1 /*
2 * Copyright (C) International Business Machines Corp., 2000-2004
3 * Portions Copyright (C) Tino Reichardt, 2012
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20 #include <linux/fs.h>
21 #include <linux/slab.h>
22 #include "jfs_incore.h"
23 #include "jfs_superblock.h"
24 #include "jfs_dmap.h"
25 #include "jfs_imap.h"
26 #include "jfs_lock.h"
27 #include "jfs_metapage.h"
28 #include "jfs_debug.h"
29 #include "jfs_discard.h"
30
31 /*
32 * SERIALIZATION of the Block Allocation Map.
33 *
34 * the working state of the block allocation map is accessed in
35 * two directions:
36 *
37 * 1) allocation and free requests that start at the dmap
38 * level and move up through the dmap control pages (i.e.
39 * the vast majority of requests).
40 *
41 * 2) allocation requests that start at dmap control page
42 * level and work down towards the dmaps.
43 *
44 * the serialization scheme used here is as follows.
45 *
46 * requests which start at the bottom are serialized against each
47 * other through buffers and each requests holds onto its buffers
48 * as it works it way up from a single dmap to the required level
49 * of dmap control page.
50 * requests that start at the top are serialized against each other
51 * and request that start from the bottom by the multiple read/single
52 * write inode lock of the bmap inode. requests starting at the top
53 * take this lock in write mode while request starting at the bottom
54 * take the lock in read mode. a single top-down request may proceed
55 * exclusively while multiple bottoms-up requests may proceed
56 * simultaneously (under the protection of busy buffers).
57 *
58 * in addition to information found in dmaps and dmap control pages,
59 * the working state of the block allocation map also includes read/
60 * write information maintained in the bmap descriptor (i.e. total
61 * free block count, allocation group level free block counts).
62 * a single exclusive lock (BMAP_LOCK) is used to guard this information
63 * in the face of multiple-bottoms up requests.
64 * (lock ordering: IREAD_LOCK, BMAP_LOCK);
65 *
66 * accesses to the persistent state of the block allocation map (limited
67 * to the persistent bitmaps in dmaps) is guarded by (busy) buffers.
68 */
69
70 #define BMAP_LOCK_INIT(bmp) mutex_init(&bmp->db_bmaplock)
71 #define BMAP_LOCK(bmp) mutex_lock(&bmp->db_bmaplock)
72 #define BMAP_UNLOCK(bmp) mutex_unlock(&bmp->db_bmaplock)
73
74 /*
75 * forward references
76 */
77 static void dbAllocBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
78 int nblocks);
79 static void dbSplit(dmtree_t * tp, int leafno, int splitsz, int newval);
80 static int dbBackSplit(dmtree_t * tp, int leafno);
81 static int dbJoin(dmtree_t * tp, int leafno, int newval);
82 static void dbAdjTree(dmtree_t * tp, int leafno, int newval);
83 static int dbAdjCtl(struct bmap * bmp, s64 blkno, int newval, int alloc,
84 int level);
85 static int dbAllocAny(struct bmap * bmp, s64 nblocks, int l2nb, s64 * results);
86 static int dbAllocNext(struct bmap * bmp, struct dmap * dp, s64 blkno,
87 int nblocks);
88 static int dbAllocNear(struct bmap * bmp, struct dmap * dp, s64 blkno,
89 int nblocks,
90 int l2nb, s64 * results);
91 static int dbAllocDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
92 int nblocks);
93 static int dbAllocDmapLev(struct bmap * bmp, struct dmap * dp, int nblocks,
94 int l2nb,
95 s64 * results);
96 static int dbAllocAG(struct bmap * bmp, int agno, s64 nblocks, int l2nb,
97 s64 * results);
98 static int dbAllocCtl(struct bmap * bmp, s64 nblocks, int l2nb, s64 blkno,
99 s64 * results);
100 static int dbExtend(struct inode *ip, s64 blkno, s64 nblocks, s64 addnblocks);
101 static int dbFindBits(u32 word, int l2nb);
102 static int dbFindCtl(struct bmap * bmp, int l2nb, int level, s64 * blkno);
103 static int dbFindLeaf(dmtree_t * tp, int l2nb, int *leafidx);
104 static int dbFreeBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
105 int nblocks);
106 static int dbFreeDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
107 int nblocks);
108 static int dbMaxBud(u8 * cp);
109 static int blkstol2(s64 nb);
110
111 static int cntlz(u32 value);
112 static int cnttz(u32 word);
113
114 static int dbAllocDmapBU(struct bmap * bmp, struct dmap * dp, s64 blkno,
115 int nblocks);
116 static int dbInitDmap(struct dmap * dp, s64 blkno, int nblocks);
117 static int dbInitDmapTree(struct dmap * dp);
118 static int dbInitTree(struct dmaptree * dtp);
119 static int dbInitDmapCtl(struct dmapctl * dcp, int level, int i);
120 static int dbGetL2AGSize(s64 nblocks);
121
122 /*
123 * buddy table
124 *
125 * table used for determining buddy sizes within characters of
126 * dmap bitmap words. the characters themselves serve as indexes
127 * into the table, with the table elements yielding the maximum
128 * binary buddy of free bits within the character.
129 */
130 static const s8 budtab[256] = {
131 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
132 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
133 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
134 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
135 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
136 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
137 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
138 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
139 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
140 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
141 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
142 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
143 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
144 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
145 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
146 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, -1
147 };
148
149 /*
150 * NAME: dbMount()
151 *
152 * FUNCTION: initializate the block allocation map.
153 *
154 * memory is allocated for the in-core bmap descriptor and
155 * the in-core descriptor is initialized from disk.
156 *
157 * PARAMETERS:
158 * ipbmap - pointer to in-core inode for the block map.
159 *
160 * RETURN VALUES:
161 * 0 - success
162 * -ENOMEM - insufficient memory
163 * -EIO - i/o error
164 * -EINVAL - wrong bmap data
165 */
dbMount(struct inode * ipbmap)166 int dbMount(struct inode *ipbmap)
167 {
168 struct bmap *bmp;
169 struct dbmap_disk *dbmp_le;
170 struct metapage *mp;
171 int i, err;
172
173 /*
174 * allocate/initialize the in-memory bmap descriptor
175 */
176 /* allocate memory for the in-memory bmap descriptor */
177 bmp = kmalloc(sizeof(struct bmap), GFP_KERNEL);
178 if (bmp == NULL)
179 return -ENOMEM;
180
181 /* read the on-disk bmap descriptor. */
182 mp = read_metapage(ipbmap,
183 BMAPBLKNO << JFS_SBI(ipbmap->i_sb)->l2nbperpage,
184 PSIZE, 0);
185 if (mp == NULL) {
186 err = -EIO;
187 goto err_kfree_bmp;
188 }
189
190 /* copy the on-disk bmap descriptor to its in-memory version. */
191 dbmp_le = (struct dbmap_disk *) mp->data;
192 bmp->db_mapsize = le64_to_cpu(dbmp_le->dn_mapsize);
193 bmp->db_nfree = le64_to_cpu(dbmp_le->dn_nfree);
194
195 bmp->db_l2nbperpage = le32_to_cpu(dbmp_le->dn_l2nbperpage);
196 if (bmp->db_l2nbperpage > L2PSIZE - L2MINBLOCKSIZE) {
197 err = -EINVAL;
198 goto err_release_metapage;
199 }
200
201 bmp->db_numag = le32_to_cpu(dbmp_le->dn_numag);
202 if (!bmp->db_numag) {
203 err = -EINVAL;
204 goto err_release_metapage;
205 }
206
207 bmp->db_maxlevel = le32_to_cpu(dbmp_le->dn_maxlevel);
208 bmp->db_maxag = le32_to_cpu(dbmp_le->dn_maxag);
209 bmp->db_agpref = le32_to_cpu(dbmp_le->dn_agpref);
210 bmp->db_aglevel = le32_to_cpu(dbmp_le->dn_aglevel);
211 bmp->db_agheight = le32_to_cpu(dbmp_le->dn_agheight);
212 bmp->db_agwidth = le32_to_cpu(dbmp_le->dn_agwidth);
213 bmp->db_agstart = le32_to_cpu(dbmp_le->dn_agstart);
214 bmp->db_agl2size = le32_to_cpu(dbmp_le->dn_agl2size);
215 if (bmp->db_agl2size > L2MAXL2SIZE - L2MAXAG ||
216 bmp->db_agl2size < 0) {
217 err = -EINVAL;
218 goto err_release_metapage;
219 }
220
221 if (((bmp->db_mapsize - 1) >> bmp->db_agl2size) > MAXAG) {
222 err = -EINVAL;
223 goto err_release_metapage;
224 }
225
226 for (i = 0; i < MAXAG; i++)
227 bmp->db_agfree[i] = le64_to_cpu(dbmp_le->dn_agfree[i]);
228 bmp->db_agsize = le64_to_cpu(dbmp_le->dn_agsize);
229 bmp->db_maxfreebud = dbmp_le->dn_maxfreebud;
230
231 /* release the buffer. */
232 release_metapage(mp);
233
234 /* bind the bmap inode and the bmap descriptor to each other. */
235 bmp->db_ipbmap = ipbmap;
236 JFS_SBI(ipbmap->i_sb)->bmap = bmp;
237
238 memset(bmp->db_active, 0, sizeof(bmp->db_active));
239
240 /*
241 * allocate/initialize the bmap lock
242 */
243 BMAP_LOCK_INIT(bmp);
244
245 return (0);
246
247 err_release_metapage:
248 release_metapage(mp);
249 err_kfree_bmp:
250 kfree(bmp);
251 return err;
252 }
253
254
255 /*
256 * NAME: dbUnmount()
257 *
258 * FUNCTION: terminate the block allocation map in preparation for
259 * file system unmount.
260 *
261 * the in-core bmap descriptor is written to disk and
262 * the memory for this descriptor is freed.
263 *
264 * PARAMETERS:
265 * ipbmap - pointer to in-core inode for the block map.
