1 /*
2 * core.c -- Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
13 *
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38
39 #include "dummy.h"
40 #include "internal.h"
41
42 #define rdev_crit(rdev, fmt, ...) \
43 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...) \
45 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...) \
47 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...) \
49 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...) \
51 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
58
59 static struct dentry *debugfs_root;
60
61 /*
62 * struct regulator_map
63 *
64 * Used to provide symbolic supply names to devices.
65 */
66 struct regulator_map {
67 struct list_head list;
68 const char *dev_name; /* The dev_name() for the consumer */
69 const char *supply;
70 struct regulator_dev *regulator;
71 };
72
73 /*
74 * struct regulator_enable_gpio
75 *
76 * Management for shared enable GPIO pin
77 */
78 struct regulator_enable_gpio {
79 struct list_head list;
80 struct gpio_desc *gpiod;
81 u32 enable_count; /* a number of enabled shared GPIO */
82 u32 request_count; /* a number of requested shared GPIO */
83 unsigned int ena_gpio_invert:1;
84 };
85
86 /*
87 * struct regulator_supply_alias
88 *
89 * Used to map lookups for a supply onto an alternative device.
90 */
91 struct regulator_supply_alias {
92 struct list_head list;
93 struct device *src_dev;
94 const char *src_supply;
95 struct device *alias_dev;
96 const char *alias_supply;
97 };
98
99 static int _regulator_is_enabled(struct regulator_dev *rdev);
100 static int _regulator_disable(struct regulator_dev *rdev);
101 static int _regulator_get_voltage(struct regulator_dev *rdev);
102 static int _regulator_get_current_limit(struct regulator_dev *rdev);
103 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
104 static int _notifier_call_chain(struct regulator_dev *rdev,
105 unsigned long event, void *data);
106 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
107 int min_uV, int max_uV);
108 static struct regulator *create_regulator(struct regulator_dev *rdev,
109 struct device *dev,
110 const char *supply_name);
111 static void _regulator_put(struct regulator *regulator);
112
rdev_get_name(struct regulator_dev * rdev)113 static const char *rdev_get_name(struct regulator_dev *rdev)
114 {
115 if (rdev->constraints && rdev->constraints->name)
116 return rdev->constraints->name;
117 else if (rdev->desc->name)
118 return rdev->desc->name;
119 else
120 return "";
121 }
122
have_full_constraints(void)123 static bool have_full_constraints(void)
124 {
125 return has_full_constraints || of_have_populated_dt();
126 }
127
regulator_ops_is_valid(struct regulator_dev * rdev,int ops)128 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
129 {
130 if (!rdev->constraints) {
131 rdev_err(rdev, "no constraints\n");
132 return false;
133 }
134
135 if (rdev->constraints->valid_ops_mask & ops)
136 return true;
137
138 return false;
139 }
140
rdev_get_supply(struct regulator_dev * rdev)141 static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
142 {
143 if (rdev && rdev->supply)
144 return rdev->supply->rdev;
145
146 return NULL;
147 }
148
149 /**
150 * regulator_lock_nested - lock a single regulator
151 * @rdev: regulator source
152 * @subclass: mutex subclass used for lockdep
153 *
154 * This function can be called many times by one task on
155 * a single regulator and its mutex will be locked only
156 * once. If a task, which is calling this function is other
157 * than the one, which initially locked the mutex, it will
158 * wait on mutex.
159 */
regulator_lock_nested(struct regulator_dev * rdev,unsigned int subclass)160 static void regulator_lock_nested(struct regulator_dev *rdev,
161 unsigned int subclass)
162 {
163 if (!mutex_trylock(&rdev->mutex)) {
164 if (rdev->mutex_owner == current) {
165 rdev->ref_cnt++;
166 return;
167 }
168 mutex_lock_nested(&rdev->mutex, subclass);
169 }
170
171 rdev->ref_cnt = 1;
172 rdev->mutex_owner = current;
173 }
174
regulator_lock(struct regulator_dev * rdev)175 static inline void regulator_lock(struct regulator_dev *rdev)
176 {
177 regulator_lock_nested(rdev, 0);
178 }
179
180 /**
181 * regulator_unlock - unlock a single regulator
182 * @rdev: regulator_source
183 *
184 * This function unlocks the mutex when the
185 * reference counter reaches 0.
186 */
regulator_unlock(struct regulator_dev * rdev)187 static void regulator_unlock(struct regulator_dev *rdev)
188 {
189 if (rdev->ref_cnt != 0) {
190 rdev->ref_cnt--;
191
192 if (!rdev->ref_cnt) {
193 rdev->mutex_owner = NULL;
194 mutex_unlock(&rdev->mutex);
195 }
196 }
197 }
198
199 /**
200 * regulator_lock_supply - lock a regulator and its supplies
201 * @rdev: regulator source
202 */
regulator_lock_supply(struct regulator_dev * rdev)203 static void regulator_lock_supply(struct regulator_dev *rdev)
204 {
205 int i;
206
207 for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
208 regulator_lock_nested(rdev, i);
209 }
210
211 /**
212 * regulator_unlock_supply - unlock a regulator and its supplies
213 * @rdev: regulator source
214 */
regulator_unlock_supply(struct regulator_dev * rdev)215 static void regulator_unlock_supply(struct regulator_dev *rdev)
216 {
217 struct regulator *supply;
218
219 while (1) {
220 regulator_unlock(rdev);
221 supply = rdev->supply;
222
223 if (!rdev->supply)
224 return;
225
226 rdev = supply->rdev;
227 }
228 }
229
230 /**
231 * of_get_regulator - get a regulator device node based on supply name
232 * @dev: Device pointer for the consumer (of regulator) device
233 * @supply: regulator supply name
234 *
235 * Extract the regulator device node corresponding to the supply name.
236 * returns the device node corresponding to the regulator if found, else
237 * returns NULL.
238 */
of_get_regulator(struct device * dev,const char * supply)239 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
240 {
241 struct device_node *regnode = NULL;
242 char prop_name[32]; /* 32 is max size of property name */
243
244 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
245
246 snprintf(prop_name, 32, "%s-supply", supply);
247 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
248
249 if (!regnode) {
250 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
251 prop_name, dev->of_node);
252 return NULL;
253 }
254 return regnode;
255 }
256
257 /* Platform voltage constraint check */
regulator_check_voltage(struct regulator_dev * rdev,int * min_uV,int * max_uV)258 static int regulator_check_voltage(struct regulator_dev *rdev,
259 int *min_uV, int *max_uV)
260 {
261 BUG_ON(*min_uV > *max_uV);
262
263 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
264 rdev_err(rdev, "voltage operation not allowed\n");
265 return -EPERM;
266 }
267
268 if (*max_uV > rdev->constraints->max_uV)
269 *max_uV = rdev->constraints->max_uV;
270 if (*min_uV < rdev->constraints->min_uV)
271 *min_uV = rdev->constraints->min_uV;
272
273 if (*min_uV > *max_uV) {
274 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
275 *min_uV, *max_uV);
276 return -EINVAL;
277 }
278
279 return 0;
280 }
281
282 /* return 0 if the state is valid */
regulator_check_states(suspend_state_t state)283 static int regulator_check_states(suspend_state_t state)
284 {
285 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
286 }
287
288 /* Make sure we select a voltage that suits the needs of all
289 * regulator consumers
290 */
regulator_check_consumers(struct regulator_dev * rdev,int * min_uV,int * max_uV,suspend_state_t state)291 static int regulator_check_consumers(struct regulator_dev *rdev,
292 int *min_uV, int *max_uV,
293 suspend_state_t state)
294 {
295 struct regulator *regulator;
296 struct regulator_voltage *voltage;
297
298 list_for_each_entry(regulator, &rdev->consumer_list, list) {
299 voltage = ®ulator->voltage[state];
300 /*
301 * Assume consumers that didn't say anything are OK
302 * with anything in the constraint range.
303 */
304 if (!voltage->min_uV && !voltage->max_uV)
305 continue;
306
307 if (*max_uV > voltage->max_uV)
308 *max_uV = voltage->max_uV;
309 if (*min_uV < voltage->min_uV)
310 *min_uV = voltage->min_uV;
311 }
312
313 if (*min_uV > *max_uV) {
314 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
315 *min_uV, *max_uV);
316 return -EINVAL;
317 }
318
319 return 0;
320 }
321
322 /* current constraint check */
regulator_check_current_limit(struct regulator_dev * rdev,int * min_uA,int * max_uA)323 static int regulator_check_current_limit(struct regulator_dev *rdev,
324 int *min_uA, int *max_uA)
325 {
326 BUG_ON(*min_uA > *max_uA);
327
328 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
329 rdev_err(rdev, "current operation not allowed\n");
330 return -EPERM;
331 }
332
333 if (*max_uA > rdev->constraints->max_uA)
334 *max_uA = rdev->constraints->max_uA;
335 if (*min_uA < rdev->constraints->min_uA)
336 *min_uA = rdev->constraints->min_uA;
337
338 if (*min_uA > *max_uA) {
339 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
340 *min_uA, *max_uA);
341 return -EINVAL;
342 }
343
344 return 0;
345 }
346
347 /* operating mode constraint check */
regulator_mode_constrain(struct regulator_dev * rdev,unsigned int * mode)348 static int regulator_mode_constrain(struct regulator_dev *rdev,
349 unsigned int *mode)
350 {
351 switch (*mode) {
352 case REGULATOR_MODE_FAST:
353 case REGULATOR_MODE_NORMAL:
354 case REGULATOR_MODE_IDLE:
355 case REGULATOR_MODE_STANDBY:
356 break;
357 default:
358 rdev_err(rdev, "invalid mode %x specified\n", *mode);
359 return -EINVAL;
360 }
361
362 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
363 rdev_err(rdev, "mode operation not allowed\n");
364 return -EPERM;
365 }
366
367 /* The modes are bitmasks, the most power hungry modes having
368 * the lowest values. If the requested mode isn't supported
369 * try higher modes. */
370 while (*mode) {
371 if (rdev->constraints->valid_modes_mask & *mode)
372 return 0;
373 *mode /= 2;
374 }
375
376 return -EINVAL;
377 }
378
379 static inline struct regulator_state *
regulator_get_suspend_state(struct regulator_dev * rdev,suspend_state_t state)380 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
381 {
382 if (rdev->constraints == NULL)
383 return NULL;
384
385 switch (state) {
386 case PM_SUSPEND_STANDBY:
387 return &rdev->constraints->state_standby;
388 case PM_SUSPEND_MEM:
389 return &rdev->constraints->state_mem;
390 case PM_SUSPEND_MAX:
391 return &rdev->constraints->state_disk;
392 default:
393 return NULL;
394 }
395 }
396
regulator_uV_show(struct device * dev,struct device_attribute * attr,char * buf)397 static ssize_t regulator_uV_show(struct device *dev,
398 struct device_attribute *attr, char *buf)
399 {
400 struct regulator_dev *rdev = dev_get_drvdata(dev);
401 ssize_t ret;
402
403 regulator_lock(rdev);
404 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
405 regulator_unlock(rdev);
406
407 return ret;
408 }
409 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
410
regulator_uA_show(struct device * dev,struct device_attribute * attr,char * buf)411 static ssize_t regulator_uA_show(struct device *dev,
412 struct device_attribute *attr, char *buf)
413 {
414 struct regulator_dev *rdev = dev_get_drvdata(dev);
415
416 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
417 }
418 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
419
name_show(struct device * dev,struct device_attribute * attr,char * buf)420 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
421 char *buf)
422 {
423 struct regulator_dev *rdev = dev_get_drvdata(dev);
424
425 return sprintf(buf, "%s\n", rdev_get_name(rdev));
426 }
427 static DEVICE_ATTR_RO(name);
428
regulator_print_opmode(char * buf,int mode)429 static ssize_t regulator_print_opmode(char *buf, int mode)
430 {
431 switch (mode) {
432 case REGULATOR_MODE_FAST:
433 return sprintf(buf, "fast\n");
434 case REGULATOR_MODE_NORMAL:
435 return sprintf(buf, "normal\n");
436 case REGULATOR_MODE_IDLE:
437 return sprintf(buf, "idle\n");
438 case REGULATOR_MODE_STANDBY:
439 return sprintf(buf, "standby\n");
440 }
441 return sprintf(buf, "unknown\n");
442 }
443
regulator_opmode_show(struct device * dev,struct device_attribute * attr,char * buf)444 static ssize_t regulator_opmode_show(struct device *dev,
445 struct device_attribute *attr, char *buf)
446 {
447 struct regulator_dev *rdev = dev_get_drvdata(dev);
448
449 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
450 }
451 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
452
regulator_print_state(char * buf,int state)453 static ssize_t regulator_print_state(char *buf, int state)
454 {
455 if (state > 0)
456 return sprintf(buf, "enabled\n");
457 else if (state == 0)
458 return sprintf(buf, "disabled\n");
459 else
460 return sprintf(buf, "unknown\n");
461 }
462
regulator_state_show(struct device * dev,struct device_attribute * attr,char * buf)463 static ssize_t regulator_state_show(struct device *dev,
464 struct device_attribute *attr, char *buf)
465 {
466 struct regulator_dev *rdev = dev_get_drvdata(dev);
467 ssize_t ret;
468
469 regulator_lock(rdev);
470 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
471 regulator_unlock(rdev);
472
473 return ret;
474 }
475 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
476
regulator_status_show(struct device * dev,struct device_attribute * attr,char * buf)477 static ssize_t regulator_status_show(struct device *dev,
478 struct device_attribute *attr, char *buf)
479 {
480 struct regulator_dev *rdev = dev_get_drvdata(dev);
481 int status;
482 char *label;
483
484 status = rdev->desc->ops->get_status(rdev);
485 if (status < 0)
486 return status;
487
488 switch (status) {
489 case REGULATOR_STATUS_OFF:
490 label = "off";
491 break;
492 case REGULATOR_STATUS_ON:
493 label = "on";
494 break;
495 case REGULATOR_STATUS_ERROR:
496 label = "error";
497 break;
498 case REGULATOR_STATUS_FAST:
499 label = "fast";
500 break;
501 case REGULATOR_STATUS_NORMAL:
502 label = "normal";
503 break;
504 case REGULATOR_STATUS_IDLE:
505 label = "idle";
506 break;
507 case REGULATOR_STATUS_STANDBY:
508 label = "standby";
509 break;
510 case REGULATOR_STATUS_BYPASS:
511 label = "bypass";
512 break;
513 case REGULATOR_STATUS_UNDEFINED:
514 label = "undefined";
515 break;
516 default:
517 return -ERANGE;
518 }
519
520 return sprintf(buf, "%s\n", label);
521 }
522 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
523
regulator_min_uA_show(struct device * dev,struct device_attribute * attr,char * buf)524 static ssize_t regulator_min_uA_show(struct device *dev,
525 struct device_attribute *attr, char *buf)
526 {
527 struct regulator_dev *rdev = dev_get_drvdata(dev);
528
529 if (!rdev->constraints)
530 return sprintf(buf, "constraint not defined\n");
531
532 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
533 }
534 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
535
regulator_max_uA_show(struct device * dev,struct device_attribute * attr,char * buf)536 static ssize_t regulator_max_uA_show(struct device *dev,
537 struct device_attribute *attr, char *buf)
538 {
539 struct regulator_dev *rdev = dev_get_drvdata(dev);
540
541 if (!rdev->constraints)
542 return sprintf(buf, "constraint not defined\n");
543
544 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
545 }
546 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
547
regulator_min_uV_show(struct device * dev,struct device_attribute * attr,char * buf)548 static ssize_t regulator_min_uV_show(struct device *dev,
549 struct device_attribute *attr, char *buf)
550 {
551 struct regulator_dev *rdev = dev_get_drvdata(dev);
552
553 if (!rdev->constraints)
554 return sprintf(buf, "constraint not defined\n");
555
556 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
557 }
558 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
559
regulator_max_uV_show(struct device * dev,struct device_attribute * attr,char * buf)560 static ssize_t regulator_max_uV_show(struct device *dev,
561 struct device_attribute *attr, char *buf)
562 {
563 struct regulator_dev *rdev = dev_get_drvdata(dev);
564
565 if (!rdev->constraints)
566 return sprintf(buf, "constraint not defined\n");
567
568 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
569 }
570 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
571
regulator_total_uA_show(struct device * dev,struct device_attribute * attr,char * buf)572 static ssize_t regulator_total_uA_show(struct device *dev,
573 struct device_attribute *attr, char *buf)
574 {
575 struct regulator_dev *rdev = dev_get_drvdata(dev);
576 struct regulator *regulator;
577 int uA = 0;
578
579 regulator_lock(rdev);
580 list_for_each_entry(regulator, &rdev->consumer_list, list)
581 uA += regulator->uA_load;
582 regulator_unlock(rdev);
583 return sprintf(buf, "%d\n", uA);
584 }
585 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
586
num_users_show(struct device * dev,struct device_attribute * attr,char * buf)587 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
588 char *buf)
589 {
590 struct regulator_dev *rdev = dev_get_drvdata(dev);
591 return sprintf(buf, "%d\n", rdev->use_count);
592 }
593 static DEVICE_ATTR_RO(num_users);
594
type_show(struct device * dev,struct device_attribute * attr,char * buf)595 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
596 char *buf)
597 {
598 struct regulator_dev *rdev = dev_get_drvdata(dev);
599
600 switch (rdev->desc->type) {
601 case REGULATOR_VOLTAGE:
602 return sprintf(buf, "voltage\n");
603 case REGULATOR_CURRENT:
604 return sprintf(buf, "current\n");
605 }
606 return sprintf(buf, "unknown\n");
607 }
608 static DEVICE_ATTR_RO(type);
609
regulator_suspend_mem_uV_show(struct device * dev,struct device_attribute * attr,char * buf)610 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
611 struct device_attribute *attr, char *buf)
612 {
613 struct regulator_dev *rdev = dev_get_drvdata(dev);
614
615 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
616 }
617 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
618 regulator_suspend_mem_uV_show, NULL);
619
regulator_suspend_disk_uV_show(struct device * dev,struct device_attribute * attr,char * buf)620 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
621 struct device_attribute *attr, char *buf)
622 {
623 struct regulator_dev *rdev = dev_get_drvdata(dev);
624
625 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
626 }
627 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
628 regulator_suspend_disk_uV_show, NULL);
629
regulator_suspend_standby_uV_show(struct device * dev,struct device_attribute * attr,char * buf)630 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
631 struct device_attribute *attr, char *buf)
632 {
633 struct regulator_dev *rdev = dev_get_drvdata(dev);
634
635 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
636 }
637 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
638 regulator_suspend_standby_uV_show, NULL);
639
regulator_suspend_mem_mode_show(struct device * dev,struct device_attribute * attr,char * buf)640 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
641 struct device_attribute *attr, char *buf)
642 {
643 struct regulator_dev *rdev = dev_get_drvdata(dev);
644
645 return regulator_print_opmode(buf,
646 rdev->constraints->state_mem.mode);
647 }
648 static DEVICE_ATTR(suspend_mem_mode, 0444,
649 regulator_suspend_mem_mode_show, NULL);
650
regulator_suspend_disk_mode_show(struct device * dev,struct device_attribute * attr,char * buf)651 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
652 struct device_attribute *attr, char *buf)
653 {
654 struct regulator_dev *rdev = dev_get_drvdata(dev);
655
656 return regulator_print_opmode(buf,
657 rdev->constraints->state_disk.mode);
658 }
659 static DEVICE_ATTR(suspend_disk_mode, 0444,
660 regulator_suspend_disk_mode_show, NULL);
661
regulator_suspend_standby_mode_show(struct device * dev,struct device_attribute * attr,char * buf)662 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
663 struct device_attribute *attr, char *buf)
664 {
665 struct regulator_dev *rdev = dev_get_drvdata(dev);
666
667 return regulator_print_opmode(buf,
668 rdev->constraints->state_standby.mode);
669 }
670 static DEVICE_ATTR(suspend_standby_mode, 0444,
671 regulator_suspend_standby_mode_show, NULL);
672
regulator_suspend_mem_state_show(struct device * dev,struct device_attribute * attr,char * buf)673 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
674 struct device_attribute *attr, char *buf)
675 {
676 struct regulator_dev *rdev = dev_get_drvdata(dev);
677
678 return regulator_print_state(buf,
679 rdev->constraints->state_mem.enabled);
680 }
681 static DEVICE_ATTR(suspend_mem_state, 0444,
682 regulator_suspend_mem_state_show, NULL);
683
regulator_suspend_disk_state_show(struct device * dev,struct device_attribute * attr,char * buf)684 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
685 struct device_attribute *attr, char *buf)
686 {
687 struct regulator_dev *rdev = dev_get_drvdata(dev);
688
689 return regulator_print_state(buf,
690 rdev->constraints->state_disk.enabled);
691 }
692 static DEVICE_ATTR(suspend_disk_state, 0444,
693 regulator_suspend_disk_state_show, NULL);
694
regulator_suspend_standby_state_show(struct device * dev,struct device_attribute * attr,char * buf)695 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
696 struct device_attribute *attr, char *buf)
697 {
698 struct regulator_dev *rdev = dev_get_drvdata(dev);
699
700 return regulator_print_state(buf,
701 rdev->constraints->state_standby.enabled);
702 }
703 static DEVICE_ATTR(suspend_standby_state, 0444,
704 regulator_suspend_standby_state_show, NULL);
705
regulator_bypass_show(struct device * dev,struct device_attribute * attr,char * buf)706 static ssize_t regulator_bypass_show(struct device *dev,
707 struct device_attribute *attr, char *buf)
708 {
709 struct regulator_dev *rdev = dev_get_drvdata(dev);
710 const char *report;
711 bool bypass;
712 int ret;
713
714 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
715
716 if (ret != 0)
717 report = "unknown";
718 else if (bypass)
719 report = "enabled";
720 else
721 report = "disabled";
722
723 return sprintf(buf, "%s\n", report);
724 }
725 static DEVICE_ATTR(bypass, 0444,
726 regulator_bypass_show, NULL);
727
728 /* Calculate the new optimum regulator operating mode based on the new total
729 * consumer load. All locks held by caller */
drms_uA_update(struct regulator_dev * rdev)730 static int drms_uA_update(struct regulator_dev *rdev)
731 {
732 struct regulator *sibling;
733 int current_uA = 0, output_uV, input_uV, err;
734 unsigned int mode;
735
736 lockdep_assert_held_once(&rdev->mutex);
737
738 /*
739 * first check to see if we can set modes at all, otherwise just
740 * tell the consumer everything is OK.
