1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35 
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38 
39 #include "dummy.h"
40 #include "internal.h"
41 
42 #define rdev_crit(rdev, fmt, ...)					\
43 	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...)					\
45 	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...)					\
47 	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...)					\
49 	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...)					\
51 	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52 
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
58 
59 static struct dentry *debugfs_root;
60 
61 /*
62  * struct regulator_map
63  *
64  * Used to provide symbolic supply names to devices.
65  */
66 struct regulator_map {
67 	struct list_head list;
68 	const char *dev_name;   /* The dev_name() for the consumer */
69 	const char *supply;
70 	struct regulator_dev *regulator;
71 };
72 
73 /*
74  * struct regulator_enable_gpio
75  *
76  * Management for shared enable GPIO pin
77  */
78 struct regulator_enable_gpio {
79 	struct list_head list;
80 	struct gpio_desc *gpiod;
81 	u32 enable_count;	/* a number of enabled shared GPIO */
82 	u32 request_count;	/* a number of requested shared GPIO */
83 	unsigned int ena_gpio_invert:1;
84 };
85 
86 /*
87  * struct regulator_supply_alias
88  *
89  * Used to map lookups for a supply onto an alternative device.
90  */
91 struct regulator_supply_alias {
92 	struct list_head list;
93 	struct device *src_dev;
94 	const char *src_supply;
95 	struct device *alias_dev;
96 	const char *alias_supply;
97 };
98 
99 static int _regulator_is_enabled(struct regulator_dev *rdev);
100 static int _regulator_disable(struct regulator_dev *rdev);
101 static int _regulator_get_voltage(struct regulator_dev *rdev);
102 static int _regulator_get_current_limit(struct regulator_dev *rdev);
103 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
104 static int _notifier_call_chain(struct regulator_dev *rdev,
105 				  unsigned long event, void *data);
106 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
107 				     int min_uV, int max_uV);
108 static struct regulator *create_regulator(struct regulator_dev *rdev,
109 					  struct device *dev,
110 					  const char *supply_name);
111 static void _regulator_put(struct regulator *regulator);
112 
rdev_get_name(struct regulator_dev * rdev)113 static const char *rdev_get_name(struct regulator_dev *rdev)
114 {
115 	if (rdev->constraints && rdev->constraints->name)
116 		return rdev->constraints->name;
117 	else if (rdev->desc->name)
118 		return rdev->desc->name;
119 	else
120 		return "";
121 }
122 
have_full_constraints(void)123 static bool have_full_constraints(void)
124 {
125 	return has_full_constraints || of_have_populated_dt();
126 }
127 
regulator_ops_is_valid(struct regulator_dev * rdev,int ops)128 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
129 {
130 	if (!rdev->constraints) {
131 		rdev_err(rdev, "no constraints\n");
132 		return false;
133 	}
134 
135 	if (rdev->constraints->valid_ops_mask & ops)
136 		return true;
137 
138 	return false;
139 }
140 
rdev_get_supply(struct regulator_dev * rdev)141 static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
142 {
143 	if (rdev && rdev->supply)
144 		return rdev->supply->rdev;
145 
146 	return NULL;
147 }
148 
149 /**
150  * regulator_lock_nested - lock a single regulator
151  * @rdev:		regulator source
152  * @subclass:		mutex subclass used for lockdep
153  *
154  * This function can be called many times by one task on
155  * a single regulator and its mutex will be locked only
156  * once. If a task, which is calling this function is other
157  * than the one, which initially locked the mutex, it will
158  * wait on mutex.
159  */
regulator_lock_nested(struct regulator_dev * rdev,unsigned int subclass)160 static void regulator_lock_nested(struct regulator_dev *rdev,
161 				  unsigned int subclass)
162 {
163 	if (!mutex_trylock(&rdev->mutex)) {
164 		if (rdev->mutex_owner == current) {
165 			rdev->ref_cnt++;
166 			return;
167 		}
168 		mutex_lock_nested(&rdev->mutex, subclass);
169 	}
170 
171 	rdev->ref_cnt = 1;
172 	rdev->mutex_owner = current;
173 }
174 
regulator_lock(struct regulator_dev * rdev)175 static inline void regulator_lock(struct regulator_dev *rdev)
176 {
177 	regulator_lock_nested(rdev, 0);
178 }
179 
180 /**
181  * regulator_unlock - unlock a single regulator
182  * @rdev:		regulator_source
183  *
184  * This function unlocks the mutex when the
185  * reference counter reaches 0.
186  */
regulator_unlock(struct regulator_dev * rdev)187 static void regulator_unlock(struct regulator_dev *rdev)
188 {
189 	if (rdev->ref_cnt != 0) {
190 		rdev->ref_cnt--;
191 
192 		if (!rdev->ref_cnt) {
193 			rdev->mutex_owner = NULL;
194 			mutex_unlock(&rdev->mutex);
195 		}
196 	}
197 }
198 
199 /**
200  * regulator_lock_supply - lock a regulator and its supplies
201  * @rdev:         regulator source
202  */
regulator_lock_supply(struct regulator_dev * rdev)203 static void regulator_lock_supply(struct regulator_dev *rdev)
204 {
205 	int i;
206 
207 	for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
208 		regulator_lock_nested(rdev, i);
209 }
210 
211 /**
212  * regulator_unlock_supply - unlock a regulator and its supplies
213  * @rdev:         regulator source
214  */
regulator_unlock_supply(struct regulator_dev * rdev)215 static void regulator_unlock_supply(struct regulator_dev *rdev)
216 {
217 	struct regulator *supply;
218 
219 	while (1) {
220 		regulator_unlock(rdev);
221 		supply = rdev->supply;
222 
223 		if (!rdev->supply)
224 			return;
225 
226 		rdev = supply->rdev;
227 	}
228 }
229 
230 /**
231  * of_get_regulator - get a regulator device node based on supply name
232  * @dev: Device pointer for the consumer (of regulator) device
233  * @supply: regulator supply name
234  *
235  * Extract the regulator device node corresponding to the supply name.
236  * returns the device node corresponding to the regulator if found, else
237  * returns NULL.
238  */
of_get_regulator(struct device * dev,const char * supply)239 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
240 {
241 	struct device_node *regnode = NULL;
242 	char prop_name[32]; /* 32 is max size of property name */
243 
244 	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
245 
246 	snprintf(prop_name, 32, "%s-supply", supply);
247 	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
248 
249 	if (!regnode) {
250 		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
251 				prop_name, dev->of_node);
252 		return NULL;
253 	}
254 	return regnode;
255 }
256 
257 /* Platform voltage constraint check */
regulator_check_voltage(struct regulator_dev * rdev,int * min_uV,int * max_uV)258 static int regulator_check_voltage(struct regulator_dev *rdev,
259 				   int *min_uV, int *max_uV)
260 {
261 	BUG_ON(*min_uV > *max_uV);
262 
263 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
264 		rdev_err(rdev, "voltage operation not allowed\n");
265 		return -EPERM;
266 	}
267 
268 	if (*max_uV > rdev->constraints->max_uV)
269 		*max_uV = rdev->constraints->max_uV;
270 	if (*min_uV < rdev->constraints->min_uV)
271 		*min_uV = rdev->constraints->min_uV;
272 
273 	if (*min_uV > *max_uV) {
274 		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
275 			 *min_uV, *max_uV);
276 		return -EINVAL;
277 	}
278 
279 	return 0;
280 }
281 
282 /* return 0 if the state is valid */
regulator_check_states(suspend_state_t state)283 static int regulator_check_states(suspend_state_t state)
284 {
285 	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
286 }
287 
288 /* Make sure we select a voltage that suits the needs of all
289  * regulator consumers
290  */
regulator_check_consumers(struct regulator_dev * rdev,int * min_uV,int * max_uV,suspend_state_t state)291 static int regulator_check_consumers(struct regulator_dev *rdev,
292 				     int *min_uV, int *max_uV,
293 				     suspend_state_t state)
294 {
295 	struct regulator *regulator;
296 	struct regulator_voltage *voltage;
297 
298 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
299 		voltage = &regulator->voltage[state];
300 		/*
301 		 * Assume consumers that didn't say anything are OK
302 		 * with anything in the constraint range.
303 		 */
304 		if (!voltage->min_uV && !voltage->max_uV)
305 			continue;
306 
307 		if (*max_uV > voltage->max_uV)
308 			*max_uV = voltage->max_uV;
309 		if (*min_uV < voltage->min_uV)
310 			*min_uV = voltage->min_uV;
311 	}
312 
313 	if (*min_uV > *max_uV) {
314 		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
315 			*min_uV, *max_uV);
316 		return -EINVAL;
317 	}
318 
319 	return 0;
320 }
321 
322 /* current constraint check */
regulator_check_current_limit(struct regulator_dev * rdev,int * min_uA,int * max_uA)323 static int regulator_check_current_limit(struct regulator_dev *rdev,
324 					int *min_uA, int *max_uA)
325 {
326 	BUG_ON(*min_uA > *max_uA);
327 
328 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
329 		rdev_err(rdev, "current operation not allowed\n");
330 		return -EPERM;
331 	}
332 
333 	if (*max_uA > rdev->constraints->max_uA)
334 		*max_uA = rdev->constraints->max_uA;
335 	if (*min_uA < rdev->constraints->min_uA)
336 		*min_uA = rdev->constraints->min_uA;
337 
338 	if (*min_uA > *max_uA) {
339 		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
340 			 *min_uA, *max_uA);
341 		return -EINVAL;
342 	}
343 
344 	return 0;
345 }
346 
347 /* operating mode constraint check */
regulator_mode_constrain(struct regulator_dev * rdev,unsigned int * mode)348 static int regulator_mode_constrain(struct regulator_dev *rdev,
349 				    unsigned int *mode)
350 {
351 	switch (*mode) {
352 	case REGULATOR_MODE_FAST:
353 	case REGULATOR_MODE_NORMAL:
354 	case REGULATOR_MODE_IDLE:
355 	case REGULATOR_MODE_STANDBY:
356 		break;
357 	default:
358 		rdev_err(rdev, "invalid mode %x specified\n", *mode);
359 		return -EINVAL;
360 	}
361 
362 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
363 		rdev_err(rdev, "mode operation not allowed\n");
364 		return -EPERM;
365 	}
366 
367 	/* The modes are bitmasks, the most power hungry modes having
368 	 * the lowest values. If the requested mode isn't supported
369 	 * try higher modes. */
370 	while (*mode) {
371 		if (rdev->constraints->valid_modes_mask & *mode)
372 			return 0;
373 		*mode /= 2;
374 	}
375 
376 	return -EINVAL;
377 }
378 
379 static inline struct regulator_state *
regulator_get_suspend_state(struct regulator_dev * rdev,suspend_state_t state)380 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
381 {
382 	if (rdev->constraints == NULL)
383 		return NULL;
384 
385 	switch (state) {
386 	case PM_SUSPEND_STANDBY:
387 		return &rdev->constraints->state_standby;
388 	case PM_SUSPEND_MEM:
389 		return &rdev->constraints->state_mem;
390 	case PM_SUSPEND_MAX:
391 		return &rdev->constraints->state_disk;
392 	default:
393 		return NULL;
394 	}
395 }
396 
regulator_uV_show(struct device * dev,struct device_attribute * attr,char * buf)397 static ssize_t regulator_uV_show(struct device *dev,
398 				struct device_attribute *attr, char *buf)
399 {
400 	struct regulator_dev *rdev = dev_get_drvdata(dev);
401 	ssize_t ret;
402 
403 	regulator_lock(rdev);
404 	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
405 	regulator_unlock(rdev);
406 
407 	return ret;
408 }
409 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
410 
regulator_uA_show(struct device * dev,struct device_attribute * attr,char * buf)411 static ssize_t regulator_uA_show(struct device *dev,
412 				struct device_attribute *attr, char *buf)
413 {
414 	struct regulator_dev *rdev = dev_get_drvdata(dev);
415 
416 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
417 }
418 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
419 
name_show(struct device * dev,struct device_attribute * attr,char * buf)420 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
421 			 char *buf)
422 {
423 	struct regulator_dev *rdev = dev_get_drvdata(dev);
424 
425 	return sprintf(buf, "%s\n", rdev_get_name(rdev));
426 }
427 static DEVICE_ATTR_RO(name);
428 
regulator_print_opmode(char * buf,int mode)429 static ssize_t regulator_print_opmode(char *buf, int mode)
430 {
431 	switch (mode) {
432 	case REGULATOR_MODE_FAST:
433 		return sprintf(buf, "fast\n");
434 	case REGULATOR_MODE_NORMAL:
435 		return sprintf(buf, "normal\n");
436 	case REGULATOR_MODE_IDLE:
437 		return sprintf(buf, "idle\n");
438 	case REGULATOR_MODE_STANDBY:
439 		return sprintf(buf, "standby\n");
440 	}
441 	return sprintf(buf, "unknown\n");
442 }
443 
regulator_opmode_show(struct device * dev,struct device_attribute * attr,char * buf)444 static ssize_t regulator_opmode_show(struct device *dev,
445 				    struct device_attribute *attr, char *buf)
446 {
447 	struct regulator_dev *rdev = dev_get_drvdata(dev);
448 
449 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
450 }
451 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
452 
regulator_print_state(char * buf,int state)453 static ssize_t regulator_print_state(char *buf, int state)
454 {
455 	if (state > 0)
456 		return sprintf(buf, "enabled\n");
457 	else if (state == 0)
458 		return sprintf(buf, "disabled\n");
459 	else
460 		return sprintf(buf, "unknown\n");
461 }
462 
regulator_state_show(struct device * dev,struct device_attribute * attr,char * buf)463 static ssize_t regulator_state_show(struct device *dev,
464 				   struct device_attribute *attr, char *buf)
465 {
466 	struct regulator_dev *rdev = dev_get_drvdata(dev);
467 	ssize_t ret;
468 
469 	regulator_lock(rdev);
470 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
471 	regulator_unlock(rdev);
472 
473 	return ret;
474 }
475 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
476 
regulator_status_show(struct device * dev,struct device_attribute * attr,char * buf)477 static ssize_t regulator_status_show(struct device *dev,
478 				   struct device_attribute *attr, char *buf)
479 {
480 	struct regulator_dev *rdev = dev_get_drvdata(dev);
481 	int status;
482 	char *label;
483 
484 	status = rdev->desc->ops->get_status(rdev);
485 	if (status < 0)
486 		return status;
487 
488 	switch (status) {
489 	case REGULATOR_STATUS_OFF:
490 		label = "off";
491 		break;
492 	case REGULATOR_STATUS_ON:
493 		label = "on";
494 		break;
495 	case REGULATOR_STATUS_ERROR:
496 		label = "error";
497 		break;
498 	case REGULATOR_STATUS_FAST:
499 		label = "fast";
500 		break;
501 	case REGULATOR_STATUS_NORMAL:
502 		label = "normal";
503 		break;
504 	case REGULATOR_STATUS_IDLE:
505 		label = "idle";
506 		break;
507 	case REGULATOR_STATUS_STANDBY:
508 		label = "standby";
509 		break;
510 	case REGULATOR_STATUS_BYPASS:
511 		label = "bypass";
512 		break;
513 	case REGULATOR_STATUS_UNDEFINED:
514 		label = "undefined";
515 		break;
516 	default:
517 		return -ERANGE;
518 	}
519 
520 	return sprintf(buf, "%s\n", label);
521 }
522 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
523 
regulator_min_uA_show(struct device * dev,struct device_attribute * attr,char * buf)524 static ssize_t regulator_min_uA_show(struct device *dev,
525 				    struct device_attribute *attr, char *buf)
526 {
527 	struct regulator_dev *rdev = dev_get_drvdata(dev);
528 
529 	if (!rdev->constraints)
530 		return sprintf(buf, "constraint not defined\n");
531 
532 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
533 }
534 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
535 
regulator_max_uA_show(struct device * dev,struct device_attribute * attr,char * buf)536 static ssize_t regulator_max_uA_show(struct device *dev,
537 				    struct device_attribute *attr, char *buf)
538 {
539 	struct regulator_dev *rdev = dev_get_drvdata(dev);
540 
541 	if (!rdev->constraints)
542 		return sprintf(buf, "constraint not defined\n");
543 
544 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
545 }
546 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
547 
regulator_min_uV_show(struct device * dev,struct device_attribute * attr,char * buf)548 static ssize_t regulator_min_uV_show(struct device *dev,
549 				    struct device_attribute *attr, char *buf)
550 {
551 	struct regulator_dev *rdev = dev_get_drvdata(dev);
552 
553 	if (!rdev->constraints)
554 		return sprintf(buf, "constraint not defined\n");
555 
556 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
557 }
558 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
559 
regulator_max_uV_show(struct device * dev,struct device_attribute * attr,char * buf)560 static ssize_t regulator_max_uV_show(struct device *dev,
561 				    struct device_attribute *attr, char *buf)
562 {
563 	struct regulator_dev *rdev = dev_get_drvdata(dev);
564 
565 	if (!rdev->constraints)
566 		return sprintf(buf, "constraint not defined\n");
567 
568 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
569 }
570 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
571 
regulator_total_uA_show(struct device * dev,struct device_attribute * attr,char * buf)572 static ssize_t regulator_total_uA_show(struct device *dev,
573 				      struct device_attribute *attr, char *buf)
574 {
575 	struct regulator_dev *rdev = dev_get_drvdata(dev);
576 	struct regulator *regulator;
577 	int uA = 0;
578 
579 	regulator_lock(rdev);
580 	list_for_each_entry(regulator, &rdev->consumer_list, list)
581 		uA += regulator->uA_load;
582 	regulator_unlock(rdev);
583 	return sprintf(buf, "%d\n", uA);
584 }
585 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
586 
num_users_show(struct device * dev,struct device_attribute * attr,char * buf)587 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
588 			      char *buf)
589 {
590 	struct regulator_dev *rdev = dev_get_drvdata(dev);
591 	return sprintf(buf, "%d\n", rdev->use_count);
592 }
593 static DEVICE_ATTR_RO(num_users);
594 
type_show(struct device * dev,struct device_attribute * attr,char * buf)595 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
596 			 char *buf)
597 {
598 	struct regulator_dev *rdev = dev_get_drvdata(dev);
599 
600 	switch (rdev->desc->type) {
601 	case REGULATOR_VOLTAGE:
602 		return sprintf(buf, "voltage\n");
603 	case REGULATOR_CURRENT:
604 		return sprintf(buf, "current\n");
605 	}
606 	return sprintf(buf, "unknown\n");
607 }
608 static DEVICE_ATTR_RO(type);
609 
regulator_suspend_mem_uV_show(struct device * dev,struct device_attribute * attr,char * buf)610 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
611 				struct device_attribute *attr, char *buf)
612 {
613 	struct regulator_dev *rdev = dev_get_drvdata(dev);
614 
615 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
616 }
617 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
618 		regulator_suspend_mem_uV_show, NULL);
619 
regulator_suspend_disk_uV_show(struct device * dev,struct device_attribute * attr,char * buf)620 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
621 				struct device_attribute *attr, char *buf)
622 {
623 	struct regulator_dev *rdev = dev_get_drvdata(dev);
624 
625 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
626 }
627 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
628 		regulator_suspend_disk_uV_show, NULL);
629 
regulator_suspend_standby_uV_show(struct device * dev,struct device_attribute * attr,char * buf)630 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
631 				struct device_attribute *attr, char *buf)
632 {
633 	struct regulator_dev *rdev = dev_get_drvdata(dev);
634 
635 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
636 }
637 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
638 		regulator_suspend_standby_uV_show, NULL);
639 
regulator_suspend_mem_mode_show(struct device * dev,struct device_attribute * attr,char * buf)640 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
641 				struct device_attribute *attr, char *buf)
642 {
643 	struct regulator_dev *rdev = dev_get_drvdata(dev);
644 
645 	return regulator_print_opmode(buf,
646 		rdev->constraints->state_mem.mode);
647 }
648 static DEVICE_ATTR(suspend_mem_mode, 0444,
649 		regulator_suspend_mem_mode_show, NULL);
650 
regulator_suspend_disk_mode_show(struct device * dev,struct device_attribute * attr,char * buf)651 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
652 				struct device_attribute *attr, char *buf)
653 {
654 	struct regulator_dev *rdev = dev_get_drvdata(dev);
655 
656 	return regulator_print_opmode(buf,
657 		rdev->constraints->state_disk.mode);
658 }
659 static DEVICE_ATTR(suspend_disk_mode, 0444,
660 		regulator_suspend_disk_mode_show, NULL);
661 
regulator_suspend_standby_mode_show(struct device * dev,struct device_attribute * attr,char * buf)662 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
663 				struct device_attribute *attr, char *buf)
664 {
665 	struct regulator_dev *rdev = dev_get_drvdata(dev);
666 
667 	return regulator_print_opmode(buf,
668 		rdev->constraints->state_standby.mode);
669 }
670 static DEVICE_ATTR(suspend_standby_mode, 0444,
671 		regulator_suspend_standby_mode_show, NULL);
672 
regulator_suspend_mem_state_show(struct device * dev,struct device_attribute * attr,char * buf)673 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
674 				   struct device_attribute *attr, char *buf)
675 {
676 	struct regulator_dev *rdev = dev_get_drvdata(dev);
677 
678 	return regulator_print_state(buf,
679 			rdev->constraints->state_mem.enabled);
680 }
681 static DEVICE_ATTR(suspend_mem_state, 0444,
682 		regulator_suspend_mem_state_show, NULL);
683 
regulator_suspend_disk_state_show(struct device * dev,struct device_attribute * attr,char * buf)684 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
685 				   struct device_attribute *attr, char *buf)
686 {
687 	struct regulator_dev *rdev = dev_get_drvdata(dev);
688 
689 	return regulator_print_state(buf,
690 			rdev->constraints->state_disk.enabled);
691 }
692 static DEVICE_ATTR(suspend_disk_state, 0444,
693 		regulator_suspend_disk_state_show, NULL);
694 
regulator_suspend_standby_state_show(struct device * dev,struct device_attribute * attr,char * buf)695 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
696 				   struct device_attribute *attr, char *buf)
697 {
698 	struct regulator_dev *rdev = dev_get_drvdata(dev);
699 
700 	return regulator_print_state(buf,
701 			rdev->constraints->state_standby.enabled);
702 }
703 static DEVICE_ATTR(suspend_standby_state, 0444,
704 		regulator_suspend_standby_state_show, NULL);
705 
regulator_bypass_show(struct device * dev,struct device_attribute * attr,char * buf)706 static ssize_t regulator_bypass_show(struct device *dev,
707 				     struct device_attribute *attr, char *buf)
708 {
709 	struct regulator_dev *rdev = dev_get_drvdata(dev);
710 	const char *report;
711 	bool bypass;
712 	int ret;
713 
714 	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
715 
716 	if (ret != 0)
717 		report = "unknown";
718 	else if (bypass)
719 		report = "enabled";
720 	else
721 		report = "disabled";
722 
723 	return sprintf(buf, "%s\n", report);
724 }
725 static DEVICE_ATTR(bypass, 0444,
726 		   regulator_bypass_show, NULL);
727 
728 /* Calculate the new optimum regulator operating mode based on the new total
729  * consumer load. All locks held by caller */
drms_uA_update(struct regulator_dev * rdev)730 static int drms_uA_update(struct regulator_dev *rdev)
731 {
732 	struct regulator *sibling;
733 	int current_uA = 0, output_uV, input_uV, err;
734 	unsigned int mode;
735 
736 	lockdep_assert_held_once(&rdev->mutex);
737 
738 	/*
739 	 * first check to see if we can set modes at all, otherwise just
740 	 * tell the consumer everything is OK.
