1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
19 #include "tree-log.h"
20 #include "disk-io.h"
21 #include "print-tree.h"
22 #include "volumes.h"
23 #include "raid56.h"
24 #include "locking.h"
25 #include "free-space-cache.h"
26 #include "free-space-tree.h"
27 #include "math.h"
28 #include "sysfs.h"
29 #include "qgroup.h"
30 #include "ref-verify.h"
31
32 #undef SCRAMBLE_DELAYED_REFS
33
34 /*
35 * control flags for do_chunk_alloc's force field
36 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
37 * if we really need one.
38 *
39 * CHUNK_ALLOC_LIMITED means to only try and allocate one
40 * if we have very few chunks already allocated. This is
41 * used as part of the clustering code to help make sure
42 * we have a good pool of storage to cluster in, without
43 * filling the FS with empty chunks
44 *
45 * CHUNK_ALLOC_FORCE means it must try to allocate one
46 *
47 */
48 enum {
49 CHUNK_ALLOC_NO_FORCE = 0,
50 CHUNK_ALLOC_LIMITED = 1,
51 CHUNK_ALLOC_FORCE = 2,
52 };
53
54 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
55 struct btrfs_delayed_ref_node *node, u64 parent,
56 u64 root_objectid, u64 owner_objectid,
57 u64 owner_offset, int refs_to_drop,
58 struct btrfs_delayed_extent_op *extra_op);
59 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
60 struct extent_buffer *leaf,
61 struct btrfs_extent_item *ei);
62 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
63 u64 parent, u64 root_objectid,
64 u64 flags, u64 owner, u64 offset,
65 struct btrfs_key *ins, int ref_mod);
66 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
67 struct btrfs_delayed_ref_node *node,
68 struct btrfs_delayed_extent_op *extent_op);
69 static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
70 int force);
71 static int find_next_key(struct btrfs_path *path, int level,
72 struct btrfs_key *key);
73 static void dump_space_info(struct btrfs_fs_info *fs_info,
74 struct btrfs_space_info *info, u64 bytes,
75 int dump_block_groups);
76 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
77 u64 num_bytes);
78 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
79 struct btrfs_space_info *space_info,
80 u64 num_bytes);
81 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
82 struct btrfs_space_info *space_info,
83 u64 num_bytes);
84
85 static noinline int
block_group_cache_done(struct btrfs_block_group_cache * cache)86 block_group_cache_done(struct btrfs_block_group_cache *cache)
87 {
88 smp_mb();
89 return cache->cached == BTRFS_CACHE_FINISHED ||
90 cache->cached == BTRFS_CACHE_ERROR;
91 }
92
block_group_bits(struct btrfs_block_group_cache * cache,u64 bits)93 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
94 {
95 return (cache->flags & bits) == bits;
96 }
97
btrfs_get_block_group(struct btrfs_block_group_cache * cache)98 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
99 {
100 atomic_inc(&cache->count);
101 }
102
btrfs_put_block_group(struct btrfs_block_group_cache * cache)103 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
104 {
105 if (atomic_dec_and_test(&cache->count)) {
106 WARN_ON(cache->pinned > 0);
107 WARN_ON(cache->reserved > 0);
108
109 /*
110 * If not empty, someone is still holding mutex of
111 * full_stripe_lock, which can only be released by caller.
112 * And it will definitely cause use-after-free when caller
113 * tries to release full stripe lock.
114 *
115 * No better way to resolve, but only to warn.
116 */
117 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
118 kfree(cache->free_space_ctl);
119 kfree(cache);
120 }
121 }
122
123 /*
124 * this adds the block group to the fs_info rb tree for the block group
125 * cache
126 */
btrfs_add_block_group_cache(struct btrfs_fs_info * info,struct btrfs_block_group_cache * block_group)127 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
128 struct btrfs_block_group_cache *block_group)
129 {
130 struct rb_node **p;
131 struct rb_node *parent = NULL;
132 struct btrfs_block_group_cache *cache;
133
134 spin_lock(&info->block_group_cache_lock);
135 p = &info->block_group_cache_tree.rb_node;
136
137 while (*p) {
138 parent = *p;
139 cache = rb_entry(parent, struct btrfs_block_group_cache,
140 cache_node);
141 if (block_group->key.objectid < cache->key.objectid) {
142 p = &(*p)->rb_left;
143 } else if (block_group->key.objectid > cache->key.objectid) {
144 p = &(*p)->rb_right;
145 } else {
146 spin_unlock(&info->block_group_cache_lock);
147 return -EEXIST;
148 }
149 }
150
151 rb_link_node(&block_group->cache_node, parent, p);
152 rb_insert_color(&block_group->cache_node,
153 &info->block_group_cache_tree);
154
155 if (info->first_logical_byte > block_group->key.objectid)
156 info->first_logical_byte = block_group->key.objectid;
157
158 spin_unlock(&info->block_group_cache_lock);
159
160 return 0;
161 }
162
163 /*
164 * This will return the block group at or after bytenr if contains is 0, else
165 * it will return the block group that contains the bytenr
166 */
167 static struct btrfs_block_group_cache *
block_group_cache_tree_search(struct btrfs_fs_info * info,u64 bytenr,int contains)168 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
169 int contains)
170 {
171 struct btrfs_block_group_cache *cache, *ret = NULL;
172 struct rb_node *n;
173 u64 end, start;
174
175 spin_lock(&info->block_group_cache_lock);
176 n = info->block_group_cache_tree.rb_node;
177
178 while (n) {
179 cache = rb_entry(n, struct btrfs_block_group_cache,
180 cache_node);
181 end = cache->key.objectid + cache->key.offset - 1;
182 start = cache->key.objectid;
183
184 if (bytenr < start) {
185 if (!contains && (!ret || start < ret->key.objectid))
186 ret = cache;
187 n = n->rb_left;
188 } else if (bytenr > start) {
189 if (contains && bytenr <= end) {
190 ret = cache;
191 break;
192 }
193 n = n->rb_right;
194 } else {
195 ret = cache;
196 break;
197 }
198 }
199 if (ret) {
200 btrfs_get_block_group(ret);
201 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
202 info->first_logical_byte = ret->key.objectid;
203 }
204 spin_unlock(&info->block_group_cache_lock);
205
206 return ret;
207 }
208
add_excluded_extent(struct btrfs_fs_info * fs_info,u64 start,u64 num_bytes)209 static int add_excluded_extent(struct btrfs_fs_info *fs_info,
210 u64 start, u64 num_bytes)
211 {
212 u64 end = start + num_bytes - 1;
213 set_extent_bits(&fs_info->freed_extents[0],
214 start, end, EXTENT_UPTODATE);
215 set_extent_bits(&fs_info->freed_extents[1],
216 start, end, EXTENT_UPTODATE);
217 return 0;
218 }
219
free_excluded_extents(struct btrfs_block_group_cache * cache)220 static void free_excluded_extents(struct btrfs_block_group_cache *cache)
221 {
222 struct btrfs_fs_info *fs_info = cache->fs_info;
223 u64 start, end;
224
225 start = cache->key.objectid;
226 end = start + cache->key.offset - 1;
227
228 clear_extent_bits(&fs_info->freed_extents[0],
229 start, end, EXTENT_UPTODATE);
230 clear_extent_bits(&fs_info->freed_extents[1],
231 start, end, EXTENT_UPTODATE);
232 }
233
exclude_super_stripes(struct btrfs_block_group_cache * cache)234 static int exclude_super_stripes(struct btrfs_block_group_cache *cache)
235 {
236 struct btrfs_fs_info *fs_info = cache->fs_info;
237 u64 bytenr;
238 u64 *logical;
239 int stripe_len;
240 int i, nr, ret;
241
242 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
243 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
244 cache->bytes_super += stripe_len;
245 ret = add_excluded_extent(fs_info, cache->key.objectid,
246 stripe_len);
247 if (ret)
248 return ret;
249 }
250
251 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
252 bytenr = btrfs_sb_offset(i);
253 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
254 bytenr, &logical, &nr, &stripe_len);
255 if (ret)
256 return ret;
257
258 while (nr--) {
259 u64 start, len;
260
261 if (logical[nr] > cache->key.objectid +
262 cache->key.offset)
263 continue;
264
265 if (logical[nr] + stripe_len <= cache->key.objectid)
266 continue;
267
268 start = logical[nr];
269 if (start < cache->key.objectid) {
270 start = cache->key.objectid;
271 len = (logical[nr] + stripe_len) - start;
272 } else {
273 len = min_t(u64, stripe_len,
274 cache->key.objectid +
275 cache->key.offset - start);
276 }
277
278 cache->bytes_super += len;
279 ret = add_excluded_extent(fs_info, start, len);
280 if (ret) {
281 kfree(logical);
282 return ret;
283 }
284 }
285
286 kfree(logical);
287 }
288 return 0;
289 }
290
291 static struct btrfs_caching_control *
get_caching_control(struct btrfs_block_group_cache * cache)292 get_caching_control(struct btrfs_block_group_cache *cache)
293 {
294 struct btrfs_caching_control *ctl;
295
296 spin_lock(&cache->lock);
297 if (!cache->caching_ctl) {
298 spin_unlock(&cache->lock);
299 return NULL;
300 }
301
302 ctl = cache->caching_ctl;
303 refcount_inc(&ctl->count);
304 spin_unlock(&cache->lock);
305 return ctl;
306 }
307
put_caching_control(struct btrfs_caching_control * ctl)308 static void put_caching_control(struct btrfs_caching_control *ctl)
309 {
310 if (refcount_dec_and_test(&ctl->count))
311 kfree(ctl);
312 }
313
314 #ifdef CONFIG_BTRFS_DEBUG
fragment_free_space(struct btrfs_block_group_cache * block_group)315 static void fragment_free_space(struct btrfs_block_group_cache *block_group)
316 {
317 struct btrfs_fs_info *fs_info = block_group->fs_info;
318 u64 start = block_group->key.objectid;
319 u64 len = block_group->key.offset;
320 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
321 fs_info->nodesize : fs_info->sectorsize;
322 u64 step = chunk << 1;
323
324 while (len > chunk) {
325 btrfs_remove_free_space(block_group, start, chunk);
326 start += step;
327 if (len < step)
328 len = 0;
329 else
330 len -= step;
331 }
332 }
333 #endif
334
335 /*
336 * this is only called by cache_block_group, since we could have freed extents
337 * we need to check the pinned_extents for any extents that can't be used yet
338 * since their free space will be released as soon as the transaction commits.
339 */
add_new_free_space(struct btrfs_block_group_cache * block_group,u64 start,u64 end)340 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
341 u64 start, u64 end)
342 {
343 struct btrfs_fs_info *info = block_group->fs_info;
344 u64 extent_start, extent_end, size, total_added = 0;
345 int ret;
346
347 while (start < end) {
348 ret = find_first_extent_bit(info->pinned_extents, start,
349 &extent_start, &extent_end,
350 EXTENT_DIRTY | EXTENT_UPTODATE,
351 NULL);
352 if (ret)
353 break;
354
355 if (extent_start <= start) {
356 start = extent_end + 1;
357 } else if (extent_start > start && extent_start < end) {
358 size = extent_start - start;
359 total_added += size;
360 ret = btrfs_add_free_space(block_group, start,
361 size);
362 BUG_ON(ret); /* -ENOMEM or logic error */
363 start = extent_end + 1;
364 } else {
365 break;
366 }
367 }
368
369 if (start < end) {
370 size = end - start;
371 total_added += size;
372 ret = btrfs_add_free_space(block_group, start, size);
373 BUG_ON(ret); /* -ENOMEM or logic error */
374 }
375
376 return total_added;
377 }
378
load_extent_tree_free(struct btrfs_caching_control * caching_ctl)379 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
380 {
381 struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
382 struct btrfs_fs_info *fs_info = block_group->fs_info;
383 struct btrfs_root *extent_root = fs_info->extent_root;
384 struct btrfs_path *path;
385 struct extent_buffer *leaf;
386 struct btrfs_key key;
387 u64 total_found = 0;
388 u64 last = 0;
389 u32 nritems;
390 int ret;
391 bool wakeup = true;
392
393 path = btrfs_alloc_path();
394 if (!path)
395 return -ENOMEM;
396
397 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
398
399 #ifdef CONFIG_BTRFS_DEBUG
400 /*
401 * If we're fragmenting we don't want to make anybody think we can
402 * allocate from this block group until we've had a chance to fragment
403 * the free space.
404 */
405 if (btrfs_should_fragment_free_space(block_group))
406 wakeup = false;
407 #endif
408 /*
409 * We don't want to deadlock with somebody trying to allocate a new
410 * extent for the extent root while also trying to search the extent
411 * root to add free space. So we skip locking and search the commit
412 * root, since its read-only
413 */
414 path->skip_locking = 1;
415 path->search_commit_root = 1;
416 path->reada = READA_FORWARD;
417
418 key.objectid = last;
419 key.offset = 0;
420 key.type = BTRFS_EXTENT_ITEM_KEY;
421
422 next:
423 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
424 if (ret < 0)
425 goto out;
426
427 leaf = path->nodes[0];
428 nritems = btrfs_header_nritems(leaf);
429
430 while (1) {
431 if (btrfs_fs_closing(fs_info) > 1) {
432 last = (u64)-1;
433 break;
434 }
435
436 if (path->slots[0] < nritems) {
437 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
438 } else {
439 ret = find_next_key(path, 0, &key);
440 if (ret)
441 break;
442
443 if (need_resched() ||
444 rwsem_is_contended(&fs_info->commit_root_sem)) {
445 if (wakeup)
446 caching_ctl->progress = last;
447 btrfs_release_path(path);
448 up_read(&fs_info->commit_root_sem);
449 mutex_unlock(&caching_ctl->mutex);
450 cond_resched();
451 mutex_lock(&caching_ctl->mutex);
452 down_read(&fs_info->commit_root_sem);
453 goto next;
454 }
455
456 ret = btrfs_next_leaf(extent_root, path);
457 if (ret < 0)
458 goto out;
459 if (ret)
460 break;
461 leaf = path->nodes[0];
462 nritems = btrfs_header_nritems(leaf);
463 continue;
464 }
465
466 if (key.objectid < last) {
467 key.objectid = last;
468 key.offset = 0;
469 key.type = BTRFS_EXTENT_ITEM_KEY;
470
471 if (wakeup)
472 caching_ctl->progress = last;
473 btrfs_release_path(path);
474 goto next;
475 }
476
477 if (key.objectid < block_group->key.objectid) {
478 path->slots[0]++;
479 continue;
480 }
481
482 if (key.objectid >= block_group->key.objectid +
483 block_group->key.offset)
484 break;
485
486 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
487 key.type == BTRFS_METADATA_ITEM_KEY) {
488 total_found += add_new_free_space(block_group, last,
489 key.objectid);
490 if (key.type == BTRFS_METADATA_ITEM_KEY)
491 last = key.objectid +
492 fs_info->nodesize;
493 else
494 last = key.objectid + key.offset;
495
496 if (total_found > CACHING_CTL_WAKE_UP) {
497 total_found = 0;
498 if (wakeup)
499 wake_up(&caching_ctl->wait);
500 }
501 }
502 path->slots[0]++;
503 }
504 ret = 0;
505
506 total_found += add_new_free_space(block_group, last,
507 block_group->key.objectid +
508 block_group->key.offset);
509 caching_ctl->progress = (u64)-1;
510
511 out:
512 btrfs_free_path(path);
513 return ret;
514 }
515
caching_thread(struct btrfs_work * work)516 static noinline void caching_thread(struct btrfs_work *work)
517 {
518 struct btrfs_block_group_cache *block_group;
519 struct btrfs_fs_info *fs_info;
520 struct btrfs_caching_control *caching_ctl;
521 int ret;
522
523 caching_ctl = container_of(work, struct btrfs_caching_control, work);
524 block_group = caching_ctl->block_group;
525 fs_info = block_group->fs_info;
526
527 mutex_lock(&caching_ctl->mutex);
528 down_read(&fs_info->commit_root_sem);
529
530 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
531 ret = load_free_space_tree(caching_ctl);
532 else
533 ret = load_extent_tree_free(caching_ctl);
534
535 spin_lock(&block_group->lock);
536 block_group->caching_ctl = NULL;
537 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
538 spin_unlock(&block_group->lock);
539
540 #ifdef CONFIG_BTRFS_DEBUG
541 if (btrfs_should_fragment_free_space(block_group)) {
542 u64 bytes_used;
543
544 spin_lock(&block_group->space_info->lock);
545 spin_lock(&block_group->lock);
546 bytes_used = block_group->key.offset -
547 btrfs_block_group_used(&block_group->item);
548 block_group->space_info->bytes_used += bytes_used >> 1;
549 spin_unlock(&block_group->lock);
550 spin_unlock(&block_group->space_info->lock);
551 fragment_free_space(block_group);
552 }
553 #endif
554
555 caching_ctl->progress = (u64)-1;
556
557 up_read(&fs_info->commit_root_sem);
558 free_excluded_extents(block_group);
559 mutex_unlock(&caching_ctl->mutex);
560
561 wake_up(&caching_ctl->wait);
562
563 put_caching_control(caching_ctl);
564 btrfs_put_block_group(block_group);
565 }
566
cache_block_group(struct btrfs_block_group_cache * cache,int load_cache_only)567 static int cache_block_group(struct btrfs_block_group_cache *cache,
568 int load_cache_only)
569 {
570 DEFINE_WAIT(wait);
571 struct btrfs_fs_info *fs_info = cache->fs_info;
572 struct btrfs_caching_control *caching_ctl;
573 int ret = 0;
574
575 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
576 if (!caching_ctl)
577 return -ENOMEM;
578
579 INIT_LIST_HEAD(&caching_ctl->list);
580 mutex_init(&caching_ctl->mutex);
581 init_waitqueue_head(&caching_ctl->wait);
582 caching_ctl->block_group = cache;
583 caching_ctl->progress = cache->key.objectid;
584 refcount_set(&caching_ctl->count, 1);
585 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
586 caching_thread, NULL, NULL);
587
588 spin_lock(&cache->lock);
589 /*
590 * This should be a rare occasion, but this could happen I think in the
591 * case where one thread starts to load the space cache info, and then
592 * some other thread starts a transaction commit which tries to do an
593 * allocation while the other thread is still loading the space cache
594 * info. The previous loop should have kept us from choosing this block
595 * group, but if we've moved to the state where we will wait on caching
596 * block groups we need to first check if we're doing a fast load here,
597 * so we can wait for it to finish, otherwise we could end up allocating
598 * from a block group who's cache gets evicted for one reason or
599 * another.
600 */
601 while (cache->cached == BTRFS_CACHE_FAST) {
602 struct btrfs_caching_control *ctl;
603
604 ctl = cache->caching_ctl;
605 refcount_inc(&ctl->count);
606 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
607 spin_unlock(&cache->lock);
608
609 schedule();
610
611 finish_wait(&ctl->wait, &wait);
612 put_caching_control(ctl);
613 spin_lock(&cache->lock);
614 }
615
616 if (cache->cached != BTRFS_CACHE_NO) {
617 spin_unlock(&cache->lock);
618 kfree(caching_ctl);
619 return 0;
620 }
621 WARN_ON(cache->caching_ctl);
622 cache->caching_ctl = caching_ctl;
623 cache->cached = BTRFS_CACHE_FAST;
624 spin_unlock(&cache->lock);
625
626 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
627 mutex_lock(&caching_ctl->mutex);
628 ret = load_free_space_cache(fs_info, cache);
629
630 spin_lock(&cache->lock);
631 if (ret == 1) {
632 cache->caching_ctl = NULL;
633 cache->cached = BTRFS_CACHE_FINISHED;
634 cache->last_byte_to_unpin = (u64)-1;
635 caching_ctl->progress = (u64)-1;
636 } else {
637 if (load_cache_only) {
638 cache->caching_ctl = NULL;
639 cache->cached = BTRFS_CACHE_NO;
640 } else {
641 cache->cached = BTRFS_CACHE_STARTED;
642 cache->has_caching_ctl = 1;
643 }
644 }
645 spin_unlock(&cache->lock);
646 #ifdef CONFIG_BTRFS_DEBUG
647 if (ret == 1 &&
648 btrfs_should_fragment_free_space(cache)) {
649 u64 bytes_used;
650
651 spin_lock(&cache->space_info->lock);
652 spin_lock(&cache->lock);
653 bytes_used = cache->key.offset -
654 btrfs_block_group_used(&cache->item);
655 cache->space_info->bytes_used += bytes_used >> 1;
656 spin_unlock(&cache->lock);
657 spin_unlock(&cache->space_info->lock);
658 fragment_free_space(cache);
659 }
660 #endif
661 mutex_unlock(&caching_ctl->mutex);
662
663 wake_up(&caching_ctl->wait);
664 if (ret == 1) {
665 put_caching_control(caching_ctl);
666 free_excluded_extents(cache);
667 return 0;
668 }
669 } else {
670 /*
671 * We're either using the free space tree or no caching at all.
672 * Set cached to the appropriate value and wakeup any waiters.
673 */
674 spin_lock(&cache->lock);
675 if (load_cache_only) {
676 cache->caching_ctl = NULL;
677 cache->cached = BTRFS_CACHE_NO;
678 } else {
679 cache->cached = BTRFS_CACHE_STARTED;
680 cache->has_caching_ctl = 1;
681 }
682 spin_unlock(&cache->lock);
683 wake_up(&caching_ctl->wait);
684 }
685
686 if (load_cache_only) {
687 put_caching_control(caching_ctl);
688 return 0;
689 }
690
691 down_write(&fs_info->commit_root_sem);
692 refcount_inc(&caching_ctl->count);
693 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
694 up_write(&fs_info->commit_root_sem);
695
696 btrfs_get_block_group(cache);
697
698 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
699
700 return ret;
701 }
702
703 /*
704 * return the block group that starts at or after bytenr
705 */
706 static struct btrfs_block_group_cache *
btrfs_lookup_first_block_group(struct btrfs_fs_info * info,u64 bytenr)707 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
708 {
709 return block_group_cache_tree_search(info, bytenr, 0);
710 }
711
712 /*
713 * return the block group that contains the given bytenr
714 */
btrfs_lookup_block_group(struct btrfs_fs_info * info,u64 bytenr)715 struct btrfs_block_group_cache *btrfs_lookup_block_group(
716 struct btrfs_fs_info *info,
717 u64 bytenr)
718 {
719 return block_group_cache_tree_search(info, bytenr, 1);
720 }
721
__find_space_info(struct btrfs_fs_info * info,u64 flags)722 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
723 u64 flags)
724 {
725 struct list_head *head = &info->space_info;
726 struct btrfs_space_info *found;
727
728 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
729
730 rcu_read_lock();
731 list_for_each_entry_rcu(found, head, list) {
732 if (found->flags & flags) {
733 rcu_read_unlock();
734 return found;
735 }
736 }
737 rcu_read_unlock();
738 return NULL;
739 }
740
add_pinned_bytes(struct btrfs_fs_info * fs_info,s64 num_bytes,bool metadata,u64 root_objectid)741 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
742 bool metadata, u64 root_objectid)
743 {
744 struct btrfs_space_info *space_info;
745 u64 flags;
746
747 if (metadata) {
748 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
749 flags = BTRFS_BLOCK_GROUP_SYSTEM;
750 else
751 flags = BTRFS_BLOCK_GROUP_METADATA;
752 } else {
753 flags = BTRFS_BLOCK_GROUP_DATA;
754 }
755
756 space_info = __find_space_info(fs_info, flags);
757 ASSERT(space_info);
758 percpu_counter_add_batch(&space_info->total_bytes_pinned, num_bytes,
759 BTRFS_TOTAL_BYTES_PINNED_BATCH);
760 }
761
762 /*
763 * after adding space to the filesystem, we need to clear the full flags
764 * on all the space infos.
765 */
btrfs_clear_space_info_full(struct btrfs_fs_info * info)766 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
767 {
768 struct list_head *head = &info->space_info;
769 struct btrfs_space_info *found;
770
771 rcu_read_lock();
772 list_for_each_entry_rcu(found, head, list)
773 found->full = 0;
774 rcu_read_unlock();
775 }
776
777 /* simple helper to search for an existing data extent at a given offset */
btrfs_lookup_data_extent(struct btrfs_fs_info * fs_info,u64 start,u64 len)778 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
779 {
780 int ret;
781 struct btrfs_key key;
782 struct btrfs_path *path;
783
784 path = btrfs_alloc_path();
785 if (!path)
786 return -ENOMEM;
787
788 key.objectid = start;
789 key.offset = len;
790 key.type = BTRFS_EXTENT_ITEM_KEY;
791 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
792 btrfs_free_path(path);
793 return ret;
794 }
795
796 /*
797 * helper function to lookup reference count and flags of a tree block.
798 *
799 * the head node for delayed ref is used to store the sum of all the
800 * reference count modifications queued up in the rbtree. the head
801 * node may also store the extent flags to set. This way you can check
802 * to see what the reference count and extent flags would be if all of
803 * the delayed refs are not processed.
804 */
btrfs_lookup_extent_info(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,u64 bytenr,u64 offset,int metadata,u64 * refs,u64 * flags)805 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
806 struct btrfs_fs_info *fs_info, u64 bytenr,
807 u64 offset, int metadata, u64 *refs, u64 *flags)
808 {
809 struct btrfs_delayed_ref_head *head;
810 struct btrfs_delayed_ref_root *delayed_refs;
811 struct btrfs_path *path;
812 struct btrfs_extent_item *ei;
813 struct extent_buffer *leaf;
814 struct btrfs_key key;
815 u32 item_size;
816 u64 num_refs;
817 u64 extent_flags;
818 int ret;
819
820 /*
821 * If we don't have skinny metadata, don't bother doing anything
822 * different
823 */
824 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
825 offset = fs_info->nodesize;
826 metadata = 0;
827 }
828
829 path = btrfs_alloc_path();
830 if (!path)
831 return -ENOMEM;
832
833 if (!trans) {
834 path->skip_locking = 1;
835 path->search_commit_root = 1;
836 }
837
838 search_again:
839 key.objectid = bytenr;
840 key.offset = offset;
841 if (metadata)
842 key.type = BTRFS_METADATA_ITEM_KEY;
843 else
844 key.type = BTRFS_EXTENT_ITEM_KEY;
845
846 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
847 if (ret < 0)
848 goto out_free;
849
850 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
851 if (path->slots[0]) {
852 path->slots[0]--;
853 btrfs_item_key_to_cpu(path->nodes[0], &key,
854 path->slots[0]);
855 if (key.objectid == bytenr &&
856 key.type == BTRFS_EXTENT_ITEM_KEY &&
857 key.offset == fs_info->nodesize)
858 ret = 0;
859 }
860 }
861
862 if (ret == 0) {
863 leaf = path->nodes[0];
864 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
865 if (item_size >= sizeof(*ei)) {
866 ei = btrfs_item_ptr(leaf, path->slots[0],
867 struct btrfs_extent_item);
868 num_refs = btrfs_extent_refs(leaf, ei);
869 extent_flags = btrfs_extent_flags(leaf, ei);
870 } else {
871 ret = -EINVAL;
872 btrfs_print_v0_err(fs_info);
873 if (trans)
874 btrfs_abort_transaction(trans, ret);
875 else
876 btrfs_handle_fs_error(fs_info, ret, NULL);
877
878 goto out_free;
879 }
880
881 BUG_ON(num_refs == 0);
882 } else {
883 num_refs = 0;
884 extent_flags = 0;
885 ret = 0;
886 }
887
888 if (!trans)
889 goto out;
890
891 delayed_refs = &trans->transaction->delayed_refs;
892 spin_lock(&delayed_refs->lock);
893 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
894 if (head) {
895 if (!mutex_trylock(&head->mutex)) {
896 refcount_inc(&head->refs);
897 spin_unlock(&delayed_refs->lock);
898
899 btrfs_release_path(path);
900
901 /*
902 * Mutex was contended, block until it's released and try
903 * again
904 */
905 mutex_lock(&head->mutex);
906 mutex_unlock(&head->mutex);
907 btrfs_put_delayed_ref_head(head);
908 goto search_again;
909 }
910 spin_lock(&head->lock);
911 if (head->extent_op && head->extent_op->update_flags)
912 extent_flags |= head->extent_op->flags_to_set;
913 else
914 BUG_ON(num_refs == 0);
915
916 num_refs += head->ref_mod;
917 spin_unlock(&head->lock);
918 mutex_unlock(&head->mutex);
919 }
920 spin_unlock(&delayed_refs->lock);
921 out:
922 WARN_ON(num_refs == 0);
923 if (refs)
924 *refs = num_refs;
925 if (flags)
926 *flags = extent_flags;
927 out_free:
928 btrfs_free_path(path);
929 return ret;
930 }
931
932 /*
933 * Back reference rules. Back refs have three main goals:
934 *
935 * 1) differentiate between all holders of references to an extent so that
936 * when a reference is dropped we can make sure it was a valid reference
937 * before freeing the extent.
938 *
939 * 2) Provide enough information to quickly find the holders of an extent
940 * if we notice a given block is corrupted or bad.
941 *
942 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
943 * maintenance. This is actually the same as #2, but with a slightly
944 * different use case.
945 *
946 * There are two kinds of back refs. The implicit back refs is optimized
947 * for pointers in non-shared tree blocks. For a given pointer in a block,
948 * back refs of this kind provide information about the block's owner tree
949 * and the pointer's key. These information allow us to find the block by
950 * b-tree searching. The full back refs is for pointers in tree blocks not
951 * referenced by their owner trees. The location of tree block is recorded
952 * in the back refs. Actually the full back refs is generic, and can be
953 * used in all cases the implicit back refs is used. The major shortcoming
954 * of the full back refs is its overhead. Every time a tree block gets
955 * COWed, we have to update back refs entry for all pointers in it.
956 *
957 * For a newly allocated tree block, we use implicit back refs for
958 * pointers in it. This means most tree related operations only involve
959 * implicit back refs. For a tree block created in old transaction, the
960 * only way to drop a reference to it is COW it. So we can detect the
961 * event that tree block loses its owner tree's reference and do the
962 * back refs conversion.
963 *
964 * When a tree block is COWed through a tree, there are four cases:
965 *
966 * The reference count of the block is one and the tree is the block's
967 * owner tree. Nothing to do in this case.
968 *
969 * The reference count of the block is one and the tree is not the
970 * block's owner tree. In this case, full back refs is used for pointers
971 * in the block. Remove these full back refs, add implicit back refs for
972 * every pointers in the new block.
973 *
974 * The reference count of the block is greater than one and the tree is
975 * the block's owner tree. In this case, implicit back refs is used for
976 * pointers in the block. Add full back refs for every pointers in the
977 * block, increase lower level extents' reference counts. The original
978 * implicit back refs are entailed to the new block.
979 *
980 * The reference count of the block is greater than one and the tree is
981 * not the block's owner tree. Add implicit back refs for every pointer in
982 * the new block, increase lower level extents' reference count.
983 *
984 * Back Reference Key composing:
985 *
986 * The key objectid corresponds to the first byte in the extent,
987 * The key type is used to differentiate between types of back refs.
988 * There are different meanings of the key offset for different types
989 * of back refs.
990 *
991 * File extents can be referenced by:
992 *
993 * - multiple snapshots, subvolumes, or different generations in one subvol
994 * - different files inside a single subvolume
995 * - different offsets inside a file (bookend extents in file.c)
996 *
997 * The extent ref structure for the implicit back refs has fields for:
998 *
999 * - Objectid of the subvolume root
1000 * - objectid of the file holding the reference
1001 * - original offset in the file
1002 * - how many bookend extents
1003 *
1004 * The key offset for the implicit back refs is hash of the first
1005 * three fields.
1006 *
1007 * The extent ref structure for the full back refs has field for:
1008 *
1009 * - number of pointers in the tree leaf
1010 *
1011 * The key offset for the implicit back refs is the first byte of
1012 * the tree leaf
1013 *
1014 * When a file extent is allocated, The implicit back refs is used.
1015 * the fields are filled in:
1016 *
1017 * (root_key.objectid, inode objectid, offset in file, 1)
1018 *
1019 * When a file extent is removed file truncation, we find the
1020 * corresponding implicit back refs and check the following fields:
1021 *
1022 * (btrfs_header_owner(leaf), inode objectid, offset in file)
1023 *
1024 * Btree extents can be referenced by:
1025 *
1026 * - Different subvolumes
1027 *
1028 * Both the implicit back refs and the full back refs for tree blocks
1029 * only consist of key. The key offset for the implicit back refs is
1030 * objectid of block's owner tree. The key offset for the full back refs
1031 * is the first byte of parent block.
1032 *
1033 * When implicit back refs is used, information about the lowest key and
1034 * level of the tree block are required. These information are stored in
1035 * tree block info structure.
1036 */
1037
1038 /*
1039 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
1040 * is_data == BTRFS_REF_TYPE_DATA, data type is requried,
1041 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1042 */
btrfs_get_extent_inline_ref_type(const struct extent_buffer * eb,struct btrfs_extent_inline_ref * iref,enum btrfs_inline_ref_type is_data)1043 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
1044 struct btrfs_extent_inline_ref *iref,
1045 enum btrfs_inline_ref_type is_data)
1046 {
1047 int type = btrfs_extent_inline_ref_type(eb, iref);
1048 u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
1049
1050 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1051 type == BTRFS_SHARED_BLOCK_REF_KEY ||
1052 type == BTRFS_SHARED_DATA_REF_KEY ||
1053 type == BTRFS_EXTENT_DATA_REF_KEY) {
1054 if (is_data == BTRFS_REF_TYPE_BLOCK) {
1055 if (type == BTRFS_TREE_BLOCK_REF_KEY)
1056 return type;
1057 if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1058 ASSERT(eb->fs_info);
1059 /*
1060 * Every shared one has parent tree block,
1061 * which must be aligned to sector size.
1062 */
1063 if (offset &&
1064 IS_ALIGNED(offset, eb->fs_info->sectorsize))
1065 return type;
1066 }
1067 } else if (is_data == BTRFS_REF_TYPE_DATA) {
1068 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1069 return type;
1070 if (type == BTRFS_SHARED_DATA_REF_KEY) {
1071 ASSERT(eb->fs_info);
1072 /*
1073 * Every shared one has parent tree block,
1074 * which must be aligned to sector size.
1075 */
1076 if (offset &&
1077 IS_ALIGNED(offset, eb->fs_info->sectorsize))
1078 return type;
1079 }
1080 } else {
1081 ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1082 return type;
1083 }
1084 }
1085
1086 btrfs_print_leaf((struct extent_buffer *)eb);
1087 btrfs_err(eb->fs_info,
1088 "eb %llu iref 0x%lx invalid extent inline ref type %d",
1089 eb->start, (unsigned long)iref, type);
1090 WARN_ON(1);
1091
1092 return BTRFS_REF_TYPE_INVALID;
1093 }
1094
hash_extent_data_ref(u64 root_objectid,u64 owner,u64 offset)1095 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1096 {
1097 u32 high_crc = ~(u32)0;
1098 u32 low_crc = ~(u32)0;
1099 __le64 lenum;
1100
1101 lenum = cpu_to_le64(root_objectid);
1102 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1103 lenum = cpu_to_le64(owner);
1104 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1105 lenum = cpu_to_le64(offset);
1106 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1107
1108 return ((u64)high_crc << 31) ^ (u64)low_crc;
1109 }
1110
hash_extent_data_ref_item(struct extent_buffer * leaf,struct btrfs_extent_data_ref * ref)1111 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1112 struct btrfs_extent_data_ref *ref)
1113 {
1114 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1115 btrfs_extent_data_ref_objectid(leaf, ref),
1116 btrfs_extent_data_ref_offset(leaf, ref));
1117 }
1118
match_extent_data_ref(struct extent_buffer * leaf,struct btrfs_extent_data_ref * ref,u64 root_objectid,u64 owner,u64 offset)1119 static int match_extent_data_ref(struct extent_buffer *leaf,
1120 struct btrfs_extent_data_ref *ref,
1121 u64 root_objectid, u64 owner, u64 offset)
1122 {
1123 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1124 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1125 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1126 return 0;
1127 return 1;
1128 }
1129
lookup_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid,u64 owner,u64 offset)1130 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1131 struct btrfs_path *path,
1132 u64 bytenr, u64 parent,
1133 u64 root_objectid,
1134 u64 owner, u64 offset)
1135 {
1136 struct btrfs_root *root = trans->fs_info->extent_root;
1137 struct btrfs_key key;
1138 struct btrfs_extent_data_ref *ref;
1139 struct extent_buffer *leaf;
1140 u32 nritems;
1141 int ret;
1142 int recow;
1143 int err = -ENOENT;
1144
1145 key.objectid = bytenr;
1146 if (parent) {
1147 key.type = BTRFS_SHARED_DATA_REF_KEY;
1148 key.offset = parent;
1149 } else {
1150 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1151 key.offset = hash_extent_data_ref(root_objectid,
1152 owner, offset);
1153 }
1154 again:
1155 recow = 0;
1156 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1157 if (ret < 0) {
1158 err = ret;
1159 goto fail;
1160 }
1161
1162 if (parent) {
1163 if (!ret)
1164 return 0;
1165 goto fail;
1166 }
1167
1168 leaf = path->nodes[0];
1169 nritems = btrfs_header_nritems(leaf);
1170 while (1) {
1171 if (path->slots[0] >= nritems) {
1172 ret = btrfs_next_leaf(root, path);
1173 if (ret < 0)
1174 err = ret;
1175 if (ret)
1176 goto fail;
1177
1178 leaf = path->nodes[0];
1179 nritems = btrfs_header_nritems(leaf);
1180 recow = 1;
1181 }
1182
1183 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1184 if (key.objectid != bytenr ||
1185 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1186 goto fail;
1187
1188 ref = btrfs_item_ptr(leaf, path->slots[0],
1189 struct btrfs_extent_data_ref);
1190
1191 if (match_extent_data_ref(leaf, ref, root_objectid,
1192 owner, offset)) {
1193 if (recow) {
1194 btrfs_release_path(path);
1195 goto again;
1196 }
1197 err = 0;
1198 break;
1199 }
1200 path->slots[0]++;
1201 }
1202 fail:
1203 return err;
1204 }
1205
insert_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add)1206 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1207 struct btrfs_path *path,
1208 u64 bytenr, u64 parent,
1209 u64 root_objectid, u64 owner,
1210 u64 offset, int refs_to_add)
1211 {
1212 struct btrfs_root *root = trans->fs_info->extent_root;
1213 struct btrfs_key key;
1214 struct extent_buffer *leaf;
1215 u32 size;
1216 u32 num_refs;
1217 int ret;
1218
1219 key.objectid = bytenr;
1220 if (parent) {
1221 key.type = BTRFS_SHARED_DATA_REF_KEY;
1222 key.offset = parent;
1223 size = sizeof(struct btrfs_shared_data_ref);
1224 } else {
1225 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1226 key.offset = hash_extent_data_ref(root_objectid,
1227 owner, offset);
1228 size = sizeof(struct btrfs_extent_data_ref);
1229 }
1230
1231 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1232 if (ret && ret != -EEXIST)
1233 goto fail;
1234
1235 leaf = path->nodes[0];
1236 if (parent) {
1237 struct btrfs_shared_data_ref *ref;
1238 ref = btrfs_item_ptr(leaf, path->slots[0],
1239 struct btrfs_shared_data_ref);
1240 if (ret == 0) {
1241 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1242 } else {
1243 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1244 num_refs += refs_to_add;
1245 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1246 }
1247 } else {
1248 struct btrfs_extent_data_ref *ref;
1249 while (ret == -EEXIST) {
1250 ref = btrfs_item_ptr(leaf, path->slots[0],
1251 struct btrfs_extent_data_ref);
1252 if (match_extent_data_ref(leaf, ref, root_objectid,
1253 owner, offset))
1254 break;
1255 btrfs_release_path(path);
1256 key.offset++;
1257 ret = btrfs_insert_empty_item(trans, root, path, &key,
1258 size);
1259 if (ret && ret != -EEXIST)
1260 goto fail;
1261
1262 leaf = path->nodes[0];
1263 }
1264 ref = btrfs_item_ptr(leaf, path->slots[0],
1265 struct btrfs_extent_data_ref);
1266 if (ret == 0) {
1267 btrfs_set_extent_data_ref_root(leaf, ref,
1268 root_objectid);
1269 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1270 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1271 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1272 } else {
1273 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1274 num_refs += refs_to_add;
1275 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1276 }
1277 }
1278 btrfs_mark_buffer_dirty(leaf);
1279 ret = 0;
1280 fail:
1281 btrfs_release_path(path);
1282 return ret;
1283 }
1284
remove_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,int refs_to_drop,int * last_ref)1285 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1286 struct btrfs_path *path,
1287 int refs_to_drop, int *last_ref)
1288 {
1289 struct btrfs_key key;
1290 struct btrfs_extent_data_ref *ref1 = NULL;
1291 struct btrfs_shared_data_ref *ref2 = NULL;
1292 struct extent_buffer *leaf;
1293 u32 num_refs = 0;
1294 int ret = 0;
1295
1296 leaf = path->nodes[0];
1297 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1298
1299 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1300 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1301 struct btrfs_extent_data_ref);
1302 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1303 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1304 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1305 struct btrfs_shared_data_ref);
1306 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1307 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
1308 btrfs_print_v0_err(trans->fs_info);
1309 btrfs_abort_transaction(trans, -EINVAL);
1310 return -EINVAL;
1311 } else {
1312 BUG();
1313 }
1314
1315 BUG_ON(num_refs < refs_to_drop);
1316 num_refs -= refs_to_drop;
1317
1318 if (num_refs == 0) {
1319 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
1320 *last_ref = 1;
1321 } else {
1322 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1323 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1324 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1325 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1326 btrfs_mark_buffer_dirty(leaf);
1327 }
1328 return ret;
1329 }
1330
extent_data_ref_count(struct btrfs_path * path,struct btrfs_extent_inline_ref * iref)1331 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1332 struct btrfs_extent_inline_ref *iref)
1333 {
1334 struct btrfs_key key;
1335 struct extent_buffer *leaf;
1336 struct btrfs_extent_data_ref *ref1;
1337 struct btrfs_shared_data_ref *ref2;
1338 u32 num_refs = 0;
1339 int type;
1340
1341 leaf = path->nodes[0];
1342 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1343
1344 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
1345 if (iref) {
1346 /*
1347 * If type is invalid, we should have bailed out earlier than
1348 * this call.
1349 */
1350 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1351 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1352 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1353 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1354 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1355 } else {
1356 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1357 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1358 }
1359 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1360 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1361 struct btrfs_extent_data_ref);
1362 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1363 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1364 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1365 struct btrfs_shared_data_ref);
1366 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1367 } else {
1368 WARN_ON(1);
1369 }
1370 return num_refs;
1371 }
1372
lookup_tree_block_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid)1373 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1374 struct btrfs_path *path,
1375 u64 bytenr, u64 parent,
1376 u64 root_objectid)
1377 {
1378 struct btrfs_root *root = trans->fs_info->extent_root;
1379 struct btrfs_key key;
1380 int ret;
1381
1382 key.objectid = bytenr;
1383 if (parent) {
1384 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1385 key.offset = parent;
1386 } else {
1387 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1388 key.offset = root_objectid;
1389 }
1390
1391 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1392 if (ret > 0)
1393 ret = -ENOENT;
1394 return ret;
1395 }
1396
insert_tree_block_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid)1397 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1398 struct btrfs_path *path,
1399 u64 bytenr, u64 parent,
1400 u64 root_objectid)
1401 {
1402 struct btrfs_key key;
1403 int ret;
1404
1405 key.objectid = bytenr;
1406 if (parent) {
1407 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1408 key.offset = parent;
1409 } else {
1410 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1411 key.offset = root_objectid;
1412 }
1413
1414 ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root,
1415 path, &key, 0);
1416 btrfs_release_path(path);
1417 return ret;
1418 }
1419
extent_ref_type(u64 parent,u64 owner)1420 static inline int extent_ref_type(u64 parent, u64 owner)
1421 {
1422 int type;
1423 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1424 if (parent > 0)
1425 type = BTRFS_SHARED_BLOCK_REF_KEY;
1426 else
1427 type = BTRFS_TREE_BLOCK_REF_KEY;
1428 } else {
1429 if (parent > 0)
1430 type = BTRFS_SHARED_DATA_REF_KEY;
1431 else
1432 type = BTRFS_EXTENT_DATA_REF_KEY;
1433 }
1434 return type;
1435 }
1436
find_next_key(struct btrfs_path * path,int level,struct btrfs_key * key)1437 static int find_next_key(struct btrfs_path *path, int level,
1438 struct btrfs_key *key)
1439
1440 {
1441 for (; level < BTRFS_MAX_LEVEL; level++) {
1442 if (!path->nodes[level])
1443 break;
1444 if (path->slots[level] + 1 >=
1445 btrfs_header_nritems(path->nodes[level]))
1446 continue;
1447 if (level == 0)
1448 btrfs_item_key_to_cpu(path->nodes[level], key,
1449 path->slots[level] + 1);
1450 else
1451 btrfs_node_key_to_cpu(path->nodes[level], key,
1452 path->slots[level] + 1);
1453 return 0;
1454 }
1455 return 1;
1456 }
1457
1458 /*
1459 * look for inline back ref. if back ref is found, *ref_ret is set
1460 * to the address of inline back ref, and 0 is returned.
1461 *
1462 * if back ref isn't found, *ref_ret is set to the address where it
1463 * should be inserted, and -ENOENT is returned.
1464 *
1465 * if insert is true and there are too many inline back refs, the path
1466 * points to the extent item, and -EAGAIN is returned.
1467 *
1468 * NOTE: inline back refs are ordered in the same way that back ref
1469 * items in the tree are ordered.