741 */
742 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
743 return 0;
744
745 if (!rdev->desc->ops->get_optimum_mode &&
746 !rdev->desc->ops->set_load)
747 return 0;
748
749 if (!rdev->desc->ops->set_mode &&
750 !rdev->desc->ops->set_load)
751 return -EINVAL;
752
753 /* calc total requested load */
754 list_for_each_entry(sibling, &rdev->consumer_list, list)
755 current_uA += sibling->uA_load;
756
757 current_uA += rdev->constraints->system_load;
758
759 if (rdev->desc->ops->set_load) {
760 /* set the optimum mode for our new total regulator load */
761 err = rdev->desc->ops->set_load(rdev, current_uA);
762 if (err < 0)
763 rdev_err(rdev, "failed to set load %d\n", current_uA);
764 } else {
765 /* get output voltage */
766 output_uV = _regulator_get_voltage(rdev);
767 if (output_uV <= 0) {
768 rdev_err(rdev, "invalid output voltage found\n");
769 return -EINVAL;
770 }
771
772 /* get input voltage */
773 input_uV = 0;
774 if (rdev->supply)
775 input_uV = regulator_get_voltage(rdev->supply);
776 if (input_uV <= 0)
777 input_uV = rdev->constraints->input_uV;
778 if (input_uV <= 0) {
779 rdev_err(rdev, "invalid input voltage found\n");
780 return -EINVAL;
781 }
782
783 /* now get the optimum mode for our new total regulator load */
784 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
785 output_uV, current_uA);
786
787 /* check the new mode is allowed */
788 err = regulator_mode_constrain(rdev, &mode);
789 if (err < 0) {
790 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
791 current_uA, input_uV, output_uV);
792 return err;
793 }
794
795 err = rdev->desc->ops->set_mode(rdev, mode);
796 if (err < 0)
797 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
798 }
799
800 return err;
801 }
802
suspend_set_state(struct regulator_dev * rdev,suspend_state_t state)803 static int suspend_set_state(struct regulator_dev *rdev,
804 suspend_state_t state)
805 {
806 int ret = 0;
807 struct regulator_state *rstate;
808
809 rstate = regulator_get_suspend_state(rdev, state);
810 if (rstate == NULL)
811 return 0;
812
813 /* If we have no suspend mode configration don't set anything;
814 * only warn if the driver implements set_suspend_voltage or
815 * set_suspend_mode callback.
816 */
817 if (rstate->enabled != ENABLE_IN_SUSPEND &&
818 rstate->enabled != DISABLE_IN_SUSPEND) {
819 if (rdev->desc->ops->set_suspend_voltage ||
820 rdev->desc->ops->set_suspend_mode)
821 rdev_warn(rdev, "No configuration\n");
822 return 0;
823 }
824
825 if (rstate->enabled == ENABLE_IN_SUSPEND &&
826 rdev->desc->ops->set_suspend_enable)
827 ret = rdev->desc->ops->set_suspend_enable(rdev);
828 else if (rstate->enabled == DISABLE_IN_SUSPEND &&
829 rdev->desc->ops->set_suspend_disable)
830 ret = rdev->desc->ops->set_suspend_disable(rdev);
831 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
832 ret = 0;
833
834 if (ret < 0) {
835 rdev_err(rdev, "failed to enabled/disable\n");
836 return ret;
837 }
838
839 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
840 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
841 if (ret < 0) {
842 rdev_err(rdev, "failed to set voltage\n");
843 return ret;
844 }
845 }
846
847 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
848 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
849 if (ret < 0) {
850 rdev_err(rdev, "failed to set mode\n");
851 return ret;
852 }
853 }
854
855 return ret;
856 }
857
print_constraints(struct regulator_dev * rdev)858 static void print_constraints(struct regulator_dev *rdev)
859 {
860 struct regulation_constraints *constraints = rdev->constraints;
861 char buf[160] = "";
862 size_t len = sizeof(buf) - 1;
863 int count = 0;
864 int ret;
865
866 if (constraints->min_uV && constraints->max_uV) {
867 if (constraints->min_uV == constraints->max_uV)
868 count += scnprintf(buf + count, len - count, "%d mV ",
869 constraints->min_uV / 1000);
870 else
871 count += scnprintf(buf + count, len - count,
872 "%d <--> %d mV ",
873 constraints->min_uV / 1000,
874 constraints->max_uV / 1000);
875 }
876
877 if (!constraints->min_uV ||
878 constraints->min_uV != constraints->max_uV) {
879 ret = _regulator_get_voltage(rdev);
880 if (ret > 0)
881 count += scnprintf(buf + count, len - count,
882 "at %d mV ", ret / 1000);
883 }
884
885 if (constraints->uV_offset)
886 count += scnprintf(buf + count, len - count, "%dmV offset ",
887 constraints->uV_offset / 1000);
888
889 if (constraints->min_uA && constraints->max_uA) {
890 if (constraints->min_uA == constraints->max_uA)
891 count += scnprintf(buf + count, len - count, "%d mA ",
892 constraints->min_uA / 1000);
893 else
894 count += scnprintf(buf + count, len - count,
895 "%d <--> %d mA ",
896 constraints->min_uA / 1000,
897 constraints->max_uA / 1000);
898 }
899
900 if (!constraints->min_uA ||
901 constraints->min_uA != constraints->max_uA) {
902 ret = _regulator_get_current_limit(rdev);
903 if (ret > 0)
904 count += scnprintf(buf + count, len - count,
905 "at %d mA ", ret / 1000);
906 }
907
908 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
909 count += scnprintf(buf + count, len - count, "fast ");
910 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
911 count += scnprintf(buf + count, len - count, "normal ");
912 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
913 count += scnprintf(buf + count, len - count, "idle ");
914 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
915 count += scnprintf(buf + count, len - count, "standby");
916
917 if (!count)
918 scnprintf(buf, len, "no parameters");
919
920 rdev_dbg(rdev, "%s\n", buf);
921
922 if ((constraints->min_uV != constraints->max_uV) &&
923 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
924 rdev_warn(rdev,
925 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
926 }
927
machine_constraints_voltage(struct regulator_dev * rdev,struct regulation_constraints * constraints)928 static int machine_constraints_voltage(struct regulator_dev *rdev,
929 struct regulation_constraints *constraints)
930 {
931 const struct regulator_ops *ops = rdev->desc->ops;
932 int ret;
933
934 /* do we need to apply the constraint voltage */
935 if (rdev->constraints->apply_uV &&
936 rdev->constraints->min_uV && rdev->constraints->max_uV) {
937 int target_min, target_max;
938 int current_uV = _regulator_get_voltage(rdev);
939
940 if (current_uV == -ENOTRECOVERABLE) {
941 /* This regulator can't be read and must be initted */
942 rdev_info(rdev, "Setting %d-%duV\n",
943 rdev->constraints->min_uV,
944 rdev->constraints->max_uV);
945 _regulator_do_set_voltage(rdev,
946 rdev->constraints->min_uV,
947 rdev->constraints->max_uV);
948 current_uV = _regulator_get_voltage(rdev);
949 }
950
951 if (current_uV < 0) {
952 rdev_err(rdev,
953 "failed to get the current voltage(%d)\n",
954 current_uV);
955 return current_uV;
956 }
957
958 /*
959 * If we're below the minimum voltage move up to the
960 * minimum voltage, if we're above the maximum voltage
961 * then move down to the maximum.
962 */
963 target_min = current_uV;
964 target_max = current_uV;
965
966 if (current_uV < rdev->constraints->min_uV) {
967 target_min = rdev->constraints->min_uV;
968 target_max = rdev->constraints->min_uV;
969 }
970
971 if (current_uV > rdev->constraints->max_uV) {
972 target_min = rdev->constraints->max_uV;
973 target_max = rdev->constraints->max_uV;
974 }
975
976 if (target_min != current_uV || target_max != current_uV) {
977 rdev_info(rdev, "Bringing %duV into %d-%duV\n",
978 current_uV, target_min, target_max);
979 ret = _regulator_do_set_voltage(
980 rdev, target_min, target_max);
981 if (ret < 0) {
982 rdev_err(rdev,
983 "failed to apply %d-%duV constraint(%d)\n",
984 target_min, target_max, ret);
985 return ret;
986 }
987 }
988 }
989
990 /* constrain machine-level voltage specs to fit
991 * the actual range supported by this regulator.
992 */
993 if (ops->list_voltage && rdev->desc->n_voltages) {
994 int count = rdev->desc->n_voltages;
995 int i;
996 int min_uV = INT_MAX;
997 int max_uV = INT_MIN;
998 int cmin = constraints->min_uV;
999 int cmax = constraints->max_uV;
1000
1001 /* it's safe to autoconfigure fixed-voltage supplies
1002 and the constraints are used by list_voltage. */
1003 if (count == 1 && !cmin) {
1004 cmin = 1;
1005 cmax = INT_MAX;
1006 constraints->min_uV = cmin;
1007 constraints->max_uV = cmax;
1008 }
1009
1010 /* voltage constraints are optional */
1011 if ((cmin == 0) && (cmax == 0))
1012 return 0;
1013
1014 /* else require explicit machine-level constraints */
1015 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1016 rdev_err(rdev, "invalid voltage constraints\n");
1017 return -EINVAL;
1018 }
1019
1020 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1021 for (i = 0; i < count; i++) {
1022 int value;
1023
1024 value = ops->list_voltage(rdev, i);
1025 if (value <= 0)
1026 continue;
1027
1028 /* maybe adjust [min_uV..max_uV] */
1029 if (value >= cmin && value < min_uV)
1030 min_uV = value;
1031 if (value <= cmax && value > max_uV)
1032 max_uV = value;
1033 }
1034
1035 /* final: [min_uV..max_uV] valid iff constraints valid */
1036 if (max_uV < min_uV) {
1037 rdev_err(rdev,
1038 "unsupportable voltage constraints %u-%uuV\n",
1039 min_uV, max_uV);
1040 return -EINVAL;
1041 }
1042
1043 /* use regulator's subset of machine constraints */
1044 if (constraints->min_uV < min_uV) {
1045 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1046 constraints->min_uV, min_uV);
1047 constraints->min_uV = min_uV;
1048 }
1049 if (constraints->max_uV > max_uV) {
1050 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1051 constraints->max_uV, max_uV);
1052 constraints->max_uV = max_uV;
1053 }
1054 }
1055
1056 return 0;
1057 }
1058
machine_constraints_current(struct regulator_dev * rdev,struct regulation_constraints * constraints)1059 static int machine_constraints_current(struct regulator_dev *rdev,
1060 struct regulation_constraints *constraints)
1061 {
1062 const struct regulator_ops *ops = rdev->desc->ops;
1063 int ret;
1064
1065 if (!constraints->min_uA && !constraints->max_uA)
1066 return 0;
1067
1068 if (constraints->min_uA > constraints->max_uA) {
1069 rdev_err(rdev, "Invalid current constraints\n");
1070 return -EINVAL;
1071 }
1072
1073 if (!ops->set_current_limit || !ops->get_current_limit) {
1074 rdev_warn(rdev, "Operation of current configuration missing\n");
1075 return 0;
1076 }
1077
1078 /* Set regulator current in constraints range */
1079 ret = ops->set_current_limit(rdev, constraints->min_uA,
1080 constraints->max_uA);
1081 if (ret < 0) {
1082 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1083 return ret;
1084 }
1085
1086 return 0;
1087 }
1088
1089 static int _regulator_do_enable(struct regulator_dev *rdev);
1090
1091 /**
1092 * set_machine_constraints - sets regulator constraints
1093 * @rdev: regulator source
1094 *
1095 * Allows platform initialisation code to define and constrain
1096 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1097 * Constraints *must* be set by platform code in order for some
1098 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1099 * set_mode.
1100 */
set_machine_constraints(struct regulator_dev * rdev)1101 static int set_machine_constraints(struct regulator_dev *rdev)
1102 {
1103 int ret = 0;
1104 const struct regulator_ops *ops = rdev->desc->ops;
1105
1106 ret = machine_constraints_voltage(rdev, rdev->constraints);
1107 if (ret != 0)
1108 return ret;
1109
1110 ret = machine_constraints_current(rdev, rdev->constraints);
1111 if (ret != 0)
1112 return ret;
1113
1114 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1115 ret = ops->set_input_current_limit(rdev,
1116 rdev->constraints->ilim_uA);
1117 if (ret < 0) {
1118 rdev_err(rdev, "failed to set input limit\n");
1119 return ret;
1120 }
1121 }
1122
1123 /* do we need to setup our suspend state */
1124 if (rdev->constraints->initial_state) {
1125 ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1126 if (ret < 0) {
1127 rdev_err(rdev, "failed to set suspend state\n");
1128 return ret;
1129 }
1130 }
1131
1132 if (rdev->constraints->initial_mode) {
1133 if (!ops->set_mode) {
1134 rdev_err(rdev, "no set_mode operation\n");
1135 return -EINVAL;
1136 }
1137
1138 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1139 if (ret < 0) {
1140 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1141 return ret;
1142 }
1143 }
1144
1145 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1146 && ops->set_ramp_delay) {
1147 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1148 if (ret < 0) {
1149 rdev_err(rdev, "failed to set ramp_delay\n");
1150 return ret;
1151 }
1152 }
1153
1154 if (rdev->constraints->pull_down && ops->set_pull_down) {
1155 ret = ops->set_pull_down(rdev);
1156 if (ret < 0) {
1157 rdev_err(rdev, "failed to set pull down\n");
1158 return ret;
1159 }
1160 }
1161
1162 if (rdev->constraints->soft_start && ops->set_soft_start) {
1163 ret = ops->set_soft_start(rdev);
1164 if (ret < 0) {
1165 rdev_err(rdev, "failed to set soft start\n");
1166 return ret;
1167 }
1168 }
1169
1170 if (rdev->constraints->over_current_protection
1171 && ops->set_over_current_protection) {
1172 ret = ops->set_over_current_protection(rdev);
1173 if (ret < 0) {
1174 rdev_err(rdev, "failed to set over current protection\n");
1175 return ret;
1176 }
1177 }
1178
1179 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1180 bool ad_state = (rdev->constraints->active_discharge ==
1181 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1182
1183 ret = ops->set_active_discharge(rdev, ad_state);
1184 if (ret < 0) {
1185 rdev_err(rdev, "failed to set active discharge\n");
1186 return ret;
1187 }
1188 }
1189
1190 /* If the constraints say the regulator should be on at this point
1191 * and we have control then make sure it is enabled.
1192 */
1193 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1194 /* If we want to enable this regulator, make sure that we know
1195 * the supplying regulator.
1196 */
1197 if (rdev->supply_name && !rdev->supply)
1198 return -EPROBE_DEFER;
1199
1200 /* If supplying regulator has already been enabled,
1201 * it's not intended to have use_count increment
1202 * when rdev is only boot-on.
1203 */
1204 if (rdev->supply &&
1205 (rdev->constraints->always_on ||
1206 !regulator_is_enabled(rdev->supply))) {
1207 ret = regulator_enable(rdev->supply);
1208 if (ret < 0) {
1209 _regulator_put(rdev->supply);
1210 rdev->supply = NULL;
1211 return ret;
1212 }
1213 }
1214
1215 ret = _regulator_do_enable(rdev);
1216 if (ret < 0 && ret != -EINVAL) {
1217 rdev_err(rdev, "failed to enable\n");
1218 return ret;
1219 }
1220
1221 if (rdev->constraints->always_on)
1222 rdev->use_count++;
1223 }
1224
1225 print_constraints(rdev);
1226 return 0;
1227 }
1228
1229 /**
1230 * set_supply - set regulator supply regulator
1231 * @rdev: regulator name
1232 * @supply_rdev: supply regulator name
1233 *
1234 * Called by platform initialisation code to set the supply regulator for this
1235 * regulator. This ensures that a regulators supply will also be enabled by the
1236 * core if it's child is enabled.
1237 */
set_supply(struct regulator_dev * rdev,struct regulator_dev * supply_rdev)1238 static int set_supply(struct regulator_dev *rdev,
1239 struct regulator_dev *supply_rdev)
1240 {
1241 int err;
1242
1243 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1244
1245 if (!try_module_get(supply_rdev->owner))
1246 return -ENODEV;
1247
1248 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1249 if (rdev->supply == NULL) {
1250 module_put(supply_rdev->owner);
1251 err = -ENOMEM;
1252 return err;
1253 }
1254 supply_rdev->open_count++;
1255
1256 return 0;
1257 }
1258
1259 /**
1260 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1261 * @rdev: regulator source
1262 * @consumer_dev_name: dev_name() string for device supply applies to
1263 * @supply: symbolic name for supply
1264 *
1265 * Allows platform initialisation code to map physical regulator
1266 * sources to symbolic names for supplies for use by devices. Devices
1267 * should use these symbolic names to request regulators, avoiding the
1268 * need to provide board-specific regulator names as platform data.