741 	 */
742 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
743 		return 0;
744 
745 	if (!rdev->desc->ops->get_optimum_mode &&
746 	    !rdev->desc->ops->set_load)
747 		return 0;
748 
749 	if (!rdev->desc->ops->set_mode &&
750 	    !rdev->desc->ops->set_load)
751 		return -EINVAL;
752 
753 	/* calc total requested load */
754 	list_for_each_entry(sibling, &rdev->consumer_list, list)
755 		current_uA += sibling->uA_load;
756 
757 	current_uA += rdev->constraints->system_load;
758 
759 	if (rdev->desc->ops->set_load) {
760 		/* set the optimum mode for our new total regulator load */
761 		err = rdev->desc->ops->set_load(rdev, current_uA);
762 		if (err < 0)
763 			rdev_err(rdev, "failed to set load %d\n", current_uA);
764 	} else {
765 		/* get output voltage */
766 		output_uV = _regulator_get_voltage(rdev);
767 		if (output_uV <= 0) {
768 			rdev_err(rdev, "invalid output voltage found\n");
769 			return -EINVAL;
770 		}
771 
772 		/* get input voltage */
773 		input_uV = 0;
774 		if (rdev->supply)
775 			input_uV = regulator_get_voltage(rdev->supply);
776 		if (input_uV <= 0)
777 			input_uV = rdev->constraints->input_uV;
778 		if (input_uV <= 0) {
779 			rdev_err(rdev, "invalid input voltage found\n");
780 			return -EINVAL;
781 		}
782 
783 		/* now get the optimum mode for our new total regulator load */
784 		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
785 							 output_uV, current_uA);
786 
787 		/* check the new mode is allowed */
788 		err = regulator_mode_constrain(rdev, &mode);
789 		if (err < 0) {
790 			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
791 				 current_uA, input_uV, output_uV);
792 			return err;
793 		}
794 
795 		err = rdev->desc->ops->set_mode(rdev, mode);
796 		if (err < 0)
797 			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
798 	}
799 
800 	return err;
801 }
802 
suspend_set_state(struct regulator_dev * rdev,suspend_state_t state)803 static int suspend_set_state(struct regulator_dev *rdev,
804 				    suspend_state_t state)
805 {
806 	int ret = 0;
807 	struct regulator_state *rstate;
808 
809 	rstate = regulator_get_suspend_state(rdev, state);
810 	if (rstate == NULL)
811 		return 0;
812 
813 	/* If we have no suspend mode configration don't set anything;
814 	 * only warn if the driver implements set_suspend_voltage or
815 	 * set_suspend_mode callback.
816 	 */
817 	if (rstate->enabled != ENABLE_IN_SUSPEND &&
818 	    rstate->enabled != DISABLE_IN_SUSPEND) {
819 		if (rdev->desc->ops->set_suspend_voltage ||
820 		    rdev->desc->ops->set_suspend_mode)
821 			rdev_warn(rdev, "No configuration\n");
822 		return 0;
823 	}
824 
825 	if (rstate->enabled == ENABLE_IN_SUSPEND &&
826 		rdev->desc->ops->set_suspend_enable)
827 		ret = rdev->desc->ops->set_suspend_enable(rdev);
828 	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
829 		rdev->desc->ops->set_suspend_disable)
830 		ret = rdev->desc->ops->set_suspend_disable(rdev);
831 	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
832 		ret = 0;
833 
834 	if (ret < 0) {
835 		rdev_err(rdev, "failed to enabled/disable\n");
836 		return ret;
837 	}
838 
839 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
840 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
841 		if (ret < 0) {
842 			rdev_err(rdev, "failed to set voltage\n");
843 			return ret;
844 		}
845 	}
846 
847 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
848 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
849 		if (ret < 0) {
850 			rdev_err(rdev, "failed to set mode\n");
851 			return ret;
852 		}
853 	}
854 
855 	return ret;
856 }
857 
print_constraints(struct regulator_dev * rdev)858 static void print_constraints(struct regulator_dev *rdev)
859 {
860 	struct regulation_constraints *constraints = rdev->constraints;
861 	char buf[160] = "";
862 	size_t len = sizeof(buf) - 1;
863 	int count = 0;
864 	int ret;
865 
866 	if (constraints->min_uV && constraints->max_uV) {
867 		if (constraints->min_uV == constraints->max_uV)
868 			count += scnprintf(buf + count, len - count, "%d mV ",
869 					   constraints->min_uV / 1000);
870 		else
871 			count += scnprintf(buf + count, len - count,
872 					   "%d <--> %d mV ",
873 					   constraints->min_uV / 1000,
874 					   constraints->max_uV / 1000);
875 	}
876 
877 	if (!constraints->min_uV ||
878 	    constraints->min_uV != constraints->max_uV) {
879 		ret = _regulator_get_voltage(rdev);
880 		if (ret > 0)
881 			count += scnprintf(buf + count, len - count,
882 					   "at %d mV ", ret / 1000);
883 	}
884 
885 	if (constraints->uV_offset)
886 		count += scnprintf(buf + count, len - count, "%dmV offset ",
887 				   constraints->uV_offset / 1000);
888 
889 	if (constraints->min_uA && constraints->max_uA) {
890 		if (constraints->min_uA == constraints->max_uA)
891 			count += scnprintf(buf + count, len - count, "%d mA ",
892 					   constraints->min_uA / 1000);
893 		else
894 			count += scnprintf(buf + count, len - count,
895 					   "%d <--> %d mA ",
896 					   constraints->min_uA / 1000,
897 					   constraints->max_uA / 1000);
898 	}
899 
900 	if (!constraints->min_uA ||
901 	    constraints->min_uA != constraints->max_uA) {
902 		ret = _regulator_get_current_limit(rdev);
903 		if (ret > 0)
904 			count += scnprintf(buf + count, len - count,
905 					   "at %d mA ", ret / 1000);
906 	}
907 
908 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
909 		count += scnprintf(buf + count, len - count, "fast ");
910 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
911 		count += scnprintf(buf + count, len - count, "normal ");
912 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
913 		count += scnprintf(buf + count, len - count, "idle ");
914 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
915 		count += scnprintf(buf + count, len - count, "standby");
916 
917 	if (!count)
918 		scnprintf(buf, len, "no parameters");
919 
920 	rdev_dbg(rdev, "%s\n", buf);
921 
922 	if ((constraints->min_uV != constraints->max_uV) &&
923 	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
924 		rdev_warn(rdev,
925 			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
926 }
927 
machine_constraints_voltage(struct regulator_dev * rdev,struct regulation_constraints * constraints)928 static int machine_constraints_voltage(struct regulator_dev *rdev,
929 	struct regulation_constraints *constraints)
930 {
931 	const struct regulator_ops *ops = rdev->desc->ops;
932 	int ret;
933 
934 	/* do we need to apply the constraint voltage */
935 	if (rdev->constraints->apply_uV &&
936 	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
937 		int target_min, target_max;
938 		int current_uV = _regulator_get_voltage(rdev);
939 
940 		if (current_uV == -ENOTRECOVERABLE) {
941 			/* This regulator can't be read and must be initted */
942 			rdev_info(rdev, "Setting %d-%duV\n",
943 				  rdev->constraints->min_uV,
944 				  rdev->constraints->max_uV);
945 			_regulator_do_set_voltage(rdev,
946 						  rdev->constraints->min_uV,
947 						  rdev->constraints->max_uV);
948 			current_uV = _regulator_get_voltage(rdev);
949 		}
950 
951 		if (current_uV < 0) {
952 			rdev_err(rdev,
953 				 "failed to get the current voltage(%d)\n",
954 				 current_uV);
955 			return current_uV;
956 		}
957 
958 		/*
959 		 * If we're below the minimum voltage move up to the
960 		 * minimum voltage, if we're above the maximum voltage
961 		 * then move down to the maximum.
962 		 */
963 		target_min = current_uV;
964 		target_max = current_uV;
965 
966 		if (current_uV < rdev->constraints->min_uV) {
967 			target_min = rdev->constraints->min_uV;
968 			target_max = rdev->constraints->min_uV;
969 		}
970 
971 		if (current_uV > rdev->constraints->max_uV) {
972 			target_min = rdev->constraints->max_uV;
973 			target_max = rdev->constraints->max_uV;
974 		}
975 
976 		if (target_min != current_uV || target_max != current_uV) {
977 			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
978 				  current_uV, target_min, target_max);
979 			ret = _regulator_do_set_voltage(
980 				rdev, target_min, target_max);
981 			if (ret < 0) {
982 				rdev_err(rdev,
983 					"failed to apply %d-%duV constraint(%d)\n",
984 					target_min, target_max, ret);
985 				return ret;
986 			}
987 		}
988 	}
989 
990 	/* constrain machine-level voltage specs to fit
991 	 * the actual range supported by this regulator.
992 	 */
993 	if (ops->list_voltage && rdev->desc->n_voltages) {
994 		int	count = rdev->desc->n_voltages;
995 		int	i;
996 		int	min_uV = INT_MAX;
997 		int	max_uV = INT_MIN;
998 		int	cmin = constraints->min_uV;
999 		int	cmax = constraints->max_uV;
1000 
1001 		/* it's safe to autoconfigure fixed-voltage supplies
1002 		   and the constraints are used by list_voltage. */
1003 		if (count == 1 && !cmin) {
1004 			cmin = 1;
1005 			cmax = INT_MAX;
1006 			constraints->min_uV = cmin;
1007 			constraints->max_uV = cmax;
1008 		}
1009 
1010 		/* voltage constraints are optional */
1011 		if ((cmin == 0) && (cmax == 0))
1012 			return 0;
1013 
1014 		/* else require explicit machine-level constraints */
1015 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1016 			rdev_err(rdev, "invalid voltage constraints\n");
1017 			return -EINVAL;
1018 		}
1019 
1020 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1021 		for (i = 0; i < count; i++) {
1022 			int	value;
1023 
1024 			value = ops->list_voltage(rdev, i);
1025 			if (value <= 0)
1026 				continue;
1027 
1028 			/* maybe adjust [min_uV..max_uV] */
1029 			if (value >= cmin && value < min_uV)
1030 				min_uV = value;
1031 			if (value <= cmax && value > max_uV)
1032 				max_uV = value;
1033 		}
1034 
1035 		/* final: [min_uV..max_uV] valid iff constraints valid */
1036 		if (max_uV < min_uV) {
1037 			rdev_err(rdev,
1038 				 "unsupportable voltage constraints %u-%uuV\n",
1039 				 min_uV, max_uV);
1040 			return -EINVAL;
1041 		}
1042 
1043 		/* use regulator's subset of machine constraints */
1044 		if (constraints->min_uV < min_uV) {
1045 			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1046 				 constraints->min_uV, min_uV);
1047 			constraints->min_uV = min_uV;
1048 		}
1049 		if (constraints->max_uV > max_uV) {
1050 			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1051 				 constraints->max_uV, max_uV);
1052 			constraints->max_uV = max_uV;
1053 		}
1054 	}
1055 
1056 	return 0;
1057 }
1058 
machine_constraints_current(struct regulator_dev * rdev,struct regulation_constraints * constraints)1059 static int machine_constraints_current(struct regulator_dev *rdev,
1060 	struct regulation_constraints *constraints)
1061 {
1062 	const struct regulator_ops *ops = rdev->desc->ops;
1063 	int ret;
1064 
1065 	if (!constraints->min_uA && !constraints->max_uA)
1066 		return 0;
1067 
1068 	if (constraints->min_uA > constraints->max_uA) {
1069 		rdev_err(rdev, "Invalid current constraints\n");
1070 		return -EINVAL;
1071 	}
1072 
1073 	if (!ops->set_current_limit || !ops->get_current_limit) {
1074 		rdev_warn(rdev, "Operation of current configuration missing\n");
1075 		return 0;
1076 	}
1077 
1078 	/* Set regulator current in constraints range */
1079 	ret = ops->set_current_limit(rdev, constraints->min_uA,
1080 			constraints->max_uA);
1081 	if (ret < 0) {
1082 		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1083 		return ret;
1084 	}
1085 
1086 	return 0;
1087 }
1088 
1089 static int _regulator_do_enable(struct regulator_dev *rdev);
1090 
1091 /**
1092  * set_machine_constraints - sets regulator constraints
1093  * @rdev: regulator source
1094  *
1095  * Allows platform initialisation code to define and constrain
1096  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1097  * Constraints *must* be set by platform code in order for some
1098  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1099  * set_mode.
1100  */
set_machine_constraints(struct regulator_dev * rdev)1101 static int set_machine_constraints(struct regulator_dev *rdev)
1102 {
1103 	int ret = 0;
1104 	const struct regulator_ops *ops = rdev->desc->ops;
1105 
1106 	ret = machine_constraints_voltage(rdev, rdev->constraints);
1107 	if (ret != 0)
1108 		return ret;
1109 
1110 	ret = machine_constraints_current(rdev, rdev->constraints);
1111 	if (ret != 0)
1112 		return ret;
1113 
1114 	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1115 		ret = ops->set_input_current_limit(rdev,
1116 						   rdev->constraints->ilim_uA);
1117 		if (ret < 0) {
1118 			rdev_err(rdev, "failed to set input limit\n");
1119 			return ret;
1120 		}
1121 	}
1122 
1123 	/* do we need to setup our suspend state */
1124 	if (rdev->constraints->initial_state) {
1125 		ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1126 		if (ret < 0) {
1127 			rdev_err(rdev, "failed to set suspend state\n");
1128 			return ret;
1129 		}
1130 	}
1131 
1132 	if (rdev->constraints->initial_mode) {
1133 		if (!ops->set_mode) {
1134 			rdev_err(rdev, "no set_mode operation\n");
1135 			return -EINVAL;
1136 		}
1137 
1138 		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1139 		if (ret < 0) {
1140 			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1141 			return ret;
1142 		}
1143 	}
1144 
1145 	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1146 		&& ops->set_ramp_delay) {
1147 		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1148 		if (ret < 0) {
1149 			rdev_err(rdev, "failed to set ramp_delay\n");
1150 			return ret;
1151 		}
1152 	}
1153 
1154 	if (rdev->constraints->pull_down && ops->set_pull_down) {
1155 		ret = ops->set_pull_down(rdev);
1156 		if (ret < 0) {
1157 			rdev_err(rdev, "failed to set pull down\n");
1158 			return ret;
1159 		}
1160 	}
1161 
1162 	if (rdev->constraints->soft_start && ops->set_soft_start) {
1163 		ret = ops->set_soft_start(rdev);
1164 		if (ret < 0) {
1165 			rdev_err(rdev, "failed to set soft start\n");
1166 			return ret;
1167 		}
1168 	}
1169 
1170 	if (rdev->constraints->over_current_protection
1171 		&& ops->set_over_current_protection) {
1172 		ret = ops->set_over_current_protection(rdev);
1173 		if (ret < 0) {
1174 			rdev_err(rdev, "failed to set over current protection\n");
1175 			return ret;
1176 		}
1177 	}
1178 
1179 	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1180 		bool ad_state = (rdev->constraints->active_discharge ==
1181 			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1182 
1183 		ret = ops->set_active_discharge(rdev, ad_state);
1184 		if (ret < 0) {
1185 			rdev_err(rdev, "failed to set active discharge\n");
1186 			return ret;
1187 		}
1188 	}
1189 
1190 	/* If the constraints say the regulator should be on at this point
1191 	 * and we have control then make sure it is enabled.
1192 	 */
1193 	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1194 		/* If we want to enable this regulator, make sure that we know
1195 		 * the supplying regulator.
1196 		 */
1197 		if (rdev->supply_name && !rdev->supply)
1198 			return -EPROBE_DEFER;
1199 
1200 		/* If supplying regulator has already been enabled,
1201 		 * it's not intended to have use_count increment
1202 		 * when rdev is only boot-on.
1203 		 */
1204 		if (rdev->supply &&
1205 		    (rdev->constraints->always_on ||
1206 		     !regulator_is_enabled(rdev->supply))) {
1207 			ret = regulator_enable(rdev->supply);
1208 			if (ret < 0) {
1209 				_regulator_put(rdev->supply);
1210 				rdev->supply = NULL;
1211 				return ret;
1212 			}
1213 		}
1214 
1215 		ret = _regulator_do_enable(rdev);
1216 		if (ret < 0 && ret != -EINVAL) {
1217 			rdev_err(rdev, "failed to enable\n");
1218 			return ret;
1219 		}
1220 
1221 		if (rdev->constraints->always_on)
1222 			rdev->use_count++;
1223 	}
1224 
1225 	print_constraints(rdev);
1226 	return 0;
1227 }
1228 
1229 /**
1230  * set_supply - set regulator supply regulator
1231  * @rdev: regulator name
1232  * @supply_rdev: supply regulator name
1233  *
1234  * Called by platform initialisation code to set the supply regulator for this
1235  * regulator. This ensures that a regulators supply will also be enabled by the
1236  * core if it's child is enabled.
1237  */
set_supply(struct regulator_dev * rdev,struct regulator_dev * supply_rdev)1238 static int set_supply(struct regulator_dev *rdev,
1239 		      struct regulator_dev *supply_rdev)
1240 {
1241 	int err;
1242 
1243 	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1244 
1245 	if (!try_module_get(supply_rdev->owner))
1246 		return -ENODEV;
1247 
1248 	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1249 	if (rdev->supply == NULL) {
1250 		module_put(supply_rdev->owner);
1251 		err = -ENOMEM;
1252 		return err;
1253 	}
1254 	supply_rdev->open_count++;
1255 
1256 	return 0;
1257 }
1258 
1259 /**
1260  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1261  * @rdev:         regulator source
1262  * @consumer_dev_name: dev_name() string for device supply applies to
1263  * @supply:       symbolic name for supply
1264  *
1265  * Allows platform initialisation code to map physical regulator
1266  * sources to symbolic names for supplies for use by devices.  Devices
1267  * should use these symbolic names to request regulators, avoiding the
1268  * need to provide board-specific regulator names as platform data.
