1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Red Hat.  All rights reserved.
4  */
5 
6 #include <linux/pagemap.h>
7 #include <linux/sched.h>
8 #include <linux/sched/signal.h>
9 #include <linux/slab.h>
10 #include <linux/math64.h>
11 #include <linux/ratelimit.h>
12 #include <linux/error-injection.h>
13 #include <linux/sched/mm.h>
14 #include "ctree.h"
15 #include "free-space-cache.h"
16 #include "transaction.h"
17 #include "disk-io.h"
18 #include "extent_io.h"
19 #include "inode-map.h"
20 #include "volumes.h"
21 
22 #define BITS_PER_BITMAP		(PAGE_SIZE * 8UL)
23 #define MAX_CACHE_BYTES_PER_GIG	SZ_32K
24 
25 struct btrfs_trim_range {
26 	u64 start;
27 	u64 bytes;
28 	struct list_head list;
29 };
30 
31 static int link_free_space(struct btrfs_free_space_ctl *ctl,
32 			   struct btrfs_free_space *info);
33 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
34 			      struct btrfs_free_space *info);
35 static int btrfs_wait_cache_io_root(struct btrfs_root *root,
36 			     struct btrfs_trans_handle *trans,
37 			     struct btrfs_io_ctl *io_ctl,
38 			     struct btrfs_path *path);
39 
__lookup_free_space_inode(struct btrfs_root * root,struct btrfs_path * path,u64 offset)40 static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
41 					       struct btrfs_path *path,
42 					       u64 offset)
43 {
44 	struct btrfs_fs_info *fs_info = root->fs_info;
45 	struct btrfs_key key;
46 	struct btrfs_key location;
47 	struct btrfs_disk_key disk_key;
48 	struct btrfs_free_space_header *header;
49 	struct extent_buffer *leaf;
50 	struct inode *inode = NULL;
51 	unsigned nofs_flag;
52 	int ret;
53 
54 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
55 	key.offset = offset;
56 	key.type = 0;
57 
58 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
59 	if (ret < 0)
60 		return ERR_PTR(ret);
61 	if (ret > 0) {
62 		btrfs_release_path(path);
63 		return ERR_PTR(-ENOENT);
64 	}
65 
66 	leaf = path->nodes[0];
67 	header = btrfs_item_ptr(leaf, path->slots[0],
68 				struct btrfs_free_space_header);
69 	btrfs_free_space_key(leaf, header, &disk_key);
70 	btrfs_disk_key_to_cpu(&location, &disk_key);
71 	btrfs_release_path(path);
72 
73 	/*
74 	 * We are often under a trans handle at this point, so we need to make
75 	 * sure NOFS is set to keep us from deadlocking.
76 	 */
77 	nofs_flag = memalloc_nofs_save();
78 	inode = btrfs_iget_path(fs_info->sb, &location, root, NULL, path);
79 	btrfs_release_path(path);
80 	memalloc_nofs_restore(nofs_flag);
81 	if (IS_ERR(inode))
82 		return inode;
83 
84 	mapping_set_gfp_mask(inode->i_mapping,
85 			mapping_gfp_constraint(inode->i_mapping,
86 			~(__GFP_FS | __GFP_HIGHMEM)));
87 
88 	return inode;
89 }
90 
lookup_free_space_inode(struct btrfs_fs_info * fs_info,struct btrfs_block_group_cache * block_group,struct btrfs_path * path)91 struct inode *lookup_free_space_inode(struct btrfs_fs_info *fs_info,
92 				      struct btrfs_block_group_cache
93 				      *block_group, struct btrfs_path *path)
94 {
95 	struct inode *inode = NULL;
96 	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
97 
98 	spin_lock(&block_group->lock);
99 	if (block_group->inode)
100 		inode = igrab(block_group->inode);
101 	spin_unlock(&block_group->lock);
102 	if (inode)
103 		return inode;
104 
105 	inode = __lookup_free_space_inode(fs_info->tree_root, path,
106 					  block_group->key.objectid);
107 	if (IS_ERR(inode))
108 		return inode;
109 
110 	spin_lock(&block_group->lock);
111 	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
112 		btrfs_info(fs_info, "Old style space inode found, converting.");
113 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
114 			BTRFS_INODE_NODATACOW;
115 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
116 	}
117 
118 	if (!block_group->iref) {
119 		block_group->inode = igrab(inode);
120 		block_group->iref = 1;
121 	}
122 	spin_unlock(&block_group->lock);
123 
124 	return inode;
125 }
126 
__create_free_space_inode(struct btrfs_root * root,struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 ino,u64 offset)127 static int __create_free_space_inode(struct btrfs_root *root,
128 				     struct btrfs_trans_handle *trans,
129 				     struct btrfs_path *path,
130 				     u64 ino, u64 offset)
131 {
132 	struct btrfs_key key;
133 	struct btrfs_disk_key disk_key;
134 	struct btrfs_free_space_header *header;
135 	struct btrfs_inode_item *inode_item;
136 	struct extent_buffer *leaf;
137 	u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
138 	int ret;
139 
140 	ret = btrfs_insert_empty_inode(trans, root, path, ino);
141 	if (ret)
142 		return ret;
143 
144 	/* We inline crc's for the free disk space cache */
145 	if (ino != BTRFS_FREE_INO_OBJECTID)
146 		flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
147 
148 	leaf = path->nodes[0];
149 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
150 				    struct btrfs_inode_item);
151 	btrfs_item_key(leaf, &disk_key, path->slots[0]);
152 	memzero_extent_buffer(leaf, (unsigned long)inode_item,
153 			     sizeof(*inode_item));
154 	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
155 	btrfs_set_inode_size(leaf, inode_item, 0);
156 	btrfs_set_inode_nbytes(leaf, inode_item, 0);
157 	btrfs_set_inode_uid(leaf, inode_item, 0);
158 	btrfs_set_inode_gid(leaf, inode_item, 0);
159 	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
160 	btrfs_set_inode_flags(leaf, inode_item, flags);
161 	btrfs_set_inode_nlink(leaf, inode_item, 1);
162 	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
163 	btrfs_set_inode_block_group(leaf, inode_item, offset);
164 	btrfs_mark_buffer_dirty(leaf);
165 	btrfs_release_path(path);
166 
167 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
168 	key.offset = offset;
169 	key.type = 0;
170 	ret = btrfs_insert_empty_item(trans, root, path, &key,
171 				      sizeof(struct btrfs_free_space_header));
172 	if (ret < 0) {
173 		btrfs_release_path(path);
174 		return ret;
175 	}
176 
177 	leaf = path->nodes[0];
178 	header = btrfs_item_ptr(leaf, path->slots[0],
179 				struct btrfs_free_space_header);
180 	memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
181 	btrfs_set_free_space_key(leaf, header, &disk_key);
182 	btrfs_mark_buffer_dirty(leaf);
183 	btrfs_release_path(path);
184 
185 	return 0;
186 }
187 
create_free_space_inode(struct btrfs_fs_info * fs_info,struct btrfs_trans_handle * trans,struct btrfs_block_group_cache * block_group,struct btrfs_path * path)188 int create_free_space_inode(struct btrfs_fs_info *fs_info,
189 			    struct btrfs_trans_handle *trans,
190 			    struct btrfs_block_group_cache *block_group,
191 			    struct btrfs_path *path)
192 {
193 	int ret;
194 	u64 ino;
195 
196 	ret = btrfs_find_free_objectid(fs_info->tree_root, &ino);
197 	if (ret < 0)
198 		return ret;
199 
200 	return __create_free_space_inode(fs_info->tree_root, trans, path, ino,
201 					 block_group->key.objectid);
202 }
203 
btrfs_check_trunc_cache_free_space(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * rsv)204 int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info,
205 				       struct btrfs_block_rsv *rsv)
206 {
207 	u64 needed_bytes;
208 	int ret;
209 
210 	/* 1 for slack space, 1 for updating the inode */
211 	needed_bytes = btrfs_calc_trunc_metadata_size(fs_info, 1) +
212 		btrfs_calc_trans_metadata_size(fs_info, 1);
213 
214 	spin_lock(&rsv->lock);
215 	if (rsv->reserved < needed_bytes)
216 		ret = -ENOSPC;
217 	else
218 		ret = 0;
219 	spin_unlock(&rsv->lock);
220 	return ret;
221 }
222 
btrfs_truncate_free_space_cache(struct btrfs_trans_handle * trans,struct btrfs_block_group_cache * block_group,struct inode * inode)223 int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
224 				    struct btrfs_block_group_cache *block_group,
225 				    struct inode *inode)
226 {
227 	struct btrfs_root *root = BTRFS_I(inode)->root;
228 	int ret = 0;
229 	bool locked = false;
230 
231 	if (block_group) {
232 		struct btrfs_path *path = btrfs_alloc_path();
233 
234 		if (!path) {
235 			ret = -ENOMEM;
236 			goto fail;
237 		}
238 		locked = true;
239 		mutex_lock(&trans->transaction->cache_write_mutex);
240 		if (!list_empty(&block_group->io_list)) {
241 			list_del_init(&block_group->io_list);
242 
243 			btrfs_wait_cache_io(trans, block_group, path);
244 			btrfs_put_block_group(block_group);
245 		}
246 
247 		/*
248 		 * now that we've truncated the cache away, its no longer
249 		 * setup or written
250 		 */
251 		spin_lock(&block_group->lock);
252 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
253 		spin_unlock(&block_group->lock);
254 		btrfs_free_path(path);
255 	}
256 
257 	btrfs_i_size_write(BTRFS_I(inode), 0);
258 	truncate_pagecache(inode, 0);
259 
260 	/*
261 	 * We skip the throttling logic for free space cache inodes, so we don't
262 	 * need to check for -EAGAIN.
263 	 */
264 	ret = btrfs_truncate_inode_items(trans, root, inode,
265 					 0, BTRFS_EXTENT_DATA_KEY);
266 	if (ret)
267 		goto fail;
268 
269 	ret = btrfs_update_inode(trans, root, inode);
270 
271 fail:
272 	if (locked)
273 		mutex_unlock(&trans->transaction->cache_write_mutex);
274 	if (ret)
275 		btrfs_abort_transaction(trans, ret);
276 
277 	return ret;
278 }
279 
readahead_cache(struct inode * inode)280 static void readahead_cache(struct inode *inode)
281 {
282 	struct file_ra_state *ra;
283 	unsigned long last_index;
284 
285 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
286 	if (!ra)
287 		return;
288 
289 	file_ra_state_init(ra, inode->i_mapping);
290 	last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
291 
292 	page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
293 
294 	kfree(ra);
295 }
296 
io_ctl_init(struct btrfs_io_ctl * io_ctl,struct inode * inode,int write)297 static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
298 		       int write)
299 {
300 	int num_pages;
301 	int check_crcs = 0;
302 
303 	num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
304 
305 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FREE_INO_OBJECTID)
306 		check_crcs = 1;
307 
308 	/* Make sure we can fit our crcs and generation into the first page */
309 	if (write && check_crcs &&
310 	    (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE)
311 		return -ENOSPC;
312 
313 	memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
314 
315 	io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
316 	if (!io_ctl->pages)
317 		return -ENOMEM;
318 
319 	io_ctl->num_pages = num_pages;
320 	io_ctl->fs_info = btrfs_sb(inode->i_sb);
321 	io_ctl->check_crcs = check_crcs;
322 	io_ctl->inode = inode;
323 
324 	return 0;
325 }
326 ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
327 
io_ctl_free(struct btrfs_io_ctl * io_ctl)328 static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
329 {
330 	kfree(io_ctl->pages);
331 	io_ctl->pages = NULL;
332 }
333 
io_ctl_unmap_page(struct btrfs_io_ctl * io_ctl)334 static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
335 {
336 	if (io_ctl->cur) {
337 		io_ctl->cur = NULL;
338 		io_ctl->orig = NULL;
339 	}
340 }
341 
io_ctl_map_page(struct btrfs_io_ctl * io_ctl,int clear)342 static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
343 {
344 	ASSERT(io_ctl->index < io_ctl->num_pages);
345 	io_ctl->page = io_ctl->pages[io_ctl->index++];
346 	io_ctl->cur = page_address(io_ctl->page);
347 	io_ctl->orig = io_ctl->cur;
348 	io_ctl->size = PAGE_SIZE;
349 	if (clear)
350 		clear_page(io_ctl->cur);
351 }
352 
io_ctl_drop_pages(struct btrfs_io_ctl * io_ctl)353 static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
354 {
355 	int i;
356 
357 	io_ctl_unmap_page(io_ctl);
358 
359 	for (i = 0; i < io_ctl->num_pages; i++) {
360 		if (io_ctl->pages[i]) {
361 			ClearPageChecked(io_ctl->pages[i]);
362 			unlock_page(io_ctl->pages[i]);
363 			put_page(io_ctl->pages[i]);
364 		}
365 	}
366 }
367 
io_ctl_prepare_pages(struct btrfs_io_ctl * io_ctl,struct inode * inode,int uptodate)368 static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, struct inode *inode,
369 				int uptodate)
370 {
371 	struct page *page;
372 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
373 	int i;
374 
375 	for (i = 0; i < io_ctl->num_pages; i++) {
376 		page = find_or_create_page(inode->i_mapping, i, mask);
377 		if (!page) {
378 			io_ctl_drop_pages(io_ctl);
379 			return -ENOMEM;
380 		}
381 		io_ctl->pages[i] = page;
382 		if (uptodate && !PageUptodate(page)) {
383 			btrfs_readpage(NULL, page);
384 			lock_page(page);
385 			if (page->mapping != inode->i_mapping) {
386 				btrfs_err(BTRFS_I(inode)->root->fs_info,
387 					  "free space cache page truncated");
388 				io_ctl_drop_pages(io_ctl);
389 				return -EIO;
390 			}
391 			if (!PageUptodate(page)) {
392 				btrfs_err(BTRFS_I(inode)->root->fs_info,
393 					   "error reading free space cache");
394 				io_ctl_drop_pages(io_ctl);
395 				return -EIO;
396 			}
397 		}
398 	}
399 
400 	for (i = 0; i < io_ctl->num_pages; i++) {
401 		clear_page_dirty_for_io(io_ctl->pages[i]);
402 		set_page_extent_mapped(io_ctl->pages[i]);
403 	}
404 
405 	return 0;
406 }
407 
io_ctl_set_generation(struct btrfs_io_ctl * io_ctl,u64 generation)408 static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
409 {
410 	__le64 *val;
411 
412 	io_ctl_map_page(io_ctl, 1);
413 
414 	/*
415 	 * Skip the csum areas.  If we don't check crcs then we just have a
416 	 * 64bit chunk at the front of the first page.
417 	 */
418 	if (io_ctl->check_crcs) {
419 		io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
420 		io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
421 	} else {
422 		io_ctl->cur += sizeof(u64);
423 		io_ctl->size -= sizeof(u64) * 2;
424 	}
425 
426 	val = io_ctl->cur;
427 	*val = cpu_to_le64(generation);
428 	io_ctl->cur += sizeof(u64);
429 }
430 
io_ctl_check_generation(struct btrfs_io_ctl * io_ctl,u64 generation)431 static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
432 {
433 	__le64 *gen;
434 
435 	/*
436 	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
437 	 * chunk at the front of the first page.