1470 */
1471 static noinline_for_stack
lookup_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref ** ref_ret,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset,int insert)1472 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1473 struct btrfs_path *path,
1474 struct btrfs_extent_inline_ref **ref_ret,
1475 u64 bytenr, u64 num_bytes,
1476 u64 parent, u64 root_objectid,
1477 u64 owner, u64 offset, int insert)
1478 {
1479 struct btrfs_fs_info *fs_info = trans->fs_info;
1480 struct btrfs_root *root = fs_info->extent_root;
1481 struct btrfs_key key;
1482 struct extent_buffer *leaf;
1483 struct btrfs_extent_item *ei;
1484 struct btrfs_extent_inline_ref *iref;
1485 u64 flags;
1486 u64 item_size;
1487 unsigned long ptr;
1488 unsigned long end;
1489 int extra_size;
1490 int type;
1491 int want;
1492 int ret;
1493 int err = 0;
1494 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
1495 int needed;
1496
1497 key.objectid = bytenr;
1498 key.type = BTRFS_EXTENT_ITEM_KEY;
1499 key.offset = num_bytes;
1500
1501 want = extent_ref_type(parent, owner);
1502 if (insert) {
1503 extra_size = btrfs_extent_inline_ref_size(want);
1504 path->keep_locks = 1;
1505 } else
1506 extra_size = -1;
1507
1508 /*
1509 * Owner is our level, so we can just add one to get the level for the
1510 * block we are interested in.
1511 */
1512 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1513 key.type = BTRFS_METADATA_ITEM_KEY;
1514 key.offset = owner;
1515 }
1516
1517 again:
1518 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1519 if (ret < 0) {
1520 err = ret;
1521 goto out;
1522 }
1523
1524 /*
1525 * We may be a newly converted file system which still has the old fat
1526 * extent entries for metadata, so try and see if we have one of those.
1527 */
1528 if (ret > 0 && skinny_metadata) {
1529 skinny_metadata = false;
1530 if (path->slots[0]) {
1531 path->slots[0]--;
1532 btrfs_item_key_to_cpu(path->nodes[0], &key,
1533 path->slots[0]);
1534 if (key.objectid == bytenr &&
1535 key.type == BTRFS_EXTENT_ITEM_KEY &&
1536 key.offset == num_bytes)
1537 ret = 0;
1538 }
1539 if (ret) {
1540 key.objectid = bytenr;
1541 key.type = BTRFS_EXTENT_ITEM_KEY;
1542 key.offset = num_bytes;
1543 btrfs_release_path(path);
1544 goto again;
1545 }
1546 }
1547
1548 if (ret && !insert) {
1549 err = -ENOENT;
1550 goto out;
1551 } else if (WARN_ON(ret)) {
1552 btrfs_print_leaf(path->nodes[0]);
1553 btrfs_err(fs_info,
1554 "extent item not found for insert, bytenr %llu num_bytes %llu parent %llu root_objectid %llu owner %llu offset %llu",
1555 bytenr, num_bytes, parent, root_objectid, owner,
1556 offset);
1557 err = -EIO;
1558 goto out;
1559 }
1560
1561 leaf = path->nodes[0];
1562 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1563 if (unlikely(item_size < sizeof(*ei))) {
1564 err = -EINVAL;
1565 btrfs_print_v0_err(fs_info);
1566 btrfs_abort_transaction(trans, err);
1567 goto out;
1568 }
1569
1570 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1571 flags = btrfs_extent_flags(leaf, ei);
1572
1573 ptr = (unsigned long)(ei + 1);
1574 end = (unsigned long)ei + item_size;
1575
1576 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1577 ptr += sizeof(struct btrfs_tree_block_info);
1578 BUG_ON(ptr > end);
1579 }
1580
1581 if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1582 needed = BTRFS_REF_TYPE_DATA;
1583 else
1584 needed = BTRFS_REF_TYPE_BLOCK;
1585
1586 err = -ENOENT;
1587 while (1) {
1588 if (ptr >= end) {
1589 WARN_ON(ptr > end);
1590 break;
1591 }
1592 iref = (struct btrfs_extent_inline_ref *)ptr;
1593 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1594 if (type == BTRFS_REF_TYPE_INVALID) {
1595 err = -EUCLEAN;
1596 goto out;
1597 }
1598
1599 if (want < type)
1600 break;
1601 if (want > type) {
1602 ptr += btrfs_extent_inline_ref_size(type);
1603 continue;
1604 }
1605
1606 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1607 struct btrfs_extent_data_ref *dref;
1608 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1609 if (match_extent_data_ref(leaf, dref, root_objectid,
1610 owner, offset)) {
1611 err = 0;
1612 break;
1613 }
1614 if (hash_extent_data_ref_item(leaf, dref) <
1615 hash_extent_data_ref(root_objectid, owner, offset))
1616 break;
1617 } else {
1618 u64 ref_offset;
1619 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1620 if (parent > 0) {
1621 if (parent == ref_offset) {
1622 err = 0;
1623 break;
1624 }
1625 if (ref_offset < parent)
1626 break;
1627 } else {
1628 if (root_objectid == ref_offset) {
1629 err = 0;
1630 break;
1631 }
1632 if (ref_offset < root_objectid)
1633 break;
1634 }
1635 }
1636 ptr += btrfs_extent_inline_ref_size(type);
1637 }
1638 if (err == -ENOENT && insert) {
1639 if (item_size + extra_size >=
1640 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1641 err = -EAGAIN;
1642 goto out;
1643 }
1644 /*
1645 * To add new inline back ref, we have to make sure
1646 * there is no corresponding back ref item.
1647 * For simplicity, we just do not add new inline back
1648 * ref if there is any kind of item for this block
1649 */
1650 if (find_next_key(path, 0, &key) == 0 &&
1651 key.objectid == bytenr &&
1652 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1653 err = -EAGAIN;
1654 goto out;
1655 }
1656 }
1657 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1658 out:
1659 if (insert) {
1660 path->keep_locks = 0;
1661 btrfs_unlock_up_safe(path, 1);
1662 }
1663 return err;
1664 }
1665
1666 /*
1667 * helper to add new inline back ref
1668 */
1669 static noinline_for_stack
setup_inline_extent_backref(struct btrfs_fs_info * fs_info,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)1670 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1671 struct btrfs_path *path,
1672 struct btrfs_extent_inline_ref *iref,
1673 u64 parent, u64 root_objectid,
1674 u64 owner, u64 offset, int refs_to_add,
1675 struct btrfs_delayed_extent_op *extent_op)
1676 {
1677 struct extent_buffer *leaf;
1678 struct btrfs_extent_item *ei;
1679 unsigned long ptr;
1680 unsigned long end;
1681 unsigned long item_offset;
1682 u64 refs;
1683 int size;
1684 int type;
1685
1686 leaf = path->nodes[0];
1687 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1688 item_offset = (unsigned long)iref - (unsigned long)ei;
1689
1690 type = extent_ref_type(parent, owner);
1691 size = btrfs_extent_inline_ref_size(type);
1692
1693 btrfs_extend_item(fs_info, path, size);
1694
1695 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1696 refs = btrfs_extent_refs(leaf, ei);
1697 refs += refs_to_add;
1698 btrfs_set_extent_refs(leaf, ei, refs);
1699 if (extent_op)
1700 __run_delayed_extent_op(extent_op, leaf, ei);
1701
1702 ptr = (unsigned long)ei + item_offset;
1703 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1704 if (ptr < end - size)
1705 memmove_extent_buffer(leaf, ptr + size, ptr,
1706 end - size - ptr);
1707
1708 iref = (struct btrfs_extent_inline_ref *)ptr;
1709 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1710 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1711 struct btrfs_extent_data_ref *dref;
1712 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1713 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1714 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1715 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1716 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1717 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1718 struct btrfs_shared_data_ref *sref;
1719 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1720 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1721 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1722 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1723 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1724 } else {
1725 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1726 }
1727 btrfs_mark_buffer_dirty(leaf);
1728 }
1729
lookup_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref ** ref_ret,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset)1730 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1731 struct btrfs_path *path,
1732 struct btrfs_extent_inline_ref **ref_ret,
1733 u64 bytenr, u64 num_bytes, u64 parent,
1734 u64 root_objectid, u64 owner, u64 offset)
1735 {
1736 int ret;
1737
1738 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1739 num_bytes, parent, root_objectid,
1740 owner, offset, 0);
1741 if (ret != -ENOENT)
1742 return ret;
1743
1744 btrfs_release_path(path);
1745 *ref_ret = NULL;
1746
1747 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1748 ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1749 root_objectid);
1750 } else {
1751 ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1752 root_objectid, owner, offset);
1753 }
1754 return ret;
1755 }
1756
1757 /*
1758 * helper to update/remove inline back ref
1759 */
1760 static noinline_for_stack
update_inline_extent_backref(struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,int refs_to_mod,struct btrfs_delayed_extent_op * extent_op,int * last_ref)1761 void update_inline_extent_backref(struct btrfs_path *path,
1762 struct btrfs_extent_inline_ref *iref,
1763 int refs_to_mod,
1764 struct btrfs_delayed_extent_op *extent_op,
1765 int *last_ref)
1766 {
1767 struct extent_buffer *leaf = path->nodes[0];
1768 struct btrfs_fs_info *fs_info = leaf->fs_info;
1769 struct btrfs_extent_item *ei;
1770 struct btrfs_extent_data_ref *dref = NULL;
1771 struct btrfs_shared_data_ref *sref = NULL;
1772 unsigned long ptr;
1773 unsigned long end;
1774 u32 item_size;
1775 int size;
1776 int type;
1777 u64 refs;
1778
1779 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1780 refs = btrfs_extent_refs(leaf, ei);
1781 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1782 refs += refs_to_mod;
1783 btrfs_set_extent_refs(leaf, ei, refs);
1784 if (extent_op)
1785 __run_delayed_extent_op(extent_op, leaf, ei);
1786
1787 /*
1788 * If type is invalid, we should have bailed out after
1789 * lookup_inline_extent_backref().
1790 */
1791 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1792 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1793
1794 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1795 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1796 refs = btrfs_extent_data_ref_count(leaf, dref);
1797 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1798 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1799 refs = btrfs_shared_data_ref_count(leaf, sref);
1800 } else {
1801 refs = 1;
1802 BUG_ON(refs_to_mod != -1);
1803 }
1804
1805 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1806 refs += refs_to_mod;
1807
1808 if (refs > 0) {
1809 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1810 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1811 else
1812 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1813 } else {
1814 *last_ref = 1;
1815 size = btrfs_extent_inline_ref_size(type);
1816 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1817 ptr = (unsigned long)iref;
1818 end = (unsigned long)ei + item_size;
1819 if (ptr + size < end)
1820 memmove_extent_buffer(leaf, ptr, ptr + size,
1821 end - ptr - size);
1822 item_size -= size;
1823 btrfs_truncate_item(fs_info, path, item_size, 1);
1824 }
1825 btrfs_mark_buffer_dirty(leaf);
1826 }
1827
1828 static noinline_for_stack
insert_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)1829 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1830 struct btrfs_path *path,
1831 u64 bytenr, u64 num_bytes, u64 parent,
1832 u64 root_objectid, u64 owner,
1833 u64 offset, int refs_to_add,
1834 struct btrfs_delayed_extent_op *extent_op)
1835 {
1836 struct btrfs_extent_inline_ref *iref;
1837 int ret;
1838
1839 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1840 num_bytes, parent, root_objectid,
1841 owner, offset, 1);
1842 if (ret == 0) {
1843 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1844 update_inline_extent_backref(path, iref, refs_to_add,
1845 extent_op, NULL);
1846 } else if (ret == -ENOENT) {
1847 setup_inline_extent_backref(trans->fs_info, path, iref, parent,
1848 root_objectid, owner, offset,
1849 refs_to_add, extent_op);
1850 ret = 0;
1851 }
1852 return ret;
1853 }
1854
insert_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add)1855 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1856 struct btrfs_path *path,
1857 u64 bytenr, u64 parent, u64 root_objectid,
1858 u64 owner, u64 offset, int refs_to_add)
1859 {
1860 int ret;
1861 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1862 BUG_ON(refs_to_add != 1);
1863 ret = insert_tree_block_ref(trans, path, bytenr, parent,
1864 root_objectid);
1865 } else {
1866 ret = insert_extent_data_ref(trans, path, bytenr, parent,
1867 root_objectid, owner, offset,
1868 refs_to_add);
1869 }
1870 return ret;
1871 }
1872
remove_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,int refs_to_drop,int is_data,int * last_ref)1873 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1874 struct btrfs_path *path,
1875 struct btrfs_extent_inline_ref *iref,
1876 int refs_to_drop, int is_data, int *last_ref)
1877 {
1878 int ret = 0;
1879
1880 BUG_ON(!is_data && refs_to_drop != 1);
1881 if (iref) {
1882 update_inline_extent_backref(path, iref, -refs_to_drop, NULL,
1883 last_ref);
1884 } else if (is_data) {
1885 ret = remove_extent_data_ref(trans, path, refs_to_drop,
1886 last_ref);
1887 } else {
1888 *last_ref = 1;
1889 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
1890 }
1891 return ret;
1892 }
1893
1894 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
btrfs_issue_discard(struct block_device * bdev,u64 start,u64 len,u64 * discarded_bytes)1895 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1896 u64 *discarded_bytes)
1897 {
1898 int j, ret = 0;
1899 u64 bytes_left, end;
1900 u64 aligned_start = ALIGN(start, 1 << 9);
1901
1902 if (WARN_ON(start != aligned_start)) {
1903 len -= aligned_start - start;
1904 len = round_down(len, 1 << 9);
1905 start = aligned_start;
1906 }
1907
1908 *discarded_bytes = 0;
1909
1910 if (!len)
1911 return 0;
1912
1913 end = start + len;
1914 bytes_left = len;
1915
1916 /* Skip any superblocks on this device. */
1917 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1918 u64 sb_start = btrfs_sb_offset(j);
1919 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1920 u64 size = sb_start - start;
1921
1922 if (!in_range(sb_start, start, bytes_left) &&
1923 !in_range(sb_end, start, bytes_left) &&
1924 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1925 continue;
1926
1927 /*
1928 * Superblock spans beginning of range. Adjust start and
1929 * try again.
1930 */
1931 if (sb_start <= start) {
1932 start += sb_end - start;
1933 if (start > end) {
1934 bytes_left = 0;
1935 break;
1936 }
1937 bytes_left = end - start;
1938 continue;
1939 }
1940
1941 if (size) {
1942 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1943 GFP_NOFS, 0);
1944 if (!ret)
1945 *discarded_bytes += size;
1946 else if (ret != -EOPNOTSUPP)
1947 return ret;
1948 }
1949
1950 start = sb_end;
1951 if (start > end) {
1952 bytes_left = 0;
1953 break;
1954 }
1955 bytes_left = end - start;
1956 }
1957
1958 if (bytes_left) {
1959 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
1960 GFP_NOFS, 0);
1961 if (!ret)
1962 *discarded_bytes += bytes_left;
1963 }
1964 return ret;
1965 }
1966
btrfs_discard_extent(struct btrfs_fs_info * fs_info,u64 bytenr,u64 num_bytes,u64 * actual_bytes)1967 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1968 u64 num_bytes, u64 *actual_bytes)
1969 {
1970 int ret;
1971 u64 discarded_bytes = 0;
1972 struct btrfs_bio *bbio = NULL;
1973
1974
1975 /*
1976 * Avoid races with device replace and make sure our bbio has devices
1977 * associated to its stripes that don't go away while we are discarding.
1978 */
1979 btrfs_bio_counter_inc_blocked(fs_info);
1980 /* Tell the block device(s) that the sectors can be discarded */
1981 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
1982 &bbio, 0);
1983 /* Error condition is -ENOMEM */
1984 if (!ret) {
1985 struct btrfs_bio_stripe *stripe = bbio->stripes;
1986 int i;
1987
1988
1989 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1990 u64 bytes;
1991 struct request_queue *req_q;
1992 struct btrfs_device *device = stripe->dev;
1993
1994 if (!device->bdev) {
1995 ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1996 continue;
1997 }
1998 req_q = bdev_get_queue(device->bdev);
1999 if (!blk_queue_discard(req_q))
2000 continue;
2001
2002 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2003 continue;
2004
2005 ret = btrfs_issue_discard(device->bdev,
2006 stripe->physical,
2007 stripe->length,
2008 &bytes);
2009 if (!ret)
2010 discarded_bytes += bytes;
2011 else if (ret != -EOPNOTSUPP)
2012 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2013
2014 /*
2015 * Just in case we get back EOPNOTSUPP for some reason,
2016 * just ignore the return value so we don't screw up
2017 * people calling discard_extent.
2018 */
2019 ret = 0;
2020 }
2021 btrfs_put_bbio(bbio);
2022 }
2023 btrfs_bio_counter_dec(fs_info);
2024
2025 if (actual_bytes)
2026 *actual_bytes = discarded_bytes;
2027
2028
2029 if (ret == -EOPNOTSUPP)
2030 ret = 0;
2031 return ret;
2032 }
2033
2034 /* Can return -ENOMEM */
btrfs_inc_extent_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset)2035 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2036 struct btrfs_root *root,
2037 u64 bytenr, u64 num_bytes, u64 parent,
2038 u64 root_objectid, u64 owner, u64 offset)
2039 {
2040 struct btrfs_fs_info *fs_info = root->fs_info;
2041 int old_ref_mod, new_ref_mod;
2042 int ret;
2043
2044 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2045 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2046
2047 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid,
2048 owner, offset, BTRFS_ADD_DELAYED_REF);
2049
2050 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2051 ret = btrfs_add_delayed_tree_ref(trans, bytenr,
2052 num_bytes, parent,
2053 root_objectid, (int)owner,
2054 BTRFS_ADD_DELAYED_REF, NULL,
2055 &old_ref_mod, &new_ref_mod);
2056 } else {
2057 ret = btrfs_add_delayed_data_ref(trans, bytenr,
2058 num_bytes, parent,
2059 root_objectid, owner, offset,
2060 0, BTRFS_ADD_DELAYED_REF,
2061 &old_ref_mod, &new_ref_mod);
2062 }
2063
2064 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0) {
2065 bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
2066
2067 add_pinned_bytes(fs_info, -num_bytes, metadata, root_objectid);
2068 }
2069
2070 return ret;
2071 }
2072
2073 /*
2074 * __btrfs_inc_extent_ref - insert backreference for a given extent
2075 *
2076 * @trans: Handle of transaction
2077 *
2078 * @node: The delayed ref node used to get the bytenr/length for
2079 * extent whose references are incremented.
2080 *
2081 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
2082 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
2083 * bytenr of the parent block. Since new extents are always
2084 * created with indirect references, this will only be the case
2085 * when relocating a shared extent. In that case, root_objectid
2086 * will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must
2087 * be 0
2088 *
2089 * @root_objectid: The id of the root where this modification has originated,
2090 * this can be either one of the well-known metadata trees or
2091 * the subvolume id which references this extent.
2092 *
2093 * @owner: For data extents it is the inode number of the owning file.
2094 * For metadata extents this parameter holds the level in the
2095 * tree of the extent.
2096 *
2097 * @offset: For metadata extents the offset is ignored and is currently
2098 * always passed as 0. For data extents it is the fileoffset
2099 * this extent belongs to.
2100 *
2101 * @refs_to_add Number of references to add
2102 *
2103 * @extent_op Pointer to a structure, holding information necessary when
2104 * updating a tree block's flags
2105 *
2106 */
__btrfs_inc_extent_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)2107 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2108 struct btrfs_delayed_ref_node *node,
2109 u64 parent, u64 root_objectid,
2110 u64 owner, u64 offset, int refs_to_add,
2111 struct btrfs_delayed_extent_op *extent_op)
2112 {
2113 struct btrfs_path *path;
2114 struct extent_buffer *leaf;
2115 struct btrfs_extent_item *item;
2116 struct btrfs_key key;
2117 u64 bytenr = node->bytenr;
2118 u64 num_bytes = node->num_bytes;
2119 u64 refs;
2120 int ret;
2121
2122 path = btrfs_alloc_path();
2123 if (!path)
2124 return -ENOMEM;
2125
2126 path->reada = READA_FORWARD;
2127 path->leave_spinning = 1;
2128 /* this will setup the path even if it fails to insert the back ref */
2129 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
2130 parent, root_objectid, owner,
2131 offset, refs_to_add, extent_op);
2132 if ((ret < 0 && ret != -EAGAIN) || !ret)
2133 goto out;
2134
2135 /*
2136 * Ok we had -EAGAIN which means we didn't have space to insert and
2137 * inline extent ref, so just update the reference count and add a
2138 * normal backref.
2139 */
2140 leaf = path->nodes[0];
2141 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2142 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2143 refs = btrfs_extent_refs(leaf, item);
2144 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2145 if (extent_op)
2146 __run_delayed_extent_op(extent_op, leaf, item);
2147
2148 btrfs_mark_buffer_dirty(leaf);
2149 btrfs_release_path(path);
2150
2151 path->reada = READA_FORWARD;
2152 path->leave_spinning = 1;
2153 /* now insert the actual backref */
2154 ret = insert_extent_backref(trans, path, bytenr, parent, root_objectid,
2155 owner, offset, refs_to_add);
2156 if (ret)
2157 btrfs_abort_transaction(trans, ret);
2158 out:
2159 btrfs_free_path(path);
2160 return ret;
2161 }
2162
run_delayed_data_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,int insert_reserved)2163 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2164 struct btrfs_delayed_ref_node *node,
2165 struct btrfs_delayed_extent_op *extent_op,
2166 int insert_reserved)
2167 {
2168 int ret = 0;
2169 struct btrfs_delayed_data_ref *ref;
2170 struct btrfs_key ins;
2171 u64 parent = 0;
2172 u64 ref_root = 0;
2173 u64 flags = 0;
2174
2175 ins.objectid = node->bytenr;
2176 ins.offset = node->num_bytes;
2177 ins.type = BTRFS_EXTENT_ITEM_KEY;
2178
2179 ref = btrfs_delayed_node_to_data_ref(node);
2180 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
2181
2182 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2183 parent = ref->parent;
2184 ref_root = ref->root;
2185
2186 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2187 if (extent_op)
2188 flags |= extent_op->flags_to_set;
2189 ret = alloc_reserved_file_extent(trans, parent, ref_root,
2190 flags, ref->objectid,
2191 ref->offset, &ins,
2192 node->ref_mod);
2193 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2194 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
2195 ref->objectid, ref->offset,
2196 node->ref_mod, extent_op);
2197 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2198 ret = __btrfs_free_extent(trans, node, parent,
2199 ref_root, ref->objectid,
2200 ref->offset, node->ref_mod,
2201 extent_op);
2202 } else {
2203 BUG();
2204 }
2205 return ret;
2206 }
2207
__run_delayed_extent_op(struct btrfs_delayed_extent_op * extent_op,struct extent_buffer * leaf,struct btrfs_extent_item * ei)2208 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2209 struct extent_buffer *leaf,
2210 struct btrfs_extent_item *ei)
2211 {
2212 u64 flags = btrfs_extent_flags(leaf, ei);
2213 if (extent_op->update_flags) {
2214 flags |= extent_op->flags_to_set;
2215 btrfs_set_extent_flags(leaf, ei, flags);
2216 }
2217
2218 if (extent_op->update_key) {
2219 struct btrfs_tree_block_info *bi;
2220 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2221 bi = (struct btrfs_tree_block_info *)(ei + 1);
2222 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2223 }
2224 }
2225
run_delayed_extent_op(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head,struct btrfs_delayed_extent_op * extent_op)2226 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2227 struct btrfs_delayed_ref_head *head,
2228 struct btrfs_delayed_extent_op *extent_op)
2229 {
2230 struct btrfs_fs_info *fs_info = trans->fs_info;
2231 struct btrfs_key key;
2232 struct btrfs_path *path;
2233 struct btrfs_extent_item *ei;
2234 struct extent_buffer *leaf;
2235 u32 item_size;
2236 int ret;
2237 int err = 0;
2238 int metadata = !extent_op->is_data;
2239
2240 if (trans->aborted)
2241 return 0;
2242
2243 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2244 metadata = 0;
2245
2246 path = btrfs_alloc_path();
2247 if (!path)
2248 return -ENOMEM;
2249
2250 key.objectid = head->bytenr;
2251
2252 if (metadata) {
2253 key.type = BTRFS_METADATA_ITEM_KEY;
2254 key.offset = extent_op->level;
2255 } else {
2256 key.type = BTRFS_EXTENT_ITEM_KEY;
2257 key.offset = head->num_bytes;
2258 }
2259
2260 again:
2261 path->reada = READA_FORWARD;
2262 path->leave_spinning = 1;
2263 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
2264 if (ret < 0) {
2265 err = ret;
2266 goto out;
2267 }
2268 if (ret > 0) {
2269 if (metadata) {
2270 if (path->slots[0] > 0) {
2271 path->slots[0]--;
2272 btrfs_item_key_to_cpu(path->nodes[0], &key,
2273 path->slots[0]);
2274 if (key.objectid == head->bytenr &&
2275 key.type == BTRFS_EXTENT_ITEM_KEY &&
2276 key.offset == head->num_bytes)
2277 ret = 0;
2278 }
2279 if (ret > 0) {
2280 btrfs_release_path(path);
2281 metadata = 0;
2282
2283 key.objectid = head->bytenr;
2284 key.offset = head->num_bytes;
2285 key.type = BTRFS_EXTENT_ITEM_KEY;
2286 goto again;
2287 }
2288 } else {
2289 err = -EIO;
2290 goto out;
2291 }
2292 }
2293
2294 leaf = path->nodes[0];
2295 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2296
2297 if (unlikely(item_size < sizeof(*ei))) {
2298 err = -EINVAL;
2299 btrfs_print_v0_err(fs_info);
2300 btrfs_abort_transaction(trans, err);
2301 goto out;
2302 }
2303
2304 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2305 __run_delayed_extent_op(extent_op, leaf, ei);
2306
2307 btrfs_mark_buffer_dirty(leaf);
2308 out:
2309 btrfs_free_path(path);
2310 return err;
2311 }
2312
run_delayed_tree_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,int insert_reserved)2313 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2314 struct btrfs_delayed_ref_node *node,
2315 struct btrfs_delayed_extent_op *extent_op,
2316 int insert_reserved)
2317 {
2318 int ret = 0;
2319 struct btrfs_delayed_tree_ref *ref;
2320 u64 parent = 0;
2321 u64 ref_root = 0;
2322
2323 ref = btrfs_delayed_node_to_tree_ref(node);
2324 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
2325
2326 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2327 parent = ref->parent;
2328 ref_root = ref->root;
2329
2330 if (node->ref_mod != 1) {
2331 btrfs_err(trans->fs_info,
2332 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2333 node->bytenr, node->ref_mod, node->action, ref_root,
2334 parent);
2335 return -EIO;
2336 }
2337 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2338 BUG_ON(!extent_op || !extent_op->update_flags);
2339 ret = alloc_reserved_tree_block(trans, node, extent_op);
2340 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2341 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
2342 ref->level, 0, 1, extent_op);
2343 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2344 ret = __btrfs_free_extent(trans, node, parent, ref_root,
2345 ref->level, 0, 1, extent_op);
2346 } else {
2347 BUG();
2348 }
2349 return ret;
2350 }
2351
2352 /* helper function to actually process a single delayed ref entry */
run_one_delayed_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,int insert_reserved)2353 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2354 struct btrfs_delayed_ref_node *node,
2355 struct btrfs_delayed_extent_op *extent_op,
2356 int insert_reserved)
2357 {
2358 int ret = 0;
2359
2360 if (trans->aborted) {
2361 if (insert_reserved)
2362 btrfs_pin_extent(trans->fs_info, node->bytenr,
2363 node->num_bytes, 1);
2364 return 0;
2365 }
2366
2367 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2368 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2369 ret = run_delayed_tree_ref(trans, node, extent_op,
2370 insert_reserved);
2371 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2372 node->type == BTRFS_SHARED_DATA_REF_KEY)
2373 ret = run_delayed_data_ref(trans, node, extent_op,
2374 insert_reserved);
2375 else
2376 BUG();
2377 if (ret && insert_reserved)
2378 btrfs_pin_extent(trans->fs_info, node->bytenr,
2379 node->num_bytes, 1);
2380 return ret;
2381 }
2382
2383 static inline struct btrfs_delayed_ref_node *
select_delayed_ref(struct btrfs_delayed_ref_head * head)2384 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2385 {
2386 struct btrfs_delayed_ref_node *ref;
2387
2388 if (RB_EMPTY_ROOT(&head->ref_tree))
2389 return NULL;
2390
2391 /*
2392 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2393 * This is to prevent a ref count from going down to zero, which deletes
2394 * the extent item from the extent tree, when there still are references
2395 * to add, which would fail because they would not find the extent item.
2396 */
2397 if (!list_empty(&head->ref_add_list))
2398 return list_first_entry(&head->ref_add_list,
2399 struct btrfs_delayed_ref_node, add_list);
2400
2401 ref = rb_entry(rb_first(&head->ref_tree),
2402 struct btrfs_delayed_ref_node, ref_node);
2403 ASSERT(list_empty(&ref->add_list));
2404 return ref;
2405 }
2406
unselect_delayed_ref_head(struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head)2407 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
2408 struct btrfs_delayed_ref_head *head)
2409 {
2410 spin_lock(&delayed_refs->lock);
2411 head->processing = 0;
2412 delayed_refs->num_heads_ready++;
2413 spin_unlock(&delayed_refs->lock);
2414 btrfs_delayed_ref_unlock(head);
2415 }
2416
cleanup_extent_op(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head)2417 static int cleanup_extent_op(struct btrfs_trans_handle *trans,
2418 struct btrfs_delayed_ref_head *head)
2419 {
2420 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
2421 int ret;
2422
2423 if (!extent_op)
2424 return 0;
2425 head->extent_op = NULL;
2426 if (head->must_insert_reserved) {
2427 btrfs_free_delayed_extent_op(extent_op);
2428 return 0;
2429 }
2430 spin_unlock(&head->lock);
2431 ret = run_delayed_extent_op(trans, head, extent_op);
2432 btrfs_free_delayed_extent_op(extent_op);
2433 return ret ? ret : 1;
2434 }
2435
cleanup_ref_head(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head)2436 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
2437 struct btrfs_delayed_ref_head *head)
2438 {
2439
2440 struct btrfs_fs_info *fs_info = trans->fs_info;
2441 struct btrfs_delayed_ref_root *delayed_refs;
2442 int ret;
2443
2444 delayed_refs = &trans->transaction->delayed_refs;
2445
2446 ret = cleanup_extent_op(trans, head);
2447 if (ret < 0) {
2448 unselect_delayed_ref_head(delayed_refs, head);
2449 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2450 return ret;
2451 } else if (ret) {
2452 return ret;
2453 }
2454
2455 /*
2456 * Need to drop our head ref lock and re-acquire the delayed ref lock
2457 * and then re-check to make sure nobody got added.
2458 */
2459 spin_unlock(&head->lock);
2460 spin_lock(&delayed_refs->lock);
2461 spin_lock(&head->lock);
2462 if (!RB_EMPTY_ROOT(&head->ref_tree) || head->extent_op) {
2463 spin_unlock(&head->lock);
2464 spin_unlock(&delayed_refs->lock);
2465 return 1;
2466 }
2467 delayed_refs->num_heads--;
2468 rb_erase(&head->href_node, &delayed_refs->href_root);
2469 RB_CLEAR_NODE(&head->href_node);
2470 spin_unlock(&head->lock);
2471 spin_unlock(&delayed_refs->lock);
2472 atomic_dec(&delayed_refs->num_entries);
2473
2474 trace_run_delayed_ref_head(fs_info, head, 0);
2475
2476 if (head->total_ref_mod < 0) {
2477 struct btrfs_space_info *space_info;
2478 u64 flags;
2479
2480 if (head->is_data)
2481 flags = BTRFS_BLOCK_GROUP_DATA;
2482 else if (head->is_system)
2483 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2484 else
2485 flags = BTRFS_BLOCK_GROUP_METADATA;
2486 space_info = __find_space_info(fs_info, flags);
2487 ASSERT(space_info);
2488 percpu_counter_add_batch(&space_info->total_bytes_pinned,
2489 -head->num_bytes,
2490 BTRFS_TOTAL_BYTES_PINNED_BATCH);
2491
2492 if (head->is_data) {
2493 spin_lock(&delayed_refs->lock);
2494 delayed_refs->pending_csums -= head->num_bytes;
2495 spin_unlock(&delayed_refs->lock);
2496 }
2497 }
2498
2499 if (head->must_insert_reserved) {
2500 btrfs_pin_extent(fs_info, head->bytenr,
2501 head->num_bytes, 1);
2502 if (head->is_data) {
2503 ret = btrfs_del_csums(trans, fs_info->csum_root,
2504 head->bytenr, head->num_bytes);
2505 }
2506 }
2507
2508 /* Also free its reserved qgroup space */
2509 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2510 head->qgroup_reserved);
2511 btrfs_delayed_ref_unlock(head);
2512 btrfs_put_delayed_ref_head(head);
2513 return ret;
2514 }
2515
2516 /*
2517 * Returns 0 on success or if called with an already aborted transaction.
2518 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2519 */
__btrfs_run_delayed_refs(struct btrfs_trans_handle * trans,unsigned long nr)2520 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2521 unsigned long nr)
2522 {
2523 struct btrfs_fs_info *fs_info = trans->fs_info;
2524 struct btrfs_delayed_ref_root *delayed_refs;
2525 struct btrfs_delayed_ref_node *ref;
2526 struct btrfs_delayed_ref_head *locked_ref = NULL;
2527 struct btrfs_delayed_extent_op *extent_op;
2528 ktime_t start = ktime_get();
2529 int ret;
2530 unsigned long count = 0;
2531 unsigned long actual_count = 0;
2532 int must_insert_reserved = 0;
2533
2534 delayed_refs = &trans->transaction->delayed_refs;
2535 while (1) {
2536 if (!locked_ref) {
2537 if (count >= nr)
2538 break;
2539
2540 spin_lock(&delayed_refs->lock);
2541 locked_ref = btrfs_select_ref_head(trans);
2542 if (!locked_ref) {
2543 spin_unlock(&delayed_refs->lock);
2544 break;
2545 }
2546
2547 /* grab the lock that says we are going to process
2548 * all the refs for this head */
2549 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2550 spin_unlock(&delayed_refs->lock);
2551 /*
2552 * we may have dropped the spin lock to get the head
2553 * mutex lock, and that might have given someone else
2554 * time to free the head. If that's true, it has been
2555 * removed from our list and we can move on.
2556 */
2557 if (ret == -EAGAIN) {
2558 locked_ref = NULL;
2559 count++;
2560 continue;
2561 }
2562 }
2563
2564 /*
2565 * We need to try and merge add/drops of the same ref since we
2566 * can run into issues with relocate dropping the implicit ref
2567 * and then it being added back again before the drop can
2568 * finish. If we merged anything we need to re-loop so we can
2569 * get a good ref.
2570 * Or we can get node references of the same type that weren't
2571 * merged when created due to bumps in the tree mod seq, and
2572 * we need to merge them to prevent adding an inline extent
2573 * backref before dropping it (triggering a BUG_ON at
2574 * insert_inline_extent_backref()).
2575 */
2576 spin_lock(&locked_ref->lock);
2577 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2578
2579 ref = select_delayed_ref(locked_ref);
2580
2581 if (ref && ref->seq &&
2582 btrfs_check_delayed_seq(fs_info, ref->seq)) {
2583 spin_unlock(&locked_ref->lock);
2584 unselect_delayed_ref_head(delayed_refs, locked_ref);
2585 locked_ref = NULL;
2586 cond_resched();
2587 count++;
2588 continue;
2589 }
2590
2591 /*
2592 * We're done processing refs in this ref_head, clean everything
2593 * up and move on to the next ref_head.
2594 */
2595 if (!ref) {
2596 ret = cleanup_ref_head(trans, locked_ref);
2597 if (ret > 0 ) {
2598 /* We dropped our lock, we need to loop. */
2599 ret = 0;
2600 continue;
2601 } else if (ret) {
2602 return ret;
2603 }
2604 locked_ref = NULL;
2605 count++;
2606 continue;
2607 }
2608
2609 actual_count++;
2610 ref->in_tree = 0;
2611 rb_erase(&ref->ref_node, &locked_ref->ref_tree);
2612 RB_CLEAR_NODE(&ref->ref_node);
2613 if (!list_empty(&ref->add_list))
2614 list_del(&ref->add_list);
2615 /*
2616 * When we play the delayed ref, also correct the ref_mod on
2617 * head
2618 */
2619 switch (ref->action) {
2620 case BTRFS_ADD_DELAYED_REF:
2621 case BTRFS_ADD_DELAYED_EXTENT:
2622 locked_ref->ref_mod -= ref->ref_mod;
2623 break;
2624 case BTRFS_DROP_DELAYED_REF:
2625 locked_ref->ref_mod += ref->ref_mod;
2626 break;
2627 default:
2628 WARN_ON(1);
2629 }
2630 atomic_dec(&delayed_refs->num_entries);
2631
2632 /*
2633 * Record the must-insert_reserved flag before we drop the spin
2634 * lock.
2635 */
2636 must_insert_reserved = locked_ref->must_insert_reserved;
2637 locked_ref->must_insert_reserved = 0;
2638
2639 extent_op = locked_ref->extent_op;
2640 locked_ref->extent_op = NULL;
2641 spin_unlock(&locked_ref->lock);
2642
2643 ret = run_one_delayed_ref(trans, ref, extent_op,
2644 must_insert_reserved);
2645
2646 btrfs_free_delayed_extent_op(extent_op);
2647 if (ret) {
2648 unselect_delayed_ref_head(delayed_refs, locked_ref);
2649 btrfs_put_delayed_ref(ref);
2650 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2651 ret);
2652 return ret;
2653 }
2654
2655 btrfs_put_delayed_ref(ref);
2656 count++;
2657 cond_resched();
2658 }
2659
2660 /*
2661 * We don't want to include ref heads since we can have empty ref heads
2662 * and those will drastically skew our runtime down since we just do
2663 * accounting, no actual extent tree updates.
2664 */
2665 if (actual_count > 0) {
2666 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2667 u64 avg;
2668
2669 /*
2670 * We weigh the current average higher than our current runtime
2671 * to avoid large swings in the average.
2672 */
2673 spin_lock(&delayed_refs->lock);
2674 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2675 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2676 spin_unlock(&delayed_refs->lock);
2677 }
2678 return 0;
2679 }
2680
2681 #ifdef SCRAMBLE_DELAYED_REFS
2682 /*
2683 * Normally delayed refs get processed in ascending bytenr order. This
2684 * correlates in most cases to the order added. To expose dependencies on this
2685 * order, we start to process the tree in the middle instead of the beginning
2686 */
find_middle(struct rb_root * root)2687 static u64 find_middle(struct rb_root *root)
2688 {
2689 struct rb_node *n = root->rb_node;
2690 struct btrfs_delayed_ref_node *entry;
2691 int alt = 1;
2692 u64 middle;
2693 u64 first = 0, last = 0;
2694
2695 n = rb_first(root);
2696 if (n) {
2697 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2698 first = entry->bytenr;
2699 }
2700 n = rb_last(root);
2701 if (n) {
2702 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2703 last = entry->bytenr;
2704 }
2705 n = root->rb_node;
2706
2707 while (n) {
2708 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2709 WARN_ON(!entry->in_tree);
2710
2711 middle = entry->bytenr;
2712
2713 if (alt)
2714 n = n->rb_left;
2715 else
2716 n = n->rb_right;
2717
2718 alt = 1 - alt;
2719 }
2720 return middle;
2721 }
2722 #endif
2723
heads_to_leaves(struct btrfs_fs_info * fs_info,u64 heads)2724 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2725 {
2726 u64 num_bytes;
2727
2728 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2729 sizeof(struct btrfs_extent_inline_ref));
2730 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2731 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2732
2733 /*
2734 * We don't ever fill up leaves all the way so multiply by 2 just to be
2735 * closer to what we're really going to want to use.
2736 */
2737 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2738 }
2739
2740 /*
2741 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2742 * would require to store the csums for that many bytes.
2743 */
btrfs_csum_bytes_to_leaves(struct btrfs_fs_info * fs_info,u64 csum_bytes)2744 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2745 {
2746 u64 csum_size;
2747 u64 num_csums_per_leaf;
2748 u64 num_csums;
2749
2750 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2751 num_csums_per_leaf = div64_u64(csum_size,
2752 (u64)btrfs_super_csum_size(fs_info->super_copy));
2753 num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2754 num_csums += num_csums_per_leaf - 1;
2755 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2756 return num_csums;
2757 }
2758
btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)2759 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2760 struct btrfs_fs_info *fs_info)
2761 {
2762 struct btrfs_block_rsv *global_rsv;
2763 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2764 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2765 unsigned int num_dirty_bgs = trans->transaction->num_dirty_bgs;
2766 u64 num_bytes, num_dirty_bgs_bytes;
2767 int ret = 0;
2768
2769 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2770 num_heads = heads_to_leaves(fs_info, num_heads);
2771 if (num_heads > 1)
2772 num_bytes += (num_heads - 1) * fs_info->nodesize;
2773 num_bytes <<= 1;
2774 num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2775 fs_info->nodesize;
2776 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
2777 num_dirty_bgs);
2778 global_rsv = &fs_info->global_block_rsv;
2779
2780 /*
2781 * If we can't allocate any more chunks lets make sure we have _lots_ of
2782 * wiggle room since running delayed refs can create more delayed refs.
2783 */
2784 if (global_rsv->space_info->full) {
2785 num_dirty_bgs_bytes <<= 1;
2786 num_bytes <<= 1;
2787 }
2788
2789 spin_lock(&global_rsv->lock);
2790 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2791 ret = 1;
2792 spin_unlock(&global_rsv->lock);
2793 return ret;
2794 }
2795
btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)2796 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2797 struct btrfs_fs_info *fs_info)
2798 {
2799 u64 num_entries =
2800 atomic_read(&trans->transaction->delayed_refs.num_entries);
2801 u64 avg_runtime;
2802 u64 val;
2803
2804 smp_mb();
2805 avg_runtime = fs_info->avg_delayed_ref_runtime;
2806 val = num_entries * avg_runtime;
2807 if (val >= NSEC_PER_SEC)
2808 return 1;
2809 if (val >= NSEC_PER_SEC / 2)
2810 return 2;
2811
2812 return btrfs_check_space_for_delayed_refs(trans, fs_info);
2813 }
2814
2815 struct async_delayed_refs {
2816 struct btrfs_root *root;
2817 u64 transid;
2818 int count;
2819 int error;
2820 int sync;
2821 struct completion wait;
2822 struct btrfs_work work;
2823 };
2824
2825 static inline struct async_delayed_refs *
to_async_delayed_refs(struct btrfs_work * work)2826 to_async_delayed_refs(struct btrfs_work *work)
2827 {
2828 return container_of(work, struct async_delayed_refs, work);
2829 }
2830
delayed_ref_async_start(struct btrfs_work * work)2831 static void delayed_ref_async_start(struct btrfs_work *work)
2832 {
2833 struct async_delayed_refs *async = to_async_delayed_refs(work);
2834 struct btrfs_trans_handle *trans;
2835 struct btrfs_fs_info *fs_info = async->root->fs_info;
2836 int ret;
2837
2838 /* if the commit is already started, we don't need to wait here */
2839 if (btrfs_transaction_blocked(fs_info))
2840 goto done;
2841
2842 trans = btrfs_join_transaction(async->root);
2843 if (IS_ERR(trans)) {
2844 async->error = PTR_ERR(trans);
2845 goto done;
2846 }
2847
2848 /*
2849 * trans->sync means that when we call end_transaction, we won't
2850 * wait on delayed refs
2851 */
2852 trans->sync = true;
2853
2854 /* Don't bother flushing if we got into a different transaction */
2855 if (trans->transid > async->transid)
2856 goto end;
2857
2858 ret = btrfs_run_delayed_refs(trans, async->count);
2859 if (ret)
2860 async->error = ret;
2861 end:
2862 ret = btrfs_end_transaction(trans);
2863 if (ret && !async->error)
2864 async->error = ret;
2865 done:
2866 if (async->sync)
2867 complete(&async->wait);
2868 else
2869 kfree(async);
2870 }
2871
btrfs_async_run_delayed_refs(struct btrfs_fs_info * fs_info,unsigned long count,u64 transid,int wait)2872 int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
2873 unsigned long count, u64 transid, int wait)
2874 {
2875 struct async_delayed_refs *async;
2876 int ret;
2877
2878 async = kmalloc(sizeof(*async), GFP_NOFS);
2879 if (!async)
2880 return -ENOMEM;
2881
2882 async->root = fs_info->tree_root;
2883 async->count = count;
2884 async->error = 0;
2885 async->transid = transid;
2886 if (wait)
2887 async->sync = 1;
2888 else
2889 async->sync = 0;
2890 init_completion(&async->wait);
2891
2892 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2893 delayed_ref_async_start, NULL, NULL);
2894
2895 btrfs_queue_work(fs_info->extent_workers, &async->work);
2896
2897 if (wait) {
2898 wait_for_completion(&async->wait);
2899 ret = async->error;
2900 kfree(async);
2901 return ret;
2902 }
2903 return 0;
2904 }
2905
2906 /*
2907 * this starts processing the delayed reference count updates and
2908 * extent insertions we have queued up so far. count can be
2909 * 0, which means to process everything in the tree at the start
2910 * of the run (but not newly added entries), or it can be some target
2911 * number you'd like to process.