1269 */
set_consumer_device_supply(struct regulator_dev * rdev,const char * consumer_dev_name,const char * supply)1270 static int set_consumer_device_supply(struct regulator_dev *rdev,
1271 const char *consumer_dev_name,
1272 const char *supply)
1273 {
1274 struct regulator_map *node, *new_node;
1275 int has_dev;
1276
1277 if (supply == NULL)
1278 return -EINVAL;
1279
1280 if (consumer_dev_name != NULL)
1281 has_dev = 1;
1282 else
1283 has_dev = 0;
1284
1285 new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1286 if (new_node == NULL)
1287 return -ENOMEM;
1288
1289 new_node->regulator = rdev;
1290 new_node->supply = supply;
1291
1292 if (has_dev) {
1293 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1294 if (new_node->dev_name == NULL) {
1295 kfree(new_node);
1296 return -ENOMEM;
1297 }
1298 }
1299
1300 mutex_lock(®ulator_list_mutex);
1301 list_for_each_entry(node, ®ulator_map_list, list) {
1302 if (node->dev_name && consumer_dev_name) {
1303 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1304 continue;
1305 } else if (node->dev_name || consumer_dev_name) {
1306 continue;
1307 }
1308
1309 if (strcmp(node->supply, supply) != 0)
1310 continue;
1311
1312 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1313 consumer_dev_name,
1314 dev_name(&node->regulator->dev),
1315 node->regulator->desc->name,
1316 supply,
1317 dev_name(&rdev->dev), rdev_get_name(rdev));
1318 goto fail;
1319 }
1320
1321 list_add(&new_node->list, ®ulator_map_list);
1322 mutex_unlock(®ulator_list_mutex);
1323
1324 return 0;
1325
1326 fail:
1327 mutex_unlock(®ulator_list_mutex);
1328 kfree(new_node->dev_name);
1329 kfree(new_node);
1330 return -EBUSY;
1331 }
1332
unset_regulator_supplies(struct regulator_dev * rdev)1333 static void unset_regulator_supplies(struct regulator_dev *rdev)
1334 {
1335 struct regulator_map *node, *n;
1336
1337 list_for_each_entry_safe(node, n, ®ulator_map_list, list) {
1338 if (rdev == node->regulator) {
1339 list_del(&node->list);
1340 kfree(node->dev_name);
1341 kfree(node);
1342 }
1343 }
1344 }
1345
1346 #ifdef CONFIG_DEBUG_FS
constraint_flags_read_file(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)1347 static ssize_t constraint_flags_read_file(struct file *file,
1348 char __user *user_buf,
1349 size_t count, loff_t *ppos)
1350 {
1351 const struct regulator *regulator = file->private_data;
1352 const struct regulation_constraints *c = regulator->rdev->constraints;
1353 char *buf;
1354 ssize_t ret;
1355
1356 if (!c)
1357 return 0;
1358
1359 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1360 if (!buf)
1361 return -ENOMEM;
1362
1363 ret = snprintf(buf, PAGE_SIZE,
1364 "always_on: %u\n"
1365 "boot_on: %u\n"
1366 "apply_uV: %u\n"
1367 "ramp_disable: %u\n"
1368 "soft_start: %u\n"
1369 "pull_down: %u\n"
1370 "over_current_protection: %u\n",
1371 c->always_on,
1372 c->boot_on,
1373 c->apply_uV,
1374 c->ramp_disable,
1375 c->soft_start,
1376 c->pull_down,
1377 c->over_current_protection);
1378
1379 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1380 kfree(buf);
1381
1382 return ret;
1383 }
1384
1385 #endif
1386
1387 static const struct file_operations constraint_flags_fops = {
1388 #ifdef CONFIG_DEBUG_FS
1389 .open = simple_open,
1390 .read = constraint_flags_read_file,
1391 .llseek = default_llseek,
1392 #endif
1393 };
1394
1395 #define REG_STR_SIZE 64
1396
create_regulator(struct regulator_dev * rdev,struct device * dev,const char * supply_name)1397 static struct regulator *create_regulator(struct regulator_dev *rdev,
1398 struct device *dev,
1399 const char *supply_name)
1400 {
1401 struct regulator *regulator;
1402 char buf[REG_STR_SIZE];
1403 int err, size;
1404
1405 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1406 if (regulator == NULL)
1407 return NULL;
1408
1409 regulator_lock(rdev);
1410 regulator->rdev = rdev;
1411 list_add(®ulator->list, &rdev->consumer_list);
1412
1413 if (dev) {
1414 regulator->dev = dev;
1415
1416 /* Add a link to the device sysfs entry */
1417 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1418 dev->kobj.name, supply_name);
1419 if (size >= REG_STR_SIZE)
1420 goto overflow_err;
1421
1422 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1423 if (regulator->supply_name == NULL)
1424 goto overflow_err;
1425
1426 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1427 buf);
1428 if (err) {
1429 rdev_dbg(rdev, "could not add device link %s err %d\n",
1430 dev->kobj.name, err);
1431 /* non-fatal */
1432 }
1433 } else {
1434 regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1435 if (regulator->supply_name == NULL)
1436 goto overflow_err;
1437 }
1438
1439 regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1440 rdev->debugfs);
1441 if (!regulator->debugfs) {
1442 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1443 } else {
1444 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1445 ®ulator->uA_load);
1446 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1447 ®ulator->voltage[PM_SUSPEND_ON].min_uV);
1448 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1449 ®ulator->voltage[PM_SUSPEND_ON].max_uV);
1450 debugfs_create_file("constraint_flags", 0444,
1451 regulator->debugfs, regulator,
1452 &constraint_flags_fops);
1453 }
1454
1455 /*
1456 * Check now if the regulator is an always on regulator - if
1457 * it is then we don't need to do nearly so much work for
1458 * enable/disable calls.
1459 */
1460 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1461 _regulator_is_enabled(rdev))
1462 regulator->always_on = true;
1463
1464 regulator_unlock(rdev);
1465 return regulator;
1466 overflow_err:
1467 list_del(®ulator->list);
1468 kfree(regulator);
1469 regulator_unlock(rdev);
1470 return NULL;
1471 }
1472
_regulator_get_enable_time(struct regulator_dev * rdev)1473 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1474 {
1475 if (rdev->constraints && rdev->constraints->enable_time)
1476 return rdev->constraints->enable_time;
1477 if (!rdev->desc->ops->enable_time)
1478 return rdev->desc->enable_time;
1479 return rdev->desc->ops->enable_time(rdev);
1480 }
1481
regulator_find_supply_alias(struct device * dev,const char * supply)1482 static struct regulator_supply_alias *regulator_find_supply_alias(
1483 struct device *dev, const char *supply)
1484 {
1485 struct regulator_supply_alias *map;
1486
1487 list_for_each_entry(map, ®ulator_supply_alias_list, list)
1488 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1489 return map;
1490
1491 return NULL;
1492 }
1493
regulator_supply_alias(struct device ** dev,const char ** supply)1494 static void regulator_supply_alias(struct device **dev, const char **supply)
1495 {
1496 struct regulator_supply_alias *map;
1497
1498 map = regulator_find_supply_alias(*dev, *supply);
1499 if (map) {
1500 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1501 *supply, map->alias_supply,
1502 dev_name(map->alias_dev));
1503 *dev = map->alias_dev;
1504 *supply = map->alias_supply;
1505 }
1506 }
1507
regulator_match(struct device * dev,const void * data)1508 static int regulator_match(struct device *dev, const void *data)
1509 {
1510 struct regulator_dev *r = dev_to_rdev(dev);
1511
1512 return strcmp(rdev_get_name(r), data) == 0;
1513 }
1514
regulator_lookup_by_name(const char * name)1515 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1516 {
1517 struct device *dev;
1518
1519 dev = class_find_device(®ulator_class, NULL, name, regulator_match);
1520
1521 return dev ? dev_to_rdev(dev) : NULL;
1522 }
1523
1524 /**
1525 * regulator_dev_lookup - lookup a regulator device.
1526 * @dev: device for regulator "consumer".
1527 * @supply: Supply name or regulator ID.
1528 *
1529 * If successful, returns a struct regulator_dev that corresponds to the name
1530 * @supply and with the embedded struct device refcount incremented by one.
1531 * The refcount must be dropped by calling put_device().
1532 * On failure one of the following ERR-PTR-encoded values is returned:
1533 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1534 * in the future.
1535 */
regulator_dev_lookup(struct device * dev,const char * supply)1536 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1537 const char *supply)
1538 {
1539 struct regulator_dev *r = NULL;
1540 struct device_node *node;
1541 struct regulator_map *map;
1542 const char *devname = NULL;
1543
1544 regulator_supply_alias(&dev, &supply);
1545
1546 /* first do a dt based lookup */
1547 if (dev && dev->of_node) {
1548 node = of_get_regulator(dev, supply);
1549 if (node) {
1550 r = of_find_regulator_by_node(node);
1551 of_node_put(node);
1552 if (r)
1553 return r;
1554
1555 /*
1556 * We have a node, but there is no device.
1557 * assume it has not registered yet.
1558 */
1559 return ERR_PTR(-EPROBE_DEFER);
1560 }
1561 }
1562
1563 /* if not found, try doing it non-dt way */
1564 if (dev)
1565 devname = dev_name(dev);
1566
1567 mutex_lock(®ulator_list_mutex);
1568 list_for_each_entry(map, ®ulator_map_list, list) {
1569 /* If the mapping has a device set up it must match */
1570 if (map->dev_name &&
1571 (!devname || strcmp(map->dev_name, devname)))
1572 continue;
1573
1574 if (strcmp(map->supply, supply) == 0 &&
1575 get_device(&map->regulator->dev)) {
1576 r = map->regulator;
1577 break;
1578 }
1579 }
1580 mutex_unlock(®ulator_list_mutex);
1581
1582 if (r)
1583 return r;
1584
1585 r = regulator_lookup_by_name(supply);
1586 if (r)
1587 return r;
1588
1589 return ERR_PTR(-ENODEV);
1590 }
1591
regulator_resolve_supply(struct regulator_dev * rdev)1592 static int regulator_resolve_supply(struct regulator_dev *rdev)
1593 {
1594 struct regulator_dev *r;
1595 struct device *dev = rdev->dev.parent;
1596 int ret = 0;
1597
1598 /* No supply to resovle? */
1599 if (!rdev->supply_name)
1600 return 0;
1601
1602 /* Supply already resolved? (fast-path without locking contention) */
1603 if (rdev->supply)
1604 return 0;
1605
1606 r = regulator_dev_lookup(dev, rdev->supply_name);
1607 if (IS_ERR(r)) {
1608 ret = PTR_ERR(r);
1609
1610 /* Did the lookup explicitly defer for us? */
1611 if (ret == -EPROBE_DEFER)
1612 goto out;
1613
1614 if (have_full_constraints()) {
1615 r = dummy_regulator_rdev;
1616 get_device(&r->dev);
1617 } else {
1618 dev_err(dev, "Failed to resolve %s-supply for %s\n",
1619 rdev->supply_name, rdev->desc->name);
1620 ret = -EPROBE_DEFER;
1621 goto out;
1622 }
1623 }
1624
1625 if (r == rdev) {
1626 dev_err(dev, "Supply for %s (%s) resolved to itself\n",
1627 rdev->desc->name, rdev->supply_name);
1628 if (!have_full_constraints()) {
1629 ret = -EINVAL;
1630 goto out;
1631 }
1632 r = dummy_regulator_rdev;
1633 get_device(&r->dev);
1634 }
1635
1636 /*
1637 * If the supply's parent device is not the same as the
1638 * regulator's parent device, then ensure the parent device
1639 * is bound before we resolve the supply, in case the parent
1640 * device get probe deferred and unregisters the supply.
1641 */
1642 if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1643 if (!device_is_bound(r->dev.parent)) {
1644 put_device(&r->dev);
1645 ret = -EPROBE_DEFER;
1646 goto out;
1647 }
1648 }
1649
1650 /* Recursively resolve the supply of the supply */
1651 ret = regulator_resolve_supply(r);
1652 if (ret < 0) {
1653 put_device(&r->dev);
1654 goto out;
1655 }
1656
1657 /*
1658 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
1659 * between rdev->supply null check and setting rdev->supply in
1660 * set_supply() from concurrent tasks.
1661 */
1662 regulator_lock(rdev);
1663
1664 /* Supply just resolved by a concurrent task? */
1665 if (rdev->supply) {
1666 regulator_unlock(rdev);
1667 put_device(&r->dev);
1668 goto out;
1669 }
1670
1671 ret = set_supply(rdev, r);
1672 if (ret < 0) {
1673 regulator_unlock(rdev);
1674 put_device(&r->dev);
1675 goto out;
1676 }
1677
1678 regulator_unlock(rdev);
1679
1680 /*
1681 * In set_machine_constraints() we may have turned this regulator on
1682 * but we couldn't propagate to the supply if it hadn't been resolved
1683 * yet. Do it now.
1684 */
1685 if (rdev->use_count) {
1686 ret = regulator_enable(rdev->supply);
1687 if (ret < 0) {
1688 _regulator_put(rdev->supply);
1689 rdev->supply = NULL;
1690 goto out;
1691 }
1692 }
1693
1694 out:
1695 return ret;
1696 }
1697
1698 /* Internal regulator request function */
_regulator_get(struct device * dev,const char * id,enum regulator_get_type get_type)1699 struct regulator *_regulator_get(struct device *dev, const char *id,
1700 enum regulator_get_type get_type)
1701 {
1702 struct regulator_dev *rdev;
1703 struct regulator *regulator;
1704 const char *devname = dev ? dev_name(dev) : "deviceless";
1705 int ret;
1706
1707 if (get_type >= MAX_GET_TYPE) {
1708 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1709 return ERR_PTR(-EINVAL);
1710 }
1711
1712 if (id == NULL) {
1713 pr_err("get() with no identifier\n");
1714 return ERR_PTR(-EINVAL);
1715 }
1716
1717 rdev = regulator_dev_lookup(dev, id);
1718 if (IS_ERR(rdev)) {
1719 ret = PTR_ERR(rdev);
1720
1721 /*
1722 * If regulator_dev_lookup() fails with error other
1723 * than -ENODEV our job here is done, we simply return it.
1724 */
1725 if (ret != -ENODEV)
1726 return ERR_PTR(ret);
1727
1728 if (!have_full_constraints()) {
1729 dev_warn(dev,
1730 "incomplete constraints, dummy supplies not allowed\n");
1731 return ERR_PTR(-ENODEV);
1732 }
1733
1734 switch (get_type) {
1735 case NORMAL_GET:
1736 /*
1737 * Assume that a regulator is physically present and
1738 * enabled, even if it isn't hooked up, and just
1739 * provide a dummy.
1740 */
1741 dev_warn(dev,
1742 "%s supply %s not found, using dummy regulator\n",
1743 devname, id);
1744 rdev = dummy_regulator_rdev;
1745 get_device(&rdev->dev);
1746 break;
1747
1748 case EXCLUSIVE_GET:
1749 dev_warn(dev,
1750 "dummy supplies not allowed for exclusive requests\n");
1751 /* fall through */
1752
1753 default:
1754 return ERR_PTR(-ENODEV);
1755 }
1756 }
1757
1758 if (rdev->exclusive) {
1759 regulator = ERR_PTR(-EPERM);
1760 put_device(&rdev->dev);
1761 return regulator;
1762 }
1763
1764 if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1765 regulator = ERR_PTR(-EBUSY);
1766 put_device(&rdev->dev);
1767 return regulator;
1768 }
1769
1770 ret = regulator_resolve_supply(rdev);
1771 if (ret < 0) {
1772 regulator = ERR_PTR(ret);
1773 put_device(&rdev->dev);
1774 return regulator;
1775 }
1776
1777 if (!try_module_get(rdev->owner)) {
1778 regulator = ERR_PTR(-EPROBE_DEFER);
1779 put_device(&rdev->dev);
1780 return regulator;
1781 }
1782
1783 regulator = create_regulator(rdev, dev, id);
1784 if (regulator == NULL) {
1785 regulator = ERR_PTR(-ENOMEM);
1786 module_put(rdev->owner);
1787 put_device(&rdev->dev);
1788 return regulator;
1789 }
1790
1791 rdev->open_count++;
1792 if (get_type == EXCLUSIVE_GET) {
1793 rdev->exclusive = 1;
1794
1795 ret = _regulator_is_enabled(rdev);
1796 if (ret > 0)
1797 rdev->use_count = 1;
1798 else
1799 rdev->use_count = 0;
1800 }
1801
1802 device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
1803
1804 return regulator;
1805 }
1806
1807 /**
1808 * regulator_get - lookup and obtain a reference to a regulator.
1809 * @dev: device for regulator "consumer"
1810 * @id: Supply name or regulator ID.
1811 *
1812 * Returns a struct regulator corresponding to the regulator producer,
1813 * or IS_ERR() condition containing errno.
1814 *
1815 * Use of supply names configured via regulator_set_device_supply() is
1816 * strongly encouraged. It is recommended that the supply name used
1817 * should match the name used for the supply and/or the relevant
1818 * device pins in the datasheet.
1819 */
regulator_get(struct device * dev,const char * id)1820 struct regulator *regulator_get(struct device *dev, const char *id)
1821 {
1822 return _regulator_get(dev, id, NORMAL_GET);
1823 }
1824 EXPORT_SYMBOL_GPL(regulator_get);
1825
1826 /**
1827 * regulator_get_exclusive - obtain exclusive access to a regulator.
1828 * @dev: device for regulator "consumer"
1829 * @id: Supply name or regulator ID.
1830 *
1831 * Returns a struct regulator corresponding to the regulator producer,
1832 * or IS_ERR() condition containing errno. Other consumers will be
1833 * unable to obtain this regulator while this reference is held and the
1834 * use count for the regulator will be initialised to reflect the current
1835 * state of the regulator.
1836 *
1837 * This is intended for use by consumers which cannot tolerate shared
1838 * use of the regulator such as those which need to force the
1839 * regulator off for correct operation of the hardware they are
1840 * controlling.
1841 *
1842 * Use of supply names configured via regulator_set_device_supply() is
1843 * strongly encouraged. It is recommended that the supply name used
1844 * should match the name used for the supply and/or the relevant
1845 * device pins in the datasheet.
1846 */
regulator_get_exclusive(struct device * dev,const char * id)1847 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1848 {
1849 return _regulator_get(dev, id, EXCLUSIVE_GET);
1850 }
1851 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1852
1853 /**
1854 * regulator_get_optional - obtain optional access to a regulator.
1855 * @dev: device for regulator "consumer"
1856 * @id: Supply name or regulator ID.
1857 *
1858 * Returns a struct regulator corresponding to the regulator producer,
1859 * or IS_ERR() condition containing errno.
1860 *
1861 * This is intended for use by consumers for devices which can have
1862 * some supplies unconnected in normal use, such as some MMC devices.
1863 * It can allow the regulator core to provide stub supplies for other
1864 * supplies requested using normal regulator_get() calls without
1865 * disrupting the operation of drivers that can handle absent
1866 * supplies.
1867 *
1868 * Use of supply names configured via regulator_set_device_supply() is
1869 * strongly encouraged. It is recommended that the supply name used
1870 * should match the name used for the supply and/or the relevant
1871 * device pins in the datasheet.
1872 */
regulator_get_optional(struct device * dev,const char * id)1873 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1874 {
1875 return _regulator_get(dev, id, OPTIONAL_GET);
1876 }
1877 EXPORT_SYMBOL_GPL(regulator_get_optional);
1878
1879 /* regulator_list_mutex lock held by regulator_put() */
_regulator_put(struct regulator * regulator)1880 static void _regulator_put(struct regulator *regulator)
1881 {
1882 struct regulator_dev *rdev;
1883
1884 if (IS_ERR_OR_NULL(regulator))
1885 return;
1886
1887 lockdep_assert_held_once(®ulator_list_mutex);
1888
1889 rdev = regulator->rdev;
1890
1891 debugfs_remove_recursive(regulator->debugfs);
1892
1893 if (regulator->dev) {
1894 int count = 0;
1895 struct regulator *r;
1896
1897 list_for_each_entry(r, &rdev->consumer_list, list)
1898 if (r->dev == regulator->dev)
1899 count++;
1900
1901 if (count == 1)
1902 device_link_remove(regulator->dev, &rdev->dev);
1903
1904 /* remove any sysfs entries */
1905 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1906 }
1907
1908 regulator_lock(rdev);
1909 list_del(®ulator->list);
1910
1911 rdev->open_count--;
1912 rdev->exclusive = 0;
1913 regulator_unlock(rdev);
1914
1915 kfree_const(regulator->supply_name);
1916 kfree(regulator);
1917
1918 module_put(rdev->owner);
1919 put_device(&rdev->dev);
1920 }
1921
1922 /**
1923 * regulator_put - "free" the regulator source
1924 * @regulator: regulator source
1925 *
1926 * Note: drivers must ensure that all regulator_enable calls made on this
1927 * regulator source are balanced by regulator_disable calls prior to calling
1928 * this function.