438 	 */
439 	if (io_ctl->check_crcs) {
440 		io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
441 		io_ctl->size -= sizeof(u64) +
442 			(sizeof(u32) * io_ctl->num_pages);
443 	} else {
444 		io_ctl->cur += sizeof(u64);
445 		io_ctl->size -= sizeof(u64) * 2;
446 	}
447 
448 	gen = io_ctl->cur;
449 	if (le64_to_cpu(*gen) != generation) {
450 		btrfs_err_rl(io_ctl->fs_info,
451 			"space cache generation (%llu) does not match inode (%llu)",
452 				*gen, generation);
453 		io_ctl_unmap_page(io_ctl);
454 		return -EIO;
455 	}
456 	io_ctl->cur += sizeof(u64);
457 	return 0;
458 }
459 
io_ctl_set_crc(struct btrfs_io_ctl * io_ctl,int index)460 static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
461 {
462 	u32 *tmp;
463 	u32 crc = ~(u32)0;
464 	unsigned offset = 0;
465 
466 	if (!io_ctl->check_crcs) {
467 		io_ctl_unmap_page(io_ctl);
468 		return;
469 	}
470 
471 	if (index == 0)
472 		offset = sizeof(u32) * io_ctl->num_pages;
473 
474 	crc = btrfs_csum_data(io_ctl->orig + offset, crc,
475 			      PAGE_SIZE - offset);
476 	btrfs_csum_final(crc, (u8 *)&crc);
477 	io_ctl_unmap_page(io_ctl);
478 	tmp = page_address(io_ctl->pages[0]);
479 	tmp += index;
480 	*tmp = crc;
481 }
482 
io_ctl_check_crc(struct btrfs_io_ctl * io_ctl,int index)483 static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
484 {
485 	u32 *tmp, val;
486 	u32 crc = ~(u32)0;
487 	unsigned offset = 0;
488 
489 	if (!io_ctl->check_crcs) {
490 		io_ctl_map_page(io_ctl, 0);
491 		return 0;
492 	}
493 
494 	if (index == 0)
495 		offset = sizeof(u32) * io_ctl->num_pages;
496 
497 	tmp = page_address(io_ctl->pages[0]);
498 	tmp += index;
499 	val = *tmp;
500 
501 	io_ctl_map_page(io_ctl, 0);
502 	crc = btrfs_csum_data(io_ctl->orig + offset, crc,
503 			      PAGE_SIZE - offset);
504 	btrfs_csum_final(crc, (u8 *)&crc);
505 	if (val != crc) {
506 		btrfs_err_rl(io_ctl->fs_info,
507 			"csum mismatch on free space cache");
508 		io_ctl_unmap_page(io_ctl);
509 		return -EIO;
510 	}
511 
512 	return 0;
513 }
514 
io_ctl_add_entry(struct btrfs_io_ctl * io_ctl,u64 offset,u64 bytes,void * bitmap)515 static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
516 			    void *bitmap)
517 {
518 	struct btrfs_free_space_entry *entry;
519 
520 	if (!io_ctl->cur)
521 		return -ENOSPC;
522 
523 	entry = io_ctl->cur;
524 	entry->offset = cpu_to_le64(offset);
525 	entry->bytes = cpu_to_le64(bytes);
526 	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
527 		BTRFS_FREE_SPACE_EXTENT;
528 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
529 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
530 
531 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
532 		return 0;
533 
534 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
535 
536 	/* No more pages to map */
537 	if (io_ctl->index >= io_ctl->num_pages)
538 		return 0;
539 
540 	/* map the next page */
541 	io_ctl_map_page(io_ctl, 1);
542 	return 0;
543 }
544 
io_ctl_add_bitmap(struct btrfs_io_ctl * io_ctl,void * bitmap)545 static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
546 {
547 	if (!io_ctl->cur)
548 		return -ENOSPC;
549 
550 	/*
551 	 * If we aren't at the start of the current page, unmap this one and
552 	 * map the next one if there is any left.
553 	 */
554 	if (io_ctl->cur != io_ctl->orig) {
555 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
556 		if (io_ctl->index >= io_ctl->num_pages)
557 			return -ENOSPC;
558 		io_ctl_map_page(io_ctl, 0);
559 	}
560 
561 	copy_page(io_ctl->cur, bitmap);
562 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
563 	if (io_ctl->index < io_ctl->num_pages)
564 		io_ctl_map_page(io_ctl, 0);
565 	return 0;
566 }
567 
io_ctl_zero_remaining_pages(struct btrfs_io_ctl * io_ctl)568 static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
569 {
570 	/*
571 	 * If we're not on the boundary we know we've modified the page and we
572 	 * need to crc the page.
573 	 */
574 	if (io_ctl->cur != io_ctl->orig)
575 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
576 	else
577 		io_ctl_unmap_page(io_ctl);
578 
579 	while (io_ctl->index < io_ctl->num_pages) {
580 		io_ctl_map_page(io_ctl, 1);
581 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
582 	}
583 }
584 
io_ctl_read_entry(struct btrfs_io_ctl * io_ctl,struct btrfs_free_space * entry,u8 * type)585 static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
586 			    struct btrfs_free_space *entry, u8 *type)
587 {
588 	struct btrfs_free_space_entry *e;
589 	int ret;
590 
591 	if (!io_ctl->cur) {
592 		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
593 		if (ret)
594 			return ret;
595 	}
596 
597 	e = io_ctl->cur;
598 	entry->offset = le64_to_cpu(e->offset);
599 	entry->bytes = le64_to_cpu(e->bytes);
600 	*type = e->type;
601 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
602 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
603 
604 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
605 		return 0;
606 
607 	io_ctl_unmap_page(io_ctl);
608 
609 	return 0;
610 }
611 
io_ctl_read_bitmap(struct btrfs_io_ctl * io_ctl,struct btrfs_free_space * entry)612 static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
613 			      struct btrfs_free_space *entry)
614 {
615 	int ret;
616 
617 	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
618 	if (ret)
619 		return ret;
620 
621 	copy_page(entry->bitmap, io_ctl->cur);
622 	io_ctl_unmap_page(io_ctl);
623 
624 	return 0;
625 }
626 
627 /*
628  * Since we attach pinned extents after the fact we can have contiguous sections
629  * of free space that are split up in entries.  This poses a problem with the
630  * tree logging stuff since it could have allocated across what appears to be 2
631  * entries since we would have merged the entries when adding the pinned extents
632  * back to the free space cache.  So run through the space cache that we just
633  * loaded and merge contiguous entries.  This will make the log replay stuff not
634  * blow up and it will make for nicer allocator behavior.
635  */
merge_space_tree(struct btrfs_free_space_ctl * ctl)636 static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
637 {
638 	struct btrfs_free_space *e, *prev = NULL;
639 	struct rb_node *n;
640 
641 again:
642 	spin_lock(&ctl->tree_lock);
643 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
644 		e = rb_entry(n, struct btrfs_free_space, offset_index);
645 		if (!prev)
646 			goto next;
647 		if (e->bitmap || prev->bitmap)
648 			goto next;
649 		if (prev->offset + prev->bytes == e->offset) {
650 			unlink_free_space(ctl, prev);
651 			unlink_free_space(ctl, e);
652 			prev->bytes += e->bytes;
653 			kmem_cache_free(btrfs_free_space_cachep, e);
654 			link_free_space(ctl, prev);
655 			prev = NULL;
656 			spin_unlock(&ctl->tree_lock);
657 			goto again;
658 		}
659 next:
660 		prev = e;
661 	}
662 	spin_unlock(&ctl->tree_lock);
663 }
664 
__load_free_space_cache(struct btrfs_root * root,struct inode * inode,struct btrfs_free_space_ctl * ctl,struct btrfs_path * path,u64 offset)665 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
666 				   struct btrfs_free_space_ctl *ctl,
667 				   struct btrfs_path *path, u64 offset)
668 {
669 	struct btrfs_fs_info *fs_info = root->fs_info;
670 	struct btrfs_free_space_header *header;
671 	struct extent_buffer *leaf;
672 	struct btrfs_io_ctl io_ctl;
673 	struct btrfs_key key;
674 	struct btrfs_free_space *e, *n;
675 	LIST_HEAD(bitmaps);
676 	u64 num_entries;
677 	u64 num_bitmaps;
678 	u64 generation;
679 	u8 type;
680 	int ret = 0;
681 
682 	/* Nothing in the space cache, goodbye */
683 	if (!i_size_read(inode))
684 		return 0;
685 
686 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
687 	key.offset = offset;
688 	key.type = 0;
689 
690 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
691 	if (ret < 0)
692 		return 0;
693 	else if (ret > 0) {
694 		btrfs_release_path(path);
695 		return 0;
696 	}
697 
698 	ret = -1;
699 
700 	leaf = path->nodes[0];
701 	header = btrfs_item_ptr(leaf, path->slots[0],
702 				struct btrfs_free_space_header);
703 	num_entries = btrfs_free_space_entries(leaf, header);
704 	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
705 	generation = btrfs_free_space_generation(leaf, header);
706 	btrfs_release_path(path);
707 
708 	if (!BTRFS_I(inode)->generation) {
709 		btrfs_info(fs_info,
710 			   "the free space cache file (%llu) is invalid, skip it",
711 			   offset);
712 		return 0;
713 	}
714 
715 	if (BTRFS_I(inode)->generation != generation) {
716 		btrfs_err(fs_info,
717 			  "free space inode generation (%llu) did not match free space cache generation (%llu)",
718 			  BTRFS_I(inode)->generation, generation);
719 		return 0;
720 	}
721 
722 	if (!num_entries)
723 		return 0;
724 
725 	ret = io_ctl_init(&io_ctl, inode, 0);
726 	if (ret)
727 		return ret;
728 
729 	readahead_cache(inode);
730 
731 	ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
732 	if (ret)
733 		goto out;
734 
735 	ret = io_ctl_check_crc(&io_ctl, 0);
736 	if (ret)
737 		goto free_cache;
738 
739 	ret = io_ctl_check_generation(&io_ctl, generation);
740 	if (ret)
741 		goto free_cache;
742 
743 	while (num_entries) {
744 		e = kmem_cache_zalloc(btrfs_free_space_cachep,
745 				      GFP_NOFS);
746 		if (!e) {
747 			ret = -ENOMEM;
748 			goto free_cache;
749 		}
750 
751 		ret = io_ctl_read_entry(&io_ctl, e, &type);
752 		if (ret) {
753 			kmem_cache_free(btrfs_free_space_cachep, e);
754 			goto free_cache;
755 		}
756 
757 		if (!e->bytes) {
758 			ret = -1;
759 			kmem_cache_free(btrfs_free_space_cachep, e);
760 			goto free_cache;
761 		}
762 
763 		if (type == BTRFS_FREE_SPACE_EXTENT) {
764 			spin_lock(&ctl->tree_lock);
765 			ret = link_free_space(ctl, e);
766 			spin_unlock(&ctl->tree_lock);
767 			if (ret) {
768 				btrfs_err(fs_info,
769 					"Duplicate entries in free space cache, dumping");
770 				kmem_cache_free(btrfs_free_space_cachep, e);
771 				goto free_cache;
772 			}
773 		} else {
774 			ASSERT(num_bitmaps);
775 			num_bitmaps--;
776 			e->bitmap = kmem_cache_zalloc(
777 					btrfs_free_space_bitmap_cachep, GFP_NOFS);
778 			if (!e->bitmap) {
779 				ret = -ENOMEM;
780 				kmem_cache_free(
781 					btrfs_free_space_cachep, e);
782 				goto free_cache;
783 			}
784 			spin_lock(&ctl->tree_lock);
785 			ret = link_free_space(ctl, e);
786 			if (ret) {
787 				spin_unlock(&ctl->tree_lock);
788 				btrfs_err(fs_info,
789 					"Duplicate entries in free space cache, dumping");
790 				kmem_cache_free(btrfs_free_space_cachep, e);
791 				goto free_cache;
792 			}
793 			ctl->total_bitmaps++;
794 			ctl->op->recalc_thresholds(ctl);
795 			spin_unlock(&ctl->tree_lock);
796 			list_add_tail(&e->list, &bitmaps);
797 		}
798 
799 		num_entries--;
800 	}
801 
802 	io_ctl_unmap_page(&io_ctl);
803 
804 	/*
805 	 * We add the bitmaps at the end of the entries in order that
806 	 * the bitmap entries are added to the cache.
807 	 */
808 	list_for_each_entry_safe(e, n, &bitmaps, list) {
809 		list_del_init(&e->list);
810 		ret = io_ctl_read_bitmap(&io_ctl, e);
811 		if (ret)
812 			goto free_cache;
813 	}
814 
815 	io_ctl_drop_pages(&io_ctl);
816 	merge_space_tree(ctl);
817 	ret = 1;
818 out:
819 	io_ctl_free(&io_ctl);
820 	return ret;
821 free_cache:
822 	io_ctl_drop_pages(&io_ctl);
823 	__btrfs_remove_free_space_cache(ctl);
824 	goto out;
825 }
826 
load_free_space_cache(struct btrfs_fs_info * fs_info,struct btrfs_block_group_cache * block_group)827 int load_free_space_cache(struct btrfs_fs_info *fs_info,
828 			  struct btrfs_block_group_cache *block_group)
829 {
830 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
831 	struct inode *inode;
832 	struct btrfs_path *path;
833 	int ret = 0;
834 	bool matched;
835 	u64 used = btrfs_block_group_used(&block_group->item);
836 
837 	/*
838 	 * If this block group has been marked to be cleared for one reason or
839 	 * another then we can't trust the on disk cache, so just return.
840 	 */
841 	spin_lock(&block_group->lock);
842 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
843 		spin_unlock(&block_group->lock);
844 		return 0;
845 	}
846 	spin_unlock(&block_group->lock);
847 
848 	path = btrfs_alloc_path();
849 	if (!path)
850 		return 0;
851 	path->search_commit_root = 1;
852 	path->skip_locking = 1;
853 
854 	/*
855 	 * We must pass a path with search_commit_root set to btrfs_iget in
856 	 * order to avoid a deadlock when allocating extents for the tree root.
857 	 *
858 	 * When we are COWing an extent buffer from the tree root, when looking
859 	 * for a free extent, at extent-tree.c:find_free_extent(), we can find
860 	 * block group without its free space cache loaded. When we find one
861 	 * we must load its space cache which requires reading its free space
862 	 * cache's inode item from the root tree. If this inode item is located
863 	 * in the same leaf that we started COWing before, then we end up in
864 	 * deadlock on the extent buffer (trying to read lock it when we
865 	 * previously write locked it).
866 	 *
867 	 * It's safe to read the inode item using the commit root because
868 	 * block groups, once loaded, stay in memory forever (until they are
869 	 * removed) as well as their space caches once loaded. New block groups
870 	 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so
871 	 * we will never try to read their inode item while the fs is mounted.
872 	 */
873 	inode = lookup_free_space_inode(fs_info, block_group, path);
874 	if (IS_ERR(inode)) {
875 		btrfs_free_path(path);
876 		return 0;
877 	}
878 
879 	/* We may have converted the inode and made the cache invalid. */
880 	spin_lock(&block_group->lock);
881 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
882 		spin_unlock(&block_group->lock);
883 		btrfs_free_path(path);
884 		goto out;
885 	}
886 	spin_unlock(&block_group->lock);
887 
888 	ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
889 				      path, block_group->key.objectid);
890 	btrfs_free_path(path);
891 	if (ret <= 0)
892 		goto out;
893 
894 	spin_lock(&ctl->tree_lock);
895 	matched = (ctl->free_space == (block_group->key.offset - used -
896 				       block_group->bytes_super));
897 	spin_unlock(&ctl->tree_lock);
898 
899 	if (!matched) {
900 		__btrfs_remove_free_space_cache(ctl);
901 		btrfs_warn(fs_info,
902 			   "block group %llu has wrong amount of free space",
903 			   block_group->key.objectid);
904 		ret = -1;
905 	}
906 out:
907 	if (ret < 0) {
908 		/* This cache is bogus, make sure it gets cleared */
909 		spin_lock(&block_group->lock);
910 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
911 		spin_unlock(&block_group->lock);
912 		ret = 0;
913 
914 		btrfs_warn(fs_info,
915 			   "failed to load free space cache for block group %llu, rebuilding it now",
916 			   block_group->key.objectid);
917 	}
918 
919 	iput(inode);
920 	return ret;
921 }
922 
923 static noinline_for_stack
write_cache_extent_entries(struct btrfs_io_ctl * io_ctl,struct btrfs_free_space_ctl * ctl,struct btrfs_block_group_cache * block_group,int * entries,int * bitmaps,struct list_head * bitmap_list)924 int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
925 			      struct btrfs_free_space_ctl *ctl,
926 			      struct btrfs_block_group_cache *block_group,
927 			      int *entries, int *bitmaps,
928 			      struct list_head *bitmap_list)
929 {
930 	int ret;
931 	struct btrfs_free_cluster *cluster = NULL;
932 	struct btrfs_free_cluster *cluster_locked = NULL;
933 	struct rb_node *node = rb_first(&ctl->free_space_offset);
934 	struct btrfs_trim_range *trim_entry;
935 
936 	/* Get the cluster for this block_group if it exists */
937 	if (block_group && !list_empty(&block_group->cluster_list)) {
938 		cluster = list_entry(block_group->cluster_list.next,
939 				     struct btrfs_free_cluster,
940 				     block_group_list);
941 	}
942 
943 	if (!node && cluster) {
944 		cluster_locked = cluster;
945 		spin_lock(&cluster_locked->lock);
946 		node = rb_first(&cluster->root);
947 		cluster = NULL;
948 	}
949 
950 	/* Write out the extent entries */
951 	while (node) {
952 		struct btrfs_free_space *e;
953 
954 		e = rb_entry(node, struct btrfs_free_space, offset_index);
955 		*entries += 1;
956 
957 		ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
958 				       e->bitmap);
959 		if (ret)
960 			goto fail;
961 
962 		if (e->bitmap) {
963 			list_add_tail(&e->list, bitmap_list);
964 			*bitmaps += 1;
965 		}
966 		node = rb_next(node);
967 		if (!node && cluster) {
968 			node = rb_first(&cluster->root);
969 			cluster_locked = cluster;
970 			spin_lock(&cluster_locked->lock);
971 			cluster = NULL;
972 		}
973 	}
974 	if (cluster_locked) {
975 		spin_unlock(&cluster_locked->lock);
976 		cluster_locked = NULL;
977 	}
978 
979 	/*
980 	 * Make sure we don't miss any range that was removed from our rbtree
981 	 * because trimming is running. Otherwise after a umount+mount (or crash
982 	 * after committing the transaction) we would leak free space and get
983 	 * an inconsistent free space cache report from fsck.