1269  */
set_consumer_device_supply(struct regulator_dev * rdev,const char * consumer_dev_name,const char * supply)1270 static int set_consumer_device_supply(struct regulator_dev *rdev,
1271 				      const char *consumer_dev_name,
1272 				      const char *supply)
1273 {
1274 	struct regulator_map *node, *new_node;
1275 	int has_dev;
1276 
1277 	if (supply == NULL)
1278 		return -EINVAL;
1279 
1280 	if (consumer_dev_name != NULL)
1281 		has_dev = 1;
1282 	else
1283 		has_dev = 0;
1284 
1285 	new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1286 	if (new_node == NULL)
1287 		return -ENOMEM;
1288 
1289 	new_node->regulator = rdev;
1290 	new_node->supply = supply;
1291 
1292 	if (has_dev) {
1293 		new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1294 		if (new_node->dev_name == NULL) {
1295 			kfree(new_node);
1296 			return -ENOMEM;
1297 		}
1298 	}
1299 
1300 	mutex_lock(&regulator_list_mutex);
1301 	list_for_each_entry(node, &regulator_map_list, list) {
1302 		if (node->dev_name && consumer_dev_name) {
1303 			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1304 				continue;
1305 		} else if (node->dev_name || consumer_dev_name) {
1306 			continue;
1307 		}
1308 
1309 		if (strcmp(node->supply, supply) != 0)
1310 			continue;
1311 
1312 		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1313 			 consumer_dev_name,
1314 			 dev_name(&node->regulator->dev),
1315 			 node->regulator->desc->name,
1316 			 supply,
1317 			 dev_name(&rdev->dev), rdev_get_name(rdev));
1318 		goto fail;
1319 	}
1320 
1321 	list_add(&new_node->list, &regulator_map_list);
1322 	mutex_unlock(&regulator_list_mutex);
1323 
1324 	return 0;
1325 
1326 fail:
1327 	mutex_unlock(&regulator_list_mutex);
1328 	kfree(new_node->dev_name);
1329 	kfree(new_node);
1330 	return -EBUSY;
1331 }
1332 
unset_regulator_supplies(struct regulator_dev * rdev)1333 static void unset_regulator_supplies(struct regulator_dev *rdev)
1334 {
1335 	struct regulator_map *node, *n;
1336 
1337 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1338 		if (rdev == node->regulator) {
1339 			list_del(&node->list);
1340 			kfree(node->dev_name);
1341 			kfree(node);
1342 		}
1343 	}
1344 }
1345 
1346 #ifdef CONFIG_DEBUG_FS
constraint_flags_read_file(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)1347 static ssize_t constraint_flags_read_file(struct file *file,
1348 					  char __user *user_buf,
1349 					  size_t count, loff_t *ppos)
1350 {
1351 	const struct regulator *regulator = file->private_data;
1352 	const struct regulation_constraints *c = regulator->rdev->constraints;
1353 	char *buf;
1354 	ssize_t ret;
1355 
1356 	if (!c)
1357 		return 0;
1358 
1359 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1360 	if (!buf)
1361 		return -ENOMEM;
1362 
1363 	ret = snprintf(buf, PAGE_SIZE,
1364 			"always_on: %u\n"
1365 			"boot_on: %u\n"
1366 			"apply_uV: %u\n"
1367 			"ramp_disable: %u\n"
1368 			"soft_start: %u\n"
1369 			"pull_down: %u\n"
1370 			"over_current_protection: %u\n",
1371 			c->always_on,
1372 			c->boot_on,
1373 			c->apply_uV,
1374 			c->ramp_disable,
1375 			c->soft_start,
1376 			c->pull_down,
1377 			c->over_current_protection);
1378 
1379 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1380 	kfree(buf);
1381 
1382 	return ret;
1383 }
1384 
1385 #endif
1386 
1387 static const struct file_operations constraint_flags_fops = {
1388 #ifdef CONFIG_DEBUG_FS
1389 	.open = simple_open,
1390 	.read = constraint_flags_read_file,
1391 	.llseek = default_llseek,
1392 #endif
1393 };
1394 
1395 #define REG_STR_SIZE	64
1396 
create_regulator(struct regulator_dev * rdev,struct device * dev,const char * supply_name)1397 static struct regulator *create_regulator(struct regulator_dev *rdev,
1398 					  struct device *dev,
1399 					  const char *supply_name)
1400 {
1401 	struct regulator *regulator;
1402 	char buf[REG_STR_SIZE];
1403 	int err, size;
1404 
1405 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1406 	if (regulator == NULL)
1407 		return NULL;
1408 
1409 	regulator_lock(rdev);
1410 	regulator->rdev = rdev;
1411 	list_add(&regulator->list, &rdev->consumer_list);
1412 
1413 	if (dev) {
1414 		regulator->dev = dev;
1415 
1416 		/* Add a link to the device sysfs entry */
1417 		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1418 				dev->kobj.name, supply_name);
1419 		if (size >= REG_STR_SIZE)
1420 			goto overflow_err;
1421 
1422 		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1423 		if (regulator->supply_name == NULL)
1424 			goto overflow_err;
1425 
1426 		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1427 					buf);
1428 		if (err) {
1429 			rdev_dbg(rdev, "could not add device link %s err %d\n",
1430 				  dev->kobj.name, err);
1431 			/* non-fatal */
1432 		}
1433 	} else {
1434 		regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1435 		if (regulator->supply_name == NULL)
1436 			goto overflow_err;
1437 	}
1438 
1439 	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1440 						rdev->debugfs);
1441 	if (!regulator->debugfs) {
1442 		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1443 	} else {
1444 		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1445 				   &regulator->uA_load);
1446 		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1447 				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1448 		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1449 				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1450 		debugfs_create_file("constraint_flags", 0444,
1451 				    regulator->debugfs, regulator,
1452 				    &constraint_flags_fops);
1453 	}
1454 
1455 	/*
1456 	 * Check now if the regulator is an always on regulator - if
1457 	 * it is then we don't need to do nearly so much work for
1458 	 * enable/disable calls.
1459 	 */
1460 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1461 	    _regulator_is_enabled(rdev))
1462 		regulator->always_on = true;
1463 
1464 	regulator_unlock(rdev);
1465 	return regulator;
1466 overflow_err:
1467 	list_del(&regulator->list);
1468 	kfree(regulator);
1469 	regulator_unlock(rdev);
1470 	return NULL;
1471 }
1472 
_regulator_get_enable_time(struct regulator_dev * rdev)1473 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1474 {
1475 	if (rdev->constraints && rdev->constraints->enable_time)
1476 		return rdev->constraints->enable_time;
1477 	if (!rdev->desc->ops->enable_time)
1478 		return rdev->desc->enable_time;
1479 	return rdev->desc->ops->enable_time(rdev);
1480 }
1481 
regulator_find_supply_alias(struct device * dev,const char * supply)1482 static struct regulator_supply_alias *regulator_find_supply_alias(
1483 		struct device *dev, const char *supply)
1484 {
1485 	struct regulator_supply_alias *map;
1486 
1487 	list_for_each_entry(map, &regulator_supply_alias_list, list)
1488 		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1489 			return map;
1490 
1491 	return NULL;
1492 }
1493 
regulator_supply_alias(struct device ** dev,const char ** supply)1494 static void regulator_supply_alias(struct device **dev, const char **supply)
1495 {
1496 	struct regulator_supply_alias *map;
1497 
1498 	map = regulator_find_supply_alias(*dev, *supply);
1499 	if (map) {
1500 		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1501 				*supply, map->alias_supply,
1502 				dev_name(map->alias_dev));
1503 		*dev = map->alias_dev;
1504 		*supply = map->alias_supply;
1505 	}
1506 }
1507 
regulator_match(struct device * dev,const void * data)1508 static int regulator_match(struct device *dev, const void *data)
1509 {
1510 	struct regulator_dev *r = dev_to_rdev(dev);
1511 
1512 	return strcmp(rdev_get_name(r), data) == 0;
1513 }
1514 
regulator_lookup_by_name(const char * name)1515 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1516 {
1517 	struct device *dev;
1518 
1519 	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1520 
1521 	return dev ? dev_to_rdev(dev) : NULL;
1522 }
1523 
1524 /**
1525  * regulator_dev_lookup - lookup a regulator device.
1526  * @dev: device for regulator "consumer".
1527  * @supply: Supply name or regulator ID.
1528  *
1529  * If successful, returns a struct regulator_dev that corresponds to the name
1530  * @supply and with the embedded struct device refcount incremented by one.
1531  * The refcount must be dropped by calling put_device().
1532  * On failure one of the following ERR-PTR-encoded values is returned:
1533  * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1534  * in the future.
1535  */
regulator_dev_lookup(struct device * dev,const char * supply)1536 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1537 						  const char *supply)
1538 {
1539 	struct regulator_dev *r = NULL;
1540 	struct device_node *node;
1541 	struct regulator_map *map;
1542 	const char *devname = NULL;
1543 
1544 	regulator_supply_alias(&dev, &supply);
1545 
1546 	/* first do a dt based lookup */
1547 	if (dev && dev->of_node) {
1548 		node = of_get_regulator(dev, supply);
1549 		if (node) {
1550 			r = of_find_regulator_by_node(node);
1551 			of_node_put(node);
1552 			if (r)
1553 				return r;
1554 
1555 			/*
1556 			 * We have a node, but there is no device.
1557 			 * assume it has not registered yet.
1558 			 */
1559 			return ERR_PTR(-EPROBE_DEFER);
1560 		}
1561 	}
1562 
1563 	/* if not found, try doing it non-dt way */
1564 	if (dev)
1565 		devname = dev_name(dev);
1566 
1567 	mutex_lock(&regulator_list_mutex);
1568 	list_for_each_entry(map, &regulator_map_list, list) {
1569 		/* If the mapping has a device set up it must match */
1570 		if (map->dev_name &&
1571 		    (!devname || strcmp(map->dev_name, devname)))
1572 			continue;
1573 
1574 		if (strcmp(map->supply, supply) == 0 &&
1575 		    get_device(&map->regulator->dev)) {
1576 			r = map->regulator;
1577 			break;
1578 		}
1579 	}
1580 	mutex_unlock(&regulator_list_mutex);
1581 
1582 	if (r)
1583 		return r;
1584 
1585 	r = regulator_lookup_by_name(supply);
1586 	if (r)
1587 		return r;
1588 
1589 	return ERR_PTR(-ENODEV);
1590 }
1591 
regulator_resolve_supply(struct regulator_dev * rdev)1592 static int regulator_resolve_supply(struct regulator_dev *rdev)
1593 {
1594 	struct regulator_dev *r;
1595 	struct device *dev = rdev->dev.parent;
1596 	int ret = 0;
1597 
1598 	/* No supply to resovle? */
1599 	if (!rdev->supply_name)
1600 		return 0;
1601 
1602 	/* Supply already resolved? (fast-path without locking contention) */
1603 	if (rdev->supply)
1604 		return 0;
1605 
1606 	r = regulator_dev_lookup(dev, rdev->supply_name);
1607 	if (IS_ERR(r)) {
1608 		ret = PTR_ERR(r);
1609 
1610 		/* Did the lookup explicitly defer for us? */
1611 		if (ret == -EPROBE_DEFER)
1612 			goto out;
1613 
1614 		if (have_full_constraints()) {
1615 			r = dummy_regulator_rdev;
1616 			get_device(&r->dev);
1617 		} else {
1618 			dev_err(dev, "Failed to resolve %s-supply for %s\n",
1619 				rdev->supply_name, rdev->desc->name);
1620 			ret = -EPROBE_DEFER;
1621 			goto out;
1622 		}
1623 	}
1624 
1625 	if (r == rdev) {
1626 		dev_err(dev, "Supply for %s (%s) resolved to itself\n",
1627 			rdev->desc->name, rdev->supply_name);
1628 		if (!have_full_constraints()) {
1629 			ret = -EINVAL;
1630 			goto out;
1631 		}
1632 		r = dummy_regulator_rdev;
1633 		get_device(&r->dev);
1634 	}
1635 
1636 	/*
1637 	 * If the supply's parent device is not the same as the
1638 	 * regulator's parent device, then ensure the parent device
1639 	 * is bound before we resolve the supply, in case the parent
1640 	 * device get probe deferred and unregisters the supply.
1641 	 */
1642 	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1643 		if (!device_is_bound(r->dev.parent)) {
1644 			put_device(&r->dev);
1645 			ret = -EPROBE_DEFER;
1646 			goto out;
1647 		}
1648 	}
1649 
1650 	/* Recursively resolve the supply of the supply */
1651 	ret = regulator_resolve_supply(r);
1652 	if (ret < 0) {
1653 		put_device(&r->dev);
1654 		goto out;
1655 	}
1656 
1657 	/*
1658 	 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
1659 	 * between rdev->supply null check and setting rdev->supply in
1660 	 * set_supply() from concurrent tasks.
1661 	 */
1662 	regulator_lock(rdev);
1663 
1664 	/* Supply just resolved by a concurrent task? */
1665 	if (rdev->supply) {
1666 		regulator_unlock(rdev);
1667 		put_device(&r->dev);
1668 		goto out;
1669 	}
1670 
1671 	ret = set_supply(rdev, r);
1672 	if (ret < 0) {
1673 		regulator_unlock(rdev);
1674 		put_device(&r->dev);
1675 		goto out;
1676 	}
1677 
1678 	regulator_unlock(rdev);
1679 
1680 	/*
1681 	 * In set_machine_constraints() we may have turned this regulator on
1682 	 * but we couldn't propagate to the supply if it hadn't been resolved
1683 	 * yet.  Do it now.
1684 	 */
1685 	if (rdev->use_count) {
1686 		ret = regulator_enable(rdev->supply);
1687 		if (ret < 0) {
1688 			_regulator_put(rdev->supply);
1689 			rdev->supply = NULL;
1690 			goto out;
1691 		}
1692 	}
1693 
1694 out:
1695 	return ret;
1696 }
1697 
1698 /* Internal regulator request function */
_regulator_get(struct device * dev,const char * id,enum regulator_get_type get_type)1699 struct regulator *_regulator_get(struct device *dev, const char *id,
1700 				 enum regulator_get_type get_type)
1701 {
1702 	struct regulator_dev *rdev;
1703 	struct regulator *regulator;
1704 	const char *devname = dev ? dev_name(dev) : "deviceless";
1705 	int ret;
1706 
1707 	if (get_type >= MAX_GET_TYPE) {
1708 		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1709 		return ERR_PTR(-EINVAL);
1710 	}
1711 
1712 	if (id == NULL) {
1713 		pr_err("get() with no identifier\n");
1714 		return ERR_PTR(-EINVAL);
1715 	}
1716 
1717 	rdev = regulator_dev_lookup(dev, id);
1718 	if (IS_ERR(rdev)) {
1719 		ret = PTR_ERR(rdev);
1720 
1721 		/*
1722 		 * If regulator_dev_lookup() fails with error other
1723 		 * than -ENODEV our job here is done, we simply return it.
1724 		 */
1725 		if (ret != -ENODEV)
1726 			return ERR_PTR(ret);
1727 
1728 		if (!have_full_constraints()) {
1729 			dev_warn(dev,
1730 				 "incomplete constraints, dummy supplies not allowed\n");
1731 			return ERR_PTR(-ENODEV);
1732 		}
1733 
1734 		switch (get_type) {
1735 		case NORMAL_GET:
1736 			/*
1737 			 * Assume that a regulator is physically present and
1738 			 * enabled, even if it isn't hooked up, and just
1739 			 * provide a dummy.
1740 			 */
1741 			dev_warn(dev,
1742 				 "%s supply %s not found, using dummy regulator\n",
1743 				 devname, id);
1744 			rdev = dummy_regulator_rdev;
1745 			get_device(&rdev->dev);
1746 			break;
1747 
1748 		case EXCLUSIVE_GET:
1749 			dev_warn(dev,
1750 				 "dummy supplies not allowed for exclusive requests\n");
1751 			/* fall through */
1752 
1753 		default:
1754 			return ERR_PTR(-ENODEV);
1755 		}
1756 	}
1757 
1758 	if (rdev->exclusive) {
1759 		regulator = ERR_PTR(-EPERM);
1760 		put_device(&rdev->dev);
1761 		return regulator;
1762 	}
1763 
1764 	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1765 		regulator = ERR_PTR(-EBUSY);
1766 		put_device(&rdev->dev);
1767 		return regulator;
1768 	}
1769 
1770 	ret = regulator_resolve_supply(rdev);
1771 	if (ret < 0) {
1772 		regulator = ERR_PTR(ret);
1773 		put_device(&rdev->dev);
1774 		return regulator;
1775 	}
1776 
1777 	if (!try_module_get(rdev->owner)) {
1778 		regulator = ERR_PTR(-EPROBE_DEFER);
1779 		put_device(&rdev->dev);
1780 		return regulator;
1781 	}
1782 
1783 	regulator = create_regulator(rdev, dev, id);
1784 	if (regulator == NULL) {
1785 		regulator = ERR_PTR(-ENOMEM);
1786 		module_put(rdev->owner);
1787 		put_device(&rdev->dev);
1788 		return regulator;
1789 	}
1790 
1791 	rdev->open_count++;
1792 	if (get_type == EXCLUSIVE_GET) {
1793 		rdev->exclusive = 1;
1794 
1795 		ret = _regulator_is_enabled(rdev);
1796 		if (ret > 0)
1797 			rdev->use_count = 1;
1798 		else
1799 			rdev->use_count = 0;
1800 	}
1801 
1802 	device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
1803 
1804 	return regulator;
1805 }
1806 
1807 /**
1808  * regulator_get - lookup and obtain a reference to a regulator.
1809  * @dev: device for regulator "consumer"
1810  * @id: Supply name or regulator ID.
1811  *
1812  * Returns a struct regulator corresponding to the regulator producer,
1813  * or IS_ERR() condition containing errno.
1814  *
1815  * Use of supply names configured via regulator_set_device_supply() is
1816  * strongly encouraged.  It is recommended that the supply name used
1817  * should match the name used for the supply and/or the relevant
1818  * device pins in the datasheet.
1819  */
regulator_get(struct device * dev,const char * id)1820 struct regulator *regulator_get(struct device *dev, const char *id)
1821 {
1822 	return _regulator_get(dev, id, NORMAL_GET);
1823 }
1824 EXPORT_SYMBOL_GPL(regulator_get);
1825 
1826 /**
1827  * regulator_get_exclusive - obtain exclusive access to a regulator.
1828  * @dev: device for regulator "consumer"
1829  * @id: Supply name or regulator ID.
1830  *
1831  * Returns a struct regulator corresponding to the regulator producer,
1832  * or IS_ERR() condition containing errno.  Other consumers will be
1833  * unable to obtain this regulator while this reference is held and the
1834  * use count for the regulator will be initialised to reflect the current
1835  * state of the regulator.
1836  *
1837  * This is intended for use by consumers which cannot tolerate shared
1838  * use of the regulator such as those which need to force the
1839  * regulator off for correct operation of the hardware they are
1840  * controlling.
1841  *
1842  * Use of supply names configured via regulator_set_device_supply() is
1843  * strongly encouraged.  It is recommended that the supply name used
1844  * should match the name used for the supply and/or the relevant
1845  * device pins in the datasheet.
1846  */
regulator_get_exclusive(struct device * dev,const char * id)1847 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1848 {
1849 	return _regulator_get(dev, id, EXCLUSIVE_GET);
1850 }
1851 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1852 
1853 /**
1854  * regulator_get_optional - obtain optional access to a regulator.
1855  * @dev: device for regulator "consumer"
1856  * @id: Supply name or regulator ID.
1857  *
1858  * Returns a struct regulator corresponding to the regulator producer,
1859  * or IS_ERR() condition containing errno.
1860  *
1861  * This is intended for use by consumers for devices which can have
1862  * some supplies unconnected in normal use, such as some MMC devices.
1863  * It can allow the regulator core to provide stub supplies for other
1864  * supplies requested using normal regulator_get() calls without
1865  * disrupting the operation of drivers that can handle absent
1866  * supplies.
1867  *
1868  * Use of supply names configured via regulator_set_device_supply() is
1869  * strongly encouraged.  It is recommended that the supply name used
1870  * should match the name used for the supply and/or the relevant
1871  * device pins in the datasheet.
1872  */
regulator_get_optional(struct device * dev,const char * id)1873 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1874 {
1875 	return _regulator_get(dev, id, OPTIONAL_GET);
1876 }
1877 EXPORT_SYMBOL_GPL(regulator_get_optional);
1878 
1879 /* regulator_list_mutex lock held by regulator_put() */
_regulator_put(struct regulator * regulator)1880 static void _regulator_put(struct regulator *regulator)
1881 {
1882 	struct regulator_dev *rdev;
1883 
1884 	if (IS_ERR_OR_NULL(regulator))
1885 		return;
1886 
1887 	lockdep_assert_held_once(&regulator_list_mutex);
1888 
1889 	rdev = regulator->rdev;
1890 
1891 	debugfs_remove_recursive(regulator->debugfs);
1892 
1893 	if (regulator->dev) {
1894 		int count = 0;
1895 		struct regulator *r;
1896 
1897 		list_for_each_entry(r, &rdev->consumer_list, list)
1898 			if (r->dev == regulator->dev)
1899 				count++;
1900 
1901 		if (count == 1)
1902 			device_link_remove(regulator->dev, &rdev->dev);
1903 
1904 		/* remove any sysfs entries */
1905 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1906 	}
1907 
1908 	regulator_lock(rdev);
1909 	list_del(&regulator->list);
1910 
1911 	rdev->open_count--;
1912 	rdev->exclusive = 0;
1913 	regulator_unlock(rdev);
1914 
1915 	kfree_const(regulator->supply_name);
1916 	kfree(regulator);
1917 
1918 	module_put(rdev->owner);
1919 	put_device(&rdev->dev);
1920 }
1921 
1922 /**
1923  * regulator_put - "free" the regulator source
1924  * @regulator: regulator source
1925  *
1926  * Note: drivers must ensure that all regulator_enable calls made on this
1927  * regulator source are balanced by regulator_disable calls prior to calling
1928  * this function.