266 *
267 * RETURN VALUES:
268 * 0 - success
269 * -EIO - i/o error
270 */
dbUnmount(struct inode * ipbmap,int mounterror)271 int dbUnmount(struct inode *ipbmap, int mounterror)
272 {
273 struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
274
275 if (!(mounterror || isReadOnly(ipbmap)))
276 dbSync(ipbmap);
277
278 /*
279 * Invalidate the page cache buffers
280 */
281 truncate_inode_pages(ipbmap->i_mapping, 0);
282
283 /* free the memory for the in-memory bmap. */
284 kfree(bmp);
285 JFS_SBI(ipbmap->i_sb)->bmap = NULL;
286
287 return (0);
288 }
289
290 /*
291 * dbSync()
292 */
dbSync(struct inode * ipbmap)293 int dbSync(struct inode *ipbmap)
294 {
295 struct dbmap_disk *dbmp_le;
296 struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
297 struct metapage *mp;
298 int i;
299
300 /*
301 * write bmap global control page
302 */
303 /* get the buffer for the on-disk bmap descriptor. */
304 mp = read_metapage(ipbmap,
305 BMAPBLKNO << JFS_SBI(ipbmap->i_sb)->l2nbperpage,
306 PSIZE, 0);
307 if (mp == NULL) {
308 jfs_err("dbSync: read_metapage failed!");
309 return -EIO;
310 }
311 /* copy the in-memory version of the bmap to the on-disk version */
312 dbmp_le = (struct dbmap_disk *) mp->data;
313 dbmp_le->dn_mapsize = cpu_to_le64(bmp->db_mapsize);
314 dbmp_le->dn_nfree = cpu_to_le64(bmp->db_nfree);
315 dbmp_le->dn_l2nbperpage = cpu_to_le32(bmp->db_l2nbperpage);
316 dbmp_le->dn_numag = cpu_to_le32(bmp->db_numag);
317 dbmp_le->dn_maxlevel = cpu_to_le32(bmp->db_maxlevel);
318 dbmp_le->dn_maxag = cpu_to_le32(bmp->db_maxag);
319 dbmp_le->dn_agpref = cpu_to_le32(bmp->db_agpref);
320 dbmp_le->dn_aglevel = cpu_to_le32(bmp->db_aglevel);
321 dbmp_le->dn_agheight = cpu_to_le32(bmp->db_agheight);
322 dbmp_le->dn_agwidth = cpu_to_le32(bmp->db_agwidth);
323 dbmp_le->dn_agstart = cpu_to_le32(bmp->db_agstart);
324 dbmp_le->dn_agl2size = cpu_to_le32(bmp->db_agl2size);
325 for (i = 0; i < MAXAG; i++)
326 dbmp_le->dn_agfree[i] = cpu_to_le64(bmp->db_agfree[i]);
327 dbmp_le->dn_agsize = cpu_to_le64(bmp->db_agsize);
328 dbmp_le->dn_maxfreebud = bmp->db_maxfreebud;
329
330 /* write the buffer */
331 write_metapage(mp);
332
333 /*
334 * write out dirty pages of bmap
335 */
336 filemap_write_and_wait(ipbmap->i_mapping);
337
338 diWriteSpecial(ipbmap, 0);
339
340 return (0);
341 }
342
343 /*
344 * NAME: dbFree()
345 *
346 * FUNCTION: free the specified block range from the working block
347 * allocation map.
348 *
349 * the blocks will be free from the working map one dmap
350 * at a time.
351 *
352 * PARAMETERS:
353 * ip - pointer to in-core inode;
354 * blkno - starting block number to be freed.
355 * nblocks - number of blocks to be freed.
356 *
357 * RETURN VALUES:
358 * 0 - success
359 * -EIO - i/o error
360 */
dbFree(struct inode * ip,s64 blkno,s64 nblocks)361 int dbFree(struct inode *ip, s64 blkno, s64 nblocks)
362 {
363 struct metapage *mp;
364 struct dmap *dp;
365 int nb, rc;
366 s64 lblkno, rem;
367 struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
368 struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
369 struct super_block *sb = ipbmap->i_sb;
370
371 IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
372
373 /* block to be freed better be within the mapsize. */
374 if (unlikely((blkno == 0) || (blkno + nblocks > bmp->db_mapsize))) {
375 IREAD_UNLOCK(ipbmap);
376 printk(KERN_ERR "blkno = %Lx, nblocks = %Lx\n",
377 (unsigned long long) blkno,
378 (unsigned long long) nblocks);
379 jfs_error(ip->i_sb, "block to be freed is outside the map\n");
380 return -EIO;
381 }
382
383 /**
384 * TRIM the blocks, when mounted with discard option
385 */
386 if (JFS_SBI(sb)->flag & JFS_DISCARD)
387 if (JFS_SBI(sb)->minblks_trim <= nblocks)
388 jfs_issue_discard(ipbmap, blkno, nblocks);
389
390 /*
391 * free the blocks a dmap at a time.
392 */
393 mp = NULL;
394 for (rem = nblocks; rem > 0; rem -= nb, blkno += nb) {
395 /* release previous dmap if any */
396 if (mp) {
397 write_metapage(mp);
398 }
399
400 /* get the buffer for the current dmap. */
401 lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
402 mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
403 if (mp == NULL) {
404 IREAD_UNLOCK(ipbmap);
405 return -EIO;
406 }
407 dp = (struct dmap *) mp->data;
408
409 /* determine the number of blocks to be freed from
410 * this dmap.
411 */
412 nb = min(rem, BPERDMAP - (blkno & (BPERDMAP - 1)));
413
414 /* free the blocks. */
415 if ((rc = dbFreeDmap(bmp, dp, blkno, nb))) {
416 jfs_error(ip->i_sb, "error in block map\n");
417 release_metapage(mp);
418 IREAD_UNLOCK(ipbmap);
419 return (rc);
420 }
421 }
422
423 /* write the last buffer. */
424 if (mp)
425 write_metapage(mp);
426
427 IREAD_UNLOCK(ipbmap);
428
429 return (0);
430 }
431
432
433 /*
434 * NAME: dbUpdatePMap()
435 *
436 * FUNCTION: update the allocation state (free or allocate) of the
437 * specified block range in the persistent block allocation map.
438 *
439 * the blocks will be updated in the persistent map one
440 * dmap at a time.
441 *
442 * PARAMETERS:
443 * ipbmap - pointer to in-core inode for the block map.
444 * free - 'true' if block range is to be freed from the persistent
445 * map; 'false' if it is to be allocated.
446 * blkno - starting block number of the range.
447 * nblocks - number of contiguous blocks in the range.
448 * tblk - transaction block;
449 *
450 * RETURN VALUES:
451 * 0 - success
452 * -EIO - i/o error
453 */
454 int
dbUpdatePMap(struct inode * ipbmap,int free,s64 blkno,s64 nblocks,struct tblock * tblk)455 dbUpdatePMap(struct inode *ipbmap,
456 int free, s64 blkno, s64 nblocks, struct tblock * tblk)
457 {
458 int nblks, dbitno, wbitno, rbits;
459 int word, nbits, nwords;
460 struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
461 s64 lblkno, rem, lastlblkno;
462 u32 mask;
463 struct dmap *dp;
464 struct metapage *mp;
465 struct jfs_log *log;
466 int lsn, difft, diffp;
467 unsigned long flags;
468
469 /* the blocks better be within the mapsize. */
470 if (blkno + nblocks > bmp->db_mapsize) {
471 printk(KERN_ERR "blkno = %Lx, nblocks = %Lx\n",
472 (unsigned long long) blkno,
473 (unsigned long long) nblocks);
474 jfs_error(ipbmap->i_sb, "blocks are outside the map\n");
475 return -EIO;
476 }
477
478 /* compute delta of transaction lsn from log syncpt */
479 lsn = tblk->lsn;
480 log = (struct jfs_log *) JFS_SBI(tblk->sb)->log;
481 logdiff(difft, lsn, log);
482
483 /*
484 * update the block state a dmap at a time.
485 */
486 mp = NULL;
487 lastlblkno = 0;
488 for (rem = nblocks; rem > 0; rem -= nblks, blkno += nblks) {
489 /* get the buffer for the current dmap. */
490 lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
491 if (lblkno != lastlblkno) {
492 if (mp) {
493 write_metapage(mp);
494 }
495
496 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE,
497 0);
498 if (mp == NULL)
499 return -EIO;
500 metapage_wait_for_io(mp);
501 }
502 dp = (struct dmap *) mp->data;
503
504 /* determine the bit number and word within the dmap of
505 * the starting block. also determine how many blocks
506 * are to be updated within this dmap.
507 */
508 dbitno = blkno & (BPERDMAP - 1);
509 word = dbitno >> L2DBWORD;
510 nblks = min(rem, (s64)BPERDMAP - dbitno);
511
512 /* update the bits of the dmap words. the first and last
513 * words may only have a subset of their bits updated. if
514 * this is the case, we'll work against that word (i.e.
515 * partial first and/or last) only in a single pass. a
516 * single pass will also be used to update all words that
517 * are to have all their bits updated.
518 */
519 for (rbits = nblks; rbits > 0;
520 rbits -= nbits, dbitno += nbits) {
521 /* determine the bit number within the word and
522 * the number of bits within the word.
523 */
524 wbitno = dbitno & (DBWORD - 1);
525 nbits = min(rbits, DBWORD - wbitno);
526
527 /* check if only part of the word is to be updated. */
528 if (nbits < DBWORD) {
529 /* update (free or allocate) the bits
530 * in this word.
531 */
532 mask =
533 (ONES << (DBWORD - nbits) >> wbitno);
534 if (free)
535 dp->pmap[word] &=
536 cpu_to_le32(~mask);
537 else
538 dp->pmap[word] |=
539 cpu_to_le32(mask);
540
541 word += 1;
542 } else {
543 /* one or more words are to have all
544 * their bits updated. determine how
545 * many words and how many bits.
546 */
547 nwords = rbits >> L2DBWORD;
548 nbits = nwords << L2DBWORD;
549
550 /* update (free or allocate) the bits
551 * in these words.
