1 /*
2 * fs/f2fs/segment.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/blkdev.h>
12 #include <linux/backing-dev.h>
13
14 /* constant macro */
15 #define NULL_SEGNO ((unsigned int)(~0))
16 #define NULL_SECNO ((unsigned int)(~0))
17
18 #define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */
19 #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS 4096 /* 8GB in maximum */
20
21 #define F2FS_MIN_SEGMENTS 9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
22
23 /* L: Logical segment # in volume, R: Relative segment # in main area */
24 #define GET_L2R_SEGNO(free_i, segno) ((segno) - (free_i)->start_segno)
25 #define GET_R2L_SEGNO(free_i, segno) ((segno) + (free_i)->start_segno)
26
27 #define IS_DATASEG(t) ((t) <= CURSEG_COLD_DATA)
28 #define IS_NODESEG(t) ((t) >= CURSEG_HOT_NODE)
29
30 #define IS_HOT(t) ((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA)
31 #define IS_WARM(t) ((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA)
32 #define IS_COLD(t) ((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA)
33
34 #define IS_CURSEG(sbi, seg) \
35 (((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \
36 ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \
37 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \
38 ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \
39 ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \
40 ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
41
42 #define IS_CURSEC(sbi, secno) \
43 (((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \
44 (sbi)->segs_per_sec) || \
45 ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \
46 (sbi)->segs_per_sec) || \
47 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \
48 (sbi)->segs_per_sec) || \
49 ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \
50 (sbi)->segs_per_sec) || \
51 ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \
52 (sbi)->segs_per_sec) || \
53 ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \
54 (sbi)->segs_per_sec)) \
55
56 #define MAIN_BLKADDR(sbi) \
57 (SM_I(sbi) ? SM_I(sbi)->main_blkaddr : \
58 le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr))
59 #define SEG0_BLKADDR(sbi) \
60 (SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : \
61 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr))
62
63 #define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments)
64 #define MAIN_SECS(sbi) ((sbi)->total_sections)
65
66 #define TOTAL_SEGS(sbi) \
67 (SM_I(sbi) ? SM_I(sbi)->segment_count : \
68 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count))
69 #define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << (sbi)->log_blocks_per_seg)
70
71 #define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
72 #define SEGMENT_SIZE(sbi) (1ULL << ((sbi)->log_blocksize + \
73 (sbi)->log_blocks_per_seg))
74
75 #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \
76 (GET_R2L_SEGNO(FREE_I(sbi), segno) << (sbi)->log_blocks_per_seg))
77
78 #define NEXT_FREE_BLKADDR(sbi, curseg) \
79 (START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff)
80
81 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi))
82 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \
83 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> (sbi)->log_blocks_per_seg)
84 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \
85 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & ((sbi)->blocks_per_seg - 1))
86
87 #define GET_SEGNO(sbi, blk_addr) \
88 ((!is_valid_data_blkaddr(sbi, blk_addr)) ? \
89 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \
90 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
91 #define BLKS_PER_SEC(sbi) \
92 ((sbi)->segs_per_sec * (sbi)->blocks_per_seg)
93 #define GET_SEC_FROM_SEG(sbi, segno) \
94 (((segno) == -1) ? -1: (segno) / (sbi)->segs_per_sec)
95 #define GET_SEG_FROM_SEC(sbi, secno) \
96 ((secno) * (sbi)->segs_per_sec)
97 #define GET_ZONE_FROM_SEC(sbi, secno) \
98 (((secno) == -1) ? -1: (secno) / (sbi)->secs_per_zone)
99 #define GET_ZONE_FROM_SEG(sbi, segno) \
100 GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno))
101
102 #define GET_SUM_BLOCK(sbi, segno) \
103 ((sbi)->sm_info->ssa_blkaddr + (segno))
104
105 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
106 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type))
107
108 #define SIT_ENTRY_OFFSET(sit_i, segno) \
109 ((segno) % (sit_i)->sents_per_block)
110 #define SIT_BLOCK_OFFSET(segno) \
111 ((segno) / SIT_ENTRY_PER_BLOCK)
112 #define START_SEGNO(segno) \
113 (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
114 #define SIT_BLK_CNT(sbi) \
115 ((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
116 #define f2fs_bitmap_size(nr) \
117 (BITS_TO_LONGS(nr) * sizeof(unsigned long))
118
119 #define SECTOR_FROM_BLOCK(blk_addr) \
120 (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
121 #define SECTOR_TO_BLOCK(sectors) \
122 ((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK)
123
124 /*
125 * indicate a block allocation direction: RIGHT and LEFT.