1929  */
regulator_put(struct regulator * regulator)1930 void regulator_put(struct regulator *regulator)
1931 {
1932 	mutex_lock(&regulator_list_mutex);
1933 	_regulator_put(regulator);
1934 	mutex_unlock(&regulator_list_mutex);
1935 }
1936 EXPORT_SYMBOL_GPL(regulator_put);
1937 
1938 /**
1939  * regulator_register_supply_alias - Provide device alias for supply lookup
1940  *
1941  * @dev: device that will be given as the regulator "consumer"
1942  * @id: Supply name or regulator ID
1943  * @alias_dev: device that should be used to lookup the supply
1944  * @alias_id: Supply name or regulator ID that should be used to lookup the
1945  * supply
1946  *
1947  * All lookups for id on dev will instead be conducted for alias_id on
1948  * alias_dev.
1949  */
regulator_register_supply_alias(struct device * dev,const char * id,struct device * alias_dev,const char * alias_id)1950 int regulator_register_supply_alias(struct device *dev, const char *id,
1951 				    struct device *alias_dev,
1952 				    const char *alias_id)
1953 {
1954 	struct regulator_supply_alias *map;
1955 
1956 	map = regulator_find_supply_alias(dev, id);
1957 	if (map)
1958 		return -EEXIST;
1959 
1960 	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1961 	if (!map)
1962 		return -ENOMEM;
1963 
1964 	map->src_dev = dev;
1965 	map->src_supply = id;
1966 	map->alias_dev = alias_dev;
1967 	map->alias_supply = alias_id;
1968 
1969 	list_add(&map->list, &regulator_supply_alias_list);
1970 
1971 	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1972 		id, dev_name(dev), alias_id, dev_name(alias_dev));
1973 
1974 	return 0;
1975 }
1976 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1977 
1978 /**
1979  * regulator_unregister_supply_alias - Remove device alias
1980  *
1981  * @dev: device that will be given as the regulator "consumer"
1982  * @id: Supply name or regulator ID
1983  *
1984  * Remove a lookup alias if one exists for id on dev.
1985  */
regulator_unregister_supply_alias(struct device * dev,const char * id)1986 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1987 {
1988 	struct regulator_supply_alias *map;
1989 
1990 	map = regulator_find_supply_alias(dev, id);
1991 	if (map) {
1992 		list_del(&map->list);
1993 		kfree(map);
1994 	}
1995 }
1996 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1997 
1998 /**
1999  * regulator_bulk_register_supply_alias - register multiple aliases
2000  *
2001  * @dev: device that will be given as the regulator "consumer"
2002  * @id: List of supply names or regulator IDs
2003  * @alias_dev: device that should be used to lookup the supply
2004  * @alias_id: List of supply names or regulator IDs that should be used to
2005  * lookup the supply
2006  * @num_id: Number of aliases to register
2007  *
2008  * @return 0 on success, an errno on failure.
2009  *
2010  * This helper function allows drivers to register several supply
2011  * aliases in one operation.  If any of the aliases cannot be
2012  * registered any aliases that were registered will be removed
2013  * before returning to the caller.
2014  */
regulator_bulk_register_supply_alias(struct device * dev,const char * const * id,struct device * alias_dev,const char * const * alias_id,int num_id)2015 int regulator_bulk_register_supply_alias(struct device *dev,
2016 					 const char *const *id,
2017 					 struct device *alias_dev,
2018 					 const char *const *alias_id,
2019 					 int num_id)
2020 {
2021 	int i;
2022 	int ret;
2023 
2024 	for (i = 0; i < num_id; ++i) {
2025 		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2026 						      alias_id[i]);
2027 		if (ret < 0)
2028 			goto err;
2029 	}
2030 
2031 	return 0;
2032 
2033 err:
2034 	dev_err(dev,
2035 		"Failed to create supply alias %s,%s -> %s,%s\n",
2036 		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2037 
2038 	while (--i >= 0)
2039 		regulator_unregister_supply_alias(dev, id[i]);
2040 
2041 	return ret;
2042 }
2043 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2044 
2045 /**
2046  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2047  *
2048  * @dev: device that will be given as the regulator "consumer"
2049  * @id: List of supply names or regulator IDs
2050  * @num_id: Number of aliases to unregister
2051  *
2052  * This helper function allows drivers to unregister several supply
2053  * aliases in one operation.
2054  */
regulator_bulk_unregister_supply_alias(struct device * dev,const char * const * id,int num_id)2055 void regulator_bulk_unregister_supply_alias(struct device *dev,
2056 					    const char *const *id,
2057 					    int num_id)
2058 {
2059 	int i;
2060 
2061 	for (i = 0; i < num_id; ++i)
2062 		regulator_unregister_supply_alias(dev, id[i]);
2063 }
2064 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2065 
2066 
2067 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
regulator_ena_gpio_request(struct regulator_dev * rdev,const struct regulator_config * config)2068 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2069 				const struct regulator_config *config)
2070 {
2071 	struct regulator_enable_gpio *pin;
2072 	struct gpio_desc *gpiod;
2073 	int ret;
2074 
2075 	if (config->ena_gpiod)
2076 		gpiod = config->ena_gpiod;
2077 	else
2078 		gpiod = gpio_to_desc(config->ena_gpio);
2079 
2080 	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2081 		if (pin->gpiod == gpiod) {
2082 			rdev_dbg(rdev, "GPIO %d is already used\n",
2083 				config->ena_gpio);
2084 			goto update_ena_gpio_to_rdev;
2085 		}
2086 	}
2087 
2088 	if (!config->ena_gpiod) {
2089 		ret = gpio_request_one(config->ena_gpio,
2090 				       GPIOF_DIR_OUT | config->ena_gpio_flags,
2091 				       rdev_get_name(rdev));
2092 		if (ret)
2093 			return ret;
2094 	}
2095 
2096 	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
2097 	if (pin == NULL) {
2098 		if (!config->ena_gpiod)
2099 			gpio_free(config->ena_gpio);
2100 		return -ENOMEM;
2101 	}
2102 
2103 	pin->gpiod = gpiod;
2104 	pin->ena_gpio_invert = config->ena_gpio_invert;
2105 	list_add(&pin->list, &regulator_ena_gpio_list);
2106 
2107 update_ena_gpio_to_rdev:
2108 	pin->request_count++;
2109 	rdev->ena_pin = pin;
2110 	return 0;
2111 }
2112 
regulator_ena_gpio_free(struct regulator_dev * rdev)2113 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2114 {
2115 	struct regulator_enable_gpio *pin, *n;
2116 
2117 	if (!rdev->ena_pin)
2118 		return;
2119 
2120 	/* Free the GPIO only in case of no use */
2121 	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2122 		if (pin->gpiod == rdev->ena_pin->gpiod) {
2123 			if (pin->request_count <= 1) {
2124 				pin->request_count = 0;
2125 				gpiod_put(pin->gpiod);
2126 				list_del(&pin->list);
2127 				kfree(pin);
2128 				rdev->ena_pin = NULL;
2129 				return;
2130 			} else {
2131 				pin->request_count--;
2132 			}
2133 		}
2134 	}
2135 }
2136 
2137 /**
2138  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2139  * @rdev: regulator_dev structure
2140  * @enable: enable GPIO at initial use?
2141  *
2142  * GPIO is enabled in case of initial use. (enable_count is 0)
2143  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2144  */
regulator_ena_gpio_ctrl(struct regulator_dev * rdev,bool enable)2145 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2146 {
2147 	struct regulator_enable_gpio *pin = rdev->ena_pin;
2148 
2149 	if (!pin)
2150 		return -EINVAL;
2151 
2152 	if (enable) {
2153 		/* Enable GPIO at initial use */
2154 		if (pin->enable_count == 0)
2155 			gpiod_set_value_cansleep(pin->gpiod,
2156 						 !pin->ena_gpio_invert);
2157 
2158 		pin->enable_count++;
2159 	} else {
2160 		if (pin->enable_count > 1) {
2161 			pin->enable_count--;
2162 			return 0;
2163 		}
2164 
2165 		/* Disable GPIO if not used */
2166 		if (pin->enable_count <= 1) {
2167 			gpiod_set_value_cansleep(pin->gpiod,
2168 						 pin->ena_gpio_invert);
2169 			pin->enable_count = 0;
2170 		}
2171 	}
2172 
2173 	return 0;
2174 }
2175 
2176 /**
2177  * _regulator_enable_delay - a delay helper function
2178  * @delay: time to delay in microseconds
2179  *
2180  * Delay for the requested amount of time as per the guidelines in:
2181  *
2182  *     Documentation/timers/timers-howto.txt
2183  *
2184  * The assumption here is that regulators will never be enabled in
2185  * atomic context and therefore sleeping functions can be used.
2186  */
_regulator_enable_delay(unsigned int delay)2187 static void _regulator_enable_delay(unsigned int delay)
2188 {
2189 	unsigned int ms = delay / 1000;
2190 	unsigned int us = delay % 1000;
2191 
2192 	if (ms > 0) {
2193 		/*
2194 		 * For small enough values, handle super-millisecond
2195 		 * delays in the usleep_range() call below.
2196 		 */
2197 		if (ms < 20)
2198 			us += ms * 1000;
2199 		else
2200 			msleep(ms);
2201 	}
2202 
2203 	/*
2204 	 * Give the scheduler some room to coalesce with any other
2205 	 * wakeup sources. For delays shorter than 10 us, don't even
2206 	 * bother setting up high-resolution timers and just busy-
2207 	 * loop.
2208 	 */
2209 	if (us >= 10)
2210 		usleep_range(us, us + 100);
2211 	else
2212 		udelay(us);
2213 }
2214 
_regulator_do_enable(struct regulator_dev * rdev)2215 static int _regulator_do_enable(struct regulator_dev *rdev)
2216 {
2217 	int ret, delay;
2218 
2219 	/* Query before enabling in case configuration dependent.  */
2220 	ret = _regulator_get_enable_time(rdev);
2221 	if (ret >= 0) {
2222 		delay = ret;
2223 	} else {
2224 		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2225 		delay = 0;
2226 	}
2227 
2228 	trace_regulator_enable(rdev_get_name(rdev));
2229 
2230 	if (rdev->desc->off_on_delay) {
2231 		/* if needed, keep a distance of off_on_delay from last time
2232 		 * this regulator was disabled.
2233 		 */
2234 		unsigned long start_jiffy = jiffies;
2235 		unsigned long intended, max_delay, remaining;
2236 
2237 		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2238 		intended = rdev->last_off_jiffy + max_delay;
2239 
2240 		if (time_before(start_jiffy, intended)) {
2241 			/* calc remaining jiffies to deal with one-time
2242 			 * timer wrapping.
2243 			 * in case of multiple timer wrapping, either it can be
2244 			 * detected by out-of-range remaining, or it cannot be
2245 			 * detected and we gets a panelty of
2246 			 * _regulator_enable_delay().
2247 			 */
2248 			remaining = intended - start_jiffy;
2249 			if (remaining <= max_delay)
2250 				_regulator_enable_delay(
2251 						jiffies_to_usecs(remaining));
2252 		}
2253 	}
2254 
2255 	if (rdev->ena_pin) {
2256 		if (!rdev->ena_gpio_state) {
2257 			ret = regulator_ena_gpio_ctrl(rdev, true);
2258 			if (ret < 0)
2259 				return ret;
2260 			rdev->ena_gpio_state = 1;
2261 		}
2262 	} else if (rdev->desc->ops->enable) {
2263 		ret = rdev->desc->ops->enable(rdev);
2264 		if (ret < 0)
2265 			return ret;
2266 	} else {
2267 		return -EINVAL;
2268 	}
2269 
2270 	/* Allow the regulator to ramp; it would be useful to extend
2271 	 * this for bulk operations so that the regulators can ramp
2272 	 * together.  */
2273 	trace_regulator_enable_delay(rdev_get_name(rdev));
2274 
2275 	_regulator_enable_delay(delay);
2276 
2277 	trace_regulator_enable_complete(rdev_get_name(rdev));
2278 
2279 	return 0;
2280 }
2281 
2282 /* locks held by regulator_enable() */
_regulator_enable(struct regulator_dev * rdev)2283 static int _regulator_enable(struct regulator_dev *rdev)
2284 {
2285 	int ret;
2286 
2287 	lockdep_assert_held_once(&rdev->mutex);
2288 
2289 	/* check voltage and requested load before enabling */
2290 	if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2291 		drms_uA_update(rdev);
2292 
2293 	if (rdev->use_count == 0) {
2294 		/* The regulator may on if it's not switchable or left on */
2295 		ret = _regulator_is_enabled(rdev);
2296 		if (ret == -EINVAL || ret == 0) {
2297 			if (!regulator_ops_is_valid(rdev,
2298 					REGULATOR_CHANGE_STATUS))
2299 				return -EPERM;
2300 
2301 			ret = _regulator_do_enable(rdev);
2302 			if (ret < 0)
2303 				return ret;
2304 
2305 			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2306 					     NULL);
2307 		} else if (ret < 0) {
2308 			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2309 			return ret;
2310 		}
2311 		/* Fallthrough on positive return values - already enabled */
2312 	}
2313 
2314 	rdev->use_count++;
2315 
2316 	return 0;
2317 }
2318 
2319 /**
2320  * regulator_enable - enable regulator output
2321  * @regulator: regulator source
2322  *
2323  * Request that the regulator be enabled with the regulator output at
2324  * the predefined voltage or current value.  Calls to regulator_enable()
2325  * must be balanced with calls to regulator_disable().
2326  *
2327  * NOTE: the output value can be set by other drivers, boot loader or may be
2328  * hardwired in the regulator.
2329  */
regulator_enable(struct regulator * regulator)2330 int regulator_enable(struct regulator *regulator)
2331 {
2332 	struct regulator_dev *rdev = regulator->rdev;
2333 	int ret = 0;
2334 
2335 	if (regulator->always_on)
2336 		return 0;
2337 
2338 	if (rdev->supply) {
2339 		ret = regulator_enable(rdev->supply);
2340 		if (ret != 0)
2341 			return ret;
2342 	}
2343 
2344 	mutex_lock(&rdev->mutex);
2345 	ret = _regulator_enable(rdev);
2346 	mutex_unlock(&rdev->mutex);
2347 
2348 	if (ret != 0 && rdev->supply)
2349 		regulator_disable(rdev->supply);
2350 
2351 	return ret;
2352 }
2353 EXPORT_SYMBOL_GPL(regulator_enable);
2354 
_regulator_do_disable(struct regulator_dev * rdev)2355 static int _regulator_do_disable(struct regulator_dev *rdev)
2356 {
2357 	int ret;
2358 
2359 	trace_regulator_disable(rdev_get_name(rdev));
2360 
2361 	if (rdev->ena_pin) {
2362 		if (rdev->ena_gpio_state) {
2363 			ret = regulator_ena_gpio_ctrl(rdev, false);
2364 			if (ret < 0)
2365 				return ret;
2366 			rdev->ena_gpio_state = 0;
2367 		}
2368 
2369 	} else if (rdev->desc->ops->disable) {
2370 		ret = rdev->desc->ops->disable(rdev);
2371 		if (ret != 0)
2372 			return ret;
2373 	}
2374 
2375 	/* cares about last_off_jiffy only if off_on_delay is required by
2376 	 * device.
2377 	 */
2378 	if (rdev->desc->off_on_delay)
2379 		rdev->last_off_jiffy = jiffies;
2380 
2381 	trace_regulator_disable_complete(rdev_get_name(rdev));
2382 
2383 	return 0;
2384 }
2385 
2386 /* locks held by regulator_disable() */
_regulator_disable(struct regulator_dev * rdev)2387 static int _regulator_disable(struct regulator_dev *rdev)
2388 {
2389 	int ret = 0;
2390 
2391 	lockdep_assert_held_once(&rdev->mutex);
2392 
2393 	if (WARN(rdev->use_count <= 0,
2394 		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2395 		return -EIO;
2396 
2397 	/* are we the last user and permitted to disable ? */
2398 	if (rdev->use_count == 1 &&
2399 	    (rdev->constraints && !rdev->constraints->always_on)) {
2400 
2401 		/* we are last user */
2402 		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2403 			ret = _notifier_call_chain(rdev,
2404 						   REGULATOR_EVENT_PRE_DISABLE,
2405 						   NULL);
2406 			if (ret & NOTIFY_STOP_MASK)
2407 				return -EINVAL;
2408 
2409 			ret = _regulator_do_disable(rdev);
2410 			if (ret < 0) {
2411 				rdev_err(rdev, "failed to disable\n");
2412 				_notifier_call_chain(rdev,
2413 						REGULATOR_EVENT_ABORT_DISABLE,
2414 						NULL);
2415 				return ret;
2416 			}
2417 			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2418 					NULL);
2419 		}
2420 
2421 		rdev->use_count = 0;
2422 	} else if (rdev->use_count > 1) {
2423 		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2424 			drms_uA_update(rdev);
2425 
2426 		rdev->use_count--;
2427 	}
2428 
2429 	return ret;
2430 }
2431 
2432 /**
2433  * regulator_disable - disable regulator output
2434  * @regulator: regulator source
2435  *
2436  * Disable the regulator output voltage or current.  Calls to
2437  * regulator_enable() must be balanced with calls to
2438  * regulator_disable().
2439  *
2440  * NOTE: this will only disable the regulator output if no other consumer
2441  * devices have it enabled, the regulator device supports disabling and
2442  * machine constraints permit this operation.
2443  */
regulator_disable(struct regulator * regulator)2444 int regulator_disable(struct regulator *regulator)
2445 {
2446 	struct regulator_dev *rdev = regulator->rdev;
2447 	int ret = 0;
2448 
2449 	if (regulator->always_on)
2450 		return 0;
2451 
2452 	mutex_lock(&rdev->mutex);
2453 	ret = _regulator_disable(rdev);
2454 	mutex_unlock(&rdev->mutex);
2455 
2456 	if (ret == 0 && rdev->supply)
2457 		regulator_disable(rdev->supply);
2458 
2459 	return ret;
2460 }
2461 EXPORT_SYMBOL_GPL(regulator_disable);
2462 
2463 /* locks held by regulator_force_disable() */
_regulator_force_disable(struct regulator_dev * rdev)2464 static int _regulator_force_disable(struct regulator_dev *rdev)
2465 {
2466 	int ret = 0;
2467 
2468 	lockdep_assert_held_once(&rdev->mutex);
2469 
2470 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2471 			REGULATOR_EVENT_PRE_DISABLE, NULL);
2472 	if (ret & NOTIFY_STOP_MASK)
2473 		return -EINVAL;
2474 
2475 	ret = _regulator_do_disable(rdev);
2476 	if (ret < 0) {
2477 		rdev_err(rdev, "failed to force disable\n");
2478 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2479 				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2480 		return ret;
2481 	}
2482 
2483 	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2484 			REGULATOR_EVENT_DISABLE, NULL);
2485 
2486 	return 0;
2487 }
2488 
2489 /**
2490  * regulator_force_disable - force disable regulator output
2491  * @regulator: regulator source
2492  *
2493  * Forcibly disable the regulator output voltage or current.
2494  * NOTE: this *will* disable the regulator output even if other consumer
2495  * devices have it enabled. This should be used for situations when device
2496  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2497  */
regulator_force_disable(struct regulator * regulator)2498 int regulator_force_disable(struct regulator *regulator)
2499 {
2500 	struct regulator_dev *rdev = regulator->rdev;
2501 	int ret;
2502 
2503 	mutex_lock(&rdev->mutex);
2504 	regulator->uA_load = 0;
2505 	ret = _regulator_force_disable(regulator->rdev);
2506 	mutex_unlock(&rdev->mutex);
2507 
2508 	if (rdev->supply)
2509 		while (rdev->open_count--)
2510 			regulator_disable(rdev->supply);
2511 
2512 	return ret;
2513 }
2514 EXPORT_SYMBOL_GPL(regulator_force_disable);
2515 
regulator_disable_work(struct work_struct * work)2516 static void regulator_disable_work(struct work_struct *work)
2517 {
2518 	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2519 						  disable_work.work);
2520 	int count, i, ret;
2521 
2522 	regulator_lock(rdev);
2523 
2524 	BUG_ON(!rdev->deferred_disables);
2525 
2526 	count = rdev->deferred_disables;
2527 	rdev->deferred_disables = 0;
2528 
2529 	/*
2530 	 * Workqueue functions queue the new work instance while the previous
2531 	 * work instance is being processed. Cancel the queued work instance
2532 	 * as the work instance under processing does the job of the queued
2533 	 * work instance.
2534 	 */
2535 	cancel_delayed_work(&rdev->disable_work);
2536 
2537 	for (i = 0; i < count; i++) {
2538 		ret = _regulator_disable(rdev);
2539 		if (ret != 0)
2540 			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2541 	}
2542 
2543 	regulator_unlock(rdev);
2544 
2545 	if (rdev->supply) {
2546 		for (i = 0; i < count; i++) {
2547 			ret = regulator_disable(rdev->supply);
2548 			if (ret != 0) {
2549 				rdev_err(rdev,
2550 					 "Supply disable failed: %d\n", ret);
2551 			}
2552 		}
2553 	}
2554 }
2555 
2556 /**
2557  * regulator_disable_deferred - disable regulator output with delay
2558  * @regulator: regulator source
2559  * @ms: miliseconds until the regulator is disabled
2560  *
2561  * Execute regulator_disable() on the regulator after a delay.  This
2562  * is intended for use with devices that require some time to quiesce.
2563  *
2564  * NOTE: this will only disable the regulator output if no other consumer
2565  * devices have it enabled, the regulator device supports disabling and
2566  * machine constraints permit this operation.