552 */
553 if (free)
554 memset(&dp->pmap[word], 0,
555 nwords * 4);
556 else
557 memset(&dp->pmap[word], (int) ONES,
558 nwords * 4);
559
560 word += nwords;
561 }
562 }
563
564 /*
565 * update dmap lsn
566 */
567 if (lblkno == lastlblkno)
568 continue;
569
570 lastlblkno = lblkno;
571
572 LOGSYNC_LOCK(log, flags);
573 if (mp->lsn != 0) {
574 /* inherit older/smaller lsn */
575 logdiff(diffp, mp->lsn, log);
576 if (difft < diffp) {
577 mp->lsn = lsn;
578
579 /* move bp after tblock in logsync list */
580 list_move(&mp->synclist, &tblk->synclist);
581 }
582
583 /* inherit younger/larger clsn */
584 logdiff(difft, tblk->clsn, log);
585 logdiff(diffp, mp->clsn, log);
586 if (difft > diffp)
587 mp->clsn = tblk->clsn;
588 } else {
589 mp->log = log;
590 mp->lsn = lsn;
591
592 /* insert bp after tblock in logsync list */
593 log->count++;
594 list_add(&mp->synclist, &tblk->synclist);
595
596 mp->clsn = tblk->clsn;
597 }
598 LOGSYNC_UNLOCK(log, flags);
599 }
600
601 /* write the last buffer. */
602 if (mp) {
603 write_metapage(mp);
604 }
605
606 return (0);
607 }
608
609
610 /*
611 * NAME: dbNextAG()
612 *
613 * FUNCTION: find the preferred allocation group for new allocations.
614 *
615 * Within the allocation groups, we maintain a preferred
616 * allocation group which consists of a group with at least
617 * average free space. It is the preferred group that we target
618 * new inode allocation towards. The tie-in between inode
619 * allocation and block allocation occurs as we allocate the
620 * first (data) block of an inode and specify the inode (block)
621 * as the allocation hint for this block.
622 *
623 * We try to avoid having more than one open file growing in
624 * an allocation group, as this will lead to fragmentation.
625 * This differs from the old OS/2 method of trying to keep
626 * empty ags around for large allocations.
627 *
628 * PARAMETERS:
629 * ipbmap - pointer to in-core inode for the block map.
630 *
631 * RETURN VALUES:
632 * the preferred allocation group number.
633 */
dbNextAG(struct inode * ipbmap)634 int dbNextAG(struct inode *ipbmap)
635 {
636 s64 avgfree;
637 int agpref;
638 s64 hwm = 0;
639 int i;
640 int next_best = -1;
641 struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
642
643 BMAP_LOCK(bmp);
644
645 /* determine the average number of free blocks within the ags. */
646 avgfree = (u32)bmp->db_nfree / bmp->db_numag;
647
648 /*
649 * if the current preferred ag does not have an active allocator
650 * and has at least average freespace, return it
651 */
652 agpref = bmp->db_agpref;
653 if ((atomic_read(&bmp->db_active[agpref]) == 0) &&
654 (bmp->db_agfree[agpref] >= avgfree))
655 goto unlock;
656
657 /* From the last preferred ag, find the next one with at least
658 * average free space.
659 */
660 for (i = 0 ; i < bmp->db_numag; i++, agpref++) {
661 if (agpref == bmp->db_numag)
662 agpref = 0;
663
664 if (atomic_read(&bmp->db_active[agpref]))
665 /* open file is currently growing in this ag */
666 continue;
667 if (bmp->db_agfree[agpref] >= avgfree) {
668 /* Return this one */
669 bmp->db_agpref = agpref;
670 goto unlock;
671 } else if (bmp->db_agfree[agpref] > hwm) {
672 /* Less than avg. freespace, but best so far */
673 hwm = bmp->db_agfree[agpref];
674 next_best = agpref;
675 }
676 }
677
678 /*
679 * If no inactive ag was found with average freespace, use the
680 * next best
681 */
682 if (next_best != -1)
683 bmp->db_agpref = next_best;
684 /* else leave db_agpref unchanged */
685 unlock:
686 BMAP_UNLOCK(bmp);
687
688 /* return the preferred group.
689 */
690 return (bmp->db_agpref);
691 }
692
693 /*
694 * NAME: dbAlloc()
695 *
696 * FUNCTION: attempt to allocate a specified number of contiguous free
697 * blocks from the working allocation block map.
698 *
699 * the block allocation policy uses hints and a multi-step
700 * approach.
701 *
702 * for allocation requests smaller than the number of blocks
703 * per dmap, we first try to allocate the new blocks
704 * immediately following the hint. if these blocks are not
705 * available, we try to allocate blocks near the hint. if
706 * no blocks near the hint are available, we next try to
707 * allocate within the same dmap as contains the hint.
708 *
709 * if no blocks are available in the dmap or the allocation
710 * request is larger than the dmap size, we try to allocate
711 * within the same allocation group as contains the hint. if
712 * this does not succeed, we finally try to allocate anywhere
713 * within the aggregate.
714 *
715 * we also try to allocate anywhere within the aggregate for
716 * for allocation requests larger than the allocation group
717 * size or requests that specify no hint value.
718 *
719 * PARAMETERS:
720 * ip - pointer to in-core inode;
721 * hint - allocation hint.
722 * nblocks - number of contiguous blocks in the range.
723 * results - on successful return, set to the starting block number
724 * of the newly allocated contiguous range.
725 *
726 * RETURN VALUES:
727 * 0 - success
728 * -ENOSPC - insufficient disk resources
729 * -EIO - i/o error
730 */
dbAlloc(struct inode * ip,s64 hint,s64 nblocks,s64 * results)731 int dbAlloc(struct inode *ip, s64 hint, s64 nblocks, s64 * results)
732 {
733 int rc, agno;
734 struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
735 struct bmap *bmp;
736 struct metapage *mp;
737 s64 lblkno, blkno;
738 struct dmap *dp;
739 int l2nb;
740 s64 mapSize;
741 int writers;
742
743 /* assert that nblocks is valid */
744 assert(nblocks > 0);
745
746 /* get the log2 number of blocks to be allocated.
747 * if the number of blocks is not a log2 multiple,
748 * it will be rounded up to the next log2 multiple.
749 */
750 l2nb = BLKSTOL2(nblocks);
751
752 bmp = JFS_SBI(ip->i_sb)->bmap;
753
754 mapSize = bmp->db_mapsize;
755
756 /* the hint should be within the map */
757 if (hint >= mapSize) {
758 jfs_error(ip->i_sb, "the hint is outside the map\n");
759 return -EIO;
760 }
761
762 /* if the number of blocks to be allocated is greater than the
763 * allocation group size, try to allocate anywhere.
764 */
765 if (l2nb > bmp->db_agl2size) {
766 IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
767
768 rc = dbAllocAny(bmp, nblocks, l2nb, results);
769
770 goto write_unlock;
771 }
772
773 /*
774 * If no hint, let dbNextAG recommend an allocation group
775 */
776 if (hint == 0)
777 goto pref_ag;
778
779 /* we would like to allocate close to the hint. adjust the
780 * hint to the block following the hint since the allocators
781 * will start looking for free space starting at this point.
782 */
783 blkno = hint + 1;
784
785 if (blkno >= bmp->db_mapsize)
786 goto pref_ag;
787
788 agno = blkno >> bmp->db_agl2size;
789
790 /* check if blkno crosses over into a new allocation group.
791 * if so, check if we should allow allocations within this
792 * allocation group.
793 */
794 if ((blkno & (bmp->db_agsize - 1)) == 0)
795 /* check if the AG is currently being written to.
796 * if so, call dbNextAG() to find a non-busy
797 * AG with sufficient free space.
798 */
799 if (atomic_read(&bmp->db_active[agno]))
800 goto pref_ag;
801
802 /* check if the allocation request size can be satisfied from a
803 * single dmap. if so, try to allocate from the dmap containing
804 * the hint using a tiered strategy.
805 */
806 if (nblocks <= BPERDMAP) {
807 IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
808
809 /* get the buffer for the dmap containing the hint.
810 */
811 rc = -EIO;
812 lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
813 mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
814 if (mp == NULL)
815 goto read_unlock;
816
817 dp = (struct dmap *) mp->data;
818
819 /* first, try to satisfy the allocation request with the
820 * blocks beginning at the hint.
821 */
822 if ((rc = dbAllocNext(bmp, dp, blkno, (int) nblocks))
823 != -ENOSPC) {
824 if (rc == 0) {
825 *results = blkno;
826 mark_metapage_dirty(mp);
827 }
828
829 release_metapage(mp);
830 goto read_unlock;
831 }
832
833 writers = atomic_read(&bmp->db_active[agno]);
834 if ((writers > 1) ||
835 ((writers == 1) && (JFS_IP(ip)->active_ag != agno))) {
836 /*
837 * Someone else is writing in this allocation
838 * group. To avoid fragmenting, try another ag
839 */
840 release_metapage(mp);
841 IREAD_UNLOCK(ipbmap);
842 goto pref_ag;
843 }
844
845 /* next, try to satisfy the allocation request with blocks
846 * near the hint.
847 */
848 if ((rc =
849 dbAllocNear(bmp, dp, blkno, (int) nblocks, l2nb, results))
850 != -ENOSPC) {
851 if (rc == 0)
852 mark_metapage_dirty(mp);
853
854 release_metapage(mp);
855 goto read_unlock;
856 }
857
858 /* try to satisfy the allocation request with blocks within
859 * the same dmap as the hint.
860 */
861 if ((rc = dbAllocDmapLev(bmp, dp, (int) nblocks, l2nb, results))
862 != -ENOSPC) {
863 if (rc == 0)
864 mark_metapage_dirty(mp);
865
866 release_metapage(mp);
867 goto read_unlock;
868 }
869
870 release_metapage(mp);
871 IREAD_UNLOCK(ipbmap);
872 }
873
874 /* try to satisfy the allocation request with blocks within
875 * the same allocation group as the hint.
876 */
877 IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
878 if ((rc = dbAllocAG(bmp, agno, nblocks, l2nb, results)) != -ENOSPC)
879 goto write_unlock;
880
881 IWRITE_UNLOCK(ipbmap);
882
883
884 pref_ag:
885 /*
886 * Let dbNextAG recommend a preferred allocation group
887 */
888 agno = dbNextAG(ipbmap);
889 IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
890
891 /* Try to allocate within this allocation group. if that fails, try to
892 * allocate anywhere in the map.