2912 *
2913 * Returns 0 on success or if called with an aborted transaction
2914 * Returns <0 on error and aborts the transaction
2915 */
btrfs_run_delayed_refs(struct btrfs_trans_handle * trans,unsigned long count)2916 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2917 unsigned long count)
2918 {
2919 struct btrfs_fs_info *fs_info = trans->fs_info;
2920 struct rb_node *node;
2921 struct btrfs_delayed_ref_root *delayed_refs;
2922 struct btrfs_delayed_ref_head *head;
2923 int ret;
2924 int run_all = count == (unsigned long)-1;
2925
2926 /* We'll clean this up in btrfs_cleanup_transaction */
2927 if (trans->aborted)
2928 return 0;
2929
2930 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2931 return 0;
2932
2933 delayed_refs = &trans->transaction->delayed_refs;
2934 if (count == 0)
2935 count = atomic_read(&delayed_refs->num_entries) * 2;
2936
2937 again:
2938 #ifdef SCRAMBLE_DELAYED_REFS
2939 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2940 #endif
2941 ret = __btrfs_run_delayed_refs(trans, count);
2942 if (ret < 0) {
2943 btrfs_abort_transaction(trans, ret);
2944 return ret;
2945 }
2946
2947 if (run_all) {
2948 if (!list_empty(&trans->new_bgs))
2949 btrfs_create_pending_block_groups(trans);
2950
2951 spin_lock(&delayed_refs->lock);
2952 node = rb_first(&delayed_refs->href_root);
2953 if (!node) {
2954 spin_unlock(&delayed_refs->lock);
2955 goto out;
2956 }
2957 head = rb_entry(node, struct btrfs_delayed_ref_head,
2958 href_node);
2959 refcount_inc(&head->refs);
2960 spin_unlock(&delayed_refs->lock);
2961
2962 /* Mutex was contended, block until it's released and retry. */
2963 mutex_lock(&head->mutex);
2964 mutex_unlock(&head->mutex);
2965
2966 btrfs_put_delayed_ref_head(head);
2967 cond_resched();
2968 goto again;
2969 }
2970 out:
2971 return 0;
2972 }
2973
btrfs_set_disk_extent_flags(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,u64 bytenr,u64 num_bytes,u64 flags,int level,int is_data)2974 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2975 struct btrfs_fs_info *fs_info,
2976 u64 bytenr, u64 num_bytes, u64 flags,
2977 int level, int is_data)
2978 {
2979 struct btrfs_delayed_extent_op *extent_op;
2980 int ret;
2981
2982 extent_op = btrfs_alloc_delayed_extent_op();
2983 if (!extent_op)
2984 return -ENOMEM;
2985
2986 extent_op->flags_to_set = flags;
2987 extent_op->update_flags = true;
2988 extent_op->update_key = false;
2989 extent_op->is_data = is_data ? true : false;
2990 extent_op->level = level;
2991
2992 ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
2993 num_bytes, extent_op);
2994 if (ret)
2995 btrfs_free_delayed_extent_op(extent_op);
2996 return ret;
2997 }
2998
check_delayed_ref(struct btrfs_root * root,struct btrfs_path * path,u64 objectid,u64 offset,u64 bytenr)2999 static noinline int check_delayed_ref(struct btrfs_root *root,
3000 struct btrfs_path *path,
3001 u64 objectid, u64 offset, u64 bytenr)
3002 {
3003 struct btrfs_delayed_ref_head *head;
3004 struct btrfs_delayed_ref_node *ref;
3005 struct btrfs_delayed_data_ref *data_ref;
3006 struct btrfs_delayed_ref_root *delayed_refs;
3007 struct btrfs_transaction *cur_trans;
3008 struct rb_node *node;
3009 int ret = 0;
3010
3011 spin_lock(&root->fs_info->trans_lock);
3012 cur_trans = root->fs_info->running_transaction;
3013 if (cur_trans)
3014 refcount_inc(&cur_trans->use_count);
3015 spin_unlock(&root->fs_info->trans_lock);
3016 if (!cur_trans)
3017 return 0;
3018
3019 delayed_refs = &cur_trans->delayed_refs;
3020 spin_lock(&delayed_refs->lock);
3021 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3022 if (!head) {
3023 spin_unlock(&delayed_refs->lock);
3024 btrfs_put_transaction(cur_trans);
3025 return 0;
3026 }
3027
3028 if (!mutex_trylock(&head->mutex)) {
3029 refcount_inc(&head->refs);
3030 spin_unlock(&delayed_refs->lock);
3031
3032 btrfs_release_path(path);
3033
3034 /*
3035 * Mutex was contended, block until it's released and let
3036 * caller try again
3037 */
3038 mutex_lock(&head->mutex);
3039 mutex_unlock(&head->mutex);
3040 btrfs_put_delayed_ref_head(head);
3041 btrfs_put_transaction(cur_trans);
3042 return -EAGAIN;
3043 }
3044 spin_unlock(&delayed_refs->lock);
3045
3046 spin_lock(&head->lock);
3047 /*
3048 * XXX: We should replace this with a proper search function in the
3049 * future.
3050 */
3051 for (node = rb_first(&head->ref_tree); node; node = rb_next(node)) {
3052 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
3053 /* If it's a shared ref we know a cross reference exists */
3054 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3055 ret = 1;
3056 break;
3057 }
3058
3059 data_ref = btrfs_delayed_node_to_data_ref(ref);
3060
3061 /*
3062 * If our ref doesn't match the one we're currently looking at
3063 * then we have a cross reference.
3064 */
3065 if (data_ref->root != root->root_key.objectid ||
3066 data_ref->objectid != objectid ||
3067 data_ref->offset != offset) {
3068 ret = 1;
3069 break;
3070 }
3071 }
3072 spin_unlock(&head->lock);
3073 mutex_unlock(&head->mutex);
3074 btrfs_put_transaction(cur_trans);
3075 return ret;
3076 }
3077
check_committed_ref(struct btrfs_root * root,struct btrfs_path * path,u64 objectid,u64 offset,u64 bytenr)3078 static noinline int check_committed_ref(struct btrfs_root *root,
3079 struct btrfs_path *path,
3080 u64 objectid, u64 offset, u64 bytenr)
3081 {
3082 struct btrfs_fs_info *fs_info = root->fs_info;
3083 struct btrfs_root *extent_root = fs_info->extent_root;
3084 struct extent_buffer *leaf;
3085 struct btrfs_extent_data_ref *ref;
3086 struct btrfs_extent_inline_ref *iref;
3087 struct btrfs_extent_item *ei;
3088 struct btrfs_key key;
3089 u32 item_size;
3090 int type;
3091 int ret;
3092
3093 key.objectid = bytenr;
3094 key.offset = (u64)-1;
3095 key.type = BTRFS_EXTENT_ITEM_KEY;
3096
3097 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3098 if (ret < 0)
3099 goto out;
3100 BUG_ON(ret == 0); /* Corruption */
3101
3102 ret = -ENOENT;
3103 if (path->slots[0] == 0)
3104 goto out;
3105
3106 path->slots[0]--;
3107 leaf = path->nodes[0];
3108 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3109
3110 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3111 goto out;
3112
3113 ret = 1;
3114 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3115 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3116
3117 if (item_size != sizeof(*ei) +
3118 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3119 goto out;
3120
3121 if (btrfs_extent_generation(leaf, ei) <=
3122 btrfs_root_last_snapshot(&root->root_item))
3123 goto out;
3124
3125 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3126
3127 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
3128 if (type != BTRFS_EXTENT_DATA_REF_KEY)
3129 goto out;
3130
3131 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3132 if (btrfs_extent_refs(leaf, ei) !=
3133 btrfs_extent_data_ref_count(leaf, ref) ||
3134 btrfs_extent_data_ref_root(leaf, ref) !=
3135 root->root_key.objectid ||
3136 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3137 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3138 goto out;
3139
3140 ret = 0;
3141 out:
3142 return ret;
3143 }
3144
btrfs_cross_ref_exist(struct btrfs_root * root,u64 objectid,u64 offset,u64 bytenr)3145 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3146 u64 bytenr)
3147 {
3148 struct btrfs_path *path;
3149 int ret;
3150 int ret2;
3151
3152 path = btrfs_alloc_path();
3153 if (!path)
3154 return -ENOMEM;
3155
3156 do {
3157 ret = check_committed_ref(root, path, objectid,
3158 offset, bytenr);
3159 if (ret && ret != -ENOENT)
3160 goto out;
3161
3162 ret2 = check_delayed_ref(root, path, objectid,
3163 offset, bytenr);
3164 } while (ret2 == -EAGAIN);
3165
3166 if (ret2 && ret2 != -ENOENT) {
3167 ret = ret2;
3168 goto out;
3169 }
3170
3171 if (ret != -ENOENT || ret2 != -ENOENT)
3172 ret = 0;
3173 out:
3174 btrfs_free_path(path);
3175 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3176 WARN_ON(ret > 0);
3177 return ret;
3178 }
3179
__btrfs_mod_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref,int inc)3180 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3181 struct btrfs_root *root,
3182 struct extent_buffer *buf,
3183 int full_backref, int inc)
3184 {
3185 struct btrfs_fs_info *fs_info = root->fs_info;
3186 u64 bytenr;
3187 u64 num_bytes;
3188 u64 parent;
3189 u64 ref_root;
3190 u32 nritems;
3191 struct btrfs_key key;
3192 struct btrfs_file_extent_item *fi;
3193 int i;
3194 int level;
3195 int ret = 0;
3196 int (*process_func)(struct btrfs_trans_handle *,
3197 struct btrfs_root *,
3198 u64, u64, u64, u64, u64, u64);
3199
3200
3201 if (btrfs_is_testing(fs_info))
3202 return 0;
3203
3204 ref_root = btrfs_header_owner(buf);
3205 nritems = btrfs_header_nritems(buf);
3206 level = btrfs_header_level(buf);
3207
3208 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3209 return 0;
3210
3211 if (inc)
3212 process_func = btrfs_inc_extent_ref;
3213 else
3214 process_func = btrfs_free_extent;
3215
3216 if (full_backref)
3217 parent = buf->start;
3218 else
3219 parent = 0;
3220
3221 for (i = 0; i < nritems; i++) {
3222 if (level == 0) {
3223 btrfs_item_key_to_cpu(buf, &key, i);
3224 if (key.type != BTRFS_EXTENT_DATA_KEY)
3225 continue;
3226 fi = btrfs_item_ptr(buf, i,
3227 struct btrfs_file_extent_item);
3228 if (btrfs_file_extent_type(buf, fi) ==
3229 BTRFS_FILE_EXTENT_INLINE)
3230 continue;
3231 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3232 if (bytenr == 0)
3233 continue;
3234
3235 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3236 key.offset -= btrfs_file_extent_offset(buf, fi);
3237 ret = process_func(trans, root, bytenr, num_bytes,
3238 parent, ref_root, key.objectid,
3239 key.offset);
3240 if (ret)
3241 goto fail;
3242 } else {
3243 bytenr = btrfs_node_blockptr(buf, i);
3244 num_bytes = fs_info->nodesize;
3245 ret = process_func(trans, root, bytenr, num_bytes,
3246 parent, ref_root, level - 1, 0);
3247 if (ret)
3248 goto fail;
3249 }
3250 }
3251 return 0;
3252 fail:
3253 return ret;
3254 }
3255
btrfs_inc_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref)3256 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3257 struct extent_buffer *buf, int full_backref)
3258 {
3259 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3260 }
3261
btrfs_dec_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref)3262 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3263 struct extent_buffer *buf, int full_backref)
3264 {
3265 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3266 }
3267
write_one_cache_group(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,struct btrfs_path * path,struct btrfs_block_group_cache * cache)3268 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3269 struct btrfs_fs_info *fs_info,
3270 struct btrfs_path *path,
3271 struct btrfs_block_group_cache *cache)
3272 {
3273 int ret;
3274 struct btrfs_root *extent_root = fs_info->extent_root;
3275 unsigned long bi;
3276 struct extent_buffer *leaf;
3277
3278 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3279 if (ret) {
3280 if (ret > 0)
3281 ret = -ENOENT;
3282 goto fail;
3283 }
3284
3285 leaf = path->nodes[0];
3286 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3287 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3288 btrfs_mark_buffer_dirty(leaf);
3289 fail:
3290 btrfs_release_path(path);
3291 return ret;
3292
3293 }
3294
3295 static struct btrfs_block_group_cache *
next_block_group(struct btrfs_fs_info * fs_info,struct btrfs_block_group_cache * cache)3296 next_block_group(struct btrfs_fs_info *fs_info,
3297 struct btrfs_block_group_cache *cache)
3298 {
3299 struct rb_node *node;
3300
3301 spin_lock(&fs_info->block_group_cache_lock);
3302
3303 /* If our block group was removed, we need a full search. */
3304 if (RB_EMPTY_NODE(&cache->cache_node)) {
3305 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3306
3307 spin_unlock(&fs_info->block_group_cache_lock);
3308 btrfs_put_block_group(cache);
3309 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
3310 }
3311 node = rb_next(&cache->cache_node);
3312 btrfs_put_block_group(cache);
3313 if (node) {
3314 cache = rb_entry(node, struct btrfs_block_group_cache,
3315 cache_node);
3316 btrfs_get_block_group(cache);
3317 } else
3318 cache = NULL;
3319 spin_unlock(&fs_info->block_group_cache_lock);
3320 return cache;
3321 }
3322
cache_save_setup(struct btrfs_block_group_cache * block_group,struct btrfs_trans_handle * trans,struct btrfs_path * path)3323 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3324 struct btrfs_trans_handle *trans,
3325 struct btrfs_path *path)
3326 {
3327 struct btrfs_fs_info *fs_info = block_group->fs_info;
3328 struct btrfs_root *root = fs_info->tree_root;
3329 struct inode *inode = NULL;
3330 struct extent_changeset *data_reserved = NULL;
3331 u64 alloc_hint = 0;
3332 int dcs = BTRFS_DC_ERROR;
3333 u64 num_pages = 0;
3334 int retries = 0;
3335 int ret = 0;
3336
3337 /*
3338 * If this block group is smaller than 100 megs don't bother caching the
3339 * block group.
3340 */
3341 if (block_group->key.offset < (100 * SZ_1M)) {
3342 spin_lock(&block_group->lock);
3343 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3344 spin_unlock(&block_group->lock);
3345 return 0;
3346 }
3347
3348 if (trans->aborted)
3349 return 0;
3350 again:
3351 inode = lookup_free_space_inode(fs_info, block_group, path);
3352 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3353 ret = PTR_ERR(inode);
3354 btrfs_release_path(path);
3355 goto out;
3356 }
3357
3358 if (IS_ERR(inode)) {
3359 BUG_ON(retries);
3360 retries++;
3361
3362 if (block_group->ro)
3363 goto out_free;
3364
3365 ret = create_free_space_inode(fs_info, trans, block_group,
3366 path);
3367 if (ret)
3368 goto out_free;
3369 goto again;
3370 }
3371
3372 /*
3373 * We want to set the generation to 0, that way if anything goes wrong
3374 * from here on out we know not to trust this cache when we load up next
3375 * time.
3376 */
3377 BTRFS_I(inode)->generation = 0;
3378 ret = btrfs_update_inode(trans, root, inode);
3379 if (ret) {
3380 /*
3381 * So theoretically we could recover from this, simply set the
3382 * super cache generation to 0 so we know to invalidate the
3383 * cache, but then we'd have to keep track of the block groups
3384 * that fail this way so we know we _have_ to reset this cache
3385 * before the next commit or risk reading stale cache. So to
3386 * limit our exposure to horrible edge cases lets just abort the
3387 * transaction, this only happens in really bad situations
3388 * anyway.
3389 */
3390 btrfs_abort_transaction(trans, ret);
3391 goto out_put;
3392 }
3393 WARN_ON(ret);
3394
3395 /* We've already setup this transaction, go ahead and exit */
3396 if (block_group->cache_generation == trans->transid &&
3397 i_size_read(inode)) {
3398 dcs = BTRFS_DC_SETUP;
3399 goto out_put;
3400 }
3401
3402 if (i_size_read(inode) > 0) {
3403 ret = btrfs_check_trunc_cache_free_space(fs_info,
3404 &fs_info->global_block_rsv);
3405 if (ret)
3406 goto out_put;
3407
3408 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3409 if (ret)
3410 goto out_put;
3411 }
3412
3413 spin_lock(&block_group->lock);
3414 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3415 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3416 /*
3417 * don't bother trying to write stuff out _if_
3418 * a) we're not cached,
3419 * b) we're with nospace_cache mount option,
3420 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3421 */
3422 dcs = BTRFS_DC_WRITTEN;
3423 spin_unlock(&block_group->lock);
3424 goto out_put;
3425 }
3426 spin_unlock(&block_group->lock);
3427
3428 /*
3429 * We hit an ENOSPC when setting up the cache in this transaction, just
3430 * skip doing the setup, we've already cleared the cache so we're safe.
3431 */
3432 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3433 ret = -ENOSPC;
3434 goto out_put;
3435 }
3436
3437 /*
3438 * Try to preallocate enough space based on how big the block group is.
3439 * Keep in mind this has to include any pinned space which could end up
3440 * taking up quite a bit since it's not folded into the other space
3441 * cache.
3442 */
3443 num_pages = div_u64(block_group->key.offset, SZ_256M);
3444 if (!num_pages)
3445 num_pages = 1;
3446
3447 num_pages *= 16;
3448 num_pages *= PAGE_SIZE;
3449
3450 ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
3451 if (ret)
3452 goto out_put;
3453
3454 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3455 num_pages, num_pages,
3456 &alloc_hint);
3457 /*
3458 * Our cache requires contiguous chunks so that we don't modify a bunch
3459 * of metadata or split extents when writing the cache out, which means
3460 * we can enospc if we are heavily fragmented in addition to just normal
3461 * out of space conditions. So if we hit this just skip setting up any
3462 * other block groups for this transaction, maybe we'll unpin enough
3463 * space the next time around.
3464 */
3465 if (!ret)
3466 dcs = BTRFS_DC_SETUP;
3467 else if (ret == -ENOSPC)
3468 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3469
3470 out_put:
3471 iput(inode);
3472 out_free:
3473 btrfs_release_path(path);
3474 out:
3475 spin_lock(&block_group->lock);
3476 if (!ret && dcs == BTRFS_DC_SETUP)
3477 block_group->cache_generation = trans->transid;
3478 block_group->disk_cache_state = dcs;
3479 spin_unlock(&block_group->lock);
3480
3481 extent_changeset_free(data_reserved);
3482 return ret;
3483 }
3484
btrfs_setup_space_cache(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)3485 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3486 struct btrfs_fs_info *fs_info)
3487 {
3488 struct btrfs_block_group_cache *cache, *tmp;
3489 struct btrfs_transaction *cur_trans = trans->transaction;
3490 struct btrfs_path *path;
3491
3492 if (list_empty(&cur_trans->dirty_bgs) ||
3493 !btrfs_test_opt(fs_info, SPACE_CACHE))
3494 return 0;
3495
3496 path = btrfs_alloc_path();
3497 if (!path)
3498 return -ENOMEM;
3499
3500 /* Could add new block groups, use _safe just in case */
3501 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3502 dirty_list) {
3503 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3504 cache_save_setup(cache, trans, path);
3505 }
3506
3507 btrfs_free_path(path);
3508 return 0;
3509 }
3510
3511 /*
3512 * transaction commit does final block group cache writeback during a
3513 * critical section where nothing is allowed to change the FS. This is
3514 * required in order for the cache to actually match the block group,
3515 * but can introduce a lot of latency into the commit.
3516 *
3517 * So, btrfs_start_dirty_block_groups is here to kick off block group
3518 * cache IO. There's a chance we'll have to redo some of it if the
3519 * block group changes again during the commit, but it greatly reduces
3520 * the commit latency by getting rid of the easy block groups while
3521 * we're still allowing others to join the commit.
3522 */
btrfs_start_dirty_block_groups(struct btrfs_trans_handle * trans)3523 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
3524 {
3525 struct btrfs_fs_info *fs_info = trans->fs_info;
3526 struct btrfs_block_group_cache *cache;
3527 struct btrfs_transaction *cur_trans = trans->transaction;
3528 int ret = 0;
3529 int should_put;
3530 struct btrfs_path *path = NULL;
3531 LIST_HEAD(dirty);
3532 struct list_head *io = &cur_trans->io_bgs;
3533 int num_started = 0;
3534 int loops = 0;
3535
3536 spin_lock(&cur_trans->dirty_bgs_lock);
3537 if (list_empty(&cur_trans->dirty_bgs)) {
3538 spin_unlock(&cur_trans->dirty_bgs_lock);
3539 return 0;
3540 }
3541 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3542 spin_unlock(&cur_trans->dirty_bgs_lock);
3543
3544 again:
3545 /*
3546 * make sure all the block groups on our dirty list actually
3547 * exist
3548 */
3549 btrfs_create_pending_block_groups(trans);
3550
3551 if (!path) {
3552 path = btrfs_alloc_path();
3553 if (!path)
3554 return -ENOMEM;
3555 }
3556
3557 /*
3558 * cache_write_mutex is here only to save us from balance or automatic
3559 * removal of empty block groups deleting this block group while we are
3560 * writing out the cache
3561 */
3562 mutex_lock(&trans->transaction->cache_write_mutex);
3563 while (!list_empty(&dirty)) {
3564 cache = list_first_entry(&dirty,
3565 struct btrfs_block_group_cache,
3566 dirty_list);
3567 /*
3568 * this can happen if something re-dirties a block
3569 * group that is already under IO. Just wait for it to
3570 * finish and then do it all again
3571 */
3572 if (!list_empty(&cache->io_list)) {
3573 list_del_init(&cache->io_list);
3574 btrfs_wait_cache_io(trans, cache, path);
3575 btrfs_put_block_group(cache);
3576 }
3577
3578
3579 /*
3580 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3581 * if it should update the cache_state. Don't delete
3582 * until after we wait.
3583 *
3584 * Since we're not running in the commit critical section
3585 * we need the dirty_bgs_lock to protect from update_block_group
3586 */
3587 spin_lock(&cur_trans->dirty_bgs_lock);
3588 list_del_init(&cache->dirty_list);
3589 spin_unlock(&cur_trans->dirty_bgs_lock);
3590
3591 should_put = 1;
3592
3593 cache_save_setup(cache, trans, path);
3594
3595 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3596 cache->io_ctl.inode = NULL;
3597 ret = btrfs_write_out_cache(fs_info, trans,
3598 cache, path);
3599 if (ret == 0 && cache->io_ctl.inode) {
3600 num_started++;
3601 should_put = 0;
3602
3603 /*
3604 * The cache_write_mutex is protecting the
3605 * io_list, also refer to the definition of
3606 * btrfs_transaction::io_bgs for more details
3607 */
3608 list_add_tail(&cache->io_list, io);
3609 } else {
3610 /*
3611 * if we failed to write the cache, the
3612 * generation will be bad and life goes on
3613 */
3614 ret = 0;
3615 }
3616 }
3617 if (!ret) {
3618 ret = write_one_cache_group(trans, fs_info,
3619 path, cache);
3620 /*
3621 * Our block group might still be attached to the list
3622 * of new block groups in the transaction handle of some
3623 * other task (struct btrfs_trans_handle->new_bgs). This
3624 * means its block group item isn't yet in the extent
3625 * tree. If this happens ignore the error, as we will
3626 * try again later in the critical section of the
3627 * transaction commit.
3628 */
3629 if (ret == -ENOENT) {
3630 ret = 0;
3631 spin_lock(&cur_trans->dirty_bgs_lock);
3632 if (list_empty(&cache->dirty_list)) {
3633 list_add_tail(&cache->dirty_list,
3634 &cur_trans->dirty_bgs);
3635 btrfs_get_block_group(cache);
3636 }
3637 spin_unlock(&cur_trans->dirty_bgs_lock);
3638 } else if (ret) {
3639 btrfs_abort_transaction(trans, ret);
3640 }
3641 }
3642
3643 /* if its not on the io list, we need to put the block group */
3644 if (should_put)
3645 btrfs_put_block_group(cache);
3646
3647 if (ret)
3648 break;
3649
3650 /*
3651 * Avoid blocking other tasks for too long. It might even save
3652 * us from writing caches for block groups that are going to be
3653 * removed.
3654 */
3655 mutex_unlock(&trans->transaction->cache_write_mutex);
3656 mutex_lock(&trans->transaction->cache_write_mutex);
3657 }
3658 mutex_unlock(&trans->transaction->cache_write_mutex);
3659
3660 /*
3661 * go through delayed refs for all the stuff we've just kicked off
3662 * and then loop back (just once)
3663 */
3664 ret = btrfs_run_delayed_refs(trans, 0);
3665 if (!ret && loops == 0) {
3666 loops++;
3667 spin_lock(&cur_trans->dirty_bgs_lock);
3668 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3669 /*
3670 * dirty_bgs_lock protects us from concurrent block group
3671 * deletes too (not just cache_write_mutex).
3672 */
3673 if (!list_empty(&dirty)) {
3674 spin_unlock(&cur_trans->dirty_bgs_lock);
3675 goto again;
3676 }
3677 spin_unlock(&cur_trans->dirty_bgs_lock);
3678 } else if (ret < 0) {
3679 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3680 }
3681
3682 btrfs_free_path(path);
3683 return ret;
3684 }
3685
btrfs_write_dirty_block_groups(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)3686 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3687 struct btrfs_fs_info *fs_info)
3688 {
3689 struct btrfs_block_group_cache *cache;
3690 struct btrfs_transaction *cur_trans = trans->transaction;
3691 int ret = 0;
3692 int should_put;
3693 struct btrfs_path *path;
3694 struct list_head *io = &cur_trans->io_bgs;
3695 int num_started = 0;
3696
3697 path = btrfs_alloc_path();
3698 if (!path)
3699 return -ENOMEM;
3700
3701 /*
3702 * Even though we are in the critical section of the transaction commit,
3703 * we can still have concurrent tasks adding elements to this
3704 * transaction's list of dirty block groups. These tasks correspond to
3705 * endio free space workers started when writeback finishes for a
3706 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3707 * allocate new block groups as a result of COWing nodes of the root
3708 * tree when updating the free space inode. The writeback for the space
3709 * caches is triggered by an earlier call to
3710 * btrfs_start_dirty_block_groups() and iterations of the following
3711 * loop.
3712 * Also we want to do the cache_save_setup first and then run the
3713 * delayed refs to make sure we have the best chance at doing this all
3714 * in one shot.
3715 */
3716 spin_lock(&cur_trans->dirty_bgs_lock);
3717 while (!list_empty(&cur_trans->dirty_bgs)) {
3718 cache = list_first_entry(&cur_trans->dirty_bgs,
3719 struct btrfs_block_group_cache,
3720 dirty_list);
3721
3722 /*
3723 * this can happen if cache_save_setup re-dirties a block
3724 * group that is already under IO. Just wait for it to
3725 * finish and then do it all again
3726 */
3727 if (!list_empty(&cache->io_list)) {
3728 spin_unlock(&cur_trans->dirty_bgs_lock);
3729 list_del_init(&cache->io_list);
3730 btrfs_wait_cache_io(trans, cache, path);
3731 btrfs_put_block_group(cache);
3732 spin_lock(&cur_trans->dirty_bgs_lock);
3733 }
3734
3735 /*
3736 * don't remove from the dirty list until after we've waited
3737 * on any pending IO
3738 */
3739 list_del_init(&cache->dirty_list);
3740 spin_unlock(&cur_trans->dirty_bgs_lock);
3741 should_put = 1;
3742
3743 cache_save_setup(cache, trans, path);
3744
3745 if (!ret)
3746 ret = btrfs_run_delayed_refs(trans,
3747 (unsigned long) -1);
3748
3749 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3750 cache->io_ctl.inode = NULL;
3751 ret = btrfs_write_out_cache(fs_info, trans,
3752 cache, path);
3753 if (ret == 0 && cache->io_ctl.inode) {
3754 num_started++;
3755 should_put = 0;
3756 list_add_tail(&cache->io_list, io);
3757 } else {
3758 /*
3759 * if we failed to write the cache, the
3760 * generation will be bad and life goes on
3761 */
3762 ret = 0;
3763 }
3764 }
3765 if (!ret) {
3766 ret = write_one_cache_group(trans, fs_info,
3767 path, cache);
3768 /*
3769 * One of the free space endio workers might have
3770 * created a new block group while updating a free space
3771 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3772 * and hasn't released its transaction handle yet, in
3773 * which case the new block group is still attached to
3774 * its transaction handle and its creation has not
3775 * finished yet (no block group item in the extent tree
3776 * yet, etc). If this is the case, wait for all free
3777 * space endio workers to finish and retry. This is a
3778 * a very rare case so no need for a more efficient and
3779 * complex approach.
3780 */
3781 if (ret == -ENOENT) {
3782 wait_event(cur_trans->writer_wait,
3783 atomic_read(&cur_trans->num_writers) == 1);
3784 ret = write_one_cache_group(trans, fs_info,
3785 path, cache);
3786 }
3787 if (ret)
3788 btrfs_abort_transaction(trans, ret);
3789 }
3790
3791 /* if its not on the io list, we need to put the block group */
3792 if (should_put)
3793 btrfs_put_block_group(cache);
3794 spin_lock(&cur_trans->dirty_bgs_lock);
3795 }
3796 spin_unlock(&cur_trans->dirty_bgs_lock);
3797
3798 /*
3799 * Refer to the definition of io_bgs member for details why it's safe
3800 * to use it without any locking
3801 */
3802 while (!list_empty(io)) {
3803 cache = list_first_entry(io, struct btrfs_block_group_cache,
3804 io_list);
3805 list_del_init(&cache->io_list);
3806 btrfs_wait_cache_io(trans, cache, path);
3807 btrfs_put_block_group(cache);
3808 }
3809
3810 btrfs_free_path(path);
3811 return ret;
3812 }
3813
btrfs_extent_readonly(struct btrfs_fs_info * fs_info,u64 bytenr)3814 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
3815 {
3816 struct btrfs_block_group_cache *block_group;
3817 int readonly = 0;
3818
3819 block_group = btrfs_lookup_block_group(fs_info, bytenr);
3820 if (!block_group || block_group->ro)
3821 readonly = 1;
3822 if (block_group)
3823 btrfs_put_block_group(block_group);
3824 return readonly;
3825 }
3826
btrfs_inc_nocow_writers(struct btrfs_fs_info * fs_info,u64 bytenr)3827 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3828 {
3829 struct btrfs_block_group_cache *bg;
3830 bool ret = true;
3831
3832 bg = btrfs_lookup_block_group(fs_info, bytenr);
3833 if (!bg)
3834 return false;
3835
3836 spin_lock(&bg->lock);
3837 if (bg->ro)
3838 ret = false;
3839 else
3840 atomic_inc(&bg->nocow_writers);
3841 spin_unlock(&bg->lock);
3842
3843 /* no put on block group, done by btrfs_dec_nocow_writers */
3844 if (!ret)
3845 btrfs_put_block_group(bg);
3846
3847 return ret;
3848
3849 }
3850
btrfs_dec_nocow_writers(struct btrfs_fs_info * fs_info,u64 bytenr)3851 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3852 {
3853 struct btrfs_block_group_cache *bg;
3854
3855 bg = btrfs_lookup_block_group(fs_info, bytenr);
3856 ASSERT(bg);
3857 if (atomic_dec_and_test(&bg->nocow_writers))
3858 wake_up_var(&bg->nocow_writers);
3859 /*
3860 * Once for our lookup and once for the lookup done by a previous call
3861 * to btrfs_inc_nocow_writers()
3862 */
3863 btrfs_put_block_group(bg);
3864 btrfs_put_block_group(bg);
3865 }
3866
btrfs_wait_nocow_writers(struct btrfs_block_group_cache * bg)3867 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3868 {
3869 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
3870 }
3871
alloc_name(u64 flags)3872 static const char *alloc_name(u64 flags)
3873 {
3874 switch (flags) {
3875 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3876 return "mixed";
3877 case BTRFS_BLOCK_GROUP_METADATA:
3878 return "metadata";
3879 case BTRFS_BLOCK_GROUP_DATA:
3880 return "data";
3881 case BTRFS_BLOCK_GROUP_SYSTEM:
3882 return "system";
3883 default:
3884 WARN_ON(1);
3885 return "invalid-combination";
3886 };
3887 }
3888
create_space_info(struct btrfs_fs_info * info,u64 flags)3889 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
3890 {
3891
3892 struct btrfs_space_info *space_info;
3893 int i;
3894 int ret;
3895
3896 space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
3897 if (!space_info)
3898 return -ENOMEM;
3899
3900 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
3901 GFP_KERNEL);
3902 if (ret) {
3903 kfree(space_info);
3904 return ret;
3905 }
3906
3907 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3908 INIT_LIST_HEAD(&space_info->block_groups[i]);
3909 init_rwsem(&space_info->groups_sem);
3910 spin_lock_init(&space_info->lock);
3911 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3912 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3913 init_waitqueue_head(&space_info->wait);
3914 INIT_LIST_HEAD(&space_info->ro_bgs);
3915 INIT_LIST_HEAD(&space_info->tickets);
3916 INIT_LIST_HEAD(&space_info->priority_tickets);
3917
3918 ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
3919 info->space_info_kobj, "%s",
3920 alloc_name(space_info->flags));
3921 if (ret) {
3922 kobject_put(&space_info->kobj);
3923 return ret;
3924 }
3925
3926 list_add_rcu(&space_info->list, &info->space_info);
3927 if (flags & BTRFS_BLOCK_GROUP_DATA)
3928 info->data_sinfo = space_info;
3929
3930 return ret;
3931 }
3932
update_space_info(struct btrfs_fs_info * info,u64 flags,u64 total_bytes,u64 bytes_used,u64 bytes_readonly,struct btrfs_space_info ** space_info)3933 static void update_space_info(struct btrfs_fs_info *info, u64 flags,
3934 u64 total_bytes, u64 bytes_used,
3935 u64 bytes_readonly,
3936 struct btrfs_space_info **space_info)
3937 {
3938 struct btrfs_space_info *found;
3939 int factor;
3940
3941 factor = btrfs_bg_type_to_factor(flags);
3942
3943 found = __find_space_info(info, flags);
3944 ASSERT(found);
3945 spin_lock(&found->lock);
3946 found->total_bytes += total_bytes;
3947 found->disk_total += total_bytes * factor;
3948 found->bytes_used += bytes_used;
3949 found->disk_used += bytes_used * factor;
3950 found->bytes_readonly += bytes_readonly;
3951 if (total_bytes > 0)
3952 found->full = 0;
3953 space_info_add_new_bytes(info, found, total_bytes -
3954 bytes_used - bytes_readonly);
3955 spin_unlock(&found->lock);
3956 *space_info = found;
3957 }
3958
set_avail_alloc_bits(struct btrfs_fs_info * fs_info,u64 flags)3959 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3960 {
3961 u64 extra_flags = chunk_to_extended(flags) &
3962 BTRFS_EXTENDED_PROFILE_MASK;
3963
3964 write_seqlock(&fs_info->profiles_lock);
3965 if (flags & BTRFS_BLOCK_GROUP_DATA)
3966 fs_info->avail_data_alloc_bits |= extra_flags;
3967 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3968 fs_info->avail_metadata_alloc_bits |= extra_flags;
3969 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3970 fs_info->avail_system_alloc_bits |= extra_flags;
3971 write_sequnlock(&fs_info->profiles_lock);
3972 }
3973
3974 /*
3975 * returns target flags in extended format or 0 if restripe for this
3976 * chunk_type is not in progress
3977 *
3978 * should be called with balance_lock held
3979 */
get_restripe_target(struct btrfs_fs_info * fs_info,u64 flags)3980 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3981 {
3982 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3983 u64 target = 0;
3984
3985 if (!bctl)
3986 return 0;
3987
3988 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3989 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3990 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3991 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3992 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3993 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3994 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3995 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3996 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3997 }
3998
3999 return target;
4000 }
4001
4002 /*
4003 * @flags: available profiles in extended format (see ctree.h)
4004 *
4005 * Returns reduced profile in chunk format. If profile changing is in
4006 * progress (either running or paused) picks the target profile (if it's
4007 * already available), otherwise falls back to plain reducing.
4008 */
btrfs_reduce_alloc_profile(struct btrfs_fs_info * fs_info,u64 flags)4009 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
4010 {
4011 u64 num_devices = fs_info->fs_devices->rw_devices;
4012 u64 target;
4013 u64 raid_type;
4014 u64 allowed = 0;
4015
4016 /*
4017 * see if restripe for this chunk_type is in progress, if so
4018 * try to reduce to the target profile
4019 */
4020 spin_lock(&fs_info->balance_lock);
4021 target = get_restripe_target(fs_info, flags);
4022 if (target) {
4023 /* pick target profile only if it's already available */
4024 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4025 spin_unlock(&fs_info->balance_lock);
4026 return extended_to_chunk(target);
4027 }
4028 }
4029 spin_unlock(&fs_info->balance_lock);
4030
4031 /* First, mask out the RAID levels which aren't possible */
4032 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4033 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4034 allowed |= btrfs_raid_array[raid_type].bg_flag;
4035 }
4036 allowed &= flags;
4037
4038 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4039 allowed = BTRFS_BLOCK_GROUP_RAID6;
4040 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4041 allowed = BTRFS_BLOCK_GROUP_RAID5;
4042 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4043 allowed = BTRFS_BLOCK_GROUP_RAID10;
4044 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4045 allowed = BTRFS_BLOCK_GROUP_RAID1;
4046 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4047 allowed = BTRFS_BLOCK_GROUP_RAID0;
4048
4049 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4050
4051 return extended_to_chunk(flags | allowed);
4052 }
4053
get_alloc_profile(struct btrfs_fs_info * fs_info,u64 orig_flags)4054 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
4055 {
4056 unsigned seq;
4057 u64 flags;
4058
4059 do {
4060 flags = orig_flags;
4061 seq = read_seqbegin(&fs_info->profiles_lock);
4062
4063 if (flags & BTRFS_BLOCK_GROUP_DATA)
4064 flags |= fs_info->avail_data_alloc_bits;
4065 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4066 flags |= fs_info->avail_system_alloc_bits;
4067 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4068 flags |= fs_info->avail_metadata_alloc_bits;
4069 } while (read_seqretry(&fs_info->profiles_lock, seq));
4070
4071 return btrfs_reduce_alloc_profile(fs_info, flags);
4072 }
4073
get_alloc_profile_by_root(struct btrfs_root * root,int data)4074 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
4075 {
4076 struct btrfs_fs_info *fs_info = root->fs_info;
4077 u64 flags;
4078 u64 ret;
4079
4080 if (data)
4081 flags = BTRFS_BLOCK_GROUP_DATA;
4082 else if (root == fs_info->chunk_root)
4083 flags = BTRFS_BLOCK_GROUP_SYSTEM;
4084 else
4085 flags = BTRFS_BLOCK_GROUP_METADATA;
4086
4087 ret = get_alloc_profile(fs_info, flags);
4088 return ret;
4089 }
4090
btrfs_data_alloc_profile(struct btrfs_fs_info * fs_info)4091 u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4092 {
4093 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4094 }
4095
btrfs_metadata_alloc_profile(struct btrfs_fs_info * fs_info)4096 u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4097 {
4098 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4099 }
4100
btrfs_system_alloc_profile(struct btrfs_fs_info * fs_info)4101 u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4102 {
4103 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4104 }
4105
btrfs_space_info_used(struct btrfs_space_info * s_info,bool may_use_included)4106 static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4107 bool may_use_included)
4108 {
4109 ASSERT(s_info);
4110 return s_info->bytes_used + s_info->bytes_reserved +
4111 s_info->bytes_pinned + s_info->bytes_readonly +
4112 (may_use_included ? s_info->bytes_may_use : 0);
4113 }
4114
btrfs_alloc_data_chunk_ondemand(struct btrfs_inode * inode,u64 bytes)4115 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
4116 {
4117 struct btrfs_root *root = inode->root;
4118 struct btrfs_fs_info *fs_info = root->fs_info;
4119 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
4120 u64 used;
4121 int ret = 0;
4122 int need_commit = 2;
4123 int have_pinned_space;
4124
4125 /* make sure bytes are sectorsize aligned */
4126 bytes = ALIGN(bytes, fs_info->sectorsize);
4127
4128 if (btrfs_is_free_space_inode(inode)) {
4129 need_commit = 0;
4130 ASSERT(current->journal_info);
4131 }
4132
4133 again:
4134 /* make sure we have enough space to handle the data first */
4135 spin_lock(&data_sinfo->lock);
4136 used = btrfs_space_info_used(data_sinfo, true);
4137
4138 if (used + bytes > data_sinfo->total_bytes) {
4139 struct btrfs_trans_handle *trans;
4140
4141 /*
4142 * if we don't have enough free bytes in this space then we need
4143 * to alloc a new chunk.
4144 */
4145 if (!data_sinfo->full) {
4146 u64 alloc_target;
4147
4148 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4149 spin_unlock(&data_sinfo->lock);
4150
4151 alloc_target = btrfs_data_alloc_profile(fs_info);
4152 /*
4153 * It is ugly that we don't call nolock join
4154 * transaction for the free space inode case here.
4155 * But it is safe because we only do the data space
4156 * reservation for the free space cache in the
4157 * transaction context, the common join transaction
4158 * just increase the counter of the current transaction
4159 * handler, doesn't try to acquire the trans_lock of
4160 * the fs.
4161 */
4162 trans = btrfs_join_transaction(root);
4163 if (IS_ERR(trans))
4164 return PTR_ERR(trans);
4165
4166 ret = do_chunk_alloc(trans, alloc_target,
4167 CHUNK_ALLOC_NO_FORCE);
4168 btrfs_end_transaction(trans);
4169 if (ret < 0) {
4170 if (ret != -ENOSPC)
4171 return ret;
4172 else {
4173 have_pinned_space = 1;
4174 goto commit_trans;
4175 }
4176 }
4177
4178 goto again;
4179 }
4180
4181 /*
4182 * If we don't have enough pinned space to deal with this
4183 * allocation, and no removed chunk in current transaction,
4184 * don't bother committing the transaction.
4185 */
4186 have_pinned_space = __percpu_counter_compare(
4187 &data_sinfo->total_bytes_pinned,
4188 used + bytes - data_sinfo->total_bytes,
4189 BTRFS_TOTAL_BYTES_PINNED_BATCH);
4190 spin_unlock(&data_sinfo->lock);
4191
4192 /* commit the current transaction and try again */
4193 commit_trans:
4194 if (need_commit) {
4195 need_commit--;
4196
4197 if (need_commit > 0) {
4198 btrfs_start_delalloc_roots(fs_info, -1);
4199 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
4200 (u64)-1);
4201 }
4202
4203 trans = btrfs_join_transaction(root);
4204 if (IS_ERR(trans))
4205 return PTR_ERR(trans);
4206 if (have_pinned_space >= 0 ||
4207 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4208 &trans->transaction->flags) ||
4209 need_commit > 0) {
4210 ret = btrfs_commit_transaction(trans);
4211 if (ret)
4212 return ret;
4213 /*
4214 * The cleaner kthread might still be doing iput
4215 * operations. Wait for it to finish so that
4216 * more space is released.
4217 */
4218 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4219 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
4220 goto again;
4221 } else {
4222 btrfs_end_transaction(trans);
4223 }
4224 }
4225
4226 trace_btrfs_space_reservation(fs_info,
4227 "space_info:enospc",
4228 data_sinfo->flags, bytes, 1);
4229 return -ENOSPC;
4230 }
4231 data_sinfo->bytes_may_use += bytes;
4232 trace_btrfs_space_reservation(fs_info, "space_info",
4233 data_sinfo->flags, bytes, 1);
4234 spin_unlock(&data_sinfo->lock);
4235
4236 return 0;
4237 }
4238
btrfs_check_data_free_space(struct inode * inode,struct extent_changeset ** reserved,u64 start,u64 len)4239 int btrfs_check_data_free_space(struct inode *inode,
4240 struct extent_changeset **reserved, u64 start, u64 len)
4241 {
4242 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4243 int ret;
4244
4245 /* align the range */
4246 len = round_up(start + len, fs_info->sectorsize) -
4247 round_down(start, fs_info->sectorsize);
4248 start = round_down(start, fs_info->sectorsize);
4249
4250 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4251 if (ret < 0)
4252 return ret;
4253
4254 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4255 ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
4256 if (ret < 0)
4257 btrfs_free_reserved_data_space_noquota(inode, start, len);
4258 else
4259 ret = 0;
4260 return ret;
4261 }
4262
4263 /*
4264 * Called if we need to clear a data reservation for this inode
4265 * Normally in a error case.
4266 *
4267 * This one will *NOT* use accurate qgroup reserved space API, just for case
4268 * which we can't sleep and is sure it won't affect qgroup reserved space.
4269 * Like clear_bit_hook().
4270 */
btrfs_free_reserved_data_space_noquota(struct inode * inode,u64 start,u64 len)4271 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4272 u64 len)
4273 {
4274 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4275 struct btrfs_space_info *data_sinfo;
4276
4277 /* Make sure the range is aligned to sectorsize */
4278 len = round_up(start + len, fs_info->sectorsize) -
4279 round_down(start, fs_info->sectorsize);
4280 start = round_down(start, fs_info->sectorsize);
4281
4282 data_sinfo = fs_info->data_sinfo;
4283 spin_lock(&data_sinfo->lock);
4284 if (WARN_ON(data_sinfo->bytes_may_use < len))
4285 data_sinfo->bytes_may_use = 0;
4286 else
4287 data_sinfo->bytes_may_use -= len;
4288 trace_btrfs_space_reservation(fs_info, "space_info",
4289 data_sinfo->flags, len, 0);
4290 spin_unlock(&data_sinfo->lock);
4291 }
4292
4293 /*
4294 * Called if we need to clear a data reservation for this inode
4295 * Normally in a error case.
4296 *
4297 * This one will handle the per-inode data rsv map for accurate reserved
4298 * space framework.
