8036 sectorsize = fs_info->sectorsize;
8037
8038 start = io_bio->logical;
8039 done.inode = inode;
8040 io_bio->bio.bi_iter = io_bio->iter;
8041
8042 bio_for_each_segment(bvec, &io_bio->bio, iter) {
8043 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
8044 pgoff = bvec.bv_offset;
8045
8046 next_block_or_try_again:
8047 done.uptodate = 0;
8048 done.start = start;
8049 init_completion(&done.done);
8050
8051 ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
8052 pgoff, start, start + sectorsize - 1,
8053 io_bio->mirror_num,
8054 btrfs_retry_endio_nocsum, &done);
8055 if (ret) {
8056 err = ret;
8057 goto next;
8058 }
8059
8060 wait_for_completion_io(&done.done);
8061
8062 if (!done.uptodate) {
8063 /* We might have another mirror, so try again */
8064 goto next_block_or_try_again;
8065 }
8066
8067 next:
8068 start += sectorsize;
8069
8070 nr_sectors--;
8071 if (nr_sectors) {
8072 pgoff += sectorsize;
8073 ASSERT(pgoff < PAGE_SIZE);
8074 goto next_block_or_try_again;
8075 }
8076 }
8077
8078 return err;
8079 }
8080
btrfs_retry_endio(struct bio * bio)8081 static void btrfs_retry_endio(struct bio *bio)
8082 {
8083 struct btrfs_retry_complete *done = bio->bi_private;
8084 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8085 struct extent_io_tree *io_tree, *failure_tree;
8086 struct inode *inode = done->inode;
8087 struct bio_vec *bvec;
8088 int uptodate;
8089 int ret;
8090 int i;
8091
8092 if (bio->bi_status)
8093 goto end;
8094
8095 uptodate = 1;
8096
8097 ASSERT(bio->bi_vcnt == 1);
8098 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode));
8099
8100 io_tree = &BTRFS_I(inode)->io_tree;
8101 failure_tree = &BTRFS_I(inode)->io_failure_tree;
8102
8103 ASSERT(!bio_flagged(bio, BIO_CLONED));
8104 bio_for_each_segment_all(bvec, bio, i) {
8105 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
8106 bvec->bv_offset, done->start,
8107 bvec->bv_len);
8108 if (!ret)
8109 clean_io_failure(BTRFS_I(inode)->root->fs_info,
8110 failure_tree, io_tree, done->start,
8111 bvec->bv_page,
8112 btrfs_ino(BTRFS_I(inode)),
8113 bvec->bv_offset);
8114 else
8115 uptodate = 0;
8116 }
8117
8118 done->uptodate = uptodate;
8119 end:
8120 complete(&done->done);
8121 bio_put(bio);
8122 }
8123
__btrfs_subio_endio_read(struct inode * inode,struct btrfs_io_bio * io_bio,blk_status_t err)8124 static blk_status_t __btrfs_subio_endio_read(struct inode *inode,
8125 struct btrfs_io_bio *io_bio, blk_status_t err)
8126 {
8127 struct btrfs_fs_info *fs_info;
8128 struct bio_vec bvec;
8129 struct bvec_iter iter;
8130 struct btrfs_retry_complete done;
8131 u64 start;
8132 u64 offset = 0;
8133 u32 sectorsize;
8134 int nr_sectors;
8135 unsigned int pgoff;
8136 int csum_pos;
8137 bool uptodate = (err == 0);
8138 int ret;
8139 blk_status_t status;
8140
8141 fs_info = BTRFS_I(inode)->root->fs_info;
8142 sectorsize = fs_info->sectorsize;
8143
8144 err = BLK_STS_OK;
8145 start = io_bio->logical;
8146 done.inode = inode;
8147 io_bio->bio.bi_iter = io_bio->iter;
8148
8149 bio_for_each_segment(bvec, &io_bio->bio, iter) {
8150 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
8151
8152 pgoff = bvec.bv_offset;
8153 next_block:
8154 if (uptodate) {
8155 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8156 ret = __readpage_endio_check(inode, io_bio, csum_pos,
8157 bvec.bv_page, pgoff, start, sectorsize);
8158 if (likely(!ret))
8159 goto next;
8160 }
8161 try_again:
8162 done.uptodate = 0;
8163 done.start = start;
8164 init_completion(&done.done);
8165
8166 status = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
8167 pgoff, start, start + sectorsize - 1,
8168 io_bio->mirror_num, btrfs_retry_endio,
8169 &done);
8170 if (status) {
8171 err = status;
8172 goto next;
8173 }
8174
8175 wait_for_completion_io(&done.done);
8176
8177 if (!done.uptodate) {
8178 /* We might have another mirror, so try again */
8179 goto try_again;
8180 }
8181 next:
8182 offset += sectorsize;
8183 start += sectorsize;
8184
8185 ASSERT(nr_sectors);
8186
8187 nr_sectors--;
8188 if (nr_sectors) {
8189 pgoff += sectorsize;
8190 ASSERT(pgoff < PAGE_SIZE);
8191 goto next_block;
8192 }
8193 }
8194
8195 return err;
8196 }
8197
btrfs_subio_endio_read(struct inode * inode,struct btrfs_io_bio * io_bio,blk_status_t err)8198 static blk_status_t btrfs_subio_endio_read(struct inode *inode,
8199 struct btrfs_io_bio *io_bio, blk_status_t err)
8200 {
8201 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8202
8203 if (skip_csum) {
8204 if (unlikely(err))
8205 return __btrfs_correct_data_nocsum(inode, io_bio);
8206 else
8207 return BLK_STS_OK;
8208 } else {
8209 return __btrfs_subio_endio_read(inode, io_bio, err);
8210 }
8211 }
8212
btrfs_endio_direct_read(struct bio * bio)8213 static void btrfs_endio_direct_read(struct bio *bio)
8214 {
8215 struct btrfs_dio_private *dip = bio->bi_private;
8216 struct inode *inode = dip->inode;
8217 struct bio *dio_bio;
8218 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8219 blk_status_t err = bio->bi_status;
8220
8221 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8222 err = btrfs_subio_endio_read(inode, io_bio, err);
8223
8224 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
8225 dip->logical_offset + dip->bytes - 1);
8226 dio_bio = dip->dio_bio;
8227
8228 kfree(dip);
8229
8230 dio_bio->bi_status = err;
8231 dio_end_io(dio_bio);
8232
8233 if (io_bio->end_io)
8234 io_bio->end_io(io_bio, blk_status_to_errno(err));
8235 bio_put(bio);
8236 }
8237
__endio_write_update_ordered(struct inode * inode,const u64 offset,const u64 bytes,const bool uptodate)8238 static void __endio_write_update_ordered(struct inode *inode,
8239 const u64 offset, const u64 bytes,
8240 const bool uptodate)
8241 {
8242 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8243 struct btrfs_ordered_extent *ordered = NULL;
8244 struct btrfs_workqueue *wq;
8245 btrfs_work_func_t func;
8246 u64 ordered_offset = offset;
8247 u64 ordered_bytes = bytes;
8248 u64 last_offset;
8249
8250 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
8251 wq = fs_info->endio_freespace_worker;
8252 func = btrfs_freespace_write_helper;
8253 } else {
8254 wq = fs_info->endio_write_workers;
8255 func = btrfs_endio_write_helper;
8256 }
8257
8258 while (ordered_offset < offset + bytes) {
8259 last_offset = ordered_offset;
8260 if (btrfs_dec_test_first_ordered_pending(inode, &ordered,
8261 &ordered_offset,
8262 ordered_bytes,
8263 uptodate)) {
8264 btrfs_init_work(&ordered->work, func,
8265 finish_ordered_fn,
8266 NULL, NULL);
8267 btrfs_queue_work(wq, &ordered->work);
8268 }
8269 /*
8270 * If btrfs_dec_test_ordered_pending does not find any ordered
8271 * extent in the range, we can exit.
8272 */
8273 if (ordered_offset == last_offset)
8274 return;
8275 /*
8276 * Our bio might span multiple ordered extents. In this case
8277 * we keep goin until we have accounted the whole dio.
8278 */
8279 if (ordered_offset < offset + bytes) {
8280 ordered_bytes = offset + bytes - ordered_offset;
8281 ordered = NULL;
8282 }
8283 }
8284 }
8285
btrfs_endio_direct_write(struct bio * bio)8286 static void btrfs_endio_direct_write(struct bio *bio)
8287 {
8288 struct btrfs_dio_private *dip = bio->bi_private;
8289 struct bio *dio_bio = dip->dio_bio;
8290
8291 __endio_write_update_ordered(dip->inode, dip->logical_offset,
8292 dip->bytes, !bio->bi_status);
8293
8294 kfree(dip);
8295
8296 dio_bio->bi_status = bio->bi_status;
8297 dio_end_io(dio_bio);
8298 bio_put(bio);
8299 }
8300
btrfs_submit_bio_start_direct_io(void * private_data,struct bio * bio,u64 offset)8301 static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data,
8302 struct bio *bio, u64 offset)
8303 {
8304 struct inode *inode = private_data;
8305 blk_status_t ret;
8306 ret = btrfs_csum_one_bio(inode, bio, offset, 1);
8307 BUG_ON(ret); /* -ENOMEM */
8308 return 0;
8309 }
8310
btrfs_end_dio_bio(struct bio * bio)8311 static void btrfs_end_dio_bio(struct bio *bio)
8312 {
8313 struct btrfs_dio_private *dip = bio->bi_private;
8314 blk_status_t err = bio->bi_status;
8315
8316 if (err)
8317 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8318 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8319 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8320 bio->bi_opf,
8321 (unsigned long long)bio->bi_iter.bi_sector,
8322 bio->bi_iter.bi_size, err);
8323
8324 if (dip->subio_endio)
8325 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8326
8327 if (err) {
8328 /*
8329 * We want to perceive the errors flag being set before
8330 * decrementing the reference count. We don't need a barrier
8331 * since atomic operations with a return value are fully
8332 * ordered as per atomic_t.txt
8333 */
8334 dip->errors = 1;
8335 }
8336
8337 /* if there are more bios still pending for this dio, just exit */
8338 if (!atomic_dec_and_test(&dip->pending_bios))
8339 goto out;
8340
8341 if (dip->errors) {
8342 bio_io_error(dip->orig_bio);
8343 } else {
8344 dip->dio_bio->bi_status = BLK_STS_OK;
8345 bio_endio(dip->orig_bio);
8346 }
8347 out:
8348 bio_put(bio);
8349 }
8350
btrfs_lookup_and_bind_dio_csum(struct inode * inode,struct btrfs_dio_private * dip,struct bio * bio,u64 file_offset)8351 static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode,
8352 struct btrfs_dio_private *dip,
8353 struct bio *bio,
8354 u64 file_offset)
8355 {
8356 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8357 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8358 blk_status_t ret;
8359
8360 /*
8361 * We load all the csum data we need when we submit
8362 * the first bio to reduce the csum tree search and
8363 * contention.
8364 */
8365 if (dip->logical_offset == file_offset) {
8366 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
8367 file_offset);
8368 if (ret)
8369 return ret;
8370 }
8371
8372 if (bio == dip->orig_bio)
8373 return 0;
8374
8375 file_offset -= dip->logical_offset;
8376 file_offset >>= inode->i_sb->s_blocksize_bits;
8377 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8378
8379 return 0;
8380 }
8381
btrfs_submit_dio_bio(struct bio * bio,struct inode * inode,u64 file_offset,int async_submit)8382 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
8383 struct inode *inode, u64 file_offset, int async_submit)
8384 {
8385 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8386 struct btrfs_dio_private *dip = bio->bi_private;
8387 bool write = bio_op(bio) == REQ_OP_WRITE;
8388 blk_status_t ret;
8389
8390 /* Check btrfs_submit_bio_hook() for rules about async submit. */
8391 if (async_submit)
8392 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8393
8394 if (!write) {
8395 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8396 if (ret)
8397 goto err;
8398 }
8399
8400 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
8401 goto map;
8402
8403 if (write && async_submit) {
8404 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
8405 file_offset, inode,
8406 btrfs_submit_bio_start_direct_io);
8407 goto err;
8408 } else if (write) {
8409 /*
8410 * If we aren't doing async submit, calculate the csum of the
8411 * bio now.