984 	 */
985 	list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
986 		ret = io_ctl_add_entry(io_ctl, trim_entry->start,
987 				       trim_entry->bytes, NULL);
988 		if (ret)
989 			goto fail;
990 		*entries += 1;
991 	}
992 
993 	return 0;
994 fail:
995 	if (cluster_locked)
996 		spin_unlock(&cluster_locked->lock);
997 	return -ENOSPC;
998 }
999 
1000 static noinline_for_stack int
update_cache_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,struct btrfs_path * path,u64 offset,int entries,int bitmaps)1001 update_cache_item(struct btrfs_trans_handle *trans,
1002 		  struct btrfs_root *root,
1003 		  struct inode *inode,
1004 		  struct btrfs_path *path, u64 offset,
1005 		  int entries, int bitmaps)
1006 {
1007 	struct btrfs_key key;
1008 	struct btrfs_free_space_header *header;
1009 	struct extent_buffer *leaf;
1010 	int ret;
1011 
1012 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1013 	key.offset = offset;
1014 	key.type = 0;
1015 
1016 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1017 	if (ret < 0) {
1018 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1019 				 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL);
1020 		goto fail;
1021 	}
1022 	leaf = path->nodes[0];
1023 	if (ret > 0) {
1024 		struct btrfs_key found_key;
1025 		ASSERT(path->slots[0]);
1026 		path->slots[0]--;
1027 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1028 		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1029 		    found_key.offset != offset) {
1030 			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1031 					 inode->i_size - 1,
1032 					 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0,
1033 					 NULL);
1034 			btrfs_release_path(path);
1035 			goto fail;
1036 		}
1037 	}
1038 
1039 	BTRFS_I(inode)->generation = trans->transid;
1040 	header = btrfs_item_ptr(leaf, path->slots[0],
1041 				struct btrfs_free_space_header);
1042 	btrfs_set_free_space_entries(leaf, header, entries);
1043 	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1044 	btrfs_set_free_space_generation(leaf, header, trans->transid);
1045 	btrfs_mark_buffer_dirty(leaf);
1046 	btrfs_release_path(path);
1047 
1048 	return 0;
1049 
1050 fail:
1051 	return -1;
1052 }
1053 
1054 static noinline_for_stack int
write_pinned_extent_entries(struct btrfs_fs_info * fs_info,struct btrfs_block_group_cache * block_group,struct btrfs_io_ctl * io_ctl,int * entries)1055 write_pinned_extent_entries(struct btrfs_fs_info *fs_info,
1056 			    struct btrfs_block_group_cache *block_group,
1057 			    struct btrfs_io_ctl *io_ctl,
1058 			    int *entries)
1059 {
1060 	u64 start, extent_start, extent_end, len;
1061 	struct extent_io_tree *unpin = NULL;
1062 	int ret;
1063 
1064 	if (!block_group)
1065 		return 0;
1066 
1067 	/*
1068 	 * We want to add any pinned extents to our free space cache
1069 	 * so we don't leak the space
1070 	 *
1071 	 * We shouldn't have switched the pinned extents yet so this is the
1072 	 * right one
1073 	 */
1074 	unpin = fs_info->pinned_extents;
1075 
1076 	start = block_group->key.objectid;
1077 
1078 	while (start < block_group->key.objectid + block_group->key.offset) {
1079 		ret = find_first_extent_bit(unpin, start,
1080 					    &extent_start, &extent_end,
1081 					    EXTENT_DIRTY, NULL);
1082 		if (ret)
1083 			return 0;
1084 
1085 		/* This pinned extent is out of our range */
1086 		if (extent_start >= block_group->key.objectid +
1087 		    block_group->key.offset)
1088 			return 0;
1089 
1090 		extent_start = max(extent_start, start);
1091 		extent_end = min(block_group->key.objectid +
1092 				 block_group->key.offset, extent_end + 1);
1093 		len = extent_end - extent_start;
1094 
1095 		*entries += 1;
1096 		ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1097 		if (ret)
1098 			return -ENOSPC;
1099 
1100 		start = extent_end;
1101 	}
1102 
1103 	return 0;
1104 }
1105 
1106 static noinline_for_stack int
write_bitmap_entries(struct btrfs_io_ctl * io_ctl,struct list_head * bitmap_list)1107 write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1108 {
1109 	struct btrfs_free_space *entry, *next;
1110 	int ret;
1111 
1112 	/* Write out the bitmaps */
1113 	list_for_each_entry_safe(entry, next, bitmap_list, list) {
1114 		ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1115 		if (ret)
1116 			return -ENOSPC;
1117 		list_del_init(&entry->list);
1118 	}
1119 
1120 	return 0;
1121 }
1122 
flush_dirty_cache(struct inode * inode)1123 static int flush_dirty_cache(struct inode *inode)
1124 {
1125 	int ret;
1126 
1127 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1128 	if (ret)
1129 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1130 				 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL);
1131 
1132 	return ret;
1133 }
1134 
1135 static void noinline_for_stack
cleanup_bitmap_list(struct list_head * bitmap_list)1136 cleanup_bitmap_list(struct list_head *bitmap_list)
1137 {
1138 	struct btrfs_free_space *entry, *next;
1139 
1140 	list_for_each_entry_safe(entry, next, bitmap_list, list)
1141 		list_del_init(&entry->list);
1142 }
1143 
1144 static void noinline_for_stack
cleanup_write_cache_enospc(struct inode * inode,struct btrfs_io_ctl * io_ctl,struct extent_state ** cached_state)1145 cleanup_write_cache_enospc(struct inode *inode,
1146 			   struct btrfs_io_ctl *io_ctl,
1147 			   struct extent_state **cached_state)
1148 {
1149 	io_ctl_drop_pages(io_ctl);
1150 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1151 			     i_size_read(inode) - 1, cached_state);
1152 }
1153 
__btrfs_wait_cache_io(struct btrfs_root * root,struct btrfs_trans_handle * trans,struct btrfs_block_group_cache * block_group,struct btrfs_io_ctl * io_ctl,struct btrfs_path * path,u64 offset)1154 static int __btrfs_wait_cache_io(struct btrfs_root *root,
1155 				 struct btrfs_trans_handle *trans,
1156 				 struct btrfs_block_group_cache *block_group,
1157 				 struct btrfs_io_ctl *io_ctl,
1158 				 struct btrfs_path *path, u64 offset)
1159 {
1160 	int ret;
1161 	struct inode *inode = io_ctl->inode;
1162 
1163 	if (!inode)
1164 		return 0;
1165 
1166 	/* Flush the dirty pages in the cache file. */
1167 	ret = flush_dirty_cache(inode);
1168 	if (ret)
1169 		goto out;
1170 
1171 	/* Update the cache item to tell everyone this cache file is valid. */
1172 	ret = update_cache_item(trans, root, inode, path, offset,
1173 				io_ctl->entries, io_ctl->bitmaps);
1174 out:
1175 	if (ret) {
1176 		invalidate_inode_pages2(inode->i_mapping);
1177 		BTRFS_I(inode)->generation = 0;
1178 		if (block_group) {
1179 #ifdef DEBUG
1180 			btrfs_err(root->fs_info,
1181 				  "failed to write free space cache for block group %llu",
1182 				  block_group->key.objectid);
1183 #endif
1184 		}
1185 	}
1186 	btrfs_update_inode(trans, root, inode);
1187 
1188 	if (block_group) {
1189 		/* the dirty list is protected by the dirty_bgs_lock */
1190 		spin_lock(&trans->transaction->dirty_bgs_lock);
1191 
1192 		/* the disk_cache_state is protected by the block group lock */
1193 		spin_lock(&block_group->lock);
1194 
1195 		/*
1196 		 * only mark this as written if we didn't get put back on
1197 		 * the dirty list while waiting for IO.   Otherwise our
1198 		 * cache state won't be right, and we won't get written again
1199 		 */
1200 		if (!ret && list_empty(&block_group->dirty_list))
1201 			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1202 		else if (ret)
1203 			block_group->disk_cache_state = BTRFS_DC_ERROR;
1204 
1205 		spin_unlock(&block_group->lock);
1206 		spin_unlock(&trans->transaction->dirty_bgs_lock);
1207 		io_ctl->inode = NULL;
1208 		iput(inode);
1209 	}
1210 
1211 	return ret;
1212 
1213 }
1214 
btrfs_wait_cache_io_root(struct btrfs_root * root,struct btrfs_trans_handle * trans,struct btrfs_io_ctl * io_ctl,struct btrfs_path * path)1215 static int btrfs_wait_cache_io_root(struct btrfs_root *root,
1216 				    struct btrfs_trans_handle *trans,
1217 				    struct btrfs_io_ctl *io_ctl,
1218 				    struct btrfs_path *path)
1219 {
1220 	return __btrfs_wait_cache_io(root, trans, NULL, io_ctl, path, 0);
1221 }
1222 
btrfs_wait_cache_io(struct btrfs_trans_handle * trans,struct btrfs_block_group_cache * block_group,struct btrfs_path * path)1223 int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1224 			struct btrfs_block_group_cache *block_group,
1225 			struct btrfs_path *path)
1226 {
1227 	return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
1228 				     block_group, &block_group->io_ctl,
1229 				     path, block_group->key.objectid);
1230 }
1231 
1232 /**
1233  * __btrfs_write_out_cache - write out cached info to an inode
1234  * @root - the root the inode belongs to
1235  * @ctl - the free space cache we are going to write out
1236  * @block_group - the block_group for this cache if it belongs to a block_group
1237  * @trans - the trans handle
1238  *
1239  * This function writes out a free space cache struct to disk for quick recovery
1240  * on mount.  This will return 0 if it was successful in writing the cache out,
1241  * or an errno if it was not.
1242  */
__btrfs_write_out_cache(struct btrfs_root * root,struct inode * inode,struct btrfs_free_space_ctl * ctl,struct btrfs_block_group_cache * block_group,struct btrfs_io_ctl * io_ctl,struct btrfs_trans_handle * trans)1243 static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
1244 				   struct btrfs_free_space_ctl *ctl,
1245 				   struct btrfs_block_group_cache *block_group,
1246 				   struct btrfs_io_ctl *io_ctl,
1247 				   struct btrfs_trans_handle *trans)
1248 {
1249 	struct btrfs_fs_info *fs_info = root->fs_info;
1250 	struct extent_state *cached_state = NULL;
1251 	LIST_HEAD(bitmap_list);
1252 	int entries = 0;
1253 	int bitmaps = 0;
1254 	int ret;
1255 	int must_iput = 0;
1256 
1257 	if (!i_size_read(inode))
1258 		return -EIO;
1259 
1260 	WARN_ON(io_ctl->pages);
1261 	ret = io_ctl_init(io_ctl, inode, 1);
1262 	if (ret)
1263 		return ret;
1264 
1265 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1266 		down_write(&block_group->data_rwsem);
1267 		spin_lock(&block_group->lock);
1268 		if (block_group->delalloc_bytes) {
1269 			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1270 			spin_unlock(&block_group->lock);
1271 			up_write(&block_group->data_rwsem);
1272 			BTRFS_I(inode)->generation = 0;
1273 			ret = 0;
1274 			must_iput = 1;
1275 			goto out;
1276 		}
1277 		spin_unlock(&block_group->lock);
1278 	}
1279 
1280 	/* Lock all pages first so we can lock the extent safely. */
1281 	ret = io_ctl_prepare_pages(io_ctl, inode, 0);
1282 	if (ret)
1283 		goto out_unlock;
1284 
1285 	lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1286 			 &cached_state);
1287 
1288 	io_ctl_set_generation(io_ctl, trans->transid);
1289 
1290 	mutex_lock(&ctl->cache_writeout_mutex);
1291 	/* Write out the extent entries in the free space cache */
1292 	spin_lock(&ctl->tree_lock);
1293 	ret = write_cache_extent_entries(io_ctl, ctl,
1294 					 block_group, &entries, &bitmaps,
1295 					 &bitmap_list);
1296 	if (ret)
1297 		goto out_nospc_locked;
1298 
1299 	/*
1300 	 * Some spaces that are freed in the current transaction are pinned,
1301 	 * they will be added into free space cache after the transaction is
1302 	 * committed, we shouldn't lose them.
1303 	 *
1304 	 * If this changes while we are working we'll get added back to
1305 	 * the dirty list and redo it.  No locking needed
1306 	 */
1307 	ret = write_pinned_extent_entries(fs_info, block_group,
1308 					  io_ctl, &entries);
1309 	if (ret)
1310 		goto out_nospc_locked;
1311 
1312 	/*
1313 	 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1314 	 * locked while doing it because a concurrent trim can be manipulating
1315 	 * or freeing the bitmap.
1316 	 */
1317 	ret = write_bitmap_entries(io_ctl, &bitmap_list);
1318 	spin_unlock(&ctl->tree_lock);
1319 	mutex_unlock(&ctl->cache_writeout_mutex);
1320 	if (ret)
1321 		goto out_nospc;
1322 
1323 	/* Zero out the rest of the pages just to make sure */
1324 	io_ctl_zero_remaining_pages(io_ctl);
1325 
1326 	/* Everything is written out, now we dirty the pages in the file. */
1327 	ret = btrfs_dirty_pages(inode, io_ctl->pages, io_ctl->num_pages, 0,
1328 				i_size_read(inode), &cached_state);
1329 	if (ret)
1330 		goto out_nospc;
1331 
1332 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1333 		up_write(&block_group->data_rwsem);
1334 	/*
1335 	 * Release the pages and unlock the extent, we will flush
1336 	 * them out later
1337 	 */
1338 	io_ctl_drop_pages(io_ctl);
1339 	io_ctl_free(io_ctl);
1340 
1341 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1342 			     i_size_read(inode) - 1, &cached_state);
1343 
1344 	/*
1345 	 * at this point the pages are under IO and we're happy,
1346 	 * The caller is responsible for waiting on them and updating the
1347 	 * the cache and the inode
1348 	 */
1349 	io_ctl->entries = entries;
1350 	io_ctl->bitmaps = bitmaps;
1351 
1352 	ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1353 	if (ret)
1354 		goto out;
1355 
1356 	return 0;
1357 
1358 out:
1359 	io_ctl->inode = NULL;
1360 	io_ctl_free(io_ctl);
1361 	if (ret) {
1362 		invalidate_inode_pages2(inode->i_mapping);
1363 		BTRFS_I(inode)->generation = 0;
1364 	}
1365 	btrfs_update_inode(trans, root, inode);
1366 	if (must_iput)
1367 		iput(inode);
1368 	return ret;
1369 
1370 out_nospc_locked:
1371 	cleanup_bitmap_list(&bitmap_list);
1372 	spin_unlock(&ctl->tree_lock);
1373 	mutex_unlock(&ctl->cache_writeout_mutex);
1374 
1375 out_nospc:
1376 	cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
1377 
1378 out_unlock:
1379 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1380 		up_write(&block_group->data_rwsem);
1381 
1382 	goto out;
1383 }
1384 
btrfs_write_out_cache(struct btrfs_fs_info * fs_info,struct btrfs_trans_handle * trans,struct btrfs_block_group_cache * block_group,struct btrfs_path * path)1385 int btrfs_write_out_cache(struct btrfs_fs_info *fs_info,
1386 			  struct btrfs_trans_handle *trans,
1387 			  struct btrfs_block_group_cache *block_group,
1388 			  struct btrfs_path *path)
1389 {
1390 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1391 	struct inode *inode;
1392 	int ret = 0;
1393 
1394 	spin_lock(&block_group->lock);
1395 	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1396 		spin_unlock(&block_group->lock);
1397 		return 0;
1398 	}
1399 	spin_unlock(&block_group->lock);
1400 
1401 	inode = lookup_free_space_inode(fs_info, block_group, path);
1402 	if (IS_ERR(inode))
1403 		return 0;
1404 
1405 	ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl,
1406 				block_group, &block_group->io_ctl, trans);
1407 	if (ret) {
1408 #ifdef DEBUG
1409 		btrfs_err(fs_info,
1410 			  "failed to write free space cache for block group %llu",
1411 			  block_group->key.objectid);
1412 #endif
1413 		spin_lock(&block_group->lock);
1414 		block_group->disk_cache_state = BTRFS_DC_ERROR;
1415 		spin_unlock(&block_group->lock);
1416 
1417 		block_group->io_ctl.inode = NULL;
1418 		iput(inode);
1419 	}
1420 
1421 	/*
1422 	 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1423 	 * to wait for IO and put the inode
1424 	 */
1425 
1426 	return ret;
1427 }
1428 
offset_to_bit(u64 bitmap_start,u32 unit,u64 offset)1429 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1430 					  u64 offset)
1431 {
1432 	ASSERT(offset >= bitmap_start);
1433 	offset -= bitmap_start;
1434 	return (unsigned long)(div_u64(offset, unit));
1435 }
1436 
bytes_to_bits(u64 bytes,u32 unit)1437 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1438 {
1439 	return (unsigned long)(div_u64(bytes, unit));
1440 }
1441 
offset_to_bitmap(struct btrfs_free_space_ctl * ctl,u64 offset)1442 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1443 				   u64 offset)
1444 {
1445 	u64 bitmap_start;
1446 	u64 bytes_per_bitmap;
1447 
1448 	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1449 	bitmap_start = offset - ctl->start;
1450 	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1451 	bitmap_start *= bytes_per_bitmap;
1452 	bitmap_start += ctl->start;
1453 
1454 	return bitmap_start;
1455 }
1456 
tree_insert_offset(struct rb_root * root,u64 offset,struct rb_node * node,int bitmap)1457 static int tree_insert_offset(struct rb_root *root, u64 offset,
1458 			      struct rb_node *node, int bitmap)
1459 {
1460 	struct rb_node **p = &root->rb_node;
1461 	struct rb_node *parent = NULL;
1462 	struct btrfs_free_space *info;
1463 
1464 	while (*p) {
1465 		parent = *p;
1466 		info = rb_entry(parent, struct btrfs_free_space, offset_index);
1467 
1468 		if (offset < info->offset) {
1469 			p = &(*p)->rb_left;
1470 		} else if (offset > info->offset) {
1471 			p = &(*p)->rb_right;
1472 		} else {
1473 			/*
1474 			 * we could have a bitmap entry and an extent entry
1475 			 * share the same offset.  If this is the case, we want
1476 			 * the extent entry to always be found first if we do a
1477 			 * linear search through the tree, since we want to have
1478 			 * the quickest allocation time, and allocating from an
1479 			 * extent is faster than allocating from a bitmap.  So
1480 			 * if we're inserting a bitmap and we find an entry at
1481 			 * this offset, we want to go right, or after this entry
1482 			 * logically.  If we are inserting an extent and we've
1483 			 * found a bitmap, we want to go left, or before
1484 			 * logically.