4299 */
btrfs_free_reserved_data_space(struct inode * inode,struct extent_changeset * reserved,u64 start,u64 len)4300 void btrfs_free_reserved_data_space(struct inode *inode,
4301 struct extent_changeset *reserved, u64 start, u64 len)
4302 {
4303 struct btrfs_root *root = BTRFS_I(inode)->root;
4304
4305 /* Make sure the range is aligned to sectorsize */
4306 len = round_up(start + len, root->fs_info->sectorsize) -
4307 round_down(start, root->fs_info->sectorsize);
4308 start = round_down(start, root->fs_info->sectorsize);
4309
4310 btrfs_free_reserved_data_space_noquota(inode, start, len);
4311 btrfs_qgroup_free_data(inode, reserved, start, len);
4312 }
4313
force_metadata_allocation(struct btrfs_fs_info * info)4314 static void force_metadata_allocation(struct btrfs_fs_info *info)
4315 {
4316 struct list_head *head = &info->space_info;
4317 struct btrfs_space_info *found;
4318
4319 rcu_read_lock();
4320 list_for_each_entry_rcu(found, head, list) {
4321 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4322 found->force_alloc = CHUNK_ALLOC_FORCE;
4323 }
4324 rcu_read_unlock();
4325 }
4326
calc_global_rsv_need_space(struct btrfs_block_rsv * global)4327 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4328 {
4329 return (global->size << 1);
4330 }
4331
should_alloc_chunk(struct btrfs_fs_info * fs_info,struct btrfs_space_info * sinfo,int force)4332 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
4333 struct btrfs_space_info *sinfo, int force)
4334 {
4335 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4336 u64 bytes_used = btrfs_space_info_used(sinfo, false);
4337 u64 thresh;
4338
4339 if (force == CHUNK_ALLOC_FORCE)
4340 return 1;
4341
4342 /*
4343 * We need to take into account the global rsv because for all intents
4344 * and purposes it's used space. Don't worry about locking the
4345 * global_rsv, it doesn't change except when the transaction commits.
4346 */
4347 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4348 bytes_used += calc_global_rsv_need_space(global_rsv);
4349
4350 /*
4351 * in limited mode, we want to have some free space up to
4352 * about 1% of the FS size.
4353 */
4354 if (force == CHUNK_ALLOC_LIMITED) {
4355 thresh = btrfs_super_total_bytes(fs_info->super_copy);
4356 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4357
4358 if (sinfo->total_bytes - bytes_used < thresh)
4359 return 1;
4360 }
4361
4362 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
4363 return 0;
4364 return 1;
4365 }
4366
get_profile_num_devs(struct btrfs_fs_info * fs_info,u64 type)4367 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4368 {
4369 u64 num_dev;
4370
4371 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4372 BTRFS_BLOCK_GROUP_RAID0 |
4373 BTRFS_BLOCK_GROUP_RAID5 |
4374 BTRFS_BLOCK_GROUP_RAID6))
4375 num_dev = fs_info->fs_devices->rw_devices;
4376 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4377 num_dev = 2;
4378 else
4379 num_dev = 1; /* DUP or single */
4380
4381 return num_dev;
4382 }
4383
4384 /*
4385 * If @is_allocation is true, reserve space in the system space info necessary
4386 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4387 * removing a chunk.
4388 */
check_system_chunk(struct btrfs_trans_handle * trans,u64 type)4389 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
4390 {
4391 struct btrfs_fs_info *fs_info = trans->fs_info;
4392 struct btrfs_space_info *info;
4393 u64 left;
4394 u64 thresh;
4395 int ret = 0;
4396 u64 num_devs;
4397
4398 /*
4399 * Needed because we can end up allocating a system chunk and for an
4400 * atomic and race free space reservation in the chunk block reserve.
4401 */
4402 lockdep_assert_held(&fs_info->chunk_mutex);
4403
4404 info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4405 spin_lock(&info->lock);
4406 left = info->total_bytes - btrfs_space_info_used(info, true);
4407 spin_unlock(&info->lock);
4408
4409 num_devs = get_profile_num_devs(fs_info, type);
4410
4411 /* num_devs device items to update and 1 chunk item to add or remove */
4412 thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4413 btrfs_calc_trans_metadata_size(fs_info, 1);
4414
4415 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4416 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4417 left, thresh, type);
4418 dump_space_info(fs_info, info, 0, 0);
4419 }
4420
4421 if (left < thresh) {
4422 u64 flags = btrfs_system_alloc_profile(fs_info);
4423
4424 /*
4425 * Ignore failure to create system chunk. We might end up not
4426 * needing it, as we might not need to COW all nodes/leafs from
4427 * the paths we visit in the chunk tree (they were already COWed
4428 * or created in the current transaction for example).
4429 */
4430 ret = btrfs_alloc_chunk(trans, flags);
4431 }
4432
4433 if (!ret) {
4434 ret = btrfs_block_rsv_add(fs_info->chunk_root,
4435 &fs_info->chunk_block_rsv,
4436 thresh, BTRFS_RESERVE_NO_FLUSH);
4437 if (!ret)
4438 trans->chunk_bytes_reserved += thresh;
4439 }
4440 }
4441
4442 /*
4443 * If force is CHUNK_ALLOC_FORCE:
4444 * - return 1 if it successfully allocates a chunk,
4445 * - return errors including -ENOSPC otherwise.
4446 * If force is NOT CHUNK_ALLOC_FORCE:
4447 * - return 0 if it doesn't need to allocate a new chunk,
4448 * - return 1 if it successfully allocates a chunk,
4449 * - return errors including -ENOSPC otherwise.
4450 */
do_chunk_alloc(struct btrfs_trans_handle * trans,u64 flags,int force)4451 static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
4452 int force)
4453 {
4454 struct btrfs_fs_info *fs_info = trans->fs_info;
4455 struct btrfs_space_info *space_info;
4456 bool wait_for_alloc = false;
4457 bool should_alloc = false;
4458 int ret = 0;
4459
4460 /* Don't re-enter if we're already allocating a chunk */
4461 if (trans->allocating_chunk)
4462 return -ENOSPC;
4463
4464 space_info = __find_space_info(fs_info, flags);
4465 ASSERT(space_info);
4466
4467 do {
4468 spin_lock(&space_info->lock);
4469 if (force < space_info->force_alloc)
4470 force = space_info->force_alloc;
4471 should_alloc = should_alloc_chunk(fs_info, space_info, force);
4472 if (space_info->full) {
4473 /* No more free physical space */
4474 if (should_alloc)
4475 ret = -ENOSPC;
4476 else
4477 ret = 0;
4478 spin_unlock(&space_info->lock);
4479 return ret;
4480 } else if (!should_alloc) {
4481 spin_unlock(&space_info->lock);
4482 return 0;
4483 } else if (space_info->chunk_alloc) {
4484 /*
4485 * Someone is already allocating, so we need to block
4486 * until this someone is finished and then loop to
4487 * recheck if we should continue with our allocation
4488 * attempt.
4489 */
4490 wait_for_alloc = true;
4491 spin_unlock(&space_info->lock);
4492 mutex_lock(&fs_info->chunk_mutex);
4493 mutex_unlock(&fs_info->chunk_mutex);
4494 } else {
4495 /* Proceed with allocation */
4496 space_info->chunk_alloc = 1;
4497 wait_for_alloc = false;
4498 spin_unlock(&space_info->lock);
4499 }
4500
4501 cond_resched();
4502 } while (wait_for_alloc);
4503
4504 mutex_lock(&fs_info->chunk_mutex);
4505 trans->allocating_chunk = true;
4506
4507 /*
4508 * If we have mixed data/metadata chunks we want to make sure we keep
4509 * allocating mixed chunks instead of individual chunks.
4510 */
4511 if (btrfs_mixed_space_info(space_info))
4512 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4513
4514 /*
4515 * if we're doing a data chunk, go ahead and make sure that
4516 * we keep a reasonable number of metadata chunks allocated in the
4517 * FS as well.
4518 */
4519 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4520 fs_info->data_chunk_allocations++;
4521 if (!(fs_info->data_chunk_allocations %
4522 fs_info->metadata_ratio))
4523 force_metadata_allocation(fs_info);
4524 }
4525
4526 /*
4527 * Check if we have enough space in SYSTEM chunk because we may need
4528 * to update devices.
4529 */
4530 check_system_chunk(trans, flags);
4531
4532 ret = btrfs_alloc_chunk(trans, flags);
4533 trans->allocating_chunk = false;
4534
4535 spin_lock(&space_info->lock);
4536 if (ret < 0) {
4537 if (ret == -ENOSPC)
4538 space_info->full = 1;
4539 else
4540 goto out;
4541 } else {
4542 ret = 1;
4543 space_info->max_extent_size = 0;
4544 }
4545
4546 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4547 out:
4548 space_info->chunk_alloc = 0;
4549 spin_unlock(&space_info->lock);
4550 mutex_unlock(&fs_info->chunk_mutex);
4551 /*
4552 * When we allocate a new chunk we reserve space in the chunk block
4553 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4554 * add new nodes/leafs to it if we end up needing to do it when
4555 * inserting the chunk item and updating device items as part of the
4556 * second phase of chunk allocation, performed by
4557 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4558 * large number of new block groups to create in our transaction
4559 * handle's new_bgs list to avoid exhausting the chunk block reserve
4560 * in extreme cases - like having a single transaction create many new
4561 * block groups when starting to write out the free space caches of all
4562 * the block groups that were made dirty during the lifetime of the
4563 * transaction.
4564 */
4565 if (trans->chunk_bytes_reserved >= (u64)SZ_2M)
4566 btrfs_create_pending_block_groups(trans);
4567
4568 return ret;
4569 }
4570
can_overcommit(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 bytes,enum btrfs_reserve_flush_enum flush,bool system_chunk)4571 static int can_overcommit(struct btrfs_fs_info *fs_info,
4572 struct btrfs_space_info *space_info, u64 bytes,
4573 enum btrfs_reserve_flush_enum flush,
4574 bool system_chunk)
4575 {
4576 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4577 u64 profile;
4578 u64 space_size;
4579 u64 avail;
4580 u64 used;
4581 int factor;
4582
4583 /* Don't overcommit when in mixed mode. */
4584 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4585 return 0;
4586
4587 if (system_chunk)
4588 profile = btrfs_system_alloc_profile(fs_info);
4589 else
4590 profile = btrfs_metadata_alloc_profile(fs_info);
4591
4592 used = btrfs_space_info_used(space_info, false);
4593
4594 /*
4595 * We only want to allow over committing if we have lots of actual space
4596 * free, but if we don't have enough space to handle the global reserve
4597 * space then we could end up having a real enospc problem when trying
4598 * to allocate a chunk or some other such important allocation.
4599 */
4600 spin_lock(&global_rsv->lock);
4601 space_size = calc_global_rsv_need_space(global_rsv);
4602 spin_unlock(&global_rsv->lock);
4603 if (used + space_size >= space_info->total_bytes)
4604 return 0;
4605
4606 used += space_info->bytes_may_use;
4607
4608 avail = atomic64_read(&fs_info->free_chunk_space);
4609
4610 /*
4611 * If we have dup, raid1 or raid10 then only half of the free
4612 * space is actually useable. For raid56, the space info used
4613 * doesn't include the parity drive, so we don't have to
4614 * change the math
4615 */
4616 factor = btrfs_bg_type_to_factor(profile);
4617 avail = div_u64(avail, factor);
4618
4619 /*
4620 * If we aren't flushing all things, let us overcommit up to
4621 * 1/2th of the space. If we can flush, don't let us overcommit
4622 * too much, let it overcommit up to 1/8 of the space.
4623 */
4624 if (flush == BTRFS_RESERVE_FLUSH_ALL)
4625 avail >>= 3;
4626 else
4627 avail >>= 1;
4628
4629 if (used + bytes < space_info->total_bytes + avail)
4630 return 1;
4631 return 0;
4632 }
4633
btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info * fs_info,unsigned long nr_pages,int nr_items)4634 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
4635 unsigned long nr_pages, int nr_items)
4636 {
4637 struct super_block *sb = fs_info->sb;
4638
4639 if (down_read_trylock(&sb->s_umount)) {
4640 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4641 up_read(&sb->s_umount);
4642 } else {
4643 /*
4644 * We needn't worry the filesystem going from r/w to r/o though
4645 * we don't acquire ->s_umount mutex, because the filesystem
4646 * should guarantee the delalloc inodes list be empty after
4647 * the filesystem is readonly(all dirty pages are written to
4648 * the disk).
4649 */
4650 btrfs_start_delalloc_roots(fs_info, nr_items);
4651 if (!current->journal_info)
4652 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
4653 }
4654 }
4655
calc_reclaim_items_nr(struct btrfs_fs_info * fs_info,u64 to_reclaim)4656 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
4657 u64 to_reclaim)
4658 {
4659 u64 bytes;
4660 u64 nr;
4661
4662 bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
4663 nr = div64_u64(to_reclaim, bytes);
4664 if (!nr)
4665 nr = 1;
4666 return nr;
4667 }
4668
4669 #define EXTENT_SIZE_PER_ITEM SZ_256K
4670
4671 /*
4672 * shrink metadata reservation for delalloc
4673 */
shrink_delalloc(struct btrfs_fs_info * fs_info,u64 to_reclaim,u64 orig,bool wait_ordered)4674 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4675 u64 orig, bool wait_ordered)
4676 {
4677 struct btrfs_space_info *space_info;
4678 struct btrfs_trans_handle *trans;
4679 u64 delalloc_bytes;
4680 u64 max_reclaim;
4681 u64 items;
4682 long time_left;
4683 unsigned long nr_pages;
4684 int loops;
4685
4686 /* Calc the number of the pages we need flush for space reservation */
4687 items = calc_reclaim_items_nr(fs_info, to_reclaim);
4688 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4689
4690 trans = (struct btrfs_trans_handle *)current->journal_info;
4691 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4692
4693 delalloc_bytes = percpu_counter_sum_positive(
4694 &fs_info->delalloc_bytes);
4695 if (delalloc_bytes == 0) {
4696 if (trans)
4697 return;
4698 if (wait_ordered)
4699 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4700 return;
4701 }
4702
4703 loops = 0;
4704 while (delalloc_bytes && loops < 3) {
4705 max_reclaim = min(delalloc_bytes, to_reclaim);
4706 nr_pages = max_reclaim >> PAGE_SHIFT;
4707 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
4708 /*
4709 * We need to wait for the async pages to actually start before
4710 * we do anything.
4711 */
4712 max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
4713 if (!max_reclaim)
4714 goto skip_async;
4715
4716 if (max_reclaim <= nr_pages)
4717 max_reclaim = 0;
4718 else
4719 max_reclaim -= nr_pages;
4720
4721 wait_event(fs_info->async_submit_wait,
4722 atomic_read(&fs_info->async_delalloc_pages) <=
4723 (int)max_reclaim);
4724 skip_async:
4725 spin_lock(&space_info->lock);
4726 if (list_empty(&space_info->tickets) &&
4727 list_empty(&space_info->priority_tickets)) {
4728 spin_unlock(&space_info->lock);
4729 break;
4730 }
4731 spin_unlock(&space_info->lock);
4732
4733 loops++;
4734 if (wait_ordered && !trans) {
4735 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4736 } else {
4737 time_left = schedule_timeout_killable(1);
4738 if (time_left)
4739 break;
4740 }
4741 delalloc_bytes = percpu_counter_sum_positive(
4742 &fs_info->delalloc_bytes);
4743 }
4744 }
4745
4746 struct reserve_ticket {
4747 u64 bytes;
4748 int error;
4749 struct list_head list;
4750 wait_queue_head_t wait;
4751 };
4752
4753 /**
4754 * maybe_commit_transaction - possibly commit the transaction if its ok to
4755 * @root - the root we're allocating for
4756 * @bytes - the number of bytes we want to reserve
4757 * @force - force the commit
4758 *
4759 * This will check to make sure that committing the transaction will actually
4760 * get us somewhere and then commit the transaction if it does. Otherwise it
4761 * will return -ENOSPC.
4762 */
may_commit_transaction(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info)4763 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
4764 struct btrfs_space_info *space_info)
4765 {
4766 struct reserve_ticket *ticket = NULL;
4767 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
4768 struct btrfs_trans_handle *trans;
4769 u64 bytes;
4770
4771 trans = (struct btrfs_trans_handle *)current->journal_info;
4772 if (trans)
4773 return -EAGAIN;
4774
4775 spin_lock(&space_info->lock);
4776 if (!list_empty(&space_info->priority_tickets))
4777 ticket = list_first_entry(&space_info->priority_tickets,
4778 struct reserve_ticket, list);
4779 else if (!list_empty(&space_info->tickets))
4780 ticket = list_first_entry(&space_info->tickets,
4781 struct reserve_ticket, list);
4782 bytes = (ticket) ? ticket->bytes : 0;
4783 spin_unlock(&space_info->lock);
4784
4785 if (!bytes)
4786 return 0;
4787
4788 /* See if there is enough pinned space to make this reservation */
4789 if (__percpu_counter_compare(&space_info->total_bytes_pinned,
4790 bytes,
4791 BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0)
4792 goto commit;
4793
4794 /*
4795 * See if there is some space in the delayed insertion reservation for
4796 * this reservation.
4797 */
4798 if (space_info != delayed_rsv->space_info)
4799 return -ENOSPC;
4800
4801 spin_lock(&delayed_rsv->lock);
4802 if (delayed_rsv->size > bytes)
4803 bytes = 0;
4804 else
4805 bytes -= delayed_rsv->size;
4806 spin_unlock(&delayed_rsv->lock);
4807
4808 if (__percpu_counter_compare(&space_info->total_bytes_pinned,
4809 bytes,
4810 BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0) {
4811 return -ENOSPC;
4812 }
4813
4814 commit:
4815 trans = btrfs_join_transaction(fs_info->extent_root);
4816 if (IS_ERR(trans))
4817 return -ENOSPC;
4818
4819 return btrfs_commit_transaction(trans);
4820 }
4821
4822 /*
4823 * Try to flush some data based on policy set by @state. This is only advisory
4824 * and may fail for various reasons. The caller is supposed to examine the
4825 * state of @space_info to detect the outcome.
4826 */
flush_space(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 num_bytes,int state)4827 static void flush_space(struct btrfs_fs_info *fs_info,
4828 struct btrfs_space_info *space_info, u64 num_bytes,
4829 int state)
4830 {
4831 struct btrfs_root *root = fs_info->extent_root;
4832 struct btrfs_trans_handle *trans;
4833 int nr;
4834 int ret = 0;
4835
4836 switch (state) {
4837 case FLUSH_DELAYED_ITEMS_NR:
4838 case FLUSH_DELAYED_ITEMS:
4839 if (state == FLUSH_DELAYED_ITEMS_NR)
4840 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
4841 else
4842 nr = -1;
4843
4844 trans = btrfs_join_transaction(root);
4845 if (IS_ERR(trans)) {
4846 ret = PTR_ERR(trans);
4847 break;
4848 }
4849 ret = btrfs_run_delayed_items_nr(trans, nr);
4850 btrfs_end_transaction(trans);
4851 break;
4852 case FLUSH_DELALLOC:
4853 case FLUSH_DELALLOC_WAIT:
4854 shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
4855 state == FLUSH_DELALLOC_WAIT);
4856 break;
4857 case ALLOC_CHUNK:
4858 trans = btrfs_join_transaction(root);
4859 if (IS_ERR(trans)) {
4860 ret = PTR_ERR(trans);
4861 break;
4862 }
4863 ret = do_chunk_alloc(trans,
4864 btrfs_metadata_alloc_profile(fs_info),
4865 CHUNK_ALLOC_NO_FORCE);
4866 btrfs_end_transaction(trans);
4867 if (ret > 0 || ret == -ENOSPC)
4868 ret = 0;
4869 break;
4870 case COMMIT_TRANS:
4871 ret = may_commit_transaction(fs_info, space_info);
4872 break;
4873 default:
4874 ret = -ENOSPC;
4875 break;
4876 }
4877
4878 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
4879 ret);
4880 return;
4881 }
4882
4883 static inline u64
btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,bool system_chunk)4884 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
4885 struct btrfs_space_info *space_info,
4886 bool system_chunk)
4887 {
4888 struct reserve_ticket *ticket;
4889 u64 used;
4890 u64 expected;
4891 u64 to_reclaim = 0;
4892
4893 list_for_each_entry(ticket, &space_info->tickets, list)
4894 to_reclaim += ticket->bytes;
4895 list_for_each_entry(ticket, &space_info->priority_tickets, list)
4896 to_reclaim += ticket->bytes;
4897 if (to_reclaim)
4898 return to_reclaim;
4899
4900 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
4901 if (can_overcommit(fs_info, space_info, to_reclaim,
4902 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
4903 return 0;
4904
4905 used = btrfs_space_info_used(space_info, true);
4906
4907 if (can_overcommit(fs_info, space_info, SZ_1M,
4908 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
4909 expected = div_factor_fine(space_info->total_bytes, 95);
4910 else
4911 expected = div_factor_fine(space_info->total_bytes, 90);
4912
4913 if (used > expected)
4914 to_reclaim = used - expected;
4915 else
4916 to_reclaim = 0;
4917 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4918 space_info->bytes_reserved);
4919 return to_reclaim;
4920 }
4921
need_do_async_reclaim(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 used,bool system_chunk)4922 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
4923 struct btrfs_space_info *space_info,
4924 u64 used, bool system_chunk)
4925 {
4926 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4927
4928 /* If we're just plain full then async reclaim just slows us down. */
4929 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
4930 return 0;
4931
4932 if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
4933 system_chunk))
4934 return 0;
4935
4936 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4937 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4938 }
4939
wake_all_tickets(struct list_head * head)4940 static void wake_all_tickets(struct list_head *head)
4941 {
4942 struct reserve_ticket *ticket;
4943
4944 while (!list_empty(head)) {
4945 ticket = list_first_entry(head, struct reserve_ticket, list);
4946 list_del_init(&ticket->list);
4947 ticket->error = -ENOSPC;
4948 wake_up(&ticket->wait);
4949 }
4950 }
4951
4952 /*
4953 * This is for normal flushers, we can wait all goddamned day if we want to. We
4954 * will loop and continuously try to flush as long as we are making progress.
4955 * We count progress as clearing off tickets each time we have to loop.
4956 */
btrfs_async_reclaim_metadata_space(struct work_struct * work)4957 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4958 {
4959 struct btrfs_fs_info *fs_info;
4960 struct btrfs_space_info *space_info;
4961 u64 to_reclaim;
4962 int flush_state;
4963 int commit_cycles = 0;
4964 u64 last_tickets_id;
4965
4966 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4967 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4968
4969 spin_lock(&space_info->lock);
4970 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
4971 false);
4972 if (!to_reclaim) {
4973 space_info->flush = 0;
4974 spin_unlock(&space_info->lock);
4975 return;
4976 }
4977 last_tickets_id = space_info->tickets_id;
4978 spin_unlock(&space_info->lock);
4979
4980 flush_state = FLUSH_DELAYED_ITEMS_NR;
4981 do {
4982 flush_space(fs_info, space_info, to_reclaim, flush_state);
4983 spin_lock(&space_info->lock);
4984 if (list_empty(&space_info->tickets)) {
4985 space_info->flush = 0;
4986 spin_unlock(&space_info->lock);
4987 return;
4988 }
4989 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
4990 space_info,
4991 false);
4992 if (last_tickets_id == space_info->tickets_id) {
4993 flush_state++;
4994 } else {
4995 last_tickets_id = space_info->tickets_id;
4996 flush_state = FLUSH_DELAYED_ITEMS_NR;
4997 if (commit_cycles)
4998 commit_cycles--;
4999 }
5000
5001 if (flush_state > COMMIT_TRANS) {
5002 commit_cycles++;
5003 if (commit_cycles > 2) {
5004 wake_all_tickets(&space_info->tickets);
5005 space_info->flush = 0;
5006 } else {
5007 flush_state = FLUSH_DELAYED_ITEMS_NR;
5008 }
5009 }
5010 spin_unlock(&space_info->lock);
5011 } while (flush_state <= COMMIT_TRANS);
5012 }
5013
btrfs_init_async_reclaim_work(struct work_struct * work)5014 void btrfs_init_async_reclaim_work(struct work_struct *work)
5015 {
5016 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5017 }
5018
priority_reclaim_metadata_space(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,struct reserve_ticket * ticket)5019 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5020 struct btrfs_space_info *space_info,
5021 struct reserve_ticket *ticket)
5022 {
5023 u64 to_reclaim;
5024 int flush_state = FLUSH_DELAYED_ITEMS_NR;
5025
5026 spin_lock(&space_info->lock);
5027 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5028 false);
5029 if (!to_reclaim) {
5030 spin_unlock(&space_info->lock);
5031 return;
5032 }
5033 spin_unlock(&space_info->lock);
5034
5035 do {
5036 flush_space(fs_info, space_info, to_reclaim, flush_state);
5037 flush_state++;
5038 spin_lock(&space_info->lock);
5039 if (ticket->bytes == 0) {
5040 spin_unlock(&space_info->lock);
5041 return;
5042 }
5043 spin_unlock(&space_info->lock);
5044
5045 /*
5046 * Priority flushers can't wait on delalloc without
5047 * deadlocking.
5048 */
5049 if (flush_state == FLUSH_DELALLOC ||
5050 flush_state == FLUSH_DELALLOC_WAIT)
5051 flush_state = ALLOC_CHUNK;
5052 } while (flush_state < COMMIT_TRANS);
5053 }
5054
wait_reserve_ticket(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,struct reserve_ticket * ticket,u64 orig_bytes)5055 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5056 struct btrfs_space_info *space_info,
5057 struct reserve_ticket *ticket, u64 orig_bytes)
5058
5059 {
5060 DEFINE_WAIT(wait);
5061 int ret = 0;
5062
5063 spin_lock(&space_info->lock);
5064 while (ticket->bytes > 0 && ticket->error == 0) {
5065 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5066 if (ret) {
5067 ret = -EINTR;
5068 break;
5069 }
5070 spin_unlock(&space_info->lock);
5071
5072 schedule();
5073
5074 finish_wait(&ticket->wait, &wait);
5075 spin_lock(&space_info->lock);
5076 }
5077 if (!ret)
5078 ret = ticket->error;
5079 if (!list_empty(&ticket->list))
5080 list_del_init(&ticket->list);
5081 if (ticket->bytes && ticket->bytes < orig_bytes) {
5082 u64 num_bytes = orig_bytes - ticket->bytes;
5083 space_info->bytes_may_use -= num_bytes;
5084 trace_btrfs_space_reservation(fs_info, "space_info",
5085 space_info->flags, num_bytes, 0);
5086 }
5087 spin_unlock(&space_info->lock);
5088
5089 return ret;
5090 }
5091
5092 /**
5093 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5094 * @root - the root we're allocating for
5095 * @space_info - the space info we want to allocate from
5096 * @orig_bytes - the number of bytes we want
5097 * @flush - whether or not we can flush to make our reservation
5098 *
5099 * This will reserve orig_bytes number of bytes from the space info associated
5100 * with the block_rsv. If there is not enough space it will make an attempt to
5101 * flush out space to make room. It will do this by flushing delalloc if
5102 * possible or committing the transaction. If flush is 0 then no attempts to
5103 * regain reservations will be made and this will fail if there is not enough
5104 * space already.
5105 */
__reserve_metadata_bytes(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 orig_bytes,enum btrfs_reserve_flush_enum flush,bool system_chunk)5106 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
5107 struct btrfs_space_info *space_info,
5108 u64 orig_bytes,
5109 enum btrfs_reserve_flush_enum flush,
5110 bool system_chunk)
5111 {
5112 struct reserve_ticket ticket;
5113 u64 used;
5114 int ret = 0;
5115
5116 ASSERT(orig_bytes);
5117 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
5118
5119 spin_lock(&space_info->lock);
5120 ret = -ENOSPC;
5121 used = btrfs_space_info_used(space_info, true);
5122
5123 /*
5124 * If we have enough space then hooray, make our reservation and carry
5125 * on. If not see if we can overcommit, and if we can, hooray carry on.
5126 * If not things get more complicated.
5127 */
5128 if (used + orig_bytes <= space_info->total_bytes) {
5129 space_info->bytes_may_use += orig_bytes;
5130 trace_btrfs_space_reservation(fs_info, "space_info",
5131 space_info->flags, orig_bytes, 1);
5132 ret = 0;
5133 } else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5134 system_chunk)) {
5135 space_info->bytes_may_use += orig_bytes;
5136 trace_btrfs_space_reservation(fs_info, "space_info",
5137 space_info->flags, orig_bytes, 1);
5138 ret = 0;
5139 }
5140
5141 /*
5142 * If we couldn't make a reservation then setup our reservation ticket
5143 * and kick the async worker if it's not already running.
5144 *
5145 * If we are a priority flusher then we just need to add our ticket to
5146 * the list and we will do our own flushing further down.
5147 */
5148 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5149 ticket.bytes = orig_bytes;
5150 ticket.error = 0;
5151 init_waitqueue_head(&ticket.wait);
5152 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5153 list_add_tail(&ticket.list, &space_info->tickets);
5154 if (!space_info->flush) {
5155 space_info->flush = 1;
5156 trace_btrfs_trigger_flush(fs_info,
5157 space_info->flags,
5158 orig_bytes, flush,
5159 "enospc");
5160 queue_work(system_unbound_wq,
5161 &fs_info->async_reclaim_work);
5162 }
5163 } else {
5164 list_add_tail(&ticket.list,
5165 &space_info->priority_tickets);
5166 }
5167 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5168 used += orig_bytes;
5169 /*
5170 * We will do the space reservation dance during log replay,
5171 * which means we won't have fs_info->fs_root set, so don't do
5172 * the async reclaim as we will panic.
5173 */
5174 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
5175 need_do_async_reclaim(fs_info, space_info,
5176 used, system_chunk) &&
5177 !work_busy(&fs_info->async_reclaim_work)) {
5178 trace_btrfs_trigger_flush(fs_info, space_info->flags,
5179 orig_bytes, flush, "preempt");
5180 queue_work(system_unbound_wq,
5181 &fs_info->async_reclaim_work);
5182 }
5183 }
5184 spin_unlock(&space_info->lock);
5185 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5186 return ret;
5187
5188 if (flush == BTRFS_RESERVE_FLUSH_ALL)
5189 return wait_reserve_ticket(fs_info, space_info, &ticket,
5190 orig_bytes);
5191
5192 ret = 0;
5193 priority_reclaim_metadata_space(fs_info, space_info, &ticket);
5194 spin_lock(&space_info->lock);
5195 if (ticket.bytes) {
5196 if (ticket.bytes < orig_bytes) {
5197 u64 num_bytes = orig_bytes - ticket.bytes;
5198 space_info->bytes_may_use -= num_bytes;
5199 trace_btrfs_space_reservation(fs_info, "space_info",
5200 space_info->flags,
5201 num_bytes, 0);
5202
5203 }
5204 list_del_init(&ticket.list);
5205 ret = -ENOSPC;
5206 }
5207 spin_unlock(&space_info->lock);
5208 ASSERT(list_empty(&ticket.list));
5209 return ret;
5210 }
5211
5212 /**
5213 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5214 * @root - the root we're allocating for
5215 * @block_rsv - the block_rsv we're allocating for
5216 * @orig_bytes - the number of bytes we want
5217 * @flush - whether or not we can flush to make our reservation
5218 *
5219 * This will reserve orgi_bytes number of bytes from the space info associated
5220 * with the block_rsv. If there is not enough space it will make an attempt to
5221 * flush out space to make room. It will do this by flushing delalloc if
5222 * possible or committing the transaction. If flush is 0 then no attempts to
5223 * regain reservations will be made and this will fail if there is not enough
5224 * space already.
5225 */
reserve_metadata_bytes(struct btrfs_root * root,struct btrfs_block_rsv * block_rsv,u64 orig_bytes,enum btrfs_reserve_flush_enum flush)5226 static int reserve_metadata_bytes(struct btrfs_root *root,
5227 struct btrfs_block_rsv *block_rsv,
5228 u64 orig_bytes,
5229 enum btrfs_reserve_flush_enum flush)
5230 {
5231 struct btrfs_fs_info *fs_info = root->fs_info;
5232 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5233 int ret;
5234 bool system_chunk = (root == fs_info->chunk_root);
5235
5236 ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5237 orig_bytes, flush, system_chunk);
5238 if (ret == -ENOSPC &&
5239 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5240 if (block_rsv != global_rsv &&
5241 !block_rsv_use_bytes(global_rsv, orig_bytes))
5242 ret = 0;
5243 }
5244 if (ret == -ENOSPC) {
5245 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
5246 block_rsv->space_info->flags,
5247 orig_bytes, 1);
5248
5249 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
5250 dump_space_info(fs_info, block_rsv->space_info,
5251 orig_bytes, 0);
5252 }
5253 return ret;
5254 }
5255
get_block_rsv(const struct btrfs_trans_handle * trans,const struct btrfs_root * root)5256 static struct btrfs_block_rsv *get_block_rsv(
5257 const struct btrfs_trans_handle *trans,
5258 const struct btrfs_root *root)
5259 {
5260 struct btrfs_fs_info *fs_info = root->fs_info;
5261 struct btrfs_block_rsv *block_rsv = NULL;
5262
5263 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5264 (root == fs_info->csum_root && trans->adding_csums) ||
5265 (root == fs_info->uuid_root))
5266 block_rsv = trans->block_rsv;
5267
5268 if (!block_rsv)
5269 block_rsv = root->block_rsv;
5270
5271 if (!block_rsv)
5272 block_rsv = &fs_info->empty_block_rsv;
5273
5274 return block_rsv;
5275 }
5276
block_rsv_use_bytes(struct btrfs_block_rsv * block_rsv,u64 num_bytes)5277 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5278 u64 num_bytes)
5279 {
5280 int ret = -ENOSPC;
5281 spin_lock(&block_rsv->lock);
5282 if (block_rsv->reserved >= num_bytes) {
5283 block_rsv->reserved -= num_bytes;
5284 if (block_rsv->reserved < block_rsv->size)
5285 block_rsv->full = 0;
5286 ret = 0;
5287 }
5288 spin_unlock(&block_rsv->lock);
5289 return ret;
5290 }
5291
block_rsv_add_bytes(struct btrfs_block_rsv * block_rsv,u64 num_bytes,int update_size)5292 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5293 u64 num_bytes, int update_size)
5294 {
5295 spin_lock(&block_rsv->lock);
5296 block_rsv->reserved += num_bytes;
5297 if (update_size)
5298 block_rsv->size += num_bytes;
5299 else if (block_rsv->reserved >= block_rsv->size)
5300 block_rsv->full = 1;
5301 spin_unlock(&block_rsv->lock);
5302 }
5303
btrfs_cond_migrate_bytes(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * dest,u64 num_bytes,int min_factor)5304 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5305 struct btrfs_block_rsv *dest, u64 num_bytes,
5306 int min_factor)
5307 {
5308 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5309 u64 min_bytes;
5310
5311 if (global_rsv->space_info != dest->space_info)
5312 return -ENOSPC;
5313
5314 spin_lock(&global_rsv->lock);
5315 min_bytes = div_factor(global_rsv->size, min_factor);
5316 if (global_rsv->reserved < min_bytes + num_bytes) {
5317 spin_unlock(&global_rsv->lock);
5318 return -ENOSPC;
5319 }
5320 global_rsv->reserved -= num_bytes;
5321 if (global_rsv->reserved < global_rsv->size)
5322 global_rsv->full = 0;
5323 spin_unlock(&global_rsv->lock);
5324
5325 block_rsv_add_bytes(dest, num_bytes, 1);
5326 return 0;
5327 }
5328
5329 /*
5330 * This is for space we already have accounted in space_info->bytes_may_use, so
5331 * basically when we're returning space from block_rsv's.
5332 */
space_info_add_old_bytes(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 num_bytes)5333 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5334 struct btrfs_space_info *space_info,
5335 u64 num_bytes)
5336 {
5337 struct reserve_ticket *ticket;
5338 struct list_head *head;
5339 u64 used;
5340 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5341 bool check_overcommit = false;
5342
5343 spin_lock(&space_info->lock);
5344 head = &space_info->priority_tickets;
5345
5346 /*
5347 * If we are over our limit then we need to check and see if we can
5348 * overcommit, and if we can't then we just need to free up our space
5349 * and not satisfy any requests.
5350 */
5351 used = btrfs_space_info_used(space_info, true);
5352 if (used - num_bytes >= space_info->total_bytes)
5353 check_overcommit = true;
5354 again:
5355 while (!list_empty(head) && num_bytes) {
5356 ticket = list_first_entry(head, struct reserve_ticket,
5357 list);
5358 /*
5359 * We use 0 bytes because this space is already reserved, so
5360 * adding the ticket space would be a double count.
5361 */
5362 if (check_overcommit &&
5363 !can_overcommit(fs_info, space_info, 0, flush, false))
5364 break;
5365 if (num_bytes >= ticket->bytes) {
5366 list_del_init(&ticket->list);
5367 num_bytes -= ticket->bytes;
5368 ticket->bytes = 0;
5369 space_info->tickets_id++;
5370 wake_up(&ticket->wait);
5371 } else {
5372 ticket->bytes -= num_bytes;
5373 num_bytes = 0;
5374 }
5375 }
5376
5377 if (num_bytes && head == &space_info->priority_tickets) {
5378 head = &space_info->tickets;
5379 flush = BTRFS_RESERVE_FLUSH_ALL;
5380 goto again;
5381 }
5382 space_info->bytes_may_use -= num_bytes;
5383 trace_btrfs_space_reservation(fs_info, "space_info",
5384 space_info->flags, num_bytes, 0);
5385 spin_unlock(&space_info->lock);
5386 }
5387
5388 /*
5389 * This is for newly allocated space that isn't accounted in
5390 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5391 * we use this helper.
5392 */
space_info_add_new_bytes(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 num_bytes)5393 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5394 struct btrfs_space_info *space_info,
5395 u64 num_bytes)
5396 {
5397 struct reserve_ticket *ticket;
5398 struct list_head *head = &space_info->priority_tickets;
5399
5400 again:
5401 while (!list_empty(head) && num_bytes) {
5402 ticket = list_first_entry(head, struct reserve_ticket,
5403 list);
5404 if (num_bytes >= ticket->bytes) {
5405 trace_btrfs_space_reservation(fs_info, "space_info",
5406 space_info->flags,
5407 ticket->bytes, 1);
5408 list_del_init(&ticket->list);
5409 num_bytes -= ticket->bytes;
5410 space_info->bytes_may_use += ticket->bytes;
5411 ticket->bytes = 0;
5412 space_info->tickets_id++;
5413 wake_up(&ticket->wait);
5414 } else {
5415 trace_btrfs_space_reservation(fs_info, "space_info",
5416 space_info->flags,
5417 num_bytes, 1);
5418 space_info->bytes_may_use += num_bytes;
5419 ticket->bytes -= num_bytes;
5420 num_bytes = 0;
5421 }
5422 }
5423
5424 if (num_bytes && head == &space_info->priority_tickets) {
5425 head = &space_info->tickets;
5426 goto again;
5427 }
5428 }
5429
block_rsv_release_bytes(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * block_rsv,struct btrfs_block_rsv * dest,u64 num_bytes,u64 * qgroup_to_release_ret)5430 static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5431 struct btrfs_block_rsv *block_rsv,
5432 struct btrfs_block_rsv *dest, u64 num_bytes,
5433 u64 *qgroup_to_release_ret)
5434 {
5435 struct btrfs_space_info *space_info = block_rsv->space_info;
5436 u64 qgroup_to_release = 0;
5437 u64 ret;
5438
5439 spin_lock(&block_rsv->lock);
5440 if (num_bytes == (u64)-1) {
5441 num_bytes = block_rsv->size;
5442 qgroup_to_release = block_rsv->qgroup_rsv_size;
5443 }
5444 block_rsv->size -= num_bytes;
5445 if (block_rsv->reserved >= block_rsv->size) {
5446 num_bytes = block_rsv->reserved - block_rsv->size;
5447 block_rsv->reserved = block_rsv->size;
5448 block_rsv->full = 1;
5449 } else {
5450 num_bytes = 0;
5451 }
5452 if (block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) {
5453 qgroup_to_release = block_rsv->qgroup_rsv_reserved -
5454 block_rsv->qgroup_rsv_size;
5455 block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size;
5456 } else {
5457 qgroup_to_release = 0;
5458 }
5459 spin_unlock(&block_rsv->lock);
5460
5461 ret = num_bytes;
5462 if (num_bytes > 0) {
5463 if (dest) {
5464 spin_lock(&dest->lock);
5465 if (!dest->full) {
5466 u64 bytes_to_add;
5467
5468 bytes_to_add = dest->size - dest->reserved;
5469 bytes_to_add = min(num_bytes, bytes_to_add);
5470 dest->reserved += bytes_to_add;
5471 if (dest->reserved >= dest->size)
5472 dest->full = 1;
5473 num_bytes -= bytes_to_add;
5474 }
5475 spin_unlock(&dest->lock);
5476 }
5477 if (num_bytes)
5478 space_info_add_old_bytes(fs_info, space_info,
5479 num_bytes);
5480 }
5481 if (qgroup_to_release_ret)
5482 *qgroup_to_release_ret = qgroup_to_release;
5483 return ret;
5484 }
5485
btrfs_block_rsv_migrate(struct btrfs_block_rsv * src,struct btrfs_block_rsv * dst,u64 num_bytes,int update_size)5486 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5487 struct btrfs_block_rsv *dst, u64 num_bytes,
5488 int update_size)
5489 {
5490 int ret;
5491
5492 ret = block_rsv_use_bytes(src, num_bytes);
5493 if (ret)
5494 return ret;
5495
5496 block_rsv_add_bytes(dst, num_bytes, update_size);
5497 return 0;
5498 }
5499
btrfs_init_block_rsv(struct btrfs_block_rsv * rsv,unsigned short type)5500 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5501 {
5502 memset(rsv, 0, sizeof(*rsv));
5503 spin_lock_init(&rsv->lock);
5504 rsv->type = type;
5505 }
5506
btrfs_init_metadata_block_rsv(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * rsv,unsigned short type)5507 void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
5508 struct btrfs_block_rsv *rsv,
5509 unsigned short type)
5510 {
5511 btrfs_init_block_rsv(rsv, type);
5512 rsv->space_info = __find_space_info(fs_info,
5513 BTRFS_BLOCK_GROUP_METADATA);
5514 }
5515
btrfs_alloc_block_rsv(struct btrfs_fs_info * fs_info,unsigned short type)5516 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
5517 unsigned short type)
5518 {
5519 struct btrfs_block_rsv *block_rsv;
5520
5521 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5522 if (!block_rsv)
5523 return NULL;
5524
5525 btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
5526 return block_rsv;
5527 }
5528
btrfs_free_block_rsv(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * rsv)5529 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
5530 struct btrfs_block_rsv *rsv)
5531 {
5532 if (!rsv)
5533 return;
5534 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5535 kfree(rsv);
5536 }
5537
btrfs_block_rsv_add(struct btrfs_root * root,struct btrfs_block_rsv * block_rsv,u64 num_bytes,enum btrfs_reserve_flush_enum flush)5538 int btrfs_block_rsv_add(struct btrfs_root *root,
5539 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5540 enum btrfs_reserve_flush_enum flush)
5541 {
5542 int ret;
5543
5544 if (num_bytes == 0)
5545 return 0;
5546
5547 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5548 if (!ret) {
5549 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5550 return 0;
5551 }
5552
5553 return ret;
5554 }
5555
btrfs_block_rsv_check(struct btrfs_block_rsv * block_rsv,int min_factor)5556 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
5557 {
5558 u64 num_bytes = 0;
5559 int ret = -ENOSPC;
5560
5561 if (!block_rsv)
5562 return 0;
5563
5564 spin_lock(&block_rsv->lock);
5565 num_bytes = div_factor(block_rsv->size, min_factor);
5566 if (block_rsv->reserved >= num_bytes)
5567 ret = 0;
5568 spin_unlock(&block_rsv->lock);
5569
5570 return ret;
5571 }
5572
btrfs_block_rsv_refill(struct btrfs_root * root,struct btrfs_block_rsv * block_rsv,u64 min_reserved,enum btrfs_reserve_flush_enum flush)5573 int btrfs_block_rsv_refill(struct btrfs_root *root,
5574 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5575 enum btrfs_reserve_flush_enum flush)
5576 {
5577 u64 num_bytes = 0;
5578 int ret = -ENOSPC;
5579
5580 if (!block_rsv)
5581 return 0;
5582
5583 spin_lock(&block_rsv->lock);
5584 num_bytes = min_reserved;
5585 if (block_rsv->reserved >= num_bytes)
5586 ret = 0;
5587 else
5588 num_bytes -= block_rsv->reserved;
5589 spin_unlock(&block_rsv->lock);
5590
5591 if (!ret)
5592 return 0;
5593
5594 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5595 if (!ret) {
5596 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5597 return 0;
5598 }
5599
5600 return ret;
5601 }
5602
5603 /**
5604 * btrfs_inode_rsv_refill - refill the inode block rsv.
5605 * @inode - the inode we are refilling.
5606 * @flush - the flusing restriction.
5607 *
5608 * Essentially the same as btrfs_block_rsv_refill, except it uses the
5609 * block_rsv->size as the minimum size. We'll either refill the missing amount
5610 * or return if we already have enough space. This will also handle the resreve
5611 * tracepoint for the reserved amount.
5612 */
btrfs_inode_rsv_refill(struct btrfs_inode * inode,enum btrfs_reserve_flush_enum flush)5613 static int btrfs_inode_rsv_refill(struct btrfs_inode *inode,
5614 enum btrfs_reserve_flush_enum flush)
5615 {
5616 struct btrfs_root *root = inode->root;
5617 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5618 u64 num_bytes = 0;
5619 u64 qgroup_num_bytes = 0;
5620 int ret = -ENOSPC;
5621
5622 spin_lock(&block_rsv->lock);
5623 if (block_rsv->reserved < block_rsv->size)
5624 num_bytes = block_rsv->size - block_rsv->reserved;
5625 if (block_rsv->qgroup_rsv_reserved < block_rsv->qgroup_rsv_size)
5626 qgroup_num_bytes = block_rsv->qgroup_rsv_size -
5627 block_rsv->qgroup_rsv_reserved;
5628 spin_unlock(&block_rsv->lock);
5629
5630 if (num_bytes == 0)
5631 return 0;
5632
5633 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_num_bytes, true);
5634 if (ret)
5635 return ret;
5636 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5637 if (!ret) {
5638 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5639 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5640 btrfs_ino(inode), num_bytes, 1);
5641
5642 /* Don't forget to increase qgroup_rsv_reserved */
5643 spin_lock(&block_rsv->lock);
5644 block_rsv->qgroup_rsv_reserved += qgroup_num_bytes;
5645 spin_unlock(&block_rsv->lock);
5646 } else
5647 btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
5648 return ret;
5649 }
5650
5651 /**
5652 * btrfs_inode_rsv_release - release any excessive reservation.