893 */
894 if ((rc = dbAllocAG(bmp, agno, nblocks, l2nb, results)) == -ENOSPC)
895 rc = dbAllocAny(bmp, nblocks, l2nb, results);
896
897 write_unlock:
898 IWRITE_UNLOCK(ipbmap);
899
900 return (rc);
901
902 read_unlock:
903 IREAD_UNLOCK(ipbmap);
904
905 return (rc);
906 }
907
908 #ifdef _NOTYET
909 /*
910 * NAME: dbAllocExact()
911 *
912 * FUNCTION: try to allocate the requested extent;
913 *
914 * PARAMETERS:
915 * ip - pointer to in-core inode;
916 * blkno - extent address;
917 * nblocks - extent length;
918 *
919 * RETURN VALUES:
920 * 0 - success
921 * -ENOSPC - insufficient disk resources
922 * -EIO - i/o error
923 */
dbAllocExact(struct inode * ip,s64 blkno,int nblocks)924 int dbAllocExact(struct inode *ip, s64 blkno, int nblocks)
925 {
926 int rc;
927 struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
928 struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
929 struct dmap *dp;
930 s64 lblkno;
931 struct metapage *mp;
932
933 IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
934
935 /*
936 * validate extent request:
937 *
938 * note: defragfs policy:
939 * max 64 blocks will be moved.
940 * allocation request size must be satisfied from a single dmap.
941 */
942 if (nblocks <= 0 || nblocks > BPERDMAP || blkno >= bmp->db_mapsize) {
943 IREAD_UNLOCK(ipbmap);
944 return -EINVAL;
945 }
946
947 if (nblocks > ((s64) 1 << bmp->db_maxfreebud)) {
948 /* the free space is no longer available */
949 IREAD_UNLOCK(ipbmap);
950 return -ENOSPC;
951 }
952
953 /* read in the dmap covering the extent */
954 lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
955 mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
956 if (mp == NULL) {
957 IREAD_UNLOCK(ipbmap);
958 return -EIO;
959 }
960 dp = (struct dmap *) mp->data;
961
962 /* try to allocate the requested extent */
963 rc = dbAllocNext(bmp, dp, blkno, nblocks);
964
965 IREAD_UNLOCK(ipbmap);
966
967 if (rc == 0)
968 mark_metapage_dirty(mp);
969
970 release_metapage(mp);
971
972 return (rc);
973 }
974 #endif /* _NOTYET */
975
976 /*
977 * NAME: dbReAlloc()
978 *
979 * FUNCTION: attempt to extend a current allocation by a specified
980 * number of blocks.
981 *
982 * this routine attempts to satisfy the allocation request
983 * by first trying to extend the existing allocation in
984 * place by allocating the additional blocks as the blocks
985 * immediately following the current allocation. if these
986 * blocks are not available, this routine will attempt to
987 * allocate a new set of contiguous blocks large enough
988 * to cover the existing allocation plus the additional
989 * number of blocks required.
990 *
991 * PARAMETERS:
992 * ip - pointer to in-core inode requiring allocation.
993 * blkno - starting block of the current allocation.
994 * nblocks - number of contiguous blocks within the current
995 * allocation.
996 * addnblocks - number of blocks to add to the allocation.
997 * results - on successful return, set to the starting block number
998 * of the existing allocation if the existing allocation
999 * was extended in place or to a newly allocated contiguous
1000 * range if the existing allocation could not be extended
1001 * in place.
1002 *
1003 * RETURN VALUES:
1004 * 0 - success
1005 * -ENOSPC - insufficient disk resources
1006 * -EIO - i/o error
1007 */
1008 int
dbReAlloc(struct inode * ip,s64 blkno,s64 nblocks,s64 addnblocks,s64 * results)1009 dbReAlloc(struct inode *ip,
1010 s64 blkno, s64 nblocks, s64 addnblocks, s64 * results)
1011 {
1012 int rc;
1013
1014 /* try to extend the allocation in place.
1015 */
1016 if ((rc = dbExtend(ip, blkno, nblocks, addnblocks)) == 0) {
1017 *results = blkno;
1018 return (0);
1019 } else {
1020 if (rc != -ENOSPC)
1021 return (rc);
1022 }
1023
1024 /* could not extend the allocation in place, so allocate a
1025 * new set of blocks for the entire request (i.e. try to get
1026 * a range of contiguous blocks large enough to cover the
1027 * existing allocation plus the additional blocks.)
1028 */
1029 return (dbAlloc
1030 (ip, blkno + nblocks - 1, addnblocks + nblocks, results));
1031 }
1032
1033
1034 /*
1035 * NAME: dbExtend()
1036 *
1037 * FUNCTION: attempt to extend a current allocation by a specified
1038 * number of blocks.
1039 *
1040 * this routine attempts to satisfy the allocation request
1041 * by first trying to extend the existing allocation in
1042 * place by allocating the additional blocks as the blocks
1043 * immediately following the current allocation.
1044 *
1045 * PARAMETERS:
1046 * ip - pointer to in-core inode requiring allocation.
1047 * blkno - starting block of the current allocation.
1048 * nblocks - number of contiguous blocks within the current
1049 * allocation.
1050 * addnblocks - number of blocks to add to the allocation.
1051 *
1052 * RETURN VALUES:
1053 * 0 - success
1054 * -ENOSPC - insufficient disk resources
1055 * -EIO - i/o error
1056 */
dbExtend(struct inode * ip,s64 blkno,s64 nblocks,s64 addnblocks)1057 static int dbExtend(struct inode *ip, s64 blkno, s64 nblocks, s64 addnblocks)
1058 {
1059 struct jfs_sb_info *sbi = JFS_SBI(ip->i_sb);
1060 s64 lblkno, lastblkno, extblkno;
1061 uint rel_block;
1062 struct metapage *mp;
1063 struct dmap *dp;
1064 int rc;
1065 struct inode *ipbmap = sbi->ipbmap;
1066 struct bmap *bmp;
1067
1068 /*
1069 * We don't want a non-aligned extent to cross a page boundary
1070 */
1071 if (((rel_block = blkno & (sbi->nbperpage - 1))) &&
1072 (rel_block + nblocks + addnblocks > sbi->nbperpage))
1073 return -ENOSPC;
1074
1075 /* get the last block of the current allocation */
1076 lastblkno = blkno + nblocks - 1;
1077
1078 /* determine the block number of the block following
1079 * the existing allocation.
1080 */
1081 extblkno = lastblkno + 1;
1082
1083 IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
1084
1085 /* better be within the file system */
1086 bmp = sbi->bmap;
1087 if (lastblkno < 0 || lastblkno >= bmp->db_mapsize) {
1088 IREAD_UNLOCK(ipbmap);
1089 jfs_error(ip->i_sb, "the block is outside the filesystem\n");
1090 return -EIO;
1091 }
1092
1093 /* we'll attempt to extend the current allocation in place by
1094 * allocating the additional blocks as the blocks immediately
1095 * following the current allocation. we only try to extend the
1096 * current allocation in place if the number of additional blocks
1097 * can fit into a dmap, the last block of the current allocation
1098 * is not the last block of the file system, and the start of the
1099 * inplace extension is not on an allocation group boundary.
1100 */
1101 if (addnblocks > BPERDMAP || extblkno >= bmp->db_mapsize ||
1102 (extblkno & (bmp->db_agsize - 1)) == 0) {
1103 IREAD_UNLOCK(ipbmap);
1104 return -ENOSPC;
1105 }
1106
1107 /* get the buffer for the dmap containing the first block
1108 * of the extension.
1109 */
1110 lblkno = BLKTODMAP(extblkno, bmp->db_l2nbperpage);
1111 mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
1112 if (mp == NULL) {
1113 IREAD_UNLOCK(ipbmap);
1114 return -EIO;
1115 }
1116
1117 dp = (struct dmap *) mp->data;
1118
1119 /* try to allocate the blocks immediately following the
1120 * current allocation.
1121 */
1122 rc = dbAllocNext(bmp, dp, extblkno, (int) addnblocks);
1123
1124 IREAD_UNLOCK(ipbmap);
1125
1126 /* were we successful ? */
1127 if (rc == 0)
1128 write_metapage(mp);
1129 else
1130 /* we were not successful */
1131 release_metapage(mp);
1132
1133 return (rc);
1134 }
1135
1136
1137 /*
1138 * NAME: dbAllocNext()
1139 *
1140 * FUNCTION: attempt to allocate the blocks of the specified block
1141 * range within a dmap.
1142 *
1143 * PARAMETERS:
1144 * bmp - pointer to bmap descriptor
1145 * dp - pointer to dmap.
1146 * blkno - starting block number of the range.
1147 * nblocks - number of contiguous free blocks of the range.
1148 *
1149 * RETURN VALUES:
1150 * 0 - success
1151 * -ENOSPC - insufficient disk resources
1152 * -EIO - i/o error
1153 *
1154 * serialization: IREAD_LOCK(ipbmap) held on entry/exit;
1155 */
dbAllocNext(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks)1156 static int dbAllocNext(struct bmap * bmp, struct dmap * dp, s64 blkno,
1157 int nblocks)
1158 {
1159 int dbitno, word, rembits, nb, nwords, wbitno, nw;
1160 int l2size;
1161 s8 *leaf;
1162 u32 mask;
1163
1164 if (dp->tree.leafidx != cpu_to_le32(LEAFIND)) {
1165 jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmap page\n");
1166 return -EIO;
1167 }
1168
1169 /* pick up a pointer to the leaves of the dmap tree.
1170 */
1171 leaf = dp->tree.stree + le32_to_cpu(dp->tree.leafidx);
1172
1173 /* determine the bit number and word within the dmap of the
1174 * starting block.
1175 */
1176 dbitno = blkno & (BPERDMAP - 1);
1177 word = dbitno >> L2DBWORD;
1178
1179 /* check if the specified block range is contained within
1180 * this dmap.
1181 */
1182 if (dbitno + nblocks > BPERDMAP)
1183 return -ENOSPC;
1184
1185 /* check if the starting leaf indicates that anything
1186 * is free.