1485 			 */
1486 			if (bitmap) {
1487 				if (info->bitmap) {
1488 					WARN_ON_ONCE(1);
1489 					return -EEXIST;
1490 				}
1491 				p = &(*p)->rb_right;
1492 			} else {
1493 				if (!info->bitmap) {
1494 					WARN_ON_ONCE(1);
1495 					return -EEXIST;
1496 				}
1497 				p = &(*p)->rb_left;
1498 			}
1499 		}
1500 	}
1501 
1502 	rb_link_node(node, parent, p);
1503 	rb_insert_color(node, root);
1504 
1505 	return 0;
1506 }
1507 
1508 /*
1509  * searches the tree for the given offset.
1510  *
1511  * fuzzy - If this is set, then we are trying to make an allocation, and we just
1512  * want a section that has at least bytes size and comes at or after the given
1513  * offset.
1514  */
1515 static struct btrfs_free_space *
tree_search_offset(struct btrfs_free_space_ctl * ctl,u64 offset,int bitmap_only,int fuzzy)1516 tree_search_offset(struct btrfs_free_space_ctl *ctl,
1517 		   u64 offset, int bitmap_only, int fuzzy)
1518 {
1519 	struct rb_node *n = ctl->free_space_offset.rb_node;
1520 	struct btrfs_free_space *entry, *prev = NULL;
1521 
1522 	/* find entry that is closest to the 'offset' */
1523 	while (1) {
1524 		if (!n) {
1525 			entry = NULL;
1526 			break;
1527 		}
1528 
1529 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1530 		prev = entry;
1531 
1532 		if (offset < entry->offset)
1533 			n = n->rb_left;
1534 		else if (offset > entry->offset)
1535 			n = n->rb_right;
1536 		else
1537 			break;
1538 	}
1539 
1540 	if (bitmap_only) {
1541 		if (!entry)
1542 			return NULL;
1543 		if (entry->bitmap)
1544 			return entry;
1545 
1546 		/*
1547 		 * bitmap entry and extent entry may share same offset,
1548 		 * in that case, bitmap entry comes after extent entry.
1549 		 */
1550 		n = rb_next(n);
1551 		if (!n)
1552 			return NULL;
1553 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1554 		if (entry->offset != offset)
1555 			return NULL;
1556 
1557 		WARN_ON(!entry->bitmap);
1558 		return entry;
1559 	} else if (entry) {
1560 		if (entry->bitmap) {
1561 			/*
1562 			 * if previous extent entry covers the offset,
1563 			 * we should return it instead of the bitmap entry
1564 			 */
1565 			n = rb_prev(&entry->offset_index);
1566 			if (n) {
1567 				prev = rb_entry(n, struct btrfs_free_space,
1568 						offset_index);
1569 				if (!prev->bitmap &&
1570 				    prev->offset + prev->bytes > offset)
1571 					entry = prev;
1572 			}
1573 		}
1574 		return entry;
1575 	}
1576 
1577 	if (!prev)
1578 		return NULL;
1579 
1580 	/* find last entry before the 'offset' */
1581 	entry = prev;
1582 	if (entry->offset > offset) {
1583 		n = rb_prev(&entry->offset_index);
1584 		if (n) {
1585 			entry = rb_entry(n, struct btrfs_free_space,
1586 					offset_index);
1587 			ASSERT(entry->offset <= offset);
1588 		} else {
1589 			if (fuzzy)
1590 				return entry;
1591 			else
1592 				return NULL;
1593 		}
1594 	}
1595 
1596 	if (entry->bitmap) {
1597 		n = rb_prev(&entry->offset_index);
1598 		if (n) {
1599 			prev = rb_entry(n, struct btrfs_free_space,
1600 					offset_index);
1601 			if (!prev->bitmap &&
1602 			    prev->offset + prev->bytes > offset)
1603 				return prev;
1604 		}
1605 		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1606 			return entry;
1607 	} else if (entry->offset + entry->bytes > offset)
1608 		return entry;
1609 
1610 	if (!fuzzy)
1611 		return NULL;
1612 
1613 	while (1) {
1614 		if (entry->bitmap) {
1615 			if (entry->offset + BITS_PER_BITMAP *
1616 			    ctl->unit > offset)
1617 				break;
1618 		} else {
1619 			if (entry->offset + entry->bytes > offset)
1620 				break;
1621 		}
1622 
1623 		n = rb_next(&entry->offset_index);
1624 		if (!n)
1625 			return NULL;
1626 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1627 	}
1628 	return entry;
1629 }
1630 
1631 static inline void
__unlink_free_space(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info)1632 __unlink_free_space(struct btrfs_free_space_ctl *ctl,
1633 		    struct btrfs_free_space *info)
1634 {
1635 	rb_erase(&info->offset_index, &ctl->free_space_offset);
1636 	ctl->free_extents--;
1637 }
1638 
unlink_free_space(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info)1639 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1640 			      struct btrfs_free_space *info)
1641 {
1642 	__unlink_free_space(ctl, info);
1643 	ctl->free_space -= info->bytes;
1644 }
1645 
link_free_space(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info)1646 static int link_free_space(struct btrfs_free_space_ctl *ctl,
1647 			   struct btrfs_free_space *info)
1648 {
1649 	int ret = 0;
1650 
1651 	ASSERT(info->bytes || info->bitmap);
1652 	ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1653 				 &info->offset_index, (info->bitmap != NULL));
1654 	if (ret)
1655 		return ret;
1656 
1657 	ctl->free_space += info->bytes;
1658 	ctl->free_extents++;
1659 	return ret;
1660 }
1661 
recalculate_thresholds(struct btrfs_free_space_ctl * ctl)1662 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1663 {
1664 	struct btrfs_block_group_cache *block_group = ctl->private;
1665 	u64 max_bytes;
1666 	u64 bitmap_bytes;
1667 	u64 extent_bytes;
1668 	u64 size = block_group->key.offset;
1669 	u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
1670 	u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1671 
1672 	max_bitmaps = max_t(u64, max_bitmaps, 1);
1673 
1674 	ASSERT(ctl->total_bitmaps <= max_bitmaps);
1675 
1676 	/*
1677 	 * The goal is to keep the total amount of memory used per 1gb of space
1678 	 * at or below 32k, so we need to adjust how much memory we allow to be
1679 	 * used by extent based free space tracking
1680 	 */
1681 	if (size < SZ_1G)
1682 		max_bytes = MAX_CACHE_BYTES_PER_GIG;
1683 	else
1684 		max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
1685 
1686 	/*
1687 	 * we want to account for 1 more bitmap than what we have so we can make
1688 	 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1689 	 * we add more bitmaps.
1690 	 */
1691 	bitmap_bytes = (ctl->total_bitmaps + 1) * ctl->unit;
1692 
1693 	if (bitmap_bytes >= max_bytes) {
1694 		ctl->extents_thresh = 0;
1695 		return;
1696 	}
1697 
1698 	/*
1699 	 * we want the extent entry threshold to always be at most 1/2 the max
1700 	 * bytes we can have, or whatever is less than that.
1701 	 */
1702 	extent_bytes = max_bytes - bitmap_bytes;
1703 	extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
1704 
1705 	ctl->extents_thresh =
1706 		div_u64(extent_bytes, sizeof(struct btrfs_free_space));
1707 }
1708 
__bitmap_clear_bits(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,u64 offset,u64 bytes)1709 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1710 				       struct btrfs_free_space *info,
1711 				       u64 offset, u64 bytes)
1712 {
1713 	unsigned long start, count;
1714 
1715 	start = offset_to_bit(info->offset, ctl->unit, offset);
1716 	count = bytes_to_bits(bytes, ctl->unit);
1717 	ASSERT(start + count <= BITS_PER_BITMAP);
1718 
1719 	bitmap_clear(info->bitmap, start, count);
1720 
1721 	info->bytes -= bytes;
1722 	if (info->max_extent_size > ctl->unit)
1723 		info->max_extent_size = 0;
1724 }
1725 
bitmap_clear_bits(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,u64 offset,u64 bytes)1726 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1727 			      struct btrfs_free_space *info, u64 offset,
1728 			      u64 bytes)
1729 {
1730 	__bitmap_clear_bits(ctl, info, offset, bytes);
1731 	ctl->free_space -= bytes;
1732 }
1733 
bitmap_set_bits(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,u64 offset,u64 bytes)1734 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1735 			    struct btrfs_free_space *info, u64 offset,
1736 			    u64 bytes)
1737 {
1738 	unsigned long start, count;
1739 
1740 	start = offset_to_bit(info->offset, ctl->unit, offset);
1741 	count = bytes_to_bits(bytes, ctl->unit);
1742 	ASSERT(start + count <= BITS_PER_BITMAP);
1743 
1744 	bitmap_set(info->bitmap, start, count);
1745 
1746 	info->bytes += bytes;
1747 	ctl->free_space += bytes;
1748 }
1749 
1750 /*
1751  * If we can not find suitable extent, we will use bytes to record
1752  * the size of the max extent.
1753  */
search_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * bitmap_info,u64 * offset,u64 * bytes,bool for_alloc)1754 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1755 			 struct btrfs_free_space *bitmap_info, u64 *offset,
1756 			 u64 *bytes, bool for_alloc)
1757 {
1758 	unsigned long found_bits = 0;
1759 	unsigned long max_bits = 0;
1760 	unsigned long bits, i;
1761 	unsigned long next_zero;
1762 	unsigned long extent_bits;
1763 
1764 	/*
1765 	 * Skip searching the bitmap if we don't have a contiguous section that
1766 	 * is large enough for this allocation.
1767 	 */
1768 	if (for_alloc &&
1769 	    bitmap_info->max_extent_size &&
1770 	    bitmap_info->max_extent_size < *bytes) {
1771 		*bytes = bitmap_info->max_extent_size;
1772 		return -1;
1773 	}
1774 
1775 	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1776 			  max_t(u64, *offset, bitmap_info->offset));
1777 	bits = bytes_to_bits(*bytes, ctl->unit);
1778 
1779 	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1780 		if (for_alloc && bits == 1) {
1781 			found_bits = 1;
1782 			break;
1783 		}
1784 		next_zero = find_next_zero_bit(bitmap_info->bitmap,
1785 					       BITS_PER_BITMAP, i);
1786 		extent_bits = next_zero - i;
1787 		if (extent_bits >= bits) {
1788 			found_bits = extent_bits;
1789 			break;
1790 		} else if (extent_bits > max_bits) {
1791 			max_bits = extent_bits;
1792 		}
1793 		i = next_zero;
1794 	}
1795 
1796 	if (found_bits) {
1797 		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1798 		*bytes = (u64)(found_bits) * ctl->unit;
1799 		return 0;
1800 	}
1801 
1802 	*bytes = (u64)(max_bits) * ctl->unit;
1803 	bitmap_info->max_extent_size = *bytes;
1804 	return -1;
1805 }
1806 
get_max_extent_size(struct btrfs_free_space * entry)1807 static inline u64 get_max_extent_size(struct btrfs_free_space *entry)
1808 {
1809 	if (entry->bitmap)
1810 		return entry->max_extent_size;
1811 	return entry->bytes;
1812 }
1813 
1814 /* Cache the size of the max extent in bytes */
1815 static struct btrfs_free_space *
find_free_space(struct btrfs_free_space_ctl * ctl,u64 * offset,u64 * bytes,unsigned long align,u64 * max_extent_size)1816 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1817 		unsigned long align, u64 *max_extent_size)
1818 {
1819 	struct btrfs_free_space *entry;
1820 	struct rb_node *node;
1821 	u64 tmp;
1822 	u64 align_off;
1823 	int ret;
1824 
1825 	if (!ctl->free_space_offset.rb_node)
1826 		goto out;
1827 
1828 	entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1829 	if (!entry)
1830 		goto out;
1831 
1832 	for (node = &entry->offset_index; node; node = rb_next(node)) {
1833 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1834 		if (entry->bytes < *bytes) {
1835 			*max_extent_size = max(get_max_extent_size(entry),
1836 					       *max_extent_size);
1837 			continue;
1838 		}
1839 
1840 		/* make sure the space returned is big enough
1841 		 * to match our requested alignment
1842 		 */
1843 		if (*bytes >= align) {
1844 			tmp = entry->offset - ctl->start + align - 1;
1845 			tmp = div64_u64(tmp, align);
1846 			tmp = tmp * align + ctl->start;
1847 			align_off = tmp - entry->offset;
1848 		} else {
1849 			align_off = 0;
1850 			tmp = entry->offset;
1851 		}
1852 
1853 		if (entry->bytes < *bytes + align_off) {
1854 			*max_extent_size = max(get_max_extent_size(entry),
1855 					       *max_extent_size);
1856 			continue;
1857 		}
1858 
1859 		if (entry->bitmap) {
1860 			u64 size = *bytes;
1861 
1862 			ret = search_bitmap(ctl, entry, &tmp, &size, true);
1863 			if (!ret) {
1864 				*offset = tmp;
1865 				*bytes = size;
1866 				return entry;
1867 			} else {
1868 				*max_extent_size =
1869 					max(get_max_extent_size(entry),
1870 					    *max_extent_size);
1871 			}
1872 			continue;
1873 		}
1874 
1875 		*offset = tmp;
1876 		*bytes = entry->bytes - align_off;
1877 		return entry;
1878 	}
1879 out:
1880 	return NULL;
1881 }
1882 
add_new_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,u64 offset)1883 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1884 			   struct btrfs_free_space *info, u64 offset)
1885 {
1886 	info->offset = offset_to_bitmap(ctl, offset);
1887 	info->bytes = 0;
1888 	INIT_LIST_HEAD(&info->list);
1889 	link_free_space(ctl, info);
1890 	ctl->total_bitmaps++;
1891 
1892 	ctl->op->recalc_thresholds(ctl);
1893 }
1894 
free_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * bitmap_info)1895 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1896 			struct btrfs_free_space *bitmap_info)
1897 {
1898 	unlink_free_space(ctl, bitmap_info);
1899 	kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap);
1900 	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1901 	ctl->total_bitmaps--;
1902 	ctl->op->recalc_thresholds(ctl);
1903 }
1904 
remove_from_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * bitmap_info,u64 * offset,u64 * bytes)1905 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1906 			      struct btrfs_free_space *bitmap_info,
1907 			      u64 *offset, u64 *bytes)
1908 {
1909 	u64 end;
1910 	u64 search_start, search_bytes;
1911 	int ret;
1912 
1913 again:
1914 	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1915 
1916 	/*
1917 	 * We need to search for bits in this bitmap.  We could only cover some
1918 	 * of the extent in this bitmap thanks to how we add space, so we need
1919 	 * to search for as much as it as we can and clear that amount, and then
1920 	 * go searching for the next bit.