126 * RIGHT means allocating new sections towards the end of volume.
127 * LEFT means the opposite direction.
128 */
129 enum {
130 ALLOC_RIGHT = 0,
131 ALLOC_LEFT
132 };
133
134 /*
135 * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
136 * LFS writes data sequentially with cleaning operations.
137 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
138 */
139 enum {
140 LFS = 0,
141 SSR
142 };
143
144 /*
145 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
146 * GC_CB is based on cost-benefit algorithm.
147 * GC_GREEDY is based on greedy algorithm.
148 */
149 enum {
150 GC_CB = 0,
151 GC_GREEDY,
152 ALLOC_NEXT,
153 FLUSH_DEVICE,
154 MAX_GC_POLICY,
155 };
156
157 /*
158 * BG_GC means the background cleaning job.
159 * FG_GC means the on-demand cleaning job.
160 * FORCE_FG_GC means on-demand cleaning job in background.
161 */
162 enum {
163 BG_GC = 0,
164 FG_GC,
165 FORCE_FG_GC,
166 };
167
168 /* for a function parameter to select a victim segment */
169 struct victim_sel_policy {
170 int alloc_mode; /* LFS or SSR */
171 int gc_mode; /* GC_CB or GC_GREEDY */
172 unsigned long *dirty_segmap; /* dirty segment bitmap */
173 unsigned int max_search; /* maximum # of segments to search */
174 unsigned int offset; /* last scanned bitmap offset */
175 unsigned int ofs_unit; /* bitmap search unit */
176 unsigned int min_cost; /* minimum cost */
177 unsigned int min_segno; /* segment # having min. cost */
178 };
179
180 struct seg_entry {
181 unsigned int type:6; /* segment type like CURSEG_XXX_TYPE */
182 unsigned int valid_blocks:10; /* # of valid blocks */
183 unsigned int ckpt_valid_blocks:10; /* # of valid blocks last cp */
184 unsigned int padding:6; /* padding */
185 unsigned char *cur_valid_map; /* validity bitmap of blocks */
186 #ifdef CONFIG_F2FS_CHECK_FS
187 unsigned char *cur_valid_map_mir; /* mirror of current valid bitmap */
188 #endif
189 /*
190 * # of valid blocks and the validity bitmap stored in the the last
191 * checkpoint pack. This information is used by the SSR mode.
192 */
193 unsigned char *ckpt_valid_map; /* validity bitmap of blocks last cp */
194 unsigned char *discard_map;
195 unsigned long long mtime; /* modification time of the segment */
196 };
197
198 struct sec_entry {
199 unsigned int valid_blocks; /* # of valid blocks in a section */
200 };
201
202 struct segment_allocation {
203 void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
204 };
205
206 /*
207 * this value is set in page as a private data which indicate that
208 * the page is atomically written, and it is in inmem_pages list.