1929 */
regulator_put(struct regulator * regulator)1930 void regulator_put(struct regulator *regulator)
1931 {
1932 mutex_lock(®ulator_list_mutex);
1933 _regulator_put(regulator);
1934 mutex_unlock(®ulator_list_mutex);
1935 }
1936 EXPORT_SYMBOL_GPL(regulator_put);
1937
1938 /**
1939 * regulator_register_supply_alias - Provide device alias for supply lookup
1940 *
1941 * @dev: device that will be given as the regulator "consumer"
1942 * @id: Supply name or regulator ID
1943 * @alias_dev: device that should be used to lookup the supply
1944 * @alias_id: Supply name or regulator ID that should be used to lookup the
1945 * supply
1946 *
1947 * All lookups for id on dev will instead be conducted for alias_id on
1948 * alias_dev.
1949 */
regulator_register_supply_alias(struct device * dev,const char * id,struct device * alias_dev,const char * alias_id)1950 int regulator_register_supply_alias(struct device *dev, const char *id,
1951 struct device *alias_dev,
1952 const char *alias_id)
1953 {
1954 struct regulator_supply_alias *map;
1955
1956 map = regulator_find_supply_alias(dev, id);
1957 if (map)
1958 return -EEXIST;
1959
1960 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1961 if (!map)
1962 return -ENOMEM;
1963
1964 map->src_dev = dev;
1965 map->src_supply = id;
1966 map->alias_dev = alias_dev;
1967 map->alias_supply = alias_id;
1968
1969 list_add(&map->list, ®ulator_supply_alias_list);
1970
1971 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1972 id, dev_name(dev), alias_id, dev_name(alias_dev));
1973
1974 return 0;
1975 }
1976 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1977
1978 /**
1979 * regulator_unregister_supply_alias - Remove device alias
1980 *
1981 * @dev: device that will be given as the regulator "consumer"
1982 * @id: Supply name or regulator ID
1983 *
1984 * Remove a lookup alias if one exists for id on dev.
1985 */
regulator_unregister_supply_alias(struct device * dev,const char * id)1986 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1987 {
1988 struct regulator_supply_alias *map;
1989
1990 map = regulator_find_supply_alias(dev, id);
1991 if (map) {
1992 list_del(&map->list);
1993 kfree(map);
1994 }
1995 }
1996 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1997
1998 /**
1999 * regulator_bulk_register_supply_alias - register multiple aliases
2000 *
2001 * @dev: device that will be given as the regulator "consumer"
2002 * @id: List of supply names or regulator IDs
2003 * @alias_dev: device that should be used to lookup the supply
2004 * @alias_id: List of supply names or regulator IDs that should be used to
2005 * lookup the supply
2006 * @num_id: Number of aliases to register
2007 *
2008 * @return 0 on success, an errno on failure.
2009 *
2010 * This helper function allows drivers to register several supply
2011 * aliases in one operation. If any of the aliases cannot be
2012 * registered any aliases that were registered will be removed
2013 * before returning to the caller.
2014 */
regulator_bulk_register_supply_alias(struct device * dev,const char * const * id,struct device * alias_dev,const char * const * alias_id,int num_id)2015 int regulator_bulk_register_supply_alias(struct device *dev,
2016 const char *const *id,
2017 struct device *alias_dev,
2018 const char *const *alias_id,
2019 int num_id)
2020 {
2021 int i;
2022 int ret;
2023
2024 for (i = 0; i < num_id; ++i) {
2025 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2026 alias_id[i]);
2027 if (ret < 0)
2028 goto err;
2029 }
2030
2031 return 0;
2032
2033 err:
2034 dev_err(dev,
2035 "Failed to create supply alias %s,%s -> %s,%s\n",
2036 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2037
2038 while (--i >= 0)
2039 regulator_unregister_supply_alias(dev, id[i]);
2040
2041 return ret;
2042 }
2043 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2044
2045 /**
2046 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2047 *
2048 * @dev: device that will be given as the regulator "consumer"
2049 * @id: List of supply names or regulator IDs
2050 * @num_id: Number of aliases to unregister
2051 *
2052 * This helper function allows drivers to unregister several supply
2053 * aliases in one operation.
2054 */
regulator_bulk_unregister_supply_alias(struct device * dev,const char * const * id,int num_id)2055 void regulator_bulk_unregister_supply_alias(struct device *dev,
2056 const char *const *id,
2057 int num_id)
2058 {
2059 int i;
2060
2061 for (i = 0; i < num_id; ++i)
2062 regulator_unregister_supply_alias(dev, id[i]);
2063 }
2064 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2065
2066
2067 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
regulator_ena_gpio_request(struct regulator_dev * rdev,const struct regulator_config * config)2068 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2069 const struct regulator_config *config)
2070 {
2071 struct regulator_enable_gpio *pin;
2072 struct gpio_desc *gpiod;
2073 int ret;
2074
2075 if (config->ena_gpiod)
2076 gpiod = config->ena_gpiod;
2077 else
2078 gpiod = gpio_to_desc(config->ena_gpio);
2079
2080 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) {
2081 if (pin->gpiod == gpiod) {
2082 rdev_dbg(rdev, "GPIO %d is already used\n",
2083 config->ena_gpio);
2084 goto update_ena_gpio_to_rdev;
2085 }
2086 }
2087
2088 if (!config->ena_gpiod) {
2089 ret = gpio_request_one(config->ena_gpio,
2090 GPIOF_DIR_OUT | config->ena_gpio_flags,
2091 rdev_get_name(rdev));
2092 if (ret)
2093 return ret;
2094 }
2095
2096 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
2097 if (pin == NULL) {
2098 if (!config->ena_gpiod)
2099 gpio_free(config->ena_gpio);
2100 return -ENOMEM;
2101 }
2102
2103 pin->gpiod = gpiod;
2104 pin->ena_gpio_invert = config->ena_gpio_invert;
2105 list_add(&pin->list, ®ulator_ena_gpio_list);
2106
2107 update_ena_gpio_to_rdev:
2108 pin->request_count++;
2109 rdev->ena_pin = pin;
2110 return 0;
2111 }
2112
regulator_ena_gpio_free(struct regulator_dev * rdev)2113 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2114 {
2115 struct regulator_enable_gpio *pin, *n;
2116
2117 if (!rdev->ena_pin)
2118 return;
2119
2120 /* Free the GPIO only in case of no use */
2121 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) {
2122 if (pin->gpiod == rdev->ena_pin->gpiod) {
2123 if (pin->request_count <= 1) {
2124 pin->request_count = 0;
2125 gpiod_put(pin->gpiod);
2126 list_del(&pin->list);
2127 kfree(pin);
2128 rdev->ena_pin = NULL;
2129 return;
2130 } else {
2131 pin->request_count--;
2132 }
2133 }
2134 }
2135 }
2136
2137 /**
2138 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2139 * @rdev: regulator_dev structure
2140 * @enable: enable GPIO at initial use?
2141 *
2142 * GPIO is enabled in case of initial use. (enable_count is 0)
2143 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2144 */
regulator_ena_gpio_ctrl(struct regulator_dev * rdev,bool enable)2145 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2146 {
2147 struct regulator_enable_gpio *pin = rdev->ena_pin;
2148
2149 if (!pin)
2150 return -EINVAL;
2151
2152 if (enable) {
2153 /* Enable GPIO at initial use */
2154 if (pin->enable_count == 0)
2155 gpiod_set_value_cansleep(pin->gpiod,
2156 !pin->ena_gpio_invert);
2157
2158 pin->enable_count++;
2159 } else {
2160 if (pin->enable_count > 1) {
2161 pin->enable_count--;
2162 return 0;
2163 }
2164
2165 /* Disable GPIO if not used */
2166 if (pin->enable_count <= 1) {
2167 gpiod_set_value_cansleep(pin->gpiod,
2168 pin->ena_gpio_invert);
2169 pin->enable_count = 0;
2170 }
2171 }
2172
2173 return 0;
2174 }
2175
2176 /**
2177 * _regulator_enable_delay - a delay helper function
2178 * @delay: time to delay in microseconds
2179 *
2180 * Delay for the requested amount of time as per the guidelines in:
2181 *
2182 * Documentation/timers/timers-howto.txt
2183 *
2184 * The assumption here is that regulators will never be enabled in
2185 * atomic context and therefore sleeping functions can be used.
2186 */
_regulator_enable_delay(unsigned int delay)2187 static void _regulator_enable_delay(unsigned int delay)
2188 {
2189 unsigned int ms = delay / 1000;
2190 unsigned int us = delay % 1000;
2191
2192 if (ms > 0) {
2193 /*
2194 * For small enough values, handle super-millisecond
2195 * delays in the usleep_range() call below.
2196 */
2197 if (ms < 20)
2198 us += ms * 1000;
2199 else
2200 msleep(ms);
2201 }
2202
2203 /*
2204 * Give the scheduler some room to coalesce with any other
2205 * wakeup sources. For delays shorter than 10 us, don't even
2206 * bother setting up high-resolution timers and just busy-
2207 * loop.
2208 */
2209 if (us >= 10)
2210 usleep_range(us, us + 100);
2211 else
2212 udelay(us);
2213 }
2214
_regulator_do_enable(struct regulator_dev * rdev)2215 static int _regulator_do_enable(struct regulator_dev *rdev)
2216 {
2217 int ret, delay;
2218
2219 /* Query before enabling in case configuration dependent. */
2220 ret = _regulator_get_enable_time(rdev);
2221 if (ret >= 0) {
2222 delay = ret;
2223 } else {
2224 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2225 delay = 0;
2226 }
2227
2228 trace_regulator_enable(rdev_get_name(rdev));
2229
2230 if (rdev->desc->off_on_delay) {
2231 /* if needed, keep a distance of off_on_delay from last time
2232 * this regulator was disabled.
2233 */
2234 unsigned long start_jiffy = jiffies;
2235 unsigned long intended, max_delay, remaining;
2236
2237 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2238 intended = rdev->last_off_jiffy + max_delay;
2239
2240 if (time_before(start_jiffy, intended)) {
2241 /* calc remaining jiffies to deal with one-time
2242 * timer wrapping.
2243 * in case of multiple timer wrapping, either it can be
2244 * detected by out-of-range remaining, or it cannot be
2245 * detected and we gets a panelty of
2246 * _regulator_enable_delay().
2247 */
2248 remaining = intended - start_jiffy;
2249 if (remaining <= max_delay)
2250 _regulator_enable_delay(
2251 jiffies_to_usecs(remaining));
2252 }
2253 }
2254
2255 if (rdev->ena_pin) {
2256 if (!rdev->ena_gpio_state) {
2257 ret = regulator_ena_gpio_ctrl(rdev, true);
2258 if (ret < 0)
2259 return ret;
2260 rdev->ena_gpio_state = 1;
2261 }
2262 } else if (rdev->desc->ops->enable) {
2263 ret = rdev->desc->ops->enable(rdev);
2264 if (ret < 0)
2265 return ret;
2266 } else {
2267 return -EINVAL;
2268 }
2269
2270 /* Allow the regulator to ramp; it would be useful to extend
2271 * this for bulk operations so that the regulators can ramp
2272 * together. */
2273 trace_regulator_enable_delay(rdev_get_name(rdev));
2274
2275 _regulator_enable_delay(delay);
2276
2277 trace_regulator_enable_complete(rdev_get_name(rdev));
2278
2279 return 0;
2280 }
2281
2282 /* locks held by regulator_enable() */
_regulator_enable(struct regulator_dev * rdev)2283 static int _regulator_enable(struct regulator_dev *rdev)
2284 {
2285 int ret;
2286
2287 lockdep_assert_held_once(&rdev->mutex);
2288
2289 /* check voltage and requested load before enabling */
2290 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2291 drms_uA_update(rdev);
2292
2293 if (rdev->use_count == 0) {
2294 /* The regulator may on if it's not switchable or left on */
2295 ret = _regulator_is_enabled(rdev);
2296 if (ret == -EINVAL || ret == 0) {
2297 if (!regulator_ops_is_valid(rdev,
2298 REGULATOR_CHANGE_STATUS))
2299 return -EPERM;
2300
2301 ret = _regulator_do_enable(rdev);
2302 if (ret < 0)
2303 return ret;
2304
2305 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2306 NULL);
2307 } else if (ret < 0) {
2308 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2309 return ret;
2310 }
2311 /* Fallthrough on positive return values - already enabled */
2312 }
2313
2314 rdev->use_count++;
2315
2316 return 0;
2317 }
2318
2319 /**
2320 * regulator_enable - enable regulator output
2321 * @regulator: regulator source
2322 *
2323 * Request that the regulator be enabled with the regulator output at
2324 * the predefined voltage or current value. Calls to regulator_enable()
2325 * must be balanced with calls to regulator_disable().
2326 *
2327 * NOTE: the output value can be set by other drivers, boot loader or may be
2328 * hardwired in the regulator.
2329 */
regulator_enable(struct regulator * regulator)2330 int regulator_enable(struct regulator *regulator)
2331 {
2332 struct regulator_dev *rdev = regulator->rdev;
2333 int ret = 0;
2334
2335 if (regulator->always_on)
2336 return 0;
2337
2338 if (rdev->supply) {
2339 ret = regulator_enable(rdev->supply);
2340 if (ret != 0)
2341 return ret;
2342 }
2343
2344 mutex_lock(&rdev->mutex);
2345 ret = _regulator_enable(rdev);
2346 mutex_unlock(&rdev->mutex);
2347
2348 if (ret != 0 && rdev->supply)
2349 regulator_disable(rdev->supply);
2350
2351 return ret;
2352 }
2353 EXPORT_SYMBOL_GPL(regulator_enable);
2354
_regulator_do_disable(struct regulator_dev * rdev)2355 static int _regulator_do_disable(struct regulator_dev *rdev)
2356 {
2357 int ret;
2358
2359 trace_regulator_disable(rdev_get_name(rdev));
2360
2361 if (rdev->ena_pin) {
2362 if (rdev->ena_gpio_state) {
2363 ret = regulator_ena_gpio_ctrl(rdev, false);
2364 if (ret < 0)
2365 return ret;
2366 rdev->ena_gpio_state = 0;
2367 }
2368
2369 } else if (rdev->desc->ops->disable) {
2370 ret = rdev->desc->ops->disable(rdev);
2371 if (ret != 0)
2372 return ret;
2373 }
2374
2375 /* cares about last_off_jiffy only if off_on_delay is required by
2376 * device.
2377 */
2378 if (rdev->desc->off_on_delay)
2379 rdev->last_off_jiffy = jiffies;
2380
2381 trace_regulator_disable_complete(rdev_get_name(rdev));
2382
2383 return 0;
2384 }
2385
2386 /* locks held by regulator_disable() */
_regulator_disable(struct regulator_dev * rdev)2387 static int _regulator_disable(struct regulator_dev *rdev)
2388 {
2389 int ret = 0;
2390
2391 lockdep_assert_held_once(&rdev->mutex);
2392
2393 if (WARN(rdev->use_count <= 0,
2394 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2395 return -EIO;
2396
2397 /* are we the last user and permitted to disable ? */
2398 if (rdev->use_count == 1 &&
2399 (rdev->constraints && !rdev->constraints->always_on)) {
2400
2401 /* we are last user */
2402 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2403 ret = _notifier_call_chain(rdev,
2404 REGULATOR_EVENT_PRE_DISABLE,
2405 NULL);
2406 if (ret & NOTIFY_STOP_MASK)
2407 return -EINVAL;
2408
2409 ret = _regulator_do_disable(rdev);
2410 if (ret < 0) {
2411 rdev_err(rdev, "failed to disable\n");
2412 _notifier_call_chain(rdev,
2413 REGULATOR_EVENT_ABORT_DISABLE,
2414 NULL);
2415 return ret;
2416 }
2417 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2418 NULL);
2419 }
2420
2421 rdev->use_count = 0;
2422 } else if (rdev->use_count > 1) {
2423 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2424 drms_uA_update(rdev);
2425
2426 rdev->use_count--;
2427 }
2428
2429 return ret;
2430 }
2431
2432 /**
2433 * regulator_disable - disable regulator output
2434 * @regulator: regulator source
2435 *
2436 * Disable the regulator output voltage or current. Calls to
2437 * regulator_enable() must be balanced with calls to
2438 * regulator_disable().
2439 *
2440 * NOTE: this will only disable the regulator output if no other consumer
2441 * devices have it enabled, the regulator device supports disabling and
2442 * machine constraints permit this operation.
2443 */
regulator_disable(struct regulator * regulator)2444 int regulator_disable(struct regulator *regulator)
2445 {
2446 struct regulator_dev *rdev = regulator->rdev;
2447 int ret = 0;
2448
2449 if (regulator->always_on)
2450 return 0;
2451
2452 mutex_lock(&rdev->mutex);
2453 ret = _regulator_disable(rdev);
2454 mutex_unlock(&rdev->mutex);
2455
2456 if (ret == 0 && rdev->supply)
2457 regulator_disable(rdev->supply);
2458
2459 return ret;
2460 }
2461 EXPORT_SYMBOL_GPL(regulator_disable);
2462
2463 /* locks held by regulator_force_disable() */
_regulator_force_disable(struct regulator_dev * rdev)2464 static int _regulator_force_disable(struct regulator_dev *rdev)
2465 {
2466 int ret = 0;
2467
2468 lockdep_assert_held_once(&rdev->mutex);
2469
2470 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2471 REGULATOR_EVENT_PRE_DISABLE, NULL);
2472 if (ret & NOTIFY_STOP_MASK)
2473 return -EINVAL;
2474
2475 ret = _regulator_do_disable(rdev);
2476 if (ret < 0) {
2477 rdev_err(rdev, "failed to force disable\n");
2478 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2479 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2480 return ret;
2481 }
2482
2483 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2484 REGULATOR_EVENT_DISABLE, NULL);
2485
2486 return 0;
2487 }
2488
2489 /**
2490 * regulator_force_disable - force disable regulator output
2491 * @regulator: regulator source
2492 *
2493 * Forcibly disable the regulator output voltage or current.
2494 * NOTE: this *will* disable the regulator output even if other consumer
2495 * devices have it enabled. This should be used for situations when device
2496 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2497 */
regulator_force_disable(struct regulator * regulator)2498 int regulator_force_disable(struct regulator *regulator)
2499 {
2500 struct regulator_dev *rdev = regulator->rdev;
2501 int ret;
2502
2503 mutex_lock(&rdev->mutex);
2504 regulator->uA_load = 0;
2505 ret = _regulator_force_disable(regulator->rdev);
2506 mutex_unlock(&rdev->mutex);
2507
2508 if (rdev->supply)
2509 while (rdev->open_count--)
2510 regulator_disable(rdev->supply);
2511
2512 return ret;
2513 }
2514 EXPORT_SYMBOL_GPL(regulator_force_disable);
2515
regulator_disable_work(struct work_struct * work)2516 static void regulator_disable_work(struct work_struct *work)
2517 {
2518 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2519 disable_work.work);
2520 int count, i, ret;
2521
2522 regulator_lock(rdev);
2523
2524 BUG_ON(!rdev->deferred_disables);
2525
2526 count = rdev->deferred_disables;
2527 rdev->deferred_disables = 0;
2528
2529 /*
2530 * Workqueue functions queue the new work instance while the previous
2531 * work instance is being processed. Cancel the queued work instance
2532 * as the work instance under processing does the job of the queued
2533 * work instance.
2534 */
2535 cancel_delayed_work(&rdev->disable_work);
2536
2537 for (i = 0; i < count; i++) {
2538 ret = _regulator_disable(rdev);
2539 if (ret != 0)
2540 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2541 }
2542
2543 regulator_unlock(rdev);
2544
2545 if (rdev->supply) {
2546 for (i = 0; i < count; i++) {
2547 ret = regulator_disable(rdev->supply);
2548 if (ret != 0) {
2549 rdev_err(rdev,
2550 "Supply disable failed: %d\n", ret);
2551 }
2552 }
2553 }
2554 }
2555
2556 /**
2557 * regulator_disable_deferred - disable regulator output with delay
2558 * @regulator: regulator source
2559 * @ms: miliseconds until the regulator is disabled
2560 *
2561 * Execute regulator_disable() on the regulator after a delay. This
2562 * is intended for use with devices that require some time to quiesce.
2563 *
2564 * NOTE: this will only disable the regulator output if no other consumer
2565 * devices have it enabled, the regulator device supports disabling and
2566 * machine constraints permit this operation.