1921 	 */
1922 	search_start = *offset;
1923 	search_bytes = ctl->unit;
1924 	search_bytes = min(search_bytes, end - search_start + 1);
1925 	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
1926 			    false);
1927 	if (ret < 0 || search_start != *offset)
1928 		return -EINVAL;
1929 
1930 	/* We may have found more bits than what we need */
1931 	search_bytes = min(search_bytes, *bytes);
1932 
1933 	/* Cannot clear past the end of the bitmap */
1934 	search_bytes = min(search_bytes, end - search_start + 1);
1935 
1936 	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
1937 	*offset += search_bytes;
1938 	*bytes -= search_bytes;
1939 
1940 	if (*bytes) {
1941 		struct rb_node *next = rb_next(&bitmap_info->offset_index);
1942 		if (!bitmap_info->bytes)
1943 			free_bitmap(ctl, bitmap_info);
1944 
1945 		/*
1946 		 * no entry after this bitmap, but we still have bytes to
1947 		 * remove, so something has gone wrong.
1948 		 */
1949 		if (!next)
1950 			return -EINVAL;
1951 
1952 		bitmap_info = rb_entry(next, struct btrfs_free_space,
1953 				       offset_index);
1954 
1955 		/*
1956 		 * if the next entry isn't a bitmap we need to return to let the
1957 		 * extent stuff do its work.
1958 		 */
1959 		if (!bitmap_info->bitmap)
1960 			return -EAGAIN;
1961 
1962 		/*
1963 		 * Ok the next item is a bitmap, but it may not actually hold
1964 		 * the information for the rest of this free space stuff, so
1965 		 * look for it, and if we don't find it return so we can try
1966 		 * everything over again.
1967 		 */
1968 		search_start = *offset;
1969 		search_bytes = ctl->unit;
1970 		ret = search_bitmap(ctl, bitmap_info, &search_start,
1971 				    &search_bytes, false);
1972 		if (ret < 0 || search_start != *offset)
1973 			return -EAGAIN;
1974 
1975 		goto again;
1976 	} else if (!bitmap_info->bytes)
1977 		free_bitmap(ctl, bitmap_info);
1978 
1979 	return 0;
1980 }
1981 
add_bytes_to_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,u64 offset,u64 bytes)1982 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
1983 			       struct btrfs_free_space *info, u64 offset,
1984 			       u64 bytes)
1985 {
1986 	u64 bytes_to_set = 0;
1987 	u64 end;
1988 
1989 	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
1990 
1991 	bytes_to_set = min(end - offset, bytes);
1992 
1993 	bitmap_set_bits(ctl, info, offset, bytes_to_set);
1994 
1995 	/*
1996 	 * We set some bytes, we have no idea what the max extent size is
1997 	 * anymore.
1998 	 */
1999 	info->max_extent_size = 0;
2000 
2001 	return bytes_to_set;
2002 
2003 }
2004 
use_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info)2005 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
2006 		      struct btrfs_free_space *info)
2007 {
2008 	struct btrfs_block_group_cache *block_group = ctl->private;
2009 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2010 	bool forced = false;
2011 
2012 #ifdef CONFIG_BTRFS_DEBUG
2013 	if (btrfs_should_fragment_free_space(block_group))
2014 		forced = true;
2015 #endif
2016 
2017 	/*
2018 	 * If we are below the extents threshold then we can add this as an
2019 	 * extent, and don't have to deal with the bitmap
2020 	 */
2021 	if (!forced && ctl->free_extents < ctl->extents_thresh) {
2022 		/*
2023 		 * If this block group has some small extents we don't want to
2024 		 * use up all of our free slots in the cache with them, we want
2025 		 * to reserve them to larger extents, however if we have plenty
2026 		 * of cache left then go ahead an dadd them, no sense in adding
2027 		 * the overhead of a bitmap if we don't have to.
2028 		 */
2029 		if (info->bytes <= fs_info->sectorsize * 4) {
2030 			if (ctl->free_extents * 2 <= ctl->extents_thresh)
2031 				return false;
2032 		} else {
2033 			return false;
2034 		}
2035 	}
2036 
2037 	/*
2038 	 * The original block groups from mkfs can be really small, like 8
2039 	 * megabytes, so don't bother with a bitmap for those entries.  However
2040 	 * some block groups can be smaller than what a bitmap would cover but
2041 	 * are still large enough that they could overflow the 32k memory limit,
2042 	 * so allow those block groups to still be allowed to have a bitmap
2043 	 * entry.
2044 	 */
2045 	if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->key.offset)
2046 		return false;
2047 
2048 	return true;
2049 }
2050 
2051 static const struct btrfs_free_space_op free_space_op = {
2052 	.recalc_thresholds	= recalculate_thresholds,
2053 	.use_bitmap		= use_bitmap,
2054 };
2055 
insert_into_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info)2056 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2057 			      struct btrfs_free_space *info)
2058 {
2059 	struct btrfs_free_space *bitmap_info;
2060 	struct btrfs_block_group_cache *block_group = NULL;
2061 	int added = 0;
2062 	u64 bytes, offset, bytes_added;
2063 	int ret;
2064 
2065 	bytes = info->bytes;
2066 	offset = info->offset;
2067 
2068 	if (!ctl->op->use_bitmap(ctl, info))
2069 		return 0;
2070 
2071 	if (ctl->op == &free_space_op)
2072 		block_group = ctl->private;
2073 again:
2074 	/*
2075 	 * Since we link bitmaps right into the cluster we need to see if we
2076 	 * have a cluster here, and if so and it has our bitmap we need to add
2077 	 * the free space to that bitmap.
2078 	 */
2079 	if (block_group && !list_empty(&block_group->cluster_list)) {
2080 		struct btrfs_free_cluster *cluster;
2081 		struct rb_node *node;
2082 		struct btrfs_free_space *entry;
2083 
2084 		cluster = list_entry(block_group->cluster_list.next,
2085 				     struct btrfs_free_cluster,
2086 				     block_group_list);
2087 		spin_lock(&cluster->lock);
2088 		node = rb_first(&cluster->root);
2089 		if (!node) {
2090 			spin_unlock(&cluster->lock);
2091 			goto no_cluster_bitmap;
2092 		}
2093 
2094 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2095 		if (!entry->bitmap) {
2096 			spin_unlock(&cluster->lock);
2097 			goto no_cluster_bitmap;
2098 		}
2099 
2100 		if (entry->offset == offset_to_bitmap(ctl, offset)) {
2101 			bytes_added = add_bytes_to_bitmap(ctl, entry,
2102 							  offset, bytes);
2103 			bytes -= bytes_added;
2104 			offset += bytes_added;
2105 		}
2106 		spin_unlock(&cluster->lock);
2107 		if (!bytes) {
2108 			ret = 1;
2109 			goto out;
2110 		}
2111 	}
2112 
2113 no_cluster_bitmap:
2114 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2115 					 1, 0);
2116 	if (!bitmap_info) {
2117 		ASSERT(added == 0);
2118 		goto new_bitmap;
2119 	}
2120 
2121 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
2122 	bytes -= bytes_added;
2123 	offset += bytes_added;
2124 	added = 0;
2125 
2126 	if (!bytes) {
2127 		ret = 1;
2128 		goto out;
2129 	} else
2130 		goto again;
2131 
2132 new_bitmap:
2133 	if (info && info->bitmap) {
2134 		add_new_bitmap(ctl, info, offset);
2135 		added = 1;
2136 		info = NULL;
2137 		goto again;
2138 	} else {
2139 		spin_unlock(&ctl->tree_lock);
2140 
2141 		/* no pre-allocated info, allocate a new one */
2142 		if (!info) {
2143 			info = kmem_cache_zalloc(btrfs_free_space_cachep,
2144 						 GFP_NOFS);
2145 			if (!info) {
2146 				spin_lock(&ctl->tree_lock);
2147 				ret = -ENOMEM;
2148 				goto out;
2149 			}
2150 		}
2151 
2152 		/* allocate the bitmap */
2153 		info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep,
2154 						 GFP_NOFS);
2155 		spin_lock(&ctl->tree_lock);
2156 		if (!info->bitmap) {
2157 			ret = -ENOMEM;
2158 			goto out;
2159 		}
2160 		goto again;
2161 	}
2162 
2163 out:
2164 	if (info) {
2165 		if (info->bitmap)
2166 			kmem_cache_free(btrfs_free_space_bitmap_cachep,
2167 					info->bitmap);
2168 		kmem_cache_free(btrfs_free_space_cachep, info);
2169 	}
2170 
2171 	return ret;
2172 }
2173 
try_merge_free_space(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,bool update_stat)2174 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2175 			  struct btrfs_free_space *info, bool update_stat)
2176 {
2177 	struct btrfs_free_space *left_info = NULL;
2178 	struct btrfs_free_space *right_info;
2179 	bool merged = false;
2180 	u64 offset = info->offset;
2181 	u64 bytes = info->bytes;
2182 
2183 	/*
2184 	 * first we want to see if there is free space adjacent to the range we
2185 	 * are adding, if there is remove that struct and add a new one to
2186 	 * cover the entire range
2187 	 */
2188 	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2189 	if (right_info && rb_prev(&right_info->offset_index))
2190 		left_info = rb_entry(rb_prev(&right_info->offset_index),
2191 				     struct btrfs_free_space, offset_index);
2192 	else if (!right_info)
2193 		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2194 
2195 	if (right_info && !right_info->bitmap) {
2196 		if (update_stat)
2197 			unlink_free_space(ctl, right_info);
2198 		else
2199 			__unlink_free_space(ctl, right_info);
2200 		info->bytes += right_info->bytes;
2201 		kmem_cache_free(btrfs_free_space_cachep, right_info);
2202 		merged = true;
2203 	}
2204 
2205 	if (left_info && !left_info->bitmap &&
2206 	    left_info->offset + left_info->bytes == offset) {
2207 		if (update_stat)
2208 			unlink_free_space(ctl, left_info);
2209 		else
2210 			__unlink_free_space(ctl, left_info);
2211 		info->offset = left_info->offset;
2212 		info->bytes += left_info->bytes;
2213 		kmem_cache_free(btrfs_free_space_cachep, left_info);
2214 		merged = true;
2215 	}
2216 
2217 	return merged;
2218 }
2219 
steal_from_bitmap_to_end(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,bool update_stat)2220 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2221 				     struct btrfs_free_space *info,
2222 				     bool update_stat)
2223 {
2224 	struct btrfs_free_space *bitmap;
2225 	unsigned long i;
2226 	unsigned long j;
2227 	const u64 end = info->offset + info->bytes;
2228 	const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2229 	u64 bytes;
2230 
2231 	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2232 	if (!bitmap)
2233 		return false;
2234 
2235 	i = offset_to_bit(bitmap->offset, ctl->unit, end);
2236 	j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2237 	if (j == i)
2238 		return false;
2239 	bytes = (j - i) * ctl->unit;
2240 	info->bytes += bytes;
2241 
2242 	if (update_stat)
2243 		bitmap_clear_bits(ctl, bitmap, end, bytes);
2244 	else
2245 		__bitmap_clear_bits(ctl, bitmap, end, bytes);
2246 
2247 	if (!bitmap->bytes)
2248 		free_bitmap(ctl, bitmap);
2249 
2250 	return true;
2251 }
2252 
steal_from_bitmap_to_front(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,bool update_stat)2253 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2254 				       struct btrfs_free_space *info,
2255 				       bool update_stat)
2256 {
2257 	struct btrfs_free_space *bitmap;
2258 	u64 bitmap_offset;
2259 	unsigned long i;
2260 	unsigned long j;
2261 	unsigned long prev_j;
2262 	u64 bytes;
2263 
2264 	bitmap_offset = offset_to_bitmap(ctl, info->offset);
2265 	/* If we're on a boundary, try the previous logical bitmap. */
2266 	if (bitmap_offset == info->offset) {
2267 		if (info->offset == 0)
2268 			return false;
2269 		bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2270 	}
2271 
2272 	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2273 	if (!bitmap)
2274 		return false;
2275 
2276 	i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2277 	j = 0;
2278 	prev_j = (unsigned long)-1;
2279 	for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2280 		if (j > i)
2281 			break;
2282 		prev_j = j;
2283 	}
2284 	if (prev_j == i)
2285 		return false;
2286 
2287 	if (prev_j == (unsigned long)-1)
2288 		bytes = (i + 1) * ctl->unit;
2289 	else
2290 		bytes = (i - prev_j) * ctl->unit;
2291 
2292 	info->offset -= bytes;
2293 	info->bytes += bytes;
2294 
2295 	if (update_stat)
2296 		bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2297 	else
2298 		__bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2299 
2300 	if (!bitmap->bytes)
2301 		free_bitmap(ctl, bitmap);
2302 
2303 	return true;
2304 }
2305 
2306 /*
2307  * We prefer always to allocate from extent entries, both for clustered and
2308  * non-clustered allocation requests. So when attempting to add a new extent
2309  * entry, try to see if there's adjacent free space in bitmap entries, and if
2310  * there is, migrate that space from the bitmaps to the extent.
2311  * Like this we get better chances of satisfying space allocation requests
2312  * because we attempt to satisfy them based on a single cache entry, and never
2313  * on 2 or more entries - even if the entries represent a contiguous free space
2314  * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2315  * ends).
2316  */
steal_from_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,bool update_stat)2317 static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2318 			      struct btrfs_free_space *info,
2319 			      bool update_stat)
2320 {
2321 	/*
2322 	 * Only work with disconnected entries, as we can change their offset,
2323 	 * and must be extent entries.
2324 	 */
2325 	ASSERT(!info->bitmap);
2326 	ASSERT(RB_EMPTY_NODE(&info->offset_index));
2327 
2328 	if (ctl->total_bitmaps > 0) {
2329 		bool stole_end;
2330 		bool stole_front = false;
2331 
2332 		stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2333 		if (ctl->total_bitmaps > 0)
2334 			stole_front = steal_from_bitmap_to_front(ctl, info,
2335 								 update_stat);
2336 
2337 		if (stole_end || stole_front)
2338 			try_merge_free_space(ctl, info, update_stat);
2339 	}
2340 }
2341 
__btrfs_add_free_space(struct btrfs_fs_info * fs_info,struct btrfs_free_space_ctl * ctl,u64 offset,u64 bytes)2342 int __btrfs_add_free_space(struct btrfs_fs_info *fs_info,
2343 			   struct btrfs_free_space_ctl *ctl,
2344 			   u64 offset, u64 bytes)
2345 {
2346 	struct btrfs_free_space *info;
2347 	int ret = 0;
2348 
2349 	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2350 	if (!info)
2351 		return -ENOMEM;
2352 
2353 	info->offset = offset;
2354 	info->bytes = bytes;
2355 	RB_CLEAR_NODE(&info->offset_index);
2356 
2357 	spin_lock(&ctl->tree_lock);
2358 
2359 	if (try_merge_free_space(ctl, info, true))
2360 		goto link;
2361 
2362 	/*
2363 	 * There was no extent directly to the left or right of this new
2364 	 * extent then we know we're going to have to allocate a new extent, so
2365 	 * before we do that see if we need to drop this into a bitmap
2366 	 */
2367 	ret = insert_into_bitmap(ctl, info);
2368 	if (ret < 0) {
2369 		goto out;
2370 	} else if (ret) {
2371 		ret = 0;
2372 		goto out;
2373 	}
2374 link:
2375 	/*
2376 	 * Only steal free space from adjacent bitmaps if we're sure we're not
2377 	 * going to add the new free space to existing bitmap entries - because
2378 	 * that would mean unnecessary work that would be reverted. Therefore
2379 	 * attempt to steal space from bitmaps if we're adding an extent entry.