1187 */
1188 if (leaf[word] == NOFREE)
1189 return -ENOSPC;
1190
1191 /* check the dmaps words corresponding to block range to see
1192 * if the block range is free. not all bits of the first and
1193 * last words may be contained within the block range. if this
1194 * is the case, we'll work against those words (i.e. partial first
1195 * and/or last) on an individual basis (a single pass) and examine
1196 * the actual bits to determine if they are free. a single pass
1197 * will be used for all dmap words fully contained within the
1198 * specified range. within this pass, the leaves of the dmap
1199 * tree will be examined to determine if the blocks are free. a
1200 * single leaf may describe the free space of multiple dmap
1201 * words, so we may visit only a subset of the actual leaves
1202 * corresponding to the dmap words of the block range.
1203 */
1204 for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
1205 /* determine the bit number within the word and
1206 * the number of bits within the word.
1207 */
1208 wbitno = dbitno & (DBWORD - 1);
1209 nb = min(rembits, DBWORD - wbitno);
1210
1211 /* check if only part of the word is to be examined.
1212 */
1213 if (nb < DBWORD) {
1214 /* check if the bits are free.
1215 */
1216 mask = (ONES << (DBWORD - nb) >> wbitno);
1217 if ((mask & ~le32_to_cpu(dp->wmap[word])) != mask)
1218 return -ENOSPC;
1219
1220 word += 1;
1221 } else {
1222 /* one or more dmap words are fully contained
1223 * within the block range. determine how many
1224 * words and how many bits.
1225 */
1226 nwords = rembits >> L2DBWORD;
1227 nb = nwords << L2DBWORD;
1228
1229 /* now examine the appropriate leaves to determine
1230 * if the blocks are free.
1231 */
1232 while (nwords > 0) {
1233 /* does the leaf describe any free space ?
1234 */
1235 if (leaf[word] < BUDMIN)
1236 return -ENOSPC;
1237
1238 /* determine the l2 number of bits provided
1239 * by this leaf.
1240 */
1241 l2size =
1242 min_t(int, leaf[word], NLSTOL2BSZ(nwords));
1243
1244 /* determine how many words were handled.
1245 */
1246 nw = BUDSIZE(l2size, BUDMIN);
1247
1248 nwords -= nw;
1249 word += nw;
1250 }
1251 }
1252 }
1253
1254 /* allocate the blocks.
1255 */
1256 return (dbAllocDmap(bmp, dp, blkno, nblocks));
1257 }
1258
1259
1260 /*
1261 * NAME: dbAllocNear()
1262 *
1263 * FUNCTION: attempt to allocate a number of contiguous free blocks near
1264 * a specified block (hint) within a dmap.
1265 *
1266 * starting with the dmap leaf that covers the hint, we'll
1267 * check the next four contiguous leaves for sufficient free
1268 * space. if sufficient free space is found, we'll allocate
1269 * the desired free space.
1270 *
1271 * PARAMETERS:
1272 * bmp - pointer to bmap descriptor
1273 * dp - pointer to dmap.
1274 * blkno - block number to allocate near.
1275 * nblocks - actual number of contiguous free blocks desired.
1276 * l2nb - log2 number of contiguous free blocks desired.
1277 * results - on successful return, set to the starting block number
1278 * of the newly allocated range.
1279 *
1280 * RETURN VALUES:
1281 * 0 - success
1282 * -ENOSPC - insufficient disk resources
1283 * -EIO - i/o error
1284 *
1285 * serialization: IREAD_LOCK(ipbmap) held on entry/exit;
1286 */
1287 static int
dbAllocNear(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks,int l2nb,s64 * results)1288 dbAllocNear(struct bmap * bmp,
1289 struct dmap * dp, s64 blkno, int nblocks, int l2nb, s64 * results)
1290 {
1291 int word, lword, rc;
1292 s8 *leaf;
1293
1294 if (dp->tree.leafidx != cpu_to_le32(LEAFIND)) {
1295 jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmap page\n");
1296 return -EIO;
1297 }
1298
1299 leaf = dp->tree.stree + le32_to_cpu(dp->tree.leafidx);
1300
1301 /* determine the word within the dmap that holds the hint
1302 * (i.e. blkno). also, determine the last word in the dmap
1303 * that we'll include in our examination.
1304 */
1305 word = (blkno & (BPERDMAP - 1)) >> L2DBWORD;
1306 lword = min(word + 4, LPERDMAP);
1307
1308 /* examine the leaves for sufficient free space.
1309 */
1310 for (; word < lword; word++) {
1311 /* does the leaf describe sufficient free space ?
1312 */
1313 if (leaf[word] < l2nb)
1314 continue;
1315
1316 /* determine the block number within the file system
1317 * of the first block described by this dmap word.
1318 */
1319 blkno = le64_to_cpu(dp->start) + (word << L2DBWORD);
1320
1321 /* if not all bits of the dmap word are free, get the
1322 * starting bit number within the dmap word of the required
1323 * string of free bits and adjust the block number with the
1324 * value.
1325 */
1326 if (leaf[word] < BUDMIN)
1327 blkno +=
1328 dbFindBits(le32_to_cpu(dp->wmap[word]), l2nb);
1329
1330 /* allocate the blocks.
1331 */
1332 if ((rc = dbAllocDmap(bmp, dp, blkno, nblocks)) == 0)
1333 *results = blkno;
1334
1335 return (rc);
1336 }
1337
1338 return -ENOSPC;
1339 }
1340
1341
1342 /*
1343 * NAME: dbAllocAG()
1344 *
1345 * FUNCTION: attempt to allocate the specified number of contiguous
1346 * free blocks within the specified allocation group.
1347 *
1348 * unless the allocation group size is equal to the number
1349 * of blocks per dmap, the dmap control pages will be used to
1350 * find the required free space, if available. we start the
1351 * search at the highest dmap control page level which
1352 * distinctly describes the allocation group's free space
1353 * (i.e. the highest level at which the allocation group's
1354 * free space is not mixed in with that of any other group).
1355 * in addition, we start the search within this level at a
1356 * height of the dmapctl dmtree at which the nodes distinctly
1357 * describe the allocation group's free space. at this height,
1358 * the allocation group's free space may be represented by 1
1359 * or two sub-trees, depending on the allocation group size.
1360 * we search the top nodes of these subtrees left to right for
1361 * sufficient free space. if sufficient free space is found,
1362 * the subtree is searched to find the leftmost leaf that
1363 * has free space. once we have made it to the leaf, we
1364 * move the search to the next lower level dmap control page
1365 * corresponding to this leaf. we continue down the dmap control
1366 * pages until we find the dmap that contains or starts the
1367 * sufficient free space and we allocate at this dmap.
1368 *
1369 * if the allocation group size is equal to the dmap size,
1370 * we'll start at the dmap corresponding to the allocation
1371 * group and attempt the allocation at this level.
1372 *
1373 * the dmap control page search is also not performed if the
1374 * allocation group is completely free and we go to the first
1375 * dmap of the allocation group to do the allocation. this is
1376 * done because the allocation group may be part (not the first
1377 * part) of a larger binary buddy system, causing the dmap
1378 * control pages to indicate no free space (NOFREE) within
1379 * the allocation group.
1380 *
1381 * PARAMETERS:
1382 * bmp - pointer to bmap descriptor
1383 * agno - allocation group number.
1384 * nblocks - actual number of contiguous free blocks desired.
1385 * l2nb - log2 number of contiguous free blocks desired.
1386 * results - on successful return, set to the starting block number
1387 * of the newly allocated range.
1388 *
1389 * RETURN VALUES:
1390 * 0 - success
1391 * -ENOSPC - insufficient disk resources
1392 * -EIO - i/o error
1393 *
1394 * note: IWRITE_LOCK(ipmap) held on entry/exit;
1395 */
1396 static int
dbAllocAG(struct bmap * bmp,int agno,s64 nblocks,int l2nb,s64 * results)1397 dbAllocAG(struct bmap * bmp, int agno, s64 nblocks, int l2nb, s64 * results)
1398 {
1399 struct metapage *mp;
1400 struct dmapctl *dcp;
1401 int rc, ti, i, k, m, n, agperlev;
1402 s64 blkno, lblkno;
1403 int budmin;
1404
1405 /* allocation request should not be for more than the
1406 * allocation group size.
1407 */
1408 if (l2nb > bmp->db_agl2size) {
1409 jfs_error(bmp->db_ipbmap->i_sb,
1410 "allocation request is larger than the allocation group size\n");
1411 return -EIO;
1412 }
1413
1414 /* determine the starting block number of the allocation
1415 * group.
1416 */
1417 blkno = (s64) agno << bmp->db_agl2size;
1418
1419 /* check if the allocation group size is the minimum allocation
1420 * group size or if the allocation group is completely free. if
1421 * the allocation group size is the minimum size of BPERDMAP (i.e.
1422 * 1 dmap), there is no need to search the dmap control page (below)
1423 * that fully describes the allocation group since the allocation
1424 * group is already fully described by a dmap. in this case, we
1425 * just call dbAllocCtl() to search the dmap tree and allocate the
1426 * required space if available.
1427 *
1428 * if the allocation group is completely free, dbAllocCtl() is
1429 * also called to allocate the required space. this is done for
1430 * two reasons. first, it makes no sense searching the dmap control
1431 * pages for free space when we know that free space exists. second,
1432 * the dmap control pages may indicate that the allocation group
1433 * has no free space if the allocation group is part (not the first
1434 * part) of a larger binary buddy system.
1435 */
1436 if (bmp->db_agsize == BPERDMAP
1437 || bmp->db_agfree[agno] == bmp->db_agsize) {
1438 rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1439 if ((rc == -ENOSPC) &&
1440 (bmp->db_agfree[agno] == bmp->db_agsize)) {
1441 printk(KERN_ERR "blkno = %Lx, blocks = %Lx\n",
1442 (unsigned long long) blkno,
1443 (unsigned long long) nblocks);
1444 jfs_error(bmp->db_ipbmap->i_sb,
1445 "dbAllocCtl failed in free AG\n");
1446 }
1447 return (rc);
1448 }
1449
1450 /* the buffer for the dmap control page that fully describes the
1451 * allocation group.