209 */
210 #define ATOMIC_WRITTEN_PAGE ((unsigned long)-1)
211 #define DUMMY_WRITTEN_PAGE ((unsigned long)-2)
212
213 #define IS_ATOMIC_WRITTEN_PAGE(page) \
214 (page_private(page) == (unsigned long)ATOMIC_WRITTEN_PAGE)
215 #define IS_DUMMY_WRITTEN_PAGE(page) \
216 (page_private(page) == (unsigned long)DUMMY_WRITTEN_PAGE)
217
218 #define MAX_SKIP_GC_COUNT 16
219
220 struct inmem_pages {
221 struct list_head list;
222 struct page *page;
223 block_t old_addr; /* for revoking when fail to commit */
224 };
225
226 struct sit_info {
227 const struct segment_allocation *s_ops;
228
229 block_t sit_base_addr; /* start block address of SIT area */
230 block_t sit_blocks; /* # of blocks used by SIT area */
231 block_t written_valid_blocks; /* # of valid blocks in main area */
232 char *sit_bitmap; /* SIT bitmap pointer */
233 #ifdef CONFIG_F2FS_CHECK_FS
234 char *sit_bitmap_mir; /* SIT bitmap mirror */
235 #endif
236 unsigned int bitmap_size; /* SIT bitmap size */
237
238 unsigned long *tmp_map; /* bitmap for temporal use */
239 unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */
240 unsigned int dirty_sentries; /* # of dirty sentries */
241 unsigned int sents_per_block; /* # of SIT entries per block */
242 struct rw_semaphore sentry_lock; /* to protect SIT cache */
243 struct seg_entry *sentries; /* SIT segment-level cache */
244 struct sec_entry *sec_entries; /* SIT section-level cache */
245
246 /* for cost-benefit algorithm in cleaning procedure */
247 unsigned long long elapsed_time; /* elapsed time after mount */
248 unsigned long long mounted_time; /* mount time */
249 unsigned long long min_mtime; /* min. modification time */
250 unsigned long long max_mtime; /* max. modification time */
251
252 unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */
253 };
254
255 struct free_segmap_info {
256 unsigned int start_segno; /* start segment number logically */
257 unsigned int free_segments; /* # of free segments */
258 unsigned int free_sections; /* # of free sections */
259 spinlock_t segmap_lock; /* free segmap lock */
260 unsigned long *free_segmap; /* free segment bitmap */
261 unsigned long *free_secmap; /* free section bitmap */
262 };
263
264 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
265 enum dirty_type {
266 DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */
267 DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */
268 DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */
269 DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */
270 DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */
271 DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */
272 DIRTY, /* to count # of dirty segments */
273 PRE, /* to count # of entirely obsolete segments */
274 NR_DIRTY_TYPE
275 };
276
277 struct dirty_seglist_info {
278 const struct victim_selection *v_ops; /* victim selction operation */
279 unsigned long *dirty_segmap[NR_DIRTY_TYPE];
280 struct mutex seglist_lock; /* lock for segment bitmaps */
281 int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */
282 unsigned long *victim_secmap; /* background GC victims */
283 };
284
285 /* victim selection function for cleaning and SSR */
286 struct victim_selection {
287 int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
288 int, int, char);
289 };
290
291 /* for active log information */
292 struct curseg_info {
293 struct mutex curseg_mutex; /* lock for consistency */
294 struct f2fs_summary_block *sum_blk; /* cached summary block */
295 struct rw_semaphore journal_rwsem; /* protect journal area */
296 struct f2fs_journal *journal; /* cached journal info */
297 unsigned char alloc_type; /* current allocation type */
298 unsigned int segno; /* current segment number */
299 unsigned short next_blkoff; /* next block offset to write */
300 unsigned int zone; /* current zone number */
301 unsigned int next_segno; /* preallocated segment */
302 };
303
304 struct sit_entry_set {
305 struct list_head set_list; /* link with all sit sets */
306 unsigned int start_segno; /* start segno of sits in set */
307 unsigned int entry_cnt; /* the # of sit entries in set */
308 };
309
310 /*
311 * inline functions
312 */
CURSEG_I(struct f2fs_sb_info * sbi,int type)313 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
314 {
315 return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
316 }
317
get_seg_entry(struct f2fs_sb_info * sbi,unsigned int segno)318 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
319 unsigned int segno)
320 {
321 struct sit_info *sit_i = SIT_I(sbi);
322 return &sit_i->sentries[segno];
323 }
324
get_sec_entry(struct f2fs_sb_info * sbi,unsigned int segno)325 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
326 unsigned int segno)
327 {
328 struct sit_info *sit_i = SIT_I(sbi);
329 return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)];
330 }
331
get_valid_blocks(struct f2fs_sb_info * sbi,unsigned int segno,bool use_section)332 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
333 unsigned int segno, bool use_section)
334 {
335 /*
336 * In order to get # of valid blocks in a section instantly from many
337 * segments, f2fs manages two counting structures separately.