2567 */
regulator_disable_deferred(struct regulator * regulator,int ms)2568 int regulator_disable_deferred(struct regulator *regulator, int ms)
2569 {
2570 struct regulator_dev *rdev = regulator->rdev;
2571
2572 if (regulator->always_on)
2573 return 0;
2574
2575 if (!ms)
2576 return regulator_disable(regulator);
2577
2578 regulator_lock(rdev);
2579 rdev->deferred_disables++;
2580 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2581 msecs_to_jiffies(ms));
2582 regulator_unlock(rdev);
2583
2584 return 0;
2585 }
2586 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2587
_regulator_is_enabled(struct regulator_dev * rdev)2588 static int _regulator_is_enabled(struct regulator_dev *rdev)
2589 {
2590 /* A GPIO control always takes precedence */
2591 if (rdev->ena_pin)
2592 return rdev->ena_gpio_state;
2593
2594 /* If we don't know then assume that the regulator is always on */
2595 if (!rdev->desc->ops->is_enabled)
2596 return 1;
2597
2598 return rdev->desc->ops->is_enabled(rdev);
2599 }
2600
_regulator_list_voltage(struct regulator_dev * rdev,unsigned selector,int lock)2601 static int _regulator_list_voltage(struct regulator_dev *rdev,
2602 unsigned selector, int lock)
2603 {
2604 const struct regulator_ops *ops = rdev->desc->ops;
2605 int ret;
2606
2607 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2608 return rdev->desc->fixed_uV;
2609
2610 if (ops->list_voltage) {
2611 if (selector >= rdev->desc->n_voltages)
2612 return -EINVAL;
2613 if (lock)
2614 regulator_lock(rdev);
2615 ret = ops->list_voltage(rdev, selector);
2616 if (lock)
2617 regulator_unlock(rdev);
2618 } else if (rdev->is_switch && rdev->supply) {
2619 ret = _regulator_list_voltage(rdev->supply->rdev,
2620 selector, lock);
2621 } else {
2622 return -EINVAL;
2623 }
2624
2625 if (ret > 0) {
2626 if (ret < rdev->constraints->min_uV)
2627 ret = 0;
2628 else if (ret > rdev->constraints->max_uV)
2629 ret = 0;
2630 }
2631
2632 return ret;
2633 }
2634
2635 /**
2636 * regulator_is_enabled - is the regulator output enabled
2637 * @regulator: regulator source
2638 *
2639 * Returns positive if the regulator driver backing the source/client
2640 * has requested that the device be enabled, zero if it hasn't, else a
2641 * negative errno code.
2642 *
2643 * Note that the device backing this regulator handle can have multiple
2644 * users, so it might be enabled even if regulator_enable() was never
2645 * called for this particular source.
2646 */
regulator_is_enabled(struct regulator * regulator)2647 int regulator_is_enabled(struct regulator *regulator)
2648 {
2649 int ret;
2650
2651 if (regulator->always_on)
2652 return 1;
2653
2654 mutex_lock(®ulator->rdev->mutex);
2655 ret = _regulator_is_enabled(regulator->rdev);
2656 mutex_unlock(®ulator->rdev->mutex);
2657
2658 return ret;
2659 }
2660 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2661
2662 /**
2663 * regulator_count_voltages - count regulator_list_voltage() selectors
2664 * @regulator: regulator source
2665 *
2666 * Returns number of selectors, or negative errno. Selectors are
2667 * numbered starting at zero, and typically correspond to bitfields
2668 * in hardware registers.
2669 */
regulator_count_voltages(struct regulator * regulator)2670 int regulator_count_voltages(struct regulator *regulator)
2671 {
2672 struct regulator_dev *rdev = regulator->rdev;
2673
2674 if (rdev->desc->n_voltages)
2675 return rdev->desc->n_voltages;
2676
2677 if (!rdev->is_switch || !rdev->supply)
2678 return -EINVAL;
2679
2680 return regulator_count_voltages(rdev->supply);
2681 }
2682 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2683
2684 /**
2685 * regulator_list_voltage - enumerate supported voltages
2686 * @regulator: regulator source
2687 * @selector: identify voltage to list
2688 * Context: can sleep
2689 *
2690 * Returns a voltage that can be passed to @regulator_set_voltage(),
2691 * zero if this selector code can't be used on this system, or a
2692 * negative errno.
2693 */
regulator_list_voltage(struct regulator * regulator,unsigned selector)2694 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2695 {
2696 return _regulator_list_voltage(regulator->rdev, selector, 1);
2697 }
2698 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2699
2700 /**
2701 * regulator_get_regmap - get the regulator's register map
2702 * @regulator: regulator source
2703 *
2704 * Returns the register map for the given regulator, or an ERR_PTR value
2705 * if the regulator doesn't use regmap.
2706 */
regulator_get_regmap(struct regulator * regulator)2707 struct regmap *regulator_get_regmap(struct regulator *regulator)
2708 {
2709 struct regmap *map = regulator->rdev->regmap;
2710
2711 return map ? map : ERR_PTR(-EOPNOTSUPP);
2712 }
2713
2714 /**
2715 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2716 * @regulator: regulator source
2717 * @vsel_reg: voltage selector register, output parameter
2718 * @vsel_mask: mask for voltage selector bitfield, output parameter
2719 *
2720 * Returns the hardware register offset and bitmask used for setting the
2721 * regulator voltage. This might be useful when configuring voltage-scaling
2722 * hardware or firmware that can make I2C requests behind the kernel's back,
2723 * for example.
2724 *
2725 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2726 * and 0 is returned, otherwise a negative errno is returned.
2727 */
regulator_get_hardware_vsel_register(struct regulator * regulator,unsigned * vsel_reg,unsigned * vsel_mask)2728 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2729 unsigned *vsel_reg,
2730 unsigned *vsel_mask)
2731 {
2732 struct regulator_dev *rdev = regulator->rdev;
2733 const struct regulator_ops *ops = rdev->desc->ops;
2734
2735 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2736 return -EOPNOTSUPP;
2737
2738 *vsel_reg = rdev->desc->vsel_reg;
2739 *vsel_mask = rdev->desc->vsel_mask;
2740
2741 return 0;
2742 }
2743 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2744
2745 /**
2746 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2747 * @regulator: regulator source
2748 * @selector: identify voltage to list
2749 *
2750 * Converts the selector to a hardware-specific voltage selector that can be
2751 * directly written to the regulator registers. The address of the voltage
2752 * register can be determined by calling @regulator_get_hardware_vsel_register.
2753 *
2754 * On error a negative errno is returned.
2755 */
regulator_list_hardware_vsel(struct regulator * regulator,unsigned selector)2756 int regulator_list_hardware_vsel(struct regulator *regulator,
2757 unsigned selector)
2758 {
2759 struct regulator_dev *rdev = regulator->rdev;
2760 const struct regulator_ops *ops = rdev->desc->ops;
2761
2762 if (selector >= rdev->desc->n_voltages)
2763 return -EINVAL;
2764 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2765 return -EOPNOTSUPP;
2766
2767 return selector;
2768 }
2769 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2770
2771 /**
2772 * regulator_get_linear_step - return the voltage step size between VSEL values
2773 * @regulator: regulator source
2774 *
2775 * Returns the voltage step size between VSEL values for linear
2776 * regulators, or return 0 if the regulator isn't a linear regulator.
2777 */
regulator_get_linear_step(struct regulator * regulator)2778 unsigned int regulator_get_linear_step(struct regulator *regulator)
2779 {
2780 struct regulator_dev *rdev = regulator->rdev;
2781
2782 return rdev->desc->uV_step;
2783 }
2784 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2785
2786 /**
2787 * regulator_is_supported_voltage - check if a voltage range can be supported
2788 *
2789 * @regulator: Regulator to check.
2790 * @min_uV: Minimum required voltage in uV.
2791 * @max_uV: Maximum required voltage in uV.
2792 *
2793 * Returns a boolean or a negative error code.
2794 */
regulator_is_supported_voltage(struct regulator * regulator,int min_uV,int max_uV)2795 int regulator_is_supported_voltage(struct regulator *regulator,
2796 int min_uV, int max_uV)
2797 {
2798 struct regulator_dev *rdev = regulator->rdev;
2799 int i, voltages, ret;
2800
2801 /* If we can't change voltage check the current voltage */
2802 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2803 ret = regulator_get_voltage(regulator);
2804 if (ret >= 0)
2805 return min_uV <= ret && ret <= max_uV;
2806 else
2807 return ret;
2808 }
2809
2810 /* Any voltage within constrains range is fine? */
2811 if (rdev->desc->continuous_voltage_range)
2812 return min_uV >= rdev->constraints->min_uV &&
2813 max_uV <= rdev->constraints->max_uV;
2814
2815 ret = regulator_count_voltages(regulator);
2816 if (ret < 0)
2817 return ret;
2818 voltages = ret;
2819
2820 for (i = 0; i < voltages; i++) {
2821 ret = regulator_list_voltage(regulator, i);
2822
2823 if (ret >= min_uV && ret <= max_uV)
2824 return 1;
2825 }
2826
2827 return 0;
2828 }
2829 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2830
regulator_map_voltage(struct regulator_dev * rdev,int min_uV,int max_uV)2831 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
2832 int max_uV)
2833 {
2834 const struct regulator_desc *desc = rdev->desc;
2835
2836 if (desc->ops->map_voltage)
2837 return desc->ops->map_voltage(rdev, min_uV, max_uV);
2838
2839 if (desc->ops->list_voltage == regulator_list_voltage_linear)
2840 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
2841
2842 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
2843 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
2844
2845 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
2846 }
2847
_regulator_call_set_voltage(struct regulator_dev * rdev,int min_uV,int max_uV,unsigned * selector)2848 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2849 int min_uV, int max_uV,
2850 unsigned *selector)
2851 {
2852 struct pre_voltage_change_data data;
2853 int ret;
2854
2855 data.old_uV = _regulator_get_voltage(rdev);
2856 data.min_uV = min_uV;
2857 data.max_uV = max_uV;
2858 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2859 &data);
2860 if (ret & NOTIFY_STOP_MASK)
2861 return -EINVAL;
2862
2863 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2864 if (ret >= 0)
2865 return ret;
2866
2867 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2868 (void *)data.old_uV);
2869
2870 return ret;
2871 }
2872
_regulator_call_set_voltage_sel(struct regulator_dev * rdev,int uV,unsigned selector)2873 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2874 int uV, unsigned selector)
2875 {
2876 struct pre_voltage_change_data data;
2877 int ret;
2878
2879 data.old_uV = _regulator_get_voltage(rdev);
2880 data.min_uV = uV;
2881 data.max_uV = uV;
2882 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2883 &data);
2884 if (ret & NOTIFY_STOP_MASK)
2885 return -EINVAL;
2886
2887 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2888 if (ret >= 0)
2889 return ret;
2890
2891 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2892 (void *)data.old_uV);
2893
2894 return ret;
2895 }
2896
_regulator_set_voltage_time(struct regulator_dev * rdev,int old_uV,int new_uV)2897 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
2898 int old_uV, int new_uV)
2899 {
2900 unsigned int ramp_delay = 0;
2901
2902 if (rdev->constraints->ramp_delay)
2903 ramp_delay = rdev->constraints->ramp_delay;
2904 else if (rdev->desc->ramp_delay)
2905 ramp_delay = rdev->desc->ramp_delay;
2906 else if (rdev->constraints->settling_time)
2907 return rdev->constraints->settling_time;
2908 else if (rdev->constraints->settling_time_up &&
2909 (new_uV > old_uV))
2910 return rdev->constraints->settling_time_up;
2911 else if (rdev->constraints->settling_time_down &&
2912 (new_uV < old_uV))
2913 return rdev->constraints->settling_time_down;
2914
2915 if (ramp_delay == 0) {
2916 rdev_dbg(rdev, "ramp_delay not set\n");
2917 return 0;
2918 }
2919
2920 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
2921 }
2922
_regulator_do_set_voltage(struct regulator_dev * rdev,int min_uV,int max_uV)2923 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2924 int min_uV, int max_uV)
2925 {
2926 int ret;
2927 int delay = 0;
2928 int best_val = 0;
2929 unsigned int selector;
2930 int old_selector = -1;
2931 const struct regulator_ops *ops = rdev->desc->ops;
2932 int old_uV = _regulator_get_voltage(rdev);
2933
2934 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2935
2936 min_uV += rdev->constraints->uV_offset;
2937 max_uV += rdev->constraints->uV_offset;
2938
2939 /*
2940 * If we can't obtain the old selector there is not enough
2941 * info to call set_voltage_time_sel().
2942 */
2943 if (_regulator_is_enabled(rdev) &&
2944 ops->set_voltage_time_sel && ops->get_voltage_sel) {
2945 old_selector = ops->get_voltage_sel(rdev);
2946 if (old_selector < 0)
2947 return old_selector;
2948 }
2949
2950 if (ops->set_voltage) {
2951 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2952 &selector);
2953
2954 if (ret >= 0) {
2955 if (ops->list_voltage)
2956 best_val = ops->list_voltage(rdev,
2957 selector);
2958 else
2959 best_val = _regulator_get_voltage(rdev);
2960 }
2961
2962 } else if (ops->set_voltage_sel) {
2963 ret = regulator_map_voltage(rdev, min_uV, max_uV);
2964 if (ret >= 0) {
2965 best_val = ops->list_voltage(rdev, ret);
2966 if (min_uV <= best_val && max_uV >= best_val) {
2967 selector = ret;
2968 if (old_selector == selector)
2969 ret = 0;
2970 else
2971 ret = _regulator_call_set_voltage_sel(
2972 rdev, best_val, selector);
2973 } else {
2974 ret = -EINVAL;
2975 }
2976 }
2977 } else {
2978 ret = -EINVAL;
2979 }
2980
2981 if (ret)
2982 goto out;
2983
2984 if (ops->set_voltage_time_sel) {
2985 /*
2986 * Call set_voltage_time_sel if successfully obtained
2987 * old_selector
2988 */
2989 if (old_selector >= 0 && old_selector != selector)
2990 delay = ops->set_voltage_time_sel(rdev, old_selector,
2991 selector);
2992 } else {
2993 if (old_uV != best_val) {
2994 if (ops->set_voltage_time)
2995 delay = ops->set_voltage_time(rdev, old_uV,
2996 best_val);
2997 else
2998 delay = _regulator_set_voltage_time(rdev,
2999 old_uV,
3000 best_val);
3001 }
3002 }
3003
3004 if (delay < 0) {
3005 rdev_warn(rdev, "failed to get delay: %d\n", delay);
3006 delay = 0;
3007 }
3008
3009 /* Insert any necessary delays */
3010 if (delay >= 1000) {
3011 mdelay(delay / 1000);
3012 udelay(delay % 1000);
3013 } else if (delay) {
3014 udelay(delay);
3015 }
3016
3017 if (best_val >= 0) {
3018 unsigned long data = best_val;
3019
3020 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3021 (void *)data);
3022 }
3023
3024 out:
3025 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3026
3027 return ret;
3028 }
3029
_regulator_do_set_suspend_voltage(struct regulator_dev * rdev,int min_uV,int max_uV,suspend_state_t state)3030 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3031 int min_uV, int max_uV, suspend_state_t state)
3032 {
3033 struct regulator_state *rstate;
3034 int uV, sel;
3035
3036 rstate = regulator_get_suspend_state(rdev, state);
3037 if (rstate == NULL)
3038 return -EINVAL;
3039
3040 if (min_uV < rstate->min_uV)
3041 min_uV = rstate->min_uV;
3042 if (max_uV > rstate->max_uV)
3043 max_uV = rstate->max_uV;
3044
3045 sel = regulator_map_voltage(rdev, min_uV, max_uV);
3046 if (sel < 0)
3047 return sel;
3048
3049 uV = rdev->desc->ops->list_voltage(rdev, sel);
3050 if (uV >= min_uV && uV <= max_uV)
3051 rstate->uV = uV;
3052
3053 return 0;
3054 }
3055
regulator_set_voltage_unlocked(struct regulator * regulator,int min_uV,int max_uV,suspend_state_t state)3056 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3057 int min_uV, int max_uV,
3058 suspend_state_t state)
3059 {
3060 struct regulator_dev *rdev = regulator->rdev;
3061 struct regulator_voltage *voltage = ®ulator->voltage[state];
3062 int ret = 0;
3063 int old_min_uV, old_max_uV;
3064 int current_uV;
3065 int best_supply_uV = 0;
3066 int supply_change_uV = 0;
3067
3068 /* If we're setting the same range as last time the change
3069 * should be a noop (some cpufreq implementations use the same
3070 * voltage for multiple frequencies, for example).
3071 */
3072 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3073 goto out;
3074
3075 /* If we're trying to set a range that overlaps the current voltage,
3076 * return successfully even though the regulator does not support
3077 * changing the voltage.
3078 */
3079 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3080 current_uV = _regulator_get_voltage(rdev);
3081 if (min_uV <= current_uV && current_uV <= max_uV) {
3082 voltage->min_uV = min_uV;
3083 voltage->max_uV = max_uV;
3084 goto out;
3085 }
3086 }
3087
3088 /* sanity check */
3089 if (!rdev->desc->ops->set_voltage &&
3090 !rdev->desc->ops->set_voltage_sel) {
3091 ret = -EINVAL;
3092 goto out;
3093 }
3094
3095 /* constraints check */
3096 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3097 if (ret < 0)
3098 goto out;
3099
3100 /* restore original values in case of error */
3101 old_min_uV = voltage->min_uV;
3102 old_max_uV = voltage->max_uV;
3103 voltage->min_uV = min_uV;
3104 voltage->max_uV = max_uV;
3105
3106 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, state);
3107 if (ret < 0)
3108 goto out2;
3109
3110 if (rdev->supply &&
3111 regulator_ops_is_valid(rdev->supply->rdev,
3112 REGULATOR_CHANGE_VOLTAGE) &&
3113 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3114 rdev->desc->ops->get_voltage_sel))) {
3115 int current_supply_uV;
3116 int selector;
3117
3118 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3119 if (selector < 0) {
3120 ret = selector;
3121 goto out2;
3122 }
3123
3124 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3125 if (best_supply_uV < 0) {
3126 ret = best_supply_uV;
3127 goto out2;
3128 }
3129
3130 best_supply_uV += rdev->desc->min_dropout_uV;
3131
3132 current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
3133 if (current_supply_uV < 0) {
3134 ret = current_supply_uV;
3135 goto out2;
3136 }
3137
3138 supply_change_uV = best_supply_uV - current_supply_uV;
3139 }
3140
3141 if (supply_change_uV > 0) {
3142 ret = regulator_set_voltage_unlocked(rdev->supply,
3143 best_supply_uV, INT_MAX, state);
3144 if (ret) {
3145 dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
3146 ret);
3147 goto out2;
3148 }
3149 }
3150
3151 if (state == PM_SUSPEND_ON)
3152 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3153 else
3154 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3155 max_uV, state);
3156 if (ret < 0)
3157 goto out2;
3158
3159 if (supply_change_uV < 0) {
3160 ret = regulator_set_voltage_unlocked(rdev->supply,
3161 best_supply_uV, INT_MAX, state);
3162 if (ret)
3163 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
3164 ret);
3165 /* No need to fail here */
3166 ret = 0;
3167 }
3168
3169 out:
3170 return ret;
3171 out2:
3172 voltage->min_uV = old_min_uV;
3173 voltage->max_uV = old_max_uV;
3174
3175 return ret;
3176 }
3177
3178 /**
3179 * regulator_set_voltage - set regulator output voltage
3180 * @regulator: regulator source
3181 * @min_uV: Minimum required voltage in uV
3182 * @max_uV: Maximum acceptable voltage in uV
3183 *
3184 * Sets a voltage regulator to the desired output voltage. This can be set
3185 * during any regulator state. IOW, regulator can be disabled or enabled.
3186 *
3187 * If the regulator is enabled then the voltage will change to the new value
3188 * immediately otherwise if the regulator is disabled the regulator will
3189 * output at the new voltage when enabled.
3190 *
3191 * NOTE: If the regulator is shared between several devices then the lowest
3192 * request voltage that meets the system constraints will be used.
3193 * Regulator system constraints must be set for this regulator before
3194 * calling this function otherwise this call will fail.