8412 */
8413 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
8414 if (ret)
8415 goto err;
8416 } else {
8417 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
8418 file_offset);
8419 if (ret)
8420 goto err;
8421 }
8422 map:
8423 ret = btrfs_map_bio(fs_info, bio, 0, 0);
8424 err:
8425 return ret;
8426 }
8427
btrfs_submit_direct_hook(struct btrfs_dio_private * dip)8428 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip)
8429 {
8430 struct inode *inode = dip->inode;
8431 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8432 struct bio *bio;
8433 struct bio *orig_bio = dip->orig_bio;
8434 u64 start_sector = orig_bio->bi_iter.bi_sector;
8435 u64 file_offset = dip->logical_offset;
8436 u64 map_length;
8437 int async_submit = 0;
8438 u64 submit_len;
8439 int clone_offset = 0;
8440 int clone_len;
8441 int ret;
8442 blk_status_t status;
8443
8444 map_length = orig_bio->bi_iter.bi_size;
8445 submit_len = map_length;
8446 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9,
8447 &map_length, NULL, 0);
8448 if (ret)
8449 return -EIO;
8450
8451 if (map_length >= submit_len) {
8452 bio = orig_bio;
8453 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8454 goto submit;
8455 }
8456
8457 /* async crcs make it difficult to collect full stripe writes. */
8458 if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8459 async_submit = 0;
8460 else
8461 async_submit = 1;
8462
8463 /* bio split */
8464 ASSERT(map_length <= INT_MAX);
8465 do {
8466 clone_len = min_t(int, submit_len, map_length);
8467
8468 /*
8469 * This will never fail as it's passing GPF_NOFS and
8470 * the allocation is backed by btrfs_bioset.
8471 */
8472 bio = btrfs_bio_clone_partial(orig_bio, clone_offset,
8473 clone_len);
8474 bio->bi_private = dip;
8475 bio->bi_end_io = btrfs_end_dio_bio;
8476 btrfs_io_bio(bio)->logical = file_offset;
8477
8478 ASSERT(submit_len >= clone_len);
8479 submit_len -= clone_len;
8480 if (submit_len == 0)
8481 break;
8482
8483 /*
8484 * Increase the count before we submit the bio so we know
8485 * the end IO handler won't happen before we increase the
8486 * count. Otherwise, the dip might get freed before we're
8487 * done setting it up.
8488 */
8489 atomic_inc(&dip->pending_bios);
8490
8491 status = btrfs_submit_dio_bio(bio, inode, file_offset,
8492 async_submit);
8493 if (status) {
8494 bio_put(bio);
8495 atomic_dec(&dip->pending_bios);
8496 goto out_err;
8497 }
8498
8499 clone_offset += clone_len;
8500 start_sector += clone_len >> 9;
8501 file_offset += clone_len;
8502
8503 map_length = submit_len;
8504 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio),
8505 start_sector << 9, &map_length, NULL, 0);
8506 if (ret)
8507 goto out_err;
8508 } while (submit_len > 0);
8509
8510 submit:
8511 status = btrfs_submit_dio_bio(bio, inode, file_offset, async_submit);
8512 if (!status)
8513 return 0;
8514
8515 if (bio != orig_bio)
8516 bio_put(bio);
8517 out_err:
8518 dip->errors = 1;
8519 /*
8520 * Before atomic variable goto zero, we must make sure dip->errors is
8521 * perceived to be set. This ordering is ensured by the fact that an
8522 * atomic operations with a return value are fully ordered as per
8523 * atomic_t.txt
8524 */
8525 if (atomic_dec_and_test(&dip->pending_bios))
8526 bio_io_error(dip->orig_bio);
8527
8528 /* bio_end_io() will handle error, so we needn't return it */
8529 return 0;
8530 }
8531
btrfs_submit_direct(struct bio * dio_bio,struct inode * inode,loff_t file_offset)8532 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8533 loff_t file_offset)
8534 {
8535 struct btrfs_dio_private *dip = NULL;
8536 struct bio *bio = NULL;
8537 struct btrfs_io_bio *io_bio;
8538 bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
8539 int ret = 0;
8540
8541 bio = btrfs_bio_clone(dio_bio);
8542
8543 dip = kzalloc(sizeof(*dip), GFP_NOFS);
8544 if (!dip) {
8545 ret = -ENOMEM;
8546 goto free_ordered;
8547 }
8548
8549 dip->private = dio_bio->bi_private;
8550 dip->inode = inode;
8551 dip->logical_offset = file_offset;
8552 dip->bytes = dio_bio->bi_iter.bi_size;
8553 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8554 bio->bi_private = dip;
8555 dip->orig_bio = bio;
8556 dip->dio_bio = dio_bio;
8557 atomic_set(&dip->pending_bios, 1);
8558 io_bio = btrfs_io_bio(bio);
8559 io_bio->logical = file_offset;
8560
8561 if (write) {
8562 bio->bi_end_io = btrfs_endio_direct_write;
8563 } else {
8564 bio->bi_end_io = btrfs_endio_direct_read;
8565 dip->subio_endio = btrfs_subio_endio_read;
8566 }
8567
8568 /*
8569 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8570 * even if we fail to submit a bio, because in such case we do the
8571 * corresponding error handling below and it must not be done a second
8572 * time by btrfs_direct_IO().
8573 */
8574 if (write) {
8575 struct btrfs_dio_data *dio_data = current->journal_info;
8576
8577 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8578 dip->bytes;
8579 dio_data->unsubmitted_oe_range_start =
8580 dio_data->unsubmitted_oe_range_end;
8581 }
8582
8583 ret = btrfs_submit_direct_hook(dip);
8584 if (!ret)
8585 return;
8586
8587 if (io_bio->end_io)
8588 io_bio->end_io(io_bio, ret);
8589
8590 free_ordered:
8591 /*
8592 * If we arrived here it means either we failed to submit the dip
8593 * or we either failed to clone the dio_bio or failed to allocate the
8594 * dip. If we cloned the dio_bio and allocated the dip, we can just
8595 * call bio_endio against our io_bio so that we get proper resource
8596 * cleanup if we fail to submit the dip, otherwise, we must do the
8597 * same as btrfs_endio_direct_[write|read] because we can't call these
8598 * callbacks - they require an allocated dip and a clone of dio_bio.
8599 */
8600 if (bio && dip) {
8601 bio_io_error(bio);
8602 /*
8603 * The end io callbacks free our dip, do the final put on bio
8604 * and all the cleanup and final put for dio_bio (through
8605 * dio_end_io()).
8606 */
8607 dip = NULL;
8608 bio = NULL;
8609 } else {
8610 if (write)
8611 __endio_write_update_ordered(inode,
8612 file_offset,
8613 dio_bio->bi_iter.bi_size,
8614 false);
8615 else
8616 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8617 file_offset + dio_bio->bi_iter.bi_size - 1);
8618
8619 dio_bio->bi_status = BLK_STS_IOERR;
8620 /*
8621 * Releases and cleans up our dio_bio, no need to bio_put()
8622 * nor bio_endio()/bio_io_error() against dio_bio.
8623 */
8624 dio_end_io(dio_bio);
8625 }
8626 if (bio)
8627 bio_put(bio);
8628 kfree(dip);
8629 }
8630
check_direct_IO(struct btrfs_fs_info * fs_info,const struct iov_iter * iter,loff_t offset)8631 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
8632 const struct iov_iter *iter, loff_t offset)
8633 {
8634 int seg;
8635 int i;
8636 unsigned int blocksize_mask = fs_info->sectorsize - 1;
8637 ssize_t retval = -EINVAL;
8638
8639 if (offset & blocksize_mask)
8640 goto out;
8641
8642 if (iov_iter_alignment(iter) & blocksize_mask)
8643 goto out;
8644
8645 /* If this is a write we don't need to check anymore */
8646 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
8647 return 0;
8648 /*
8649 * Check to make sure we don't have duplicate iov_base's in this
8650 * iovec, if so return EINVAL, otherwise we'll get csum errors
8651 * when reading back.
8652 */
8653 for (seg = 0; seg < iter->nr_segs; seg++) {
8654 for (i = seg + 1; i < iter->nr_segs; i++) {
8655 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8656 goto out;
8657 }
8658 }
8659 retval = 0;
8660 out:
8661 return retval;
8662 }
8663
btrfs_direct_IO(struct kiocb * iocb,struct iov_iter * iter)8664 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
8665 {
8666 struct file *file = iocb->ki_filp;
8667 struct inode *inode = file->f_mapping->host;
8668 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8669 struct btrfs_dio_data dio_data = { 0 };
8670 struct extent_changeset *data_reserved = NULL;
8671 loff_t offset = iocb->ki_pos;
8672 size_t count = 0;
8673 int flags = 0;
8674 bool wakeup = true;
8675 bool relock = false;
8676 ssize_t ret;
8677
8678 if (check_direct_IO(fs_info, iter, offset))
8679 return 0;
8680
8681 inode_dio_begin(inode);
8682
8683 /*
8684 * The generic stuff only does filemap_write_and_wait_range, which
8685 * isn't enough if we've written compressed pages to this area, so
8686 * we need to flush the dirty pages again to make absolutely sure
8687 * that any outstanding dirty pages are on disk.
8688 */
8689 count = iov_iter_count(iter);
8690 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8691 &BTRFS_I(inode)->runtime_flags))
8692 filemap_fdatawrite_range(inode->i_mapping, offset,
8693 offset + count - 1);
8694
8695 if (iov_iter_rw(iter) == WRITE) {
8696 /*
8697 * If the write DIO is beyond the EOF, we need update
8698 * the isize, but it is protected by i_mutex. So we can
8699 * not unlock the i_mutex at this case.
8700 */
8701 if (offset + count <= inode->i_size) {
8702 dio_data.overwrite = 1;
8703 inode_unlock(inode);
8704 relock = true;
8705 }
8706 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8707 offset, count);
8708 if (ret)
8709 goto out;
8710
8711 /*
8712 * We need to know how many extents we reserved so that we can
8713 * do the accounting properly if we go over the number we
8714 * originally calculated. Abuse current->journal_info for this.
8715 */
8716 dio_data.reserve = round_up(count,
8717 fs_info->sectorsize);
8718 dio_data.unsubmitted_oe_range_start = (u64)offset;
8719 dio_data.unsubmitted_oe_range_end = (u64)offset;
8720 current->journal_info = &dio_data;
8721 down_read(&BTRFS_I(inode)->dio_sem);
8722 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8723 &BTRFS_I(inode)->runtime_flags)) {
8724 inode_dio_end(inode);
8725 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8726 wakeup = false;
8727 }
8728
8729 ret = __blockdev_direct_IO(iocb, inode,
8730 fs_info->fs_devices->latest_bdev,
8731 iter, btrfs_get_blocks_direct, NULL,
8732 btrfs_submit_direct, flags);
8733 if (iov_iter_rw(iter) == WRITE) {
8734 up_read(&BTRFS_I(inode)->dio_sem);
8735 current->journal_info = NULL;
8736 if (ret < 0 && ret != -EIOCBQUEUED) {
8737 if (dio_data.reserve)
8738 btrfs_delalloc_release_space(inode, data_reserved,
8739 offset, dio_data.reserve, true);
8740 /*
8741 * On error we might have left some ordered extents
8742 * without submitting corresponding bios for them, so
8743 * cleanup them up to avoid other tasks getting them
8744 * and waiting for them to complete forever.