338 */
339 if (use_section && sbi->segs_per_sec > 1)
340 return get_sec_entry(sbi, segno)->valid_blocks;
341 else
342 return get_seg_entry(sbi, segno)->valid_blocks;
343 }
344
seg_info_from_raw_sit(struct seg_entry * se,struct f2fs_sit_entry * rs)345 static inline void seg_info_from_raw_sit(struct seg_entry *se,
346 struct f2fs_sit_entry *rs)
347 {
348 se->valid_blocks = GET_SIT_VBLOCKS(rs);
349 se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
350 memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
351 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
352 #ifdef CONFIG_F2FS_CHECK_FS
353 memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
354 #endif
355 se->type = GET_SIT_TYPE(rs);
356 se->mtime = le64_to_cpu(rs->mtime);
357 }
358
__seg_info_to_raw_sit(struct seg_entry * se,struct f2fs_sit_entry * rs)359 static inline void __seg_info_to_raw_sit(struct seg_entry *se,
360 struct f2fs_sit_entry *rs)
361 {
362 unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
363 se->valid_blocks;
364 rs->vblocks = cpu_to_le16(raw_vblocks);
365 memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
366 rs->mtime = cpu_to_le64(se->mtime);
367 }
368
seg_info_to_sit_page(struct f2fs_sb_info * sbi,struct page * page,unsigned int start)369 static inline void seg_info_to_sit_page(struct f2fs_sb_info *sbi,
370 struct page *page, unsigned int start)
371 {
372 struct f2fs_sit_block *raw_sit;
373 struct seg_entry *se;
374 struct f2fs_sit_entry *rs;
375 unsigned int end = min(start + SIT_ENTRY_PER_BLOCK,
376 (unsigned long)MAIN_SEGS(sbi));
377 int i;
378
379 raw_sit = (struct f2fs_sit_block *)page_address(page);
380 memset(raw_sit, 0, PAGE_SIZE);
381 for (i = 0; i < end - start; i++) {
382 rs = &raw_sit->entries[i];
383 se = get_seg_entry(sbi, start + i);
384 __seg_info_to_raw_sit(se, rs);
385 }
386 }
387
seg_info_to_raw_sit(struct seg_entry * se,struct f2fs_sit_entry * rs)388 static inline void seg_info_to_raw_sit(struct seg_entry *se,
389 struct f2fs_sit_entry *rs)
390 {
391 __seg_info_to_raw_sit(se, rs);
392
393 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
394 se->ckpt_valid_blocks = se->valid_blocks;
395 }
396
find_next_inuse(struct free_segmap_info * free_i,unsigned int max,unsigned int segno)397 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
398 unsigned int max, unsigned int segno)
399 {
400 unsigned int ret;
401 spin_lock(&free_i->segmap_lock);
402 ret = find_next_bit(free_i->free_segmap, max, segno);
403 spin_unlock(&free_i->segmap_lock);
404 return ret;
405 }
406
__set_free(struct f2fs_sb_info * sbi,unsigned int segno)407 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
408 {
409 struct free_segmap_info *free_i = FREE_I(sbi);
410 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
411 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
412 unsigned int next;
413
414 spin_lock(&free_i->segmap_lock);
415 clear_bit(segno, free_i->free_segmap);
416 free_i->free_segments++;
417
418 next = find_next_bit(free_i->free_segmap,
419 start_segno + sbi->segs_per_sec, start_segno);
420 if (next >= start_segno + sbi->segs_per_sec) {
421 clear_bit(secno, free_i->free_secmap);
422 free_i->free_sections++;
423 }
424 spin_unlock(&free_i->segmap_lock);
425 }
426
__set_inuse(struct f2fs_sb_info * sbi,unsigned int segno)427 static inline void __set_inuse(struct f2fs_sb_info *sbi,
428 unsigned int segno)