2567  */
regulator_disable_deferred(struct regulator * regulator,int ms)2568 int regulator_disable_deferred(struct regulator *regulator, int ms)
2569 {
2570 	struct regulator_dev *rdev = regulator->rdev;
2571 
2572 	if (regulator->always_on)
2573 		return 0;
2574 
2575 	if (!ms)
2576 		return regulator_disable(regulator);
2577 
2578 	regulator_lock(rdev);
2579 	rdev->deferred_disables++;
2580 	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2581 			 msecs_to_jiffies(ms));
2582 	regulator_unlock(rdev);
2583 
2584 	return 0;
2585 }
2586 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2587 
_regulator_is_enabled(struct regulator_dev * rdev)2588 static int _regulator_is_enabled(struct regulator_dev *rdev)
2589 {
2590 	/* A GPIO control always takes precedence */
2591 	if (rdev->ena_pin)
2592 		return rdev->ena_gpio_state;
2593 
2594 	/* If we don't know then assume that the regulator is always on */
2595 	if (!rdev->desc->ops->is_enabled)
2596 		return 1;
2597 
2598 	return rdev->desc->ops->is_enabled(rdev);
2599 }
2600 
_regulator_list_voltage(struct regulator_dev * rdev,unsigned selector,int lock)2601 static int _regulator_list_voltage(struct regulator_dev *rdev,
2602 				   unsigned selector, int lock)
2603 {
2604 	const struct regulator_ops *ops = rdev->desc->ops;
2605 	int ret;
2606 
2607 	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2608 		return rdev->desc->fixed_uV;
2609 
2610 	if (ops->list_voltage) {
2611 		if (selector >= rdev->desc->n_voltages)
2612 			return -EINVAL;
2613 		if (lock)
2614 			regulator_lock(rdev);
2615 		ret = ops->list_voltage(rdev, selector);
2616 		if (lock)
2617 			regulator_unlock(rdev);
2618 	} else if (rdev->is_switch && rdev->supply) {
2619 		ret = _regulator_list_voltage(rdev->supply->rdev,
2620 					      selector, lock);
2621 	} else {
2622 		return -EINVAL;
2623 	}
2624 
2625 	if (ret > 0) {
2626 		if (ret < rdev->constraints->min_uV)
2627 			ret = 0;
2628 		else if (ret > rdev->constraints->max_uV)
2629 			ret = 0;
2630 	}
2631 
2632 	return ret;
2633 }
2634 
2635 /**
2636  * regulator_is_enabled - is the regulator output enabled
2637  * @regulator: regulator source
2638  *
2639  * Returns positive if the regulator driver backing the source/client
2640  * has requested that the device be enabled, zero if it hasn't, else a
2641  * negative errno code.
2642  *
2643  * Note that the device backing this regulator handle can have multiple
2644  * users, so it might be enabled even if regulator_enable() was never
2645  * called for this particular source.
2646  */
regulator_is_enabled(struct regulator * regulator)2647 int regulator_is_enabled(struct regulator *regulator)
2648 {
2649 	int ret;
2650 
2651 	if (regulator->always_on)
2652 		return 1;
2653 
2654 	mutex_lock(&regulator->rdev->mutex);
2655 	ret = _regulator_is_enabled(regulator->rdev);
2656 	mutex_unlock(&regulator->rdev->mutex);
2657 
2658 	return ret;
2659 }
2660 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2661 
2662 /**
2663  * regulator_count_voltages - count regulator_list_voltage() selectors
2664  * @regulator: regulator source
2665  *
2666  * Returns number of selectors, or negative errno.  Selectors are
2667  * numbered starting at zero, and typically correspond to bitfields
2668  * in hardware registers.
2669  */
regulator_count_voltages(struct regulator * regulator)2670 int regulator_count_voltages(struct regulator *regulator)
2671 {
2672 	struct regulator_dev	*rdev = regulator->rdev;
2673 
2674 	if (rdev->desc->n_voltages)
2675 		return rdev->desc->n_voltages;
2676 
2677 	if (!rdev->is_switch || !rdev->supply)
2678 		return -EINVAL;
2679 
2680 	return regulator_count_voltages(rdev->supply);
2681 }
2682 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2683 
2684 /**
2685  * regulator_list_voltage - enumerate supported voltages
2686  * @regulator: regulator source
2687  * @selector: identify voltage to list
2688  * Context: can sleep
2689  *
2690  * Returns a voltage that can be passed to @regulator_set_voltage(),
2691  * zero if this selector code can't be used on this system, or a
2692  * negative errno.
2693  */
regulator_list_voltage(struct regulator * regulator,unsigned selector)2694 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2695 {
2696 	return _regulator_list_voltage(regulator->rdev, selector, 1);
2697 }
2698 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2699 
2700 /**
2701  * regulator_get_regmap - get the regulator's register map
2702  * @regulator: regulator source
2703  *
2704  * Returns the register map for the given regulator, or an ERR_PTR value
2705  * if the regulator doesn't use regmap.
2706  */
regulator_get_regmap(struct regulator * regulator)2707 struct regmap *regulator_get_regmap(struct regulator *regulator)
2708 {
2709 	struct regmap *map = regulator->rdev->regmap;
2710 
2711 	return map ? map : ERR_PTR(-EOPNOTSUPP);
2712 }
2713 
2714 /**
2715  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2716  * @regulator: regulator source
2717  * @vsel_reg: voltage selector register, output parameter
2718  * @vsel_mask: mask for voltage selector bitfield, output parameter
2719  *
2720  * Returns the hardware register offset and bitmask used for setting the
2721  * regulator voltage. This might be useful when configuring voltage-scaling
2722  * hardware or firmware that can make I2C requests behind the kernel's back,
2723  * for example.
2724  *
2725  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2726  * and 0 is returned, otherwise a negative errno is returned.
2727  */
regulator_get_hardware_vsel_register(struct regulator * regulator,unsigned * vsel_reg,unsigned * vsel_mask)2728 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2729 					 unsigned *vsel_reg,
2730 					 unsigned *vsel_mask)
2731 {
2732 	struct regulator_dev *rdev = regulator->rdev;
2733 	const struct regulator_ops *ops = rdev->desc->ops;
2734 
2735 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2736 		return -EOPNOTSUPP;
2737 
2738 	*vsel_reg = rdev->desc->vsel_reg;
2739 	*vsel_mask = rdev->desc->vsel_mask;
2740 
2741 	 return 0;
2742 }
2743 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2744 
2745 /**
2746  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2747  * @regulator: regulator source
2748  * @selector: identify voltage to list
2749  *
2750  * Converts the selector to a hardware-specific voltage selector that can be
2751  * directly written to the regulator registers. The address of the voltage
2752  * register can be determined by calling @regulator_get_hardware_vsel_register.
2753  *
2754  * On error a negative errno is returned.
2755  */
regulator_list_hardware_vsel(struct regulator * regulator,unsigned selector)2756 int regulator_list_hardware_vsel(struct regulator *regulator,
2757 				 unsigned selector)
2758 {
2759 	struct regulator_dev *rdev = regulator->rdev;
2760 	const struct regulator_ops *ops = rdev->desc->ops;
2761 
2762 	if (selector >= rdev->desc->n_voltages)
2763 		return -EINVAL;
2764 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2765 		return -EOPNOTSUPP;
2766 
2767 	return selector;
2768 }
2769 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2770 
2771 /**
2772  * regulator_get_linear_step - return the voltage step size between VSEL values
2773  * @regulator: regulator source
2774  *
2775  * Returns the voltage step size between VSEL values for linear
2776  * regulators, or return 0 if the regulator isn't a linear regulator.
2777  */
regulator_get_linear_step(struct regulator * regulator)2778 unsigned int regulator_get_linear_step(struct regulator *regulator)
2779 {
2780 	struct regulator_dev *rdev = regulator->rdev;
2781 
2782 	return rdev->desc->uV_step;
2783 }
2784 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2785 
2786 /**
2787  * regulator_is_supported_voltage - check if a voltage range can be supported
2788  *
2789  * @regulator: Regulator to check.
2790  * @min_uV: Minimum required voltage in uV.
2791  * @max_uV: Maximum required voltage in uV.
2792  *
2793  * Returns a boolean or a negative error code.
2794  */
regulator_is_supported_voltage(struct regulator * regulator,int min_uV,int max_uV)2795 int regulator_is_supported_voltage(struct regulator *regulator,
2796 				   int min_uV, int max_uV)
2797 {
2798 	struct regulator_dev *rdev = regulator->rdev;
2799 	int i, voltages, ret;
2800 
2801 	/* If we can't change voltage check the current voltage */
2802 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2803 		ret = regulator_get_voltage(regulator);
2804 		if (ret >= 0)
2805 			return min_uV <= ret && ret <= max_uV;
2806 		else
2807 			return ret;
2808 	}
2809 
2810 	/* Any voltage within constrains range is fine? */
2811 	if (rdev->desc->continuous_voltage_range)
2812 		return min_uV >= rdev->constraints->min_uV &&
2813 				max_uV <= rdev->constraints->max_uV;
2814 
2815 	ret = regulator_count_voltages(regulator);
2816 	if (ret < 0)
2817 		return ret;
2818 	voltages = ret;
2819 
2820 	for (i = 0; i < voltages; i++) {
2821 		ret = regulator_list_voltage(regulator, i);
2822 
2823 		if (ret >= min_uV && ret <= max_uV)
2824 			return 1;
2825 	}
2826 
2827 	return 0;
2828 }
2829 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2830 
regulator_map_voltage(struct regulator_dev * rdev,int min_uV,int max_uV)2831 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
2832 				 int max_uV)
2833 {
2834 	const struct regulator_desc *desc = rdev->desc;
2835 
2836 	if (desc->ops->map_voltage)
2837 		return desc->ops->map_voltage(rdev, min_uV, max_uV);
2838 
2839 	if (desc->ops->list_voltage == regulator_list_voltage_linear)
2840 		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
2841 
2842 	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
2843 		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
2844 
2845 	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
2846 }
2847 
_regulator_call_set_voltage(struct regulator_dev * rdev,int min_uV,int max_uV,unsigned * selector)2848 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2849 				       int min_uV, int max_uV,
2850 				       unsigned *selector)
2851 {
2852 	struct pre_voltage_change_data data;
2853 	int ret;
2854 
2855 	data.old_uV = _regulator_get_voltage(rdev);
2856 	data.min_uV = min_uV;
2857 	data.max_uV = max_uV;
2858 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2859 				   &data);
2860 	if (ret & NOTIFY_STOP_MASK)
2861 		return -EINVAL;
2862 
2863 	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2864 	if (ret >= 0)
2865 		return ret;
2866 
2867 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2868 			     (void *)data.old_uV);
2869 
2870 	return ret;
2871 }
2872 
_regulator_call_set_voltage_sel(struct regulator_dev * rdev,int uV,unsigned selector)2873 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2874 					   int uV, unsigned selector)
2875 {
2876 	struct pre_voltage_change_data data;
2877 	int ret;
2878 
2879 	data.old_uV = _regulator_get_voltage(rdev);
2880 	data.min_uV = uV;
2881 	data.max_uV = uV;
2882 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2883 				   &data);
2884 	if (ret & NOTIFY_STOP_MASK)
2885 		return -EINVAL;
2886 
2887 	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2888 	if (ret >= 0)
2889 		return ret;
2890 
2891 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2892 			     (void *)data.old_uV);
2893 
2894 	return ret;
2895 }
2896 
_regulator_set_voltage_time(struct regulator_dev * rdev,int old_uV,int new_uV)2897 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
2898 				       int old_uV, int new_uV)
2899 {
2900 	unsigned int ramp_delay = 0;
2901 
2902 	if (rdev->constraints->ramp_delay)
2903 		ramp_delay = rdev->constraints->ramp_delay;
2904 	else if (rdev->desc->ramp_delay)
2905 		ramp_delay = rdev->desc->ramp_delay;
2906 	else if (rdev->constraints->settling_time)
2907 		return rdev->constraints->settling_time;
2908 	else if (rdev->constraints->settling_time_up &&
2909 		 (new_uV > old_uV))
2910 		return rdev->constraints->settling_time_up;
2911 	else if (rdev->constraints->settling_time_down &&
2912 		 (new_uV < old_uV))
2913 		return rdev->constraints->settling_time_down;
2914 
2915 	if (ramp_delay == 0) {
2916 		rdev_dbg(rdev, "ramp_delay not set\n");
2917 		return 0;
2918 	}
2919 
2920 	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
2921 }
2922 
_regulator_do_set_voltage(struct regulator_dev * rdev,int min_uV,int max_uV)2923 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2924 				     int min_uV, int max_uV)
2925 {
2926 	int ret;
2927 	int delay = 0;
2928 	int best_val = 0;
2929 	unsigned int selector;
2930 	int old_selector = -1;
2931 	const struct regulator_ops *ops = rdev->desc->ops;
2932 	int old_uV = _regulator_get_voltage(rdev);
2933 
2934 	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2935 
2936 	min_uV += rdev->constraints->uV_offset;
2937 	max_uV += rdev->constraints->uV_offset;
2938 
2939 	/*
2940 	 * If we can't obtain the old selector there is not enough
2941 	 * info to call set_voltage_time_sel().
2942 	 */
2943 	if (_regulator_is_enabled(rdev) &&
2944 	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
2945 		old_selector = ops->get_voltage_sel(rdev);
2946 		if (old_selector < 0)
2947 			return old_selector;
2948 	}
2949 
2950 	if (ops->set_voltage) {
2951 		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2952 						  &selector);
2953 
2954 		if (ret >= 0) {
2955 			if (ops->list_voltage)
2956 				best_val = ops->list_voltage(rdev,
2957 							     selector);
2958 			else
2959 				best_val = _regulator_get_voltage(rdev);
2960 		}
2961 
2962 	} else if (ops->set_voltage_sel) {
2963 		ret = regulator_map_voltage(rdev, min_uV, max_uV);
2964 		if (ret >= 0) {
2965 			best_val = ops->list_voltage(rdev, ret);
2966 			if (min_uV <= best_val && max_uV >= best_val) {
2967 				selector = ret;
2968 				if (old_selector == selector)
2969 					ret = 0;
2970 				else
2971 					ret = _regulator_call_set_voltage_sel(
2972 						rdev, best_val, selector);
2973 			} else {
2974 				ret = -EINVAL;
2975 			}
2976 		}
2977 	} else {
2978 		ret = -EINVAL;
2979 	}
2980 
2981 	if (ret)
2982 		goto out;
2983 
2984 	if (ops->set_voltage_time_sel) {
2985 		/*
2986 		 * Call set_voltage_time_sel if successfully obtained
2987 		 * old_selector
2988 		 */
2989 		if (old_selector >= 0 && old_selector != selector)
2990 			delay = ops->set_voltage_time_sel(rdev, old_selector,
2991 							  selector);
2992 	} else {
2993 		if (old_uV != best_val) {
2994 			if (ops->set_voltage_time)
2995 				delay = ops->set_voltage_time(rdev, old_uV,
2996 							      best_val);
2997 			else
2998 				delay = _regulator_set_voltage_time(rdev,
2999 								    old_uV,
3000 								    best_val);
3001 		}
3002 	}
3003 
3004 	if (delay < 0) {
3005 		rdev_warn(rdev, "failed to get delay: %d\n", delay);
3006 		delay = 0;
3007 	}
3008 
3009 	/* Insert any necessary delays */
3010 	if (delay >= 1000) {
3011 		mdelay(delay / 1000);
3012 		udelay(delay % 1000);
3013 	} else if (delay) {
3014 		udelay(delay);
3015 	}
3016 
3017 	if (best_val >= 0) {
3018 		unsigned long data = best_val;
3019 
3020 		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3021 				     (void *)data);
3022 	}
3023 
3024 out:
3025 	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3026 
3027 	return ret;
3028 }
3029 
_regulator_do_set_suspend_voltage(struct regulator_dev * rdev,int min_uV,int max_uV,suspend_state_t state)3030 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3031 				  int min_uV, int max_uV, suspend_state_t state)
3032 {
3033 	struct regulator_state *rstate;
3034 	int uV, sel;
3035 
3036 	rstate = regulator_get_suspend_state(rdev, state);
3037 	if (rstate == NULL)
3038 		return -EINVAL;
3039 
3040 	if (min_uV < rstate->min_uV)
3041 		min_uV = rstate->min_uV;
3042 	if (max_uV > rstate->max_uV)
3043 		max_uV = rstate->max_uV;
3044 
3045 	sel = regulator_map_voltage(rdev, min_uV, max_uV);
3046 	if (sel < 0)
3047 		return sel;
3048 
3049 	uV = rdev->desc->ops->list_voltage(rdev, sel);
3050 	if (uV >= min_uV && uV <= max_uV)
3051 		rstate->uV = uV;
3052 
3053 	return 0;
3054 }
3055 
regulator_set_voltage_unlocked(struct regulator * regulator,int min_uV,int max_uV,suspend_state_t state)3056 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3057 					  int min_uV, int max_uV,
3058 					  suspend_state_t state)
3059 {
3060 	struct regulator_dev *rdev = regulator->rdev;
3061 	struct regulator_voltage *voltage = &regulator->voltage[state];
3062 	int ret = 0;
3063 	int old_min_uV, old_max_uV;
3064 	int current_uV;
3065 	int best_supply_uV = 0;
3066 	int supply_change_uV = 0;
3067 
3068 	/* If we're setting the same range as last time the change
3069 	 * should be a noop (some cpufreq implementations use the same
3070 	 * voltage for multiple frequencies, for example).
3071 	 */
3072 	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3073 		goto out;
3074 
3075 	/* If we're trying to set a range that overlaps the current voltage,
3076 	 * return successfully even though the regulator does not support
3077 	 * changing the voltage.
3078 	 */
3079 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3080 		current_uV = _regulator_get_voltage(rdev);
3081 		if (min_uV <= current_uV && current_uV <= max_uV) {
3082 			voltage->min_uV = min_uV;
3083 			voltage->max_uV = max_uV;
3084 			goto out;
3085 		}
3086 	}
3087 
3088 	/* sanity check */
3089 	if (!rdev->desc->ops->set_voltage &&
3090 	    !rdev->desc->ops->set_voltage_sel) {
3091 		ret = -EINVAL;
3092 		goto out;
3093 	}
3094 
3095 	/* constraints check */
3096 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3097 	if (ret < 0)
3098 		goto out;
3099 
3100 	/* restore original values in case of error */
3101 	old_min_uV = voltage->min_uV;
3102 	old_max_uV = voltage->max_uV;
3103 	voltage->min_uV = min_uV;
3104 	voltage->max_uV = max_uV;
3105 
3106 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, state);
3107 	if (ret < 0)
3108 		goto out2;
3109 
3110 	if (rdev->supply &&
3111 	    regulator_ops_is_valid(rdev->supply->rdev,
3112 				   REGULATOR_CHANGE_VOLTAGE) &&
3113 	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3114 					   rdev->desc->ops->get_voltage_sel))) {
3115 		int current_supply_uV;
3116 		int selector;
3117 
3118 		selector = regulator_map_voltage(rdev, min_uV, max_uV);
3119 		if (selector < 0) {
3120 			ret = selector;
3121 			goto out2;
3122 		}
3123 
3124 		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3125 		if (best_supply_uV < 0) {
3126 			ret = best_supply_uV;
3127 			goto out2;
3128 		}
3129 
3130 		best_supply_uV += rdev->desc->min_dropout_uV;
3131 
3132 		current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
3133 		if (current_supply_uV < 0) {
3134 			ret = current_supply_uV;
3135 			goto out2;
3136 		}
3137 
3138 		supply_change_uV = best_supply_uV - current_supply_uV;
3139 	}
3140 
3141 	if (supply_change_uV > 0) {
3142 		ret = regulator_set_voltage_unlocked(rdev->supply,
3143 				best_supply_uV, INT_MAX, state);
3144 		if (ret) {
3145 			dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
3146 					ret);
3147 			goto out2;
3148 		}
3149 	}
3150 
3151 	if (state == PM_SUSPEND_ON)
3152 		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3153 	else
3154 		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3155 							max_uV, state);
3156 	if (ret < 0)
3157 		goto out2;
3158 
3159 	if (supply_change_uV < 0) {
3160 		ret = regulator_set_voltage_unlocked(rdev->supply,
3161 				best_supply_uV, INT_MAX, state);
3162 		if (ret)
3163 			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
3164 					ret);
3165 		/* No need to fail here */
3166 		ret = 0;
3167 	}
3168 
3169 out:
3170 	return ret;
3171 out2:
3172 	voltage->min_uV = old_min_uV;
3173 	voltage->max_uV = old_max_uV;
3174 
3175 	return ret;
3176 }
3177 
3178 /**
3179  * regulator_set_voltage - set regulator output voltage
3180  * @regulator: regulator source
3181  * @min_uV: Minimum required voltage in uV
3182  * @max_uV: Maximum acceptable voltage in uV
3183  *
3184  * Sets a voltage regulator to the desired output voltage. This can be set
3185  * during any regulator state. IOW, regulator can be disabled or enabled.
3186  *
3187  * If the regulator is enabled then the voltage will change to the new value
3188  * immediately otherwise if the regulator is disabled the regulator will
3189  * output at the new voltage when enabled.
3190  *
3191  * NOTE: If the regulator is shared between several devices then the lowest
3192  * request voltage that meets the system constraints will be used.