1452 */
1453 lblkno = BLKTOCTL(blkno, bmp->db_l2nbperpage, bmp->db_aglevel);
1454 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1455 if (mp == NULL)
1456 return -EIO;
1457 dcp = (struct dmapctl *) mp->data;
1458 budmin = dcp->budmin;
1459
1460 if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
1461 jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmapctl page\n");
1462 release_metapage(mp);
1463 return -EIO;
1464 }
1465
1466 /* search the subtree(s) of the dmap control page that describes
1467 * the allocation group, looking for sufficient free space. to begin,
1468 * determine how many allocation groups are represented in a dmap
1469 * control page at the control page level (i.e. L0, L1, L2) that
1470 * fully describes an allocation group. next, determine the starting
1471 * tree index of this allocation group within the control page.
1472 */
1473 agperlev =
1474 (1 << (L2LPERCTL - (bmp->db_agheight << 1))) / bmp->db_agwidth;
1475 ti = bmp->db_agstart + bmp->db_agwidth * (agno & (agperlev - 1));
1476
1477 /* dmap control page trees fan-out by 4 and a single allocation
1478 * group may be described by 1 or 2 subtrees within the ag level
1479 * dmap control page, depending upon the ag size. examine the ag's
1480 * subtrees for sufficient free space, starting with the leftmost
1481 * subtree.
1482 */
1483 for (i = 0; i < bmp->db_agwidth; i++, ti++) {
1484 /* is there sufficient free space ?
1485 */
1486 if (l2nb > dcp->stree[ti])
1487 continue;
1488
1489 /* sufficient free space found in a subtree. now search down
1490 * the subtree to find the leftmost leaf that describes this
1491 * free space.
1492 */
1493 for (k = bmp->db_agheight; k > 0; k--) {
1494 for (n = 0, m = (ti << 2) + 1; n < 4; n++) {
1495 if (l2nb <= dcp->stree[m + n]) {
1496 ti = m + n;
1497 break;
1498 }
1499 }
1500 if (n == 4) {
1501 jfs_error(bmp->db_ipbmap->i_sb,
1502 "failed descending stree\n");
1503 release_metapage(mp);
1504 return -EIO;
1505 }
1506 }
1507
1508 /* determine the block number within the file system
1509 * that corresponds to this leaf.
1510 */
1511 if (bmp->db_aglevel == 2)
1512 blkno = 0;
1513 else if (bmp->db_aglevel == 1)
1514 blkno &= ~(MAXL1SIZE - 1);
1515 else /* bmp->db_aglevel == 0 */
1516 blkno &= ~(MAXL0SIZE - 1);
1517
1518 blkno +=
1519 ((s64) (ti - le32_to_cpu(dcp->leafidx))) << budmin;
1520
1521 /* release the buffer in preparation for going down
1522 * the next level of dmap control pages.
1523 */
1524 release_metapage(mp);
1525
1526 /* check if we need to continue to search down the lower
1527 * level dmap control pages. we need to if the number of
1528 * blocks required is less than maximum number of blocks
1529 * described at the next lower level.
1530 */
1531 if (l2nb < budmin) {
1532
1533 /* search the lower level dmap control pages to get
1534 * the starting block number of the dmap that
1535 * contains or starts off the free space.
1536 */
1537 if ((rc =
1538 dbFindCtl(bmp, l2nb, bmp->db_aglevel - 1,
1539 &blkno))) {
1540 if (rc == -ENOSPC) {
1541 jfs_error(bmp->db_ipbmap->i_sb,
1542 "control page inconsistent\n");
1543 return -EIO;
1544 }
1545 return (rc);
1546 }
1547 }
1548
1549 /* allocate the blocks.
1550 */
1551 rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1552 if (rc == -ENOSPC) {
1553 jfs_error(bmp->db_ipbmap->i_sb,
1554 "unable to allocate blocks\n");
1555 rc = -EIO;
1556 }
1557 return (rc);
1558 }
1559
1560 /* no space in the allocation group. release the buffer and
1561 * return -ENOSPC.
1562 */
1563 release_metapage(mp);
1564
1565 return -ENOSPC;
1566 }
1567
1568
1569 /*
1570 * NAME: dbAllocAny()
1571 *
1572 * FUNCTION: attempt to allocate the specified number of contiguous
1573 * free blocks anywhere in the file system.
1574 *
1575 * dbAllocAny() attempts to find the sufficient free space by
1576 * searching down the dmap control pages, starting with the
1577 * highest level (i.e. L0, L1, L2) control page. if free space
1578 * large enough to satisfy the desired free space is found, the
1579 * desired free space is allocated.
1580 *
1581 * PARAMETERS:
1582 * bmp - pointer to bmap descriptor
1583 * nblocks - actual number of contiguous free blocks desired.
1584 * l2nb - log2 number of contiguous free blocks desired.
1585 * results - on successful return, set to the starting block number
1586 * of the newly allocated range.
1587 *
1588 * RETURN VALUES:
1589 * 0 - success
1590 * -ENOSPC - insufficient disk resources
1591 * -EIO - i/o error
1592 *
1593 * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1594 */
dbAllocAny(struct bmap * bmp,s64 nblocks,int l2nb,s64 * results)1595 static int dbAllocAny(struct bmap * bmp, s64 nblocks, int l2nb, s64 * results)
1596 {
1597 int rc;
1598 s64 blkno = 0;
1599
1600 /* starting with the top level dmap control page, search
1601 * down the dmap control levels for sufficient free space.
1602 * if free space is found, dbFindCtl() returns the starting
1603 * block number of the dmap that contains or starts off the
1604 * range of free space.
1605 */
1606 if ((rc = dbFindCtl(bmp, l2nb, bmp->db_maxlevel, &blkno)))
1607 return (rc);
1608
1609 /* allocate the blocks.
1610 */
1611 rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1612 if (rc == -ENOSPC) {
1613 jfs_error(bmp->db_ipbmap->i_sb, "unable to allocate blocks\n");
1614 return -EIO;
1615 }
1616 return (rc);
1617 }
1618
1619
1620 /*
1621 * NAME: dbDiscardAG()
1622 *
1623 * FUNCTION: attempt to discard (TRIM) all free blocks of specific AG
1624 *
1625 * algorithm:
1626 * 1) allocate blocks, as large as possible and save them
1627 * while holding IWRITE_LOCK on ipbmap
1628 * 2) trim all these saved block/length values
1629 * 3) mark the blocks free again
1630 *
1631 * benefit:
1632 * - we work only on one ag at some time, minimizing how long we
1633 * need to lock ipbmap
1634 * - reading / writing the fs is possible most time, even on
1635 * trimming
1636 *
1637 * downside:
1638 * - we write two times to the dmapctl and dmap pages
1639 * - but for me, this seems the best way, better ideas?
1640 * /TR 2012
1641 *
1642 * PARAMETERS:
1643 * ip - pointer to in-core inode
1644 * agno - ag to trim
1645 * minlen - minimum value of contiguous blocks
1646 *
1647 * RETURN VALUES:
1648 * s64 - actual number of blocks trimmed
1649 */
dbDiscardAG(struct inode * ip,int agno,s64 minlen)1650 s64 dbDiscardAG(struct inode *ip, int agno, s64 minlen)
1651 {
1652 struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
1653 struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
1654 s64 nblocks, blkno;
1655 u64 trimmed = 0;
1656 int rc, l2nb;
1657 struct super_block *sb = ipbmap->i_sb;
1658
1659 struct range2trim {
1660 u64 blkno;
1661 u64 nblocks;
1662 } *totrim, *tt;
1663
1664 /* max blkno / nblocks pairs to trim */
1665 int count = 0, range_cnt;
1666 u64 max_ranges;
1667
1668 /* prevent others from writing new stuff here, while trimming */
1669 IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
1670
1671 nblocks = bmp->db_agfree[agno];
1672 max_ranges = nblocks;
1673 do_div(max_ranges, minlen);
1674 range_cnt = min_t(u64, max_ranges + 1, 32 * 1024);
1675 totrim = kmalloc_array(range_cnt, sizeof(struct range2trim), GFP_NOFS);
1676 if (totrim == NULL) {
1677 jfs_error(bmp->db_ipbmap->i_sb, "no memory for trim array\n");
1678 IWRITE_UNLOCK(ipbmap);
1679 return 0;
1680 }
1681
1682 tt = totrim;
1683 while (nblocks >= minlen) {
1684 l2nb = BLKSTOL2(nblocks);
1685
1686 /* 0 = okay, -EIO = fatal, -ENOSPC -> try smaller block */
1687 rc = dbAllocAG(bmp, agno, nblocks, l2nb, &blkno);
1688 if (rc == 0) {
1689 tt->blkno = blkno;
1690 tt->nblocks = nblocks;
1691 tt++; count++;
1692
1693 /* the whole ag is free, trim now */
1694 if (bmp->db_agfree[agno] == 0)
1695 break;
1696
1697 /* give a hint for the next while */
1698 nblocks = bmp->db_agfree[agno];
1699 continue;
1700 } else if (rc == -ENOSPC) {
1701 /* search for next smaller log2 block */
1702 l2nb = BLKSTOL2(nblocks) - 1;
1703 nblocks = 1LL << l2nb;
1704 } else {
1705 /* Trim any already allocated blocks */
1706 jfs_error(bmp->db_ipbmap->i_sb, "-EIO\n");
1707 break;
1708 }
1709
1710 /* check, if our trim array is full */
1711 if (unlikely(count >= range_cnt - 1))
1712 break;
1713 }
1714 IWRITE_UNLOCK(ipbmap);
1715
1716 tt->nblocks = 0; /* mark the current end */
1717 for (tt = totrim; tt->nblocks != 0; tt++) {
1718 /* when mounted with online discard, dbFree() will
1719 * call jfs_issue_discard() itself */
1720 if (!(JFS_SBI(sb)->flag & JFS_DISCARD))
1721 jfs_issue_discard(ip, tt->blkno, tt->nblocks);
1722 dbFree(ip, tt->blkno, tt->nblocks);
1723 trimmed += tt->nblocks;
1724 }
1725 kfree(totrim);
1726
1727 return trimmed;
1728 }
1729
1730 /*
1731 * NAME: dbFindCtl()
1732 *
1733 * FUNCTION: starting at a specified dmap control page level and block
1734 * number, search down the dmap control levels for a range of
1735 * contiguous free blocks large enough to satisfy an allocation
1736 * request for the specified number of free blocks.