429 {
430 struct free_segmap_info *free_i = FREE_I(sbi);
431 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
432
433 set_bit(segno, free_i->free_segmap);
434 free_i->free_segments--;
435 if (!test_and_set_bit(secno, free_i->free_secmap))
436 free_i->free_sections--;
437 }
438
__set_test_and_free(struct f2fs_sb_info * sbi,unsigned int segno)439 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
440 unsigned int segno)
441 {
442 struct free_segmap_info *free_i = FREE_I(sbi);
443 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
444 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
445 unsigned int next;
446
447 spin_lock(&free_i->segmap_lock);
448 if (test_and_clear_bit(segno, free_i->free_segmap)) {
449 free_i->free_segments++;
450
451 if (IS_CURSEC(sbi, secno))
452 goto skip_free;
453 next = find_next_bit(free_i->free_segmap,
454 start_segno + sbi->segs_per_sec, start_segno);
455 if (next >= start_segno + sbi->segs_per_sec) {
456 if (test_and_clear_bit(secno, free_i->free_secmap))
457 free_i->free_sections++;
458 }
459 }
460 skip_free:
461 spin_unlock(&free_i->segmap_lock);
462 }
463
__set_test_and_inuse(struct f2fs_sb_info * sbi,unsigned int segno)464 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
465 unsigned int segno)
466 {
467 struct free_segmap_info *free_i = FREE_I(sbi);
468 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
469
470 spin_lock(&free_i->segmap_lock);
471 if (!test_and_set_bit(segno, free_i->free_segmap)) {
472 free_i->free_segments--;
473 if (!test_and_set_bit(secno, free_i->free_secmap))
474 free_i->free_sections--;
475 }
476 spin_unlock(&free_i->segmap_lock);
477 }
478
get_sit_bitmap(struct f2fs_sb_info * sbi,void * dst_addr)479 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
480 void *dst_addr)
481 {
482 struct sit_info *sit_i = SIT_I(sbi);
483
484 #ifdef CONFIG_F2FS_CHECK_FS
485 if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir,
486 sit_i->bitmap_size))
487 f2fs_bug_on(sbi, 1);
488 #endif
489 memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
490 }
491
written_block_count(struct f2fs_sb_info * sbi)492 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
493 {
494 return SIT_I(sbi)->written_valid_blocks;
495 }
496
free_segments(struct f2fs_sb_info * sbi)497 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
498 {
499 return FREE_I(sbi)->free_segments;
500 }
501
reserved_segments(struct f2fs_sb_info * sbi)502 static inline int reserved_segments(struct f2fs_sb_info *sbi)
503 {
504 return SM_I(sbi)->reserved_segments;
505 }
506
free_sections(struct f2fs_sb_info * sbi)507 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
508 {
509 return FREE_I(sbi)->free_sections;
510 }
511
prefree_segments(struct f2fs_sb_info * sbi)512 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
513 {
514 return DIRTY_I(sbi)->nr_dirty[PRE];
515 }
516
dirty_segments(struct f2fs_sb_info * sbi)517 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
518 {
519 return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
520 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
521 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
522 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
523 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
524 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
525 }