3195 */
regulator_set_voltage(struct regulator * regulator,int min_uV,int max_uV)3196 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3197 {
3198 int ret = 0;
3199
3200 regulator_lock_supply(regulator->rdev);
3201
3202 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
3203 PM_SUSPEND_ON);
3204
3205 regulator_unlock_supply(regulator->rdev);
3206
3207 return ret;
3208 }
3209 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3210
regulator_suspend_toggle(struct regulator_dev * rdev,suspend_state_t state,bool en)3211 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
3212 suspend_state_t state, bool en)
3213 {
3214 struct regulator_state *rstate;
3215
3216 rstate = regulator_get_suspend_state(rdev, state);
3217 if (rstate == NULL)
3218 return -EINVAL;
3219
3220 if (!rstate->changeable)
3221 return -EPERM;
3222
3223 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3224
3225 return 0;
3226 }
3227
regulator_suspend_enable(struct regulator_dev * rdev,suspend_state_t state)3228 int regulator_suspend_enable(struct regulator_dev *rdev,
3229 suspend_state_t state)
3230 {
3231 return regulator_suspend_toggle(rdev, state, true);
3232 }
3233 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
3234
regulator_suspend_disable(struct regulator_dev * rdev,suspend_state_t state)3235 int regulator_suspend_disable(struct regulator_dev *rdev,
3236 suspend_state_t state)
3237 {
3238 struct regulator *regulator;
3239 struct regulator_voltage *voltage;
3240
3241 /*
3242 * if any consumer wants this regulator device keeping on in
3243 * suspend states, don't set it as disabled.
3244 */
3245 list_for_each_entry(regulator, &rdev->consumer_list, list) {
3246 voltage = ®ulator->voltage[state];
3247 if (voltage->min_uV || voltage->max_uV)
3248 return 0;
3249 }
3250
3251 return regulator_suspend_toggle(rdev, state, false);
3252 }
3253 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
3254
_regulator_set_suspend_voltage(struct regulator * regulator,int min_uV,int max_uV,suspend_state_t state)3255 static int _regulator_set_suspend_voltage(struct regulator *regulator,
3256 int min_uV, int max_uV,
3257 suspend_state_t state)
3258 {
3259 struct regulator_dev *rdev = regulator->rdev;
3260 struct regulator_state *rstate;
3261
3262 rstate = regulator_get_suspend_state(rdev, state);
3263 if (rstate == NULL)
3264 return -EINVAL;
3265
3266 if (rstate->min_uV == rstate->max_uV) {
3267 rdev_err(rdev, "The suspend voltage can't be changed!\n");
3268 return -EPERM;
3269 }
3270
3271 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
3272 }
3273
regulator_set_suspend_voltage(struct regulator * regulator,int min_uV,int max_uV,suspend_state_t state)3274 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
3275 int max_uV, suspend_state_t state)
3276 {
3277 int ret = 0;
3278
3279 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
3280 if (regulator_check_states(state) || state == PM_SUSPEND_ON)
3281 return -EINVAL;
3282
3283 regulator_lock_supply(regulator->rdev);
3284
3285 ret = _regulator_set_suspend_voltage(regulator, min_uV,
3286 max_uV, state);
3287
3288 regulator_unlock_supply(regulator->rdev);
3289
3290 return ret;
3291 }
3292 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
3293
3294 /**
3295 * regulator_set_voltage_time - get raise/fall time
3296 * @regulator: regulator source
3297 * @old_uV: starting voltage in microvolts
3298 * @new_uV: target voltage in microvolts
3299 *
3300 * Provided with the starting and ending voltage, this function attempts to
3301 * calculate the time in microseconds required to rise or fall to this new
3302 * voltage.
3303 */
regulator_set_voltage_time(struct regulator * regulator,int old_uV,int new_uV)3304 int regulator_set_voltage_time(struct regulator *regulator,
3305 int old_uV, int new_uV)
3306 {
3307 struct regulator_dev *rdev = regulator->rdev;
3308 const struct regulator_ops *ops = rdev->desc->ops;
3309 int old_sel = -1;
3310 int new_sel = -1;
3311 int voltage;
3312 int i;
3313
3314 if (ops->set_voltage_time)
3315 return ops->set_voltage_time(rdev, old_uV, new_uV);
3316 else if (!ops->set_voltage_time_sel)
3317 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3318
3319 /* Currently requires operations to do this */
3320 if (!ops->list_voltage || !rdev->desc->n_voltages)
3321 return -EINVAL;
3322
3323 for (i = 0; i < rdev->desc->n_voltages; i++) {
3324 /* We only look for exact voltage matches here */
3325 voltage = regulator_list_voltage(regulator, i);
3326 if (voltage < 0)
3327 return -EINVAL;
3328 if (voltage == 0)
3329 continue;
3330 if (voltage == old_uV)
3331 old_sel = i;
3332 if (voltage == new_uV)
3333 new_sel = i;
3334 }
3335
3336 if (old_sel < 0 || new_sel < 0)
3337 return -EINVAL;
3338
3339 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3340 }
3341 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3342
3343 /**
3344 * regulator_set_voltage_time_sel - get raise/fall time
3345 * @rdev: regulator source device
3346 * @old_selector: selector for starting voltage
3347 * @new_selector: selector for target voltage
3348 *
3349 * Provided with the starting and target voltage selectors, this function
3350 * returns time in microseconds required to rise or fall to this new voltage
3351 *
3352 * Drivers providing ramp_delay in regulation_constraints can use this as their
3353 * set_voltage_time_sel() operation.
3354 */
regulator_set_voltage_time_sel(struct regulator_dev * rdev,unsigned int old_selector,unsigned int new_selector)3355 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3356 unsigned int old_selector,
3357 unsigned int new_selector)
3358 {
3359 int old_volt, new_volt;
3360
3361 /* sanity check */
3362 if (!rdev->desc->ops->list_voltage)
3363 return -EINVAL;
3364
3365 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3366 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3367
3368 if (rdev->desc->ops->set_voltage_time)
3369 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
3370 new_volt);
3371 else
3372 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3373 }
3374 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3375
3376 /**
3377 * regulator_sync_voltage - re-apply last regulator output voltage
3378 * @regulator: regulator source
3379 *
3380 * Re-apply the last configured voltage. This is intended to be used
3381 * where some external control source the consumer is cooperating with
3382 * has caused the configured voltage to change.
3383 */
regulator_sync_voltage(struct regulator * regulator)3384 int regulator_sync_voltage(struct regulator *regulator)
3385 {
3386 struct regulator_dev *rdev = regulator->rdev;
3387 struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON];
3388 int ret, min_uV, max_uV;
3389
3390 regulator_lock(rdev);
3391
3392 if (!rdev->desc->ops->set_voltage &&
3393 !rdev->desc->ops->set_voltage_sel) {
3394 ret = -EINVAL;
3395 goto out;
3396 }
3397
3398 /* This is only going to work if we've had a voltage configured. */
3399 if (!voltage->min_uV && !voltage->max_uV) {
3400 ret = -EINVAL;
3401 goto out;
3402 }
3403
3404 min_uV = voltage->min_uV;
3405 max_uV = voltage->max_uV;
3406
3407 /* This should be a paranoia check... */
3408 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3409 if (ret < 0)
3410 goto out;
3411
3412 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
3413 if (ret < 0)
3414 goto out;
3415
3416 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3417
3418 out:
3419 regulator_unlock(rdev);
3420 return ret;
3421 }
3422 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3423
_regulator_get_voltage(struct regulator_dev * rdev)3424 static int _regulator_get_voltage(struct regulator_dev *rdev)
3425 {
3426 int sel, ret;
3427 bool bypassed;
3428
3429 if (rdev->desc->ops->get_bypass) {
3430 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
3431 if (ret < 0)
3432 return ret;
3433 if (bypassed) {
3434 /* if bypassed the regulator must have a supply */
3435 if (!rdev->supply) {
3436 rdev_err(rdev,
3437 "bypassed regulator has no supply!\n");
3438 return -EPROBE_DEFER;
3439 }
3440
3441 return _regulator_get_voltage(rdev->supply->rdev);
3442 }
3443 }
3444
3445 if (rdev->desc->ops->get_voltage_sel) {
3446 sel = rdev->desc->ops->get_voltage_sel(rdev);
3447 if (sel < 0)
3448 return sel;
3449 ret = rdev->desc->ops->list_voltage(rdev, sel);
3450 } else if (rdev->desc->ops->get_voltage) {
3451 ret = rdev->desc->ops->get_voltage(rdev);
3452 } else if (rdev->desc->ops->list_voltage) {
3453 ret = rdev->desc->ops->list_voltage(rdev, 0);
3454 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3455 ret = rdev->desc->fixed_uV;
3456 } else if (rdev->supply) {
3457 ret = _regulator_get_voltage(rdev->supply->rdev);
3458 } else if (rdev->supply_name) {
3459 return -EPROBE_DEFER;
3460 } else {
3461 return -EINVAL;
3462 }
3463
3464 if (ret < 0)
3465 return ret;
3466 return ret - rdev->constraints->uV_offset;
3467 }
3468
3469 /**
3470 * regulator_get_voltage - get regulator output voltage
3471 * @regulator: regulator source
3472 *
3473 * This returns the current regulator voltage in uV.
3474 *
3475 * NOTE: If the regulator is disabled it will return the voltage value. This
3476 * function should not be used to determine regulator state.
3477 */
regulator_get_voltage(struct regulator * regulator)3478 int regulator_get_voltage(struct regulator *regulator)
3479 {
3480 int ret;
3481
3482 regulator_lock_supply(regulator->rdev);
3483
3484 ret = _regulator_get_voltage(regulator->rdev);
3485
3486 regulator_unlock_supply(regulator->rdev);
3487
3488 return ret;
3489 }
3490 EXPORT_SYMBOL_GPL(regulator_get_voltage);
3491
3492 /**
3493 * regulator_set_current_limit - set regulator output current limit
3494 * @regulator: regulator source
3495 * @min_uA: Minimum supported current in uA
3496 * @max_uA: Maximum supported current in uA
3497 *
3498 * Sets current sink to the desired output current. This can be set during
3499 * any regulator state. IOW, regulator can be disabled or enabled.
3500 *
3501 * If the regulator is enabled then the current will change to the new value
3502 * immediately otherwise if the regulator is disabled the regulator will
3503 * output at the new current when enabled.
3504 *
3505 * NOTE: Regulator system constraints must be set for this regulator before
3506 * calling this function otherwise this call will fail.
3507 */
regulator_set_current_limit(struct regulator * regulator,int min_uA,int max_uA)3508 int regulator_set_current_limit(struct regulator *regulator,
3509 int min_uA, int max_uA)
3510 {
3511 struct regulator_dev *rdev = regulator->rdev;
3512 int ret;
3513
3514 regulator_lock(rdev);
3515
3516 /* sanity check */
3517 if (!rdev->desc->ops->set_current_limit) {
3518 ret = -EINVAL;
3519 goto out;
3520 }
3521
3522 /* constraints check */
3523 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3524 if (ret < 0)
3525 goto out;
3526
3527 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3528 out:
3529 regulator_unlock(rdev);
3530 return ret;
3531 }
3532 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3533
_regulator_get_current_limit(struct regulator_dev * rdev)3534 static int _regulator_get_current_limit(struct regulator_dev *rdev)
3535 {
3536 int ret;
3537
3538 regulator_lock(rdev);
3539
3540 /* sanity check */
3541 if (!rdev->desc->ops->get_current_limit) {
3542 ret = -EINVAL;
3543 goto out;
3544 }
3545
3546 ret = rdev->desc->ops->get_current_limit(rdev);
3547 out:
3548 regulator_unlock(rdev);
3549 return ret;
3550 }
3551
3552 /**
3553 * regulator_get_current_limit - get regulator output current
3554 * @regulator: regulator source
3555 *
3556 * This returns the current supplied by the specified current sink in uA.
3557 *
3558 * NOTE: If the regulator is disabled it will return the current value. This
3559 * function should not be used to determine regulator state.
3560 */
regulator_get_current_limit(struct regulator * regulator)3561 int regulator_get_current_limit(struct regulator *regulator)
3562 {
3563 return _regulator_get_current_limit(regulator->rdev);
3564 }
3565 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3566
3567 /**
3568 * regulator_set_mode - set regulator operating mode
3569 * @regulator: regulator source
3570 * @mode: operating mode - one of the REGULATOR_MODE constants
3571 *
3572 * Set regulator operating mode to increase regulator efficiency or improve
3573 * regulation performance.
3574 *
3575 * NOTE: Regulator system constraints must be set for this regulator before
3576 * calling this function otherwise this call will fail.
3577 */
regulator_set_mode(struct regulator * regulator,unsigned int mode)3578 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3579 {
3580 struct regulator_dev *rdev = regulator->rdev;
3581 int ret;
3582 int regulator_curr_mode;
3583
3584 regulator_lock(rdev);
3585
3586 /* sanity check */
3587 if (!rdev->desc->ops->set_mode) {
3588 ret = -EINVAL;
3589 goto out;
3590 }
3591
3592 /* return if the same mode is requested */
3593 if (rdev->desc->ops->get_mode) {
3594 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3595 if (regulator_curr_mode == mode) {
3596 ret = 0;
3597 goto out;
3598 }
3599 }
3600
3601 /* constraints check */
3602 ret = regulator_mode_constrain(rdev, &mode);
3603 if (ret < 0)
3604 goto out;
3605
3606 ret = rdev->desc->ops->set_mode(rdev, mode);
3607 out:
3608 regulator_unlock(rdev);
3609 return ret;
3610 }
3611 EXPORT_SYMBOL_GPL(regulator_set_mode);
3612
_regulator_get_mode(struct regulator_dev * rdev)3613 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3614 {
3615 int ret;
3616
3617 regulator_lock(rdev);
3618
3619 /* sanity check */
3620 if (!rdev->desc->ops->get_mode) {
3621 ret = -EINVAL;
3622 goto out;
3623 }
3624
3625 ret = rdev->desc->ops->get_mode(rdev);
3626 out:
3627 regulator_unlock(rdev);
3628 return ret;
3629 }
3630
3631 /**
3632 * regulator_get_mode - get regulator operating mode
3633 * @regulator: regulator source
3634 *
3635 * Get the current regulator operating mode.
3636 */
regulator_get_mode(struct regulator * regulator)3637 unsigned int regulator_get_mode(struct regulator *regulator)
3638 {
3639 return _regulator_get_mode(regulator->rdev);
3640 }
3641 EXPORT_SYMBOL_GPL(regulator_get_mode);
3642
_regulator_get_error_flags(struct regulator_dev * rdev,unsigned int * flags)3643 static int _regulator_get_error_flags(struct regulator_dev *rdev,
3644 unsigned int *flags)
3645 {
3646 int ret;
3647
3648 regulator_lock(rdev);
3649
3650 /* sanity check */
3651 if (!rdev->desc->ops->get_error_flags) {
3652 ret = -EINVAL;
3653 goto out;
3654 }
3655
3656 ret = rdev->desc->ops->get_error_flags(rdev, flags);
3657 out:
3658 regulator_unlock(rdev);
3659 return ret;
3660 }
3661
3662 /**
3663 * regulator_get_error_flags - get regulator error information
3664 * @regulator: regulator source
3665 * @flags: pointer to store error flags
3666 *
3667 * Get the current regulator error information.
3668 */
regulator_get_error_flags(struct regulator * regulator,unsigned int * flags)3669 int regulator_get_error_flags(struct regulator *regulator,
3670 unsigned int *flags)
3671 {
3672 return _regulator_get_error_flags(regulator->rdev, flags);
3673 }
3674 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
3675
3676 /**
3677 * regulator_set_load - set regulator load
3678 * @regulator: regulator source
3679 * @uA_load: load current
3680 *
3681 * Notifies the regulator core of a new device load. This is then used by
3682 * DRMS (if enabled by constraints) to set the most efficient regulator
3683 * operating mode for the new regulator loading.
3684 *
3685 * Consumer devices notify their supply regulator of the maximum power
3686 * they will require (can be taken from device datasheet in the power
3687 * consumption tables) when they change operational status and hence power
3688 * state. Examples of operational state changes that can affect power
3689 * consumption are :-
3690 *
3691 * o Device is opened / closed.
3692 * o Device I/O is about to begin or has just finished.
3693 * o Device is idling in between work.
3694 *
3695 * This information is also exported via sysfs to userspace.
3696 *
3697 * DRMS will sum the total requested load on the regulator and change
3698 * to the most efficient operating mode if platform constraints allow.
3699 *
3700 * On error a negative errno is returned.
3701 */
regulator_set_load(struct regulator * regulator,int uA_load)3702 int regulator_set_load(struct regulator *regulator, int uA_load)
3703 {
3704 struct regulator_dev *rdev = regulator->rdev;
3705 int ret;
3706
3707 regulator_lock(rdev);
3708 regulator->uA_load = uA_load;
3709 ret = drms_uA_update(rdev);
3710 regulator_unlock(rdev);
3711
3712 return ret;
3713 }
3714 EXPORT_SYMBOL_GPL(regulator_set_load);
3715
3716 /**
3717 * regulator_allow_bypass - allow the regulator to go into bypass mode
3718 *
3719 * @regulator: Regulator to configure
3720 * @enable: enable or disable bypass mode
3721 *
3722 * Allow the regulator to go into bypass mode if all other consumers
3723 * for the regulator also enable bypass mode and the machine
3724 * constraints allow this. Bypass mode means that the regulator is
3725 * simply passing the input directly to the output with no regulation.
3726 */
regulator_allow_bypass(struct regulator * regulator,bool enable)3727 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3728 {
3729 struct regulator_dev *rdev = regulator->rdev;
3730 int ret = 0;
3731
3732 if (!rdev->desc->ops->set_bypass)
3733 return 0;
3734
3735 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
3736 return 0;
3737
3738 regulator_lock(rdev);
3739
3740 if (enable && !regulator->bypass) {
3741 rdev->bypass_count++;
3742
3743 if (rdev->bypass_count == rdev->open_count) {
3744 ret = rdev->desc->ops->set_bypass(rdev, enable);
3745 if (ret != 0)
3746 rdev->bypass_count--;
3747 }
3748
3749 } else if (!enable && regulator->bypass) {
3750 rdev->bypass_count--;
3751
3752 if (rdev->bypass_count != rdev->open_count) {
3753 ret = rdev->desc->ops->set_bypass(rdev, enable);
3754 if (ret != 0)
3755 rdev->bypass_count++;
3756 }
3757 }
3758
3759 if (ret == 0)
3760 regulator->bypass = enable;
3761
3762 regulator_unlock(rdev);
3763
3764 return ret;
3765 }
3766 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3767
3768 /**
3769 * regulator_register_notifier - register regulator event notifier
3770 * @regulator: regulator source
3771 * @nb: notifier block
3772 *
3773 * Register notifier block to receive regulator events.
3774 */
regulator_register_notifier(struct regulator * regulator,struct notifier_block * nb)3775 int regulator_register_notifier(struct regulator *regulator,
3776 struct notifier_block *nb)
3777 {
3778 return blocking_notifier_chain_register(®ulator->rdev->notifier,
3779 nb);
3780 }
3781 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3782
3783 /**
3784 * regulator_unregister_notifier - unregister regulator event notifier
3785 * @regulator: regulator source
3786 * @nb: notifier block
3787 *
3788 * Unregister regulator event notifier block.
3789 */
regulator_unregister_notifier(struct regulator * regulator,struct notifier_block * nb)3790 int regulator_unregister_notifier(struct regulator *regulator,
3791 struct notifier_block *nb)
3792 {
3793 return blocking_notifier_chain_unregister(®ulator->rdev->notifier,
3794 nb);
3795 }
3796 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3797
3798 /* notify regulator consumers and downstream regulator consumers.
3799 * Note mutex must be held by caller.
3800 */
_notifier_call_chain(struct regulator_dev * rdev,unsigned long event,void * data)3801 static int _notifier_call_chain(struct regulator_dev *rdev,
3802 unsigned long event, void *data)
3803 {
3804 /* call rdev chain first */
3805 return blocking_notifier_call_chain(&rdev->notifier, event, data);
3806 }
3807
3808 /**
3809 * regulator_bulk_get - get multiple regulator consumers
3810 *
3811 * @dev: Device to supply
3812 * @num_consumers: Number of consumers to register
3813 * @consumers: Configuration of consumers; clients are stored here.
3814 *
3815 * @return 0 on success, an errno on failure.