2380 	 */
2381 	steal_from_bitmap(ctl, info, true);
2382 
2383 	ret = link_free_space(ctl, info);
2384 	if (ret)
2385 		kmem_cache_free(btrfs_free_space_cachep, info);
2386 out:
2387 	spin_unlock(&ctl->tree_lock);
2388 
2389 	if (ret) {
2390 		btrfs_crit(fs_info, "unable to add free space :%d", ret);
2391 		ASSERT(ret != -EEXIST);
2392 	}
2393 
2394 	return ret;
2395 }
2396 
btrfs_remove_free_space(struct btrfs_block_group_cache * block_group,u64 offset,u64 bytes)2397 int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
2398 			    u64 offset, u64 bytes)
2399 {
2400 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2401 	struct btrfs_free_space *info;
2402 	int ret;
2403 	bool re_search = false;
2404 
2405 	spin_lock(&ctl->tree_lock);
2406 
2407 again:
2408 	ret = 0;
2409 	if (!bytes)
2410 		goto out_lock;
2411 
2412 	info = tree_search_offset(ctl, offset, 0, 0);
2413 	if (!info) {
2414 		/*
2415 		 * oops didn't find an extent that matched the space we wanted
2416 		 * to remove, look for a bitmap instead
2417 		 */
2418 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2419 					  1, 0);
2420 		if (!info) {
2421 			/*
2422 			 * If we found a partial bit of our free space in a
2423 			 * bitmap but then couldn't find the other part this may
2424 			 * be a problem, so WARN about it.
2425 			 */
2426 			WARN_ON(re_search);
2427 			goto out_lock;
2428 		}
2429 	}
2430 
2431 	re_search = false;
2432 	if (!info->bitmap) {
2433 		unlink_free_space(ctl, info);
2434 		if (offset == info->offset) {
2435 			u64 to_free = min(bytes, info->bytes);
2436 
2437 			info->bytes -= to_free;
2438 			info->offset += to_free;
2439 			if (info->bytes) {
2440 				ret = link_free_space(ctl, info);
2441 				WARN_ON(ret);
2442 			} else {
2443 				kmem_cache_free(btrfs_free_space_cachep, info);
2444 			}
2445 
2446 			offset += to_free;
2447 			bytes -= to_free;
2448 			goto again;
2449 		} else {
2450 			u64 old_end = info->bytes + info->offset;
2451 
2452 			info->bytes = offset - info->offset;
2453 			ret = link_free_space(ctl, info);
2454 			WARN_ON(ret);
2455 			if (ret)
2456 				goto out_lock;
2457 
2458 			/* Not enough bytes in this entry to satisfy us */
2459 			if (old_end < offset + bytes) {
2460 				bytes -= old_end - offset;
2461 				offset = old_end;
2462 				goto again;
2463 			} else if (old_end == offset + bytes) {
2464 				/* all done */
2465 				goto out_lock;
2466 			}
2467 			spin_unlock(&ctl->tree_lock);
2468 
2469 			ret = btrfs_add_free_space(block_group, offset + bytes,
2470 						   old_end - (offset + bytes));
2471 			WARN_ON(ret);
2472 			goto out;
2473 		}
2474 	}
2475 
2476 	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2477 	if (ret == -EAGAIN) {
2478 		re_search = true;
2479 		goto again;
2480 	}
2481 out_lock:
2482 	spin_unlock(&ctl->tree_lock);
2483 out:
2484 	return ret;
2485 }
2486 
btrfs_dump_free_space(struct btrfs_block_group_cache * block_group,u64 bytes)2487 void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
2488 			   u64 bytes)
2489 {
2490 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2491 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2492 	struct btrfs_free_space *info;
2493 	struct rb_node *n;
2494 	int count = 0;
2495 
2496 	spin_lock(&ctl->tree_lock);
2497 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2498 		info = rb_entry(n, struct btrfs_free_space, offset_index);
2499 		if (info->bytes >= bytes && !block_group->ro)
2500 			count++;
2501 		btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2502 			   info->offset, info->bytes,
2503 		       (info->bitmap) ? "yes" : "no");
2504 	}
2505 	spin_unlock(&ctl->tree_lock);
2506 	btrfs_info(fs_info, "block group has cluster?: %s",
2507 	       list_empty(&block_group->cluster_list) ? "no" : "yes");
2508 	btrfs_info(fs_info,
2509 		   "%d blocks of free space at or bigger than bytes is", count);
2510 }
2511 
btrfs_init_free_space_ctl(struct btrfs_block_group_cache * block_group)2512 void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
2513 {
2514 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2515 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2516 
2517 	spin_lock_init(&ctl->tree_lock);
2518 	ctl->unit = fs_info->sectorsize;
2519 	ctl->start = block_group->key.objectid;
2520 	ctl->private = block_group;
2521 	ctl->op = &free_space_op;
2522 	INIT_LIST_HEAD(&ctl->trimming_ranges);
2523 	mutex_init(&ctl->cache_writeout_mutex);
2524 
2525 	/*
2526 	 * we only want to have 32k of ram per block group for keeping
2527 	 * track of free space, and if we pass 1/2 of that we want to
2528 	 * start converting things over to using bitmaps
2529 	 */
2530 	ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
2531 }
2532 
2533 /*
2534  * for a given cluster, put all of its extents back into the free
2535  * space cache.  If the block group passed doesn't match the block group
2536  * pointed to by the cluster, someone else raced in and freed the
2537  * cluster already.  In that case, we just return without changing anything
2538  */
2539 static int
__btrfs_return_cluster_to_free_space(struct btrfs_block_group_cache * block_group,struct btrfs_free_cluster * cluster)2540 __btrfs_return_cluster_to_free_space(
2541 			     struct btrfs_block_group_cache *block_group,
2542 			     struct btrfs_free_cluster *cluster)
2543 {
2544 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2545 	struct btrfs_free_space *entry;
2546 	struct rb_node *node;
2547 
2548 	spin_lock(&cluster->lock);
2549 	if (cluster->block_group != block_group)
2550 		goto out;
2551 
2552 	cluster->block_group = NULL;
2553 	cluster->window_start = 0;
2554 	list_del_init(&cluster->block_group_list);
2555 
2556 	node = rb_first(&cluster->root);
2557 	while (node) {
2558 		bool bitmap;
2559 
2560 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2561 		node = rb_next(&entry->offset_index);
2562 		rb_erase(&entry->offset_index, &cluster->root);
2563 		RB_CLEAR_NODE(&entry->offset_index);
2564 
2565 		bitmap = (entry->bitmap != NULL);
2566 		if (!bitmap) {
2567 			try_merge_free_space(ctl, entry, false);
2568 			steal_from_bitmap(ctl, entry, false);
2569 		}
2570 		tree_insert_offset(&ctl->free_space_offset,
2571 				   entry->offset, &entry->offset_index, bitmap);
2572 	}
2573 	cluster->root = RB_ROOT;
2574 
2575 out:
2576 	spin_unlock(&cluster->lock);
2577 	btrfs_put_block_group(block_group);
2578 	return 0;
2579 }
2580 
__btrfs_remove_free_space_cache_locked(struct btrfs_free_space_ctl * ctl)2581 static void __btrfs_remove_free_space_cache_locked(
2582 				struct btrfs_free_space_ctl *ctl)
2583 {
2584 	struct btrfs_free_space *info;
2585 	struct rb_node *node;
2586 
2587 	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2588 		info = rb_entry(node, struct btrfs_free_space, offset_index);
2589 		if (!info->bitmap) {
2590 			unlink_free_space(ctl, info);
2591 			kmem_cache_free(btrfs_free_space_cachep, info);
2592 		} else {
2593 			free_bitmap(ctl, info);
2594 		}
2595 
2596 		cond_resched_lock(&ctl->tree_lock);
2597 	}
2598 }
2599 
__btrfs_remove_free_space_cache(struct btrfs_free_space_ctl * ctl)2600 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2601 {
2602 	spin_lock(&ctl->tree_lock);
2603 	__btrfs_remove_free_space_cache_locked(ctl);
2604 	spin_unlock(&ctl->tree_lock);
2605 }
2606 
btrfs_remove_free_space_cache(struct btrfs_block_group_cache * block_group)2607 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
2608 {
2609 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2610 	struct btrfs_free_cluster *cluster;
2611 	struct list_head *head;
2612 
2613 	spin_lock(&ctl->tree_lock);
2614 	while ((head = block_group->cluster_list.next) !=
2615 	       &block_group->cluster_list) {
2616 		cluster = list_entry(head, struct btrfs_free_cluster,
2617 				     block_group_list);
2618 
2619 		WARN_ON(cluster->block_group != block_group);
2620 		__btrfs_return_cluster_to_free_space(block_group, cluster);
2621 
2622 		cond_resched_lock(&ctl->tree_lock);
2623 	}
2624 	__btrfs_remove_free_space_cache_locked(ctl);
2625 	spin_unlock(&ctl->tree_lock);
2626 
2627 }
2628 
btrfs_find_space_for_alloc(struct btrfs_block_group_cache * block_group,u64 offset,u64 bytes,u64 empty_size,u64 * max_extent_size)2629 u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
2630 			       u64 offset, u64 bytes, u64 empty_size,
2631 			       u64 *max_extent_size)
2632 {
2633 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2634 	struct btrfs_free_space *entry = NULL;
2635 	u64 bytes_search = bytes + empty_size;
2636 	u64 ret = 0;
2637 	u64 align_gap = 0;
2638 	u64 align_gap_len = 0;
2639 
2640 	spin_lock(&ctl->tree_lock);
2641 	entry = find_free_space(ctl, &offset, &bytes_search,
2642 				block_group->full_stripe_len, max_extent_size);
2643 	if (!entry)
2644 		goto out;
2645 
2646 	ret = offset;
2647 	if (entry->bitmap) {
2648 		bitmap_clear_bits(ctl, entry, offset, bytes);
2649 		if (!entry->bytes)
2650 			free_bitmap(ctl, entry);
2651 	} else {
2652 		unlink_free_space(ctl, entry);
2653 		align_gap_len = offset - entry->offset;
2654 		align_gap = entry->offset;
2655 
2656 		entry->offset = offset + bytes;
2657 		WARN_ON(entry->bytes < bytes + align_gap_len);
2658 
2659 		entry->bytes -= bytes + align_gap_len;
2660 		if (!entry->bytes)
2661 			kmem_cache_free(btrfs_free_space_cachep, entry);
2662 		else
2663 			link_free_space(ctl, entry);
2664 	}
2665 out:
2666 	spin_unlock(&ctl->tree_lock);
2667 
2668 	if (align_gap_len)
2669 		__btrfs_add_free_space(block_group->fs_info, ctl,
2670 				       align_gap, align_gap_len);
2671 	return ret;
2672 }
2673 
2674 /*
2675  * given a cluster, put all of its extents back into the free space
2676  * cache.  If a block group is passed, this function will only free
2677  * a cluster that belongs to the passed block group.
2678  *
2679  * Otherwise, it'll get a reference on the block group pointed to by the
2680  * cluster and remove the cluster from it.
2681  */
btrfs_return_cluster_to_free_space(struct btrfs_block_group_cache * block_group,struct btrfs_free_cluster * cluster)2682 int btrfs_return_cluster_to_free_space(
2683 			       struct btrfs_block_group_cache *block_group,
2684 			       struct btrfs_free_cluster *cluster)
2685 {
2686 	struct btrfs_free_space_ctl *ctl;
2687 	int ret;
2688 
2689 	/* first, get a safe pointer to the block group */
2690 	spin_lock(&cluster->lock);
2691 	if (!block_group) {
2692 		block_group = cluster->block_group;
2693 		if (!block_group) {
2694 			spin_unlock(&cluster->lock);
2695 			return 0;
2696 		}
2697 	} else if (cluster->block_group != block_group) {
2698 		/* someone else has already freed it don't redo their work */
2699 		spin_unlock(&cluster->lock);
2700 		return 0;
2701 	}
2702 	atomic_inc(&block_group->count);
2703 	spin_unlock(&cluster->lock);
2704 
2705 	ctl = block_group->free_space_ctl;
2706 
2707 	/* now return any extents the cluster had on it */
2708 	spin_lock(&ctl->tree_lock);
2709 	ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
2710 	spin_unlock(&ctl->tree_lock);
2711 
2712 	/* finally drop our ref */
2713 	btrfs_put_block_group(block_group);
2714 	return ret;
2715 }
2716 
btrfs_alloc_from_bitmap(struct btrfs_block_group_cache * block_group,struct btrfs_free_cluster * cluster,struct btrfs_free_space * entry,u64 bytes,u64 min_start,u64 * max_extent_size)2717 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
2718 				   struct btrfs_free_cluster *cluster,
2719 				   struct btrfs_free_space *entry,
2720 				   u64 bytes, u64 min_start,
2721 				   u64 *max_extent_size)
2722 {
2723 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2724 	int err;
2725 	u64 search_start = cluster->window_start;
2726 	u64 search_bytes = bytes;
2727 	u64 ret = 0;
2728 
2729 	search_start = min_start;
2730 	search_bytes = bytes;
2731 
2732 	err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
2733 	if (err) {
2734 		*max_extent_size = max(get_max_extent_size(entry),
2735 				       *max_extent_size);
2736 		return 0;
2737 	}
2738 
2739 	ret = search_start;
2740 	__bitmap_clear_bits(ctl, entry, ret, bytes);
2741 
2742 	return ret;
2743 }
2744 
2745 /*
2746  * given a cluster, try to allocate 'bytes' from it, returns 0
2747  * if it couldn't find anything suitably large, or a logical disk offset
2748  * if things worked out
2749  */
btrfs_alloc_from_cluster(struct btrfs_block_group_cache * block_group,struct btrfs_free_cluster * cluster,u64 bytes,u64 min_start,u64 * max_extent_size)2750 u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
2751 			     struct btrfs_free_cluster *cluster, u64 bytes,
2752 			     u64 min_start, u64 *max_extent_size)
2753 {
2754 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2755 	struct btrfs_free_space *entry = NULL;
2756 	struct rb_node *node;
2757 	u64 ret = 0;
2758 
2759 	spin_lock(&cluster->lock);
2760 	if (bytes > cluster->max_size)
2761 		goto out;
2762 
2763 	if (cluster->block_group != block_group)
2764 		goto out;
2765 
2766 	node = rb_first(&cluster->root);
2767 	if (!node)
2768 		goto out;
2769 
2770 	entry = rb_entry(node, struct btrfs_free_space, offset_index);
2771 	while (1) {
2772 		if (entry->bytes < bytes)
2773 			*max_extent_size = max(get_max_extent_size(entry),
2774 					       *max_extent_size);
2775 
2776 		if (entry->bytes < bytes ||
2777 		    (!entry->bitmap && entry->offset < min_start)) {
2778 			node = rb_next(&entry->offset_index);
2779 			if (!node)
2780 				break;
2781 			entry = rb_entry(node, struct btrfs_free_space,
2782 					 offset_index);
2783 			continue;
2784 		}
2785 
2786 		if (entry->bitmap) {
2787 			ret = btrfs_alloc_from_bitmap(block_group,
2788 						      cluster, entry, bytes,
2789 						      cluster->window_start,
2790 						      max_extent_size);
2791 			if (ret == 0) {
2792 				node = rb_next(&entry->offset_index);
2793 				if (!node)
2794 					break;
2795 				entry = rb_entry(node, struct btrfs_free_space,
2796 						 offset_index);
2797 				continue;
2798 			}
2799 			cluster->window_start += bytes;
2800 		} else {
2801 			ret = entry->offset;
2802 
2803 			entry->offset += bytes;
2804 			entry->bytes -= bytes;
2805 		}
2806 
2807 		if (entry->bytes == 0)
2808 			rb_erase(&entry->offset_index, &cluster->root);
2809 		break;
2810 	}
2811 out:
2812 	spin_unlock(&cluster->lock);
2813 
2814 	if (!ret)
2815 		return 0;
2816 
2817 	spin_lock(&ctl->tree_lock);
2818 
2819 	ctl->free_space -= bytes;
2820 	if (entry->bytes == 0) {
2821 		ctl->free_extents--;
2822 		if (entry->bitmap) {
2823 			kmem_cache_free(btrfs_free_space_bitmap_cachep,
2824 					entry->bitmap);
2825 			ctl->total_bitmaps--;
2826 			ctl->op->recalc_thresholds(ctl);
2827 		}
2828 		kmem_cache_free(btrfs_free_space_cachep, entry);
2829 	}
2830 
2831 	spin_unlock(&ctl->tree_lock);
2832 
2833 	return ret;
2834 }
2835 
btrfs_bitmap_cluster(struct btrfs_block_group_cache * block_group,struct btrfs_free_space * entry,struct btrfs_free_cluster * cluster,u64 offset,u64 bytes,u64 cont1_bytes,u64 min_bytes)2836 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
2837 				struct btrfs_free_space *entry,
2838 				struct btrfs_free_cluster *cluster,
2839 				u64 offset, u64 bytes,
2840 				u64 cont1_bytes, u64 min_bytes)
2841 {
2842 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2843 	unsigned long next_zero;
2844 	unsigned long i;
2845 	unsigned long want_bits;
2846 	unsigned long min_bits;
2847 	unsigned long found_bits;
2848 	unsigned long max_bits = 0;
2849 	unsigned long start = 0;
2850 	unsigned long total_found = 0;
2851 	int ret;
2852 
2853 	i = offset_to_bit(entry->offset, ctl->unit,
2854 			  max_t(u64, offset, entry->offset));
2855 	want_bits = bytes_to_bits(bytes, ctl->unit);
2856 	min_bits = bytes_to_bits(min_bytes, ctl->unit);
2857 
2858 	/*
2859 	 * Don't bother looking for a cluster in this bitmap if it's heavily
2860 	 * fragmented.