5653 * @inode - the inode we need to release from.
5654 * @qgroup_free - free or convert qgroup meta.
5655 * Unlike normal operation, qgroup meta reservation needs to know if we are
5656 * freeing qgroup reservation or just converting it into per-trans. Normally
5657 * @qgroup_free is true for error handling, and false for normal release.
5658 *
5659 * This is the same as btrfs_block_rsv_release, except that it handles the
5660 * tracepoint for the reservation.
5661 */
btrfs_inode_rsv_release(struct btrfs_inode * inode,bool qgroup_free)5662 static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free)
5663 {
5664 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5665 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5666 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5667 u64 released = 0;
5668 u64 qgroup_to_release = 0;
5669
5670 /*
5671 * Since we statically set the block_rsv->size we just want to say we
5672 * are releasing 0 bytes, and then we'll just get the reservation over
5673 * the size free'd.
5674 */
5675 released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv, 0,
5676 &qgroup_to_release);
5677 if (released > 0)
5678 trace_btrfs_space_reservation(fs_info, "delalloc",
5679 btrfs_ino(inode), released, 0);
5680 if (qgroup_free)
5681 btrfs_qgroup_free_meta_prealloc(inode->root, qgroup_to_release);
5682 else
5683 btrfs_qgroup_convert_reserved_meta(inode->root,
5684 qgroup_to_release);
5685 }
5686
btrfs_block_rsv_release(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * block_rsv,u64 num_bytes)5687 void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5688 struct btrfs_block_rsv *block_rsv,
5689 u64 num_bytes)
5690 {
5691 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5692
5693 if (global_rsv == block_rsv ||
5694 block_rsv->space_info != global_rsv->space_info)
5695 global_rsv = NULL;
5696 block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes, NULL);
5697 }
5698
update_global_block_rsv(struct btrfs_fs_info * fs_info)5699 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5700 {
5701 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5702 struct btrfs_space_info *sinfo = block_rsv->space_info;
5703 u64 num_bytes;
5704
5705 /*
5706 * The global block rsv is based on the size of the extent tree, the
5707 * checksum tree and the root tree. If the fs is empty we want to set
5708 * it to a minimal amount for safety.
5709 */
5710 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5711 btrfs_root_used(&fs_info->csum_root->root_item) +
5712 btrfs_root_used(&fs_info->tree_root->root_item);
5713 num_bytes = max_t(u64, num_bytes, SZ_16M);
5714
5715 spin_lock(&sinfo->lock);
5716 spin_lock(&block_rsv->lock);
5717
5718 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5719
5720 if (block_rsv->reserved < block_rsv->size) {
5721 num_bytes = btrfs_space_info_used(sinfo, true);
5722 if (sinfo->total_bytes > num_bytes) {
5723 num_bytes = sinfo->total_bytes - num_bytes;
5724 num_bytes = min(num_bytes,
5725 block_rsv->size - block_rsv->reserved);
5726 block_rsv->reserved += num_bytes;
5727 sinfo->bytes_may_use += num_bytes;
5728 trace_btrfs_space_reservation(fs_info, "space_info",
5729 sinfo->flags, num_bytes,
5730 1);
5731 }
5732 } else if (block_rsv->reserved > block_rsv->size) {
5733 num_bytes = block_rsv->reserved - block_rsv->size;
5734 sinfo->bytes_may_use -= num_bytes;
5735 trace_btrfs_space_reservation(fs_info, "space_info",
5736 sinfo->flags, num_bytes, 0);
5737 block_rsv->reserved = block_rsv->size;
5738 }
5739
5740 if (block_rsv->reserved == block_rsv->size)
5741 block_rsv->full = 1;
5742 else
5743 block_rsv->full = 0;
5744
5745 spin_unlock(&block_rsv->lock);
5746 spin_unlock(&sinfo->lock);
5747 }
5748
init_global_block_rsv(struct btrfs_fs_info * fs_info)5749 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5750 {
5751 struct btrfs_space_info *space_info;
5752
5753 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5754 fs_info->chunk_block_rsv.space_info = space_info;
5755
5756 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5757 fs_info->global_block_rsv.space_info = space_info;
5758 fs_info->trans_block_rsv.space_info = space_info;
5759 fs_info->empty_block_rsv.space_info = space_info;
5760 fs_info->delayed_block_rsv.space_info = space_info;
5761
5762 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5763 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5764 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5765 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5766 if (fs_info->quota_root)
5767 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5768 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5769
5770 update_global_block_rsv(fs_info);
5771 }
5772
release_global_block_rsv(struct btrfs_fs_info * fs_info)5773 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5774 {
5775 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5776 (u64)-1, NULL);
5777 WARN_ON(fs_info->trans_block_rsv.size > 0);
5778 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5779 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5780 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5781 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5782 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5783 }
5784
5785
5786 /*
5787 * To be called after all the new block groups attached to the transaction
5788 * handle have been created (btrfs_create_pending_block_groups()).
5789 */
btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle * trans)5790 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5791 {
5792 struct btrfs_fs_info *fs_info = trans->fs_info;
5793
5794 if (!trans->chunk_bytes_reserved)
5795 return;
5796
5797 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5798
5799 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5800 trans->chunk_bytes_reserved, NULL);
5801 trans->chunk_bytes_reserved = 0;
5802 }
5803
5804 /*
5805 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5806 * root: the root of the parent directory
5807 * rsv: block reservation
5808 * items: the number of items that we need do reservation
5809 * use_global_rsv: allow fallback to the global block reservation
5810 *
5811 * This function is used to reserve the space for snapshot/subvolume
5812 * creation and deletion. Those operations are different with the
5813 * common file/directory operations, they change two fs/file trees
5814 * and root tree, the number of items that the qgroup reserves is
5815 * different with the free space reservation. So we can not use
5816 * the space reservation mechanism in start_transaction().
5817 */
btrfs_subvolume_reserve_metadata(struct btrfs_root * root,struct btrfs_block_rsv * rsv,int items,bool use_global_rsv)5818 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5819 struct btrfs_block_rsv *rsv, int items,
5820 bool use_global_rsv)
5821 {
5822 u64 qgroup_num_bytes = 0;
5823 u64 num_bytes;
5824 int ret;
5825 struct btrfs_fs_info *fs_info = root->fs_info;
5826 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5827
5828 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
5829 /* One for parent inode, two for dir entries */
5830 qgroup_num_bytes = 3 * fs_info->nodesize;
5831 ret = btrfs_qgroup_reserve_meta_prealloc(root,
5832 qgroup_num_bytes, true);
5833 if (ret)
5834 return ret;
5835 }
5836
5837 num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
5838 rsv->space_info = __find_space_info(fs_info,
5839 BTRFS_BLOCK_GROUP_METADATA);
5840 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5841 BTRFS_RESERVE_FLUSH_ALL);
5842
5843 if (ret == -ENOSPC && use_global_rsv)
5844 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
5845
5846 if (ret && qgroup_num_bytes)
5847 btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
5848
5849 return ret;
5850 }
5851
btrfs_subvolume_release_metadata(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * rsv)5852 void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
5853 struct btrfs_block_rsv *rsv)
5854 {
5855 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5856 }
5857
btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info * fs_info,struct btrfs_inode * inode)5858 static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
5859 struct btrfs_inode *inode)
5860 {
5861 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5862 u64 reserve_size = 0;
5863 u64 qgroup_rsv_size = 0;
5864 u64 csum_leaves;
5865 unsigned outstanding_extents;
5866
5867 lockdep_assert_held(&inode->lock);
5868 outstanding_extents = inode->outstanding_extents;
5869 if (outstanding_extents)
5870 reserve_size = btrfs_calc_trans_metadata_size(fs_info,
5871 outstanding_extents + 1);
5872 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info,
5873 inode->csum_bytes);
5874 reserve_size += btrfs_calc_trans_metadata_size(fs_info,
5875 csum_leaves);
5876 /*
5877 * For qgroup rsv, the calculation is very simple:
5878 * account one nodesize for each outstanding extent
5879 *
5880 * This is overestimating in most cases.
5881 */
5882 qgroup_rsv_size = (u64)outstanding_extents * fs_info->nodesize;
5883
5884 spin_lock(&block_rsv->lock);
5885 block_rsv->size = reserve_size;
5886 block_rsv->qgroup_rsv_size = qgroup_rsv_size;
5887 spin_unlock(&block_rsv->lock);
5888 }
5889
btrfs_delalloc_reserve_metadata(struct btrfs_inode * inode,u64 num_bytes)5890 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
5891 {
5892 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5893 unsigned nr_extents;
5894 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5895 int ret = 0;
5896 bool delalloc_lock = true;
5897
5898 /* If we are a free space inode we need to not flush since we will be in
5899 * the middle of a transaction commit. We also don't need the delalloc
5900 * mutex since we won't race with anybody. We need this mostly to make
5901 * lockdep shut its filthy mouth.
5902 *
5903 * If we have a transaction open (can happen if we call truncate_block
5904 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
5905 */
5906 if (btrfs_is_free_space_inode(inode)) {
5907 flush = BTRFS_RESERVE_NO_FLUSH;
5908 delalloc_lock = false;
5909 } else {
5910 if (current->journal_info)
5911 flush = BTRFS_RESERVE_FLUSH_LIMIT;
5912
5913 if (btrfs_transaction_in_commit(fs_info))
5914 schedule_timeout(1);
5915 }
5916
5917 if (delalloc_lock)
5918 mutex_lock(&inode->delalloc_mutex);
5919
5920 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
5921
5922 /* Add our new extents and calculate the new rsv size. */
5923 spin_lock(&inode->lock);
5924 nr_extents = count_max_extents(num_bytes);
5925 btrfs_mod_outstanding_extents(inode, nr_extents);
5926 inode->csum_bytes += num_bytes;
5927 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
5928 spin_unlock(&inode->lock);
5929
5930 ret = btrfs_inode_rsv_refill(inode, flush);
5931 if (unlikely(ret))
5932 goto out_fail;
5933
5934 if (delalloc_lock)
5935 mutex_unlock(&inode->delalloc_mutex);
5936 return 0;
5937
5938 out_fail:
5939 spin_lock(&inode->lock);
5940 nr_extents = count_max_extents(num_bytes);
5941 btrfs_mod_outstanding_extents(inode, -nr_extents);
5942 inode->csum_bytes -= num_bytes;
5943 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
5944 spin_unlock(&inode->lock);
5945
5946 btrfs_inode_rsv_release(inode, true);
5947 if (delalloc_lock)
5948 mutex_unlock(&inode->delalloc_mutex);
5949 return ret;
5950 }
5951
5952 /**
5953 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5954 * @inode: the inode to release the reservation for.
5955 * @num_bytes: the number of bytes we are releasing.
5956 * @qgroup_free: free qgroup reservation or convert it to per-trans reservation
5957 *
5958 * This will release the metadata reservation for an inode. This can be called
5959 * once we complete IO for a given set of bytes to release their metadata
5960 * reservations, or on error for the same reason.
5961 */
btrfs_delalloc_release_metadata(struct btrfs_inode * inode,u64 num_bytes,bool qgroup_free)5962 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes,
5963 bool qgroup_free)
5964 {
5965 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5966
5967 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
5968 spin_lock(&inode->lock);
5969 inode->csum_bytes -= num_bytes;
5970 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
5971 spin_unlock(&inode->lock);
5972
5973 if (btrfs_is_testing(fs_info))
5974 return;
5975
5976 btrfs_inode_rsv_release(inode, qgroup_free);
5977 }
5978
5979 /**
5980 * btrfs_delalloc_release_extents - release our outstanding_extents
5981 * @inode: the inode to balance the reservation for.
5982 * @num_bytes: the number of bytes we originally reserved with
5983 * @qgroup_free: do we need to free qgroup meta reservation or convert them.
5984 *
5985 * When we reserve space we increase outstanding_extents for the extents we may
5986 * add. Once we've set the range as delalloc or created our ordered extents we
5987 * have outstanding_extents to track the real usage, so we use this to free our
5988 * temporarily tracked outstanding_extents. This _must_ be used in conjunction
5989 * with btrfs_delalloc_reserve_metadata.
5990 */
btrfs_delalloc_release_extents(struct btrfs_inode * inode,u64 num_bytes)5991 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes)
5992 {
5993 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5994 unsigned num_extents;
5995
5996 spin_lock(&inode->lock);
5997 num_extents = count_max_extents(num_bytes);
5998 btrfs_mod_outstanding_extents(inode, -num_extents);
5999 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6000 spin_unlock(&inode->lock);
6001
6002 if (btrfs_is_testing(fs_info))
6003 return;
6004
6005 btrfs_inode_rsv_release(inode, true);
6006 }
6007
6008 /**
6009 * btrfs_delalloc_reserve_space - reserve data and metadata space for
6010 * delalloc
6011 * @inode: inode we're writing to
6012 * @start: start range we are writing to
6013 * @len: how long the range we are writing to
6014 * @reserved: mandatory parameter, record actually reserved qgroup ranges of
6015 * current reservation.
6016 *
6017 * This will do the following things
6018 *
6019 * o reserve space in data space info for num bytes
6020 * and reserve precious corresponding qgroup space
6021 * (Done in check_data_free_space)
6022 *
6023 * o reserve space for metadata space, based on the number of outstanding
6024 * extents and how much csums will be needed
6025 * also reserve metadata space in a per root over-reserve method.
6026 * o add to the inodes->delalloc_bytes
6027 * o add it to the fs_info's delalloc inodes list.
6028 * (Above 3 all done in delalloc_reserve_metadata)
6029 *
6030 * Return 0 for success
6031 * Return <0 for error(-ENOSPC or -EQUOT)
6032 */
btrfs_delalloc_reserve_space(struct inode * inode,struct extent_changeset ** reserved,u64 start,u64 len)6033 int btrfs_delalloc_reserve_space(struct inode *inode,
6034 struct extent_changeset **reserved, u64 start, u64 len)
6035 {
6036 int ret;
6037
6038 ret = btrfs_check_data_free_space(inode, reserved, start, len);
6039 if (ret < 0)
6040 return ret;
6041 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
6042 if (ret < 0)
6043 btrfs_free_reserved_data_space(inode, *reserved, start, len);
6044 return ret;
6045 }
6046
6047 /**
6048 * btrfs_delalloc_release_space - release data and metadata space for delalloc
6049 * @inode: inode we're releasing space for
6050 * @start: start position of the space already reserved
6051 * @len: the len of the space already reserved
6052 * @release_bytes: the len of the space we consumed or didn't use
6053 *
6054 * This function will release the metadata space that was not used and will
6055 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6056 * list if there are no delalloc bytes left.
6057 * Also it will handle the qgroup reserved space.
6058 */
btrfs_delalloc_release_space(struct inode * inode,struct extent_changeset * reserved,u64 start,u64 len,bool qgroup_free)6059 void btrfs_delalloc_release_space(struct inode *inode,
6060 struct extent_changeset *reserved,
6061 u64 start, u64 len, bool qgroup_free)
6062 {
6063 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, qgroup_free);
6064 btrfs_free_reserved_data_space(inode, reserved, start, len);
6065 }
6066
update_block_group(struct btrfs_trans_handle * trans,struct btrfs_fs_info * info,u64 bytenr,u64 num_bytes,int alloc)6067 static int update_block_group(struct btrfs_trans_handle *trans,
6068 struct btrfs_fs_info *info, u64 bytenr,
6069 u64 num_bytes, int alloc)
6070 {
6071 struct btrfs_block_group_cache *cache = NULL;
6072 u64 total = num_bytes;
6073 u64 old_val;
6074 u64 byte_in_group;
6075 int factor;
6076
6077 /* block accounting for super block */
6078 spin_lock(&info->delalloc_root_lock);
6079 old_val = btrfs_super_bytes_used(info->super_copy);
6080 if (alloc)
6081 old_val += num_bytes;
6082 else
6083 old_val -= num_bytes;
6084 btrfs_set_super_bytes_used(info->super_copy, old_val);
6085 spin_unlock(&info->delalloc_root_lock);
6086
6087 while (total) {
6088 cache = btrfs_lookup_block_group(info, bytenr);
6089 if (!cache)
6090 return -ENOENT;
6091 factor = btrfs_bg_type_to_factor(cache->flags);
6092
6093 /*
6094 * If this block group has free space cache written out, we
6095 * need to make sure to load it if we are removing space. This
6096 * is because we need the unpinning stage to actually add the
6097 * space back to the block group, otherwise we will leak space.
6098 */
6099 if (!alloc && cache->cached == BTRFS_CACHE_NO)
6100 cache_block_group(cache, 1);
6101
6102 byte_in_group = bytenr - cache->key.objectid;
6103 WARN_ON(byte_in_group > cache->key.offset);
6104
6105 spin_lock(&cache->space_info->lock);
6106 spin_lock(&cache->lock);
6107
6108 if (btrfs_test_opt(info, SPACE_CACHE) &&
6109 cache->disk_cache_state < BTRFS_DC_CLEAR)
6110 cache->disk_cache_state = BTRFS_DC_CLEAR;
6111
6112 old_val = btrfs_block_group_used(&cache->item);
6113 num_bytes = min(total, cache->key.offset - byte_in_group);
6114 if (alloc) {
6115 old_val += num_bytes;
6116 btrfs_set_block_group_used(&cache->item, old_val);
6117 cache->reserved -= num_bytes;
6118 cache->space_info->bytes_reserved -= num_bytes;
6119 cache->space_info->bytes_used += num_bytes;
6120 cache->space_info->disk_used += num_bytes * factor;
6121 spin_unlock(&cache->lock);
6122 spin_unlock(&cache->space_info->lock);
6123 } else {
6124 old_val -= num_bytes;
6125 btrfs_set_block_group_used(&cache->item, old_val);
6126 cache->pinned += num_bytes;
6127 cache->space_info->bytes_pinned += num_bytes;
6128 cache->space_info->bytes_used -= num_bytes;
6129 cache->space_info->disk_used -= num_bytes * factor;
6130 spin_unlock(&cache->lock);
6131 spin_unlock(&cache->space_info->lock);
6132
6133 trace_btrfs_space_reservation(info, "pinned",
6134 cache->space_info->flags,
6135 num_bytes, 1);
6136 percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
6137 num_bytes,
6138 BTRFS_TOTAL_BYTES_PINNED_BATCH);
6139 set_extent_dirty(info->pinned_extents,
6140 bytenr, bytenr + num_bytes - 1,
6141 GFP_NOFS | __GFP_NOFAIL);
6142 }
6143
6144 spin_lock(&trans->transaction->dirty_bgs_lock);
6145 if (list_empty(&cache->dirty_list)) {
6146 list_add_tail(&cache->dirty_list,
6147 &trans->transaction->dirty_bgs);
6148 trans->transaction->num_dirty_bgs++;
6149 btrfs_get_block_group(cache);
6150 }
6151 spin_unlock(&trans->transaction->dirty_bgs_lock);
6152
6153 /*
6154 * No longer have used bytes in this block group, queue it for
6155 * deletion. We do this after adding the block group to the
6156 * dirty list to avoid races between cleaner kthread and space
6157 * cache writeout.
6158 */
6159 if (!alloc && old_val == 0)
6160 btrfs_mark_bg_unused(cache);
6161
6162 btrfs_put_block_group(cache);
6163 total -= num_bytes;
6164 bytenr += num_bytes;
6165 }
6166 return 0;
6167 }
6168
first_logical_byte(struct btrfs_fs_info * fs_info,u64 search_start)6169 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
6170 {
6171 struct btrfs_block_group_cache *cache;
6172 u64 bytenr;
6173
6174 spin_lock(&fs_info->block_group_cache_lock);
6175 bytenr = fs_info->first_logical_byte;
6176 spin_unlock(&fs_info->block_group_cache_lock);
6177
6178 if (bytenr < (u64)-1)
6179 return bytenr;
6180
6181 cache = btrfs_lookup_first_block_group(fs_info, search_start);
6182 if (!cache)
6183 return 0;
6184
6185 bytenr = cache->key.objectid;
6186 btrfs_put_block_group(cache);
6187
6188 return bytenr;
6189 }
6190
pin_down_extent(struct btrfs_fs_info * fs_info,struct btrfs_block_group_cache * cache,u64 bytenr,u64 num_bytes,int reserved)6191 static int pin_down_extent(struct btrfs_fs_info *fs_info,
6192 struct btrfs_block_group_cache *cache,
6193 u64 bytenr, u64 num_bytes, int reserved)
6194 {
6195 spin_lock(&cache->space_info->lock);
6196 spin_lock(&cache->lock);
6197 cache->pinned += num_bytes;
6198 cache->space_info->bytes_pinned += num_bytes;
6199 if (reserved) {
6200 cache->reserved -= num_bytes;
6201 cache->space_info->bytes_reserved -= num_bytes;
6202 }
6203 spin_unlock(&cache->lock);
6204 spin_unlock(&cache->space_info->lock);
6205
6206 trace_btrfs_space_reservation(fs_info, "pinned",
6207 cache->space_info->flags, num_bytes, 1);
6208 percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
6209 num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
6210 set_extent_dirty(fs_info->pinned_extents, bytenr,
6211 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6212 return 0;
6213 }
6214
6215 /*
6216 * this function must be called within transaction
6217 */
btrfs_pin_extent(struct btrfs_fs_info * fs_info,u64 bytenr,u64 num_bytes,int reserved)6218 int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
6219 u64 bytenr, u64 num_bytes, int reserved)
6220 {
6221 struct btrfs_block_group_cache *cache;
6222
6223 cache = btrfs_lookup_block_group(fs_info, bytenr);
6224 BUG_ON(!cache); /* Logic error */
6225
6226 pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
6227
6228 btrfs_put_block_group(cache);
6229 return 0;
6230 }
6231
6232 /*
6233 * this function must be called within transaction
6234 */
btrfs_pin_extent_for_log_replay(struct btrfs_fs_info * fs_info,u64 bytenr,u64 num_bytes)6235 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
6236 u64 bytenr, u64 num_bytes)
6237 {
6238 struct btrfs_block_group_cache *cache;
6239 int ret;
6240
6241 cache = btrfs_lookup_block_group(fs_info, bytenr);
6242 if (!cache)
6243 return -EINVAL;
6244
6245 /*
6246 * pull in the free space cache (if any) so that our pin
6247 * removes the free space from the cache. We have load_only set
6248 * to one because the slow code to read in the free extents does check
6249 * the pinned extents.
6250 */
6251 cache_block_group(cache, 1);
6252
6253 pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
6254
6255 /* remove us from the free space cache (if we're there at all) */
6256 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6257 btrfs_put_block_group(cache);
6258 return ret;
6259 }
6260
__exclude_logged_extent(struct btrfs_fs_info * fs_info,u64 start,u64 num_bytes)6261 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6262 u64 start, u64 num_bytes)
6263 {
6264 int ret;
6265 struct btrfs_block_group_cache *block_group;
6266 struct btrfs_caching_control *caching_ctl;
6267
6268 block_group = btrfs_lookup_block_group(fs_info, start);
6269 if (!block_group)
6270 return -EINVAL;
6271
6272 cache_block_group(block_group, 0);
6273 caching_ctl = get_caching_control(block_group);
6274
6275 if (!caching_ctl) {
6276 /* Logic error */
6277 BUG_ON(!block_group_cache_done(block_group));
6278 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6279 } else {
6280 mutex_lock(&caching_ctl->mutex);
6281
6282 if (start >= caching_ctl->progress) {
6283 ret = add_excluded_extent(fs_info, start, num_bytes);
6284 } else if (start + num_bytes <= caching_ctl->progress) {
6285 ret = btrfs_remove_free_space(block_group,
6286 start, num_bytes);
6287 } else {
6288 num_bytes = caching_ctl->progress - start;
6289 ret = btrfs_remove_free_space(block_group,
6290 start, num_bytes);
6291 if (ret)
6292 goto out_lock;
6293
6294 num_bytes = (start + num_bytes) -
6295 caching_ctl->progress;
6296 start = caching_ctl->progress;
6297 ret = add_excluded_extent(fs_info, start, num_bytes);
6298 }
6299 out_lock:
6300 mutex_unlock(&caching_ctl->mutex);
6301 put_caching_control(caching_ctl);
6302 }
6303 btrfs_put_block_group(block_group);
6304 return ret;
6305 }
6306
btrfs_exclude_logged_extents(struct btrfs_fs_info * fs_info,struct extent_buffer * eb)6307 int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
6308 struct extent_buffer *eb)
6309 {
6310 struct btrfs_file_extent_item *item;
6311 struct btrfs_key key;
6312 int found_type;
6313 int i;
6314 int ret = 0;
6315
6316 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
6317 return 0;
6318
6319 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6320 btrfs_item_key_to_cpu(eb, &key, i);
6321 if (key.type != BTRFS_EXTENT_DATA_KEY)
6322 continue;
6323 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6324 found_type = btrfs_file_extent_type(eb, item);
6325 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6326 continue;
6327 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6328 continue;
6329 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6330 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6331 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
6332 if (ret)
6333 break;
6334 }
6335
6336 return ret;
6337 }
6338
6339 static void
btrfs_inc_block_group_reservations(struct btrfs_block_group_cache * bg)6340 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6341 {
6342 atomic_inc(&bg->reservations);
6343 }
6344
btrfs_dec_block_group_reservations(struct btrfs_fs_info * fs_info,const u64 start)6345 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6346 const u64 start)
6347 {
6348 struct btrfs_block_group_cache *bg;
6349
6350 bg = btrfs_lookup_block_group(fs_info, start);
6351 ASSERT(bg);
6352 if (atomic_dec_and_test(&bg->reservations))
6353 wake_up_var(&bg->reservations);
6354 btrfs_put_block_group(bg);
6355 }
6356
btrfs_wait_block_group_reservations(struct btrfs_block_group_cache * bg)6357 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6358 {
6359 struct btrfs_space_info *space_info = bg->space_info;
6360
6361 ASSERT(bg->ro);
6362
6363 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6364 return;
6365
6366 /*
6367 * Our block group is read only but before we set it to read only,
6368 * some task might have had allocated an extent from it already, but it
6369 * has not yet created a respective ordered extent (and added it to a
6370 * root's list of ordered extents).
6371 * Therefore wait for any task currently allocating extents, since the
6372 * block group's reservations counter is incremented while a read lock
6373 * on the groups' semaphore is held and decremented after releasing
6374 * the read access on that semaphore and creating the ordered extent.
6375 */
6376 down_write(&space_info->groups_sem);
6377 up_write(&space_info->groups_sem);
6378
6379 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
6380 }
6381
6382 /**
6383 * btrfs_add_reserved_bytes - update the block_group and space info counters
6384 * @cache: The cache we are manipulating
6385 * @ram_bytes: The number of bytes of file content, and will be same to
6386 * @num_bytes except for the compress path.
6387 * @num_bytes: The number of bytes in question
6388 * @delalloc: The blocks are allocated for the delalloc write
6389 *
6390 * This is called by the allocator when it reserves space. If this is a
6391 * reservation and the block group has become read only we cannot make the
6392 * reservation and return -EAGAIN, otherwise this function always succeeds.
6393 */
btrfs_add_reserved_bytes(struct btrfs_block_group_cache * cache,u64 ram_bytes,u64 num_bytes,int delalloc)6394 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
6395 u64 ram_bytes, u64 num_bytes, int delalloc)
6396 {
6397 struct btrfs_space_info *space_info = cache->space_info;
6398 int ret = 0;
6399
6400 spin_lock(&space_info->lock);
6401 spin_lock(&cache->lock);
6402 if (cache->ro) {
6403 ret = -EAGAIN;
6404 } else {
6405 cache->reserved += num_bytes;
6406 space_info->bytes_reserved += num_bytes;
6407
6408 trace_btrfs_space_reservation(cache->fs_info,
6409 "space_info", space_info->flags,
6410 ram_bytes, 0);
6411 space_info->bytes_may_use -= ram_bytes;
6412 if (delalloc)
6413 cache->delalloc_bytes += num_bytes;
6414 }
6415 spin_unlock(&cache->lock);
6416 spin_unlock(&space_info->lock);
6417 return ret;
6418 }
6419
6420 /**
6421 * btrfs_free_reserved_bytes - update the block_group and space info counters
6422 * @cache: The cache we are manipulating
6423 * @num_bytes: The number of bytes in question
6424 * @delalloc: The blocks are allocated for the delalloc write
6425 *
6426 * This is called by somebody who is freeing space that was never actually used
6427 * on disk. For example if you reserve some space for a new leaf in transaction
6428 * A and before transaction A commits you free that leaf, you call this with
6429 * reserve set to 0 in order to clear the reservation.
6430 */
6431
btrfs_free_reserved_bytes(struct btrfs_block_group_cache * cache,u64 num_bytes,int delalloc)6432 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6433 u64 num_bytes, int delalloc)
6434 {
6435 struct btrfs_space_info *space_info = cache->space_info;
6436 int ret = 0;
6437
6438 spin_lock(&space_info->lock);
6439 spin_lock(&cache->lock);
6440 if (cache->ro)
6441 space_info->bytes_readonly += num_bytes;
6442 cache->reserved -= num_bytes;
6443 space_info->bytes_reserved -= num_bytes;
6444 space_info->max_extent_size = 0;
6445
6446 if (delalloc)
6447 cache->delalloc_bytes -= num_bytes;
6448 spin_unlock(&cache->lock);
6449 spin_unlock(&space_info->lock);
6450 return ret;
6451 }
btrfs_prepare_extent_commit(struct btrfs_fs_info * fs_info)6452 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
6453 {
6454 struct btrfs_caching_control *next;
6455 struct btrfs_caching_control *caching_ctl;
6456 struct btrfs_block_group_cache *cache;
6457
6458 down_write(&fs_info->commit_root_sem);
6459
6460 list_for_each_entry_safe(caching_ctl, next,
6461 &fs_info->caching_block_groups, list) {
6462 cache = caching_ctl->block_group;
6463 if (block_group_cache_done(cache)) {
6464 cache->last_byte_to_unpin = (u64)-1;
6465 list_del_init(&caching_ctl->list);
6466 put_caching_control(caching_ctl);
6467 } else {
6468 cache->last_byte_to_unpin = caching_ctl->progress;
6469 }
6470 }
6471
6472 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6473 fs_info->pinned_extents = &fs_info->freed_extents[1];
6474 else
6475 fs_info->pinned_extents = &fs_info->freed_extents[0];
6476
6477 up_write(&fs_info->commit_root_sem);
6478
6479 update_global_block_rsv(fs_info);
6480 }
6481
6482 /*
6483 * Returns the free cluster for the given space info and sets empty_cluster to
6484 * what it should be based on the mount options.
6485 */
6486 static struct btrfs_free_cluster *
fetch_cluster_info(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 * empty_cluster)6487 fetch_cluster_info(struct btrfs_fs_info *fs_info,
6488 struct btrfs_space_info *space_info, u64 *empty_cluster)
6489 {
6490 struct btrfs_free_cluster *ret = NULL;
6491
6492 *empty_cluster = 0;
6493 if (btrfs_mixed_space_info(space_info))
6494 return ret;
6495
6496 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6497 ret = &fs_info->meta_alloc_cluster;
6498 if (btrfs_test_opt(fs_info, SSD))
6499 *empty_cluster = SZ_2M;
6500 else
6501 *empty_cluster = SZ_64K;
6502 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
6503 btrfs_test_opt(fs_info, SSD_SPREAD)) {
6504 *empty_cluster = SZ_2M;
6505 ret = &fs_info->data_alloc_cluster;
6506 }
6507
6508 return ret;
6509 }
6510
unpin_extent_range(struct btrfs_fs_info * fs_info,u64 start,u64 end,const bool return_free_space)6511 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6512 u64 start, u64 end,
6513 const bool return_free_space)
6514 {
6515 struct btrfs_block_group_cache *cache = NULL;
6516 struct btrfs_space_info *space_info;
6517 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6518 struct btrfs_free_cluster *cluster = NULL;
6519 u64 len;
6520 u64 total_unpinned = 0;
6521 u64 empty_cluster = 0;
6522 bool readonly;
6523
6524 while (start <= end) {
6525 readonly = false;
6526 if (!cache ||
6527 start >= cache->key.objectid + cache->key.offset) {
6528 if (cache)
6529 btrfs_put_block_group(cache);
6530 total_unpinned = 0;
6531 cache = btrfs_lookup_block_group(fs_info, start);
6532 BUG_ON(!cache); /* Logic error */
6533
6534 cluster = fetch_cluster_info(fs_info,
6535 cache->space_info,
6536 &empty_cluster);
6537 empty_cluster <<= 1;
6538 }
6539
6540 len = cache->key.objectid + cache->key.offset - start;
6541 len = min(len, end + 1 - start);
6542
6543 if (start < cache->last_byte_to_unpin) {
6544 len = min(len, cache->last_byte_to_unpin - start);
6545 if (return_free_space)
6546 btrfs_add_free_space(cache, start, len);
6547 }
6548
6549 start += len;
6550 total_unpinned += len;
6551 space_info = cache->space_info;
6552
6553 /*
6554 * If this space cluster has been marked as fragmented and we've
6555 * unpinned enough in this block group to potentially allow a
6556 * cluster to be created inside of it go ahead and clear the
6557 * fragmented check.
6558 */
6559 if (cluster && cluster->fragmented &&
6560 total_unpinned > empty_cluster) {
6561 spin_lock(&cluster->lock);
6562 cluster->fragmented = 0;
6563 spin_unlock(&cluster->lock);
6564 }
6565
6566 spin_lock(&space_info->lock);
6567 spin_lock(&cache->lock);
6568 cache->pinned -= len;
6569 space_info->bytes_pinned -= len;
6570
6571 trace_btrfs_space_reservation(fs_info, "pinned",
6572 space_info->flags, len, 0);
6573 space_info->max_extent_size = 0;
6574 percpu_counter_add_batch(&space_info->total_bytes_pinned,
6575 -len, BTRFS_TOTAL_BYTES_PINNED_BATCH);
6576 if (cache->ro) {
6577 space_info->bytes_readonly += len;
6578 readonly = true;
6579 }
6580 spin_unlock(&cache->lock);
6581 if (!readonly && return_free_space &&
6582 global_rsv->space_info == space_info) {
6583 u64 to_add = len;
6584
6585 spin_lock(&global_rsv->lock);
6586 if (!global_rsv->full) {
6587 to_add = min(len, global_rsv->size -
6588 global_rsv->reserved);
6589 global_rsv->reserved += to_add;
6590 space_info->bytes_may_use += to_add;
6591 if (global_rsv->reserved >= global_rsv->size)
6592 global_rsv->full = 1;
6593 trace_btrfs_space_reservation(fs_info,
6594 "space_info",
6595 space_info->flags,
6596 to_add, 1);
6597 len -= to_add;
6598 }
6599 spin_unlock(&global_rsv->lock);
6600 /* Add to any tickets we may have */
6601 if (len)
6602 space_info_add_new_bytes(fs_info, space_info,
6603 len);
6604 }
6605 spin_unlock(&space_info->lock);
6606 }
6607
6608 if (cache)
6609 btrfs_put_block_group(cache);
6610 return 0;
6611 }
6612
btrfs_finish_extent_commit(struct btrfs_trans_handle * trans)6613 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
6614 {
6615 struct btrfs_fs_info *fs_info = trans->fs_info;
6616 struct btrfs_block_group_cache *block_group, *tmp;
6617 struct list_head *deleted_bgs;
6618 struct extent_io_tree *unpin;
6619 u64 start;
6620 u64 end;
6621 int ret;
6622
6623 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6624 unpin = &fs_info->freed_extents[1];
6625 else
6626 unpin = &fs_info->freed_extents[0];
6627
6628 while (!trans->aborted) {
6629 struct extent_state *cached_state = NULL;
6630
6631 mutex_lock(&fs_info->unused_bg_unpin_mutex);
6632 ret = find_first_extent_bit(unpin, 0, &start, &end,
6633 EXTENT_DIRTY, &cached_state);
6634 if (ret) {
6635 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6636 break;
6637 }
6638
6639 if (btrfs_test_opt(fs_info, DISCARD))
6640 ret = btrfs_discard_extent(fs_info, start,
6641 end + 1 - start, NULL);
6642
6643 clear_extent_dirty(unpin, start, end, &cached_state);
6644 unpin_extent_range(fs_info, start, end, true);
6645 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6646 free_extent_state(cached_state);
6647 cond_resched();
6648 }
6649
6650 /*
6651 * Transaction is finished. We don't need the lock anymore. We
6652 * do need to clean up the block groups in case of a transaction
6653 * abort.
6654 */
6655 deleted_bgs = &trans->transaction->deleted_bgs;
6656 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6657 u64 trimmed = 0;
6658
6659 ret = -EROFS;
6660 if (!trans->aborted)
6661 ret = btrfs_discard_extent(fs_info,
6662 block_group->key.objectid,
6663 block_group->key.offset,
6664 &trimmed);
6665
6666 list_del_init(&block_group->bg_list);
6667 btrfs_put_block_group_trimming(block_group);
6668 btrfs_put_block_group(block_group);
6669
6670 if (ret) {
6671 const char *errstr = btrfs_decode_error(ret);
6672 btrfs_warn(fs_info,
6673 "discard failed while removing blockgroup: errno=%d %s",
6674 ret, errstr);
6675 }
6676 }
6677
6678 return 0;
6679 }
6680
__btrfs_free_extent(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,u64 parent,u64 root_objectid,u64 owner_objectid,u64 owner_offset,int refs_to_drop,struct btrfs_delayed_extent_op * extent_op)6681 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6682 struct btrfs_delayed_ref_node *node, u64 parent,
6683 u64 root_objectid, u64 owner_objectid,
6684 u64 owner_offset, int refs_to_drop,
6685 struct btrfs_delayed_extent_op *extent_op)
6686 {
6687 struct btrfs_fs_info *info = trans->fs_info;
6688 struct btrfs_key key;
6689 struct btrfs_path *path;
6690 struct btrfs_root *extent_root = info->extent_root;
6691 struct extent_buffer *leaf;
6692 struct btrfs_extent_item *ei;
6693 struct btrfs_extent_inline_ref *iref;
6694 int ret;
6695 int is_data;
6696 int extent_slot = 0;
6697 int found_extent = 0;
6698 int num_to_del = 1;
6699 u32 item_size;
6700 u64 refs;
6701 u64 bytenr = node->bytenr;
6702 u64 num_bytes = node->num_bytes;
6703 int last_ref = 0;
6704 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
6705
6706 path = btrfs_alloc_path();
6707 if (!path)
6708 return -ENOMEM;
6709
6710 path->reada = READA_FORWARD;
6711 path->leave_spinning = 1;
6712
6713 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6714 BUG_ON(!is_data && refs_to_drop != 1);
6715
6716 if (is_data)
6717 skinny_metadata = false;
6718
6719 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
6720 parent, root_objectid, owner_objectid,
6721 owner_offset);
6722 if (ret == 0) {
6723 extent_slot = path->slots[0];
6724 while (extent_slot >= 0) {
6725 btrfs_item_key_to_cpu(path->nodes[0], &key,
6726 extent_slot);
6727 if (key.objectid != bytenr)
6728 break;
6729 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6730 key.offset == num_bytes) {
6731 found_extent = 1;
6732 break;
6733 }
6734 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6735 key.offset == owner_objectid) {
6736 found_extent = 1;
6737 break;
6738 }
6739 if (path->slots[0] - extent_slot > 5)
6740 break;
6741 extent_slot--;
6742 }
6743
6744 if (!found_extent) {
6745 BUG_ON(iref);
6746 ret = remove_extent_backref(trans, path, NULL,
6747 refs_to_drop,
6748 is_data, &last_ref);
6749 if (ret) {
6750 btrfs_abort_transaction(trans, ret);
6751 goto out;
6752 }
6753 btrfs_release_path(path);
6754 path->leave_spinning = 1;
6755
6756 key.objectid = bytenr;
6757 key.type = BTRFS_EXTENT_ITEM_KEY;
6758 key.offset = num_bytes;
6759
6760 if (!is_data && skinny_metadata) {
6761 key.type = BTRFS_METADATA_ITEM_KEY;
6762 key.offset = owner_objectid;
6763 }
6764
6765 ret = btrfs_search_slot(trans, extent_root,
6766 &key, path, -1, 1);
6767 if (ret > 0 && skinny_metadata && path->slots[0]) {
6768 /*
6769 * Couldn't find our skinny metadata item,
6770 * see if we have ye olde extent item.
6771 */
6772 path->slots[0]--;
6773 btrfs_item_key_to_cpu(path->nodes[0], &key,
6774 path->slots[0]);
6775 if (key.objectid == bytenr &&
6776 key.type == BTRFS_EXTENT_ITEM_KEY &&
6777 key.offset == num_bytes)
6778 ret = 0;
6779 }
6780
6781 if (ret > 0 && skinny_metadata) {
6782 skinny_metadata = false;
6783 key.objectid = bytenr;
6784 key.type = BTRFS_EXTENT_ITEM_KEY;
6785 key.offset = num_bytes;
6786 btrfs_release_path(path);
6787 ret = btrfs_search_slot(trans, extent_root,
6788 &key, path, -1, 1);
6789 }
6790
6791 if (ret) {
6792 btrfs_err(info,
6793 "umm, got %d back from search, was looking for %llu",
6794 ret, bytenr);
6795 if (ret > 0)
6796 btrfs_print_leaf(path->nodes[0]);
6797 }
6798 if (ret < 0) {
6799 btrfs_abort_transaction(trans, ret);
6800 goto out;
6801 }
6802 extent_slot = path->slots[0];
6803 }
6804 } else if (WARN_ON(ret == -ENOENT)) {
6805 btrfs_print_leaf(path->nodes[0]);
6806 btrfs_err(info,
6807 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
6808 bytenr, parent, root_objectid, owner_objectid,
6809 owner_offset);
6810 btrfs_abort_transaction(trans, ret);
6811 goto out;
6812 } else {
6813 btrfs_abort_transaction(trans, ret);
6814 goto out;
6815 }
6816
6817 leaf = path->nodes[0];
6818 item_size = btrfs_item_size_nr(leaf, extent_slot);
6819 if (unlikely(item_size < sizeof(*ei))) {
6820 ret = -EINVAL;
6821 btrfs_print_v0_err(info);
6822 btrfs_abort_transaction(trans, ret);
6823 goto out;
6824 }
6825 ei = btrfs_item_ptr(leaf, extent_slot,
6826 struct btrfs_extent_item);
6827 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6828 key.type == BTRFS_EXTENT_ITEM_KEY) {
6829 struct btrfs_tree_block_info *bi;
6830 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6831 bi = (struct btrfs_tree_block_info *)(ei + 1);
6832 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6833 }
6834
6835 refs = btrfs_extent_refs(leaf, ei);
6836 if (refs < refs_to_drop) {
6837 btrfs_err(info,
6838 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
6839 refs_to_drop, refs, bytenr);
6840 ret = -EINVAL;
6841 btrfs_abort_transaction(trans, ret);
6842 goto out;
6843 }
6844 refs -= refs_to_drop;
6845
6846 if (refs > 0) {
6847 if (extent_op)
6848 __run_delayed_extent_op(extent_op, leaf, ei);
6849 /*
6850 * In the case of inline back ref, reference count will
6851 * be updated by remove_extent_backref
6852 */
6853 if (iref) {
6854 BUG_ON(!found_extent);
6855 } else {
6856 btrfs_set_extent_refs(leaf, ei, refs);
6857 btrfs_mark_buffer_dirty(leaf);
6858 }
6859 if (found_extent) {
6860 ret = remove_extent_backref(trans, path, iref,
6861 refs_to_drop, is_data,
6862 &last_ref);
6863 if (ret) {
6864 btrfs_abort_transaction(trans, ret);
6865 goto out;
6866 }
6867 }
6868 } else {
6869 if (found_extent) {
6870 BUG_ON(is_data && refs_to_drop !=
6871 extent_data_ref_count(path, iref));
6872 if (iref) {
6873 BUG_ON(path->slots[0] != extent_slot);
6874 } else {
6875 BUG_ON(path->slots[0] != extent_slot + 1);
6876 path->slots[0] = extent_slot;
6877 num_to_del = 2;
6878 }
6879 }
6880
6881 last_ref = 1;
6882 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6883 num_to_del);
6884 if (ret) {
6885 btrfs_abort_transaction(trans, ret);
6886 goto out;
6887 }
6888 btrfs_release_path(path);
6889
6890 if (is_data) {
6891 ret = btrfs_del_csums(trans, info->csum_root, bytenr,
6892 num_bytes);
6893 if (ret) {
6894 btrfs_abort_transaction(trans, ret);
6895 goto out;
6896 }
6897 }
6898
6899 ret = add_to_free_space_tree(trans, bytenr, num_bytes);
6900 if (ret) {
6901 btrfs_abort_transaction(trans, ret);
6902 goto out;
6903 }
6904
6905 ret = update_block_group(trans, info, bytenr, num_bytes, 0);
6906 if (ret) {
6907 btrfs_abort_transaction(trans, ret);
6908 goto out;
6909 }
6910 }
6911 btrfs_release_path(path);
6912
6913 out:
6914 btrfs_free_path(path);
6915 return ret;
6916 }
6917
6918 /*
6919 * when we free an block, it is possible (and likely) that we free the last
6920 * delayed ref for that extent as well. This searches the delayed ref tree for
6921 * a given extent, and if there are no other delayed refs to be processed, it
6922 * removes it from the tree.