3193  * Regulator system constraints must be set for this regulator before
3194  * calling this function otherwise this call will fail.
3195  */
regulator_set_voltage(struct regulator * regulator,int min_uV,int max_uV)3196 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3197 {
3198 	int ret = 0;
3199 
3200 	regulator_lock_supply(regulator->rdev);
3201 
3202 	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
3203 					     PM_SUSPEND_ON);
3204 
3205 	regulator_unlock_supply(regulator->rdev);
3206 
3207 	return ret;
3208 }
3209 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3210 
regulator_suspend_toggle(struct regulator_dev * rdev,suspend_state_t state,bool en)3211 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
3212 					   suspend_state_t state, bool en)
3213 {
3214 	struct regulator_state *rstate;
3215 
3216 	rstate = regulator_get_suspend_state(rdev, state);
3217 	if (rstate == NULL)
3218 		return -EINVAL;
3219 
3220 	if (!rstate->changeable)
3221 		return -EPERM;
3222 
3223 	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3224 
3225 	return 0;
3226 }
3227 
regulator_suspend_enable(struct regulator_dev * rdev,suspend_state_t state)3228 int regulator_suspend_enable(struct regulator_dev *rdev,
3229 				    suspend_state_t state)
3230 {
3231 	return regulator_suspend_toggle(rdev, state, true);
3232 }
3233 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
3234 
regulator_suspend_disable(struct regulator_dev * rdev,suspend_state_t state)3235 int regulator_suspend_disable(struct regulator_dev *rdev,
3236 				     suspend_state_t state)
3237 {
3238 	struct regulator *regulator;
3239 	struct regulator_voltage *voltage;
3240 
3241 	/*
3242 	 * if any consumer wants this regulator device keeping on in
3243 	 * suspend states, don't set it as disabled.
3244 	 */
3245 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
3246 		voltage = &regulator->voltage[state];
3247 		if (voltage->min_uV || voltage->max_uV)
3248 			return 0;
3249 	}
3250 
3251 	return regulator_suspend_toggle(rdev, state, false);
3252 }
3253 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
3254 
_regulator_set_suspend_voltage(struct regulator * regulator,int min_uV,int max_uV,suspend_state_t state)3255 static int _regulator_set_suspend_voltage(struct regulator *regulator,
3256 					  int min_uV, int max_uV,
3257 					  suspend_state_t state)
3258 {
3259 	struct regulator_dev *rdev = regulator->rdev;
3260 	struct regulator_state *rstate;
3261 
3262 	rstate = regulator_get_suspend_state(rdev, state);
3263 	if (rstate == NULL)
3264 		return -EINVAL;
3265 
3266 	if (rstate->min_uV == rstate->max_uV) {
3267 		rdev_err(rdev, "The suspend voltage can't be changed!\n");
3268 		return -EPERM;
3269 	}
3270 
3271 	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
3272 }
3273 
regulator_set_suspend_voltage(struct regulator * regulator,int min_uV,int max_uV,suspend_state_t state)3274 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
3275 				  int max_uV, suspend_state_t state)
3276 {
3277 	int ret = 0;
3278 
3279 	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
3280 	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
3281 		return -EINVAL;
3282 
3283 	regulator_lock_supply(regulator->rdev);
3284 
3285 	ret = _regulator_set_suspend_voltage(regulator, min_uV,
3286 					     max_uV, state);
3287 
3288 	regulator_unlock_supply(regulator->rdev);
3289 
3290 	return ret;
3291 }
3292 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
3293 
3294 /**
3295  * regulator_set_voltage_time - get raise/fall time
3296  * @regulator: regulator source
3297  * @old_uV: starting voltage in microvolts
3298  * @new_uV: target voltage in microvolts
3299  *
3300  * Provided with the starting and ending voltage, this function attempts to
3301  * calculate the time in microseconds required to rise or fall to this new
3302  * voltage.
3303  */
regulator_set_voltage_time(struct regulator * regulator,int old_uV,int new_uV)3304 int regulator_set_voltage_time(struct regulator *regulator,
3305 			       int old_uV, int new_uV)
3306 {
3307 	struct regulator_dev *rdev = regulator->rdev;
3308 	const struct regulator_ops *ops = rdev->desc->ops;
3309 	int old_sel = -1;
3310 	int new_sel = -1;
3311 	int voltage;
3312 	int i;
3313 
3314 	if (ops->set_voltage_time)
3315 		return ops->set_voltage_time(rdev, old_uV, new_uV);
3316 	else if (!ops->set_voltage_time_sel)
3317 		return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3318 
3319 	/* Currently requires operations to do this */
3320 	if (!ops->list_voltage || !rdev->desc->n_voltages)
3321 		return -EINVAL;
3322 
3323 	for (i = 0; i < rdev->desc->n_voltages; i++) {
3324 		/* We only look for exact voltage matches here */
3325 		voltage = regulator_list_voltage(regulator, i);
3326 		if (voltage < 0)
3327 			return -EINVAL;
3328 		if (voltage == 0)
3329 			continue;
3330 		if (voltage == old_uV)
3331 			old_sel = i;
3332 		if (voltage == new_uV)
3333 			new_sel = i;
3334 	}
3335 
3336 	if (old_sel < 0 || new_sel < 0)
3337 		return -EINVAL;
3338 
3339 	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3340 }
3341 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3342 
3343 /**
3344  * regulator_set_voltage_time_sel - get raise/fall time
3345  * @rdev: regulator source device
3346  * @old_selector: selector for starting voltage
3347  * @new_selector: selector for target voltage
3348  *
3349  * Provided with the starting and target voltage selectors, this function
3350  * returns time in microseconds required to rise or fall to this new voltage
3351  *
3352  * Drivers providing ramp_delay in regulation_constraints can use this as their
3353  * set_voltage_time_sel() operation.
3354  */
regulator_set_voltage_time_sel(struct regulator_dev * rdev,unsigned int old_selector,unsigned int new_selector)3355 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3356 				   unsigned int old_selector,
3357 				   unsigned int new_selector)
3358 {
3359 	int old_volt, new_volt;
3360 
3361 	/* sanity check */
3362 	if (!rdev->desc->ops->list_voltage)
3363 		return -EINVAL;
3364 
3365 	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3366 	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3367 
3368 	if (rdev->desc->ops->set_voltage_time)
3369 		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
3370 							 new_volt);
3371 	else
3372 		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3373 }
3374 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3375 
3376 /**
3377  * regulator_sync_voltage - re-apply last regulator output voltage
3378  * @regulator: regulator source
3379  *
3380  * Re-apply the last configured voltage.  This is intended to be used
3381  * where some external control source the consumer is cooperating with
3382  * has caused the configured voltage to change.
3383  */
regulator_sync_voltage(struct regulator * regulator)3384 int regulator_sync_voltage(struct regulator *regulator)
3385 {
3386 	struct regulator_dev *rdev = regulator->rdev;
3387 	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
3388 	int ret, min_uV, max_uV;
3389 
3390 	regulator_lock(rdev);
3391 
3392 	if (!rdev->desc->ops->set_voltage &&
3393 	    !rdev->desc->ops->set_voltage_sel) {
3394 		ret = -EINVAL;
3395 		goto out;
3396 	}
3397 
3398 	/* This is only going to work if we've had a voltage configured. */
3399 	if (!voltage->min_uV && !voltage->max_uV) {
3400 		ret = -EINVAL;
3401 		goto out;
3402 	}
3403 
3404 	min_uV = voltage->min_uV;
3405 	max_uV = voltage->max_uV;
3406 
3407 	/* This should be a paranoia check... */
3408 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3409 	if (ret < 0)
3410 		goto out;
3411 
3412 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
3413 	if (ret < 0)
3414 		goto out;
3415 
3416 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3417 
3418 out:
3419 	regulator_unlock(rdev);
3420 	return ret;
3421 }
3422 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3423 
_regulator_get_voltage(struct regulator_dev * rdev)3424 static int _regulator_get_voltage(struct regulator_dev *rdev)
3425 {
3426 	int sel, ret;
3427 	bool bypassed;
3428 
3429 	if (rdev->desc->ops->get_bypass) {
3430 		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
3431 		if (ret < 0)
3432 			return ret;
3433 		if (bypassed) {
3434 			/* if bypassed the regulator must have a supply */
3435 			if (!rdev->supply) {
3436 				rdev_err(rdev,
3437 					 "bypassed regulator has no supply!\n");
3438 				return -EPROBE_DEFER;
3439 			}
3440 
3441 			return _regulator_get_voltage(rdev->supply->rdev);
3442 		}
3443 	}
3444 
3445 	if (rdev->desc->ops->get_voltage_sel) {
3446 		sel = rdev->desc->ops->get_voltage_sel(rdev);
3447 		if (sel < 0)
3448 			return sel;
3449 		ret = rdev->desc->ops->list_voltage(rdev, sel);
3450 	} else if (rdev->desc->ops->get_voltage) {
3451 		ret = rdev->desc->ops->get_voltage(rdev);
3452 	} else if (rdev->desc->ops->list_voltage) {
3453 		ret = rdev->desc->ops->list_voltage(rdev, 0);
3454 	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3455 		ret = rdev->desc->fixed_uV;
3456 	} else if (rdev->supply) {
3457 		ret = _regulator_get_voltage(rdev->supply->rdev);
3458 	} else if (rdev->supply_name) {
3459 		return -EPROBE_DEFER;
3460 	} else {
3461 		return -EINVAL;
3462 	}
3463 
3464 	if (ret < 0)
3465 		return ret;
3466 	return ret - rdev->constraints->uV_offset;
3467 }
3468 
3469 /**
3470  * regulator_get_voltage - get regulator output voltage
3471  * @regulator: regulator source
3472  *
3473  * This returns the current regulator voltage in uV.
3474  *
3475  * NOTE: If the regulator is disabled it will return the voltage value. This
3476  * function should not be used to determine regulator state.
3477  */
regulator_get_voltage(struct regulator * regulator)3478 int regulator_get_voltage(struct regulator *regulator)
3479 {
3480 	int ret;
3481 
3482 	regulator_lock_supply(regulator->rdev);
3483 
3484 	ret = _regulator_get_voltage(regulator->rdev);
3485 
3486 	regulator_unlock_supply(regulator->rdev);
3487 
3488 	return ret;
3489 }
3490 EXPORT_SYMBOL_GPL(regulator_get_voltage);
3491 
3492 /**
3493  * regulator_set_current_limit - set regulator output current limit
3494  * @regulator: regulator source
3495  * @min_uA: Minimum supported current in uA
3496  * @max_uA: Maximum supported current in uA
3497  *
3498  * Sets current sink to the desired output current. This can be set during
3499  * any regulator state. IOW, regulator can be disabled or enabled.
3500  *
3501  * If the regulator is enabled then the current will change to the new value
3502  * immediately otherwise if the regulator is disabled the regulator will
3503  * output at the new current when enabled.
3504  *
3505  * NOTE: Regulator system constraints must be set for this regulator before
3506  * calling this function otherwise this call will fail.
3507  */
regulator_set_current_limit(struct regulator * regulator,int min_uA,int max_uA)3508 int regulator_set_current_limit(struct regulator *regulator,
3509 			       int min_uA, int max_uA)
3510 {
3511 	struct regulator_dev *rdev = regulator->rdev;
3512 	int ret;
3513 
3514 	regulator_lock(rdev);
3515 
3516 	/* sanity check */
3517 	if (!rdev->desc->ops->set_current_limit) {
3518 		ret = -EINVAL;
3519 		goto out;
3520 	}
3521 
3522 	/* constraints check */
3523 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3524 	if (ret < 0)
3525 		goto out;
3526 
3527 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3528 out:
3529 	regulator_unlock(rdev);
3530 	return ret;
3531 }
3532 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3533 
_regulator_get_current_limit(struct regulator_dev * rdev)3534 static int _regulator_get_current_limit(struct regulator_dev *rdev)
3535 {
3536 	int ret;
3537 
3538 	regulator_lock(rdev);
3539 
3540 	/* sanity check */
3541 	if (!rdev->desc->ops->get_current_limit) {
3542 		ret = -EINVAL;
3543 		goto out;
3544 	}
3545 
3546 	ret = rdev->desc->ops->get_current_limit(rdev);
3547 out:
3548 	regulator_unlock(rdev);
3549 	return ret;
3550 }
3551 
3552 /**
3553  * regulator_get_current_limit - get regulator output current
3554  * @regulator: regulator source
3555  *
3556  * This returns the current supplied by the specified current sink in uA.
3557  *
3558  * NOTE: If the regulator is disabled it will return the current value. This
3559  * function should not be used to determine regulator state.
3560  */
regulator_get_current_limit(struct regulator * regulator)3561 int regulator_get_current_limit(struct regulator *regulator)
3562 {
3563 	return _regulator_get_current_limit(regulator->rdev);
3564 }
3565 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3566 
3567 /**
3568  * regulator_set_mode - set regulator operating mode
3569  * @regulator: regulator source
3570  * @mode: operating mode - one of the REGULATOR_MODE constants
3571  *
3572  * Set regulator operating mode to increase regulator efficiency or improve
3573  * regulation performance.
3574  *
3575  * NOTE: Regulator system constraints must be set for this regulator before
3576  * calling this function otherwise this call will fail.
3577  */
regulator_set_mode(struct regulator * regulator,unsigned int mode)3578 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3579 {
3580 	struct regulator_dev *rdev = regulator->rdev;
3581 	int ret;
3582 	int regulator_curr_mode;
3583 
3584 	regulator_lock(rdev);
3585 
3586 	/* sanity check */
3587 	if (!rdev->desc->ops->set_mode) {
3588 		ret = -EINVAL;
3589 		goto out;
3590 	}
3591 
3592 	/* return if the same mode is requested */
3593 	if (rdev->desc->ops->get_mode) {
3594 		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3595 		if (regulator_curr_mode == mode) {
3596 			ret = 0;
3597 			goto out;
3598 		}
3599 	}
3600 
3601 	/* constraints check */
3602 	ret = regulator_mode_constrain(rdev, &mode);
3603 	if (ret < 0)
3604 		goto out;
3605 
3606 	ret = rdev->desc->ops->set_mode(rdev, mode);
3607 out:
3608 	regulator_unlock(rdev);
3609 	return ret;
3610 }
3611 EXPORT_SYMBOL_GPL(regulator_set_mode);
3612 
_regulator_get_mode(struct regulator_dev * rdev)3613 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3614 {
3615 	int ret;
3616 
3617 	regulator_lock(rdev);
3618 
3619 	/* sanity check */
3620 	if (!rdev->desc->ops->get_mode) {
3621 		ret = -EINVAL;
3622 		goto out;
3623 	}
3624 
3625 	ret = rdev->desc->ops->get_mode(rdev);
3626 out:
3627 	regulator_unlock(rdev);
3628 	return ret;
3629 }
3630 
3631 /**
3632  * regulator_get_mode - get regulator operating mode
3633  * @regulator: regulator source
3634  *
3635  * Get the current regulator operating mode.
3636  */
regulator_get_mode(struct regulator * regulator)3637 unsigned int regulator_get_mode(struct regulator *regulator)
3638 {
3639 	return _regulator_get_mode(regulator->rdev);
3640 }
3641 EXPORT_SYMBOL_GPL(regulator_get_mode);
3642 
_regulator_get_error_flags(struct regulator_dev * rdev,unsigned int * flags)3643 static int _regulator_get_error_flags(struct regulator_dev *rdev,
3644 					unsigned int *flags)
3645 {
3646 	int ret;
3647 
3648 	regulator_lock(rdev);
3649 
3650 	/* sanity check */
3651 	if (!rdev->desc->ops->get_error_flags) {
3652 		ret = -EINVAL;
3653 		goto out;
3654 	}
3655 
3656 	ret = rdev->desc->ops->get_error_flags(rdev, flags);
3657 out:
3658 	regulator_unlock(rdev);
3659 	return ret;
3660 }
3661 
3662 /**
3663  * regulator_get_error_flags - get regulator error information
3664  * @regulator: regulator source
3665  * @flags: pointer to store error flags
3666  *
3667  * Get the current regulator error information.
3668  */
regulator_get_error_flags(struct regulator * regulator,unsigned int * flags)3669 int regulator_get_error_flags(struct regulator *regulator,
3670 				unsigned int *flags)
3671 {
3672 	return _regulator_get_error_flags(regulator->rdev, flags);
3673 }
3674 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
3675 
3676 /**
3677  * regulator_set_load - set regulator load
3678  * @regulator: regulator source
3679  * @uA_load: load current
3680  *
3681  * Notifies the regulator core of a new device load. This is then used by
3682  * DRMS (if enabled by constraints) to set the most efficient regulator
3683  * operating mode for the new regulator loading.
3684  *
3685  * Consumer devices notify their supply regulator of the maximum power
3686  * they will require (can be taken from device datasheet in the power
3687  * consumption tables) when they change operational status and hence power
3688  * state. Examples of operational state changes that can affect power
3689  * consumption are :-
3690  *
3691  *    o Device is opened / closed.
3692  *    o Device I/O is about to begin or has just finished.
3693  *    o Device is idling in between work.
3694  *
3695  * This information is also exported via sysfs to userspace.
3696  *
3697  * DRMS will sum the total requested load on the regulator and change
3698  * to the most efficient operating mode if platform constraints allow.
3699  *
3700  * On error a negative errno is returned.
3701  */
regulator_set_load(struct regulator * regulator,int uA_load)3702 int regulator_set_load(struct regulator *regulator, int uA_load)
3703 {
3704 	struct regulator_dev *rdev = regulator->rdev;
3705 	int ret;
3706 
3707 	regulator_lock(rdev);
3708 	regulator->uA_load = uA_load;
3709 	ret = drms_uA_update(rdev);
3710 	regulator_unlock(rdev);
3711 
3712 	return ret;
3713 }
3714 EXPORT_SYMBOL_GPL(regulator_set_load);
3715 
3716 /**
3717  * regulator_allow_bypass - allow the regulator to go into bypass mode
3718  *
3719  * @regulator: Regulator to configure
3720  * @enable: enable or disable bypass mode
3721  *
3722  * Allow the regulator to go into bypass mode if all other consumers
3723  * for the regulator also enable bypass mode and the machine
3724  * constraints allow this.  Bypass mode means that the regulator is
3725  * simply passing the input directly to the output with no regulation.
3726  */
regulator_allow_bypass(struct regulator * regulator,bool enable)3727 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3728 {
3729 	struct regulator_dev *rdev = regulator->rdev;
3730 	int ret = 0;
3731 
3732 	if (!rdev->desc->ops->set_bypass)
3733 		return 0;
3734 
3735 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
3736 		return 0;
3737 
3738 	regulator_lock(rdev);
3739 
3740 	if (enable && !regulator->bypass) {
3741 		rdev->bypass_count++;
3742 
3743 		if (rdev->bypass_count == rdev->open_count) {
3744 			ret = rdev->desc->ops->set_bypass(rdev, enable);
3745 			if (ret != 0)
3746 				rdev->bypass_count--;
3747 		}
3748 
3749 	} else if (!enable && regulator->bypass) {
3750 		rdev->bypass_count--;
3751 
3752 		if (rdev->bypass_count != rdev->open_count) {
3753 			ret = rdev->desc->ops->set_bypass(rdev, enable);
3754 			if (ret != 0)
3755 				rdev->bypass_count++;
3756 		}
3757 	}
3758 
3759 	if (ret == 0)
3760 		regulator->bypass = enable;
3761 
3762 	regulator_unlock(rdev);
3763 
3764 	return ret;
3765 }
3766 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3767 
3768 /**
3769  * regulator_register_notifier - register regulator event notifier
3770  * @regulator: regulator source
3771  * @nb: notifier block
3772  *
3773  * Register notifier block to receive regulator events.
3774  */
regulator_register_notifier(struct regulator * regulator,struct notifier_block * nb)3775 int regulator_register_notifier(struct regulator *regulator,
3776 			      struct notifier_block *nb)
3777 {
3778 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
3779 						nb);
3780 }
3781 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3782 
3783 /**
3784  * regulator_unregister_notifier - unregister regulator event notifier
3785  * @regulator: regulator source
3786  * @nb: notifier block
3787  *
3788  * Unregister regulator event notifier block.
3789  */
regulator_unregister_notifier(struct regulator * regulator,struct notifier_block * nb)3790 int regulator_unregister_notifier(struct regulator *regulator,
3791 				struct notifier_block *nb)
3792 {
3793 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3794 						  nb);
3795 }
3796 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3797 
3798 /* notify regulator consumers and downstream regulator consumers.
3799  * Note mutex must be held by caller.
3800  */
_notifier_call_chain(struct regulator_dev * rdev,unsigned long event,void * data)3801 static int _notifier_call_chain(struct regulator_dev *rdev,
3802 				  unsigned long event, void *data)
3803 {
3804 	/* call rdev chain first */
3805 	return blocking_notifier_call_chain(&rdev->notifier, event, data);
3806 }
3807 
3808 /**
3809  * regulator_bulk_get - get multiple regulator consumers
3810  *
3811  * @dev:           Device to supply
3812  * @num_consumers: Number of consumers to register
3813  * @consumers:     Configuration of consumers; clients are stored here.
3814  *
3815  * @return 0 on success, an errno on failure.