8745 */
8746 if (dio_data.unsubmitted_oe_range_start <
8747 dio_data.unsubmitted_oe_range_end)
8748 __endio_write_update_ordered(inode,
8749 dio_data.unsubmitted_oe_range_start,
8750 dio_data.unsubmitted_oe_range_end -
8751 dio_data.unsubmitted_oe_range_start,
8752 false);
8753 } else if (ret >= 0 && (size_t)ret < count)
8754 btrfs_delalloc_release_space(inode, data_reserved,
8755 offset, count - (size_t)ret, true);
8756 btrfs_delalloc_release_extents(BTRFS_I(inode), count);
8757 }
8758 out:
8759 if (wakeup)
8760 inode_dio_end(inode);
8761 if (relock)
8762 inode_lock(inode);
8763
8764 extent_changeset_free(data_reserved);
8765 return ret;
8766 }
8767
8768 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8769
btrfs_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,__u64 start,__u64 len)8770 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8771 __u64 start, __u64 len)
8772 {
8773 int ret;
8774
8775 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8776 if (ret)
8777 return ret;
8778
8779 return extent_fiemap(inode, fieinfo, start, len);
8780 }
8781
btrfs_readpage(struct file * file,struct page * page)8782 int btrfs_readpage(struct file *file, struct page *page)
8783 {
8784 struct extent_io_tree *tree;
8785 tree = &BTRFS_I(page->mapping->host)->io_tree;
8786 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8787 }
8788
btrfs_writepage(struct page * page,struct writeback_control * wbc)8789 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8790 {
8791 struct inode *inode = page->mapping->host;
8792 int ret;
8793
8794 if (current->flags & PF_MEMALLOC) {
8795 redirty_page_for_writepage(wbc, page);
8796 unlock_page(page);
8797 return 0;
8798 }
8799
8800 /*
8801 * If we are under memory pressure we will call this directly from the
8802 * VM, we need to make sure we have the inode referenced for the ordered
8803 * extent. If not just return like we didn't do anything.
8804 */
8805 if (!igrab(inode)) {
8806 redirty_page_for_writepage(wbc, page);
8807 return AOP_WRITEPAGE_ACTIVATE;
8808 }
8809 ret = extent_write_full_page(page, wbc);
8810 btrfs_add_delayed_iput(inode);
8811 return ret;
8812 }
8813
btrfs_writepages(struct address_space * mapping,struct writeback_control * wbc)8814 static int btrfs_writepages(struct address_space *mapping,
8815 struct writeback_control *wbc)
8816 {
8817 return extent_writepages(mapping, wbc);
8818 }
8819
8820 static int
btrfs_readpages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)8821 btrfs_readpages(struct file *file, struct address_space *mapping,
8822 struct list_head *pages, unsigned nr_pages)
8823 {
8824 return extent_readpages(mapping, pages, nr_pages);
8825 }
8826
__btrfs_releasepage(struct page * page,gfp_t gfp_flags)8827 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8828 {
8829 int ret = try_release_extent_mapping(page, gfp_flags);
8830 if (ret == 1) {
8831 ClearPagePrivate(page);
8832 set_page_private(page, 0);
8833 put_page(page);
8834 }
8835 return ret;
8836 }
8837
btrfs_releasepage(struct page * page,gfp_t gfp_flags)8838 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8839 {
8840 if (PageWriteback(page) || PageDirty(page))
8841 return 0;
8842 return __btrfs_releasepage(page, gfp_flags);
8843 }
8844
btrfs_invalidatepage(struct page * page,unsigned int offset,unsigned int length)8845 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8846 unsigned int length)
8847 {
8848 struct inode *inode = page->mapping->host;
8849 struct extent_io_tree *tree;
8850 struct btrfs_ordered_extent *ordered;
8851 struct extent_state *cached_state = NULL;
8852 u64 page_start = page_offset(page);
8853 u64 page_end = page_start + PAGE_SIZE - 1;
8854 u64 start;
8855 u64 end;
8856 int inode_evicting = inode->i_state & I_FREEING;
8857
8858 /*
8859 * we have the page locked, so new writeback can't start,
8860 * and the dirty bit won't be cleared while we are here.
8861 *
8862 * Wait for IO on this page so that we can safely clear
8863 * the PagePrivate2 bit and do ordered accounting
8864 */
8865 wait_on_page_writeback(page);
8866
8867 tree = &BTRFS_I(inode)->io_tree;
8868 if (offset) {
8869 btrfs_releasepage(page, GFP_NOFS);
8870 return;
8871 }
8872
8873 if (!inode_evicting)
8874 lock_extent_bits(tree, page_start, page_end, &cached_state);
8875 again:
8876 start = page_start;
8877 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
8878 page_end - start + 1);
8879 if (ordered) {
8880 end = min(page_end, ordered->file_offset + ordered->len - 1);
8881 /*
8882 * IO on this page will never be started, so we need
8883 * to account for any ordered extents now
8884 */
8885 if (!inode_evicting)
8886 clear_extent_bit(tree, start, end,
8887 EXTENT_DIRTY | EXTENT_DELALLOC |
8888 EXTENT_DELALLOC_NEW |
8889 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8890 EXTENT_DEFRAG, 1, 0, &cached_state);
8891 /*
8892 * whoever cleared the private bit is responsible
8893 * for the finish_ordered_io
8894 */
8895 if (TestClearPagePrivate2(page)) {
8896 struct btrfs_ordered_inode_tree *tree;
8897 u64 new_len;
8898
8899 tree = &BTRFS_I(inode)->ordered_tree;
8900
8901 spin_lock_irq(&tree->lock);
8902 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8903 new_len = start - ordered->file_offset;
8904 if (new_len < ordered->truncated_len)
8905 ordered->truncated_len = new_len;
8906 spin_unlock_irq(&tree->lock);
8907
8908 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8909 start,
8910 end - start + 1, 1))
8911 btrfs_finish_ordered_io(ordered);
8912 }
8913 btrfs_put_ordered_extent(ordered);
8914 if (!inode_evicting) {
8915 cached_state = NULL;
8916 lock_extent_bits(tree, start, end,
8917 &cached_state);
8918 }
8919
8920 start = end + 1;
8921 if (start < page_end)
8922 goto again;
8923 }
8924
8925 /*
8926 * Qgroup reserved space handler
8927 * Page here will be either
8928 * 1) Already written to disk or ordered extent already submitted
8929 * Then its QGROUP_RESERVED bit in io_tree is already cleaned.
8930 * Qgroup will be handled by its qgroup_record then.
8931 * btrfs_qgroup_free_data() call will do nothing here.
8932 *
8933 * 2) Not written to disk yet
8934 * Then btrfs_qgroup_free_data() call will clear the QGROUP_RESERVED
8935 * bit of its io_tree, and free the qgroup reserved data space.
8936 * Since the IO will never happen for this page.
8937 */
8938 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
8939 if (!inode_evicting) {
8940 clear_extent_bit(tree, page_start, page_end,
8941 EXTENT_LOCKED | EXTENT_DIRTY |
8942 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8943 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
8944 &cached_state);
8945
8946 __btrfs_releasepage(page, GFP_NOFS);
8947 }
8948
8949 ClearPageChecked(page);
8950 if (PagePrivate(page)) {
8951 ClearPagePrivate(page);
8952 set_page_private(page, 0);
8953 put_page(page);
8954 }
8955 }
8956
8957 /*
8958 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8959 * called from a page fault handler when a page is first dirtied. Hence we must
8960 * be careful to check for EOF conditions here. We set the page up correctly
8961 * for a written page which means we get ENOSPC checking when writing into
8962 * holes and correct delalloc and unwritten extent mapping on filesystems that
8963 * support these features.
8964 *
8965 * We are not allowed to take the i_mutex here so we have to play games to
8966 * protect against truncate races as the page could now be beyond EOF. Because
8967 * truncate_setsize() writes the inode size before removing pages, once we have
8968 * the page lock we can determine safely if the page is beyond EOF. If it is not
8969 * beyond EOF, then the page is guaranteed safe against truncation until we
8970 * unlock the page.
8971 */
btrfs_page_mkwrite(struct vm_fault * vmf)8972 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8973 {
8974 struct page *page = vmf->page;
8975 struct inode *inode = file_inode(vmf->vma->vm_file);
8976 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8977 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8978 struct btrfs_ordered_extent *ordered;
8979 struct extent_state *cached_state = NULL;
8980 struct extent_changeset *data_reserved = NULL;
8981 char *kaddr;
8982 unsigned long zero_start;
8983 loff_t size;
8984 vm_fault_t ret;
8985 int ret2;
8986 int reserved = 0;
8987 u64 reserved_space;
8988 u64 page_start;
8989 u64 page_end;
8990 u64 end;
8991
8992 reserved_space = PAGE_SIZE;
8993
8994 sb_start_pagefault(inode->i_sb);
8995 page_start = page_offset(page);
8996 page_end = page_start + PAGE_SIZE - 1;
8997 end = page_end;
8998
8999 /*
9000 * Reserving delalloc space after obtaining the page lock can lead to
9001 * deadlock. For example, if a dirty page is locked by this function
9002 * and the call to btrfs_delalloc_reserve_space() ends up triggering
9003 * dirty page write out, then the btrfs_writepage() function could
9004 * end up waiting indefinitely to get a lock on the page currently
9005 * being processed by btrfs_page_mkwrite() function.
9006 */
9007 ret2 = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
9008 reserved_space);
9009 if (!ret2) {
9010 ret2 = file_update_time(vmf->vma->vm_file);
9011 reserved = 1;
9012 }
9013 if (ret2) {
9014 ret = vmf_error(ret2);
9015 if (reserved)
9016 goto out;
9017 goto out_noreserve;
9018 }
9019
9020 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
9021 again:
9022 lock_page(page);
9023 size = i_size_read(inode);
9024
9025 if ((page->mapping != inode->i_mapping) ||
9026 (page_start >= size)) {
9027 /* page got truncated out from underneath us */
9028 goto out_unlock;
9029 }
9030 wait_on_page_writeback(page);
9031
9032 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
9033 set_page_extent_mapped(page);
9034
9035 /*
9036 * we can't set the delalloc bits if there are pending ordered
9037 * extents. Drop our locks and wait for them to finish
9038 */
9039 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
9040 PAGE_SIZE);
9041 if (ordered) {
9042 unlock_extent_cached(io_tree, page_start, page_end,
9043 &cached_state);
9044 unlock_page(page);
9045 btrfs_start_ordered_extent(inode, ordered, 1);
9046 btrfs_put_ordered_extent(ordered);
9047 goto again;
9048 }
9049
9050 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
9051 reserved_space = round_up(size - page_start,
9052 fs_info->sectorsize);
9053 if (reserved_space < PAGE_SIZE) {
9054 end = page_start + reserved_space - 1;
9055 btrfs_delalloc_release_space(inode, data_reserved,
9056 page_start, PAGE_SIZE - reserved_space,
9057 true);
9058 }
9059 }
9060
9061 /*
9062 * page_mkwrite gets called when the page is firstly dirtied after it's
9063 * faulted in, but write(2) could also dirty a page and set delalloc
9064 * bits, thus in this case for space account reason, we still need to
9065 * clear any delalloc bits within this page range since we have to
9066 * reserve data&meta space before lock_page() (see above comments).