1737 *
1738 * if sufficient contiguous free blocks are found, this routine
1739 * returns the starting block number within a dmap page that
1740 * contains or starts a range of contiqious free blocks that
1741 * is sufficient in size.
1742 *
1743 * PARAMETERS:
1744 * bmp - pointer to bmap descriptor
1745 * level - starting dmap control page level.
1746 * l2nb - log2 number of contiguous free blocks desired.
1747 * *blkno - on entry, starting block number for conducting the search.
1748 * on successful return, the first block within a dmap page
1749 * that contains or starts a range of contiguous free blocks.
1750 *
1751 * RETURN VALUES:
1752 * 0 - success
1753 * -ENOSPC - insufficient disk resources
1754 * -EIO - i/o error
1755 *
1756 * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1757 */
dbFindCtl(struct bmap * bmp,int l2nb,int level,s64 * blkno)1758 static int dbFindCtl(struct bmap * bmp, int l2nb, int level, s64 * blkno)
1759 {
1760 int rc, leafidx, lev;
1761 s64 b, lblkno;
1762 struct dmapctl *dcp;
1763 int budmin;
1764 struct metapage *mp;
1765
1766 /* starting at the specified dmap control page level and block
1767 * number, search down the dmap control levels for the starting
1768 * block number of a dmap page that contains or starts off
1769 * sufficient free blocks.
1770 */
1771 for (lev = level, b = *blkno; lev >= 0; lev--) {
1772 /* get the buffer of the dmap control page for the block
1773 * number and level (i.e. L0, L1, L2).
1774 */
1775 lblkno = BLKTOCTL(b, bmp->db_l2nbperpage, lev);
1776 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1777 if (mp == NULL)
1778 return -EIO;
1779 dcp = (struct dmapctl *) mp->data;
1780 budmin = dcp->budmin;
1781
1782 if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
1783 jfs_error(bmp->db_ipbmap->i_sb,
1784 "Corrupt dmapctl page\n");
1785 release_metapage(mp);
1786 return -EIO;
1787 }
1788
1789 /* search the tree within the dmap control page for
1790 * sufficient free space. if sufficient free space is found,
1791 * dbFindLeaf() returns the index of the leaf at which
1792 * free space was found.
1793 */
1794 rc = dbFindLeaf((dmtree_t *) dcp, l2nb, &leafidx);
1795
1796 /* release the buffer.
1797 */
1798 release_metapage(mp);
1799
1800 /* space found ?
1801 */
1802 if (rc) {
1803 if (lev != level) {
1804 jfs_error(bmp->db_ipbmap->i_sb,
1805 "dmap inconsistent\n");
1806 return -EIO;
1807 }
1808 return -ENOSPC;
1809 }
1810
1811 /* adjust the block number to reflect the location within
1812 * the dmap control page (i.e. the leaf) at which free
1813 * space was found.
1814 */
1815 b += (((s64) leafidx) << budmin);
1816
1817 /* we stop the search at this dmap control page level if
1818 * the number of blocks required is greater than or equal
1819 * to the maximum number of blocks described at the next
1820 * (lower) level.
1821 */
1822 if (l2nb >= budmin)
1823 break;
1824 }
1825
1826 *blkno = b;
1827 return (0);
1828 }
1829
1830
1831 /*
1832 * NAME: dbAllocCtl()
1833 *
1834 * FUNCTION: attempt to allocate a specified number of contiguous
1835 * blocks starting within a specific dmap.
1836 *
1837 * this routine is called by higher level routines that search
1838 * the dmap control pages above the actual dmaps for contiguous
1839 * free space. the result of successful searches by these
1840 * routines are the starting block numbers within dmaps, with
1841 * the dmaps themselves containing the desired contiguous free
1842 * space or starting a contiguous free space of desired size
1843 * that is made up of the blocks of one or more dmaps. these
1844 * calls should not fail due to insufficent resources.
1845 *
1846 * this routine is called in some cases where it is not known
1847 * whether it will fail due to insufficient resources. more
1848 * specifically, this occurs when allocating from an allocation
1849 * group whose size is equal to the number of blocks per dmap.
1850 * in this case, the dmap control pages are not examined prior
1851 * to calling this routine (to save pathlength) and the call
1852 * might fail.
1853 *
1854 * for a request size that fits within a dmap, this routine relies
1855 * upon the dmap's dmtree to find the requested contiguous free
1856 * space. for request sizes that are larger than a dmap, the
1857 * requested free space will start at the first block of the
1858 * first dmap (i.e. blkno).
1859 *
1860 * PARAMETERS:
1861 * bmp - pointer to bmap descriptor
1862 * nblocks - actual number of contiguous free blocks to allocate.
1863 * l2nb - log2 number of contiguous free blocks to allocate.
1864 * blkno - starting block number of the dmap to start the allocation
1865 * from.
1866 * results - on successful return, set to the starting block number
1867 * of the newly allocated range.
1868 *
1869 * RETURN VALUES:
1870 * 0 - success
1871 * -ENOSPC - insufficient disk resources
1872 * -EIO - i/o error
1873 *
1874 * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1875 */
1876 static int
dbAllocCtl(struct bmap * bmp,s64 nblocks,int l2nb,s64 blkno,s64 * results)1877 dbAllocCtl(struct bmap * bmp, s64 nblocks, int l2nb, s64 blkno, s64 * results)
1878 {
1879 int rc, nb;
1880 s64 b, lblkno, n;
1881 struct metapage *mp;
1882 struct dmap *dp;
1883
1884 /* check if the allocation request is confined to a single dmap.
1885 */
1886 if (l2nb <= L2BPERDMAP) {
1887 /* get the buffer for the dmap.
1888 */
1889 lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
1890 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1891 if (mp == NULL)
1892 return -EIO;
1893 dp = (struct dmap *) mp->data;
1894
1895 /* try to allocate the blocks.
1896 */
1897 rc = dbAllocDmapLev(bmp, dp, (int) nblocks, l2nb, results);
1898 if (rc == 0)
1899 mark_metapage_dirty(mp);
1900
1901 release_metapage(mp);
1902
1903 return (rc);
1904 }
1905
1906 /* allocation request involving multiple dmaps. it must start on
1907 * a dmap boundary.
1908 */
1909 assert((blkno & (BPERDMAP - 1)) == 0);
1910
1911 /* allocate the blocks dmap by dmap.
1912 */
1913 for (n = nblocks, b = blkno; n > 0; n -= nb, b += nb) {
1914 /* get the buffer for the dmap.
1915 */
1916 lblkno = BLKTODMAP(b, bmp->db_l2nbperpage);
1917 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1918 if (mp == NULL) {
1919 rc = -EIO;
1920 goto backout;
1921 }
1922 dp = (struct dmap *) mp->data;
1923
1924 /* the dmap better be all free.
1925 */
1926 if (dp->tree.stree[ROOT] != L2BPERDMAP) {
1927 release_metapage(mp);
1928 jfs_error(bmp->db_ipbmap->i_sb,
1929 "the dmap is not all free\n");
1930 rc = -EIO;
1931 goto backout;
1932 }
1933
1934 /* determine how many blocks to allocate from this dmap.
1935 */
1936 nb = min_t(s64, n, BPERDMAP);
1937
1938 /* allocate the blocks from the dmap.
1939 */
1940 if ((rc = dbAllocDmap(bmp, dp, b, nb))) {
1941 release_metapage(mp);
1942 goto backout;
1943 }
1944
1945 /* write the buffer.
1946 */
1947 write_metapage(mp);
1948 }
1949
1950 /* set the results (starting block number) and return.
1951 */
1952 *results = blkno;
1953 return (0);
1954
1955 /* something failed in handling an allocation request involving
1956 * multiple dmaps. we'll try to clean up by backing out any
1957 * allocation that has already happened for this request. if
1958 * we fail in backing out the allocation, we'll mark the file
1959 * system to indicate that blocks have been leaked.
1960 */
1961 backout:
1962
1963 /* try to backout the allocations dmap by dmap.
1964 */
1965 for (n = nblocks - n, b = blkno; n > 0;
1966 n -= BPERDMAP, b += BPERDMAP) {
1967 /* get the buffer for this dmap.
1968 */
1969 lblkno = BLKTODMAP(b, bmp->db_l2nbperpage);
1970 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1971 if (mp == NULL) {
1972 /* could not back out. mark the file system
1973 * to indicate that we have leaked blocks.
1974 */
1975 jfs_error(bmp->db_ipbmap->i_sb,
1976 "I/O Error: Block Leakage\n");
1977 continue;
1978 }
1979 dp = (struct dmap *) mp->data;
1980
1981 /* free the blocks is this dmap.
1982 */
1983 if (dbFreeDmap(bmp, dp, b, BPERDMAP)) {
1984 /* could not back out. mark the file system
1985 * to indicate that we have leaked blocks.
1986 */
1987 release_metapage(mp);
1988 jfs_error(bmp->db_ipbmap->i_sb, "Block Leakage\n");
1989 continue;
1990 }
1991
1992 /* write the buffer.
1993 */
1994 write_metapage(mp);
1995 }
1996
1997 return (rc);
1998 }
1999
2000
2001 /*
2002 * NAME: dbAllocDmapLev()
2003 *
2004 * FUNCTION: attempt to allocate a specified number of contiguous blocks
2005 * from a specified dmap.
2006 *
2007 * this routine checks if the contiguous blocks are available.
2008 * if so, nblocks of blocks are allocated; otherwise, ENOSPC is
2009 * returned.
2010 *
2011 * PARAMETERS:
2012 * mp - pointer to bmap descriptor
2013 * dp - pointer to dmap to attempt to allocate blocks from.
2014 * l2nb - log2 number of contiguous block desired.
2015 * nblocks - actual number of contiguous block desired.
2016 * results - on successful return, set to the starting block number
2017 * of the newly allocated range.