526
overprovision_segments(struct f2fs_sb_info * sbi)527 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
528 {
529 return SM_I(sbi)->ovp_segments;
530 }
531
reserved_sections(struct f2fs_sb_info * sbi)532 static inline int reserved_sections(struct f2fs_sb_info *sbi)
533 {
534 return GET_SEC_FROM_SEG(sbi, (unsigned int)reserved_segments(sbi));
535 }
536
has_curseg_enough_space(struct f2fs_sb_info * sbi,unsigned int node_blocks,unsigned int dent_blocks)537 static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi,
538 unsigned int node_blocks, unsigned int dent_blocks)
539 {
540
541 unsigned int segno, left_blocks;
542 int i;
543
544 /* check current node segment */
545 for (i = CURSEG_HOT_NODE; i <= CURSEG_COLD_NODE; i++) {
546 segno = CURSEG_I(sbi, i)->segno;
547 left_blocks = sbi->blocks_per_seg -
548 get_seg_entry(sbi, segno)->ckpt_valid_blocks;
549
550 if (node_blocks > left_blocks)
551 return false;
552 }
553
554 /* check current data segment */
555 segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno;
556 left_blocks = sbi->blocks_per_seg -
557 get_seg_entry(sbi, segno)->ckpt_valid_blocks;
558 if (dent_blocks > left_blocks)
559 return false;
560 return true;
561 }
562
has_not_enough_free_secs(struct f2fs_sb_info * sbi,int freed,int needed)563 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
564 int freed, int needed)
565 {
566 unsigned int total_node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) +
567 get_pages(sbi, F2FS_DIRTY_DENTS) +
568 get_pages(sbi, F2FS_DIRTY_IMETA);
569 unsigned int total_dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS);
570 unsigned int node_secs = total_node_blocks / BLKS_PER_SEC(sbi);
571 unsigned int dent_secs = total_dent_blocks / BLKS_PER_SEC(sbi);
572 unsigned int node_blocks = total_node_blocks % BLKS_PER_SEC(sbi);
573 unsigned int dent_blocks = total_dent_blocks % BLKS_PER_SEC(sbi);
574 unsigned int free, need_lower, need_upper;
575
576 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
577 return false;
578
579 free = free_sections(sbi) + freed;
580 need_lower = node_secs + dent_secs + reserved_sections(sbi) + needed;
581 need_upper = need_lower + (node_blocks ? 1 : 0) + (dent_blocks ? 1 : 0);
582
583 if (free > need_upper)
584 return false;
585 else if (free <= need_lower)
586 return true;
587 return !has_curseg_enough_space(sbi, node_blocks, dent_blocks);
588 }
589
excess_prefree_segs(struct f2fs_sb_info * sbi)590 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
591 {
592 return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
593 }
594
utilization(struct f2fs_sb_info * sbi)595 static inline int utilization(struct f2fs_sb_info *sbi)
596 {
597 return div_u64((u64)valid_user_blocks(sbi) * 100,
598 sbi->user_block_count);
599 }
600
601 /*
602 * Sometimes f2fs may be better to drop out-of-place update policy.
603 * And, users can control the policy through sysfs entries.
604 * There are five policies with triggering conditions as follows.
605 * F2FS_IPU_FORCE - all the time,
606 * F2FS_IPU_SSR - if SSR mode is activated,
607 * F2FS_IPU_UTIL - if FS utilization is over threashold,
608 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
609 * threashold,
610 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
611 * storages. IPU will be triggered only if the # of dirty
612 * pages over min_fsync_blocks.