3816 *
3817 * This helper function allows drivers to get several regulator
3818 * consumers in one operation. If any of the regulators cannot be
3819 * acquired then any regulators that were allocated will be freed
3820 * before returning to the caller.
3821 */
regulator_bulk_get(struct device * dev,int num_consumers,struct regulator_bulk_data * consumers)3822 int regulator_bulk_get(struct device *dev, int num_consumers,
3823 struct regulator_bulk_data *consumers)
3824 {
3825 int i;
3826 int ret;
3827
3828 for (i = 0; i < num_consumers; i++)
3829 consumers[i].consumer = NULL;
3830
3831 for (i = 0; i < num_consumers; i++) {
3832 consumers[i].consumer = regulator_get(dev,
3833 consumers[i].supply);
3834 if (IS_ERR(consumers[i].consumer)) {
3835 ret = PTR_ERR(consumers[i].consumer);
3836 dev_err(dev, "Failed to get supply '%s': %d\n",
3837 consumers[i].supply, ret);
3838 consumers[i].consumer = NULL;
3839 goto err;
3840 }
3841 }
3842
3843 return 0;
3844
3845 err:
3846 while (--i >= 0)
3847 regulator_put(consumers[i].consumer);
3848
3849 return ret;
3850 }
3851 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3852
regulator_bulk_enable_async(void * data,async_cookie_t cookie)3853 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3854 {
3855 struct regulator_bulk_data *bulk = data;
3856
3857 bulk->ret = regulator_enable(bulk->consumer);
3858 }
3859
3860 /**
3861 * regulator_bulk_enable - enable multiple regulator consumers
3862 *
3863 * @num_consumers: Number of consumers
3864 * @consumers: Consumer data; clients are stored here.
3865 * @return 0 on success, an errno on failure
3866 *
3867 * This convenience API allows consumers to enable multiple regulator
3868 * clients in a single API call. If any consumers cannot be enabled
3869 * then any others that were enabled will be disabled again prior to
3870 * return.
3871 */
regulator_bulk_enable(int num_consumers,struct regulator_bulk_data * consumers)3872 int regulator_bulk_enable(int num_consumers,
3873 struct regulator_bulk_data *consumers)
3874 {
3875 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3876 int i;
3877 int ret = 0;
3878
3879 for (i = 0; i < num_consumers; i++) {
3880 if (consumers[i].consumer->always_on)
3881 consumers[i].ret = 0;
3882 else
3883 async_schedule_domain(regulator_bulk_enable_async,
3884 &consumers[i], &async_domain);
3885 }
3886
3887 async_synchronize_full_domain(&async_domain);
3888
3889 /* If any consumer failed we need to unwind any that succeeded */
3890 for (i = 0; i < num_consumers; i++) {
3891 if (consumers[i].ret != 0) {
3892 ret = consumers[i].ret;
3893 goto err;
3894 }
3895 }
3896
3897 return 0;
3898
3899 err:
3900 for (i = 0; i < num_consumers; i++) {
3901 if (consumers[i].ret < 0)
3902 pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3903 consumers[i].ret);
3904 else
3905 regulator_disable(consumers[i].consumer);
3906 }
3907
3908 return ret;
3909 }
3910 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3911
3912 /**
3913 * regulator_bulk_disable - disable multiple regulator consumers
3914 *
3915 * @num_consumers: Number of consumers
3916 * @consumers: Consumer data; clients are stored here.
3917 * @return 0 on success, an errno on failure
3918 *
3919 * This convenience API allows consumers to disable multiple regulator
3920 * clients in a single API call. If any consumers cannot be disabled
3921 * then any others that were disabled will be enabled again prior to
3922 * return.
3923 */
regulator_bulk_disable(int num_consumers,struct regulator_bulk_data * consumers)3924 int regulator_bulk_disable(int num_consumers,
3925 struct regulator_bulk_data *consumers)
3926 {
3927 int i;
3928 int ret, r;
3929
3930 for (i = num_consumers - 1; i >= 0; --i) {
3931 ret = regulator_disable(consumers[i].consumer);
3932 if (ret != 0)
3933 goto err;
3934 }
3935
3936 return 0;
3937
3938 err:
3939 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3940 for (++i; i < num_consumers; ++i) {
3941 r = regulator_enable(consumers[i].consumer);
3942 if (r != 0)
3943 pr_err("Failed to re-enable %s: %d\n",
3944 consumers[i].supply, r);
3945 }
3946
3947 return ret;
3948 }
3949 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3950
3951 /**
3952 * regulator_bulk_force_disable - force disable multiple regulator consumers
3953 *
3954 * @num_consumers: Number of consumers
3955 * @consumers: Consumer data; clients are stored here.
3956 * @return 0 on success, an errno on failure
3957 *
3958 * This convenience API allows consumers to forcibly disable multiple regulator
3959 * clients in a single API call.
3960 * NOTE: This should be used for situations when device damage will
3961 * likely occur if the regulators are not disabled (e.g. over temp).
3962 * Although regulator_force_disable function call for some consumers can
3963 * return error numbers, the function is called for all consumers.
3964 */
regulator_bulk_force_disable(int num_consumers,struct regulator_bulk_data * consumers)3965 int regulator_bulk_force_disable(int num_consumers,
3966 struct regulator_bulk_data *consumers)
3967 {
3968 int i;
3969 int ret = 0;
3970
3971 for (i = 0; i < num_consumers; i++) {
3972 consumers[i].ret =
3973 regulator_force_disable(consumers[i].consumer);
3974
3975 /* Store first error for reporting */
3976 if (consumers[i].ret && !ret)
3977 ret = consumers[i].ret;
3978 }
3979
3980 return ret;
3981 }
3982 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3983
3984 /**
3985 * regulator_bulk_free - free multiple regulator consumers
3986 *
3987 * @num_consumers: Number of consumers
3988 * @consumers: Consumer data; clients are stored here.
3989 *
3990 * This convenience API allows consumers to free multiple regulator
3991 * clients in a single API call.
3992 */
regulator_bulk_free(int num_consumers,struct regulator_bulk_data * consumers)3993 void regulator_bulk_free(int num_consumers,
3994 struct regulator_bulk_data *consumers)
3995 {
3996 int i;
3997
3998 for (i = 0; i < num_consumers; i++) {
3999 regulator_put(consumers[i].consumer);
4000 consumers[i].consumer = NULL;
4001 }
4002 }
4003 EXPORT_SYMBOL_GPL(regulator_bulk_free);
4004
4005 /**
4006 * regulator_notifier_call_chain - call regulator event notifier
4007 * @rdev: regulator source
4008 * @event: notifier block
4009 * @data: callback-specific data.
4010 *
4011 * Called by regulator drivers to notify clients a regulator event has
4012 * occurred. We also notify regulator clients downstream.
4013 * Note lock must be held by caller.
4014 */
regulator_notifier_call_chain(struct regulator_dev * rdev,unsigned long event,void * data)4015 int regulator_notifier_call_chain(struct regulator_dev *rdev,
4016 unsigned long event, void *data)
4017 {
4018 lockdep_assert_held_once(&rdev->mutex);
4019
4020 _notifier_call_chain(rdev, event, data);
4021 return NOTIFY_DONE;
4022
4023 }
4024 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4025
4026 /**
4027 * regulator_mode_to_status - convert a regulator mode into a status
4028 *
4029 * @mode: Mode to convert
4030 *
4031 * Convert a regulator mode into a status.
4032 */
regulator_mode_to_status(unsigned int mode)4033 int regulator_mode_to_status(unsigned int mode)
4034 {
4035 switch (mode) {
4036 case REGULATOR_MODE_FAST:
4037 return REGULATOR_STATUS_FAST;
4038 case REGULATOR_MODE_NORMAL:
4039 return REGULATOR_STATUS_NORMAL;
4040 case REGULATOR_MODE_IDLE:
4041 return REGULATOR_STATUS_IDLE;
4042 case REGULATOR_MODE_STANDBY:
4043 return REGULATOR_STATUS_STANDBY;
4044 default:
4045 return REGULATOR_STATUS_UNDEFINED;
4046 }
4047 }
4048 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4049
4050 static struct attribute *regulator_dev_attrs[] = {
4051 &dev_attr_name.attr,
4052 &dev_attr_num_users.attr,
4053 &dev_attr_type.attr,
4054 &dev_attr_microvolts.attr,
4055 &dev_attr_microamps.attr,
4056 &dev_attr_opmode.attr,
4057 &dev_attr_state.attr,
4058 &dev_attr_status.attr,
4059 &dev_attr_bypass.attr,
4060 &dev_attr_requested_microamps.attr,
4061 &dev_attr_min_microvolts.attr,
4062 &dev_attr_max_microvolts.attr,
4063 &dev_attr_min_microamps.attr,
4064 &dev_attr_max_microamps.attr,
4065 &dev_attr_suspend_standby_state.attr,
4066 &dev_attr_suspend_mem_state.attr,
4067 &dev_attr_suspend_disk_state.attr,
4068 &dev_attr_suspend_standby_microvolts.attr,
4069 &dev_attr_suspend_mem_microvolts.attr,
4070 &dev_attr_suspend_disk_microvolts.attr,
4071 &dev_attr_suspend_standby_mode.attr,
4072 &dev_attr_suspend_mem_mode.attr,
4073 &dev_attr_suspend_disk_mode.attr,
4074 NULL
4075 };
4076
4077 /*
4078 * To avoid cluttering sysfs (and memory) with useless state, only
4079 * create attributes that can be meaningfully displayed.
4080 */
regulator_attr_is_visible(struct kobject * kobj,struct attribute * attr,int idx)4081 static umode_t regulator_attr_is_visible(struct kobject *kobj,
4082 struct attribute *attr, int idx)
4083 {
4084 struct device *dev = kobj_to_dev(kobj);
4085 struct regulator_dev *rdev = dev_to_rdev(dev);
4086 const struct regulator_ops *ops = rdev->desc->ops;
4087 umode_t mode = attr->mode;
4088
4089 /* these three are always present */
4090 if (attr == &dev_attr_name.attr ||
4091 attr == &dev_attr_num_users.attr ||
4092 attr == &dev_attr_type.attr)
4093 return mode;
4094
4095 /* some attributes need specific methods to be displayed */
4096 if (attr == &dev_attr_microvolts.attr) {
4097 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4098 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4099 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4100 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4101 return mode;
4102 return 0;
4103 }
4104
4105 if (attr == &dev_attr_microamps.attr)
4106 return ops->get_current_limit ? mode : 0;
4107
4108 if (attr == &dev_attr_opmode.attr)
4109 return ops->get_mode ? mode : 0;
4110
4111 if (attr == &dev_attr_state.attr)
4112 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4113
4114 if (attr == &dev_attr_status.attr)
4115 return ops->get_status ? mode : 0;
4116
4117 if (attr == &dev_attr_bypass.attr)
4118 return ops->get_bypass ? mode : 0;
4119
4120 /* some attributes are type-specific */
4121 if (attr == &dev_attr_requested_microamps.attr)
4122 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
4123
4124 /* constraints need specific supporting methods */
4125 if (attr == &dev_attr_min_microvolts.attr ||
4126 attr == &dev_attr_max_microvolts.attr)
4127 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4128
4129 if (attr == &dev_attr_min_microamps.attr ||
4130 attr == &dev_attr_max_microamps.attr)
4131 return ops->set_current_limit ? mode : 0;
4132
4133 if (attr == &dev_attr_suspend_standby_state.attr ||
4134 attr == &dev_attr_suspend_mem_state.attr ||
4135 attr == &dev_attr_suspend_disk_state.attr)
4136 return mode;
4137
4138 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4139 attr == &dev_attr_suspend_mem_microvolts.attr ||
4140 attr == &dev_attr_suspend_disk_microvolts.attr)
4141 return ops->set_suspend_voltage ? mode : 0;
4142
4143 if (attr == &dev_attr_suspend_standby_mode.attr ||
4144 attr == &dev_attr_suspend_mem_mode.attr ||
4145 attr == &dev_attr_suspend_disk_mode.attr)
4146 return ops->set_suspend_mode ? mode : 0;
4147
4148 return mode;
4149 }
4150
4151 static const struct attribute_group regulator_dev_group = {
4152 .attrs = regulator_dev_attrs,
4153 .is_visible = regulator_attr_is_visible,
4154 };
4155
4156 static const struct attribute_group *regulator_dev_groups[] = {
4157 ®ulator_dev_group,
4158 NULL
4159 };
4160
regulator_dev_release(struct device * dev)4161 static void regulator_dev_release(struct device *dev)
4162 {
4163 struct regulator_dev *rdev = dev_get_drvdata(dev);
4164
4165 kfree(rdev->constraints);
4166 of_node_put(rdev->dev.of_node);
4167 kfree(rdev);
4168 }
4169
rdev_init_debugfs(struct regulator_dev * rdev)4170 static void rdev_init_debugfs(struct regulator_dev *rdev)
4171 {
4172 struct device *parent = rdev->dev.parent;
4173 const char *rname = rdev_get_name(rdev);
4174 char name[NAME_MAX];
4175
4176 /* Avoid duplicate debugfs directory names */
4177 if (parent && rname == rdev->desc->name) {
4178 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4179 rname);
4180 rname = name;
4181 }
4182
4183 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4184 if (IS_ERR(rdev->debugfs)) {
4185 rdev_warn(rdev, "Failed to create debugfs directory\n");
4186 return;
4187 }
4188
4189 debugfs_create_u32("use_count", 0444, rdev->debugfs,
4190 &rdev->use_count);
4191 debugfs_create_u32("open_count", 0444, rdev->debugfs,
4192 &rdev->open_count);
4193 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
4194 &rdev->bypass_count);
4195 }
4196
regulator_register_resolve_supply(struct device * dev,void * data)4197 static int regulator_register_resolve_supply(struct device *dev, void *data)
4198 {
4199 struct regulator_dev *rdev = dev_to_rdev(dev);
4200
4201 if (regulator_resolve_supply(rdev))
4202 rdev_dbg(rdev, "unable to resolve supply\n");
4203
4204 return 0;
4205 }
4206
regulator_fill_coupling_array(struct regulator_dev * rdev)4207 static int regulator_fill_coupling_array(struct regulator_dev *rdev)
4208 {
4209 struct coupling_desc *c_desc = &rdev->coupling_desc;
4210 int n_coupled = c_desc->n_coupled;
4211 struct regulator_dev *c_rdev;
4212 int i;
4213
4214 for (i = 1; i < n_coupled; i++) {
4215 /* already resolved */
4216 if (c_desc->coupled_rdevs[i])
4217 continue;
4218
4219 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
4220
4221 if (c_rdev) {
4222 c_desc->coupled_rdevs[i] = c_rdev;
4223 c_desc->n_resolved++;
4224 }
4225 }
4226
4227 if (rdev->coupling_desc.n_resolved < n_coupled)
4228 return -1;
4229 else
4230 return 0;
4231 }
4232
regulator_register_fill_coupling_array(struct device * dev,void * data)4233 static int regulator_register_fill_coupling_array(struct device *dev,
4234 void *data)
4235 {
4236 struct regulator_dev *rdev = dev_to_rdev(dev);
4237
4238 if (!IS_ENABLED(CONFIG_OF))
4239 return 0;
4240
4241 if (regulator_fill_coupling_array(rdev))
4242 rdev_dbg(rdev, "unable to resolve coupling\n");
4243
4244 return 0;
4245 }
4246
regulator_resolve_coupling(struct regulator_dev * rdev)4247 static int regulator_resolve_coupling(struct regulator_dev *rdev)
4248 {
4249 int n_phandles;
4250
4251 if (!IS_ENABLED(CONFIG_OF))
4252 n_phandles = 0;
4253 else
4254 n_phandles = of_get_n_coupled(rdev);
4255
4256 if (n_phandles + 1 > MAX_COUPLED) {
4257 rdev_err(rdev, "too many regulators coupled\n");
4258 return -EPERM;
4259 }
4260
4261 /*
4262 * Every regulator should always have coupling descriptor filled with
4263 * at least pointer to itself.
4264 */
4265 rdev->coupling_desc.coupled_rdevs[0] = rdev;
4266 rdev->coupling_desc.n_coupled = n_phandles + 1;
4267 rdev->coupling_desc.n_resolved++;
4268
4269 /* regulator isn't coupled */
4270 if (n_phandles == 0)
4271 return 0;
4272
4273 /* regulator, which can't change its voltage, can't be coupled */
4274 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
4275 rdev_err(rdev, "voltage operation not allowed\n");
4276 return -EPERM;
4277 }
4278
4279 if (rdev->constraints->max_spread <= 0) {
4280 rdev_err(rdev, "wrong max_spread value\n");
4281 return -EPERM;
4282 }
4283
4284 if (!of_check_coupling_data(rdev))
4285 return -EPERM;
4286
4287 /*
4288 * After everything has been checked, try to fill rdevs array
4289 * with pointers to regulators parsed from device tree. If some
4290 * regulators are not registered yet, retry in late init call
4291 */
4292 regulator_fill_coupling_array(rdev);
4293
4294 return 0;
4295 }
4296
4297 /**
4298 * regulator_register - register regulator
4299 * @regulator_desc: regulator to register
4300 * @cfg: runtime configuration for regulator
4301 *
4302 * Called by regulator drivers to register a regulator.
4303 * Returns a valid pointer to struct regulator_dev on success
4304 * or an ERR_PTR() on error.
4305 */
4306 struct regulator_dev *
regulator_register(const struct regulator_desc * regulator_desc,const struct regulator_config * cfg)4307 regulator_register(const struct regulator_desc *regulator_desc,
4308 const struct regulator_config *cfg)
4309 {
4310 const struct regulator_init_data *init_data;
4311 struct regulator_config *config = NULL;
4312 static atomic_t regulator_no = ATOMIC_INIT(-1);
4313 struct regulator_dev *rdev;
4314 struct device *dev;
4315 int ret, i;
4316
4317 if (regulator_desc == NULL || cfg == NULL)
4318 return ERR_PTR(-EINVAL);
4319
4320 dev = cfg->dev;
4321 WARN_ON(!dev);
4322
4323 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
4324 return ERR_PTR(-EINVAL);
4325
4326 if (regulator_desc->type != REGULATOR_VOLTAGE &&
4327 regulator_desc->type != REGULATOR_CURRENT)
4328 return ERR_PTR(-EINVAL);
4329
4330 /* Only one of each should be implemented */
4331 WARN_ON(regulator_desc->ops->get_voltage &&
4332 regulator_desc->ops->get_voltage_sel);
4333 WARN_ON(regulator_desc->ops->set_voltage &&
4334 regulator_desc->ops->set_voltage_sel);
4335
4336 /* If we're using selectors we must implement list_voltage. */
4337 if (regulator_desc->ops->get_voltage_sel &&
4338 !regulator_desc->ops->list_voltage) {
4339 return ERR_PTR(-EINVAL);
4340 }
4341 if (regulator_desc->ops->set_voltage_sel &&
4342 !regulator_desc->ops->list_voltage) {
4343 return ERR_PTR(-EINVAL);
4344 }
4345
4346 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
4347 if (rdev == NULL)
4348 return ERR_PTR(-ENOMEM);
4349
4350 /*
4351 * Duplicate the config so the driver could override it after
4352 * parsing init data.