6923 */
check_ref_cleanup(struct btrfs_trans_handle * trans,u64 bytenr)6924 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6925 u64 bytenr)
6926 {
6927 struct btrfs_delayed_ref_head *head;
6928 struct btrfs_delayed_ref_root *delayed_refs;
6929 int ret = 0;
6930
6931 delayed_refs = &trans->transaction->delayed_refs;
6932 spin_lock(&delayed_refs->lock);
6933 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
6934 if (!head)
6935 goto out_delayed_unlock;
6936
6937 spin_lock(&head->lock);
6938 if (!RB_EMPTY_ROOT(&head->ref_tree))
6939 goto out;
6940
6941 if (head->extent_op) {
6942 if (!head->must_insert_reserved)
6943 goto out;
6944 btrfs_free_delayed_extent_op(head->extent_op);
6945 head->extent_op = NULL;
6946 }
6947
6948 /*
6949 * waiting for the lock here would deadlock. If someone else has it
6950 * locked they are already in the process of dropping it anyway
6951 */
6952 if (!mutex_trylock(&head->mutex))
6953 goto out;
6954
6955 /*
6956 * at this point we have a head with no other entries. Go
6957 * ahead and process it.
6958 */
6959 rb_erase(&head->href_node, &delayed_refs->href_root);
6960 RB_CLEAR_NODE(&head->href_node);
6961 atomic_dec(&delayed_refs->num_entries);
6962
6963 /*
6964 * we don't take a ref on the node because we're removing it from the
6965 * tree, so we just steal the ref the tree was holding.
6966 */
6967 delayed_refs->num_heads--;
6968 if (head->processing == 0)
6969 delayed_refs->num_heads_ready--;
6970 head->processing = 0;
6971 spin_unlock(&head->lock);
6972 spin_unlock(&delayed_refs->lock);
6973
6974 BUG_ON(head->extent_op);
6975 if (head->must_insert_reserved)
6976 ret = 1;
6977
6978 mutex_unlock(&head->mutex);
6979 btrfs_put_delayed_ref_head(head);
6980 return ret;
6981 out:
6982 spin_unlock(&head->lock);
6983
6984 out_delayed_unlock:
6985 spin_unlock(&delayed_refs->lock);
6986 return 0;
6987 }
6988
btrfs_free_tree_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,u64 parent,int last_ref)6989 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6990 struct btrfs_root *root,
6991 struct extent_buffer *buf,
6992 u64 parent, int last_ref)
6993 {
6994 struct btrfs_fs_info *fs_info = root->fs_info;
6995 int pin = 1;
6996 int ret;
6997
6998 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6999 int old_ref_mod, new_ref_mod;
7000
7001 btrfs_ref_tree_mod(root, buf->start, buf->len, parent,
7002 root->root_key.objectid,
7003 btrfs_header_level(buf), 0,
7004 BTRFS_DROP_DELAYED_REF);
7005 ret = btrfs_add_delayed_tree_ref(trans, buf->start,
7006 buf->len, parent,
7007 root->root_key.objectid,
7008 btrfs_header_level(buf),
7009 BTRFS_DROP_DELAYED_REF, NULL,
7010 &old_ref_mod, &new_ref_mod);
7011 BUG_ON(ret); /* -ENOMEM */
7012 pin = old_ref_mod >= 0 && new_ref_mod < 0;
7013 }
7014
7015 if (last_ref && btrfs_header_generation(buf) == trans->transid) {
7016 struct btrfs_block_group_cache *cache;
7017
7018 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7019 ret = check_ref_cleanup(trans, buf->start);
7020 if (!ret)
7021 goto out;
7022 }
7023
7024 pin = 0;
7025 cache = btrfs_lookup_block_group(fs_info, buf->start);
7026
7027 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7028 pin_down_extent(fs_info, cache, buf->start,
7029 buf->len, 1);
7030 btrfs_put_block_group(cache);
7031 goto out;
7032 }
7033
7034 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7035
7036 btrfs_add_free_space(cache, buf->start, buf->len);
7037 btrfs_free_reserved_bytes(cache, buf->len, 0);
7038 btrfs_put_block_group(cache);
7039 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
7040 }
7041 out:
7042 if (pin)
7043 add_pinned_bytes(fs_info, buf->len, true,
7044 root->root_key.objectid);
7045
7046 if (last_ref) {
7047 /*
7048 * Deleting the buffer, clear the corrupt flag since it doesn't
7049 * matter anymore.
7050 */
7051 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7052 }
7053 }
7054
7055 /* Can return -ENOMEM */
btrfs_free_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset)7056 int btrfs_free_extent(struct btrfs_trans_handle *trans,
7057 struct btrfs_root *root,
7058 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
7059 u64 owner, u64 offset)
7060 {
7061 struct btrfs_fs_info *fs_info = root->fs_info;
7062 int old_ref_mod, new_ref_mod;
7063 int ret;
7064
7065 if (btrfs_is_testing(fs_info))
7066 return 0;
7067
7068 if (root_objectid != BTRFS_TREE_LOG_OBJECTID)
7069 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent,
7070 root_objectid, owner, offset,
7071 BTRFS_DROP_DELAYED_REF);
7072
7073 /*
7074 * tree log blocks never actually go into the extent allocation
7075 * tree, just update pinning info and exit early.
7076 */
7077 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7078 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
7079 /* unlocks the pinned mutex */
7080 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
7081 old_ref_mod = new_ref_mod = 0;
7082 ret = 0;
7083 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
7084 ret = btrfs_add_delayed_tree_ref(trans, bytenr,
7085 num_bytes, parent,
7086 root_objectid, (int)owner,
7087 BTRFS_DROP_DELAYED_REF, NULL,
7088 &old_ref_mod, &new_ref_mod);
7089 } else {
7090 ret = btrfs_add_delayed_data_ref(trans, bytenr,
7091 num_bytes, parent,
7092 root_objectid, owner, offset,
7093 0, BTRFS_DROP_DELAYED_REF,
7094 &old_ref_mod, &new_ref_mod);
7095 }
7096
7097 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0) {
7098 bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
7099
7100 add_pinned_bytes(fs_info, num_bytes, metadata, root_objectid);
7101 }
7102
7103 return ret;
7104 }
7105
7106 /*
7107 * when we wait for progress in the block group caching, its because
7108 * our allocation attempt failed at least once. So, we must sleep
7109 * and let some progress happen before we try again.
7110 *
7111 * This function will sleep at least once waiting for new free space to
7112 * show up, and then it will check the block group free space numbers
7113 * for our min num_bytes. Another option is to have it go ahead
7114 * and look in the rbtree for a free extent of a given size, but this
7115 * is a good start.
7116 *
7117 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7118 * any of the information in this block group.
7119 */
7120 static noinline void
wait_block_group_cache_progress(struct btrfs_block_group_cache * cache,u64 num_bytes)7121 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7122 u64 num_bytes)
7123 {
7124 struct btrfs_caching_control *caching_ctl;
7125
7126 caching_ctl = get_caching_control(cache);
7127 if (!caching_ctl)
7128 return;
7129
7130 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7131 (cache->free_space_ctl->free_space >= num_bytes));
7132
7133 put_caching_control(caching_ctl);
7134 }
7135
7136 static noinline int
wait_block_group_cache_done(struct btrfs_block_group_cache * cache)7137 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7138 {
7139 struct btrfs_caching_control *caching_ctl;
7140 int ret = 0;
7141
7142 caching_ctl = get_caching_control(cache);
7143 if (!caching_ctl)
7144 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7145
7146 wait_event(caching_ctl->wait, block_group_cache_done(cache));
7147 if (cache->cached == BTRFS_CACHE_ERROR)
7148 ret = -EIO;
7149 put_caching_control(caching_ctl);
7150 return ret;
7151 }
7152
7153 enum btrfs_loop_type {
7154 LOOP_CACHING_NOWAIT = 0,
7155 LOOP_CACHING_WAIT = 1,
7156 LOOP_ALLOC_CHUNK = 2,
7157 LOOP_NO_EMPTY_SIZE = 3,
7158 };
7159
7160 static inline void
btrfs_lock_block_group(struct btrfs_block_group_cache * cache,int delalloc)7161 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7162 int delalloc)
7163 {
7164 if (delalloc)
7165 down_read(&cache->data_rwsem);
7166 }
7167
7168 static inline void
btrfs_grab_block_group(struct btrfs_block_group_cache * cache,int delalloc)7169 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7170 int delalloc)
7171 {
7172 btrfs_get_block_group(cache);
7173 if (delalloc)
7174 down_read(&cache->data_rwsem);
7175 }
7176
7177 static struct btrfs_block_group_cache *
btrfs_lock_cluster(struct btrfs_block_group_cache * block_group,struct btrfs_free_cluster * cluster,int delalloc)7178 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7179 struct btrfs_free_cluster *cluster,
7180 int delalloc)
7181 {
7182 struct btrfs_block_group_cache *used_bg = NULL;
7183
7184 spin_lock(&cluster->refill_lock);
7185 while (1) {
7186 used_bg = cluster->block_group;
7187 if (!used_bg)
7188 return NULL;
7189
7190 if (used_bg == block_group)
7191 return used_bg;
7192
7193 btrfs_get_block_group(used_bg);
7194
7195 if (!delalloc)
7196 return used_bg;
7197
7198 if (down_read_trylock(&used_bg->data_rwsem))
7199 return used_bg;
7200
7201 spin_unlock(&cluster->refill_lock);
7202
7203 /* We should only have one-level nested. */
7204 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
7205
7206 spin_lock(&cluster->refill_lock);
7207 if (used_bg == cluster->block_group)
7208 return used_bg;
7209
7210 up_read(&used_bg->data_rwsem);
7211 btrfs_put_block_group(used_bg);
7212 }
7213 }
7214
7215 static inline void
btrfs_release_block_group(struct btrfs_block_group_cache * cache,int delalloc)7216 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7217 int delalloc)
7218 {
7219 if (delalloc)
7220 up_read(&cache->data_rwsem);
7221 btrfs_put_block_group(cache);
7222 }
7223
7224 /*
7225 * walks the btree of allocated extents and find a hole of a given size.
7226 * The key ins is changed to record the hole:
7227 * ins->objectid == start position
7228 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7229 * ins->offset == the size of the hole.
7230 * Any available blocks before search_start are skipped.
7231 *
7232 * If there is no suitable free space, we will record the max size of
7233 * the free space extent currently.
7234 */
find_free_extent(struct btrfs_fs_info * fs_info,u64 ram_bytes,u64 num_bytes,u64 empty_size,u64 hint_byte,struct btrfs_key * ins,u64 flags,int delalloc)7235 static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
7236 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7237 u64 hint_byte, struct btrfs_key *ins,
7238 u64 flags, int delalloc)
7239 {
7240 int ret = 0;
7241 struct btrfs_root *root = fs_info->extent_root;
7242 struct btrfs_free_cluster *last_ptr = NULL;
7243 struct btrfs_block_group_cache *block_group = NULL;
7244 u64 search_start = 0;
7245 u64 max_extent_size = 0;
7246 u64 max_free_space = 0;
7247 u64 empty_cluster = 0;
7248 struct btrfs_space_info *space_info;
7249 int loop = 0;
7250 int index = btrfs_bg_flags_to_raid_index(flags);
7251 bool failed_cluster_refill = false;
7252 bool failed_alloc = false;
7253 bool use_cluster = true;
7254 bool have_caching_bg = false;
7255 bool orig_have_caching_bg = false;
7256 bool full_search = false;
7257
7258 WARN_ON(num_bytes < fs_info->sectorsize);
7259 ins->type = BTRFS_EXTENT_ITEM_KEY;
7260 ins->objectid = 0;
7261 ins->offset = 0;
7262
7263 trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
7264
7265 space_info = __find_space_info(fs_info, flags);
7266 if (!space_info) {
7267 btrfs_err(fs_info, "No space info for %llu", flags);
7268 return -ENOSPC;
7269 }
7270
7271 /*
7272 * If our free space is heavily fragmented we may not be able to make
7273 * big contiguous allocations, so instead of doing the expensive search
7274 * for free space, simply return ENOSPC with our max_extent_size so we
7275 * can go ahead and search for a more manageable chunk.
7276 *
7277 * If our max_extent_size is large enough for our allocation simply
7278 * disable clustering since we will likely not be able to find enough
7279 * space to create a cluster and induce latency trying.
7280 */
7281 if (unlikely(space_info->max_extent_size)) {
7282 spin_lock(&space_info->lock);
7283 if (space_info->max_extent_size &&
7284 num_bytes > space_info->max_extent_size) {
7285 ins->offset = space_info->max_extent_size;
7286 spin_unlock(&space_info->lock);
7287 return -ENOSPC;
7288 } else if (space_info->max_extent_size) {
7289 use_cluster = false;
7290 }
7291 spin_unlock(&space_info->lock);
7292 }
7293
7294 last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
7295 if (last_ptr) {
7296 spin_lock(&last_ptr->lock);
7297 if (last_ptr->block_group)
7298 hint_byte = last_ptr->window_start;
7299 if (last_ptr->fragmented) {
7300 /*
7301 * We still set window_start so we can keep track of the
7302 * last place we found an allocation to try and save
7303 * some time.
7304 */
7305 hint_byte = last_ptr->window_start;
7306 use_cluster = false;
7307 }
7308 spin_unlock(&last_ptr->lock);
7309 }
7310
7311 search_start = max(search_start, first_logical_byte(fs_info, 0));
7312 search_start = max(search_start, hint_byte);
7313 if (search_start == hint_byte) {
7314 block_group = btrfs_lookup_block_group(fs_info, search_start);
7315 /*
7316 * we don't want to use the block group if it doesn't match our
7317 * allocation bits, or if its not cached.
7318 *
7319 * However if we are re-searching with an ideal block group
7320 * picked out then we don't care that the block group is cached.
7321 */
7322 if (block_group && block_group_bits(block_group, flags) &&
7323 block_group->cached != BTRFS_CACHE_NO) {
7324 down_read(&space_info->groups_sem);
7325 if (list_empty(&block_group->list) ||
7326 block_group->ro) {
7327 /*
7328 * someone is removing this block group,
7329 * we can't jump into the have_block_group
7330 * target because our list pointers are not
7331 * valid
7332 */
7333 btrfs_put_block_group(block_group);
7334 up_read(&space_info->groups_sem);
7335 } else {
7336 index = btrfs_bg_flags_to_raid_index(
7337 block_group->flags);
7338 btrfs_lock_block_group(block_group, delalloc);
7339 goto have_block_group;
7340 }
7341 } else if (block_group) {
7342 btrfs_put_block_group(block_group);
7343 }
7344 }
7345 search:
7346 have_caching_bg = false;
7347 if (index == 0 || index == btrfs_bg_flags_to_raid_index(flags))
7348 full_search = true;
7349 down_read(&space_info->groups_sem);
7350 list_for_each_entry(block_group, &space_info->block_groups[index],
7351 list) {
7352 u64 offset;
7353 int cached;
7354
7355 /* If the block group is read-only, we can skip it entirely. */
7356 if (unlikely(block_group->ro))
7357 continue;
7358
7359 btrfs_grab_block_group(block_group, delalloc);
7360 search_start = block_group->key.objectid;
7361
7362 /*
7363 * this can happen if we end up cycling through all the
7364 * raid types, but we want to make sure we only allocate
7365 * for the proper type.
7366 */
7367 if (!block_group_bits(block_group, flags)) {
7368 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7369 BTRFS_BLOCK_GROUP_RAID1 |
7370 BTRFS_BLOCK_GROUP_RAID5 |
7371 BTRFS_BLOCK_GROUP_RAID6 |
7372 BTRFS_BLOCK_GROUP_RAID10;
7373
7374 /*
7375 * if they asked for extra copies and this block group
7376 * doesn't provide them, bail. This does allow us to
7377 * fill raid0 from raid1.
7378 */
7379 if ((flags & extra) && !(block_group->flags & extra))
7380 goto loop;
7381
7382 /*
7383 * This block group has different flags than we want.
7384 * It's possible that we have MIXED_GROUP flag but no
7385 * block group is mixed. Just skip such block group.
7386 */
7387 btrfs_release_block_group(block_group, delalloc);
7388 continue;
7389 }
7390
7391 have_block_group:
7392 cached = block_group_cache_done(block_group);
7393 if (unlikely(!cached)) {
7394 have_caching_bg = true;
7395 ret = cache_block_group(block_group, 0);
7396 BUG_ON(ret < 0);
7397 ret = 0;
7398 }
7399
7400 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7401 goto loop;
7402
7403 /*
7404 * Ok we want to try and use the cluster allocator, so
7405 * lets look there
7406 */
7407 if (last_ptr && use_cluster) {
7408 struct btrfs_block_group_cache *used_block_group;
7409 unsigned long aligned_cluster;
7410 /*
7411 * the refill lock keeps out other
7412 * people trying to start a new cluster
7413 */
7414 used_block_group = btrfs_lock_cluster(block_group,
7415 last_ptr,
7416 delalloc);
7417 if (!used_block_group)
7418 goto refill_cluster;
7419
7420 if (used_block_group != block_group &&
7421 (used_block_group->ro ||
7422 !block_group_bits(used_block_group, flags)))
7423 goto release_cluster;
7424
7425 offset = btrfs_alloc_from_cluster(used_block_group,
7426 last_ptr,
7427 num_bytes,
7428 used_block_group->key.objectid,
7429 &max_extent_size);
7430 if (offset) {
7431 /* we have a block, we're done */
7432 spin_unlock(&last_ptr->refill_lock);
7433 trace_btrfs_reserve_extent_cluster(
7434 used_block_group,
7435 search_start, num_bytes);
7436 if (used_block_group != block_group) {
7437 btrfs_release_block_group(block_group,
7438 delalloc);
7439 block_group = used_block_group;
7440 }
7441 goto checks;
7442 }
7443
7444 WARN_ON(last_ptr->block_group != used_block_group);
7445 release_cluster:
7446 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7447 * set up a new clusters, so lets just skip it
7448 * and let the allocator find whatever block
7449 * it can find. If we reach this point, we
7450 * will have tried the cluster allocator
7451 * plenty of times and not have found
7452 * anything, so we are likely way too
7453 * fragmented for the clustering stuff to find
7454 * anything.
7455 *
7456 * However, if the cluster is taken from the
7457 * current block group, release the cluster
7458 * first, so that we stand a better chance of
7459 * succeeding in the unclustered
7460 * allocation. */
7461 if (loop >= LOOP_NO_EMPTY_SIZE &&
7462 used_block_group != block_group) {
7463 spin_unlock(&last_ptr->refill_lock);
7464 btrfs_release_block_group(used_block_group,
7465 delalloc);
7466 goto unclustered_alloc;
7467 }
7468
7469 /*
7470 * this cluster didn't work out, free it and
7471 * start over
7472 */
7473 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7474
7475 if (used_block_group != block_group)
7476 btrfs_release_block_group(used_block_group,
7477 delalloc);
7478 refill_cluster:
7479 if (loop >= LOOP_NO_EMPTY_SIZE) {
7480 spin_unlock(&last_ptr->refill_lock);
7481 goto unclustered_alloc;
7482 }
7483
7484 aligned_cluster = max_t(unsigned long,
7485 empty_cluster + empty_size,
7486 block_group->full_stripe_len);
7487
7488 /* allocate a cluster in this block group */
7489 ret = btrfs_find_space_cluster(fs_info, block_group,
7490 last_ptr, search_start,
7491 num_bytes,
7492 aligned_cluster);
7493 if (ret == 0) {
7494 /*
7495 * now pull our allocation out of this
7496 * cluster
7497 */
7498 offset = btrfs_alloc_from_cluster(block_group,
7499 last_ptr,
7500 num_bytes,
7501 search_start,
7502 &max_extent_size);
7503 if (offset) {
7504 /* we found one, proceed */
7505 spin_unlock(&last_ptr->refill_lock);
7506 trace_btrfs_reserve_extent_cluster(
7507 block_group, search_start,
7508 num_bytes);
7509 goto checks;
7510 }
7511 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7512 && !failed_cluster_refill) {
7513 spin_unlock(&last_ptr->refill_lock);
7514
7515 failed_cluster_refill = true;
7516 wait_block_group_cache_progress(block_group,
7517 num_bytes + empty_cluster + empty_size);
7518 goto have_block_group;
7519 }
7520
7521 /*
7522 * at this point we either didn't find a cluster
7523 * or we weren't able to allocate a block from our
7524 * cluster. Free the cluster we've been trying
7525 * to use, and go to the next block group
7526 */
7527 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7528 spin_unlock(&last_ptr->refill_lock);
7529 goto loop;
7530 }
7531
7532 unclustered_alloc:
7533 /*
7534 * We are doing an unclustered alloc, set the fragmented flag so
7535 * we don't bother trying to setup a cluster again until we get
7536 * more space.
7537 */
7538 if (unlikely(last_ptr)) {
7539 spin_lock(&last_ptr->lock);
7540 last_ptr->fragmented = 1;
7541 spin_unlock(&last_ptr->lock);
7542 }
7543 if (cached) {
7544 struct btrfs_free_space_ctl *ctl =
7545 block_group->free_space_ctl;
7546
7547 spin_lock(&ctl->tree_lock);
7548 if (ctl->free_space <
7549 num_bytes + empty_cluster + empty_size) {
7550 max_free_space = max(max_free_space,
7551 ctl->free_space);
7552 spin_unlock(&ctl->tree_lock);
7553 goto loop;
7554 }
7555 spin_unlock(&ctl->tree_lock);
7556 }
7557
7558 offset = btrfs_find_space_for_alloc(block_group, search_start,
7559 num_bytes, empty_size,
7560 &max_extent_size);
7561 /*
7562 * If we didn't find a chunk, and we haven't failed on this
7563 * block group before, and this block group is in the middle of
7564 * caching and we are ok with waiting, then go ahead and wait
7565 * for progress to be made, and set failed_alloc to true.
7566 *
7567 * If failed_alloc is true then we've already waited on this
7568 * block group once and should move on to the next block group.
7569 */
7570 if (!offset && !failed_alloc && !cached &&
7571 loop > LOOP_CACHING_NOWAIT) {
7572 wait_block_group_cache_progress(block_group,
7573 num_bytes + empty_size);
7574 failed_alloc = true;
7575 goto have_block_group;
7576 } else if (!offset) {
7577 goto loop;
7578 }
7579 checks:
7580 search_start = round_up(offset, fs_info->stripesize);
7581
7582 /* move on to the next group */
7583 if (search_start + num_bytes >
7584 block_group->key.objectid + block_group->key.offset) {
7585 btrfs_add_free_space(block_group, offset, num_bytes);
7586 goto loop;
7587 }
7588
7589 if (offset < search_start)
7590 btrfs_add_free_space(block_group, offset,
7591 search_start - offset);
7592
7593 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7594 num_bytes, delalloc);
7595 if (ret == -EAGAIN) {
7596 btrfs_add_free_space(block_group, offset, num_bytes);
7597 goto loop;
7598 }
7599 btrfs_inc_block_group_reservations(block_group);
7600
7601 /* we are all good, lets return */
7602 ins->objectid = search_start;
7603 ins->offset = num_bytes;
7604
7605 trace_btrfs_reserve_extent(block_group, search_start, num_bytes);
7606 btrfs_release_block_group(block_group, delalloc);
7607 break;
7608 loop:
7609 failed_cluster_refill = false;
7610 failed_alloc = false;
7611 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
7612 index);
7613 btrfs_release_block_group(block_group, delalloc);
7614 cond_resched();
7615 }
7616 up_read(&space_info->groups_sem);
7617
7618 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7619 && !orig_have_caching_bg)
7620 orig_have_caching_bg = true;
7621
7622 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7623 goto search;
7624
7625 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7626 goto search;
7627
7628 /*
7629 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7630 * caching kthreads as we move along
7631 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7632 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7633 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7634 * again
7635 */
7636 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7637 index = 0;
7638 if (loop == LOOP_CACHING_NOWAIT) {
7639 /*
7640 * We want to skip the LOOP_CACHING_WAIT step if we
7641 * don't have any uncached bgs and we've already done a
7642 * full search through.
7643 */
7644 if (orig_have_caching_bg || !full_search)
7645 loop = LOOP_CACHING_WAIT;
7646 else
7647 loop = LOOP_ALLOC_CHUNK;
7648 } else {
7649 loop++;
7650 }
7651
7652 if (loop == LOOP_ALLOC_CHUNK) {
7653 struct btrfs_trans_handle *trans;
7654 int exist = 0;
7655
7656 trans = current->journal_info;
7657 if (trans)
7658 exist = 1;
7659 else
7660 trans = btrfs_join_transaction(root);
7661
7662 if (IS_ERR(trans)) {
7663 ret = PTR_ERR(trans);
7664 goto out;
7665 }
7666
7667 ret = do_chunk_alloc(trans, flags, CHUNK_ALLOC_FORCE);
7668
7669 /*
7670 * If we can't allocate a new chunk we've already looped
7671 * through at least once, move on to the NO_EMPTY_SIZE
7672 * case.
7673 */
7674 if (ret == -ENOSPC)
7675 loop = LOOP_NO_EMPTY_SIZE;
7676
7677 /*
7678 * Do not bail out on ENOSPC since we
7679 * can do more things.
7680 */
7681 if (ret < 0 && ret != -ENOSPC)
7682 btrfs_abort_transaction(trans, ret);
7683 else
7684 ret = 0;
7685 if (!exist)
7686 btrfs_end_transaction(trans);
7687 if (ret)
7688 goto out;
7689 }
7690
7691 if (loop == LOOP_NO_EMPTY_SIZE) {
7692 /*
7693 * Don't loop again if we already have no empty_size and
7694 * no empty_cluster.
7695 */
7696 if (empty_size == 0 &&
7697 empty_cluster == 0) {
7698 ret = -ENOSPC;
7699 goto out;
7700 }
7701 empty_size = 0;
7702 empty_cluster = 0;
7703 }
7704
7705 goto search;
7706 } else if (!ins->objectid) {
7707 ret = -ENOSPC;
7708 } else if (ins->objectid) {
7709 if (!use_cluster && last_ptr) {
7710 spin_lock(&last_ptr->lock);
7711 last_ptr->window_start = ins->objectid;
7712 spin_unlock(&last_ptr->lock);
7713 }
7714 ret = 0;
7715 }
7716 out:
7717 if (ret == -ENOSPC) {
7718 if (!max_extent_size)
7719 max_extent_size = max_free_space;
7720 spin_lock(&space_info->lock);
7721 space_info->max_extent_size = max_extent_size;
7722 spin_unlock(&space_info->lock);
7723 ins->offset = max_extent_size;
7724 }
7725 return ret;
7726 }
7727
dump_space_info(struct btrfs_fs_info * fs_info,struct btrfs_space_info * info,u64 bytes,int dump_block_groups)7728 static void dump_space_info(struct btrfs_fs_info *fs_info,
7729 struct btrfs_space_info *info, u64 bytes,
7730 int dump_block_groups)
7731 {
7732 struct btrfs_block_group_cache *cache;
7733 int index = 0;
7734
7735 spin_lock(&info->lock);
7736 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7737 info->flags,
7738 info->total_bytes - btrfs_space_info_used(info, true),
7739 info->full ? "" : "not ");
7740 btrfs_info(fs_info,
7741 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7742 info->total_bytes, info->bytes_used, info->bytes_pinned,
7743 info->bytes_reserved, info->bytes_may_use,
7744 info->bytes_readonly);
7745 spin_unlock(&info->lock);
7746
7747 if (!dump_block_groups)
7748 return;
7749
7750 down_read(&info->groups_sem);
7751 again:
7752 list_for_each_entry(cache, &info->block_groups[index], list) {
7753 spin_lock(&cache->lock);
7754 btrfs_info(fs_info,
7755 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7756 cache->key.objectid, cache->key.offset,
7757 btrfs_block_group_used(&cache->item), cache->pinned,
7758 cache->reserved, cache->ro ? "[readonly]" : "");
7759 btrfs_dump_free_space(cache, bytes);
7760 spin_unlock(&cache->lock);
7761 }
7762 if (++index < BTRFS_NR_RAID_TYPES)
7763 goto again;
7764 up_read(&info->groups_sem);
7765 }
7766
7767 /*
7768 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
7769 * hole that is at least as big as @num_bytes.
7770 *
7771 * @root - The root that will contain this extent
7772 *
7773 * @ram_bytes - The amount of space in ram that @num_bytes take. This
7774 * is used for accounting purposes. This value differs
7775 * from @num_bytes only in the case of compressed extents.
7776 *
7777 * @num_bytes - Number of bytes to allocate on-disk.
7778 *
7779 * @min_alloc_size - Indicates the minimum amount of space that the
7780 * allocator should try to satisfy. In some cases
7781 * @num_bytes may be larger than what is required and if
7782 * the filesystem is fragmented then allocation fails.
7783 * However, the presence of @min_alloc_size gives a
7784 * chance to try and satisfy the smaller allocation.
7785 *
7786 * @empty_size - A hint that you plan on doing more COW. This is the
7787 * size in bytes the allocator should try to find free
7788 * next to the block it returns. This is just a hint and
7789 * may be ignored by the allocator.
7790 *
7791 * @hint_byte - Hint to the allocator to start searching above the byte
7792 * address passed. It might be ignored.
7793 *
7794 * @ins - This key is modified to record the found hole. It will
7795 * have the following values:
7796 * ins->objectid == start position
7797 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7798 * ins->offset == the size of the hole.
7799 *
7800 * @is_data - Boolean flag indicating whether an extent is
7801 * allocated for data (true) or metadata (false)
7802 *
7803 * @delalloc - Boolean flag indicating whether this allocation is for
7804 * delalloc or not. If 'true' data_rwsem of block groups
7805 * is going to be acquired.
7806 *
7807 *
7808 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
7809 * case -ENOSPC is returned then @ins->offset will contain the size of the
7810 * largest available hole the allocator managed to find.
7811 */
btrfs_reserve_extent(struct btrfs_root * root,u64 ram_bytes,u64 num_bytes,u64 min_alloc_size,u64 empty_size,u64 hint_byte,struct btrfs_key * ins,int is_data,int delalloc)7812 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
7813 u64 num_bytes, u64 min_alloc_size,
7814 u64 empty_size, u64 hint_byte,
7815 struct btrfs_key *ins, int is_data, int delalloc)
7816 {
7817 struct btrfs_fs_info *fs_info = root->fs_info;
7818 bool final_tried = num_bytes == min_alloc_size;
7819 u64 flags;
7820 int ret;
7821
7822 flags = get_alloc_profile_by_root(root, is_data);
7823 again:
7824 WARN_ON(num_bytes < fs_info->sectorsize);
7825 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
7826 hint_byte, ins, flags, delalloc);
7827 if (!ret && !is_data) {
7828 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
7829 } else if (ret == -ENOSPC) {
7830 if (!final_tried && ins->offset) {
7831 num_bytes = min(num_bytes >> 1, ins->offset);
7832 num_bytes = round_down(num_bytes,
7833 fs_info->sectorsize);
7834 num_bytes = max(num_bytes, min_alloc_size);
7835 ram_bytes = num_bytes;
7836 if (num_bytes == min_alloc_size)
7837 final_tried = true;
7838 goto again;
7839 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
7840 struct btrfs_space_info *sinfo;
7841
7842 sinfo = __find_space_info(fs_info, flags);
7843 btrfs_err(fs_info,
7844 "allocation failed flags %llu, wanted %llu",
7845 flags, num_bytes);
7846 if (sinfo)
7847 dump_space_info(fs_info, sinfo, num_bytes, 1);
7848 }
7849 }
7850
7851 return ret;
7852 }
7853
__btrfs_free_reserved_extent(struct btrfs_fs_info * fs_info,u64 start,u64 len,int pin,int delalloc)7854 static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
7855 u64 start, u64 len,
7856 int pin, int delalloc)
7857 {
7858 struct btrfs_block_group_cache *cache;
7859 int ret = 0;
7860
7861 cache = btrfs_lookup_block_group(fs_info, start);
7862 if (!cache) {
7863 btrfs_err(fs_info, "Unable to find block group for %llu",
7864 start);
7865 return -ENOSPC;
7866 }
7867
7868 if (pin)
7869 pin_down_extent(fs_info, cache, start, len, 1);
7870 else {
7871 if (btrfs_test_opt(fs_info, DISCARD))
7872 ret = btrfs_discard_extent(fs_info, start, len, NULL);
7873 btrfs_add_free_space(cache, start, len);
7874 btrfs_free_reserved_bytes(cache, len, delalloc);
7875 trace_btrfs_reserved_extent_free(fs_info, start, len);
7876 }
7877
7878 btrfs_put_block_group(cache);
7879 return ret;
7880 }
7881
btrfs_free_reserved_extent(struct btrfs_fs_info * fs_info,u64 start,u64 len,int delalloc)7882 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
7883 u64 start, u64 len, int delalloc)
7884 {
7885 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
7886 }
7887
btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info * fs_info,u64 start,u64 len)7888 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
7889 u64 start, u64 len)
7890 {
7891 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
7892 }
7893
alloc_reserved_file_extent(struct btrfs_trans_handle * trans,u64 parent,u64 root_objectid,u64 flags,u64 owner,u64 offset,struct btrfs_key * ins,int ref_mod)7894 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7895 u64 parent, u64 root_objectid,
7896 u64 flags, u64 owner, u64 offset,
7897 struct btrfs_key *ins, int ref_mod)
7898 {
7899 struct btrfs_fs_info *fs_info = trans->fs_info;
7900 int ret;
7901 struct btrfs_extent_item *extent_item;
7902 struct btrfs_extent_inline_ref *iref;
7903 struct btrfs_path *path;
7904 struct extent_buffer *leaf;
7905 int type;
7906 u32 size;
7907
7908 if (parent > 0)
7909 type = BTRFS_SHARED_DATA_REF_KEY;
7910 else
7911 type = BTRFS_EXTENT_DATA_REF_KEY;
7912
7913 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7914
7915 path = btrfs_alloc_path();
7916 if (!path)
7917 return -ENOMEM;
7918
7919 path->leave_spinning = 1;
7920 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7921 ins, size);
7922 if (ret) {
7923 btrfs_free_path(path);
7924 return ret;
7925 }
7926
7927 leaf = path->nodes[0];
7928 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7929 struct btrfs_extent_item);
7930 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7931 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7932 btrfs_set_extent_flags(leaf, extent_item,
7933 flags | BTRFS_EXTENT_FLAG_DATA);
7934
7935 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7936 btrfs_set_extent_inline_ref_type(leaf, iref, type);
7937 if (parent > 0) {
7938 struct btrfs_shared_data_ref *ref;
7939 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7940 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7941 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7942 } else {
7943 struct btrfs_extent_data_ref *ref;
7944 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7945 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7946 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7947 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7948 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7949 }
7950
7951 btrfs_mark_buffer_dirty(path->nodes[0]);
7952 btrfs_free_path(path);
7953
7954 ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset);
7955 if (ret)
7956 return ret;
7957
7958 ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
7959 if (ret) { /* -ENOENT, logic error */
7960 btrfs_err(fs_info, "update block group failed for %llu %llu",
7961 ins->objectid, ins->offset);
7962 BUG();
7963 }
7964 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
7965 return ret;
7966 }
7967
alloc_reserved_tree_block(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op)7968 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7969 struct btrfs_delayed_ref_node *node,
7970 struct btrfs_delayed_extent_op *extent_op)
7971 {
7972 struct btrfs_fs_info *fs_info = trans->fs_info;
7973 int ret;
7974 struct btrfs_extent_item *extent_item;
7975 struct btrfs_key extent_key;
7976 struct btrfs_tree_block_info *block_info;
7977 struct btrfs_extent_inline_ref *iref;
7978 struct btrfs_path *path;
7979 struct extent_buffer *leaf;
7980 struct btrfs_delayed_tree_ref *ref;
7981 u32 size = sizeof(*extent_item) + sizeof(*iref);
7982 u64 num_bytes;
7983 u64 flags = extent_op->flags_to_set;
7984 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
7985
7986 ref = btrfs_delayed_node_to_tree_ref(node);
7987
7988 extent_key.objectid = node->bytenr;
7989 if (skinny_metadata) {
7990 extent_key.offset = ref->level;
7991 extent_key.type = BTRFS_METADATA_ITEM_KEY;
7992 num_bytes = fs_info->nodesize;
7993 } else {
7994 extent_key.offset = node->num_bytes;
7995 extent_key.type = BTRFS_EXTENT_ITEM_KEY;
7996 size += sizeof(*block_info);
7997 num_bytes = node->num_bytes;
7998 }
7999
8000 path = btrfs_alloc_path();
8001 if (!path)
8002 return -ENOMEM;
8003
8004 path->leave_spinning = 1;
8005 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8006 &extent_key, size);
8007 if (ret) {
8008 btrfs_free_path(path);
8009 return ret;
8010 }
8011
8012 leaf = path->nodes[0];
8013 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8014 struct btrfs_extent_item);
8015 btrfs_set_extent_refs(leaf, extent_item, 1);
8016 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8017 btrfs_set_extent_flags(leaf, extent_item,
8018 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
8019
8020 if (skinny_metadata) {
8021 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8022 } else {
8023 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8024 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
8025 btrfs_set_tree_block_level(leaf, block_info, ref->level);
8026 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8027 }
8028
8029 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
8030 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8031 btrfs_set_extent_inline_ref_type(leaf, iref,
8032 BTRFS_SHARED_BLOCK_REF_KEY);
8033 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
8034 } else {
8035 btrfs_set_extent_inline_ref_type(leaf, iref,
8036 BTRFS_TREE_BLOCK_REF_KEY);
8037 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
8038 }
8039
8040 btrfs_mark_buffer_dirty(leaf);
8041 btrfs_free_path(path);
8042
8043 ret = remove_from_free_space_tree(trans, extent_key.objectid,
8044 num_bytes);
8045 if (ret)
8046 return ret;
8047
8048 ret = update_block_group(trans, fs_info, extent_key.objectid,
8049 fs_info->nodesize, 1);
8050 if (ret) { /* -ENOENT, logic error */
8051 btrfs_err(fs_info, "update block group failed for %llu %llu",
8052 extent_key.objectid, extent_key.offset);
8053 BUG();
8054 }
8055
8056 trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid,
8057 fs_info->nodesize);
8058 return ret;
8059 }
8060
btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 owner,u64 offset,u64 ram_bytes,struct btrfs_key * ins)8061 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8062 struct btrfs_root *root, u64 owner,
8063 u64 offset, u64 ram_bytes,
8064 struct btrfs_key *ins)
8065 {
8066 int ret;
8067
8068 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
8069
8070 btrfs_ref_tree_mod(root, ins->objectid, ins->offset, 0,
8071 root->root_key.objectid, owner, offset,
8072 BTRFS_ADD_DELAYED_EXTENT);
8073
8074 ret = btrfs_add_delayed_data_ref(trans, ins->objectid,
8075 ins->offset, 0,
8076 root->root_key.objectid, owner,
8077 offset, ram_bytes,
8078 BTRFS_ADD_DELAYED_EXTENT, NULL, NULL);
8079 return ret;
8080 }
8081
8082 /*
8083 * this is used by the tree logging recovery code. It records that
8084 * an extent has been allocated and makes sure to clear the free
8085 * space cache bits as well
8086 */
btrfs_alloc_logged_file_extent(struct btrfs_trans_handle * trans,u64 root_objectid,u64 owner,u64 offset,struct btrfs_key * ins)8087 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8088 u64 root_objectid, u64 owner, u64 offset,
8089 struct btrfs_key *ins)
8090 {
8091 struct btrfs_fs_info *fs_info = trans->fs_info;
8092 int ret;
8093 struct btrfs_block_group_cache *block_group;
8094 struct btrfs_space_info *space_info;
8095
8096 /*
8097 * Mixed block groups will exclude before processing the log so we only
8098 * need to do the exclude dance if this fs isn't mixed.
8099 */
8100 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
8101 ret = __exclude_logged_extent(fs_info, ins->objectid,
8102 ins->offset);
8103 if (ret)
8104 return ret;
8105 }
8106
8107 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8108 if (!block_group)
8109 return -EINVAL;
8110
8111 space_info = block_group->space_info;
8112 spin_lock(&space_info->lock);
8113 spin_lock(&block_group->lock);
8114 space_info->bytes_reserved += ins->offset;
8115 block_group->reserved += ins->offset;
8116 spin_unlock(&block_group->lock);
8117 spin_unlock(&space_info->lock);
8118
8119 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
8120 offset, ins, 1);
8121 btrfs_put_block_group(block_group);
8122 return ret;
8123 }
8124
8125 static struct extent_buffer *
btrfs_init_new_buffer(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,int level,u64 owner)8126 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8127 u64 bytenr, int level, u64 owner)
8128 {
8129 struct btrfs_fs_info *fs_info = root->fs_info;
8130 struct extent_buffer *buf;
8131
8132 buf = btrfs_find_create_tree_block(fs_info, bytenr);
8133 if (IS_ERR(buf))
8134 return buf;
8135
8136 /*
8137 * Extra safety check in case the extent tree is corrupted and extent
8138 * allocator chooses to use a tree block which is already used and
8139 * locked.
8140 */
8141 if (buf->lock_owner == current->pid) {
8142 btrfs_err_rl(fs_info,
8143 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
8144 buf->start, btrfs_header_owner(buf), current->pid);
8145 free_extent_buffer(buf);
8146 return ERR_PTR(-EUCLEAN);
8147 }
8148
8149 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8150 btrfs_tree_lock(buf);
8151 clean_tree_block(fs_info, buf);
8152 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8153
8154 btrfs_set_lock_blocking(buf);
8155 set_extent_buffer_uptodate(buf);
8156
8157 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
8158 btrfs_set_header_level(buf, level);
8159 btrfs_set_header_bytenr(buf, buf->start);
8160 btrfs_set_header_generation(buf, trans->transid);
8161 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
8162 btrfs_set_header_owner(buf, owner);
8163 write_extent_buffer_fsid(buf, fs_info->fsid);
8164 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
8165 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8166 buf->log_index = root->log_transid % 2;
8167 /*
8168 * we allow two log transactions at a time, use different
8169 * EXENT bit to differentiate dirty pages.
8170 */
8171 if (buf->log_index == 0)
8172 set_extent_dirty(&root->dirty_log_pages, buf->start,
8173 buf->start + buf->len - 1, GFP_NOFS);
8174 else
8175 set_extent_new(&root->dirty_log_pages, buf->start,
8176 buf->start + buf->len - 1);
8177 } else {
8178 buf->log_index = -1;
8179 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8180 buf->start + buf->len - 1, GFP_NOFS);
8181 }
8182 trans->dirty = true;
8183 /* this returns a buffer locked for blocking */
8184 return buf;
8185 }
8186
8187 static struct btrfs_block_rsv *
use_block_rsv(struct btrfs_trans_handle * trans,struct btrfs_root * root,u32 blocksize)8188 use_block_rsv(struct btrfs_trans_handle *trans,
8189 struct btrfs_root *root, u32 blocksize)
8190 {
8191 struct btrfs_fs_info *fs_info = root->fs_info;
8192 struct btrfs_block_rsv *block_rsv;
8193 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8194 int ret;
8195 bool global_updated = false;
8196
8197 block_rsv = get_block_rsv(trans, root);
8198
8199 if (unlikely(block_rsv->size == 0))
8200 goto try_reserve;
8201 again:
8202 ret = block_rsv_use_bytes(block_rsv, blocksize);
8203 if (!ret)
8204 return block_rsv;
8205
8206 if (block_rsv->failfast)
8207 return ERR_PTR(ret);
8208
8209 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8210 global_updated = true;
8211 update_global_block_rsv(fs_info);
8212 goto again;
8213 }
8214
8215 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8216 static DEFINE_RATELIMIT_STATE(_rs,
8217 DEFAULT_RATELIMIT_INTERVAL * 10,
8218 /*DEFAULT_RATELIMIT_BURST*/ 1);
8219 if (__ratelimit(&_rs))
8220 WARN(1, KERN_DEBUG
8221 "BTRFS: block rsv returned %d\n", ret);
8222 }
8223 try_reserve:
8224 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8225 BTRFS_RESERVE_NO_FLUSH);
8226 if (!ret)
8227 return block_rsv;
8228 /*
8229 * If we couldn't reserve metadata bytes try and use some from
8230 * the global reserve if its space type is the same as the global
8231 * reservation.
8232 */
8233 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8234 block_rsv->space_info == global_rsv->space_info) {
8235 ret = block_rsv_use_bytes(global_rsv, blocksize);
8236 if (!ret)
8237 return global_rsv;
8238 }
8239 return ERR_PTR(ret);
8240 }
8241
unuse_block_rsv(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * block_rsv,u32 blocksize)8242 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8243 struct btrfs_block_rsv *block_rsv, u32 blocksize)
8244 {
8245 block_rsv_add_bytes(block_rsv, blocksize, 0);
8246 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0, NULL);
8247 }
8248
8249 /*
8250 * finds a free extent and does all the dirty work required for allocation
8251 * returns the tree buffer or an ERR_PTR on error.