613 * F2FS_IPUT_DISABLE - disable IPU. (=default option)
614 */
615 #define DEF_MIN_IPU_UTIL 70
616 #define DEF_MIN_FSYNC_BLOCKS 8
617 #define DEF_MIN_HOT_BLOCKS 16
618
619 #define SMALL_VOLUME_SEGMENTS (16 * 512) /* 16GB */
620
621 enum {
622 F2FS_IPU_FORCE,
623 F2FS_IPU_SSR,
624 F2FS_IPU_UTIL,
625 F2FS_IPU_SSR_UTIL,
626 F2FS_IPU_FSYNC,
627 F2FS_IPU_ASYNC,
628 };
629
curseg_segno(struct f2fs_sb_info * sbi,int type)630 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
631 int type)
632 {
633 struct curseg_info *curseg = CURSEG_I(sbi, type);
634 return curseg->segno;
635 }
636
curseg_alloc_type(struct f2fs_sb_info * sbi,int type)637 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
638 int type)
639 {
640 struct curseg_info *curseg = CURSEG_I(sbi, type);
641 return curseg->alloc_type;
642 }
643
curseg_blkoff(struct f2fs_sb_info * sbi,int type)644 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
645 {
646 struct curseg_info *curseg = CURSEG_I(sbi, type);
647 return curseg->next_blkoff;
648 }
649
check_seg_range(struct f2fs_sb_info * sbi,unsigned int segno)650 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
651 {
652 f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1);
653 }
654
verify_block_addr(struct f2fs_io_info * fio,block_t blk_addr)655 static inline void verify_block_addr(struct f2fs_io_info *fio, block_t blk_addr)
656 {
657 struct f2fs_sb_info *sbi = fio->sbi;
658
659 if (__is_meta_io(fio))
660 verify_blkaddr(sbi, blk_addr, META_GENERIC);
661 else
662 verify_blkaddr(sbi, blk_addr, DATA_GENERIC);
663 }
664
665 /*
666 * Summary block is always treated as an invalid block
667 */
check_block_count(struct f2fs_sb_info * sbi,int segno,struct f2fs_sit_entry * raw_sit)668 static inline int check_block_count(struct f2fs_sb_info *sbi,
669 int segno, struct f2fs_sit_entry *raw_sit)
670 {
671 bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false;
672 int valid_blocks = 0;
673 int cur_pos = 0, next_pos;
674
675 /* check bitmap with valid block count */
676 do {
677 if (is_valid) {
678 next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
679 sbi->blocks_per_seg,
680 cur_pos);
681 valid_blocks += next_pos - cur_pos;
682 } else
683 next_pos = find_next_bit_le(&raw_sit->valid_map,
684 sbi->blocks_per_seg,
685 cur_pos);
686 cur_pos = next_pos;
687 is_valid = !is_valid;
688 } while (cur_pos < sbi->blocks_per_seg);
689
690 if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) {
691 f2fs_msg(sbi->sb, KERN_ERR,
692 "Mismatch valid blocks %d vs. %d",
693 GET_SIT_VBLOCKS(raw_sit), valid_blocks);
694 set_sbi_flag(sbi, SBI_NEED_FSCK);
695 return -EFSCORRUPTED;
696 }
697
698 /* check segment usage, and check boundary of a given segment number */
699 if (unlikely(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg
700 || segno > TOTAL_SEGS(sbi) - 1)) {
701 f2fs_msg(sbi->sb, KERN_ERR,
702 "Wrong valid blocks %d or segno %u",
703 GET_SIT_VBLOCKS(raw_sit), segno);
704 set_sbi_flag(sbi, SBI_NEED_FSCK);
705 return -EFSCORRUPTED;
706 }
707 return 0;
708 }
709
current_sit_addr(struct f2fs_sb_info * sbi,unsigned int start)710 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
711 unsigned int start)
712 {
713 struct sit_info *sit_i = SIT_I(sbi);
714 unsigned int offset = SIT_BLOCK_OFFSET(start);
715 block_t blk_addr = sit_i->sit_base_addr + offset;
716
717 check_seg_range(sbi, start);
718
719 #ifdef CONFIG_F2FS_CHECK_FS
720 if (f2fs_test_bit(offset, sit_i->sit_bitmap) !=
721 f2fs_test_bit(offset, sit_i->sit_bitmap_mir))
722 f2fs_bug_on(sbi, 1);
723 #endif
724
725 /* calculate sit block address */
726 if (f2fs_test_bit(offset, sit_i->sit_bitmap))
727 blk_addr += sit_i->sit_blocks;
728
729 return blk_addr;
730 }
731
next_sit_addr(struct f2fs_sb_info * sbi,pgoff_t block_addr)732 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
733 pgoff_t block_addr)
734 {
735 struct sit_info *sit_i = SIT_I(sbi);
736 block_addr -= sit_i->sit_base_addr;
737 if (block_addr < sit_i->sit_blocks)