9067 */
9068 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9069 EXTENT_DIRTY | EXTENT_DELALLOC |
9070 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
9071 0, 0, &cached_state);
9072
9073 ret2 = btrfs_set_extent_delalloc(inode, page_start, end, 0,
9074 &cached_state, 0);
9075 if (ret2) {
9076 unlock_extent_cached(io_tree, page_start, page_end,
9077 &cached_state);
9078 ret = VM_FAULT_SIGBUS;
9079 goto out_unlock;
9080 }
9081 ret2 = 0;
9082
9083 /* page is wholly or partially inside EOF */
9084 if (page_start + PAGE_SIZE > size)
9085 zero_start = size & ~PAGE_MASK;
9086 else
9087 zero_start = PAGE_SIZE;
9088
9089 if (zero_start != PAGE_SIZE) {
9090 kaddr = kmap(page);
9091 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
9092 flush_dcache_page(page);
9093 kunmap(page);
9094 }
9095 ClearPageChecked(page);
9096 set_page_dirty(page);
9097 SetPageUptodate(page);
9098
9099 BTRFS_I(inode)->last_trans = fs_info->generation;
9100 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
9101 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
9102
9103 unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
9104
9105 if (!ret2) {
9106 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
9107 sb_end_pagefault(inode->i_sb);
9108 extent_changeset_free(data_reserved);
9109 return VM_FAULT_LOCKED;
9110 }
9111
9112 out_unlock:
9113 unlock_page(page);
9114 out:
9115 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
9116 btrfs_delalloc_release_space(inode, data_reserved, page_start,
9117 reserved_space, (ret != 0));
9118 out_noreserve:
9119 sb_end_pagefault(inode->i_sb);
9120 extent_changeset_free(data_reserved);
9121 return ret;
9122 }
9123
btrfs_truncate(struct inode * inode,bool skip_writeback)9124 static int btrfs_truncate(struct inode *inode, bool skip_writeback)
9125 {
9126 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9127 struct btrfs_root *root = BTRFS_I(inode)->root;
9128 struct btrfs_block_rsv *rsv;
9129 int ret;
9130 struct btrfs_trans_handle *trans;
9131 u64 mask = fs_info->sectorsize - 1;
9132 u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
9133
9134 if (!skip_writeback) {
9135 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9136 (u64)-1);
9137 if (ret)
9138 return ret;
9139 }
9140
9141 /*
9142 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
9143 * things going on here:
9144 *
9145 * 1) We need to reserve space to update our inode.
9146 *
9147 * 2) We need to have something to cache all the space that is going to
9148 * be free'd up by the truncate operation, but also have some slack
9149 * space reserved in case it uses space during the truncate (thank you
9150 * very much snapshotting).
9151 *
9152 * And we need these to be separate. The fact is we can use a lot of
9153 * space doing the truncate, and we have no earthly idea how much space
9154 * we will use, so we need the truncate reservation to be separate so it
9155 * doesn't end up using space reserved for updating the inode. We also
9156 * need to be able to stop the transaction and start a new one, which
9157 * means we need to be able to update the inode several times, and we
9158 * have no idea of knowing how many times that will be, so we can't just
9159 * reserve 1 item for the entirety of the operation, so that has to be
9160 * done separately as well.
9161 *
9162 * So that leaves us with
9163 *
9164 * 1) rsv - for the truncate reservation, which we will steal from the
9165 * transaction reservation.
9166 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
9167 * updating the inode.
9168 */
9169 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
9170 if (!rsv)
9171 return -ENOMEM;
9172 rsv->size = min_size;
9173 rsv->failfast = 1;
9174
9175 /*
9176 * 1 for the truncate slack space
9177 * 1 for updating the inode.
9178 */
9179 trans = btrfs_start_transaction(root, 2);
9180 if (IS_ERR(trans)) {
9181 ret = PTR_ERR(trans);
9182 goto out;
9183 }
9184
9185 /* Migrate the slack space for the truncate to our reserve */
9186 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
9187 min_size, 0);
9188 BUG_ON(ret);
9189
9190 /*
9191 * So if we truncate and then write and fsync we normally would just
9192 * write the extents that changed, which is a problem if we need to
9193 * first truncate that entire inode. So set this flag so we write out
9194 * all of the extents in the inode to the sync log so we're completely
9195 * safe.
9196 */
9197 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
9198 trans->block_rsv = rsv;
9199
9200 while (1) {
9201 ret = btrfs_truncate_inode_items(trans, root, inode,
9202 inode->i_size,
9203 BTRFS_EXTENT_DATA_KEY);
9204 trans->block_rsv = &fs_info->trans_block_rsv;
9205 if (ret != -ENOSPC && ret != -EAGAIN)
9206 break;
9207
9208 ret = btrfs_update_inode(trans, root, inode);
9209 if (ret)
9210 break;
9211
9212 btrfs_end_transaction(trans);
9213 btrfs_btree_balance_dirty(fs_info);
9214
9215 trans = btrfs_start_transaction(root, 2);
9216 if (IS_ERR(trans)) {
9217 ret = PTR_ERR(trans);
9218 trans = NULL;
9219 break;
9220 }
9221
9222 btrfs_block_rsv_release(fs_info, rsv, -1);
9223 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
9224 rsv, min_size, 0);
9225 BUG_ON(ret); /* shouldn't happen */
9226 trans->block_rsv = rsv;
9227 }
9228
9229 /*
9230 * We can't call btrfs_truncate_block inside a trans handle as we could
9231 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
9232 * we've truncated everything except the last little bit, and can do
9233 * btrfs_truncate_block and then update the disk_i_size.
9234 */
9235 if (ret == NEED_TRUNCATE_BLOCK) {
9236 btrfs_end_transaction(trans);
9237 btrfs_btree_balance_dirty(fs_info);
9238
9239 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
9240 if (ret)
9241 goto out;
9242 trans = btrfs_start_transaction(root, 1);
9243 if (IS_ERR(trans)) {
9244 ret = PTR_ERR(trans);
9245 goto out;
9246 }
9247 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
9248 }
9249
9250 if (trans) {
9251 int ret2;
9252
9253 trans->block_rsv = &fs_info->trans_block_rsv;
9254 ret2 = btrfs_update_inode(trans, root, inode);
9255 if (ret2 && !ret)
9256 ret = ret2;
9257
9258 ret2 = btrfs_end_transaction(trans);
9259 if (ret2 && !ret)
9260 ret = ret2;
9261 btrfs_btree_balance_dirty(fs_info);
9262 }
9263 out:
9264 btrfs_free_block_rsv(fs_info, rsv);
9265
9266 return ret;
9267 }
9268
9269 /*
9270 * create a new subvolume directory/inode (helper for the ioctl).
9271 */
btrfs_create_subvol_root(struct btrfs_trans_handle * trans,struct btrfs_root * new_root,struct btrfs_root * parent_root,u64 new_dirid)9272 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
9273 struct btrfs_root *new_root,
9274 struct btrfs_root *parent_root,
9275 u64 new_dirid)
9276 {
9277 struct inode *inode;
9278 int err;
9279 u64 index = 0;
9280
9281 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9282 new_dirid, new_dirid,
9283 S_IFDIR | (~current_umask() & S_IRWXUGO),
9284 &index);
9285 if (IS_ERR(inode))
9286 return PTR_ERR(inode);
9287 inode->i_op = &btrfs_dir_inode_operations;
9288 inode->i_fop = &btrfs_dir_file_operations;
9289
9290 set_nlink(inode, 1);
9291 btrfs_i_size_write(BTRFS_I(inode), 0);
9292 unlock_new_inode(inode);
9293
9294 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9295 if (err)
9296 btrfs_err(new_root->fs_info,
9297 "error inheriting subvolume %llu properties: %d",
9298 new_root->root_key.objectid, err);
9299
9300 err = btrfs_update_inode(trans, new_root, inode);
9301
9302 iput(inode);
9303 return err;
9304 }
9305
btrfs_alloc_inode(struct super_block * sb)9306 struct inode *btrfs_alloc_inode(struct super_block *sb)
9307 {
9308 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
9309 struct btrfs_inode *ei;
9310 struct inode *inode;
9311
9312 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
9313 if (!ei)
9314 return NULL;
9315
9316 ei->root = NULL;
9317 ei->generation = 0;
9318 ei->last_trans = 0;
9319 ei->last_sub_trans = 0;
9320 ei->logged_trans = 0;
9321 ei->delalloc_bytes = 0;
9322 ei->new_delalloc_bytes = 0;
9323 ei->defrag_bytes = 0;
9324 ei->disk_i_size = 0;
9325 ei->flags = 0;
9326 ei->csum_bytes = 0;
9327 ei->index_cnt = (u64)-1;
9328 ei->dir_index = 0;
9329 ei->last_unlink_trans = 0;
9330 ei->last_link_trans = 0;
9331 ei->last_log_commit = 0;
9332
9333 spin_lock_init(&ei->lock);
9334 ei->outstanding_extents = 0;
9335 if (sb->s_magic != BTRFS_TEST_MAGIC)
9336 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
9337 BTRFS_BLOCK_RSV_DELALLOC);
9338 ei->runtime_flags = 0;
9339 ei->prop_compress = BTRFS_COMPRESS_NONE;
9340 ei->defrag_compress = BTRFS_COMPRESS_NONE;
9341
9342 ei->delayed_node = NULL;
9343
9344 ei->i_otime.tv_sec = 0;
9345 ei->i_otime.tv_nsec = 0;
9346
9347 inode = &ei->vfs_inode;
9348 extent_map_tree_init(&ei->extent_tree);
9349 extent_io_tree_init(&ei->io_tree, inode);
9350 extent_io_tree_init(&ei->io_failure_tree, inode);
9351 ei->io_tree.track_uptodate = 1;
9352 ei->io_failure_tree.track_uptodate = 1;
9353 atomic_set(&ei->sync_writers, 0);
9354 mutex_init(&ei->log_mutex);
9355 mutex_init(&ei->delalloc_mutex);
9356 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9357 INIT_LIST_HEAD(&ei->delalloc_inodes);
9358 INIT_LIST_HEAD(&ei->delayed_iput);
9359 RB_CLEAR_NODE(&ei->rb_node);
9360 init_rwsem(&ei->dio_sem);
9361
9362 return inode;
9363 }
9364
9365 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
btrfs_test_destroy_inode(struct inode * inode)9366 void btrfs_test_destroy_inode(struct inode *inode)
9367 {
9368 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9369 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9370 }
9371 #endif
9372
btrfs_i_callback(struct rcu_head * head)9373 static void btrfs_i_callback(struct rcu_head *head)
9374 {
9375 struct inode *inode = container_of(head, struct inode, i_rcu);
9376 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9377 }
9378
btrfs_destroy_inode(struct inode * inode)9379 void btrfs_destroy_inode(struct inode *inode)
9380 {
9381 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9382 struct btrfs_ordered_extent *ordered;
9383 struct btrfs_root *root = BTRFS_I(inode)->root;
9384
9385 WARN_ON(!hlist_empty(&inode->i_dentry));
9386 WARN_ON(inode->i_data.nrpages);
9387 WARN_ON(BTRFS_I(inode)->block_rsv.reserved);
9388 WARN_ON(BTRFS_I(inode)->block_rsv.size);
9389 WARN_ON(BTRFS_I(inode)->outstanding_extents);
9390 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9391 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
9392 WARN_ON(BTRFS_I(inode)->csum_bytes);
9393 WARN_ON(BTRFS_I(inode)->defrag_bytes);
9394
9395 /*
9396 * This can happen where we create an inode, but somebody else also
9397 * created the same inode and we need to destroy the one we already
9398 * created.
9399 */
9400 if (!root)
9401 goto free;
9402
9403 while (1) {
9404 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9405 if (!ordered)
9406 break;
9407 else {
9408 btrfs_err(fs_info,
9409 "found ordered extent %llu %llu on inode cleanup",
9410 ordered->file_offset, ordered->len);
9411 btrfs_remove_ordered_extent(inode, ordered);
9412 btrfs_put_ordered_extent(ordered);
9413 btrfs_put_ordered_extent(ordered);
9414 }
9415 }
9416 btrfs_qgroup_check_reserved_leak(inode);
9417 inode_tree_del(inode);
9418 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9419 free:
9420 call_rcu(&inode->i_rcu, btrfs_i_callback);
9421 }
9422
btrfs_drop_inode(struct inode * inode)9423 int btrfs_drop_inode(struct inode *inode)
9424 {
9425 struct btrfs_root *root = BTRFS_I(inode)->root;
9426
9427 if (root == NULL)
9428 return 1;
9429
9430 /* the snap/subvol tree is on deleting */
9431 if (btrfs_root_refs(&root->root_item) == 0)
9432 return 1;
9433 else
9434 return generic_drop_inode(inode);
9435 }
9436
init_once(void * foo)9437 static void init_once(void *foo)
9438 {
9439 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9440
9441 inode_init_once(&ei->vfs_inode);
9442 }
9443
btrfs_destroy_cachep(void)9444 void __cold btrfs_destroy_cachep(void)
9445 {
9446 /*
9447 * Make sure all delayed rcu free inodes are flushed before we
9448 * destroy cache.