8252 */
btrfs_alloc_tree_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 parent,u64 root_objectid,const struct btrfs_disk_key * key,int level,u64 hint,u64 empty_size)8253 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8254 struct btrfs_root *root,
8255 u64 parent, u64 root_objectid,
8256 const struct btrfs_disk_key *key,
8257 int level, u64 hint,
8258 u64 empty_size)
8259 {
8260 struct btrfs_fs_info *fs_info = root->fs_info;
8261 struct btrfs_key ins;
8262 struct btrfs_block_rsv *block_rsv;
8263 struct extent_buffer *buf;
8264 struct btrfs_delayed_extent_op *extent_op;
8265 u64 flags = 0;
8266 int ret;
8267 u32 blocksize = fs_info->nodesize;
8268 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8269
8270 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8271 if (btrfs_is_testing(fs_info)) {
8272 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8273 level, root_objectid);
8274 if (!IS_ERR(buf))
8275 root->alloc_bytenr += blocksize;
8276 return buf;
8277 }
8278 #endif
8279
8280 block_rsv = use_block_rsv(trans, root, blocksize);
8281 if (IS_ERR(block_rsv))
8282 return ERR_CAST(block_rsv);
8283
8284 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
8285 empty_size, hint, &ins, 0, 0);
8286 if (ret)
8287 goto out_unuse;
8288
8289 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
8290 root_objectid);
8291 if (IS_ERR(buf)) {
8292 ret = PTR_ERR(buf);
8293 goto out_free_reserved;
8294 }
8295
8296 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8297 if (parent == 0)
8298 parent = ins.objectid;
8299 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8300 } else
8301 BUG_ON(parent > 0);
8302
8303 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8304 extent_op = btrfs_alloc_delayed_extent_op();
8305 if (!extent_op) {
8306 ret = -ENOMEM;
8307 goto out_free_buf;
8308 }
8309 if (key)
8310 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8311 else
8312 memset(&extent_op->key, 0, sizeof(extent_op->key));
8313 extent_op->flags_to_set = flags;
8314 extent_op->update_key = skinny_metadata ? false : true;
8315 extent_op->update_flags = true;
8316 extent_op->is_data = false;
8317 extent_op->level = level;
8318
8319 btrfs_ref_tree_mod(root, ins.objectid, ins.offset, parent,
8320 root_objectid, level, 0,
8321 BTRFS_ADD_DELAYED_EXTENT);
8322 ret = btrfs_add_delayed_tree_ref(trans, ins.objectid,
8323 ins.offset, parent,
8324 root_objectid, level,
8325 BTRFS_ADD_DELAYED_EXTENT,
8326 extent_op, NULL, NULL);
8327 if (ret)
8328 goto out_free_delayed;
8329 }
8330 return buf;
8331
8332 out_free_delayed:
8333 btrfs_free_delayed_extent_op(extent_op);
8334 out_free_buf:
8335 btrfs_tree_unlock(buf);
8336 free_extent_buffer(buf);
8337 out_free_reserved:
8338 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
8339 out_unuse:
8340 unuse_block_rsv(fs_info, block_rsv, blocksize);
8341 return ERR_PTR(ret);
8342 }
8343
8344 struct walk_control {
8345 u64 refs[BTRFS_MAX_LEVEL];
8346 u64 flags[BTRFS_MAX_LEVEL];
8347 struct btrfs_key update_progress;
8348 int stage;
8349 int level;
8350 int shared_level;
8351 int update_ref;
8352 int keep_locks;
8353 int reada_slot;
8354 int reada_count;
8355 };
8356
8357 #define DROP_REFERENCE 1
8358 #define UPDATE_BACKREF 2
8359
reada_walk_down(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct walk_control * wc,struct btrfs_path * path)8360 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8361 struct btrfs_root *root,
8362 struct walk_control *wc,
8363 struct btrfs_path *path)
8364 {
8365 struct btrfs_fs_info *fs_info = root->fs_info;
8366 u64 bytenr;
8367 u64 generation;
8368 u64 refs;
8369 u64 flags;
8370 u32 nritems;
8371 struct btrfs_key key;
8372 struct extent_buffer *eb;
8373 int ret;
8374 int slot;
8375 int nread = 0;
8376
8377 if (path->slots[wc->level] < wc->reada_slot) {
8378 wc->reada_count = wc->reada_count * 2 / 3;
8379 wc->reada_count = max(wc->reada_count, 2);
8380 } else {
8381 wc->reada_count = wc->reada_count * 3 / 2;
8382 wc->reada_count = min_t(int, wc->reada_count,
8383 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
8384 }
8385
8386 eb = path->nodes[wc->level];
8387 nritems = btrfs_header_nritems(eb);
8388
8389 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8390 if (nread >= wc->reada_count)
8391 break;
8392
8393 cond_resched();
8394 bytenr = btrfs_node_blockptr(eb, slot);
8395 generation = btrfs_node_ptr_generation(eb, slot);
8396
8397 if (slot == path->slots[wc->level])
8398 goto reada;
8399
8400 if (wc->stage == UPDATE_BACKREF &&
8401 generation <= root->root_key.offset)
8402 continue;
8403
8404 /* We don't lock the tree block, it's OK to be racy here */
8405 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
8406 wc->level - 1, 1, &refs,
8407 &flags);
8408 /* We don't care about errors in readahead. */
8409 if (ret < 0)
8410 continue;
8411 BUG_ON(refs == 0);
8412
8413 if (wc->stage == DROP_REFERENCE) {
8414 if (refs == 1)
8415 goto reada;
8416
8417 if (wc->level == 1 &&
8418 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8419 continue;
8420 if (!wc->update_ref ||
8421 generation <= root->root_key.offset)
8422 continue;
8423 btrfs_node_key_to_cpu(eb, &key, slot);
8424 ret = btrfs_comp_cpu_keys(&key,
8425 &wc->update_progress);
8426 if (ret < 0)
8427 continue;
8428 } else {
8429 if (wc->level == 1 &&
8430 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8431 continue;
8432 }
8433 reada:
8434 readahead_tree_block(fs_info, bytenr);
8435 nread++;
8436 }
8437 wc->reada_slot = slot;
8438 }
8439
8440 /*
8441 * helper to process tree block while walking down the tree.
8442 *
8443 * when wc->stage == UPDATE_BACKREF, this function updates
8444 * back refs for pointers in the block.
8445 *
8446 * NOTE: return value 1 means we should stop walking down.
8447 */
walk_down_proc(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int lookup_info)8448 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8449 struct btrfs_root *root,
8450 struct btrfs_path *path,
8451 struct walk_control *wc, int lookup_info)
8452 {
8453 struct btrfs_fs_info *fs_info = root->fs_info;
8454 int level = wc->level;
8455 struct extent_buffer *eb = path->nodes[level];
8456 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8457 int ret;
8458
8459 if (wc->stage == UPDATE_BACKREF &&
8460 btrfs_header_owner(eb) != root->root_key.objectid)
8461 return 1;
8462
8463 /*
8464 * when reference count of tree block is 1, it won't increase
8465 * again. once full backref flag is set, we never clear it.
8466 */
8467 if (lookup_info &&
8468 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8469 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8470 BUG_ON(!path->locks[level]);
8471 ret = btrfs_lookup_extent_info(trans, fs_info,
8472 eb->start, level, 1,
8473 &wc->refs[level],
8474 &wc->flags[level]);
8475 BUG_ON(ret == -ENOMEM);
8476 if (ret)
8477 return ret;
8478 BUG_ON(wc->refs[level] == 0);
8479 }
8480
8481 if (wc->stage == DROP_REFERENCE) {
8482 if (wc->refs[level] > 1)
8483 return 1;
8484
8485 if (path->locks[level] && !wc->keep_locks) {
8486 btrfs_tree_unlock_rw(eb, path->locks[level]);
8487 path->locks[level] = 0;
8488 }
8489 return 0;
8490 }
8491
8492 /* wc->stage == UPDATE_BACKREF */
8493 if (!(wc->flags[level] & flag)) {
8494 BUG_ON(!path->locks[level]);
8495 ret = btrfs_inc_ref(trans, root, eb, 1);
8496 BUG_ON(ret); /* -ENOMEM */
8497 ret = btrfs_dec_ref(trans, root, eb, 0);
8498 BUG_ON(ret); /* -ENOMEM */
8499 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
8500 eb->len, flag,
8501 btrfs_header_level(eb), 0);
8502 BUG_ON(ret); /* -ENOMEM */
8503 wc->flags[level] |= flag;
8504 }
8505
8506 /*
8507 * the block is shared by multiple trees, so it's not good to
8508 * keep the tree lock
8509 */
8510 if (path->locks[level] && level > 0) {
8511 btrfs_tree_unlock_rw(eb, path->locks[level]);
8512 path->locks[level] = 0;
8513 }
8514 return 0;
8515 }
8516
8517 /*
8518 * helper to process tree block pointer.
8519 *
8520 * when wc->stage == DROP_REFERENCE, this function checks
8521 * reference count of the block pointed to. if the block
8522 * is shared and we need update back refs for the subtree
8523 * rooted at the block, this function changes wc->stage to
8524 * UPDATE_BACKREF. if the block is shared and there is no
8525 * need to update back, this function drops the reference
8526 * to the block.
8527 *
8528 * NOTE: return value 1 means we should stop walking down.
8529 */
do_walk_down(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int * lookup_info)8530 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8531 struct btrfs_root *root,
8532 struct btrfs_path *path,
8533 struct walk_control *wc, int *lookup_info)
8534 {
8535 struct btrfs_fs_info *fs_info = root->fs_info;
8536 u64 bytenr;
8537 u64 generation;
8538 u64 parent;
8539 u32 blocksize;
8540 struct btrfs_key key;
8541 struct btrfs_key first_key;
8542 struct extent_buffer *next;
8543 int level = wc->level;
8544 int reada = 0;
8545 int ret = 0;
8546 bool need_account = false;
8547
8548 generation = btrfs_node_ptr_generation(path->nodes[level],
8549 path->slots[level]);
8550 /*
8551 * if the lower level block was created before the snapshot
8552 * was created, we know there is no need to update back refs
8553 * for the subtree
8554 */
8555 if (wc->stage == UPDATE_BACKREF &&
8556 generation <= root->root_key.offset) {
8557 *lookup_info = 1;
8558 return 1;
8559 }
8560
8561 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8562 btrfs_node_key_to_cpu(path->nodes[level], &first_key,
8563 path->slots[level]);
8564 blocksize = fs_info->nodesize;
8565
8566 next = find_extent_buffer(fs_info, bytenr);
8567 if (!next) {
8568 next = btrfs_find_create_tree_block(fs_info, bytenr);
8569 if (IS_ERR(next))
8570 return PTR_ERR(next);
8571
8572 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8573 level - 1);
8574 reada = 1;
8575 }
8576 btrfs_tree_lock(next);
8577 btrfs_set_lock_blocking(next);
8578
8579 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
8580 &wc->refs[level - 1],
8581 &wc->flags[level - 1]);
8582 if (ret < 0)
8583 goto out_unlock;
8584
8585 if (unlikely(wc->refs[level - 1] == 0)) {
8586 btrfs_err(fs_info, "Missing references.");
8587 ret = -EIO;
8588 goto out_unlock;
8589 }
8590 *lookup_info = 0;
8591
8592 if (wc->stage == DROP_REFERENCE) {
8593 if (wc->refs[level - 1] > 1) {
8594 need_account = true;
8595 if (level == 1 &&
8596 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8597 goto skip;
8598
8599 if (!wc->update_ref ||
8600 generation <= root->root_key.offset)
8601 goto skip;
8602
8603 btrfs_node_key_to_cpu(path->nodes[level], &key,
8604 path->slots[level]);
8605 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8606 if (ret < 0)
8607 goto skip;
8608
8609 wc->stage = UPDATE_BACKREF;
8610 wc->shared_level = level - 1;
8611 }
8612 } else {
8613 if (level == 1 &&
8614 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8615 goto skip;
8616 }
8617
8618 if (!btrfs_buffer_uptodate(next, generation, 0)) {
8619 btrfs_tree_unlock(next);
8620 free_extent_buffer(next);
8621 next = NULL;
8622 *lookup_info = 1;
8623 }
8624
8625 if (!next) {
8626 if (reada && level == 1)
8627 reada_walk_down(trans, root, wc, path);
8628 next = read_tree_block(fs_info, bytenr, generation, level - 1,
8629 &first_key);
8630 if (IS_ERR(next)) {
8631 return PTR_ERR(next);
8632 } else if (!extent_buffer_uptodate(next)) {
8633 free_extent_buffer(next);
8634 return -EIO;
8635 }
8636 btrfs_tree_lock(next);
8637 btrfs_set_lock_blocking(next);
8638 }
8639
8640 level--;
8641 ASSERT(level == btrfs_header_level(next));
8642 if (level != btrfs_header_level(next)) {
8643 btrfs_err(root->fs_info, "mismatched level");
8644 ret = -EIO;
8645 goto out_unlock;
8646 }
8647 path->nodes[level] = next;
8648 path->slots[level] = 0;
8649 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8650 wc->level = level;
8651 if (wc->level == 1)
8652 wc->reada_slot = 0;
8653 return 0;
8654 skip:
8655 wc->refs[level - 1] = 0;
8656 wc->flags[level - 1] = 0;
8657 if (wc->stage == DROP_REFERENCE) {
8658 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8659 parent = path->nodes[level]->start;
8660 } else {
8661 ASSERT(root->root_key.objectid ==
8662 btrfs_header_owner(path->nodes[level]));
8663 if (root->root_key.objectid !=
8664 btrfs_header_owner(path->nodes[level])) {
8665 btrfs_err(root->fs_info,
8666 "mismatched block owner");
8667 ret = -EIO;
8668 goto out_unlock;
8669 }
8670 parent = 0;
8671 }
8672
8673 if (need_account) {
8674 ret = btrfs_qgroup_trace_subtree(trans, next,
8675 generation, level - 1);
8676 if (ret) {
8677 btrfs_err_rl(fs_info,
8678 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8679 ret);
8680 }
8681 }
8682 ret = btrfs_free_extent(trans, root, bytenr, blocksize,
8683 parent, root->root_key.objectid,
8684 level - 1, 0);
8685 if (ret)
8686 goto out_unlock;
8687 }
8688
8689 *lookup_info = 1;
8690 ret = 1;
8691
8692 out_unlock:
8693 btrfs_tree_unlock(next);
8694 free_extent_buffer(next);
8695
8696 return ret;
8697 }
8698
8699 /*
8700 * helper to process tree block while walking up the tree.
8701 *
8702 * when wc->stage == DROP_REFERENCE, this function drops
8703 * reference count on the block.
8704 *
8705 * when wc->stage == UPDATE_BACKREF, this function changes
8706 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8707 * to UPDATE_BACKREF previously while processing the block.
8708 *
8709 * NOTE: return value 1 means we should stop walking up.
8710 */
walk_up_proc(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)8711 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8712 struct btrfs_root *root,
8713 struct btrfs_path *path,
8714 struct walk_control *wc)
8715 {
8716 struct btrfs_fs_info *fs_info = root->fs_info;
8717 int ret;
8718 int level = wc->level;
8719 struct extent_buffer *eb = path->nodes[level];
8720 u64 parent = 0;
8721
8722 if (wc->stage == UPDATE_BACKREF) {
8723 BUG_ON(wc->shared_level < level);
8724 if (level < wc->shared_level)
8725 goto out;
8726
8727 ret = find_next_key(path, level + 1, &wc->update_progress);
8728 if (ret > 0)
8729 wc->update_ref = 0;
8730
8731 wc->stage = DROP_REFERENCE;
8732 wc->shared_level = -1;
8733 path->slots[level] = 0;
8734
8735 /*
8736 * check reference count again if the block isn't locked.
8737 * we should start walking down the tree again if reference
8738 * count is one.
8739 */
8740 if (!path->locks[level]) {
8741 BUG_ON(level == 0);
8742 btrfs_tree_lock(eb);
8743 btrfs_set_lock_blocking(eb);
8744 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8745
8746 ret = btrfs_lookup_extent_info(trans, fs_info,
8747 eb->start, level, 1,
8748 &wc->refs[level],
8749 &wc->flags[level]);
8750 if (ret < 0) {
8751 btrfs_tree_unlock_rw(eb, path->locks[level]);
8752 path->locks[level] = 0;
8753 return ret;
8754 }
8755 BUG_ON(wc->refs[level] == 0);
8756 if (wc->refs[level] == 1) {
8757 btrfs_tree_unlock_rw(eb, path->locks[level]);
8758 path->locks[level] = 0;
8759 return 1;
8760 }
8761 }
8762 }
8763
8764 /* wc->stage == DROP_REFERENCE */
8765 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8766
8767 if (wc->refs[level] == 1) {
8768 if (level == 0) {
8769 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8770 ret = btrfs_dec_ref(trans, root, eb, 1);
8771 else
8772 ret = btrfs_dec_ref(trans, root, eb, 0);
8773 BUG_ON(ret); /* -ENOMEM */
8774 ret = btrfs_qgroup_trace_leaf_items(trans, eb);
8775 if (ret) {
8776 btrfs_err_rl(fs_info,
8777 "error %d accounting leaf items. Quota is out of sync, rescan required.",
8778 ret);
8779 }
8780 }
8781 /* make block locked assertion in clean_tree_block happy */
8782 if (!path->locks[level] &&
8783 btrfs_header_generation(eb) == trans->transid) {
8784 btrfs_tree_lock(eb);
8785 btrfs_set_lock_blocking(eb);
8786 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8787 }
8788 clean_tree_block(fs_info, eb);
8789 }
8790
8791 if (eb == root->node) {
8792 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8793 parent = eb->start;
8794 else if (root->root_key.objectid != btrfs_header_owner(eb))
8795 goto owner_mismatch;
8796 } else {
8797 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8798 parent = path->nodes[level + 1]->start;
8799 else if (root->root_key.objectid !=
8800 btrfs_header_owner(path->nodes[level + 1]))
8801 goto owner_mismatch;
8802 }
8803
8804 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8805 out:
8806 wc->refs[level] = 0;
8807 wc->flags[level] = 0;
8808 return 0;
8809
8810 owner_mismatch:
8811 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
8812 btrfs_header_owner(eb), root->root_key.objectid);
8813 return -EUCLEAN;
8814 }
8815
walk_down_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)8816 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8817 struct btrfs_root *root,
8818 struct btrfs_path *path,
8819 struct walk_control *wc)
8820 {
8821 int level = wc->level;
8822 int lookup_info = 1;
8823 int ret;
8824
8825 while (level >= 0) {
8826 ret = walk_down_proc(trans, root, path, wc, lookup_info);
8827 if (ret > 0)
8828 break;
8829
8830 if (level == 0)
8831 break;
8832
8833 if (path->slots[level] >=
8834 btrfs_header_nritems(path->nodes[level]))
8835 break;
8836
8837 ret = do_walk_down(trans, root, path, wc, &lookup_info);
8838 if (ret > 0) {
8839 path->slots[level]++;
8840 continue;
8841 } else if (ret < 0)
8842 return ret;
8843 level = wc->level;
8844 }
8845 return 0;
8846 }
8847
walk_up_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int max_level)8848 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8849 struct btrfs_root *root,
8850 struct btrfs_path *path,
8851 struct walk_control *wc, int max_level)
8852 {
8853 int level = wc->level;
8854 int ret;
8855
8856 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8857 while (level < max_level && path->nodes[level]) {
8858 wc->level = level;
8859 if (path->slots[level] + 1 <
8860 btrfs_header_nritems(path->nodes[level])) {
8861 path->slots[level]++;
8862 return 0;
8863 } else {
8864 ret = walk_up_proc(trans, root, path, wc);
8865 if (ret > 0)
8866 return 0;
8867 if (ret < 0)
8868 return ret;
8869
8870 if (path->locks[level]) {
8871 btrfs_tree_unlock_rw(path->nodes[level],
8872 path->locks[level]);
8873 path->locks[level] = 0;
8874 }
8875 free_extent_buffer(path->nodes[level]);
8876 path->nodes[level] = NULL;
8877 level++;
8878 }
8879 }
8880 return 1;
8881 }
8882
8883 /*
8884 * drop a subvolume tree.
8885 *
8886 * this function traverses the tree freeing any blocks that only
8887 * referenced by the tree.
8888 *
8889 * when a shared tree block is found. this function decreases its
8890 * reference count by one. if update_ref is true, this function
8891 * also make sure backrefs for the shared block and all lower level
8892 * blocks are properly updated.
8893 *
8894 * If called with for_reloc == 0, may exit early with -EAGAIN
8895 */
btrfs_drop_snapshot(struct btrfs_root * root,struct btrfs_block_rsv * block_rsv,int update_ref,int for_reloc)8896 int btrfs_drop_snapshot(struct btrfs_root *root,
8897 struct btrfs_block_rsv *block_rsv, int update_ref,
8898 int for_reloc)
8899 {
8900 struct btrfs_fs_info *fs_info = root->fs_info;
8901 struct btrfs_path *path;
8902 struct btrfs_trans_handle *trans;
8903 struct btrfs_root *tree_root = fs_info->tree_root;
8904 struct btrfs_root_item *root_item = &root->root_item;
8905 struct walk_control *wc;
8906 struct btrfs_key key;
8907 int err = 0;
8908 int ret;
8909 int level;
8910 bool root_dropped = false;
8911
8912 btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
8913
8914 path = btrfs_alloc_path();
8915 if (!path) {
8916 err = -ENOMEM;
8917 goto out;
8918 }
8919
8920 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8921 if (!wc) {
8922 btrfs_free_path(path);
8923 err = -ENOMEM;
8924 goto out;
8925 }
8926
8927 trans = btrfs_start_transaction(tree_root, 0);
8928 if (IS_ERR(trans)) {
8929 err = PTR_ERR(trans);
8930 goto out_free;
8931 }
8932
8933 err = btrfs_run_delayed_items(trans);
8934 if (err)
8935 goto out_end_trans;
8936
8937 if (block_rsv)
8938 trans->block_rsv = block_rsv;
8939
8940 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
8941 level = btrfs_header_level(root->node);
8942 path->nodes[level] = btrfs_lock_root_node(root);
8943 btrfs_set_lock_blocking(path->nodes[level]);
8944 path->slots[level] = 0;
8945 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8946 memset(&wc->update_progress, 0,
8947 sizeof(wc->update_progress));
8948 } else {
8949 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
8950 memcpy(&wc->update_progress, &key,
8951 sizeof(wc->update_progress));
8952
8953 level = root_item->drop_level;
8954 BUG_ON(level == 0);
8955 path->lowest_level = level;
8956 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8957 path->lowest_level = 0;
8958 if (ret < 0) {
8959 err = ret;
8960 goto out_end_trans;
8961 }
8962 WARN_ON(ret > 0);
8963
8964 /*
8965 * unlock our path, this is safe because only this
8966 * function is allowed to delete this snapshot
8967 */
8968 btrfs_unlock_up_safe(path, 0);
8969
8970 level = btrfs_header_level(root->node);
8971 while (1) {
8972 btrfs_tree_lock(path->nodes[level]);
8973 btrfs_set_lock_blocking(path->nodes[level]);
8974 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8975
8976 ret = btrfs_lookup_extent_info(trans, fs_info,
8977 path->nodes[level]->start,
8978 level, 1, &wc->refs[level],
8979 &wc->flags[level]);
8980 if (ret < 0) {
8981 err = ret;
8982 goto out_end_trans;
8983 }
8984 BUG_ON(wc->refs[level] == 0);
8985
8986 if (level == root_item->drop_level)
8987 break;
8988
8989 btrfs_tree_unlock(path->nodes[level]);
8990 path->locks[level] = 0;
8991 WARN_ON(wc->refs[level] != 1);
8992 level--;
8993 }
8994 }
8995
8996 wc->level = level;
8997 wc->shared_level = -1;
8998 wc->stage = DROP_REFERENCE;
8999 wc->update_ref = update_ref;
9000 wc->keep_locks = 0;
9001 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9002
9003 while (1) {
9004
9005 ret = walk_down_tree(trans, root, path, wc);
9006 if (ret < 0) {
9007 err = ret;
9008 break;
9009 }
9010
9011 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9012 if (ret < 0) {
9013 err = ret;
9014 break;
9015 }
9016
9017 if (ret > 0) {
9018 BUG_ON(wc->stage != DROP_REFERENCE);
9019 break;
9020 }
9021
9022 if (wc->stage == DROP_REFERENCE) {
9023 level = wc->level;
9024 btrfs_node_key(path->nodes[level],
9025 &root_item->drop_progress,
9026 path->slots[level]);
9027 root_item->drop_level = level;
9028 }
9029
9030 BUG_ON(wc->level == 0);
9031 if (btrfs_should_end_transaction(trans) ||
9032 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
9033 ret = btrfs_update_root(trans, tree_root,
9034 &root->root_key,
9035 root_item);
9036 if (ret) {
9037 btrfs_abort_transaction(trans, ret);
9038 err = ret;
9039 goto out_end_trans;
9040 }
9041
9042 btrfs_end_transaction_throttle(trans);
9043 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
9044 btrfs_debug(fs_info,
9045 "drop snapshot early exit");
9046 err = -EAGAIN;
9047 goto out_free;
9048 }
9049
9050 trans = btrfs_start_transaction(tree_root, 0);
9051 if (IS_ERR(trans)) {
9052 err = PTR_ERR(trans);
9053 goto out_free;
9054 }
9055 if (block_rsv)
9056 trans->block_rsv = block_rsv;
9057 }
9058 }
9059 btrfs_release_path(path);
9060 if (err)
9061 goto out_end_trans;
9062
9063 ret = btrfs_del_root(trans, &root->root_key);
9064 if (ret) {
9065 btrfs_abort_transaction(trans, ret);
9066 err = ret;
9067 goto out_end_trans;
9068 }
9069
9070 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9071 ret = btrfs_find_root(tree_root, &root->root_key, path,
9072 NULL, NULL);
9073 if (ret < 0) {
9074 btrfs_abort_transaction(trans, ret);
9075 err = ret;
9076 goto out_end_trans;
9077 } else if (ret > 0) {
9078 /* if we fail to delete the orphan item this time
9079 * around, it'll get picked up the next time.
9080 *
9081 * The most common failure here is just -ENOENT.
9082 */
9083 btrfs_del_orphan_item(trans, tree_root,
9084 root->root_key.objectid);
9085 }
9086 }
9087
9088 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9089 btrfs_add_dropped_root(trans, root);
9090 } else {
9091 free_extent_buffer(root->node);
9092 free_extent_buffer(root->commit_root);
9093 btrfs_put_fs_root(root);
9094 }
9095 root_dropped = true;
9096 out_end_trans:
9097 btrfs_end_transaction_throttle(trans);
9098 out_free:
9099 kfree(wc);
9100 btrfs_free_path(path);
9101 out:
9102 /*
9103 * So if we need to stop dropping the snapshot for whatever reason we
9104 * need to make sure to add it back to the dead root list so that we
9105 * keep trying to do the work later. This also cleans up roots if we
9106 * don't have it in the radix (like when we recover after a power fail
9107 * or unmount) so we don't leak memory.
9108 */
9109 if (!for_reloc && !root_dropped)
9110 btrfs_add_dead_root(root);
9111 return err;
9112 }
9113
9114 /*
9115 * drop subtree rooted at tree block 'node'.
9116 *
9117 * NOTE: this function will unlock and release tree block 'node'
9118 * only used by relocation code
9119 */
btrfs_drop_subtree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * node,struct extent_buffer * parent)9120 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9121 struct btrfs_root *root,
9122 struct extent_buffer *node,
9123 struct extent_buffer *parent)
9124 {
9125 struct btrfs_fs_info *fs_info = root->fs_info;
9126 struct btrfs_path *path;
9127 struct walk_control *wc;
9128 int level;
9129 int parent_level;
9130 int ret = 0;
9131 int wret;
9132
9133 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9134
9135 path = btrfs_alloc_path();
9136 if (!path)
9137 return -ENOMEM;
9138
9139 wc = kzalloc(sizeof(*wc), GFP_NOFS);
9140 if (!wc) {
9141 btrfs_free_path(path);
9142 return -ENOMEM;
9143 }
9144
9145 btrfs_assert_tree_locked(parent);
9146 parent_level = btrfs_header_level(parent);
9147 extent_buffer_get(parent);
9148 path->nodes[parent_level] = parent;
9149 path->slots[parent_level] = btrfs_header_nritems(parent);
9150
9151 btrfs_assert_tree_locked(node);
9152 level = btrfs_header_level(node);
9153 path->nodes[level] = node;
9154 path->slots[level] = 0;
9155 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9156
9157 wc->refs[parent_level] = 1;
9158 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9159 wc->level = level;
9160 wc->shared_level = -1;
9161 wc->stage = DROP_REFERENCE;
9162 wc->update_ref = 0;
9163 wc->keep_locks = 1;
9164 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9165
9166 while (1) {
9167 wret = walk_down_tree(trans, root, path, wc);
9168 if (wret < 0) {
9169 ret = wret;
9170 break;
9171 }
9172
9173 wret = walk_up_tree(trans, root, path, wc, parent_level);
9174 if (wret < 0)
9175 ret = wret;
9176 if (wret != 0)
9177 break;
9178 }
9179
9180 kfree(wc);
9181 btrfs_free_path(path);
9182 return ret;
9183 }
9184
update_block_group_flags(struct btrfs_fs_info * fs_info,u64 flags)9185 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
9186 {
9187 u64 num_devices;
9188 u64 stripped;
9189
9190 /*
9191 * if restripe for this chunk_type is on pick target profile and
9192 * return, otherwise do the usual balance
9193 */
9194 stripped = get_restripe_target(fs_info, flags);
9195 if (stripped)
9196 return extended_to_chunk(stripped);
9197
9198 num_devices = fs_info->fs_devices->rw_devices;
9199
9200 stripped = BTRFS_BLOCK_GROUP_RAID0 |
9201 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9202 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9203
9204 if (num_devices == 1) {
9205 stripped |= BTRFS_BLOCK_GROUP_DUP;
9206 stripped = flags & ~stripped;
9207
9208 /* turn raid0 into single device chunks */
9209 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9210 return stripped;
9211
9212 /* turn mirroring into duplication */
9213 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9214 BTRFS_BLOCK_GROUP_RAID10))
9215 return stripped | BTRFS_BLOCK_GROUP_DUP;
9216 } else {
9217 /* they already had raid on here, just return */
9218 if (flags & stripped)
9219 return flags;
9220
9221 stripped |= BTRFS_BLOCK_GROUP_DUP;
9222 stripped = flags & ~stripped;
9223
9224 /* switch duplicated blocks with raid1 */
9225 if (flags & BTRFS_BLOCK_GROUP_DUP)
9226 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9227
9228 /* this is drive concat, leave it alone */
9229 }
9230
9231 return flags;
9232 }
9233
inc_block_group_ro(struct btrfs_block_group_cache * cache,int force)9234 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9235 {
9236 struct btrfs_space_info *sinfo = cache->space_info;
9237 u64 num_bytes;
9238 u64 min_allocable_bytes;
9239 int ret = -ENOSPC;
9240
9241 /*
9242 * We need some metadata space and system metadata space for
9243 * allocating chunks in some corner cases until we force to set
9244 * it to be readonly.
9245 */
9246 if ((sinfo->flags &
9247 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9248 !force)
9249 min_allocable_bytes = SZ_1M;
9250 else
9251 min_allocable_bytes = 0;
9252
9253 spin_lock(&sinfo->lock);
9254 spin_lock(&cache->lock);
9255
9256 if (cache->ro) {
9257 cache->ro++;
9258 ret = 0;
9259 goto out;
9260 }
9261
9262 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9263 cache->bytes_super - btrfs_block_group_used(&cache->item);
9264
9265 if (btrfs_space_info_used(sinfo, true) + num_bytes +
9266 min_allocable_bytes <= sinfo->total_bytes) {
9267 sinfo->bytes_readonly += num_bytes;
9268 cache->ro++;
9269 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9270 ret = 0;
9271 }
9272 out:
9273 spin_unlock(&cache->lock);
9274 spin_unlock(&sinfo->lock);
9275 return ret;
9276 }
9277
btrfs_inc_block_group_ro(struct btrfs_block_group_cache * cache)9278 int btrfs_inc_block_group_ro(struct btrfs_block_group_cache *cache)
9279
9280 {
9281 struct btrfs_fs_info *fs_info = cache->fs_info;
9282 struct btrfs_trans_handle *trans;
9283 u64 alloc_flags;
9284 int ret;
9285
9286 again:
9287 trans = btrfs_join_transaction(fs_info->extent_root);
9288 if (IS_ERR(trans))
9289 return PTR_ERR(trans);
9290
9291 /*
9292 * we're not allowed to set block groups readonly after the dirty
9293 * block groups cache has started writing. If it already started,
9294 * back off and let this transaction commit
9295 */
9296 mutex_lock(&fs_info->ro_block_group_mutex);
9297 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9298 u64 transid = trans->transid;
9299
9300 mutex_unlock(&fs_info->ro_block_group_mutex);
9301 btrfs_end_transaction(trans);
9302
9303 ret = btrfs_wait_for_commit(fs_info, transid);
9304 if (ret)
9305 return ret;
9306 goto again;
9307 }
9308
9309 /*
9310 * if we are changing raid levels, try to allocate a corresponding
9311 * block group with the new raid level.
9312 */
9313 alloc_flags = update_block_group_flags(fs_info, cache->flags);
9314 if (alloc_flags != cache->flags) {
9315 ret = do_chunk_alloc(trans, alloc_flags,
9316 CHUNK_ALLOC_FORCE);
9317 /*
9318 * ENOSPC is allowed here, we may have enough space
9319 * already allocated at the new raid level to
9320 * carry on
9321 */
9322 if (ret == -ENOSPC)
9323 ret = 0;
9324 if (ret < 0)
9325 goto out;
9326 }
9327
9328 ret = inc_block_group_ro(cache, 0);
9329 if (!ret)
9330 goto out;
9331 alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9332 ret = do_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
9333 if (ret < 0)
9334 goto out;
9335 ret = inc_block_group_ro(cache, 0);
9336 out:
9337 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9338 alloc_flags = update_block_group_flags(fs_info, cache->flags);
9339 mutex_lock(&fs_info->chunk_mutex);
9340 check_system_chunk(trans, alloc_flags);
9341 mutex_unlock(&fs_info->chunk_mutex);
9342 }
9343 mutex_unlock(&fs_info->ro_block_group_mutex);
9344
9345 btrfs_end_transaction(trans);
9346 return ret;
9347 }
9348
btrfs_force_chunk_alloc(struct btrfs_trans_handle * trans,u64 type)9349 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
9350 {
9351 u64 alloc_flags = get_alloc_profile(trans->fs_info, type);
9352
9353 return do_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
9354 }
9355
9356 /*
9357 * helper to account the unused space of all the readonly block group in the
9358 * space_info. takes mirrors into account.
9359 */
btrfs_account_ro_block_groups_free_space(struct btrfs_space_info * sinfo)9360 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9361 {
9362 struct btrfs_block_group_cache *block_group;
9363 u64 free_bytes = 0;
9364 int factor;
9365
9366 /* It's df, we don't care if it's racy */
9367 if (list_empty(&sinfo->ro_bgs))
9368 return 0;
9369
9370 spin_lock(&sinfo->lock);
9371 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9372 spin_lock(&block_group->lock);
9373
9374 if (!block_group->ro) {
9375 spin_unlock(&block_group->lock);
9376 continue;
9377 }
9378
9379 factor = btrfs_bg_type_to_factor(block_group->flags);
9380 free_bytes += (block_group->key.offset -
9381 btrfs_block_group_used(&block_group->item)) *
9382 factor;
9383
9384 spin_unlock(&block_group->lock);
9385 }
9386 spin_unlock(&sinfo->lock);
9387
9388 return free_bytes;
9389 }
9390
btrfs_dec_block_group_ro(struct btrfs_block_group_cache * cache)9391 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
9392 {
9393 struct btrfs_space_info *sinfo = cache->space_info;
9394 u64 num_bytes;
9395
9396 BUG_ON(!cache->ro);
9397
9398 spin_lock(&sinfo->lock);
9399 spin_lock(&cache->lock);
9400 if (!--cache->ro) {
9401 num_bytes = cache->key.offset - cache->reserved -
9402 cache->pinned - cache->bytes_super -
9403 btrfs_block_group_used(&cache->item);
9404 sinfo->bytes_readonly -= num_bytes;
9405 list_del_init(&cache->ro_list);
9406 }
9407 spin_unlock(&cache->lock);
9408 spin_unlock(&sinfo->lock);
9409 }
9410
9411 /*
9412 * checks to see if its even possible to relocate this block group.
9413 *
9414 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9415 * ok to go ahead and try.
9416 */
btrfs_can_relocate(struct btrfs_fs_info * fs_info,u64 bytenr)9417 int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
9418 {
9419 struct btrfs_root *root = fs_info->extent_root;
9420 struct btrfs_block_group_cache *block_group;
9421 struct btrfs_space_info *space_info;
9422 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
9423 struct btrfs_device *device;
9424 struct btrfs_trans_handle *trans;
9425 u64 min_free;
9426 u64 dev_min = 1;
9427 u64 dev_nr = 0;
9428 u64 target;
9429 int debug;
9430 int index;
9431 int full = 0;
9432 int ret = 0;
9433
9434 debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
9435
9436 block_group = btrfs_lookup_block_group(fs_info, bytenr);
9437
9438 /* odd, couldn't find the block group, leave it alone */
9439 if (!block_group) {
9440 if (debug)
9441 btrfs_warn(fs_info,
9442 "can't find block group for bytenr %llu",
9443 bytenr);
9444 return -1;
9445 }
9446
9447 min_free = btrfs_block_group_used(&block_group->item);
9448
9449 /* no bytes used, we're good */
9450 if (!min_free)
9451 goto out;
9452
9453 space_info = block_group->space_info;
9454 spin_lock(&space_info->lock);
9455
9456 full = space_info->full;
9457
9458 /*
9459 * if this is the last block group we have in this space, we can't
9460 * relocate it unless we're able to allocate a new chunk below.
9461 *
9462 * Otherwise, we need to make sure we have room in the space to handle
9463 * all of the extents from this block group. If we can, we're good
9464 */
9465 if ((space_info->total_bytes != block_group->key.offset) &&
9466 (btrfs_space_info_used(space_info, false) + min_free <
9467 space_info->total_bytes)) {
9468 spin_unlock(&space_info->lock);
9469 goto out;
9470 }
9471 spin_unlock(&space_info->lock);
9472
9473 /*
9474 * ok we don't have enough space, but maybe we have free space on our
9475 * devices to allocate new chunks for relocation, so loop through our
9476 * alloc devices and guess if we have enough space. if this block
9477 * group is going to be restriped, run checks against the target
9478 * profile instead of the current one.
9479 */
9480 ret = -1;
9481
9482 /*
9483 * index:
9484 * 0: raid10
9485 * 1: raid1
9486 * 2: dup
9487 * 3: raid0
9488 * 4: single
9489 */
9490 target = get_restripe_target(fs_info, block_group->flags);
9491 if (target) {
9492 index = btrfs_bg_flags_to_raid_index(extended_to_chunk(target));
9493 } else {
9494 /*
9495 * this is just a balance, so if we were marked as full
9496 * we know there is no space for a new chunk
9497 */
9498 if (full) {
9499 if (debug)
9500 btrfs_warn(fs_info,
9501 "no space to alloc new chunk for block group %llu",
9502 block_group->key.objectid);
9503 goto out;
9504 }
9505
9506 index = btrfs_bg_flags_to_raid_index(block_group->flags);
9507 }
9508
9509 if (index == BTRFS_RAID_RAID10) {
9510 dev_min = 4;
9511 /* Divide by 2 */
9512 min_free >>= 1;
9513 } else if (index == BTRFS_RAID_RAID1) {
9514 dev_min = 2;
9515 } else if (index == BTRFS_RAID_DUP) {
9516 /* Multiply by 2 */
9517 min_free <<= 1;
9518 } else if (index == BTRFS_RAID_RAID0) {
9519 dev_min = fs_devices->rw_devices;
9520 min_free = div64_u64(min_free, dev_min);
9521 }
9522
9523 /* We need to do this so that we can look at pending chunks */
9524 trans = btrfs_join_transaction(root);
9525 if (IS_ERR(trans)) {
9526 ret = PTR_ERR(trans);
9527 goto out;
9528 }
9529
9530 mutex_lock(&fs_info->chunk_mutex);
9531 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9532 u64 dev_offset;
9533
9534 /*
9535 * check to make sure we can actually find a chunk with enough
9536 * space to fit our block group in.
9537 */
9538 if (device->total_bytes > device->bytes_used + min_free &&
9539 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
9540 ret = find_free_dev_extent(trans, device, min_free,
9541 &dev_offset, NULL);
9542 if (!ret)
9543 dev_nr++;
9544
9545 if (dev_nr >= dev_min)
9546 break;
9547
9548 ret = -1;
9549 }
9550 }
9551 if (debug && ret == -1)
9552 btrfs_warn(fs_info,
9553 "no space to allocate a new chunk for block group %llu",
9554 block_group->key.objectid);
9555 mutex_unlock(&fs_info->chunk_mutex);
9556 btrfs_end_transaction(trans);
9557 out:
9558 btrfs_put_block_group(block_group);
9559 return ret;
9560 }
9561
find_first_block_group(struct btrfs_fs_info * fs_info,struct btrfs_path * path,struct btrfs_key * key)9562 static int find_first_block_group(struct btrfs_fs_info *fs_info,
9563 struct btrfs_path *path,
9564 struct btrfs_key *key)
9565 {
9566 struct btrfs_root *root = fs_info->extent_root;
9567 int ret = 0;
9568 struct btrfs_key found_key;
9569 struct extent_buffer *leaf;
9570 struct btrfs_block_group_item bg;
9571 u64 flags;
9572 int slot;
9573
9574 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9575 if (ret < 0)
9576 goto out;
9577
9578 while (1) {
9579 slot = path->slots[0];
9580 leaf = path->nodes[0];
9581 if (slot >= btrfs_header_nritems(leaf)) {
9582 ret = btrfs_next_leaf(root, path);
9583 if (ret == 0)
9584 continue;
9585 if (ret < 0)
9586 goto out;
9587 break;
9588 }
9589 btrfs_item_key_to_cpu(leaf, &found_key, slot);
9590
9591 if (found_key.objectid >= key->objectid &&
9592 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9593 struct extent_map_tree *em_tree;
9594 struct extent_map *em;
9595
9596 em_tree = &root->fs_info->mapping_tree.map_tree;
9597 read_lock(&em_tree->lock);
9598 em = lookup_extent_mapping(em_tree, found_key.objectid,
9599 found_key.offset);
9600 read_unlock(&em_tree->lock);
9601 if (!em) {
9602 btrfs_err(fs_info,
9603 "logical %llu len %llu found bg but no related chunk",
9604 found_key.objectid, found_key.offset);
9605 ret = -ENOENT;
9606 } else if (em->start != found_key.objectid ||
9607 em->len != found_key.offset) {
9608 btrfs_err(fs_info,
9609 "block group %llu len %llu mismatch with chunk %llu len %llu",
9610 found_key.objectid, found_key.offset,
9611 em->start, em->len);
9612 ret = -EUCLEAN;
9613 } else {
9614 read_extent_buffer(leaf, &bg,
9615 btrfs_item_ptr_offset(leaf, slot),
9616 sizeof(bg));
9617 flags = btrfs_block_group_flags(&bg) &
9618 BTRFS_BLOCK_GROUP_TYPE_MASK;
9619
9620 if (flags != (em->map_lookup->type &
9621 BTRFS_BLOCK_GROUP_TYPE_MASK)) {
9622 btrfs_err(fs_info,
9623 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
9624 found_key.objectid,
9625 found_key.offset, flags,
9626 (BTRFS_BLOCK_GROUP_TYPE_MASK &
9627 em->map_lookup->type));
9628 ret = -EUCLEAN;
9629 } else {
9630 ret = 0;
9631 }
9632 }
9633 free_extent_map(em);
9634 goto out;
9635 }
9636 path->slots[0]++;
9637 }
9638 out:
9639 return ret;
9640 }
9641
btrfs_put_block_group_cache(struct btrfs_fs_info * info)9642 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9643 {
9644 struct btrfs_block_group_cache *block_group;
9645 u64 last = 0;
9646
9647 while (1) {
9648 struct inode *inode;
9649
9650 block_group = btrfs_lookup_first_block_group(info, last);
9651 while (block_group) {
9652 wait_block_group_cache_done(block_group);
9653 spin_lock(&block_group->lock);
9654 if (block_group->iref)
9655 break;
9656 spin_unlock(&block_group->lock);
9657 block_group = next_block_group(info, block_group);
9658 }
9659 if (!block_group) {
9660 if (last == 0)
9661 break;
9662 last = 0;
9663 continue;
9664 }
9665
9666 inode = block_group->inode;
9667 block_group->iref = 0;
9668 block_group->inode = NULL;
9669 spin_unlock(&block_group->lock);
9670 ASSERT(block_group->io_ctl.inode == NULL);
9671 iput(inode);
9672 last = block_group->key.objectid + block_group->key.offset;
9673 btrfs_put_block_group(block_group);
9674 }
9675 }
9676
9677 /*
9678 * Must be called only after stopping all workers, since we could have block
9679 * group caching kthreads running, and therefore they could race with us if we
9680 * freed the block groups before stopping them.
9681 */
btrfs_free_block_groups(struct btrfs_fs_info * info)9682 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9683 {
9684 struct btrfs_block_group_cache *block_group;
9685 struct btrfs_space_info *space_info;
9686 struct btrfs_caching_control *caching_ctl;
9687 struct rb_node *n;
9688
9689 down_write(&info->commit_root_sem);
9690 while (!list_empty(&info->caching_block_groups)) {
9691 caching_ctl = list_entry(info->caching_block_groups.next,
9692 struct btrfs_caching_control, list);
9693 list_del(&caching_ctl->list);
9694 put_caching_control(caching_ctl);
9695 }
9696 up_write(&info->commit_root_sem);
9697
9698 spin_lock(&info->unused_bgs_lock);
9699 while (!list_empty(&info->unused_bgs)) {
9700 block_group = list_first_entry(&info->unused_bgs,
9701 struct btrfs_block_group_cache,
9702 bg_list);
9703 list_del_init(&block_group->bg_list);
9704 btrfs_put_block_group(block_group);
9705 }
9706 spin_unlock(&info->unused_bgs_lock);
9707
9708 spin_lock(&info->block_group_cache_lock);
9709 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9710 block_group = rb_entry(n, struct btrfs_block_group_cache,
9711 cache_node);
9712 rb_erase(&block_group->cache_node,
9713 &info->block_group_cache_tree);
9714 RB_CLEAR_NODE(&block_group->cache_node);
9715 spin_unlock(&info->block_group_cache_lock);
9716
9717 down_write(&block_group->space_info->groups_sem);
9718 list_del(&block_group->list);
9719 up_write(&block_group->space_info->groups_sem);
9720
9721 /*
9722 * We haven't cached this block group, which means we could
9723 * possibly have excluded extents on this block group.