738 block_addr += sit_i->sit_blocks;
739 else
740 block_addr -= sit_i->sit_blocks;
741
742 return block_addr + sit_i->sit_base_addr;
743 }
744
set_to_next_sit(struct sit_info * sit_i,unsigned int start)745 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
746 {
747 unsigned int block_off = SIT_BLOCK_OFFSET(start);
748
749 f2fs_change_bit(block_off, sit_i->sit_bitmap);
750 #ifdef CONFIG_F2FS_CHECK_FS
751 f2fs_change_bit(block_off, sit_i->sit_bitmap_mir);
752 #endif
753 }
754
get_mtime(struct f2fs_sb_info * sbi,bool base_time)755 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi,
756 bool base_time)
757 {
758 struct sit_info *sit_i = SIT_I(sbi);
759 time64_t diff, now = ktime_get_real_seconds();
760
761 if (now >= sit_i->mounted_time)
762 return sit_i->elapsed_time + now - sit_i->mounted_time;
763
764 /* system time is set to the past */
765 if (!base_time) {
766 diff = sit_i->mounted_time - now;
767 if (sit_i->elapsed_time >= diff)
768 return sit_i->elapsed_time - diff;
769 return 0;
770 }
771 return sit_i->elapsed_time;
772 }
773
set_summary(struct f2fs_summary * sum,nid_t nid,unsigned int ofs_in_node,unsigned char version)774 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
775 unsigned int ofs_in_node, unsigned char version)
776 {
777 sum->nid = cpu_to_le32(nid);
778 sum->ofs_in_node = cpu_to_le16(ofs_in_node);
779 sum->version = version;
780 }
781
start_sum_block(struct f2fs_sb_info * sbi)782 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
783 {
784 return __start_cp_addr(sbi) +
785 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
786 }
787
sum_blk_addr(struct f2fs_sb_info * sbi,int base,int type)788 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
789 {
790 return __start_cp_addr(sbi) +
791 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
792 - (base + 1) + type;
793 }
794
sec_usage_check(struct f2fs_sb_info * sbi,unsigned int secno)795 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
796 {
797 if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
798 return true;
799 return false;
800 }
801
802 /*
803 * It is very important to gather dirty pages and write at once, so that we can
804 * submit a big bio without interfering other data writes.
805 * By default, 512 pages for directory data,
806 * 512 pages (2MB) * 8 for nodes, and
807 * 256 pages * 8 for meta are set.
808 */
nr_pages_to_skip(struct f2fs_sb_info * sbi,int type)809 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
810 {
811 if (sbi->sb->s_bdi->wb.dirty_exceeded)
812 return 0;
813
814 if (type == DATA)
815 return sbi->blocks_per_seg;
816 else if (type == NODE)
817 return 8 * sbi->blocks_per_seg;
818 else if (type == META)
819 return 8 * BIO_MAX_PAGES;
820 else
821 return 0;
822 }
823
824 /*
825 * When writing pages, it'd better align nr_to_write for segment size.
826 */
nr_pages_to_write(struct f2fs_sb_info * sbi,int type,struct writeback_control * wbc)827 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
828 struct writeback_control *wbc)
829 {
830 long nr_to_write, desired;
831
832 if (wbc->sync_mode != WB_SYNC_NONE)
833 return 0;
834
835 nr_to_write = wbc->nr_to_write;
836 desired = BIO_MAX_PAGES;
837 if (type == NODE)
838 desired <<= 1;
839
840 wbc->nr_to_write = desired;
841 return desired - nr_to_write;
842 }
843
wake_up_discard_thread(struct f2fs_sb_info * sbi,bool force)844 static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force)
845 {
846 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
847 bool wakeup = false;
848 int i;
849
850 if (force)
851 goto wake_up;
852
853 mutex_lock(&dcc->cmd_lock);
854 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
855 if (i + 1 < dcc->discard_granularity)
856 break;
857 if (!list_empty(&dcc->pend_list[i])) {
858 wakeup = true;
859 break;
860 }
861 }
862 mutex_unlock(&dcc->cmd_lock);
863 if (!wakeup)
864 return;
865 wake_up:
866 dcc->discard_wake = 1;
867 wake_up_interruptible_all(&dcc->discard_wait_queue);
868 }
869