9449 */
9450 rcu_barrier();
9451 kmem_cache_destroy(btrfs_inode_cachep);
9452 kmem_cache_destroy(btrfs_trans_handle_cachep);
9453 kmem_cache_destroy(btrfs_path_cachep);
9454 kmem_cache_destroy(btrfs_free_space_cachep);
9455 kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
9456 }
9457
btrfs_init_cachep(void)9458 int __init btrfs_init_cachep(void)
9459 {
9460 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9461 sizeof(struct btrfs_inode), 0,
9462 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9463 init_once);
9464 if (!btrfs_inode_cachep)
9465 goto fail;
9466
9467 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9468 sizeof(struct btrfs_trans_handle), 0,
9469 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9470 if (!btrfs_trans_handle_cachep)
9471 goto fail;
9472
9473 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9474 sizeof(struct btrfs_path), 0,
9475 SLAB_MEM_SPREAD, NULL);
9476 if (!btrfs_path_cachep)
9477 goto fail;
9478
9479 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9480 sizeof(struct btrfs_free_space), 0,
9481 SLAB_MEM_SPREAD, NULL);
9482 if (!btrfs_free_space_cachep)
9483 goto fail;
9484
9485 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
9486 PAGE_SIZE, PAGE_SIZE,
9487 SLAB_MEM_SPREAD, NULL);
9488 if (!btrfs_free_space_bitmap_cachep)
9489 goto fail;
9490
9491 return 0;
9492 fail:
9493 btrfs_destroy_cachep();
9494 return -ENOMEM;
9495 }
9496
btrfs_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int flags)9497 static int btrfs_getattr(const struct path *path, struct kstat *stat,
9498 u32 request_mask, unsigned int flags)
9499 {
9500 u64 delalloc_bytes;
9501 struct inode *inode = d_inode(path->dentry);
9502 u32 blocksize = inode->i_sb->s_blocksize;
9503 u32 bi_flags = BTRFS_I(inode)->flags;
9504
9505 stat->result_mask |= STATX_BTIME;
9506 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9507 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9508 if (bi_flags & BTRFS_INODE_APPEND)
9509 stat->attributes |= STATX_ATTR_APPEND;
9510 if (bi_flags & BTRFS_INODE_COMPRESS)
9511 stat->attributes |= STATX_ATTR_COMPRESSED;
9512 if (bi_flags & BTRFS_INODE_IMMUTABLE)
9513 stat->attributes |= STATX_ATTR_IMMUTABLE;
9514 if (bi_flags & BTRFS_INODE_NODUMP)
9515 stat->attributes |= STATX_ATTR_NODUMP;
9516
9517 stat->attributes_mask |= (STATX_ATTR_APPEND |
9518 STATX_ATTR_COMPRESSED |
9519 STATX_ATTR_IMMUTABLE |
9520 STATX_ATTR_NODUMP);
9521
9522 generic_fillattr(inode, stat);
9523 stat->dev = BTRFS_I(inode)->root->anon_dev;
9524
9525 spin_lock(&BTRFS_I(inode)->lock);
9526 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
9527 spin_unlock(&BTRFS_I(inode)->lock);
9528 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9529 ALIGN(delalloc_bytes, blocksize)) >> 9;
9530 return 0;
9531 }
9532
btrfs_rename_exchange(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)9533 static int btrfs_rename_exchange(struct inode *old_dir,
9534 struct dentry *old_dentry,
9535 struct inode *new_dir,
9536 struct dentry *new_dentry)
9537 {
9538 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9539 struct btrfs_trans_handle *trans;
9540 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9541 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9542 struct inode *new_inode = new_dentry->d_inode;
9543 struct inode *old_inode = old_dentry->d_inode;
9544 struct timespec64 ctime = current_time(old_inode);
9545 struct dentry *parent;
9546 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9547 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
9548 u64 old_idx = 0;
9549 u64 new_idx = 0;
9550 int ret;
9551 bool root_log_pinned = false;
9552 bool dest_log_pinned = false;
9553 struct btrfs_log_ctx ctx_root;
9554 struct btrfs_log_ctx ctx_dest;
9555 bool sync_log_root = false;
9556 bool sync_log_dest = false;
9557 bool commit_transaction = false;
9558
9559 /*
9560 * For non-subvolumes allow exchange only within one subvolume, in the
9561 * same inode namespace. Two subvolumes (represented as directory) can
9562 * be exchanged as they're a logical link and have a fixed inode number.
9563 */
9564 if (root != dest &&
9565 (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
9566 new_ino != BTRFS_FIRST_FREE_OBJECTID))
9567 return -EXDEV;
9568
9569 btrfs_init_log_ctx(&ctx_root, old_inode);
9570 btrfs_init_log_ctx(&ctx_dest, new_inode);
9571
9572 /* close the race window with snapshot create/destroy ioctl */
9573 if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
9574 new_ino == BTRFS_FIRST_FREE_OBJECTID)
9575 down_read(&fs_info->subvol_sem);
9576
9577 /*
9578 * We want to reserve the absolute worst case amount of items. So if
9579 * both inodes are subvols and we need to unlink them then that would
9580 * require 4 item modifications, but if they are both normal inodes it
9581 * would require 5 item modifications, so we'll assume their normal
9582 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9583 * should cover the worst case number of items we'll modify.
9584 */
9585 trans = btrfs_start_transaction(root, 12);
9586 if (IS_ERR(trans)) {
9587 ret = PTR_ERR(trans);
9588 goto out_notrans;
9589 }
9590
9591 if (dest != root)
9592 btrfs_record_root_in_trans(trans, dest);
9593
9594 /*
9595 * We need to find a free sequence number both in the source and
9596 * in the destination directory for the exchange.
9597 */
9598 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
9599 if (ret)
9600 goto out_fail;
9601 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
9602 if (ret)
9603 goto out_fail;
9604
9605 BTRFS_I(old_inode)->dir_index = 0ULL;
9606 BTRFS_I(new_inode)->dir_index = 0ULL;
9607
9608 /* Reference for the source. */
9609 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9610 /* force full log commit if subvolume involved. */
9611 btrfs_set_log_full_commit(fs_info, trans);
9612 } else {
9613 btrfs_pin_log_trans(root);
9614 root_log_pinned = true;
9615 ret = btrfs_insert_inode_ref(trans, dest,
9616 new_dentry->d_name.name,
9617 new_dentry->d_name.len,
9618 old_ino,
9619 btrfs_ino(BTRFS_I(new_dir)),
9620 old_idx);
9621 if (ret)
9622 goto out_fail;
9623 }
9624
9625 /* And now for the dest. */
9626 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9627 /* force full log commit if subvolume involved. */
9628 btrfs_set_log_full_commit(fs_info, trans);
9629 } else {
9630 btrfs_pin_log_trans(dest);
9631 dest_log_pinned = true;
9632 ret = btrfs_insert_inode_ref(trans, root,
9633 old_dentry->d_name.name,
9634 old_dentry->d_name.len,
9635 new_ino,
9636 btrfs_ino(BTRFS_I(old_dir)),
9637 new_idx);
9638 if (ret)
9639 goto out_fail;
9640 }
9641
9642 /* Update inode version and ctime/mtime. */
9643 inode_inc_iversion(old_dir);
9644 inode_inc_iversion(new_dir);
9645 inode_inc_iversion(old_inode);
9646 inode_inc_iversion(new_inode);
9647 old_dir->i_ctime = old_dir->i_mtime = ctime;
9648 new_dir->i_ctime = new_dir->i_mtime = ctime;
9649 old_inode->i_ctime = ctime;
9650 new_inode->i_ctime = ctime;
9651
9652 if (old_dentry->d_parent != new_dentry->d_parent) {
9653 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9654 BTRFS_I(old_inode), 1);
9655 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9656 BTRFS_I(new_inode), 1);
9657 }
9658
9659 /* src is a subvolume */
9660 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9661 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9662 } else { /* src is an inode */
9663 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9664 BTRFS_I(old_dentry->d_inode),
9665 old_dentry->d_name.name,
9666 old_dentry->d_name.len);
9667 if (!ret)
9668 ret = btrfs_update_inode(trans, root, old_inode);
9669 }
9670 if (ret) {
9671 btrfs_abort_transaction(trans, ret);
9672 goto out_fail;
9673 }
9674
9675 /* dest is a subvolume */
9676 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9677 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
9678 } else { /* dest is an inode */
9679 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9680 BTRFS_I(new_dentry->d_inode),
9681 new_dentry->d_name.name,
9682 new_dentry->d_name.len);
9683 if (!ret)
9684 ret = btrfs_update_inode(trans, dest, new_inode);
9685 }
9686 if (ret) {
9687 btrfs_abort_transaction(trans, ret);
9688 goto out_fail;
9689 }
9690
9691 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9692 new_dentry->d_name.name,
9693 new_dentry->d_name.len, 0, old_idx);
9694 if (ret) {
9695 btrfs_abort_transaction(trans, ret);
9696 goto out_fail;
9697 }
9698
9699 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9700 old_dentry->d_name.name,
9701 old_dentry->d_name.len, 0, new_idx);
9702 if (ret) {
9703 btrfs_abort_transaction(trans, ret);
9704 goto out_fail;
9705 }
9706
9707 if (old_inode->i_nlink == 1)
9708 BTRFS_I(old_inode)->dir_index = old_idx;
9709 if (new_inode->i_nlink == 1)
9710 BTRFS_I(new_inode)->dir_index = new_idx;
9711
9712 if (root_log_pinned) {
9713 parent = new_dentry->d_parent;
9714 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
9715 BTRFS_I(old_dir), parent,
9716 false, &ctx_root);
9717 if (ret == BTRFS_NEED_LOG_SYNC)
9718 sync_log_root = true;
9719 else if (ret == BTRFS_NEED_TRANS_COMMIT)
9720 commit_transaction = true;
9721 ret = 0;
9722 btrfs_end_log_trans(root);
9723 root_log_pinned = false;
9724 }
9725 if (dest_log_pinned) {
9726 if (!commit_transaction) {
9727 parent = old_dentry->d_parent;
9728 ret = btrfs_log_new_name(trans, BTRFS_I(new_inode),
9729 BTRFS_I(new_dir), parent,
9730 false, &ctx_dest);
9731 if (ret == BTRFS_NEED_LOG_SYNC)
9732 sync_log_dest = true;
9733 else if (ret == BTRFS_NEED_TRANS_COMMIT)
9734 commit_transaction = true;
9735 ret = 0;
9736 }
9737 btrfs_end_log_trans(dest);
9738 dest_log_pinned = false;
9739 }
9740 out_fail:
9741 /*
9742 * If we have pinned a log and an error happened, we unpin tasks
9743 * trying to sync the log and force them to fallback to a transaction
9744 * commit if the log currently contains any of the inodes involved in
9745 * this rename operation (to ensure we do not persist a log with an
9746 * inconsistent state for any of these inodes or leading to any
9747 * inconsistencies when replayed). If the transaction was aborted, the
9748 * abortion reason is propagated to userspace when attempting to commit
9749 * the transaction. If the log does not contain any of these inodes, we
9750 * allow the tasks to sync it.