3816  *
3817  * This helper function allows drivers to get several regulator
3818  * consumers in one operation.  If any of the regulators cannot be
3819  * acquired then any regulators that were allocated will be freed
3820  * before returning to the caller.
3821  */
regulator_bulk_get(struct device * dev,int num_consumers,struct regulator_bulk_data * consumers)3822 int regulator_bulk_get(struct device *dev, int num_consumers,
3823 		       struct regulator_bulk_data *consumers)
3824 {
3825 	int i;
3826 	int ret;
3827 
3828 	for (i = 0; i < num_consumers; i++)
3829 		consumers[i].consumer = NULL;
3830 
3831 	for (i = 0; i < num_consumers; i++) {
3832 		consumers[i].consumer = regulator_get(dev,
3833 						      consumers[i].supply);
3834 		if (IS_ERR(consumers[i].consumer)) {
3835 			ret = PTR_ERR(consumers[i].consumer);
3836 			dev_err(dev, "Failed to get supply '%s': %d\n",
3837 				consumers[i].supply, ret);
3838 			consumers[i].consumer = NULL;
3839 			goto err;
3840 		}
3841 	}
3842 
3843 	return 0;
3844 
3845 err:
3846 	while (--i >= 0)
3847 		regulator_put(consumers[i].consumer);
3848 
3849 	return ret;
3850 }
3851 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3852 
regulator_bulk_enable_async(void * data,async_cookie_t cookie)3853 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3854 {
3855 	struct regulator_bulk_data *bulk = data;
3856 
3857 	bulk->ret = regulator_enable(bulk->consumer);
3858 }
3859 
3860 /**
3861  * regulator_bulk_enable - enable multiple regulator consumers
3862  *
3863  * @num_consumers: Number of consumers
3864  * @consumers:     Consumer data; clients are stored here.
3865  * @return         0 on success, an errno on failure
3866  *
3867  * This convenience API allows consumers to enable multiple regulator
3868  * clients in a single API call.  If any consumers cannot be enabled
3869  * then any others that were enabled will be disabled again prior to
3870  * return.
3871  */
regulator_bulk_enable(int num_consumers,struct regulator_bulk_data * consumers)3872 int regulator_bulk_enable(int num_consumers,
3873 			  struct regulator_bulk_data *consumers)
3874 {
3875 	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3876 	int i;
3877 	int ret = 0;
3878 
3879 	for (i = 0; i < num_consumers; i++) {
3880 		if (consumers[i].consumer->always_on)
3881 			consumers[i].ret = 0;
3882 		else
3883 			async_schedule_domain(regulator_bulk_enable_async,
3884 					      &consumers[i], &async_domain);
3885 	}
3886 
3887 	async_synchronize_full_domain(&async_domain);
3888 
3889 	/* If any consumer failed we need to unwind any that succeeded */
3890 	for (i = 0; i < num_consumers; i++) {
3891 		if (consumers[i].ret != 0) {
3892 			ret = consumers[i].ret;
3893 			goto err;
3894 		}
3895 	}
3896 
3897 	return 0;
3898 
3899 err:
3900 	for (i = 0; i < num_consumers; i++) {
3901 		if (consumers[i].ret < 0)
3902 			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3903 			       consumers[i].ret);
3904 		else
3905 			regulator_disable(consumers[i].consumer);
3906 	}
3907 
3908 	return ret;
3909 }
3910 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3911 
3912 /**
3913  * regulator_bulk_disable - disable multiple regulator consumers
3914  *
3915  * @num_consumers: Number of consumers
3916  * @consumers:     Consumer data; clients are stored here.
3917  * @return         0 on success, an errno on failure
3918  *
3919  * This convenience API allows consumers to disable multiple regulator
3920  * clients in a single API call.  If any consumers cannot be disabled
3921  * then any others that were disabled will be enabled again prior to
3922  * return.
3923  */
regulator_bulk_disable(int num_consumers,struct regulator_bulk_data * consumers)3924 int regulator_bulk_disable(int num_consumers,
3925 			   struct regulator_bulk_data *consumers)
3926 {
3927 	int i;
3928 	int ret, r;
3929 
3930 	for (i = num_consumers - 1; i >= 0; --i) {
3931 		ret = regulator_disable(consumers[i].consumer);
3932 		if (ret != 0)
3933 			goto err;
3934 	}
3935 
3936 	return 0;
3937 
3938 err:
3939 	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3940 	for (++i; i < num_consumers; ++i) {
3941 		r = regulator_enable(consumers[i].consumer);
3942 		if (r != 0)
3943 			pr_err("Failed to re-enable %s: %d\n",
3944 			       consumers[i].supply, r);
3945 	}
3946 
3947 	return ret;
3948 }
3949 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3950 
3951 /**
3952  * regulator_bulk_force_disable - force disable multiple regulator consumers
3953  *
3954  * @num_consumers: Number of consumers
3955  * @consumers:     Consumer data; clients are stored here.
3956  * @return         0 on success, an errno on failure
3957  *
3958  * This convenience API allows consumers to forcibly disable multiple regulator
3959  * clients in a single API call.
3960  * NOTE: This should be used for situations when device damage will
3961  * likely occur if the regulators are not disabled (e.g. over temp).
3962  * Although regulator_force_disable function call for some consumers can
3963  * return error numbers, the function is called for all consumers.
3964  */
regulator_bulk_force_disable(int num_consumers,struct regulator_bulk_data * consumers)3965 int regulator_bulk_force_disable(int num_consumers,
3966 			   struct regulator_bulk_data *consumers)
3967 {
3968 	int i;
3969 	int ret = 0;
3970 
3971 	for (i = 0; i < num_consumers; i++) {
3972 		consumers[i].ret =
3973 			    regulator_force_disable(consumers[i].consumer);
3974 
3975 		/* Store first error for reporting */
3976 		if (consumers[i].ret && !ret)
3977 			ret = consumers[i].ret;
3978 	}
3979 
3980 	return ret;
3981 }
3982 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3983 
3984 /**
3985  * regulator_bulk_free - free multiple regulator consumers
3986  *
3987  * @num_consumers: Number of consumers
3988  * @consumers:     Consumer data; clients are stored here.
3989  *
3990  * This convenience API allows consumers to free multiple regulator
3991  * clients in a single API call.
3992  */
regulator_bulk_free(int num_consumers,struct regulator_bulk_data * consumers)3993 void regulator_bulk_free(int num_consumers,
3994 			 struct regulator_bulk_data *consumers)
3995 {
3996 	int i;
3997 
3998 	for (i = 0; i < num_consumers; i++) {
3999 		regulator_put(consumers[i].consumer);
4000 		consumers[i].consumer = NULL;
4001 	}
4002 }
4003 EXPORT_SYMBOL_GPL(regulator_bulk_free);
4004 
4005 /**
4006  * regulator_notifier_call_chain - call regulator event notifier
4007  * @rdev: regulator source
4008  * @event: notifier block
4009  * @data: callback-specific data.
4010  *
4011  * Called by regulator drivers to notify clients a regulator event has
4012  * occurred. We also notify regulator clients downstream.
4013  * Note lock must be held by caller.
4014  */
regulator_notifier_call_chain(struct regulator_dev * rdev,unsigned long event,void * data)4015 int regulator_notifier_call_chain(struct regulator_dev *rdev,
4016 				  unsigned long event, void *data)
4017 {
4018 	lockdep_assert_held_once(&rdev->mutex);
4019 
4020 	_notifier_call_chain(rdev, event, data);
4021 	return NOTIFY_DONE;
4022 
4023 }
4024 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4025 
4026 /**
4027  * regulator_mode_to_status - convert a regulator mode into a status
4028  *
4029  * @mode: Mode to convert
4030  *
4031  * Convert a regulator mode into a status.
4032  */
regulator_mode_to_status(unsigned int mode)4033 int regulator_mode_to_status(unsigned int mode)
4034 {
4035 	switch (mode) {
4036 	case REGULATOR_MODE_FAST:
4037 		return REGULATOR_STATUS_FAST;
4038 	case REGULATOR_MODE_NORMAL:
4039 		return REGULATOR_STATUS_NORMAL;
4040 	case REGULATOR_MODE_IDLE:
4041 		return REGULATOR_STATUS_IDLE;
4042 	case REGULATOR_MODE_STANDBY:
4043 		return REGULATOR_STATUS_STANDBY;
4044 	default:
4045 		return REGULATOR_STATUS_UNDEFINED;
4046 	}
4047 }
4048 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4049 
4050 static struct attribute *regulator_dev_attrs[] = {
4051 	&dev_attr_name.attr,
4052 	&dev_attr_num_users.attr,
4053 	&dev_attr_type.attr,
4054 	&dev_attr_microvolts.attr,
4055 	&dev_attr_microamps.attr,
4056 	&dev_attr_opmode.attr,
4057 	&dev_attr_state.attr,
4058 	&dev_attr_status.attr,
4059 	&dev_attr_bypass.attr,
4060 	&dev_attr_requested_microamps.attr,
4061 	&dev_attr_min_microvolts.attr,
4062 	&dev_attr_max_microvolts.attr,
4063 	&dev_attr_min_microamps.attr,
4064 	&dev_attr_max_microamps.attr,
4065 	&dev_attr_suspend_standby_state.attr,
4066 	&dev_attr_suspend_mem_state.attr,
4067 	&dev_attr_suspend_disk_state.attr,
4068 	&dev_attr_suspend_standby_microvolts.attr,
4069 	&dev_attr_suspend_mem_microvolts.attr,
4070 	&dev_attr_suspend_disk_microvolts.attr,
4071 	&dev_attr_suspend_standby_mode.attr,
4072 	&dev_attr_suspend_mem_mode.attr,
4073 	&dev_attr_suspend_disk_mode.attr,
4074 	NULL
4075 };
4076 
4077 /*
4078  * To avoid cluttering sysfs (and memory) with useless state, only
4079  * create attributes that can be meaningfully displayed.
4080  */
regulator_attr_is_visible(struct kobject * kobj,struct attribute * attr,int idx)4081 static umode_t regulator_attr_is_visible(struct kobject *kobj,
4082 					 struct attribute *attr, int idx)
4083 {
4084 	struct device *dev = kobj_to_dev(kobj);
4085 	struct regulator_dev *rdev = dev_to_rdev(dev);
4086 	const struct regulator_ops *ops = rdev->desc->ops;
4087 	umode_t mode = attr->mode;
4088 
4089 	/* these three are always present */
4090 	if (attr == &dev_attr_name.attr ||
4091 	    attr == &dev_attr_num_users.attr ||
4092 	    attr == &dev_attr_type.attr)
4093 		return mode;
4094 
4095 	/* some attributes need specific methods to be displayed */
4096 	if (attr == &dev_attr_microvolts.attr) {
4097 		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4098 		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4099 		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4100 		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4101 			return mode;
4102 		return 0;
4103 	}
4104 
4105 	if (attr == &dev_attr_microamps.attr)
4106 		return ops->get_current_limit ? mode : 0;
4107 
4108 	if (attr == &dev_attr_opmode.attr)
4109 		return ops->get_mode ? mode : 0;
4110 
4111 	if (attr == &dev_attr_state.attr)
4112 		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4113 
4114 	if (attr == &dev_attr_status.attr)
4115 		return ops->get_status ? mode : 0;
4116 
4117 	if (attr == &dev_attr_bypass.attr)
4118 		return ops->get_bypass ? mode : 0;
4119 
4120 	/* some attributes are type-specific */
4121 	if (attr == &dev_attr_requested_microamps.attr)
4122 		return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
4123 
4124 	/* constraints need specific supporting methods */
4125 	if (attr == &dev_attr_min_microvolts.attr ||
4126 	    attr == &dev_attr_max_microvolts.attr)
4127 		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4128 
4129 	if (attr == &dev_attr_min_microamps.attr ||
4130 	    attr == &dev_attr_max_microamps.attr)
4131 		return ops->set_current_limit ? mode : 0;
4132 
4133 	if (attr == &dev_attr_suspend_standby_state.attr ||
4134 	    attr == &dev_attr_suspend_mem_state.attr ||
4135 	    attr == &dev_attr_suspend_disk_state.attr)
4136 		return mode;
4137 
4138 	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4139 	    attr == &dev_attr_suspend_mem_microvolts.attr ||
4140 	    attr == &dev_attr_suspend_disk_microvolts.attr)
4141 		return ops->set_suspend_voltage ? mode : 0;
4142 
4143 	if (attr == &dev_attr_suspend_standby_mode.attr ||
4144 	    attr == &dev_attr_suspend_mem_mode.attr ||
4145 	    attr == &dev_attr_suspend_disk_mode.attr)
4146 		return ops->set_suspend_mode ? mode : 0;
4147 
4148 	return mode;
4149 }
4150 
4151 static const struct attribute_group regulator_dev_group = {
4152 	.attrs = regulator_dev_attrs,
4153 	.is_visible = regulator_attr_is_visible,
4154 };
4155 
4156 static const struct attribute_group *regulator_dev_groups[] = {
4157 	&regulator_dev_group,
4158 	NULL
4159 };
4160 
regulator_dev_release(struct device * dev)4161 static void regulator_dev_release(struct device *dev)
4162 {
4163 	struct regulator_dev *rdev = dev_get_drvdata(dev);
4164 
4165 	kfree(rdev->constraints);
4166 	of_node_put(rdev->dev.of_node);
4167 	kfree(rdev);
4168 }
4169 
rdev_init_debugfs(struct regulator_dev * rdev)4170 static void rdev_init_debugfs(struct regulator_dev *rdev)
4171 {
4172 	struct device *parent = rdev->dev.parent;
4173 	const char *rname = rdev_get_name(rdev);
4174 	char name[NAME_MAX];
4175 
4176 	/* Avoid duplicate debugfs directory names */
4177 	if (parent && rname == rdev->desc->name) {
4178 		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4179 			 rname);
4180 		rname = name;
4181 	}
4182 
4183 	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4184 	if (IS_ERR(rdev->debugfs)) {
4185 		rdev_warn(rdev, "Failed to create debugfs directory\n");
4186 		return;
4187 	}
4188 
4189 	debugfs_create_u32("use_count", 0444, rdev->debugfs,
4190 			   &rdev->use_count);
4191 	debugfs_create_u32("open_count", 0444, rdev->debugfs,
4192 			   &rdev->open_count);
4193 	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
4194 			   &rdev->bypass_count);
4195 }
4196 
regulator_register_resolve_supply(struct device * dev,void * data)4197 static int regulator_register_resolve_supply(struct device *dev, void *data)
4198 {
4199 	struct regulator_dev *rdev = dev_to_rdev(dev);
4200 
4201 	if (regulator_resolve_supply(rdev))
4202 		rdev_dbg(rdev, "unable to resolve supply\n");
4203 
4204 	return 0;
4205 }
4206 
regulator_fill_coupling_array(struct regulator_dev * rdev)4207 static int regulator_fill_coupling_array(struct regulator_dev *rdev)
4208 {
4209 	struct coupling_desc *c_desc = &rdev->coupling_desc;
4210 	int n_coupled = c_desc->n_coupled;
4211 	struct regulator_dev *c_rdev;
4212 	int i;
4213 
4214 	for (i = 1; i < n_coupled; i++) {
4215 		/* already resolved */
4216 		if (c_desc->coupled_rdevs[i])
4217 			continue;
4218 
4219 		c_rdev = of_parse_coupled_regulator(rdev, i - 1);
4220 
4221 		if (c_rdev) {
4222 			c_desc->coupled_rdevs[i] = c_rdev;
4223 			c_desc->n_resolved++;
4224 		}
4225 	}
4226 
4227 	if (rdev->coupling_desc.n_resolved < n_coupled)
4228 		return -1;
4229 	else
4230 		return 0;
4231 }
4232 
regulator_register_fill_coupling_array(struct device * dev,void * data)4233 static int regulator_register_fill_coupling_array(struct device *dev,
4234 						  void *data)
4235 {
4236 	struct regulator_dev *rdev = dev_to_rdev(dev);
4237 
4238 	if (!IS_ENABLED(CONFIG_OF))
4239 		return 0;
4240 
4241 	if (regulator_fill_coupling_array(rdev))
4242 		rdev_dbg(rdev, "unable to resolve coupling\n");
4243 
4244 	return 0;
4245 }
4246 
regulator_resolve_coupling(struct regulator_dev * rdev)4247 static int regulator_resolve_coupling(struct regulator_dev *rdev)
4248 {
4249 	int n_phandles;
4250 
4251 	if (!IS_ENABLED(CONFIG_OF))
4252 		n_phandles = 0;
4253 	else
4254 		n_phandles = of_get_n_coupled(rdev);
4255 
4256 	if (n_phandles + 1 > MAX_COUPLED) {
4257 		rdev_err(rdev, "too many regulators coupled\n");
4258 		return -EPERM;
4259 	}
4260 
4261 	/*
4262 	 * Every regulator should always have coupling descriptor filled with
4263 	 * at least pointer to itself.
4264 	 */
4265 	rdev->coupling_desc.coupled_rdevs[0] = rdev;
4266 	rdev->coupling_desc.n_coupled = n_phandles + 1;
4267 	rdev->coupling_desc.n_resolved++;
4268 
4269 	/* regulator isn't coupled */
4270 	if (n_phandles == 0)
4271 		return 0;
4272 
4273 	/* regulator, which can't change its voltage, can't be coupled */
4274 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
4275 		rdev_err(rdev, "voltage operation not allowed\n");
4276 		return -EPERM;
4277 	}
4278 
4279 	if (rdev->constraints->max_spread <= 0) {
4280 		rdev_err(rdev, "wrong max_spread value\n");
4281 		return -EPERM;
4282 	}
4283 
4284 	if (!of_check_coupling_data(rdev))
4285 		return -EPERM;
4286 
4287 	/*
4288 	 * After everything has been checked, try to fill rdevs array
4289 	 * with pointers to regulators parsed from device tree. If some
4290 	 * regulators are not registered yet, retry in late init call
4291 	 */
4292 	regulator_fill_coupling_array(rdev);
4293 
4294 	return 0;
4295 }
4296 
4297 /**
4298  * regulator_register - register regulator
4299  * @regulator_desc: regulator to register
4300  * @cfg: runtime configuration for regulator
4301  *
4302  * Called by regulator drivers to register a regulator.
4303  * Returns a valid pointer to struct regulator_dev on success
4304  * or an ERR_PTR() on error.
4305  */
4306 struct regulator_dev *
regulator_register(const struct regulator_desc * regulator_desc,const struct regulator_config * cfg)4307 regulator_register(const struct regulator_desc *regulator_desc,
4308 		   const struct regulator_config *cfg)
4309 {
4310 	const struct regulator_init_data *init_data;
4311 	struct regulator_config *config = NULL;
4312 	static atomic_t regulator_no = ATOMIC_INIT(-1);
4313 	struct regulator_dev *rdev;
4314 	struct device *dev;
4315 	int ret, i;
4316 
4317 	if (regulator_desc == NULL || cfg == NULL)
4318 		return ERR_PTR(-EINVAL);
4319 
4320 	dev = cfg->dev;
4321 	WARN_ON(!dev);
4322 
4323 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
4324 		return ERR_PTR(-EINVAL);
4325 
4326 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
4327 	    regulator_desc->type != REGULATOR_CURRENT)
4328 		return ERR_PTR(-EINVAL);
4329 
4330 	/* Only one of each should be implemented */
4331 	WARN_ON(regulator_desc->ops->get_voltage &&
4332 		regulator_desc->ops->get_voltage_sel);
4333 	WARN_ON(regulator_desc->ops->set_voltage &&
4334 		regulator_desc->ops->set_voltage_sel);
4335 
4336 	/* If we're using selectors we must implement list_voltage. */
4337 	if (regulator_desc->ops->get_voltage_sel &&
4338 	    !regulator_desc->ops->list_voltage) {
4339 		return ERR_PTR(-EINVAL);
4340 	}
4341 	if (regulator_desc->ops->set_voltage_sel &&
4342 	    !regulator_desc->ops->list_voltage) {
4343 		return ERR_PTR(-EINVAL);
4344 	}
4345 
4346 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
4347 	if (rdev == NULL)
4348 		return ERR_PTR(-ENOMEM);
4349 
4350 	/*
4351 	 * Duplicate the config so the driver could override it after
4352 	 * parsing init data.