2861 	 */
2862 	if (entry->max_extent_size &&
2863 	    entry->max_extent_size < cont1_bytes)
2864 		return -ENOSPC;
2865 again:
2866 	found_bits = 0;
2867 	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
2868 		next_zero = find_next_zero_bit(entry->bitmap,
2869 					       BITS_PER_BITMAP, i);
2870 		if (next_zero - i >= min_bits) {
2871 			found_bits = next_zero - i;
2872 			if (found_bits > max_bits)
2873 				max_bits = found_bits;
2874 			break;
2875 		}
2876 		if (next_zero - i > max_bits)
2877 			max_bits = next_zero - i;
2878 		i = next_zero;
2879 	}
2880 
2881 	if (!found_bits) {
2882 		entry->max_extent_size = (u64)max_bits * ctl->unit;
2883 		return -ENOSPC;
2884 	}
2885 
2886 	if (!total_found) {
2887 		start = i;
2888 		cluster->max_size = 0;
2889 	}
2890 
2891 	total_found += found_bits;
2892 
2893 	if (cluster->max_size < found_bits * ctl->unit)
2894 		cluster->max_size = found_bits * ctl->unit;
2895 
2896 	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
2897 		i = next_zero + 1;
2898 		goto again;
2899 	}
2900 
2901 	cluster->window_start = start * ctl->unit + entry->offset;
2902 	rb_erase(&entry->offset_index, &ctl->free_space_offset);
2903 	ret = tree_insert_offset(&cluster->root, entry->offset,
2904 				 &entry->offset_index, 1);
2905 	ASSERT(!ret); /* -EEXIST; Logic error */
2906 
2907 	trace_btrfs_setup_cluster(block_group, cluster,
2908 				  total_found * ctl->unit, 1);
2909 	return 0;
2910 }
2911 
2912 /*
2913  * This searches the block group for just extents to fill the cluster with.
2914  * Try to find a cluster with at least bytes total bytes, at least one
2915  * extent of cont1_bytes, and other clusters of at least min_bytes.
2916  */
2917 static noinline int
setup_cluster_no_bitmap(struct btrfs_block_group_cache * block_group,struct btrfs_free_cluster * cluster,struct list_head * bitmaps,u64 offset,u64 bytes,u64 cont1_bytes,u64 min_bytes)2918 setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
2919 			struct btrfs_free_cluster *cluster,
2920 			struct list_head *bitmaps, u64 offset, u64 bytes,
2921 			u64 cont1_bytes, u64 min_bytes)
2922 {
2923 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2924 	struct btrfs_free_space *first = NULL;
2925 	struct btrfs_free_space *entry = NULL;
2926 	struct btrfs_free_space *last;
2927 	struct rb_node *node;
2928 	u64 window_free;
2929 	u64 max_extent;
2930 	u64 total_size = 0;
2931 
2932 	entry = tree_search_offset(ctl, offset, 0, 1);
2933 	if (!entry)
2934 		return -ENOSPC;
2935 
2936 	/*
2937 	 * We don't want bitmaps, so just move along until we find a normal
2938 	 * extent entry.
2939 	 */
2940 	while (entry->bitmap || entry->bytes < min_bytes) {
2941 		if (entry->bitmap && list_empty(&entry->list))
2942 			list_add_tail(&entry->list, bitmaps);
2943 		node = rb_next(&entry->offset_index);
2944 		if (!node)
2945 			return -ENOSPC;
2946 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2947 	}
2948 
2949 	window_free = entry->bytes;
2950 	max_extent = entry->bytes;
2951 	first = entry;
2952 	last = entry;
2953 
2954 	for (node = rb_next(&entry->offset_index); node;
2955 	     node = rb_next(&entry->offset_index)) {
2956 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2957 
2958 		if (entry->bitmap) {
2959 			if (list_empty(&entry->list))
2960 				list_add_tail(&entry->list, bitmaps);
2961 			continue;
2962 		}
2963 
2964 		if (entry->bytes < min_bytes)
2965 			continue;
2966 
2967 		last = entry;
2968 		window_free += entry->bytes;
2969 		if (entry->bytes > max_extent)
2970 			max_extent = entry->bytes;
2971 	}
2972 
2973 	if (window_free < bytes || max_extent < cont1_bytes)
2974 		return -ENOSPC;
2975 
2976 	cluster->window_start = first->offset;
2977 
2978 	node = &first->offset_index;
2979 
2980 	/*
2981 	 * now we've found our entries, pull them out of the free space
2982 	 * cache and put them into the cluster rbtree
2983 	 */
2984 	do {
2985 		int ret;
2986 
2987 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2988 		node = rb_next(&entry->offset_index);
2989 		if (entry->bitmap || entry->bytes < min_bytes)
2990 			continue;
2991 
2992 		rb_erase(&entry->offset_index, &ctl->free_space_offset);
2993 		ret = tree_insert_offset(&cluster->root, entry->offset,
2994 					 &entry->offset_index, 0);
2995 		total_size += entry->bytes;
2996 		ASSERT(!ret); /* -EEXIST; Logic error */
2997 	} while (node && entry != last);
2998 
2999 	cluster->max_size = max_extent;
3000 	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
3001 	return 0;
3002 }
3003 
3004 /*
3005  * This specifically looks for bitmaps that may work in the cluster, we assume
3006  * that we have already failed to find extents that will work.
3007  */
3008 static noinline int
setup_cluster_bitmap(struct btrfs_block_group_cache * block_group,struct btrfs_free_cluster * cluster,struct list_head * bitmaps,u64 offset,u64 bytes,u64 cont1_bytes,u64 min_bytes)3009 setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
3010 		     struct btrfs_free_cluster *cluster,
3011 		     struct list_head *bitmaps, u64 offset, u64 bytes,
3012 		     u64 cont1_bytes, u64 min_bytes)
3013 {
3014 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3015 	struct btrfs_free_space *entry = NULL;
3016 	int ret = -ENOSPC;
3017 	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
3018 
3019 	if (ctl->total_bitmaps == 0)
3020 		return -ENOSPC;
3021 
3022 	/*
3023 	 * The bitmap that covers offset won't be in the list unless offset
3024 	 * is just its start offset.
3025 	 */
3026 	if (!list_empty(bitmaps))
3027 		entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
3028 
3029 	if (!entry || entry->offset != bitmap_offset) {
3030 		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
3031 		if (entry && list_empty(&entry->list))
3032 			list_add(&entry->list, bitmaps);
3033 	}
3034 
3035 	list_for_each_entry(entry, bitmaps, list) {
3036 		if (entry->bytes < bytes)
3037 			continue;
3038 		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
3039 					   bytes, cont1_bytes, min_bytes);
3040 		if (!ret)
3041 			return 0;
3042 	}
3043 
3044 	/*
3045 	 * The bitmaps list has all the bitmaps that record free space
3046 	 * starting after offset, so no more search is required.
3047 	 */
3048 	return -ENOSPC;
3049 }
3050 
3051 /*
3052  * here we try to find a cluster of blocks in a block group.  The goal
3053  * is to find at least bytes+empty_size.
3054  * We might not find them all in one contiguous area.
3055  *
3056  * returns zero and sets up cluster if things worked out, otherwise
3057  * it returns -enospc
3058  */
btrfs_find_space_cluster(struct btrfs_fs_info * fs_info,struct btrfs_block_group_cache * block_group,struct btrfs_free_cluster * cluster,u64 offset,u64 bytes,u64 empty_size)3059 int btrfs_find_space_cluster(struct btrfs_fs_info *fs_info,
3060 			     struct btrfs_block_group_cache *block_group,
3061 			     struct btrfs_free_cluster *cluster,
3062 			     u64 offset, u64 bytes, u64 empty_size)
3063 {
3064 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3065 	struct btrfs_free_space *entry, *tmp;
3066 	LIST_HEAD(bitmaps);
3067 	u64 min_bytes;
3068 	u64 cont1_bytes;
3069 	int ret;
3070 
3071 	/*
3072 	 * Choose the minimum extent size we'll require for this
3073 	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
3074 	 * For metadata, allow allocates with smaller extents.  For
3075 	 * data, keep it dense.
3076 	 */
3077 	if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3078 		cont1_bytes = min_bytes = bytes + empty_size;
3079 	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3080 		cont1_bytes = bytes;
3081 		min_bytes = fs_info->sectorsize;
3082 	} else {
3083 		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3084 		min_bytes = fs_info->sectorsize;
3085 	}
3086 
3087 	spin_lock(&ctl->tree_lock);
3088 
3089 	/*
3090 	 * If we know we don't have enough space to make a cluster don't even
3091 	 * bother doing all the work to try and find one.
3092 	 */
3093 	if (ctl->free_space < bytes) {
3094 		spin_unlock(&ctl->tree_lock);
3095 		return -ENOSPC;
3096 	}
3097 
3098 	spin_lock(&cluster->lock);
3099 
3100 	/* someone already found a cluster, hooray */
3101 	if (cluster->block_group) {
3102 		ret = 0;
3103 		goto out;
3104 	}
3105 
3106 	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3107 				 min_bytes);
3108 
3109 	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3110 				      bytes + empty_size,
3111 				      cont1_bytes, min_bytes);
3112 	if (ret)
3113 		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3114 					   offset, bytes + empty_size,
3115 					   cont1_bytes, min_bytes);
3116 
3117 	/* Clear our temporary list */
3118 	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3119 		list_del_init(&entry->list);
3120 
3121 	if (!ret) {
3122 		atomic_inc(&block_group->count);
3123 		list_add_tail(&cluster->block_group_list,
3124 			      &block_group->cluster_list);
3125 		cluster->block_group = block_group;
3126 	} else {
3127 		trace_btrfs_failed_cluster_setup(block_group);
3128 	}
3129 out:
3130 	spin_unlock(&cluster->lock);
3131 	spin_unlock(&ctl->tree_lock);
3132 
3133 	return ret;
3134 }
3135 
3136 /*
3137  * simple code to zero out a cluster
3138  */
btrfs_init_free_cluster(struct btrfs_free_cluster * cluster)3139 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3140 {
3141 	spin_lock_init(&cluster->lock);
3142 	spin_lock_init(&cluster->refill_lock);
3143 	cluster->root = RB_ROOT;
3144 	cluster->max_size = 0;
3145 	cluster->fragmented = false;
3146 	INIT_LIST_HEAD(&cluster->block_group_list);
3147 	cluster->block_group = NULL;
3148 }
3149 
do_trimming(struct btrfs_block_group_cache * block_group,u64 * total_trimmed,u64 start,u64 bytes,u64 reserved_start,u64 reserved_bytes,struct btrfs_trim_range * trim_entry)3150 static int do_trimming(struct btrfs_block_group_cache *block_group,
3151 		       u64 *total_trimmed, u64 start, u64 bytes,
3152 		       u64 reserved_start, u64 reserved_bytes,
3153 		       struct btrfs_trim_range *trim_entry)
3154 {
3155 	struct btrfs_space_info *space_info = block_group->space_info;
3156 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3157 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3158 	int ret;
3159 	int update = 0;
3160 	u64 trimmed = 0;
3161 
3162 	spin_lock(&space_info->lock);
3163 	spin_lock(&block_group->lock);
3164 	if (!block_group->ro) {
3165 		block_group->reserved += reserved_bytes;
3166 		space_info->bytes_reserved += reserved_bytes;
3167 		update = 1;
3168 	}
3169 	spin_unlock(&block_group->lock);
3170 	spin_unlock(&space_info->lock);
3171 
3172 	ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3173 	if (!ret)
3174 		*total_trimmed += trimmed;
3175 
3176 	mutex_lock(&ctl->cache_writeout_mutex);
3177 	btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
3178 	list_del(&trim_entry->list);
3179 	mutex_unlock(&ctl->cache_writeout_mutex);
3180 
3181 	if (update) {
3182 		spin_lock(&space_info->lock);
3183 		spin_lock(&block_group->lock);
3184 		if (block_group->ro)
3185 			space_info->bytes_readonly += reserved_bytes;
3186 		block_group->reserved -= reserved_bytes;
3187 		space_info->bytes_reserved -= reserved_bytes;
3188 		spin_unlock(&space_info->lock);
3189 		spin_unlock(&block_group->lock);
3190 	}
3191 
3192 	return ret;
3193 }
3194 
trim_no_bitmap(struct btrfs_block_group_cache * block_group,u64 * total_trimmed,u64 start,u64 end,u64 minlen)3195 static int trim_no_bitmap(struct btrfs_block_group_cache *block_group,
3196 			  u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3197 {
3198 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3199 	struct btrfs_free_space *entry;
3200 	struct rb_node *node;
3201 	int ret = 0;
3202 	u64 extent_start;
3203 	u64 extent_bytes;
3204 	u64 bytes;
3205 
3206 	while (start < end) {
3207 		struct btrfs_trim_range trim_entry;
3208 
3209 		mutex_lock(&ctl->cache_writeout_mutex);
3210 		spin_lock(&ctl->tree_lock);
3211 
3212 		if (ctl->free_space < minlen) {
3213 			spin_unlock(&ctl->tree_lock);
3214 			mutex_unlock(&ctl->cache_writeout_mutex);
3215 			break;
3216 		}
3217 
3218 		entry = tree_search_offset(ctl, start, 0, 1);
3219 		if (!entry) {
3220 			spin_unlock(&ctl->tree_lock);
3221 			mutex_unlock(&ctl->cache_writeout_mutex);
3222 			break;
3223 		}
3224 
3225 		/* skip bitmaps */
3226 		while (entry->bitmap) {
3227 			node = rb_next(&entry->offset_index);
3228 			if (!node) {
3229 				spin_unlock(&ctl->tree_lock);
3230 				mutex_unlock(&ctl->cache_writeout_mutex);
3231 				goto out;
3232 			}
3233 			entry = rb_entry(node, struct btrfs_free_space,
3234 					 offset_index);
3235 		}
3236 
3237 		if (entry->offset >= end) {
3238 			spin_unlock(&ctl->tree_lock);
3239 			mutex_unlock(&ctl->cache_writeout_mutex);
3240 			break;
3241 		}
3242 
3243 		extent_start = entry->offset;
3244 		extent_bytes = entry->bytes;
3245 		start = max(start, extent_start);
3246 		bytes = min(extent_start + extent_bytes, end) - start;
3247 		if (bytes < minlen) {
3248 			spin_unlock(&ctl->tree_lock);
3249 			mutex_unlock(&ctl->cache_writeout_mutex);
3250 			goto next;
3251 		}
3252 
3253 		unlink_free_space(ctl, entry);
3254 		kmem_cache_free(btrfs_free_space_cachep, entry);
3255 
3256 		spin_unlock(&ctl->tree_lock);
3257 		trim_entry.start = extent_start;
3258 		trim_entry.bytes = extent_bytes;
3259 		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3260 		mutex_unlock(&ctl->cache_writeout_mutex);
3261 
3262 		ret = do_trimming(block_group, total_trimmed, start, bytes,
3263 				  extent_start, extent_bytes, &trim_entry);
3264 		if (ret)
3265 			break;
3266 next:
3267 		start += bytes;
3268 
3269 		if (fatal_signal_pending(current)) {
3270 			ret = -ERESTARTSYS;
3271 			break;
3272 		}
3273 
3274 		cond_resched();
3275 	}
3276 out:
3277 	return ret;
3278 }
3279 
trim_bitmaps(struct btrfs_block_group_cache * block_group,u64 * total_trimmed,u64 start,u64 end,u64 minlen)3280 static int trim_bitmaps(struct btrfs_block_group_cache *block_group,
3281 			u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3282 {
3283 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3284 	struct btrfs_free_space *entry;
3285 	int ret = 0;
3286 	int ret2;
3287 	u64 bytes;
3288 	u64 offset = offset_to_bitmap(ctl, start);
3289 
3290 	while (offset < end) {
3291 		bool next_bitmap = false;
3292 		struct btrfs_trim_range trim_entry;
3293 
3294 		mutex_lock(&ctl->cache_writeout_mutex);
3295 		spin_lock(&ctl->tree_lock);
3296 
3297 		if (ctl->free_space < minlen) {
3298 			spin_unlock(&ctl->tree_lock);
3299 			mutex_unlock(&ctl->cache_writeout_mutex);
3300 			break;
3301 		}
3302 
3303 		entry = tree_search_offset(ctl, offset, 1, 0);
3304 		if (!entry) {
3305 			spin_unlock(&ctl->tree_lock);
3306 			mutex_unlock(&ctl->cache_writeout_mutex);
3307 			next_bitmap = true;
3308 			goto next;
3309 		}
3310 
3311 		bytes = minlen;
3312 		ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3313 		if (ret2 || start >= end) {
3314 			spin_unlock(&ctl->tree_lock);
3315 			mutex_unlock(&ctl->cache_writeout_mutex);
3316 			next_bitmap = true;
3317 			goto next;
3318 		}
3319 
3320 		bytes = min(bytes, end - start);
3321 		if (bytes < minlen) {
3322 			spin_unlock(&ctl->tree_lock);
3323 			mutex_unlock(&ctl->cache_writeout_mutex);
3324 			goto next;
3325 		}
3326 
3327 		bitmap_clear_bits(ctl, entry, start, bytes);
3328 		if (entry->bytes == 0)
3329 			free_bitmap(ctl, entry);
3330 
3331 		spin_unlock(&ctl->tree_lock);
3332 		trim_entry.start = start;
3333 		trim_entry.bytes = bytes;
3334 		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3335 		mutex_unlock(&ctl->cache_writeout_mutex);
3336 
3337 		ret = do_trimming(block_group, total_trimmed, start, bytes,
3338 				  start, bytes, &trim_entry);
3339 		if (ret)
3340 			break;
3341 next:
3342 		if (next_bitmap) {
3343 			offset += BITS_PER_BITMAP * ctl->unit;
3344 		} else {
3345 			start += bytes;
3346 			if (start >= offset + BITS_PER_BITMAP * ctl->unit)
3347 				offset += BITS_PER_BITMAP * ctl->unit;
3348 		}
3349 
3350 		if (fatal_signal_pending(current)) {
3351 			ret = -ERESTARTSYS;
3352 			break;
3353 		}
3354 
3355 		cond_resched();
3356 	}
3357 
3358 	return ret;
3359 }
3360 
btrfs_get_block_group_trimming(struct btrfs_block_group_cache * cache)3361 void btrfs_get_block_group_trimming(struct btrfs_block_group_cache *cache)
3362 {
3363 	atomic_inc(&cache->trimming);
3364 }
3365 
btrfs_put_block_group_trimming(struct btrfs_block_group_cache * block_group)3366 void btrfs_put_block_group_trimming(struct btrfs_block_group_cache *block_group)
3367 {
3368 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3369 	struct extent_map_tree *em_tree;
3370 	struct extent_map *em;
3371 	bool cleanup;
3372 
3373 	spin_lock(&block_group->lock);
3374 	cleanup = (atomic_dec_and_test(&block_group->trimming) &&
3375 		   block_group->removed);
3376 	spin_unlock(&block_group->lock);
3377 
3378 	if (cleanup) {
3379 		mutex_lock(&fs_info->chunk_mutex);
3380 		em_tree = &fs_info->mapping_tree.map_tree;
3381 		write_lock(&em_tree->lock);
3382 		em = lookup_extent_mapping(em_tree, block_group->key.objectid,
3383 					   1);
3384 		BUG_ON(!em); /* logic error, can't happen */
3385 		/*
3386 		 * remove_extent_mapping() will delete us from the pinned_chunks
3387 		 * list, which is protected by the chunk mutex.