9751 */
9752 if (ret && (root_log_pinned || dest_log_pinned)) {
9753 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9754 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9755 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9756 (new_inode &&
9757 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9758 btrfs_set_log_full_commit(fs_info, trans);
9759
9760 if (root_log_pinned) {
9761 btrfs_end_log_trans(root);
9762 root_log_pinned = false;
9763 }
9764 if (dest_log_pinned) {
9765 btrfs_end_log_trans(dest);
9766 dest_log_pinned = false;
9767 }
9768 }
9769 if (!ret && sync_log_root && !commit_transaction) {
9770 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root,
9771 &ctx_root);
9772 if (ret)
9773 commit_transaction = true;
9774 }
9775 if (!ret && sync_log_dest && !commit_transaction) {
9776 ret = btrfs_sync_log(trans, BTRFS_I(new_inode)->root,
9777 &ctx_dest);
9778 if (ret)
9779 commit_transaction = true;
9780 }
9781 if (commit_transaction) {
9782 /*
9783 * We may have set commit_transaction when logging the new name
9784 * in the destination root, in which case we left the source
9785 * root context in the list of log contextes. So make sure we
9786 * remove it to avoid invalid memory accesses, since the context
9787 * was allocated in our stack frame.
9788 */
9789 if (sync_log_root) {
9790 mutex_lock(&root->log_mutex);
9791 list_del_init(&ctx_root.list);
9792 mutex_unlock(&root->log_mutex);
9793 }
9794 ret = btrfs_commit_transaction(trans);
9795 } else {
9796 int ret2;
9797
9798 ret2 = btrfs_end_transaction(trans);
9799 ret = ret ? ret : ret2;
9800 }
9801 out_notrans:
9802 if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
9803 old_ino == BTRFS_FIRST_FREE_OBJECTID)
9804 up_read(&fs_info->subvol_sem);
9805
9806 ASSERT(list_empty(&ctx_root.list));
9807 ASSERT(list_empty(&ctx_dest.list));
9808
9809 return ret;
9810 }
9811
btrfs_whiteout_for_rename(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * dir,struct dentry * dentry)9812 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9813 struct btrfs_root *root,
9814 struct inode *dir,
9815 struct dentry *dentry)
9816 {
9817 int ret;
9818 struct inode *inode;
9819 u64 objectid;
9820 u64 index;
9821
9822 ret = btrfs_find_free_objectid(root, &objectid);
9823 if (ret)
9824 return ret;
9825
9826 inode = btrfs_new_inode(trans, root, dir,
9827 dentry->d_name.name,
9828 dentry->d_name.len,
9829 btrfs_ino(BTRFS_I(dir)),
9830 objectid,
9831 S_IFCHR | WHITEOUT_MODE,
9832 &index);
9833
9834 if (IS_ERR(inode)) {
9835 ret = PTR_ERR(inode);
9836 return ret;
9837 }
9838
9839 inode->i_op = &btrfs_special_inode_operations;
9840 init_special_inode(inode, inode->i_mode,
9841 WHITEOUT_DEV);
9842
9843 ret = btrfs_init_inode_security(trans, inode, dir,
9844 &dentry->d_name);
9845 if (ret)
9846 goto out;
9847
9848 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9849 BTRFS_I(inode), 0, index);
9850 if (ret)
9851 goto out;
9852
9853 ret = btrfs_update_inode(trans, root, inode);
9854 out:
9855 unlock_new_inode(inode);
9856 if (ret)
9857 inode_dec_link_count(inode);
9858 iput(inode);
9859
9860 return ret;
9861 }
9862
btrfs_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)9863 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9864 struct inode *new_dir, struct dentry *new_dentry,
9865 unsigned int flags)
9866 {
9867 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9868 struct btrfs_trans_handle *trans;
9869 unsigned int trans_num_items;
9870 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9871 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9872 struct inode *new_inode = d_inode(new_dentry);
9873 struct inode *old_inode = d_inode(old_dentry);
9874 u64 index = 0;
9875 int ret;
9876 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9877 bool log_pinned = false;
9878 struct btrfs_log_ctx ctx;
9879 bool sync_log = false;
9880 bool commit_transaction = false;
9881
9882 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9883 return -EPERM;
9884
9885 /* we only allow rename subvolume link between subvolumes */
9886 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9887 return -EXDEV;
9888
9889 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9890 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9891 return -ENOTEMPTY;
9892
9893 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9894 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9895 return -ENOTEMPTY;
9896
9897
9898 /* check for collisions, even if the name isn't there */
9899 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9900 new_dentry->d_name.name,
9901 new_dentry->d_name.len);
9902
9903 if (ret) {
9904 if (ret == -EEXIST) {
9905 /* we shouldn't get
9906 * eexist without a new_inode */
9907 if (WARN_ON(!new_inode)) {
9908 return ret;
9909 }
9910 } else {
9911 /* maybe -EOVERFLOW */
9912 return ret;
9913 }
9914 }
9915 ret = 0;
9916
9917 /*
9918 * we're using rename to replace one file with another. Start IO on it
9919 * now so we don't add too much work to the end of the transaction
9920 */
9921 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9922 filemap_flush(old_inode->i_mapping);
9923
9924 /* close the racy window with snapshot create/destroy ioctl */
9925 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9926 down_read(&fs_info->subvol_sem);
9927 /*
9928 * We want to reserve the absolute worst case amount of items. So if
9929 * both inodes are subvols and we need to unlink them then that would
9930 * require 4 item modifications, but if they are both normal inodes it
9931 * would require 5 item modifications, so we'll assume they are normal
9932 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9933 * should cover the worst case number of items we'll modify.
9934 * If our rename has the whiteout flag, we need more 5 units for the
9935 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9936 * when selinux is enabled).
9937 */
9938 trans_num_items = 11;
9939 if (flags & RENAME_WHITEOUT)
9940 trans_num_items += 5;
9941 trans = btrfs_start_transaction(root, trans_num_items);
9942 if (IS_ERR(trans)) {
9943 ret = PTR_ERR(trans);
9944 goto out_notrans;
9945 }
9946
9947 if (dest != root)
9948 btrfs_record_root_in_trans(trans, dest);
9949
9950 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9951 if (ret)
9952 goto out_fail;
9953
9954 BTRFS_I(old_inode)->dir_index = 0ULL;
9955 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9956 /* force full log commit if subvolume involved. */
9957 btrfs_set_log_full_commit(fs_info, trans);
9958 } else {
9959 btrfs_pin_log_trans(root);
9960 log_pinned = true;
9961 ret = btrfs_insert_inode_ref(trans, dest,
9962 new_dentry->d_name.name,
9963 new_dentry->d_name.len,
9964 old_ino,
9965 btrfs_ino(BTRFS_I(new_dir)), index);
9966 if (ret)
9967 goto out_fail;
9968 }
9969
9970 inode_inc_iversion(old_dir);
9971 inode_inc_iversion(new_dir);
9972 inode_inc_iversion(old_inode);
9973 old_dir->i_ctime = old_dir->i_mtime =
9974 new_dir->i_ctime = new_dir->i_mtime =
9975 old_inode->i_ctime = current_time(old_dir);
9976
9977 if (old_dentry->d_parent != new_dentry->d_parent)
9978 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9979 BTRFS_I(old_inode), 1);
9980
9981 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9982 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9983 } else {
9984 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9985 BTRFS_I(d_inode(old_dentry)),
9986 old_dentry->d_name.name,
9987 old_dentry->d_name.len);
9988 if (!ret)
9989 ret = btrfs_update_inode(trans, root, old_inode);
9990 }
9991 if (ret) {
9992 btrfs_abort_transaction(trans, ret);
9993 goto out_fail;
9994 }
9995
9996 if (new_inode) {
9997 inode_inc_iversion(new_inode);
9998 new_inode->i_ctime = current_time(new_inode);
9999 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
10000 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
10001 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
10002 BUG_ON(new_inode->i_nlink == 0);
10003 } else {
10004 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
10005 BTRFS_I(d_inode(new_dentry)),
10006 new_dentry->d_name.name,
10007 new_dentry->d_name.len);
10008 }
10009 if (!ret && new_inode->i_nlink == 0)
10010 ret = btrfs_orphan_add(trans,
10011 BTRFS_I(d_inode(new_dentry)));
10012 if (ret) {
10013 btrfs_abort_transaction(trans, ret);
10014 goto out_fail;
10015 }
10016 }
10017
10018 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
10019 new_dentry->d_name.name,
10020 new_dentry->d_name.len, 0, index);
10021 if (ret) {
10022 btrfs_abort_transaction(trans, ret);
10023 goto out_fail;
10024 }
10025
10026 if (old_inode->i_nlink == 1)
10027 BTRFS_I(old_inode)->dir_index = index;
10028
10029 if (log_pinned) {
10030 struct dentry *parent = new_dentry->d_parent;
10031
10032 btrfs_init_log_ctx(&ctx, old_inode);
10033 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
10034 BTRFS_I(old_dir), parent,
10035 false, &ctx);
10036 if (ret == BTRFS_NEED_LOG_SYNC)
10037 sync_log = true;
10038 else if (ret == BTRFS_NEED_TRANS_COMMIT)
10039 commit_transaction = true;
10040 ret = 0;
10041 btrfs_end_log_trans(root);
10042 log_pinned = false;
10043 }
10044
10045 if (flags & RENAME_WHITEOUT) {
10046 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
10047 old_dentry);
10048
10049 if (ret) {
10050 btrfs_abort_transaction(trans, ret);
10051 goto out_fail;
10052 }
10053 }
10054 out_fail:
10055 /*
10056 * If we have pinned the log and an error happened, we unpin tasks
10057 * trying to sync the log and force them to fallback to a transaction
10058 * commit if the log currently contains any of the inodes involved in
10059 * this rename operation (to ensure we do not persist a log with an
10060 * inconsistent state for any of these inodes or leading to any
10061 * inconsistencies when replayed). If the transaction was aborted, the
10062 * abortion reason is propagated to userspace when attempting to commit
10063 * the transaction. If the log does not contain any of these inodes, we
10064 * allow the tasks to sync it.
10065 */
10066 if (ret && log_pinned) {
10067 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
10068 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
10069 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
10070 (new_inode &&
10071 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
10072 btrfs_set_log_full_commit(fs_info, trans);
10073
10074 btrfs_end_log_trans(root);
10075 log_pinned = false;
10076 }
10077 if (!ret && sync_log) {
10078 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, &ctx);
10079 if (ret)
10080 commit_transaction = true;
10081 } else if (sync_log) {
10082 mutex_lock(&root->log_mutex);
10083 list_del(&ctx.list);
10084 mutex_unlock(&root->log_mutex);
10085 }
10086 if (commit_transaction) {
10087 ret = btrfs_commit_transaction(trans);
10088 } else {
10089 int ret2;
10090
10091 ret2 = btrfs_end_transaction(trans);
10092 ret = ret ? ret : ret2;
10093 }
10094 out_notrans:
10095 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
10096 up_read(&fs_info->subvol_sem);
10097
10098 return ret;
10099 }
10100
btrfs_rename2(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)10101 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
10102 struct inode *new_dir, struct dentry *new_dentry,
10103 unsigned int flags)
10104 {
10105 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
10106 return -EINVAL;
10107
10108 if (flags & RENAME_EXCHANGE)
10109 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
10110 new_dentry);
10111
10112 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
10113 }
10114
10115 struct btrfs_delalloc_work {
10116 struct inode *inode;
10117 struct completion completion;
10118 struct list_head list;
10119 struct btrfs_work work;
10120 };
10121
btrfs_run_delalloc_work(struct btrfs_work * work)10122 static void btrfs_run_delalloc_work(struct btrfs_work *work)
10123 {
10124 struct btrfs_delalloc_work *delalloc_work;
10125 struct inode *inode;
10126
10127 delalloc_work = container_of(work, struct btrfs_delalloc_work,
10128 work);
10129 inode = delalloc_work->inode;
10130 filemap_flush(inode->i_mapping);
10131 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
10132 &BTRFS_I(inode)->runtime_flags))
10133 filemap_flush(inode->i_mapping);
10134
10135 iput(inode);
10136 complete(&delalloc_work->completion);
10137 }
10138
btrfs_alloc_delalloc_work(struct inode * inode)10139 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
10140 {
10141 struct btrfs_delalloc_work *work;
10142
10143 work = kmalloc(sizeof(*work), GFP_NOFS);
10144 if (!work)
10145 return NULL;
10146
10147 init_completion(&work->completion);
10148 INIT_LIST_HEAD(&work->list);
10149 work->inode = inode;
10150 WARN_ON_ONCE(!inode);
10151 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
10152 btrfs_run_delalloc_work, NULL, NULL);
10153
10154 return work;
10155 }
10156
10157 /*
10158 * some fairly slow code that needs optimization. This walks the list
10159 * of all the inodes with pending delalloc and forces them to disk.