4353 */
4354 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
4355 if (config == NULL) {
4356 kfree(rdev);
4357 return ERR_PTR(-ENOMEM);
4358 }
4359
4360 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
4361 &rdev->dev.of_node);
4362 if (!init_data) {
4363 init_data = config->init_data;
4364 rdev->dev.of_node = of_node_get(config->of_node);
4365 }
4366
4367 mutex_init(&rdev->mutex);
4368 rdev->reg_data = config->driver_data;
4369 rdev->owner = regulator_desc->owner;
4370 rdev->desc = regulator_desc;
4371 if (config->regmap)
4372 rdev->regmap = config->regmap;
4373 else if (dev_get_regmap(dev, NULL))
4374 rdev->regmap = dev_get_regmap(dev, NULL);
4375 else if (dev->parent)
4376 rdev->regmap = dev_get_regmap(dev->parent, NULL);
4377 INIT_LIST_HEAD(&rdev->consumer_list);
4378 INIT_LIST_HEAD(&rdev->list);
4379 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
4380 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
4381
4382 /* preform any regulator specific init */
4383 if (init_data && init_data->regulator_init) {
4384 ret = init_data->regulator_init(rdev->reg_data);
4385 if (ret < 0)
4386 goto clean;
4387 }
4388
4389 if (config->ena_gpiod ||
4390 ((config->ena_gpio || config->ena_gpio_initialized) &&
4391 gpio_is_valid(config->ena_gpio))) {
4392 mutex_lock(®ulator_list_mutex);
4393 ret = regulator_ena_gpio_request(rdev, config);
4394 mutex_unlock(®ulator_list_mutex);
4395 if (ret != 0) {
4396 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
4397 config->ena_gpio, ret);
4398 goto clean;
4399 }
4400 }
4401
4402 /* register with sysfs */
4403 rdev->dev.class = ®ulator_class;
4404 rdev->dev.parent = dev;
4405 dev_set_name(&rdev->dev, "regulator.%lu",
4406 (unsigned long) atomic_inc_return(®ulator_no));
4407
4408 /* set regulator constraints */
4409 if (init_data)
4410 rdev->constraints = kmemdup(&init_data->constraints,
4411 sizeof(*rdev->constraints),
4412 GFP_KERNEL);
4413 else
4414 rdev->constraints = kzalloc(sizeof(*rdev->constraints),
4415 GFP_KERNEL);
4416 if (!rdev->constraints) {
4417 ret = -ENOMEM;
4418 goto wash;
4419 }
4420
4421 if (init_data && init_data->supply_regulator)
4422 rdev->supply_name = init_data->supply_regulator;
4423 else if (regulator_desc->supply_name)
4424 rdev->supply_name = regulator_desc->supply_name;
4425
4426 ret = set_machine_constraints(rdev);
4427 if (ret == -EPROBE_DEFER) {
4428 /* Regulator might be in bypass mode and so needs its supply
4429 * to set the constraints */
4430 /* FIXME: this currently triggers a chicken-and-egg problem
4431 * when creating -SUPPLY symlink in sysfs to a regulator
4432 * that is just being created */
4433 ret = regulator_resolve_supply(rdev);
4434 if (!ret)
4435 ret = set_machine_constraints(rdev);
4436 else
4437 rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
4438 ERR_PTR(ret));
4439 }
4440 if (ret < 0)
4441 goto wash;
4442
4443 mutex_lock(®ulator_list_mutex);
4444 ret = regulator_resolve_coupling(rdev);
4445 mutex_unlock(®ulator_list_mutex);
4446
4447 if (ret != 0)
4448 goto wash;
4449
4450 /* add consumers devices */
4451 if (init_data) {
4452 for (i = 0; i < init_data->num_consumer_supplies; i++) {
4453 ret = set_consumer_device_supply(rdev,
4454 init_data->consumer_supplies[i].dev_name,
4455 init_data->consumer_supplies[i].supply);
4456 if (ret < 0) {
4457 dev_err(dev, "Failed to set supply %s\n",
4458 init_data->consumer_supplies[i].supply);
4459 goto unset_supplies;
4460 }
4461 }
4462 }
4463
4464 if (!rdev->desc->ops->get_voltage &&
4465 !rdev->desc->ops->list_voltage &&
4466 !rdev->desc->fixed_uV)
4467 rdev->is_switch = true;
4468
4469 dev_set_drvdata(&rdev->dev, rdev);
4470 ret = device_register(&rdev->dev);
4471 if (ret != 0) {
4472 put_device(&rdev->dev);
4473 goto unset_supplies;
4474 }
4475
4476 rdev_init_debugfs(rdev);
4477
4478 /* try to resolve regulators supply since a new one was registered */
4479 class_for_each_device(®ulator_class, NULL, NULL,
4480 regulator_register_resolve_supply);
4481 kfree(config);
4482 return rdev;
4483
4484 unset_supplies:
4485 mutex_lock(®ulator_list_mutex);
4486 unset_regulator_supplies(rdev);
4487 mutex_unlock(®ulator_list_mutex);
4488 wash:
4489 kfree(rdev->constraints);
4490 mutex_lock(®ulator_list_mutex);
4491 regulator_ena_gpio_free(rdev);
4492 mutex_unlock(®ulator_list_mutex);
4493 clean:
4494 kfree(rdev);
4495 kfree(config);
4496 return ERR_PTR(ret);
4497 }
4498 EXPORT_SYMBOL_GPL(regulator_register);
4499
4500 /**
4501 * regulator_unregister - unregister regulator
4502 * @rdev: regulator to unregister
4503 *
4504 * Called by regulator drivers to unregister a regulator.
4505 */
regulator_unregister(struct regulator_dev * rdev)4506 void regulator_unregister(struct regulator_dev *rdev)
4507 {
4508 if (rdev == NULL)
4509 return;
4510
4511 if (rdev->supply) {
4512 while (rdev->use_count--)
4513 regulator_disable(rdev->supply);
4514 regulator_put(rdev->supply);
4515 }
4516 mutex_lock(®ulator_list_mutex);
4517 debugfs_remove_recursive(rdev->debugfs);
4518 flush_work(&rdev->disable_work.work);
4519 WARN_ON(rdev->open_count);
4520 unset_regulator_supplies(rdev);
4521 list_del(&rdev->list);
4522 regulator_ena_gpio_free(rdev);
4523 mutex_unlock(®ulator_list_mutex);
4524 device_unregister(&rdev->dev);
4525 }
4526 EXPORT_SYMBOL_GPL(regulator_unregister);
4527
4528 #ifdef CONFIG_SUSPEND
_regulator_suspend(struct device * dev,void * data)4529 static int _regulator_suspend(struct device *dev, void *data)
4530 {
4531 struct regulator_dev *rdev = dev_to_rdev(dev);
4532 suspend_state_t *state = data;
4533 int ret;
4534
4535 regulator_lock(rdev);
4536 ret = suspend_set_state(rdev, *state);
4537 regulator_unlock(rdev);
4538
4539 return ret;
4540 }
4541
4542 /**
4543 * regulator_suspend - prepare regulators for system wide suspend
4544 * @state: system suspend state
4545 *
4546 * Configure each regulator with it's suspend operating parameters for state.
4547 */
regulator_suspend(struct device * dev)4548 static int regulator_suspend(struct device *dev)
4549 {
4550 suspend_state_t state = pm_suspend_target_state;
4551
4552 return class_for_each_device(®ulator_class, NULL, &state,
4553 _regulator_suspend);
4554 }
4555
_regulator_resume(struct device * dev,void * data)4556 static int _regulator_resume(struct device *dev, void *data)
4557 {
4558 int ret = 0;
4559 struct regulator_dev *rdev = dev_to_rdev(dev);
4560 suspend_state_t *state = data;
4561 struct regulator_state *rstate;
4562
4563 rstate = regulator_get_suspend_state(rdev, *state);
4564 if (rstate == NULL)
4565 return 0;
4566
4567 regulator_lock(rdev);
4568
4569 if (rdev->desc->ops->resume &&
4570 (rstate->enabled == ENABLE_IN_SUSPEND ||
4571 rstate->enabled == DISABLE_IN_SUSPEND))
4572 ret = rdev->desc->ops->resume(rdev);
4573
4574 regulator_unlock(rdev);
4575
4576 return ret;
4577 }
4578
regulator_resume(struct device * dev)4579 static int regulator_resume(struct device *dev)
4580 {
4581 suspend_state_t state = pm_suspend_target_state;
4582
4583 return class_for_each_device(®ulator_class, NULL, &state,
4584 _regulator_resume);
4585 }
4586
4587 #else /* !CONFIG_SUSPEND */
4588
4589 #define regulator_suspend NULL
4590 #define regulator_resume NULL
4591
4592 #endif /* !CONFIG_SUSPEND */
4593
4594 #ifdef CONFIG_PM
4595 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
4596 .suspend = regulator_suspend,
4597 .resume = regulator_resume,
4598 };
4599 #endif
4600
4601 struct class regulator_class = {
4602 .name = "regulator",
4603 .dev_release = regulator_dev_release,
4604 .dev_groups = regulator_dev_groups,
4605 #ifdef CONFIG_PM
4606 .pm = ®ulator_pm_ops,
4607 #endif
4608 };
4609 /**
4610 * regulator_has_full_constraints - the system has fully specified constraints
4611 *
4612 * Calling this function will cause the regulator API to disable all
4613 * regulators which have a zero use count and don't have an always_on
4614 * constraint in a late_initcall.
4615 *
4616 * The intention is that this will become the default behaviour in a
4617 * future kernel release so users are encouraged to use this facility
4618 * now.
4619 */
regulator_has_full_constraints(void)4620 void regulator_has_full_constraints(void)
4621 {
4622 has_full_constraints = 1;
4623 }
4624 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
4625
4626 /**
4627 * rdev_get_drvdata - get rdev regulator driver data
4628 * @rdev: regulator
4629 *
4630 * Get rdev regulator driver private data. This call can be used in the
4631 * regulator driver context.
4632 */
rdev_get_drvdata(struct regulator_dev * rdev)4633 void *rdev_get_drvdata(struct regulator_dev *rdev)
4634 {
4635 return rdev->reg_data;
4636 }
4637 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
4638
4639 /**
4640 * regulator_get_drvdata - get regulator driver data
4641 * @regulator: regulator
4642 *
4643 * Get regulator driver private data. This call can be used in the consumer
4644 * driver context when non API regulator specific functions need to be called.
4645 */
regulator_get_drvdata(struct regulator * regulator)4646 void *regulator_get_drvdata(struct regulator *regulator)
4647 {
4648 return regulator->rdev->reg_data;
4649 }
4650 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
4651
4652 /**
4653 * regulator_set_drvdata - set regulator driver data
4654 * @regulator: regulator
4655 * @data: data
4656 */
regulator_set_drvdata(struct regulator * regulator,void * data)4657 void regulator_set_drvdata(struct regulator *regulator, void *data)
4658 {
4659 regulator->rdev->reg_data = data;
4660 }
4661 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
4662
4663 /**
4664 * regulator_get_id - get regulator ID
4665 * @rdev: regulator
4666 */
rdev_get_id(struct regulator_dev * rdev)4667 int rdev_get_id(struct regulator_dev *rdev)
4668 {
4669 return rdev->desc->id;
4670 }
4671 EXPORT_SYMBOL_GPL(rdev_get_id);
4672
rdev_get_dev(struct regulator_dev * rdev)4673 struct device *rdev_get_dev(struct regulator_dev *rdev)
4674 {
4675 return &rdev->dev;
4676 }
4677 EXPORT_SYMBOL_GPL(rdev_get_dev);
4678
regulator_get_init_drvdata(struct regulator_init_data * reg_init_data)4679 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4680 {
4681 return reg_init_data->driver_data;
4682 }
4683 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4684
4685 #ifdef CONFIG_DEBUG_FS
supply_map_show(struct seq_file * sf,void * data)4686 static int supply_map_show(struct seq_file *sf, void *data)
4687 {
4688 struct regulator_map *map;
4689
4690 list_for_each_entry(map, ®ulator_map_list, list) {
4691 seq_printf(sf, "%s -> %s.%s\n",
4692 rdev_get_name(map->regulator), map->dev_name,
4693 map->supply);
4694 }
4695
4696 return 0;
4697 }
4698
supply_map_open(struct inode * inode,struct file * file)4699 static int supply_map_open(struct inode *inode, struct file *file)
4700 {
4701 return single_open(file, supply_map_show, inode->i_private);
4702 }
4703 #endif
4704
4705 static const struct file_operations supply_map_fops = {
4706 #ifdef CONFIG_DEBUG_FS
4707 .open = supply_map_open,
4708 .read = seq_read,
4709 .llseek = seq_lseek,
4710 .release = single_release,
4711 #endif
4712 };
4713
4714 #ifdef CONFIG_DEBUG_FS
4715 struct summary_data {
4716 struct seq_file *s;
4717 struct regulator_dev *parent;
4718 int level;
4719 };
4720
4721 static void regulator_summary_show_subtree(struct seq_file *s,
4722 struct regulator_dev *rdev,
4723 int level);
4724
regulator_summary_show_children(struct device * dev,void * data)4725 static int regulator_summary_show_children(struct device *dev, void *data)
4726 {
4727 struct regulator_dev *rdev = dev_to_rdev(dev);
4728 struct summary_data *summary_data = data;
4729
4730 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
4731 regulator_summary_show_subtree(summary_data->s, rdev,
4732 summary_data->level + 1);
4733
4734 return 0;
4735 }
4736
regulator_summary_show_subtree(struct seq_file * s,struct regulator_dev * rdev,int level)4737 static void regulator_summary_show_subtree(struct seq_file *s,
4738 struct regulator_dev *rdev,
4739 int level)
4740 {
4741 struct regulation_constraints *c;
4742 struct regulator *consumer;
4743 struct summary_data summary_data;
4744
4745 if (!rdev)
4746 return;
4747
4748 seq_printf(s, "%*s%-*s %3d %4d %6d ",
4749 level * 3 + 1, "",
4750 30 - level * 3, rdev_get_name(rdev),
4751 rdev->use_count, rdev->open_count, rdev->bypass_count);
4752
4753 seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4754 seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4755
4756 c = rdev->constraints;
4757 if (c) {
4758 switch (rdev->desc->type) {
4759 case REGULATOR_VOLTAGE:
4760 seq_printf(s, "%5dmV %5dmV ",
4761 c->min_uV / 1000, c->max_uV / 1000);
4762 break;
4763 case REGULATOR_CURRENT:
4764 seq_printf(s, "%5dmA %5dmA ",
4765 c->min_uA / 1000, c->max_uA / 1000);
4766 break;
4767 }
4768 }
4769
4770 seq_puts(s, "\n");
4771
4772 list_for_each_entry(consumer, &rdev->consumer_list, list) {
4773 if (consumer->dev && consumer->dev->class == ®ulator_class)
4774 continue;
4775
4776 seq_printf(s, "%*s%-*s ",
4777 (level + 1) * 3 + 1, "",
4778 30 - (level + 1) * 3,
4779 consumer->dev ? dev_name(consumer->dev) : "deviceless");
4780
4781 switch (rdev->desc->type) {
4782 case REGULATOR_VOLTAGE:
4783 seq_printf(s, "%37dmV %5dmV",
4784 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
4785 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
4786 break;
4787 case REGULATOR_CURRENT:
4788 break;
4789 }
4790
4791 seq_puts(s, "\n");
4792 }
4793
4794 summary_data.s = s;
4795 summary_data.level = level;
4796 summary_data.parent = rdev;
4797
4798 class_for_each_device(®ulator_class, NULL, &summary_data,
4799 regulator_summary_show_children);
4800 }
4801
regulator_summary_show_roots(struct device * dev,void * data)4802 static int regulator_summary_show_roots(struct device *dev, void *data)
4803 {
4804 struct regulator_dev *rdev = dev_to_rdev(dev);
4805 struct seq_file *s = data;
4806
4807 if (!rdev->supply)
4808 regulator_summary_show_subtree(s, rdev, 0);
4809
4810 return 0;
4811 }
4812
regulator_summary_show(struct seq_file * s,void * data)4813 static int regulator_summary_show(struct seq_file *s, void *data)
4814 {
4815 seq_puts(s, " regulator use open bypass voltage current min max\n");
4816 seq_puts(s, "-------------------------------------------------------------------------------\n");
4817
4818 class_for_each_device(®ulator_class, NULL, s,
4819 regulator_summary_show_roots);
4820
4821 return 0;
4822 }
4823
regulator_summary_open(struct inode * inode,struct file * file)4824 static int regulator_summary_open(struct inode *inode, struct file *file)
4825 {
4826 return single_open(file, regulator_summary_show, inode->i_private);
4827 }
4828 #endif
4829
4830 static const struct file_operations regulator_summary_fops = {
4831 #ifdef CONFIG_DEBUG_FS
4832 .open = regulator_summary_open,
4833 .read = seq_read,
4834 .llseek = seq_lseek,
4835 .release = single_release,
4836 #endif
4837 };
4838
regulator_init(void)4839 static int __init regulator_init(void)
4840 {
4841 int ret;
4842
4843 ret = class_register(®ulator_class);
4844
4845 debugfs_root = debugfs_create_dir("regulator", NULL);
4846 if (IS_ERR(debugfs_root))
4847 pr_warn("regulator: Failed to create debugfs directory\n");
4848
4849 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4850 &supply_map_fops);
4851
4852 debugfs_create_file("regulator_summary", 0444, debugfs_root,
4853 NULL, ®ulator_summary_fops);
4854
4855 regulator_dummy_init();
4856
4857 return ret;
4858 }
4859
4860 /* init early to allow our consumers to complete system booting */
4861 core_initcall(regulator_init);
4862
regulator_late_cleanup(struct device * dev,void * data)4863 static int regulator_late_cleanup(struct device *dev, void *data)
4864 {
4865 struct regulator_dev *rdev = dev_to_rdev(dev);
4866 const struct regulator_ops *ops = rdev->desc->ops;
4867 struct regulation_constraints *c = rdev->constraints;
4868 int enabled, ret;
4869
4870 if (c && c->always_on)
4871 return 0;
4872
4873 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
4874 return 0;
4875
4876 regulator_lock(rdev);
4877
4878 if (rdev->use_count)
4879 goto unlock;
4880
4881 /* If we can't read the status assume it's on. */
4882 if (ops->is_enabled)
4883 enabled = ops->is_enabled(rdev);
4884 else
4885 enabled = 1;
4886
4887 if (!enabled)
4888 goto unlock;
4889
4890 if (have_full_constraints()) {
4891 /* We log since this may kill the system if it goes
4892 * wrong. */
4893 rdev_info(rdev, "disabling\n");
4894 ret = _regulator_do_disable(rdev);
4895 if (ret != 0)
4896 rdev_err(rdev, "couldn't disable: %d\n", ret);
4897 } else {
4898 /* The intention is that in future we will
4899 * assume that full constraints are provided
4900 * so warn even if we aren't going to do
4901 * anything here.
4902 */
4903 rdev_warn(rdev, "incomplete constraints, leaving on\n");
4904 }
4905
4906 unlock:
4907 regulator_unlock(rdev);
4908
4909 return 0;
4910 }
4911
regulator_init_complete_work_function(struct work_struct * work)4912 static void regulator_init_complete_work_function(struct work_struct *work)
4913 {
4914 /*
4915 * Regulators may had failed to resolve their input supplies
4916 * when were registered, either because the input supply was
4917 * not registered yet or because its parent device was not
4918 * bound yet. So attempt to resolve the input supplies for
4919 * pending regulators before trying to disable unused ones.
4920 */
4921 class_for_each_device(®ulator_class, NULL, NULL,
4922 regulator_register_resolve_supply);
4923
4924 /* If we have a full configuration then disable any regulators
4925 * we have permission to change the status for and which are
4926 * not in use or always_on. This is effectively the default
4927 * for DT and ACPI as they have full constraints.
4928 */
4929 class_for_each_device(®ulator_class, NULL, NULL,
4930 regulator_late_cleanup);
4931 }
4932
4933 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
4934 regulator_init_complete_work_function);
4935
regulator_init_complete(void)4936 static int __init regulator_init_complete(void)
4937 {
4938 /*
4939 * Since DT doesn't provide an idiomatic mechanism for
4940 * enabling full constraints and since it's much more natural
4941 * with DT to provide them just assume that a DT enabled
4942 * system has full constraints.
4943 */
4944 if (of_have_populated_dt())
4945 has_full_constraints = true;
4946
4947 /*
4948 * We punt completion for an arbitrary amount of time since
4949 * systems like distros will load many drivers from userspace
4950 * so consumers might not always be ready yet, this is
4951 * particularly an issue with laptops where this might bounce
4952 * the display off then on. Ideally we'd get a notification
4953 * from userspace when this happens but we don't so just wait
4954 * a bit and hope we waited long enough. It'd be better if
4955 * we'd only do this on systems that need it, and a kernel
4956 * command line option might be useful.
4957 */
4958 schedule_delayed_work(®ulator_init_complete_work,
4959 msecs_to_jiffies(30000));
4960
4961 class_for_each_device(®ulator_class, NULL, NULL,
4962 regulator_register_fill_coupling_array);
4963
4964 return 0;
4965 }
4966 late_initcall_sync(regulator_init_complete);
4967