3388 		 */
3389 		remove_extent_mapping(em_tree, em);
3390 		write_unlock(&em_tree->lock);
3391 		mutex_unlock(&fs_info->chunk_mutex);
3392 
3393 		/* once for us and once for the tree */
3394 		free_extent_map(em);
3395 		free_extent_map(em);
3396 
3397 		/*
3398 		 * We've left one free space entry and other tasks trimming
3399 		 * this block group have left 1 entry each one. Free them.
3400 		 */
3401 		__btrfs_remove_free_space_cache(block_group->free_space_ctl);
3402 	}
3403 }
3404 
btrfs_trim_block_group(struct btrfs_block_group_cache * block_group,u64 * trimmed,u64 start,u64 end,u64 minlen)3405 int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
3406 			   u64 *trimmed, u64 start, u64 end, u64 minlen)
3407 {
3408 	int ret;
3409 
3410 	*trimmed = 0;
3411 
3412 	spin_lock(&block_group->lock);
3413 	if (block_group->removed) {
3414 		spin_unlock(&block_group->lock);
3415 		return 0;
3416 	}
3417 	btrfs_get_block_group_trimming(block_group);
3418 	spin_unlock(&block_group->lock);
3419 
3420 	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
3421 	if (ret)
3422 		goto out;
3423 
3424 	ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
3425 out:
3426 	btrfs_put_block_group_trimming(block_group);
3427 	return ret;
3428 }
3429 
3430 /*
3431  * Find the left-most item in the cache tree, and then return the
3432  * smallest inode number in the item.
3433  *
3434  * Note: the returned inode number may not be the smallest one in
3435  * the tree, if the left-most item is a bitmap.
3436  */
btrfs_find_ino_for_alloc(struct btrfs_root * fs_root)3437 u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
3438 {
3439 	struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
3440 	struct btrfs_free_space *entry = NULL;
3441 	u64 ino = 0;
3442 
3443 	spin_lock(&ctl->tree_lock);
3444 
3445 	if (RB_EMPTY_ROOT(&ctl->free_space_offset))
3446 		goto out;
3447 
3448 	entry = rb_entry(rb_first(&ctl->free_space_offset),
3449 			 struct btrfs_free_space, offset_index);
3450 
3451 	if (!entry->bitmap) {
3452 		ino = entry->offset;
3453 
3454 		unlink_free_space(ctl, entry);
3455 		entry->offset++;
3456 		entry->bytes--;
3457 		if (!entry->bytes)
3458 			kmem_cache_free(btrfs_free_space_cachep, entry);
3459 		else
3460 			link_free_space(ctl, entry);
3461 	} else {
3462 		u64 offset = 0;
3463 		u64 count = 1;
3464 		int ret;
3465 
3466 		ret = search_bitmap(ctl, entry, &offset, &count, true);
3467 		/* Logic error; Should be empty if it can't find anything */
3468 		ASSERT(!ret);
3469 
3470 		ino = offset;
3471 		bitmap_clear_bits(ctl, entry, offset, 1);
3472 		if (entry->bytes == 0)
3473 			free_bitmap(ctl, entry);
3474 	}
3475 out:
3476 	spin_unlock(&ctl->tree_lock);
3477 
3478 	return ino;
3479 }
3480 
lookup_free_ino_inode(struct btrfs_root * root,struct btrfs_path * path)3481 struct inode *lookup_free_ino_inode(struct btrfs_root *root,
3482 				    struct btrfs_path *path)
3483 {
3484 	struct inode *inode = NULL;
3485 
3486 	spin_lock(&root->ino_cache_lock);
3487 	if (root->ino_cache_inode)
3488 		inode = igrab(root->ino_cache_inode);
3489 	spin_unlock(&root->ino_cache_lock);
3490 	if (inode)
3491 		return inode;
3492 
3493 	inode = __lookup_free_space_inode(root, path, 0);
3494 	if (IS_ERR(inode))
3495 		return inode;
3496 
3497 	spin_lock(&root->ino_cache_lock);
3498 	if (!btrfs_fs_closing(root->fs_info))
3499 		root->ino_cache_inode = igrab(inode);
3500 	spin_unlock(&root->ino_cache_lock);
3501 
3502 	return inode;
3503 }
3504 
create_free_ino_inode(struct btrfs_root * root,struct btrfs_trans_handle * trans,struct btrfs_path * path)3505 int create_free_ino_inode(struct btrfs_root *root,
3506 			  struct btrfs_trans_handle *trans,
3507 			  struct btrfs_path *path)
3508 {
3509 	return __create_free_space_inode(root, trans, path,
3510 					 BTRFS_FREE_INO_OBJECTID, 0);
3511 }
3512 
load_free_ino_cache(struct btrfs_fs_info * fs_info,struct btrfs_root * root)3513 int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3514 {
3515 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3516 	struct btrfs_path *path;
3517 	struct inode *inode;
3518 	int ret = 0;
3519 	u64 root_gen = btrfs_root_generation(&root->root_item);
3520 
3521 	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
3522 		return 0;
3523 
3524 	/*
3525 	 * If we're unmounting then just return, since this does a search on the
3526 	 * normal root and not the commit root and we could deadlock.
3527 	 */
3528 	if (btrfs_fs_closing(fs_info))
3529 		return 0;
3530 
3531 	path = btrfs_alloc_path();
3532 	if (!path)
3533 		return 0;
3534 
3535 	inode = lookup_free_ino_inode(root, path);
3536 	if (IS_ERR(inode))
3537 		goto out;
3538 
3539 	if (root_gen != BTRFS_I(inode)->generation)
3540 		goto out_put;
3541 
3542 	ret = __load_free_space_cache(root, inode, ctl, path, 0);
3543 
3544 	if (ret < 0)
3545 		btrfs_err(fs_info,
3546 			"failed to load free ino cache for root %llu",
3547 			root->root_key.objectid);
3548 out_put:
3549 	iput(inode);
3550 out:
3551 	btrfs_free_path(path);
3552 	return ret;
3553 }
3554 
btrfs_write_out_ino_cache(struct btrfs_root * root,struct btrfs_trans_handle * trans,struct btrfs_path * path,struct inode * inode)3555 int btrfs_write_out_ino_cache(struct btrfs_root *root,
3556 			      struct btrfs_trans_handle *trans,
3557 			      struct btrfs_path *path,
3558 			      struct inode *inode)
3559 {
3560 	struct btrfs_fs_info *fs_info = root->fs_info;
3561 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3562 	int ret;
3563 	struct btrfs_io_ctl io_ctl;
3564 	bool release_metadata = true;
3565 
3566 	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
3567 		return 0;
3568 
3569 	memset(&io_ctl, 0, sizeof(io_ctl));
3570 	ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl, trans);
3571 	if (!ret) {
3572 		/*
3573 		 * At this point writepages() didn't error out, so our metadata
3574 		 * reservation is released when the writeback finishes, at
3575 		 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing
3576 		 * with or without an error.
3577 		 */
3578 		release_metadata = false;
3579 		ret = btrfs_wait_cache_io_root(root, trans, &io_ctl, path);
3580 	}
3581 
3582 	if (ret) {
3583 		if (release_metadata)
3584 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
3585 					inode->i_size, true);
3586 #ifdef DEBUG
3587 		btrfs_err(fs_info,
3588 			  "failed to write free ino cache for root %llu",
3589 			  root->root_key.objectid);
3590 #endif
3591 	}
3592 
3593 	return ret;
3594 }
3595 
3596 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3597 /*
3598  * Use this if you need to make a bitmap or extent entry specifically, it
3599  * doesn't do any of the merging that add_free_space does, this acts a lot like
3600  * how the free space cache loading stuff works, so you can get really weird
3601  * configurations.
3602  */
test_add_free_space_entry(struct btrfs_block_group_cache * cache,u64 offset,u64 bytes,bool bitmap)3603 int test_add_free_space_entry(struct btrfs_block_group_cache *cache,
3604 			      u64 offset, u64 bytes, bool bitmap)
3605 {
3606 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3607 	struct btrfs_free_space *info = NULL, *bitmap_info;
3608 	void *map = NULL;
3609 	u64 bytes_added;
3610 	int ret;
3611 
3612 again:
3613 	if (!info) {
3614 		info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
3615 		if (!info)
3616 			return -ENOMEM;
3617 	}
3618 
3619 	if (!bitmap) {
3620 		spin_lock(&ctl->tree_lock);
3621 		info->offset = offset;
3622 		info->bytes = bytes;
3623 		info->max_extent_size = 0;
3624 		ret = link_free_space(ctl, info);
3625 		spin_unlock(&ctl->tree_lock);
3626 		if (ret)
3627 			kmem_cache_free(btrfs_free_space_cachep, info);
3628 		return ret;
3629 	}
3630 
3631 	if (!map) {
3632 		map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS);
3633 		if (!map) {
3634 			kmem_cache_free(btrfs_free_space_cachep, info);
3635 			return -ENOMEM;
3636 		}
3637 	}
3638 
3639 	spin_lock(&ctl->tree_lock);
3640 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3641 					 1, 0);
3642 	if (!bitmap_info) {
3643 		info->bitmap = map;
3644 		map = NULL;
3645 		add_new_bitmap(ctl, info, offset);
3646 		bitmap_info = info;
3647 		info = NULL;
3648 	}
3649 
3650 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
3651 
3652 	bytes -= bytes_added;
3653 	offset += bytes_added;
3654 	spin_unlock(&ctl->tree_lock);
3655 
3656 	if (bytes)
3657 		goto again;
3658 
3659 	if (info)
3660 		kmem_cache_free(btrfs_free_space_cachep, info);
3661 	if (map)
3662 		kmem_cache_free(btrfs_free_space_bitmap_cachep, map);
3663 	return 0;
3664 }
3665 
3666 /*
3667  * Checks to see if the given range is in the free space cache.  This is really
3668  * just used to check the absence of space, so if there is free space in the
3669  * range at all we will return 1.
3670  */
test_check_exists(struct btrfs_block_group_cache * cache,u64 offset,u64 bytes)3671 int test_check_exists(struct btrfs_block_group_cache *cache,
3672 		      u64 offset, u64 bytes)
3673 {
3674 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3675 	struct btrfs_free_space *info;
3676 	int ret = 0;
3677 
3678 	spin_lock(&ctl->tree_lock);
3679 	info = tree_search_offset(ctl, offset, 0, 0);
3680 	if (!info) {
3681 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3682 					  1, 0);
3683 		if (!info)
3684 			goto out;
3685 	}
3686 
3687 have_info:
3688 	if (info->bitmap) {
3689 		u64 bit_off, bit_bytes;
3690 		struct rb_node *n;
3691 		struct btrfs_free_space *tmp;
3692 
3693 		bit_off = offset;
3694 		bit_bytes = ctl->unit;
3695 		ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
3696 		if (!ret) {
3697 			if (bit_off == offset) {
3698 				ret = 1;
3699 				goto out;
3700 			} else if (bit_off > offset &&
3701 				   offset + bytes > bit_off) {
3702 				ret = 1;
3703 				goto out;
3704 			}
3705 		}
3706 
3707 		n = rb_prev(&info->offset_index);
3708 		while (n) {
3709 			tmp = rb_entry(n, struct btrfs_free_space,
3710 				       offset_index);
3711 			if (tmp->offset + tmp->bytes < offset)
3712 				break;
3713 			if (offset + bytes < tmp->offset) {
3714 				n = rb_prev(&tmp->offset_index);
3715 				continue;
3716 			}
3717 			info = tmp;
3718 			goto have_info;
3719 		}
3720 
3721 		n = rb_next(&info->offset_index);
3722 		while (n) {
3723 			tmp = rb_entry(n, struct btrfs_free_space,
3724 				       offset_index);
3725 			if (offset + bytes < tmp->offset)
3726 				break;
3727 			if (tmp->offset + tmp->bytes < offset) {
3728 				n = rb_next(&tmp->offset_index);
3729 				continue;
3730 			}
3731 			info = tmp;
3732 			goto have_info;
3733 		}
3734 
3735 		ret = 0;
3736 		goto out;
3737 	}
3738 
3739 	if (info->offset == offset) {
3740 		ret = 1;
3741 		goto out;
3742 	}
3743 
3744 	if (offset > info->offset && offset < info->offset + info->bytes)
3745 		ret = 1;
3746 out:
3747 	spin_unlock(&ctl->tree_lock);
3748 	return ret;
3749 }
3750 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */
3751