10160 */
start_delalloc_inodes(struct btrfs_root * root,int nr,bool snapshot)10161 static int start_delalloc_inodes(struct btrfs_root *root, int nr, bool snapshot)
10162 {
10163 struct btrfs_inode *binode;
10164 struct inode *inode;
10165 struct btrfs_delalloc_work *work, *next;
10166 struct list_head works;
10167 struct list_head splice;
10168 int ret = 0;
10169
10170 INIT_LIST_HEAD(&works);
10171 INIT_LIST_HEAD(&splice);
10172
10173 mutex_lock(&root->delalloc_mutex);
10174 spin_lock(&root->delalloc_lock);
10175 list_splice_init(&root->delalloc_inodes, &splice);
10176 while (!list_empty(&splice)) {
10177 binode = list_entry(splice.next, struct btrfs_inode,
10178 delalloc_inodes);
10179
10180 list_move_tail(&binode->delalloc_inodes,
10181 &root->delalloc_inodes);
10182 inode = igrab(&binode->vfs_inode);
10183 if (!inode) {
10184 cond_resched_lock(&root->delalloc_lock);
10185 continue;
10186 }
10187 spin_unlock(&root->delalloc_lock);
10188
10189 if (snapshot)
10190 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
10191 &binode->runtime_flags);
10192 work = btrfs_alloc_delalloc_work(inode);
10193 if (!work) {
10194 iput(inode);
10195 ret = -ENOMEM;
10196 goto out;
10197 }
10198 list_add_tail(&work->list, &works);
10199 btrfs_queue_work(root->fs_info->flush_workers,
10200 &work->work);
10201 ret++;
10202 if (nr != -1 && ret >= nr)
10203 goto out;
10204 cond_resched();
10205 spin_lock(&root->delalloc_lock);
10206 }
10207 spin_unlock(&root->delalloc_lock);
10208
10209 out:
10210 list_for_each_entry_safe(work, next, &works, list) {
10211 list_del_init(&work->list);
10212 wait_for_completion(&work->completion);
10213 kfree(work);
10214 }
10215
10216 if (!list_empty(&splice)) {
10217 spin_lock(&root->delalloc_lock);
10218 list_splice_tail(&splice, &root->delalloc_inodes);
10219 spin_unlock(&root->delalloc_lock);
10220 }
10221 mutex_unlock(&root->delalloc_mutex);
10222 return ret;
10223 }
10224
btrfs_start_delalloc_snapshot(struct btrfs_root * root)10225 int btrfs_start_delalloc_snapshot(struct btrfs_root *root)
10226 {
10227 struct btrfs_fs_info *fs_info = root->fs_info;
10228 int ret;
10229
10230 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10231 return -EROFS;
10232
10233 ret = start_delalloc_inodes(root, -1, true);
10234 if (ret > 0)
10235 ret = 0;
10236 return ret;
10237 }
10238
btrfs_start_delalloc_roots(struct btrfs_fs_info * fs_info,int nr)10239 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr)
10240 {
10241 struct btrfs_root *root;
10242 struct list_head splice;
10243 int ret;
10244
10245 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10246 return -EROFS;
10247
10248 INIT_LIST_HEAD(&splice);
10249
10250 mutex_lock(&fs_info->delalloc_root_mutex);
10251 spin_lock(&fs_info->delalloc_root_lock);
10252 list_splice_init(&fs_info->delalloc_roots, &splice);
10253 while (!list_empty(&splice) && nr) {
10254 root = list_first_entry(&splice, struct btrfs_root,
10255 delalloc_root);
10256 root = btrfs_grab_fs_root(root);
10257 BUG_ON(!root);
10258 list_move_tail(&root->delalloc_root,
10259 &fs_info->delalloc_roots);
10260 spin_unlock(&fs_info->delalloc_root_lock);
10261
10262 ret = start_delalloc_inodes(root, nr, false);
10263 btrfs_put_fs_root(root);
10264 if (ret < 0)
10265 goto out;
10266
10267 if (nr != -1) {
10268 nr -= ret;
10269 WARN_ON(nr < 0);
10270 }
10271 spin_lock(&fs_info->delalloc_root_lock);
10272 }
10273 spin_unlock(&fs_info->delalloc_root_lock);
10274
10275 ret = 0;
10276 out:
10277 if (!list_empty(&splice)) {
10278 spin_lock(&fs_info->delalloc_root_lock);
10279 list_splice_tail(&splice, &fs_info->delalloc_roots);
10280 spin_unlock(&fs_info->delalloc_root_lock);
10281 }
10282 mutex_unlock(&fs_info->delalloc_root_mutex);
10283 return ret;
10284 }
10285
btrfs_symlink(struct inode * dir,struct dentry * dentry,const char * symname)10286 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10287 const char *symname)
10288 {
10289 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10290 struct btrfs_trans_handle *trans;
10291 struct btrfs_root *root = BTRFS_I(dir)->root;
10292 struct btrfs_path *path;
10293 struct btrfs_key key;
10294 struct inode *inode = NULL;
10295 int err;
10296 u64 objectid;
10297 u64 index = 0;
10298 int name_len;
10299 int datasize;
10300 unsigned long ptr;
10301 struct btrfs_file_extent_item *ei;
10302 struct extent_buffer *leaf;
10303
10304 name_len = strlen(symname);
10305 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
10306 return -ENAMETOOLONG;
10307
10308 /*
10309 * 2 items for inode item and ref
10310 * 2 items for dir items
10311 * 1 item for updating parent inode item
10312 * 1 item for the inline extent item
10313 * 1 item for xattr if selinux is on
10314 */
10315 trans = btrfs_start_transaction(root, 7);
10316 if (IS_ERR(trans))
10317 return PTR_ERR(trans);
10318
10319 err = btrfs_find_free_objectid(root, &objectid);
10320 if (err)
10321 goto out_unlock;
10322
10323 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
10324 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10325 objectid, S_IFLNK|S_IRWXUGO, &index);
10326 if (IS_ERR(inode)) {
10327 err = PTR_ERR(inode);
10328 inode = NULL;
10329 goto out_unlock;
10330 }
10331
10332 /*
10333 * If the active LSM wants to access the inode during
10334 * d_instantiate it needs these. Smack checks to see
10335 * if the filesystem supports xattrs by looking at the
10336 * ops vector.
10337 */
10338 inode->i_fop = &btrfs_file_operations;
10339 inode->i_op = &btrfs_file_inode_operations;
10340 inode->i_mapping->a_ops = &btrfs_aops;
10341 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10342
10343 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10344 if (err)
10345 goto out_unlock;
10346
10347 path = btrfs_alloc_path();
10348 if (!path) {
10349 err = -ENOMEM;
10350 goto out_unlock;
10351 }
10352 key.objectid = btrfs_ino(BTRFS_I(inode));
10353 key.offset = 0;
10354 key.type = BTRFS_EXTENT_DATA_KEY;
10355 datasize = btrfs_file_extent_calc_inline_size(name_len);
10356 err = btrfs_insert_empty_item(trans, root, path, &key,
10357 datasize);
10358 if (err) {
10359 btrfs_free_path(path);
10360 goto out_unlock;
10361 }
10362 leaf = path->nodes[0];
10363 ei = btrfs_item_ptr(leaf, path->slots[0],
10364 struct btrfs_file_extent_item);
10365 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10366 btrfs_set_file_extent_type(leaf, ei,
10367 BTRFS_FILE_EXTENT_INLINE);
10368 btrfs_set_file_extent_encryption(leaf, ei, 0);
10369 btrfs_set_file_extent_compression(leaf, ei, 0);
10370 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10371 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10372
10373 ptr = btrfs_file_extent_inline_start(ei);
10374 write_extent_buffer(leaf, symname, ptr, name_len);
10375 btrfs_mark_buffer_dirty(leaf);
10376 btrfs_free_path(path);
10377
10378 inode->i_op = &btrfs_symlink_inode_operations;
10379 inode_nohighmem(inode);
10380 inode->i_mapping->a_ops = &btrfs_symlink_aops;
10381 inode_set_bytes(inode, name_len);
10382 btrfs_i_size_write(BTRFS_I(inode), name_len);
10383 err = btrfs_update_inode(trans, root, inode);
10384 /*
10385 * Last step, add directory indexes for our symlink inode. This is the
10386 * last step to avoid extra cleanup of these indexes if an error happens
10387 * elsewhere above.
10388 */
10389 if (!err)
10390 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10391 BTRFS_I(inode), 0, index);
10392 if (err)
10393 goto out_unlock;
10394
10395 d_instantiate_new(dentry, inode);
10396
10397 out_unlock:
10398 btrfs_end_transaction(trans);
10399 if (err && inode) {
10400 inode_dec_link_count(inode);
10401 discard_new_inode(inode);
10402 }
10403 btrfs_btree_balance_dirty(fs_info);
10404 return err;
10405 }
10406
__btrfs_prealloc_file_range(struct inode * inode,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint,struct btrfs_trans_handle * trans)10407 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10408 u64 start, u64 num_bytes, u64 min_size,
10409 loff_t actual_len, u64 *alloc_hint,
10410 struct btrfs_trans_handle *trans)
10411 {
10412 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
10413 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10414 struct extent_map *em;
10415 struct btrfs_root *root = BTRFS_I(inode)->root;
10416 struct btrfs_key ins;
10417 u64 cur_offset = start;
10418 u64 clear_offset = start;
10419 u64 i_size;
10420 u64 cur_bytes;
10421 u64 last_alloc = (u64)-1;
10422 int ret = 0;
10423 bool own_trans = true;
10424 u64 end = start + num_bytes - 1;
10425
10426 if (trans)
10427 own_trans = false;
10428 while (num_bytes > 0) {
10429 if (own_trans) {
10430 trans = btrfs_start_transaction(root, 3);
10431 if (IS_ERR(trans)) {
10432 ret = PTR_ERR(trans);
10433 break;
10434 }
10435 }
10436
10437 cur_bytes = min_t(u64, num_bytes, SZ_256M);
10438 cur_bytes = max(cur_bytes, min_size);
10439 /*
10440 * If we are severely fragmented we could end up with really
10441 * small allocations, so if the allocator is returning small
10442 * chunks lets make its job easier by only searching for those
10443 * sized chunks.
10444 */
10445 cur_bytes = min(cur_bytes, last_alloc);
10446 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10447 min_size, 0, *alloc_hint, &ins, 1, 0);
10448 if (ret) {
10449 if (own_trans)
10450 btrfs_end_transaction(trans);
10451 break;
10452 }
10453
10454 /*
10455 * We've reserved this space, and thus converted it from
10456 * ->bytes_may_use to ->bytes_reserved. Any error that happens
10457 * from here on out we will only need to clear our reservation
10458 * for the remaining unreserved area, so advance our
10459 * clear_offset by our extent size.