9724 */
9725 if (block_group->cached == BTRFS_CACHE_NO ||
9726 block_group->cached == BTRFS_CACHE_ERROR)
9727 free_excluded_extents(block_group);
9728
9729 btrfs_remove_free_space_cache(block_group);
9730 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
9731 ASSERT(list_empty(&block_group->dirty_list));
9732 ASSERT(list_empty(&block_group->io_list));
9733 ASSERT(list_empty(&block_group->bg_list));
9734 ASSERT(atomic_read(&block_group->count) == 1);
9735 btrfs_put_block_group(block_group);
9736
9737 spin_lock(&info->block_group_cache_lock);
9738 }
9739 spin_unlock(&info->block_group_cache_lock);
9740
9741 /* now that all the block groups are freed, go through and
9742 * free all the space_info structs. This is only called during
9743 * the final stages of unmount, and so we know nobody is
9744 * using them. We call synchronize_rcu() once before we start,
9745 * just to be on the safe side.
9746 */
9747 synchronize_rcu();
9748
9749 release_global_block_rsv(info);
9750
9751 while (!list_empty(&info->space_info)) {
9752 int i;
9753
9754 space_info = list_entry(info->space_info.next,
9755 struct btrfs_space_info,
9756 list);
9757
9758 /*
9759 * Do not hide this behind enospc_debug, this is actually
9760 * important and indicates a real bug if this happens.
9761 */
9762 if (WARN_ON(space_info->bytes_pinned > 0 ||
9763 space_info->bytes_reserved > 0 ||
9764 space_info->bytes_may_use > 0))
9765 dump_space_info(info, space_info, 0, 0);
9766 list_del(&space_info->list);
9767 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9768 struct kobject *kobj;
9769 kobj = space_info->block_group_kobjs[i];
9770 space_info->block_group_kobjs[i] = NULL;
9771 if (kobj) {
9772 kobject_del(kobj);
9773 kobject_put(kobj);
9774 }
9775 }
9776 kobject_del(&space_info->kobj);
9777 kobject_put(&space_info->kobj);
9778 }
9779 return 0;
9780 }
9781
9782 /* link_block_group will queue up kobjects to add when we're reclaim-safe */
btrfs_add_raid_kobjects(struct btrfs_fs_info * fs_info)9783 void btrfs_add_raid_kobjects(struct btrfs_fs_info *fs_info)
9784 {
9785 struct btrfs_space_info *space_info;
9786 struct raid_kobject *rkobj;
9787 LIST_HEAD(list);
9788 int index;
9789 int ret = 0;
9790
9791 spin_lock(&fs_info->pending_raid_kobjs_lock);
9792 list_splice_init(&fs_info->pending_raid_kobjs, &list);
9793 spin_unlock(&fs_info->pending_raid_kobjs_lock);
9794
9795 list_for_each_entry(rkobj, &list, list) {
9796 space_info = __find_space_info(fs_info, rkobj->flags);
9797 index = btrfs_bg_flags_to_raid_index(rkobj->flags);
9798
9799 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9800 "%s", get_raid_name(index));
9801 if (ret) {
9802 kobject_put(&rkobj->kobj);
9803 break;
9804 }
9805 }
9806 if (ret)
9807 btrfs_warn(fs_info,
9808 "failed to add kobject for block cache, ignoring");
9809 }
9810
link_block_group(struct btrfs_block_group_cache * cache)9811 static void link_block_group(struct btrfs_block_group_cache *cache)
9812 {
9813 struct btrfs_space_info *space_info = cache->space_info;
9814 struct btrfs_fs_info *fs_info = cache->fs_info;
9815 int index = btrfs_bg_flags_to_raid_index(cache->flags);
9816 bool first = false;
9817
9818 down_write(&space_info->groups_sem);
9819 if (list_empty(&space_info->block_groups[index]))
9820 first = true;
9821 list_add_tail(&cache->list, &space_info->block_groups[index]);
9822 up_write(&space_info->groups_sem);
9823
9824 if (first) {
9825 struct raid_kobject *rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9826 if (!rkobj) {
9827 btrfs_warn(cache->fs_info,
9828 "couldn't alloc memory for raid level kobject");
9829 return;
9830 }
9831 rkobj->flags = cache->flags;
9832 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9833
9834 spin_lock(&fs_info->pending_raid_kobjs_lock);
9835 list_add_tail(&rkobj->list, &fs_info->pending_raid_kobjs);
9836 spin_unlock(&fs_info->pending_raid_kobjs_lock);
9837 space_info->block_group_kobjs[index] = &rkobj->kobj;
9838 }
9839 }
9840
9841 static struct btrfs_block_group_cache *
btrfs_create_block_group_cache(struct btrfs_fs_info * fs_info,u64 start,u64 size)9842 btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
9843 u64 start, u64 size)
9844 {
9845 struct btrfs_block_group_cache *cache;
9846
9847 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9848 if (!cache)
9849 return NULL;
9850
9851 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9852 GFP_NOFS);
9853 if (!cache->free_space_ctl) {
9854 kfree(cache);
9855 return NULL;
9856 }
9857
9858 cache->key.objectid = start;
9859 cache->key.offset = size;
9860 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9861
9862 cache->fs_info = fs_info;
9863 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
9864 set_free_space_tree_thresholds(cache);
9865
9866 atomic_set(&cache->count, 1);
9867 spin_lock_init(&cache->lock);
9868 init_rwsem(&cache->data_rwsem);
9869 INIT_LIST_HEAD(&cache->list);
9870 INIT_LIST_HEAD(&cache->cluster_list);
9871 INIT_LIST_HEAD(&cache->bg_list);
9872 INIT_LIST_HEAD(&cache->ro_list);
9873 INIT_LIST_HEAD(&cache->dirty_list);
9874 INIT_LIST_HEAD(&cache->io_list);
9875 btrfs_init_free_space_ctl(cache);
9876 atomic_set(&cache->trimming, 0);
9877 mutex_init(&cache->free_space_lock);
9878 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
9879
9880 return cache;
9881 }
9882
9883
9884 /*
9885 * Iterate all chunks and verify that each of them has the corresponding block
9886 * group
9887 */
check_chunk_block_group_mappings(struct btrfs_fs_info * fs_info)9888 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
9889 {
9890 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
9891 struct extent_map *em;
9892 struct btrfs_block_group_cache *bg;
9893 u64 start = 0;
9894 int ret = 0;
9895
9896 while (1) {
9897 read_lock(&map_tree->map_tree.lock);
9898 /*
9899 * lookup_extent_mapping will return the first extent map
9900 * intersecting the range, so setting @len to 1 is enough to
9901 * get the first chunk.
9902 */
9903 em = lookup_extent_mapping(&map_tree->map_tree, start, 1);
9904 read_unlock(&map_tree->map_tree.lock);
9905 if (!em)
9906 break;
9907
9908 bg = btrfs_lookup_block_group(fs_info, em->start);
9909 if (!bg) {
9910 btrfs_err(fs_info,
9911 "chunk start=%llu len=%llu doesn't have corresponding block group",
9912 em->start, em->len);
9913 ret = -EUCLEAN;
9914 free_extent_map(em);
9915 break;
9916 }
9917 if (bg->key.objectid != em->start ||
9918 bg->key.offset != em->len ||
9919 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
9920 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
9921 btrfs_err(fs_info,
9922 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
9923 em->start, em->len,
9924 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
9925 bg->key.objectid, bg->key.offset,
9926 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
9927 ret = -EUCLEAN;
9928 free_extent_map(em);
9929 btrfs_put_block_group(bg);
9930 break;
9931 }
9932 start = em->start + em->len;
9933 free_extent_map(em);
9934 btrfs_put_block_group(bg);
9935 }
9936 return ret;
9937 }
9938
btrfs_read_block_groups(struct btrfs_fs_info * info)9939 int btrfs_read_block_groups(struct btrfs_fs_info *info)
9940 {
9941 struct btrfs_path *path;
9942 int ret;
9943 struct btrfs_block_group_cache *cache;
9944 struct btrfs_space_info *space_info;
9945 struct btrfs_key key;
9946 struct btrfs_key found_key;
9947 struct extent_buffer *leaf;
9948 int need_clear = 0;
9949 u64 cache_gen;
9950 u64 feature;
9951 int mixed;
9952
9953 feature = btrfs_super_incompat_flags(info->super_copy);
9954 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
9955
9956 key.objectid = 0;
9957 key.offset = 0;
9958 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9959 path = btrfs_alloc_path();
9960 if (!path)
9961 return -ENOMEM;
9962 path->reada = READA_FORWARD;
9963
9964 cache_gen = btrfs_super_cache_generation(info->super_copy);
9965 if (btrfs_test_opt(info, SPACE_CACHE) &&
9966 btrfs_super_generation(info->super_copy) != cache_gen)
9967 need_clear = 1;
9968 if (btrfs_test_opt(info, CLEAR_CACHE))
9969 need_clear = 1;
9970
9971 while (1) {
9972 ret = find_first_block_group(info, path, &key);
9973 if (ret > 0)
9974 break;
9975 if (ret != 0)
9976 goto error;
9977
9978 leaf = path->nodes[0];
9979 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9980
9981 cache = btrfs_create_block_group_cache(info, found_key.objectid,
9982 found_key.offset);
9983 if (!cache) {
9984 ret = -ENOMEM;
9985 goto error;
9986 }
9987
9988 if (need_clear) {
9989 /*
9990 * When we mount with old space cache, we need to
9991 * set BTRFS_DC_CLEAR and set dirty flag.
9992 *
9993 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9994 * truncate the old free space cache inode and
9995 * setup a new one.
9996 * b) Setting 'dirty flag' makes sure that we flush
9997 * the new space cache info onto disk.
9998 */
9999 if (btrfs_test_opt(info, SPACE_CACHE))
10000 cache->disk_cache_state = BTRFS_DC_CLEAR;
10001 }
10002
10003 read_extent_buffer(leaf, &cache->item,
10004 btrfs_item_ptr_offset(leaf, path->slots[0]),
10005 sizeof(cache->item));
10006 cache->flags = btrfs_block_group_flags(&cache->item);
10007 if (!mixed &&
10008 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10009 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10010 btrfs_err(info,
10011 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10012 cache->key.objectid);
10013 btrfs_put_block_group(cache);
10014 ret = -EINVAL;
10015 goto error;
10016 }
10017
10018 key.objectid = found_key.objectid + found_key.offset;
10019 btrfs_release_path(path);
10020
10021 /*
10022 * We need to exclude the super stripes now so that the space
10023 * info has super bytes accounted for, otherwise we'll think
10024 * we have more space than we actually do.
10025 */
10026 ret = exclude_super_stripes(cache);
10027 if (ret) {
10028 /*
10029 * We may have excluded something, so call this just in
10030 * case.
10031 */
10032 free_excluded_extents(cache);
10033 btrfs_put_block_group(cache);
10034 goto error;
10035 }
10036
10037 /*
10038 * check for two cases, either we are full, and therefore
10039 * don't need to bother with the caching work since we won't
10040 * find any space, or we are empty, and we can just add all
10041 * the space in and be done with it. This saves us _alot_ of
10042 * time, particularly in the full case.
10043 */
10044 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
10045 cache->last_byte_to_unpin = (u64)-1;
10046 cache->cached = BTRFS_CACHE_FINISHED;
10047 free_excluded_extents(cache);
10048 } else if (btrfs_block_group_used(&cache->item) == 0) {
10049 cache->last_byte_to_unpin = (u64)-1;
10050 cache->cached = BTRFS_CACHE_FINISHED;
10051 add_new_free_space(cache, found_key.objectid,
10052 found_key.objectid +
10053 found_key.offset);
10054 free_excluded_extents(cache);
10055 }
10056
10057 ret = btrfs_add_block_group_cache(info, cache);
10058 if (ret) {
10059 btrfs_remove_free_space_cache(cache);
10060 btrfs_put_block_group(cache);
10061 goto error;
10062 }
10063
10064 trace_btrfs_add_block_group(info, cache, 0);
10065 update_space_info(info, cache->flags, found_key.offset,
10066 btrfs_block_group_used(&cache->item),
10067 cache->bytes_super, &space_info);
10068
10069 cache->space_info = space_info;
10070
10071 link_block_group(cache);
10072
10073 set_avail_alloc_bits(info, cache->flags);
10074 if (btrfs_chunk_readonly(info, cache->key.objectid)) {
10075 inc_block_group_ro(cache, 1);
10076 } else if (btrfs_block_group_used(&cache->item) == 0) {
10077 ASSERT(list_empty(&cache->bg_list));
10078 btrfs_mark_bg_unused(cache);
10079 }
10080 }
10081
10082 list_for_each_entry_rcu(space_info, &info->space_info, list) {
10083 if (!(get_alloc_profile(info, space_info->flags) &
10084 (BTRFS_BLOCK_GROUP_RAID10 |
10085 BTRFS_BLOCK_GROUP_RAID1 |
10086 BTRFS_BLOCK_GROUP_RAID5 |
10087 BTRFS_BLOCK_GROUP_RAID6 |
10088 BTRFS_BLOCK_GROUP_DUP)))
10089 continue;
10090 /*
10091 * avoid allocating from un-mirrored block group if there are
10092 * mirrored block groups.
10093 */
10094 list_for_each_entry(cache,
10095 &space_info->block_groups[BTRFS_RAID_RAID0],
10096 list)
10097 inc_block_group_ro(cache, 1);
10098 list_for_each_entry(cache,
10099 &space_info->block_groups[BTRFS_RAID_SINGLE],
10100 list)
10101 inc_block_group_ro(cache, 1);
10102 }
10103
10104 btrfs_add_raid_kobjects(info);
10105 init_global_block_rsv(info);
10106 ret = check_chunk_block_group_mappings(info);
10107 error:
10108 btrfs_free_path(path);
10109 return ret;
10110 }
10111
btrfs_create_pending_block_groups(struct btrfs_trans_handle * trans)10112 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
10113 {
10114 struct btrfs_fs_info *fs_info = trans->fs_info;
10115 struct btrfs_block_group_cache *block_group;
10116 struct btrfs_root *extent_root = fs_info->extent_root;
10117 struct btrfs_block_group_item item;
10118 struct btrfs_key key;
10119 int ret = 0;
10120
10121 if (!trans->can_flush_pending_bgs)
10122 return;
10123
10124 while (!list_empty(&trans->new_bgs)) {
10125 block_group = list_first_entry(&trans->new_bgs,
10126 struct btrfs_block_group_cache,
10127 bg_list);
10128 if (ret)
10129 goto next;
10130
10131 spin_lock(&block_group->lock);
10132 memcpy(&item, &block_group->item, sizeof(item));
10133 memcpy(&key, &block_group->key, sizeof(key));
10134 spin_unlock(&block_group->lock);
10135
10136 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10137 sizeof(item));
10138 if (ret)
10139 btrfs_abort_transaction(trans, ret);
10140 ret = btrfs_finish_chunk_alloc(trans, key.objectid, key.offset);
10141 if (ret)
10142 btrfs_abort_transaction(trans, ret);
10143 add_block_group_free_space(trans, block_group);
10144 /* already aborted the transaction if it failed. */
10145 next:
10146 list_del_init(&block_group->bg_list);
10147 }
10148 btrfs_trans_release_chunk_metadata(trans);
10149 }
10150
btrfs_make_block_group(struct btrfs_trans_handle * trans,u64 bytes_used,u64 type,u64 chunk_offset,u64 size)10151 int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used,
10152 u64 type, u64 chunk_offset, u64 size)
10153 {
10154 struct btrfs_fs_info *fs_info = trans->fs_info;
10155 struct btrfs_block_group_cache *cache;
10156 int ret;
10157
10158 btrfs_set_log_full_commit(fs_info, trans);
10159
10160 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
10161 if (!cache)
10162 return -ENOMEM;
10163
10164 btrfs_set_block_group_used(&cache->item, bytes_used);
10165 btrfs_set_block_group_chunk_objectid(&cache->item,
10166 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
10167 btrfs_set_block_group_flags(&cache->item, type);
10168
10169 cache->flags = type;
10170 cache->last_byte_to_unpin = (u64)-1;
10171 cache->cached = BTRFS_CACHE_FINISHED;
10172 cache->needs_free_space = 1;
10173 ret = exclude_super_stripes(cache);
10174 if (ret) {
10175 /*
10176 * We may have excluded something, so call this just in
10177 * case.
10178 */
10179 free_excluded_extents(cache);
10180 btrfs_put_block_group(cache);
10181 return ret;
10182 }
10183
10184 add_new_free_space(cache, chunk_offset, chunk_offset + size);
10185
10186 free_excluded_extents(cache);
10187
10188 #ifdef CONFIG_BTRFS_DEBUG
10189 if (btrfs_should_fragment_free_space(cache)) {
10190 u64 new_bytes_used = size - bytes_used;
10191
10192 bytes_used += new_bytes_used >> 1;
10193 fragment_free_space(cache);
10194 }
10195 #endif
10196 /*
10197 * Ensure the corresponding space_info object is created and
10198 * assigned to our block group. We want our bg to be added to the rbtree
10199 * with its ->space_info set.
10200 */
10201 cache->space_info = __find_space_info(fs_info, cache->flags);
10202 ASSERT(cache->space_info);
10203
10204 ret = btrfs_add_block_group_cache(fs_info, cache);
10205 if (ret) {
10206 btrfs_remove_free_space_cache(cache);
10207 btrfs_put_block_group(cache);
10208 return ret;
10209 }
10210
10211 /*
10212 * Now that our block group has its ->space_info set and is inserted in
10213 * the rbtree, update the space info's counters.
10214 */
10215 trace_btrfs_add_block_group(fs_info, cache, 1);
10216 update_space_info(fs_info, cache->flags, size, bytes_used,
10217 cache->bytes_super, &cache->space_info);
10218 update_global_block_rsv(fs_info);
10219
10220 link_block_group(cache);
10221
10222 list_add_tail(&cache->bg_list, &trans->new_bgs);
10223
10224 set_avail_alloc_bits(fs_info, type);
10225 return 0;
10226 }
10227
clear_avail_alloc_bits(struct btrfs_fs_info * fs_info,u64 flags)10228 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10229 {
10230 u64 extra_flags = chunk_to_extended(flags) &
10231 BTRFS_EXTENDED_PROFILE_MASK;
10232
10233 write_seqlock(&fs_info->profiles_lock);
10234 if (flags & BTRFS_BLOCK_GROUP_DATA)
10235 fs_info->avail_data_alloc_bits &= ~extra_flags;
10236 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10237 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10238 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10239 fs_info->avail_system_alloc_bits &= ~extra_flags;
10240 write_sequnlock(&fs_info->profiles_lock);
10241 }
10242
btrfs_remove_block_group(struct btrfs_trans_handle * trans,u64 group_start,struct extent_map * em)10243 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10244 u64 group_start, struct extent_map *em)
10245 {
10246 struct btrfs_fs_info *fs_info = trans->fs_info;
10247 struct btrfs_root *root = fs_info->extent_root;
10248 struct btrfs_path *path;
10249 struct btrfs_block_group_cache *block_group;
10250 struct btrfs_free_cluster *cluster;
10251 struct btrfs_root *tree_root = fs_info->tree_root;
10252 struct btrfs_key key;
10253 struct inode *inode;
10254 struct kobject *kobj = NULL;
10255 int ret;
10256 int index;
10257 int factor;
10258 struct btrfs_caching_control *caching_ctl = NULL;
10259 bool remove_em;
10260
10261 block_group = btrfs_lookup_block_group(fs_info, group_start);
10262 BUG_ON(!block_group);
10263 BUG_ON(!block_group->ro);
10264
10265 trace_btrfs_remove_block_group(block_group);
10266 /*
10267 * Free the reserved super bytes from this block group before
10268 * remove it.
10269 */
10270 free_excluded_extents(block_group);
10271 btrfs_free_ref_tree_range(fs_info, block_group->key.objectid,
10272 block_group->key.offset);
10273
10274 memcpy(&key, &block_group->key, sizeof(key));
10275 index = btrfs_bg_flags_to_raid_index(block_group->flags);
10276 factor = btrfs_bg_type_to_factor(block_group->flags);
10277
10278 /* make sure this block group isn't part of an allocation cluster */
10279 cluster = &fs_info->data_alloc_cluster;
10280 spin_lock(&cluster->refill_lock);
10281 btrfs_return_cluster_to_free_space(block_group, cluster);
10282 spin_unlock(&cluster->refill_lock);
10283
10284 /*
10285 * make sure this block group isn't part of a metadata
10286 * allocation cluster
10287 */
10288 cluster = &fs_info->meta_alloc_cluster;
10289 spin_lock(&cluster->refill_lock);
10290 btrfs_return_cluster_to_free_space(block_group, cluster);
10291 spin_unlock(&cluster->refill_lock);
10292
10293 path = btrfs_alloc_path();
10294 if (!path) {
10295 ret = -ENOMEM;
10296 goto out;
10297 }
10298
10299 /*
10300 * get the inode first so any iput calls done for the io_list
10301 * aren't the final iput (no unlinks allowed now)
10302 */
10303 inode = lookup_free_space_inode(fs_info, block_group, path);
10304
10305 mutex_lock(&trans->transaction->cache_write_mutex);
10306 /*
10307 * make sure our free spache cache IO is done before remove the
10308 * free space inode
10309 */
10310 spin_lock(&trans->transaction->dirty_bgs_lock);
10311 if (!list_empty(&block_group->io_list)) {
10312 list_del_init(&block_group->io_list);
10313
10314 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10315
10316 spin_unlock(&trans->transaction->dirty_bgs_lock);
10317 btrfs_wait_cache_io(trans, block_group, path);
10318 btrfs_put_block_group(block_group);
10319 spin_lock(&trans->transaction->dirty_bgs_lock);
10320 }
10321
10322 if (!list_empty(&block_group->dirty_list)) {
10323 list_del_init(&block_group->dirty_list);
10324 btrfs_put_block_group(block_group);
10325 }
10326 spin_unlock(&trans->transaction->dirty_bgs_lock);
10327 mutex_unlock(&trans->transaction->cache_write_mutex);
10328
10329 if (!IS_ERR(inode)) {
10330 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10331 if (ret) {
10332 btrfs_add_delayed_iput(inode);
10333 goto out;
10334 }
10335 clear_nlink(inode);
10336 /* One for the block groups ref */
10337 spin_lock(&block_group->lock);
10338 if (block_group->iref) {
10339 block_group->iref = 0;
10340 block_group->inode = NULL;
10341 spin_unlock(&block_group->lock);
10342 iput(inode);
10343 } else {
10344 spin_unlock(&block_group->lock);
10345 }
10346 /* One for our lookup ref */
10347 btrfs_add_delayed_iput(inode);
10348 }
10349
10350 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10351 key.offset = block_group->key.objectid;
10352 key.type = 0;
10353
10354 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10355 if (ret < 0)
10356 goto out;
10357 if (ret > 0)
10358 btrfs_release_path(path);
10359 if (ret == 0) {
10360 ret = btrfs_del_item(trans, tree_root, path);
10361 if (ret)
10362 goto out;
10363 btrfs_release_path(path);
10364 }
10365
10366 spin_lock(&fs_info->block_group_cache_lock);
10367 rb_erase(&block_group->cache_node,
10368 &fs_info->block_group_cache_tree);
10369 RB_CLEAR_NODE(&block_group->cache_node);
10370
10371 /* Once for the block groups rbtree */
10372 btrfs_put_block_group(block_group);
10373
10374 if (fs_info->first_logical_byte == block_group->key.objectid)
10375 fs_info->first_logical_byte = (u64)-1;
10376 spin_unlock(&fs_info->block_group_cache_lock);
10377
10378 down_write(&block_group->space_info->groups_sem);
10379 /*
10380 * we must use list_del_init so people can check to see if they
10381 * are still on the list after taking the semaphore
10382 */
10383 list_del_init(&block_group->list);
10384 if (list_empty(&block_group->space_info->block_groups[index])) {
10385 kobj = block_group->space_info->block_group_kobjs[index];
10386 block_group->space_info->block_group_kobjs[index] = NULL;
10387 clear_avail_alloc_bits(fs_info, block_group->flags);
10388 }
10389 up_write(&block_group->space_info->groups_sem);
10390 if (kobj) {
10391 kobject_del(kobj);
10392 kobject_put(kobj);
10393 }
10394
10395 if (block_group->has_caching_ctl)
10396 caching_ctl = get_caching_control(block_group);
10397 if (block_group->cached == BTRFS_CACHE_STARTED)
10398 wait_block_group_cache_done(block_group);
10399 if (block_group->has_caching_ctl) {
10400 down_write(&fs_info->commit_root_sem);
10401 if (!caching_ctl) {
10402 struct btrfs_caching_control *ctl;
10403
10404 list_for_each_entry(ctl,
10405 &fs_info->caching_block_groups, list)
10406 if (ctl->block_group == block_group) {
10407 caching_ctl = ctl;
10408 refcount_inc(&caching_ctl->count);
10409 break;
10410 }
10411 }
10412 if (caching_ctl)
10413 list_del_init(&caching_ctl->list);
10414 up_write(&fs_info->commit_root_sem);
10415 if (caching_ctl) {
10416 /* Once for the caching bgs list and once for us. */
10417 put_caching_control(caching_ctl);
10418 put_caching_control(caching_ctl);
10419 }
10420 }
10421
10422 spin_lock(&trans->transaction->dirty_bgs_lock);
10423 if (!list_empty(&block_group->dirty_list)) {
10424 WARN_ON(1);
10425 }
10426 if (!list_empty(&block_group->io_list)) {
10427 WARN_ON(1);
10428 }
10429 spin_unlock(&trans->transaction->dirty_bgs_lock);
10430 btrfs_remove_free_space_cache(block_group);
10431
10432 spin_lock(&block_group->space_info->lock);
10433 list_del_init(&block_group->ro_list);
10434
10435 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
10436 WARN_ON(block_group->space_info->total_bytes
10437 < block_group->key.offset);
10438 WARN_ON(block_group->space_info->bytes_readonly
10439 < block_group->key.offset);
10440 WARN_ON(block_group->space_info->disk_total
10441 < block_group->key.offset * factor);
10442 }
10443 block_group->space_info->total_bytes -= block_group->key.offset;
10444 block_group->space_info->bytes_readonly -= block_group->key.offset;
10445 block_group->space_info->disk_total -= block_group->key.offset * factor;
10446
10447 spin_unlock(&block_group->space_info->lock);
10448
10449 memcpy(&key, &block_group->key, sizeof(key));
10450
10451 mutex_lock(&fs_info->chunk_mutex);
10452 if (!list_empty(&em->list)) {
10453 /* We're in the transaction->pending_chunks list. */
10454 free_extent_map(em);
10455 }
10456 spin_lock(&block_group->lock);
10457 block_group->removed = 1;
10458 /*
10459 * At this point trimming can't start on this block group, because we
10460 * removed the block group from the tree fs_info->block_group_cache_tree
10461 * so no one can't find it anymore and even if someone already got this
10462 * block group before we removed it from the rbtree, they have already
10463 * incremented block_group->trimming - if they didn't, they won't find
10464 * any free space entries because we already removed them all when we
10465 * called btrfs_remove_free_space_cache().
10466 *
10467 * And we must not remove the extent map from the fs_info->mapping_tree
10468 * to prevent the same logical address range and physical device space
10469 * ranges from being reused for a new block group. This is because our
10470 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10471 * completely transactionless, so while it is trimming a range the
10472 * currently running transaction might finish and a new one start,
10473 * allowing for new block groups to be created that can reuse the same
10474 * physical device locations unless we take this special care.
10475 *
10476 * There may also be an implicit trim operation if the file system
10477 * is mounted with -odiscard. The same protections must remain
10478 * in place until the extents have been discarded completely when
10479 * the transaction commit has completed.
10480 */
10481 remove_em = (atomic_read(&block_group->trimming) == 0);
10482 /*
10483 * Make sure a trimmer task always sees the em in the pinned_chunks list
10484 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10485 * before checking block_group->removed).
10486 */
10487 if (!remove_em) {
10488 /*
10489 * Our em might be in trans->transaction->pending_chunks which
10490 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10491 * and so is the fs_info->pinned_chunks list.
10492 *
10493 * So at this point we must be holding the chunk_mutex to avoid
10494 * any races with chunk allocation (more specifically at
10495 * volumes.c:contains_pending_extent()), to ensure it always
10496 * sees the em, either in the pending_chunks list or in the
10497 * pinned_chunks list.
10498 */
10499 list_move_tail(&em->list, &fs_info->pinned_chunks);
10500 }
10501 spin_unlock(&block_group->lock);
10502
10503 mutex_unlock(&fs_info->chunk_mutex);
10504
10505 ret = remove_block_group_free_space(trans, block_group);
10506 if (ret)
10507 goto out;
10508
10509 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10510 if (ret > 0)
10511 ret = -EIO;
10512 if (ret < 0)
10513 goto out;
10514
10515 ret = btrfs_del_item(trans, root, path);
10516 if (ret)
10517 goto out;
10518
10519 if (remove_em) {
10520 struct extent_map_tree *em_tree;
10521
10522 em_tree = &fs_info->mapping_tree.map_tree;
10523 write_lock(&em_tree->lock);
10524 /*
10525 * The em might be in the pending_chunks list, so make sure the
10526 * chunk mutex is locked, since remove_extent_mapping() will
10527 * delete us from that list.
10528 */
10529 remove_extent_mapping(em_tree, em);
10530 write_unlock(&em_tree->lock);
10531 /* once for the tree */
10532 free_extent_map(em);
10533 }
10534
10535 out:
10536 /* Once for the lookup reference */
10537 btrfs_put_block_group(block_group);
10538 btrfs_free_path(path);
10539 return ret;
10540 }
10541
10542 struct btrfs_trans_handle *
btrfs_start_trans_remove_block_group(struct btrfs_fs_info * fs_info,const u64 chunk_offset)10543 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10544 const u64 chunk_offset)
10545 {
10546 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10547 struct extent_map *em;
10548 struct map_lookup *map;
10549 unsigned int num_items;
10550
10551 read_lock(&em_tree->lock);
10552 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10553 read_unlock(&em_tree->lock);
10554 ASSERT(em && em->start == chunk_offset);
10555
10556 /*
10557 * We need to reserve 3 + N units from the metadata space info in order
10558 * to remove a block group (done at btrfs_remove_chunk() and at
10559 * btrfs_remove_block_group()), which are used for:
10560 *
10561 * 1 unit for adding the free space inode's orphan (located in the tree
10562 * of tree roots).
10563 * 1 unit for deleting the block group item (located in the extent
10564 * tree).
10565 * 1 unit for deleting the free space item (located in tree of tree
10566 * roots).
10567 * N units for deleting N device extent items corresponding to each
10568 * stripe (located in the device tree).
10569 *
10570 * In order to remove a block group we also need to reserve units in the
10571 * system space info in order to update the chunk tree (update one or
10572 * more device items and remove one chunk item), but this is done at
10573 * btrfs_remove_chunk() through a call to check_system_chunk().
10574 */
10575 map = em->map_lookup;
10576 num_items = 3 + map->num_stripes;
10577 free_extent_map(em);
10578
10579 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10580 num_items, 1);
10581 }
10582
10583 /*
10584 * Process the unused_bgs list and remove any that don't have any allocated
10585 * space inside of them.
10586 */
btrfs_delete_unused_bgs(struct btrfs_fs_info * fs_info)10587 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10588 {
10589 struct btrfs_block_group_cache *block_group;
10590 struct btrfs_space_info *space_info;
10591 struct btrfs_trans_handle *trans;
10592 int ret = 0;
10593
10594 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
10595 return;
10596
10597 spin_lock(&fs_info->unused_bgs_lock);
10598 while (!list_empty(&fs_info->unused_bgs)) {
10599 u64 start, end;
10600 int trimming;
10601
10602 block_group = list_first_entry(&fs_info->unused_bgs,
10603 struct btrfs_block_group_cache,
10604 bg_list);
10605 list_del_init(&block_group->bg_list);
10606
10607 space_info = block_group->space_info;
10608
10609 if (ret || btrfs_mixed_space_info(space_info)) {
10610 btrfs_put_block_group(block_group);
10611 continue;
10612 }
10613 spin_unlock(&fs_info->unused_bgs_lock);
10614
10615 mutex_lock(&fs_info->delete_unused_bgs_mutex);
10616
10617 /* Don't want to race with allocators so take the groups_sem */
10618 down_write(&space_info->groups_sem);
10619 spin_lock(&block_group->lock);
10620 if (block_group->reserved || block_group->pinned ||
10621 btrfs_block_group_used(&block_group->item) ||
10622 block_group->ro ||
10623 list_is_singular(&block_group->list)) {
10624 /*
10625 * We want to bail if we made new allocations or have
10626 * outstanding allocations in this block group. We do
10627 * the ro check in case balance is currently acting on
10628 * this block group.
10629 */
10630 trace_btrfs_skip_unused_block_group(block_group);
10631 spin_unlock(&block_group->lock);
10632 up_write(&space_info->groups_sem);
10633 goto next;
10634 }
10635 spin_unlock(&block_group->lock);
10636
10637 /* We don't want to force the issue, only flip if it's ok. */
10638 ret = inc_block_group_ro(block_group, 0);
10639 up_write(&space_info->groups_sem);
10640 if (ret < 0) {
10641 ret = 0;
10642 goto next;
10643 }
10644
10645 /*
10646 * Want to do this before we do anything else so we can recover
10647 * properly if we fail to join the transaction.
10648 */
10649 trans = btrfs_start_trans_remove_block_group(fs_info,
10650 block_group->key.objectid);
10651 if (IS_ERR(trans)) {
10652 btrfs_dec_block_group_ro(block_group);
10653 ret = PTR_ERR(trans);
10654 goto next;
10655 }
10656
10657 /*
10658 * We could have pending pinned extents for this block group,
10659 * just delete them, we don't care about them anymore.
10660 */
10661 start = block_group->key.objectid;
10662 end = start + block_group->key.offset - 1;
10663 /*
10664 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10665 * btrfs_finish_extent_commit(). If we are at transaction N,
10666 * another task might be running finish_extent_commit() for the
10667 * previous transaction N - 1, and have seen a range belonging
10668 * to the block group in freed_extents[] before we were able to
10669 * clear the whole block group range from freed_extents[]. This
10670 * means that task can lookup for the block group after we
10671 * unpinned it from freed_extents[] and removed it, leading to
10672 * a BUG_ON() at btrfs_unpin_extent_range().
10673 */
10674 mutex_lock(&fs_info->unused_bg_unpin_mutex);
10675 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10676 EXTENT_DIRTY);
10677 if (ret) {
10678 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10679 btrfs_dec_block_group_ro(block_group);
10680 goto end_trans;
10681 }
10682 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10683 EXTENT_DIRTY);
10684 if (ret) {
10685 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10686 btrfs_dec_block_group_ro(block_group);
10687 goto end_trans;
10688 }
10689 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10690
10691 /* Reset pinned so btrfs_put_block_group doesn't complain */
10692 spin_lock(&space_info->lock);
10693 spin_lock(&block_group->lock);
10694
10695 space_info->bytes_pinned -= block_group->pinned;
10696 space_info->bytes_readonly += block_group->pinned;
10697 percpu_counter_add_batch(&space_info->total_bytes_pinned,
10698 -block_group->pinned,
10699 BTRFS_TOTAL_BYTES_PINNED_BATCH);
10700 block_group->pinned = 0;
10701
10702 spin_unlock(&block_group->lock);
10703 spin_unlock(&space_info->lock);
10704
10705 /* DISCARD can flip during remount */
10706 trimming = btrfs_test_opt(fs_info, DISCARD);
10707
10708 /* Implicit trim during transaction commit. */
10709 if (trimming)
10710 btrfs_get_block_group_trimming(block_group);
10711
10712 /*
10713 * Btrfs_remove_chunk will abort the transaction if things go
10714 * horribly wrong.
10715 */
10716 ret = btrfs_remove_chunk(trans, block_group->key.objectid);
10717
10718 if (ret) {
10719 if (trimming)
10720 btrfs_put_block_group_trimming(block_group);
10721 goto end_trans;
10722 }
10723
10724 /*
10725 * If we're not mounted with -odiscard, we can just forget
10726 * about this block group. Otherwise we'll need to wait
10727 * until transaction commit to do the actual discard.
10728 */
10729 if (trimming) {
10730 spin_lock(&fs_info->unused_bgs_lock);
10731 /*
10732 * A concurrent scrub might have added us to the list
10733 * fs_info->unused_bgs, so use a list_move operation
10734 * to add the block group to the deleted_bgs list.
10735 */
10736 list_move(&block_group->bg_list,
10737 &trans->transaction->deleted_bgs);
10738 spin_unlock(&fs_info->unused_bgs_lock);
10739 btrfs_get_block_group(block_group);
10740 }
10741 end_trans:
10742 btrfs_end_transaction(trans);
10743 next:
10744 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10745 btrfs_put_block_group(block_group);
10746 spin_lock(&fs_info->unused_bgs_lock);
10747 }
10748 spin_unlock(&fs_info->unused_bgs_lock);
10749 }
10750
btrfs_init_space_info(struct btrfs_fs_info * fs_info)10751 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10752 {
10753 struct btrfs_super_block *disk_super;
10754 u64 features;
10755 u64 flags;
10756 int mixed = 0;
10757 int ret;
10758
10759 disk_super = fs_info->super_copy;
10760 if (!btrfs_super_root(disk_super))
10761 return -EINVAL;
10762
10763 features = btrfs_super_incompat_flags(disk_super);
10764 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10765 mixed = 1;
10766
10767 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10768 ret = create_space_info(fs_info, flags);
10769 if (ret)
10770 goto out;
10771
10772 if (mixed) {
10773 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10774 ret = create_space_info(fs_info, flags);
10775 } else {
10776 flags = BTRFS_BLOCK_GROUP_METADATA;
10777 ret = create_space_info(fs_info, flags);
10778 if (ret)
10779 goto out;
10780
10781 flags = BTRFS_BLOCK_GROUP_DATA;
10782 ret = create_space_info(fs_info, flags);
10783 }
10784 out:
10785 return ret;
10786 }
10787
btrfs_error_unpin_extent_range(struct btrfs_fs_info * fs_info,u64 start,u64 end)10788 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10789 u64 start, u64 end)
10790 {
10791 return unpin_extent_range(fs_info, start, end, false);
10792 }
10793
10794 /*
10795 * It used to be that old block groups would be left around forever.
10796 * Iterating over them would be enough to trim unused space. Since we
10797 * now automatically remove them, we also need to iterate over unallocated
10798 * space.
10799 *
10800 * We don't want a transaction for this since the discard may take a
10801 * substantial amount of time. We don't require that a transaction be
10802 * running, but we do need to take a running transaction into account
10803 * to ensure that we're not discarding chunks that were released or
10804 * allocated in the current transaction.
10805 *
10806 * Holding the chunks lock will prevent other threads from allocating
10807 * or releasing chunks, but it won't prevent a running transaction
10808 * from committing and releasing the memory that the pending chunks
10809 * list head uses. For that, we need to take a reference to the
10810 * transaction and hold the commit root sem. We only need to hold
10811 * it while performing the free space search since we have already
10812 * held back allocations.
10813 */
btrfs_trim_free_extents(struct btrfs_device * device,u64 minlen,u64 * trimmed)10814 static int btrfs_trim_free_extents(struct btrfs_device *device,
10815 u64 minlen, u64 *trimmed)
10816 {
10817 u64 start = 0, len = 0;
10818 int ret;
10819
10820 *trimmed = 0;
10821
10822 /* Discard not supported = nothing to do. */
10823 if (!blk_queue_discard(bdev_get_queue(device->bdev)))
10824 return 0;
10825
10826 /* Not writeable = nothing to do. */
10827 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
10828 return 0;
10829
10830 /* No free space = nothing to do. */
10831 if (device->total_bytes <= device->bytes_used)
10832 return 0;
10833
10834 ret = 0;
10835
10836 while (1) {
10837 struct btrfs_fs_info *fs_info = device->fs_info;
10838 struct btrfs_transaction *trans;
10839 u64 bytes;
10840
10841 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10842 if (ret)
10843 break;
10844
10845 ret = down_read_killable(&fs_info->commit_root_sem);
10846 if (ret) {
10847 mutex_unlock(&fs_info->chunk_mutex);
10848 break;
10849 }
10850
10851 spin_lock(&fs_info->trans_lock);
10852 trans = fs_info->running_transaction;
10853 if (trans)
10854 refcount_inc(&trans->use_count);
10855 spin_unlock(&fs_info->trans_lock);
10856
10857 if (!trans)
10858 up_read(&fs_info->commit_root_sem);
10859
10860 ret = find_free_dev_extent_start(trans, device, minlen, start,
10861 &start, &len);
10862 if (trans) {
10863 up_read(&fs_info->commit_root_sem);
10864 btrfs_put_transaction(trans);
10865 }
10866
10867 if (ret) {
10868 mutex_unlock(&fs_info->chunk_mutex);
10869 if (ret == -ENOSPC)
10870 ret = 0;
10871 break;
10872 }
10873
10874 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10875 mutex_unlock(&fs_info->chunk_mutex);
10876
10877 if (ret)
10878 break;
10879
10880 start += len;
10881 *trimmed += bytes;
10882
10883 if (fatal_signal_pending(current)) {
10884 ret = -ERESTARTSYS;
10885 break;
10886 }
10887
10888 cond_resched();
10889 }
10890
10891 return ret;
10892 }
10893
10894 /*
10895 * Trim the whole filesystem by:
10896 * 1) trimming the free space in each block group
10897 * 2) trimming the unallocated space on each device
10898 *
10899 * This will also continue trimming even if a block group or device encounters
10900 * an error. The return value will be the last error, or 0 if nothing bad
10901 * happens.
10902 */
btrfs_trim_fs(struct btrfs_fs_info * fs_info,struct fstrim_range * range)10903 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
10904 {
10905 struct btrfs_block_group_cache *cache = NULL;
10906 struct btrfs_device *device;
10907 struct list_head *devices;
10908 u64 group_trimmed;
10909 u64 start;
10910 u64 end;
10911 u64 trimmed = 0;
10912 u64 bg_failed = 0;
10913 u64 dev_failed = 0;
10914 int bg_ret = 0;
10915 int dev_ret = 0;
10916 int ret = 0;
10917
10918 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10919 for (; cache; cache = next_block_group(fs_info, cache)) {
10920 if (cache->key.objectid >= (range->start + range->len)) {
10921 btrfs_put_block_group(cache);
10922 break;
10923 }
10924
10925 start = max(range->start, cache->key.objectid);
10926 end = min(range->start + range->len,
10927 cache->key.objectid + cache->key.offset);
10928
10929 if (end - start >= range->minlen) {
10930 if (!block_group_cache_done(cache)) {
10931 ret = cache_block_group(cache, 0);
10932 if (ret) {
10933 bg_failed++;
10934 bg_ret = ret;
10935 continue;
10936 }
10937 ret = wait_block_group_cache_done(cache);
10938 if (ret) {
10939 bg_failed++;
10940 bg_ret = ret;
10941 continue;
10942 }
10943 }
10944 ret = btrfs_trim_block_group(cache,
10945 &group_trimmed,
10946 start,
10947 end,
10948 range->minlen);
10949
10950 trimmed += group_trimmed;
10951 if (ret) {
10952 bg_failed++;
10953 bg_ret = ret;
10954 continue;
10955 }
10956 }
10957 }
10958
10959 if (bg_failed)
10960 btrfs_warn(fs_info,
10961 "failed to trim %llu block group(s), last error %d",
10962 bg_failed, bg_ret);
10963 mutex_lock(&fs_info->fs_devices->device_list_mutex);
10964 devices = &fs_info->fs_devices->devices;
10965 list_for_each_entry(device, devices, dev_list) {
10966 ret = btrfs_trim_free_extents(device, range->minlen,
10967 &group_trimmed);
10968 if (ret) {
10969 dev_failed++;
10970 dev_ret = ret;
10971 break;
10972 }
10973
10974 trimmed += group_trimmed;
10975 }
10976 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
10977
10978 if (dev_failed)
10979 btrfs_warn(fs_info,
10980 "failed to trim %llu device(s), last error %d",
10981 dev_failed, dev_ret);
10982 range->len = trimmed;
10983 if (bg_ret)
10984 return bg_ret;
10985 return dev_ret;
10986 }
10987
10988 /*
10989 * btrfs_{start,end}_write_no_snapshotting() are similar to
10990 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10991 * data into the page cache through nocow before the subvolume is snapshoted,
10992 * but flush the data into disk after the snapshot creation, or to prevent
10993 * operations while snapshotting is ongoing and that cause the snapshot to be
10994 * inconsistent (writes followed by expanding truncates for example).
10995 */
btrfs_end_write_no_snapshotting(struct btrfs_root * root)10996 void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
10997 {
10998 percpu_counter_dec(&root->subv_writers->counter);
10999 cond_wake_up(&root->subv_writers->wait);
11000 }
11001
btrfs_start_write_no_snapshotting(struct btrfs_root * root)11002 int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
11003 {
11004 if (atomic_read(&root->will_be_snapshotted))
11005 return 0;
11006
11007 percpu_counter_inc(&root->subv_writers->counter);
11008 /*
11009 * Make sure counter is updated before we check for snapshot creation.
11010 */
11011 smp_mb();
11012 if (atomic_read(&root->will_be_snapshotted)) {
11013 btrfs_end_write_no_snapshotting(root);
11014 return 0;
11015 }
11016 return 1;
11017 }
11018
btrfs_wait_for_snapshot_creation(struct btrfs_root * root)11019 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11020 {
11021 while (true) {
11022 int ret;
11023
11024 ret = btrfs_start_write_no_snapshotting(root);
11025 if (ret)
11026 break;
11027 wait_var_event(&root->will_be_snapshotted,
11028 !atomic_read(&root->will_be_snapshotted));
11029 }
11030 }
11031
btrfs_mark_bg_unused(struct btrfs_block_group_cache * bg)11032 void btrfs_mark_bg_unused(struct btrfs_block_group_cache *bg)
11033 {
11034 struct btrfs_fs_info *fs_info = bg->fs_info;
11035
11036 spin_lock(&fs_info->unused_bgs_lock);
11037 if (list_empty(&bg->bg_list)) {
11038 btrfs_get_block_group(bg);
11039 trace_btrfs_add_unused_block_group(bg);
11040 list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
11041 }
11042 spin_unlock(&fs_info->unused_bgs_lock);
11043 }
11044