4353 	 */
4354 	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
4355 	if (config == NULL) {
4356 		kfree(rdev);
4357 		return ERR_PTR(-ENOMEM);
4358 	}
4359 
4360 	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
4361 					       &rdev->dev.of_node);
4362 	if (!init_data) {
4363 		init_data = config->init_data;
4364 		rdev->dev.of_node = of_node_get(config->of_node);
4365 	}
4366 
4367 	mutex_init(&rdev->mutex);
4368 	rdev->reg_data = config->driver_data;
4369 	rdev->owner = regulator_desc->owner;
4370 	rdev->desc = regulator_desc;
4371 	if (config->regmap)
4372 		rdev->regmap = config->regmap;
4373 	else if (dev_get_regmap(dev, NULL))
4374 		rdev->regmap = dev_get_regmap(dev, NULL);
4375 	else if (dev->parent)
4376 		rdev->regmap = dev_get_regmap(dev->parent, NULL);
4377 	INIT_LIST_HEAD(&rdev->consumer_list);
4378 	INIT_LIST_HEAD(&rdev->list);
4379 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
4380 	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
4381 
4382 	/* preform any regulator specific init */
4383 	if (init_data && init_data->regulator_init) {
4384 		ret = init_data->regulator_init(rdev->reg_data);
4385 		if (ret < 0)
4386 			goto clean;
4387 	}
4388 
4389 	if (config->ena_gpiod ||
4390 	    ((config->ena_gpio || config->ena_gpio_initialized) &&
4391 	     gpio_is_valid(config->ena_gpio))) {
4392 		mutex_lock(&regulator_list_mutex);
4393 		ret = regulator_ena_gpio_request(rdev, config);
4394 		mutex_unlock(&regulator_list_mutex);
4395 		if (ret != 0) {
4396 			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
4397 				 config->ena_gpio, ret);
4398 			goto clean;
4399 		}
4400 	}
4401 
4402 	/* register with sysfs */
4403 	rdev->dev.class = &regulator_class;
4404 	rdev->dev.parent = dev;
4405 	dev_set_name(&rdev->dev, "regulator.%lu",
4406 		    (unsigned long) atomic_inc_return(&regulator_no));
4407 
4408 	/* set regulator constraints */
4409 	if (init_data)
4410 		rdev->constraints = kmemdup(&init_data->constraints,
4411 					    sizeof(*rdev->constraints),
4412 					    GFP_KERNEL);
4413 	else
4414 		rdev->constraints = kzalloc(sizeof(*rdev->constraints),
4415 					    GFP_KERNEL);
4416 	if (!rdev->constraints) {
4417 		ret = -ENOMEM;
4418 		goto wash;
4419 	}
4420 
4421 	if (init_data && init_data->supply_regulator)
4422 		rdev->supply_name = init_data->supply_regulator;
4423 	else if (regulator_desc->supply_name)
4424 		rdev->supply_name = regulator_desc->supply_name;
4425 
4426 	ret = set_machine_constraints(rdev);
4427 	if (ret == -EPROBE_DEFER) {
4428 		/* Regulator might be in bypass mode and so needs its supply
4429 		 * to set the constraints */
4430 		/* FIXME: this currently triggers a chicken-and-egg problem
4431 		 * when creating -SUPPLY symlink in sysfs to a regulator
4432 		 * that is just being created */
4433 		ret = regulator_resolve_supply(rdev);
4434 		if (!ret)
4435 			ret = set_machine_constraints(rdev);
4436 		else
4437 			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
4438 				 ERR_PTR(ret));
4439 	}
4440 	if (ret < 0)
4441 		goto wash;
4442 
4443 	mutex_lock(&regulator_list_mutex);
4444 	ret = regulator_resolve_coupling(rdev);
4445 	mutex_unlock(&regulator_list_mutex);
4446 
4447 	if (ret != 0)
4448 		goto wash;
4449 
4450 	/* add consumers devices */
4451 	if (init_data) {
4452 		for (i = 0; i < init_data->num_consumer_supplies; i++) {
4453 			ret = set_consumer_device_supply(rdev,
4454 				init_data->consumer_supplies[i].dev_name,
4455 				init_data->consumer_supplies[i].supply);
4456 			if (ret < 0) {
4457 				dev_err(dev, "Failed to set supply %s\n",
4458 					init_data->consumer_supplies[i].supply);
4459 				goto unset_supplies;
4460 			}
4461 		}
4462 	}
4463 
4464 	if (!rdev->desc->ops->get_voltage &&
4465 	    !rdev->desc->ops->list_voltage &&
4466 	    !rdev->desc->fixed_uV)
4467 		rdev->is_switch = true;
4468 
4469 	dev_set_drvdata(&rdev->dev, rdev);
4470 	ret = device_register(&rdev->dev);
4471 	if (ret != 0) {
4472 		put_device(&rdev->dev);
4473 		goto unset_supplies;
4474 	}
4475 
4476 	rdev_init_debugfs(rdev);
4477 
4478 	/* try to resolve regulators supply since a new one was registered */
4479 	class_for_each_device(&regulator_class, NULL, NULL,
4480 			      regulator_register_resolve_supply);
4481 	kfree(config);
4482 	return rdev;
4483 
4484 unset_supplies:
4485 	mutex_lock(&regulator_list_mutex);
4486 	unset_regulator_supplies(rdev);
4487 	mutex_unlock(&regulator_list_mutex);
4488 wash:
4489 	kfree(rdev->constraints);
4490 	mutex_lock(&regulator_list_mutex);
4491 	regulator_ena_gpio_free(rdev);
4492 	mutex_unlock(&regulator_list_mutex);
4493 clean:
4494 	kfree(rdev);
4495 	kfree(config);
4496 	return ERR_PTR(ret);
4497 }
4498 EXPORT_SYMBOL_GPL(regulator_register);
4499 
4500 /**
4501  * regulator_unregister - unregister regulator
4502  * @rdev: regulator to unregister
4503  *
4504  * Called by regulator drivers to unregister a regulator.
4505  */
regulator_unregister(struct regulator_dev * rdev)4506 void regulator_unregister(struct regulator_dev *rdev)
4507 {
4508 	if (rdev == NULL)
4509 		return;
4510 
4511 	if (rdev->supply) {
4512 		while (rdev->use_count--)
4513 			regulator_disable(rdev->supply);
4514 		regulator_put(rdev->supply);
4515 	}
4516 	mutex_lock(&regulator_list_mutex);
4517 	debugfs_remove_recursive(rdev->debugfs);
4518 	flush_work(&rdev->disable_work.work);
4519 	WARN_ON(rdev->open_count);
4520 	unset_regulator_supplies(rdev);
4521 	list_del(&rdev->list);
4522 	regulator_ena_gpio_free(rdev);
4523 	mutex_unlock(&regulator_list_mutex);
4524 	device_unregister(&rdev->dev);
4525 }
4526 EXPORT_SYMBOL_GPL(regulator_unregister);
4527 
4528 #ifdef CONFIG_SUSPEND
_regulator_suspend(struct device * dev,void * data)4529 static int _regulator_suspend(struct device *dev, void *data)
4530 {
4531 	struct regulator_dev *rdev = dev_to_rdev(dev);
4532 	suspend_state_t *state = data;
4533 	int ret;
4534 
4535 	regulator_lock(rdev);
4536 	ret = suspend_set_state(rdev, *state);
4537 	regulator_unlock(rdev);
4538 
4539 	return ret;
4540 }
4541 
4542 /**
4543  * regulator_suspend - prepare regulators for system wide suspend
4544  * @state: system suspend state
4545  *
4546  * Configure each regulator with it's suspend operating parameters for state.
4547  */
regulator_suspend(struct device * dev)4548 static int regulator_suspend(struct device *dev)
4549 {
4550 	suspend_state_t state = pm_suspend_target_state;
4551 
4552 	return class_for_each_device(&regulator_class, NULL, &state,
4553 				     _regulator_suspend);
4554 }
4555 
_regulator_resume(struct device * dev,void * data)4556 static int _regulator_resume(struct device *dev, void *data)
4557 {
4558 	int ret = 0;
4559 	struct regulator_dev *rdev = dev_to_rdev(dev);
4560 	suspend_state_t *state = data;
4561 	struct regulator_state *rstate;
4562 
4563 	rstate = regulator_get_suspend_state(rdev, *state);
4564 	if (rstate == NULL)
4565 		return 0;
4566 
4567 	regulator_lock(rdev);
4568 
4569 	if (rdev->desc->ops->resume &&
4570 	    (rstate->enabled == ENABLE_IN_SUSPEND ||
4571 	     rstate->enabled == DISABLE_IN_SUSPEND))
4572 		ret = rdev->desc->ops->resume(rdev);
4573 
4574 	regulator_unlock(rdev);
4575 
4576 	return ret;
4577 }
4578 
regulator_resume(struct device * dev)4579 static int regulator_resume(struct device *dev)
4580 {
4581 	suspend_state_t state = pm_suspend_target_state;
4582 
4583 	return class_for_each_device(&regulator_class, NULL, &state,
4584 				     _regulator_resume);
4585 }
4586 
4587 #else /* !CONFIG_SUSPEND */
4588 
4589 #define regulator_suspend	NULL
4590 #define regulator_resume	NULL
4591 
4592 #endif /* !CONFIG_SUSPEND */
4593 
4594 #ifdef CONFIG_PM
4595 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
4596 	.suspend	= regulator_suspend,
4597 	.resume		= regulator_resume,
4598 };
4599 #endif
4600 
4601 struct class regulator_class = {
4602 	.name = "regulator",
4603 	.dev_release = regulator_dev_release,
4604 	.dev_groups = regulator_dev_groups,
4605 #ifdef CONFIG_PM
4606 	.pm = &regulator_pm_ops,
4607 #endif
4608 };
4609 /**
4610  * regulator_has_full_constraints - the system has fully specified constraints
4611  *
4612  * Calling this function will cause the regulator API to disable all
4613  * regulators which have a zero use count and don't have an always_on
4614  * constraint in a late_initcall.
4615  *
4616  * The intention is that this will become the default behaviour in a
4617  * future kernel release so users are encouraged to use this facility
4618  * now.
4619  */
regulator_has_full_constraints(void)4620 void regulator_has_full_constraints(void)
4621 {
4622 	has_full_constraints = 1;
4623 }
4624 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
4625 
4626 /**
4627  * rdev_get_drvdata - get rdev regulator driver data
4628  * @rdev: regulator
4629  *
4630  * Get rdev regulator driver private data. This call can be used in the
4631  * regulator driver context.
4632  */
rdev_get_drvdata(struct regulator_dev * rdev)4633 void *rdev_get_drvdata(struct regulator_dev *rdev)
4634 {
4635 	return rdev->reg_data;
4636 }
4637 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
4638 
4639 /**
4640  * regulator_get_drvdata - get regulator driver data
4641  * @regulator: regulator
4642  *
4643  * Get regulator driver private data. This call can be used in the consumer
4644  * driver context when non API regulator specific functions need to be called.
4645  */
regulator_get_drvdata(struct regulator * regulator)4646 void *regulator_get_drvdata(struct regulator *regulator)
4647 {
4648 	return regulator->rdev->reg_data;
4649 }
4650 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
4651 
4652 /**
4653  * regulator_set_drvdata - set regulator driver data
4654  * @regulator: regulator
4655  * @data: data
4656  */
regulator_set_drvdata(struct regulator * regulator,void * data)4657 void regulator_set_drvdata(struct regulator *regulator, void *data)
4658 {
4659 	regulator->rdev->reg_data = data;
4660 }
4661 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
4662 
4663 /**
4664  * regulator_get_id - get regulator ID
4665  * @rdev: regulator
4666  */
rdev_get_id(struct regulator_dev * rdev)4667 int rdev_get_id(struct regulator_dev *rdev)
4668 {
4669 	return rdev->desc->id;
4670 }
4671 EXPORT_SYMBOL_GPL(rdev_get_id);
4672 
rdev_get_dev(struct regulator_dev * rdev)4673 struct device *rdev_get_dev(struct regulator_dev *rdev)
4674 {
4675 	return &rdev->dev;
4676 }
4677 EXPORT_SYMBOL_GPL(rdev_get_dev);
4678 
regulator_get_init_drvdata(struct regulator_init_data * reg_init_data)4679 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4680 {
4681 	return reg_init_data->driver_data;
4682 }
4683 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4684 
4685 #ifdef CONFIG_DEBUG_FS
supply_map_show(struct seq_file * sf,void * data)4686 static int supply_map_show(struct seq_file *sf, void *data)
4687 {
4688 	struct regulator_map *map;
4689 
4690 	list_for_each_entry(map, &regulator_map_list, list) {
4691 		seq_printf(sf, "%s -> %s.%s\n",
4692 				rdev_get_name(map->regulator), map->dev_name,
4693 				map->supply);
4694 	}
4695 
4696 	return 0;
4697 }
4698 
supply_map_open(struct inode * inode,struct file * file)4699 static int supply_map_open(struct inode *inode, struct file *file)
4700 {
4701 	return single_open(file, supply_map_show, inode->i_private);
4702 }
4703 #endif
4704 
4705 static const struct file_operations supply_map_fops = {
4706 #ifdef CONFIG_DEBUG_FS
4707 	.open = supply_map_open,
4708 	.read = seq_read,
4709 	.llseek = seq_lseek,
4710 	.release = single_release,
4711 #endif
4712 };
4713 
4714 #ifdef CONFIG_DEBUG_FS
4715 struct summary_data {
4716 	struct seq_file *s;
4717 	struct regulator_dev *parent;
4718 	int level;
4719 };
4720 
4721 static void regulator_summary_show_subtree(struct seq_file *s,
4722 					   struct regulator_dev *rdev,
4723 					   int level);
4724 
regulator_summary_show_children(struct device * dev,void * data)4725 static int regulator_summary_show_children(struct device *dev, void *data)
4726 {
4727 	struct regulator_dev *rdev = dev_to_rdev(dev);
4728 	struct summary_data *summary_data = data;
4729 
4730 	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
4731 		regulator_summary_show_subtree(summary_data->s, rdev,
4732 					       summary_data->level + 1);
4733 
4734 	return 0;
4735 }
4736 
regulator_summary_show_subtree(struct seq_file * s,struct regulator_dev * rdev,int level)4737 static void regulator_summary_show_subtree(struct seq_file *s,
4738 					   struct regulator_dev *rdev,
4739 					   int level)
4740 {
4741 	struct regulation_constraints *c;
4742 	struct regulator *consumer;
4743 	struct summary_data summary_data;
4744 
4745 	if (!rdev)
4746 		return;
4747 
4748 	seq_printf(s, "%*s%-*s %3d %4d %6d ",
4749 		   level * 3 + 1, "",
4750 		   30 - level * 3, rdev_get_name(rdev),
4751 		   rdev->use_count, rdev->open_count, rdev->bypass_count);
4752 
4753 	seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4754 	seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4755 
4756 	c = rdev->constraints;
4757 	if (c) {
4758 		switch (rdev->desc->type) {
4759 		case REGULATOR_VOLTAGE:
4760 			seq_printf(s, "%5dmV %5dmV ",
4761 				   c->min_uV / 1000, c->max_uV / 1000);
4762 			break;
4763 		case REGULATOR_CURRENT:
4764 			seq_printf(s, "%5dmA %5dmA ",
4765 				   c->min_uA / 1000, c->max_uA / 1000);
4766 			break;
4767 		}
4768 	}
4769 
4770 	seq_puts(s, "\n");
4771 
4772 	list_for_each_entry(consumer, &rdev->consumer_list, list) {
4773 		if (consumer->dev && consumer->dev->class == &regulator_class)
4774 			continue;
4775 
4776 		seq_printf(s, "%*s%-*s ",
4777 			   (level + 1) * 3 + 1, "",
4778 			   30 - (level + 1) * 3,
4779 			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
4780 
4781 		switch (rdev->desc->type) {
4782 		case REGULATOR_VOLTAGE:
4783 			seq_printf(s, "%37dmV %5dmV",
4784 				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
4785 				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
4786 			break;
4787 		case REGULATOR_CURRENT:
4788 			break;
4789 		}
4790 
4791 		seq_puts(s, "\n");
4792 	}
4793 
4794 	summary_data.s = s;
4795 	summary_data.level = level;
4796 	summary_data.parent = rdev;
4797 
4798 	class_for_each_device(&regulator_class, NULL, &summary_data,
4799 			      regulator_summary_show_children);
4800 }
4801 
regulator_summary_show_roots(struct device * dev,void * data)4802 static int regulator_summary_show_roots(struct device *dev, void *data)
4803 {
4804 	struct regulator_dev *rdev = dev_to_rdev(dev);
4805 	struct seq_file *s = data;
4806 
4807 	if (!rdev->supply)
4808 		regulator_summary_show_subtree(s, rdev, 0);
4809 
4810 	return 0;
4811 }
4812 
regulator_summary_show(struct seq_file * s,void * data)4813 static int regulator_summary_show(struct seq_file *s, void *data)
4814 {
4815 	seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
4816 	seq_puts(s, "-------------------------------------------------------------------------------\n");
4817 
4818 	class_for_each_device(&regulator_class, NULL, s,
4819 			      regulator_summary_show_roots);
4820 
4821 	return 0;
4822 }
4823 
regulator_summary_open(struct inode * inode,struct file * file)4824 static int regulator_summary_open(struct inode *inode, struct file *file)
4825 {
4826 	return single_open(file, regulator_summary_show, inode->i_private);
4827 }
4828 #endif
4829 
4830 static const struct file_operations regulator_summary_fops = {
4831 #ifdef CONFIG_DEBUG_FS
4832 	.open		= regulator_summary_open,
4833 	.read		= seq_read,
4834 	.llseek		= seq_lseek,
4835 	.release	= single_release,
4836 #endif
4837 };
4838 
regulator_init(void)4839 static int __init regulator_init(void)
4840 {
4841 	int ret;
4842 
4843 	ret = class_register(&regulator_class);
4844 
4845 	debugfs_root = debugfs_create_dir("regulator", NULL);
4846 	if (IS_ERR(debugfs_root))
4847 		pr_warn("regulator: Failed to create debugfs directory\n");
4848 
4849 	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4850 			    &supply_map_fops);
4851 
4852 	debugfs_create_file("regulator_summary", 0444, debugfs_root,
4853 			    NULL, &regulator_summary_fops);
4854 
4855 	regulator_dummy_init();
4856 
4857 	return ret;
4858 }
4859 
4860 /* init early to allow our consumers to complete system booting */
4861 core_initcall(regulator_init);
4862 
regulator_late_cleanup(struct device * dev,void * data)4863 static int regulator_late_cleanup(struct device *dev, void *data)
4864 {
4865 	struct regulator_dev *rdev = dev_to_rdev(dev);
4866 	const struct regulator_ops *ops = rdev->desc->ops;
4867 	struct regulation_constraints *c = rdev->constraints;
4868 	int enabled, ret;
4869 
4870 	if (c && c->always_on)
4871 		return 0;
4872 
4873 	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
4874 		return 0;
4875 
4876 	regulator_lock(rdev);
4877 
4878 	if (rdev->use_count)
4879 		goto unlock;
4880 
4881 	/* If we can't read the status assume it's on. */
4882 	if (ops->is_enabled)
4883 		enabled = ops->is_enabled(rdev);
4884 	else
4885 		enabled = 1;
4886 
4887 	if (!enabled)
4888 		goto unlock;
4889 
4890 	if (have_full_constraints()) {
4891 		/* We log since this may kill the system if it goes
4892 		 * wrong. */
4893 		rdev_info(rdev, "disabling\n");
4894 		ret = _regulator_do_disable(rdev);
4895 		if (ret != 0)
4896 			rdev_err(rdev, "couldn't disable: %d\n", ret);
4897 	} else {
4898 		/* The intention is that in future we will
4899 		 * assume that full constraints are provided
4900 		 * so warn even if we aren't going to do
4901 		 * anything here.
4902 		 */
4903 		rdev_warn(rdev, "incomplete constraints, leaving on\n");
4904 	}
4905 
4906 unlock:
4907 	regulator_unlock(rdev);
4908 
4909 	return 0;
4910 }
4911 
regulator_init_complete_work_function(struct work_struct * work)4912 static void regulator_init_complete_work_function(struct work_struct *work)
4913 {
4914 	/*
4915 	 * Regulators may had failed to resolve their input supplies
4916 	 * when were registered, either because the input supply was
4917 	 * not registered yet or because its parent device was not
4918 	 * bound yet. So attempt to resolve the input supplies for
4919 	 * pending regulators before trying to disable unused ones.
4920 	 */
4921 	class_for_each_device(&regulator_class, NULL, NULL,
4922 			      regulator_register_resolve_supply);
4923 
4924 	/* If we have a full configuration then disable any regulators
4925 	 * we have permission to change the status for and which are
4926 	 * not in use or always_on.  This is effectively the default
4927 	 * for DT and ACPI as they have full constraints.
4928 	 */
4929 	class_for_each_device(&regulator_class, NULL, NULL,
4930 			      regulator_late_cleanup);
4931 }
4932 
4933 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
4934 			    regulator_init_complete_work_function);
4935 
regulator_init_complete(void)4936 static int __init regulator_init_complete(void)
4937 {
4938 	/*
4939 	 * Since DT doesn't provide an idiomatic mechanism for
4940 	 * enabling full constraints and since it's much more natural
4941 	 * with DT to provide them just assume that a DT enabled
4942 	 * system has full constraints.
4943 	 */
4944 	if (of_have_populated_dt())
4945 		has_full_constraints = true;
4946 
4947 	/*
4948 	 * We punt completion for an arbitrary amount of time since
4949 	 * systems like distros will load many drivers from userspace
4950 	 * so consumers might not always be ready yet, this is
4951 	 * particularly an issue with laptops where this might bounce
4952 	 * the display off then on.  Ideally we'd get a notification
4953 	 * from userspace when this happens but we don't so just wait
4954 	 * a bit and hope we waited long enough.  It'd be better if
4955 	 * we'd only do this on systems that need it, and a kernel
4956 	 * command line option might be useful.
4957 	 */
4958 	schedule_delayed_work(&regulator_init_complete_work,
4959 			      msecs_to_jiffies(30000));
4960 
4961 	class_for_each_device(&regulator_class, NULL, NULL,
4962 			      regulator_register_fill_coupling_array);
4963 
4964 	return 0;
4965 }
4966 late_initcall_sync(regulator_init_complete);
4967