10460 */
10461 clear_offset += ins.offset;
10462 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10463
10464 last_alloc = ins.offset;
10465 ret = insert_reserved_file_extent(trans, inode,
10466 cur_offset, ins.objectid,
10467 ins.offset, ins.offset,
10468 ins.offset, 0, 0, 0,
10469 BTRFS_FILE_EXTENT_PREALLOC);
10470 if (ret) {
10471 btrfs_free_reserved_extent(fs_info, ins.objectid,
10472 ins.offset, 0);
10473 btrfs_abort_transaction(trans, ret);
10474 if (own_trans)
10475 btrfs_end_transaction(trans);
10476 break;
10477 }
10478
10479 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10480 cur_offset + ins.offset -1, 0);
10481
10482 em = alloc_extent_map();
10483 if (!em) {
10484 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10485 &BTRFS_I(inode)->runtime_flags);
10486 goto next;
10487 }
10488
10489 em->start = cur_offset;
10490 em->orig_start = cur_offset;
10491 em->len = ins.offset;
10492 em->block_start = ins.objectid;
10493 em->block_len = ins.offset;
10494 em->orig_block_len = ins.offset;
10495 em->ram_bytes = ins.offset;
10496 em->bdev = fs_info->fs_devices->latest_bdev;
10497 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10498 em->generation = trans->transid;
10499
10500 while (1) {
10501 write_lock(&em_tree->lock);
10502 ret = add_extent_mapping(em_tree, em, 1);
10503 write_unlock(&em_tree->lock);
10504 if (ret != -EEXIST)
10505 break;
10506 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10507 cur_offset + ins.offset - 1,
10508 0);
10509 }
10510 free_extent_map(em);
10511 next:
10512 num_bytes -= ins.offset;
10513 cur_offset += ins.offset;
10514 *alloc_hint = ins.objectid + ins.offset;
10515
10516 inode_inc_iversion(inode);
10517 inode->i_ctime = current_time(inode);
10518 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10519 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10520 (actual_len > inode->i_size) &&
10521 (cur_offset > inode->i_size)) {
10522 if (cur_offset > actual_len)
10523 i_size = actual_len;
10524 else
10525 i_size = cur_offset;
10526 i_size_write(inode, i_size);
10527 btrfs_ordered_update_i_size(inode, i_size, NULL);
10528 }
10529
10530 ret = btrfs_update_inode(trans, root, inode);
10531
10532 if (ret) {
10533 btrfs_abort_transaction(trans, ret);
10534 if (own_trans)
10535 btrfs_end_transaction(trans);
10536 break;
10537 }
10538
10539 if (own_trans)
10540 btrfs_end_transaction(trans);
10541 }
10542 if (clear_offset < end)
10543 btrfs_free_reserved_data_space(inode, NULL, clear_offset,
10544 end - clear_offset + 1);
10545 return ret;
10546 }
10547
btrfs_prealloc_file_range(struct inode * inode,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint)10548 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10549 u64 start, u64 num_bytes, u64 min_size,
10550 loff_t actual_len, u64 *alloc_hint)
10551 {
10552 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10553 min_size, actual_len, alloc_hint,
10554 NULL);
10555 }
10556
btrfs_prealloc_file_range_trans(struct inode * inode,struct btrfs_trans_handle * trans,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint)10557 int btrfs_prealloc_file_range_trans(struct inode *inode,
10558 struct btrfs_trans_handle *trans, int mode,
10559 u64 start, u64 num_bytes, u64 min_size,
10560 loff_t actual_len, u64 *alloc_hint)
10561 {
10562 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10563 min_size, actual_len, alloc_hint, trans);
10564 }
10565
btrfs_set_page_dirty(struct page * page)10566 static int btrfs_set_page_dirty(struct page *page)
10567 {
10568 return __set_page_dirty_nobuffers(page);
10569 }
10570
btrfs_permission(struct inode * inode,int mask)10571 static int btrfs_permission(struct inode *inode, int mask)
10572 {
10573 struct btrfs_root *root = BTRFS_I(inode)->root;
10574 umode_t mode = inode->i_mode;
10575
10576 if (mask & MAY_WRITE &&
10577 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10578 if (btrfs_root_readonly(root))
10579 return -EROFS;
10580 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10581 return -EACCES;
10582 }
10583 return generic_permission(inode, mask);
10584 }
10585
btrfs_tmpfile(struct inode * dir,struct dentry * dentry,umode_t mode)10586 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10587 {
10588 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10589 struct btrfs_trans_handle *trans;
10590 struct btrfs_root *root = BTRFS_I(dir)->root;
10591 struct inode *inode = NULL;
10592 u64 objectid;
10593 u64 index;
10594 int ret = 0;
10595
10596 /*
10597 * 5 units required for adding orphan entry
10598 */
10599 trans = btrfs_start_transaction(root, 5);
10600 if (IS_ERR(trans))
10601 return PTR_ERR(trans);
10602
10603 ret = btrfs_find_free_objectid(root, &objectid);
10604 if (ret)
10605 goto out;
10606
10607 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10608 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
10609 if (IS_ERR(inode)) {
10610 ret = PTR_ERR(inode);
10611 inode = NULL;
10612 goto out;
10613 }
10614
10615 inode->i_fop = &btrfs_file_operations;
10616 inode->i_op = &btrfs_file_inode_operations;
10617
10618 inode->i_mapping->a_ops = &btrfs_aops;
10619 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10620
10621 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10622 if (ret)
10623 goto out;
10624
10625 ret = btrfs_update_inode(trans, root, inode);
10626 if (ret)
10627 goto out;
10628 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10629 if (ret)
10630 goto out;
10631
10632 /*
10633 * We set number of links to 0 in btrfs_new_inode(), and here we set
10634 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10635 * through:
10636 *
10637 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10638 */
10639 set_nlink(inode, 1);
10640 d_tmpfile(dentry, inode);
10641 unlock_new_inode(inode);
10642 mark_inode_dirty(inode);
10643 out:
10644 btrfs_end_transaction(trans);
10645 if (ret && inode)
10646 discard_new_inode(inode);
10647 btrfs_btree_balance_dirty(fs_info);
10648 return ret;
10649 }
10650
10651 __attribute__((const))
btrfs_readpage_io_failed_hook(struct page * page,int failed_mirror)10652 static int btrfs_readpage_io_failed_hook(struct page *page, int failed_mirror)
10653 {
10654 return -EAGAIN;
10655 }
10656
btrfs_check_extent_io_range(void * private_data,const char * caller,u64 start,u64 end)10657 static void btrfs_check_extent_io_range(void *private_data, const char *caller,
10658 u64 start, u64 end)
10659 {
10660 struct inode *inode = private_data;
10661 u64 isize;
10662
10663 isize = i_size_read(inode);
10664 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
10665 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
10666 "%s: ino %llu isize %llu odd range [%llu,%llu]",
10667 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
10668 }
10669 }
10670
btrfs_set_range_writeback(struct extent_io_tree * tree,u64 start,u64 end)10671 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
10672 {
10673 struct inode *inode = tree->private_data;
10674 unsigned long index = start >> PAGE_SHIFT;
10675 unsigned long end_index = end >> PAGE_SHIFT;
10676 struct page *page;
10677
10678 while (index <= end_index) {
10679 page = find_get_page(inode->i_mapping, index);
10680 ASSERT(page); /* Pages should be in the extent_io_tree */
10681 set_page_writeback(page);
10682 put_page(page);
10683 index++;
10684 }
10685 }
10686
10687 static const struct inode_operations btrfs_dir_inode_operations = {
10688 .getattr = btrfs_getattr,
10689 .lookup = btrfs_lookup,
10690 .create = btrfs_create,
10691 .unlink = btrfs_unlink,
10692 .link = btrfs_link,
10693 .mkdir = btrfs_mkdir,
10694 .rmdir = btrfs_rmdir,
10695 .rename = btrfs_rename2,
10696 .symlink = btrfs_symlink,
10697 .setattr = btrfs_setattr,
10698 .mknod = btrfs_mknod,
10699 .listxattr = btrfs_listxattr,
10700 .permission = btrfs_permission,
10701 .get_acl = btrfs_get_acl,
10702 .set_acl = btrfs_set_acl,
10703 .update_time = btrfs_update_time,
10704 .tmpfile = btrfs_tmpfile,
10705 };
10706 static const struct inode_operations btrfs_dir_ro_inode_operations = {
10707 .lookup = btrfs_lookup,
10708 .permission = btrfs_permission,
10709 .update_time = btrfs_update_time,
10710 };
10711
10712 static const struct file_operations btrfs_dir_file_operations = {
10713 .llseek = generic_file_llseek,
10714 .read = generic_read_dir,
10715 .iterate_shared = btrfs_real_readdir,
10716 .open = btrfs_opendir,
10717 .unlocked_ioctl = btrfs_ioctl,
10718 #ifdef CONFIG_COMPAT
10719 .compat_ioctl = btrfs_compat_ioctl,
10720 #endif
10721 .release = btrfs_release_file,
10722 .fsync = btrfs_sync_file,
10723 };
10724
10725 static const struct extent_io_ops btrfs_extent_io_ops = {
10726 /* mandatory callbacks */
10727 .submit_bio_hook = btrfs_submit_bio_hook,
10728 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
10729 .readpage_io_failed_hook = btrfs_readpage_io_failed_hook,
10730
10731 /* optional callbacks */
10732 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
10733 .writepage_start_hook = btrfs_writepage_start_hook,
10734 .set_bit_hook = btrfs_set_bit_hook,
10735 .clear_bit_hook = btrfs_clear_bit_hook,
10736 .merge_extent_hook = btrfs_merge_extent_hook,
10737 .split_extent_hook = btrfs_split_extent_hook,
10738 .check_extent_io_range = btrfs_check_extent_io_range,
10739 };
10740
10741 /*
10742 * btrfs doesn't support the bmap operation because swapfiles
10743 * use bmap to make a mapping of extents in the file. They assume
10744 * these extents won't change over the life of the file and they
10745 * use the bmap result to do IO directly to the drive.
10746 *
10747 * the btrfs bmap call would return logical addresses that aren't
10748 * suitable for IO and they also will change frequently as COW
10749 * operations happen. So, swapfile + btrfs == corruption.
10750 *
10751 * For now we're avoiding this by dropping bmap.
10752 */
10753 static const struct address_space_operations btrfs_aops = {
10754 .readpage = btrfs_readpage,
10755 .writepage = btrfs_writepage,
10756 .writepages = btrfs_writepages,
10757 .readpages = btrfs_readpages,
10758 .direct_IO = btrfs_direct_IO,
10759 .invalidatepage = btrfs_invalidatepage,
10760 .releasepage = btrfs_releasepage,
10761 .set_page_dirty = btrfs_set_page_dirty,
10762 .error_remove_page = generic_error_remove_page,
10763 };
10764
10765 static const struct address_space_operations btrfs_symlink_aops = {
10766 .readpage = btrfs_readpage,
10767 .writepage = btrfs_writepage,
10768 .invalidatepage = btrfs_invalidatepage,
10769 .releasepage = btrfs_releasepage,
10770 };
10771
10772 static const struct inode_operations btrfs_file_inode_operations = {
10773 .getattr = btrfs_getattr,
10774 .setattr = btrfs_setattr,
10775 .listxattr = btrfs_listxattr,
10776 .permission = btrfs_permission,
10777 .fiemap = btrfs_fiemap,
10778 .get_acl = btrfs_get_acl,
10779 .set_acl = btrfs_set_acl,
10780 .update_time = btrfs_update_time,
10781 };
10782 static const struct inode_operations btrfs_special_inode_operations = {
10783 .getattr = btrfs_getattr,
10784 .setattr = btrfs_setattr,
10785 .permission = btrfs_permission,
10786 .listxattr = btrfs_listxattr,
10787 .get_acl = btrfs_get_acl,
10788 .set_acl = btrfs_set_acl,
10789 .update_time = btrfs_update_time,
10790 };
10791 static const struct inode_operations btrfs_symlink_inode_operations = {
10792 .get_link = page_get_link,
10793 .getattr = btrfs_getattr,
10794 .setattr = btrfs_setattr,
10795 .permission = btrfs_permission,
10796 .listxattr = btrfs_listxattr,
10797 .update_time = btrfs_update_time,
10798 };
10799
10800 const struct dentry_operations btrfs_dentry_operations = {
10801 .d_delete = btrfs_dentry_delete,
10802 };
10803