2018 *
2019 * RETURN VALUES:
2020 * 0 - success
2021 * -ENOSPC - insufficient disk resources
2022 * -EIO - i/o error
2023 *
2024 * serialization: IREAD_LOCK(ipbmap), e.g., from dbAlloc(), or
2025 * IWRITE_LOCK(ipbmap), e.g., dbAllocCtl(), held on entry/exit;
2026 */
2027 static int
dbAllocDmapLev(struct bmap * bmp,struct dmap * dp,int nblocks,int l2nb,s64 * results)2028 dbAllocDmapLev(struct bmap * bmp,
2029 struct dmap * dp, int nblocks, int l2nb, s64 * results)
2030 {
2031 s64 blkno;
2032 int leafidx, rc;
2033
2034 /* can't be more than a dmaps worth of blocks */
2035 assert(l2nb <= L2BPERDMAP);
2036
2037 /* search the tree within the dmap page for sufficient
2038 * free space. if sufficient free space is found, dbFindLeaf()
2039 * returns the index of the leaf at which free space was found.
2040 */
2041 if (dbFindLeaf((dmtree_t *) & dp->tree, l2nb, &leafidx))
2042 return -ENOSPC;
2043
2044 if (leafidx < 0)
2045 return -EIO;
2046
2047 /* determine the block number within the file system corresponding
2048 * to the leaf at which free space was found.
2049 */
2050 blkno = le64_to_cpu(dp->start) + (leafidx << L2DBWORD);
2051
2052 /* if not all bits of the dmap word are free, get the starting
2053 * bit number within the dmap word of the required string of free
2054 * bits and adjust the block number with this value.
2055 */
2056 if (dp->tree.stree[leafidx + LEAFIND] < BUDMIN)
2057 blkno += dbFindBits(le32_to_cpu(dp->wmap[leafidx]), l2nb);
2058
2059 /* allocate the blocks */
2060 if ((rc = dbAllocDmap(bmp, dp, blkno, nblocks)) == 0)
2061 *results = blkno;
2062
2063 return (rc);
2064 }
2065
2066
2067 /*
2068 * NAME: dbAllocDmap()
2069 *
2070 * FUNCTION: adjust the disk allocation map to reflect the allocation
2071 * of a specified block range within a dmap.
2072 *
2073 * this routine allocates the specified blocks from the dmap
2074 * through a call to dbAllocBits(). if the allocation of the
2075 * block range causes the maximum string of free blocks within
2076 * the dmap to change (i.e. the value of the root of the dmap's
2077 * dmtree), this routine will cause this change to be reflected
2078 * up through the appropriate levels of the dmap control pages
2079 * by a call to dbAdjCtl() for the L0 dmap control page that
2080 * covers this dmap.
2081 *
2082 * PARAMETERS:
2083 * bmp - pointer to bmap descriptor
2084 * dp - pointer to dmap to allocate the block range from.
2085 * blkno - starting block number of the block to be allocated.
2086 * nblocks - number of blocks to be allocated.
2087 *
2088 * RETURN VALUES:
2089 * 0 - success
2090 * -EIO - i/o error
2091 *
2092 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2093 */
dbAllocDmap(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks)2094 static int dbAllocDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
2095 int nblocks)
2096 {
2097 s8 oldroot;
2098 int rc;
2099
2100 /* save the current value of the root (i.e. maximum free string)
2101 * of the dmap tree.
2102 */
2103 oldroot = dp->tree.stree[ROOT];
2104
2105 /* allocate the specified (blocks) bits */
2106 dbAllocBits(bmp, dp, blkno, nblocks);
2107
2108 /* if the root has not changed, done. */
2109 if (dp->tree.stree[ROOT] == oldroot)
2110 return (0);
2111
2112 /* root changed. bubble the change up to the dmap control pages.
2113 * if the adjustment of the upper level control pages fails,
2114 * backout the bit allocation (thus making everything consistent).
2115 */
2116 if ((rc = dbAdjCtl(bmp, blkno, dp->tree.stree[ROOT], 1, 0)))
2117 dbFreeBits(bmp, dp, blkno, nblocks);
2118
2119 return (rc);
2120 }
2121
2122
2123 /*
2124 * NAME: dbFreeDmap()
2125 *
2126 * FUNCTION: adjust the disk allocation map to reflect the allocation
2127 * of a specified block range within a dmap.
2128 *
2129 * this routine frees the specified blocks from the dmap through
2130 * a call to dbFreeBits(). if the deallocation of the block range
2131 * causes the maximum string of free blocks within the dmap to
2132 * change (i.e. the value of the root of the dmap's dmtree), this
2133 * routine will cause this change to be reflected up through the
2134 * appropriate levels of the dmap control pages by a call to
2135 * dbAdjCtl() for the L0 dmap control page that covers this dmap.
2136 *
2137 * PARAMETERS:
2138 * bmp - pointer to bmap descriptor
2139 * dp - pointer to dmap to free the block range from.
2140 * blkno - starting block number of the block to be freed.
2141 * nblocks - number of blocks to be freed.
2142 *
2143 * RETURN VALUES:
2144 * 0 - success
2145 * -EIO - i/o error
2146 *
2147 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2148 */
dbFreeDmap(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks)2149 static int dbFreeDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
2150 int nblocks)
2151 {
2152 s8 oldroot;
2153 int rc = 0, word;
2154
2155 /* save the current value of the root (i.e. maximum free string)
2156 * of the dmap tree.
2157 */
2158 oldroot = dp->tree.stree[ROOT];
2159
2160 /* free the specified (blocks) bits */
2161 rc = dbFreeBits(bmp, dp, blkno, nblocks);
2162
2163 /* if error or the root has not changed, done. */
2164 if (rc || (dp->tree.stree[ROOT] == oldroot))
2165 return (rc);
2166
2167 /* root changed. bubble the change up to the dmap control pages.
2168 * if the adjustment of the upper level control pages fails,
2169 * backout the deallocation.
2170 */
2171 if ((rc = dbAdjCtl(bmp, blkno, dp->tree.stree[ROOT], 0, 0))) {
2172 word = (blkno & (BPERDMAP - 1)) >> L2DBWORD;
2173
2174 /* as part of backing out the deallocation, we will have
2175 * to back split the dmap tree if the deallocation caused
2176 * the freed blocks to become part of a larger binary buddy
2177 * system.
2178 */
2179 if (dp->tree.stree[word] == NOFREE)
2180 dbBackSplit((dmtree_t *) & dp->tree, word);
2181
2182 dbAllocBits(bmp, dp, blkno, nblocks);
2183 }
2184
2185 return (rc);
2186 }
2187
2188
2189 /*
2190 * NAME: dbAllocBits()
2191 *
2192 * FUNCTION: allocate a specified block range from a dmap.
2193 *
2194 * this routine updates the dmap to reflect the working
2195 * state allocation of the specified block range. it directly
2196 * updates the bits of the working map and causes the adjustment
2197 * of the binary buddy system described by the dmap's dmtree
2198 * leaves to reflect the bits allocated. it also causes the
2199 * dmap's dmtree, as a whole, to reflect the allocated range.
2200 *
2201 * PARAMETERS:
2202 * bmp - pointer to bmap descriptor
2203 * dp - pointer to dmap to allocate bits from.
2204 * blkno - starting block number of the bits to be allocated.
2205 * nblocks - number of bits to be allocated.
2206 *
2207 * RETURN VALUES: none
2208 *
2209 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2210 */
dbAllocBits(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks)2211 static void dbAllocBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
2212 int nblocks)
2213 {
2214 int dbitno, word, rembits, nb, nwords, wbitno, nw, agno;
2215 dmtree_t *tp = (dmtree_t *) & dp->tree;
2216 int size;
2217 s8 *leaf;
2218
2219 /* pick up a pointer to the leaves of the dmap tree */
2220 leaf = dp->tree.stree + LEAFIND;
2221
2222 /* determine the bit number and word within the dmap of the
2223 * starting block.
2224 */
2225 dbitno = blkno & (BPERDMAP - 1);
2226 word = dbitno >> L2DBWORD;
2227
2228 /* block range better be within the dmap */
2229 assert(dbitno + nblocks <= BPERDMAP);
2230
2231 /* allocate the bits of the dmap's words corresponding to the block
2232 * range. not all bits of the first and last words may be contained
2233 * within the block range. if this is the case, we'll work against
2234 * those words (i.e. partial first and/or last) on an individual basis
2235 * (a single pass), allocating the bits of interest by hand and
2236 * updating the leaf corresponding to the dmap word. a single pass
2237 * will be used for all dmap words fully contained within the
2238 * specified range. within this pass, the bits of all fully contained
2239 * dmap words will be marked as free in a single shot and the leaves
2240 * will be updated. a single leaf may describe the free space of
2241 * multiple dmap words, so we may update only a subset of the actual
2242 * leaves corresponding to the dmap words of the block range.
2243 */
2244 for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
2245 /* determine the bit number within the word and
2246 * the number of bits within the word.
2247 */
2248 wbitno = dbitno & (DBWORD - 1);
2249 nb = min(rembits, DBWORD - wbitno);
2250
2251 /* check if only part of a word is to be allocated.
2252 */
2253 if (nb < DBWORD) {
2254 /* allocate (set to 1) the appropriate bits within
2255 * this dmap word.
2256 */
2257 dp->wmap[word] |= cpu_to_le32(ONES << (DBWORD - nb)
2258 >> wbitno);
2259
2260 /* update the leaf for this dmap word. in addition
2261 * to setting the leaf value to the binary buddy max
2262 * of the updated dmap word, dbSplit() will split
2263 * the binary system of the leaves if need be.
2264 */
2265 dbSplit(tp, word, BUDMIN,
2266 dbMaxBud((u8 *) & dp->wmap[word]));
2267
2268 word += 1;
2269 } else {
2270 /* one or more dmap words are fully contained
2271 * within the block range. determine how many
2272 * words and allocate (set to 1) the bits of these
2273 * words.
2274 */
2275 nwords = rembits >> L2DBWORD;
2276 memset(&dp->wmap[word], (int) ONES, nwords * 4);
2277
2278 /* determine how many bits.
2279 */
2280 nb = nwords << L2DBWORD;
2281
2282 /* now update the appropriate leaves to reflect
2283 * the allocated words.
2284 */
2285 for (; nwords > 0; nwords -= nw) {
2286 if (leaf[word] < BUDMIN) {
2287 jfs_error(bmp->db_ipbmap->i_sb,
2288 "leaf page corrupt\n");
2289 break;
2290 }
2291
2292 /* determine what the leaf value should be
2293 * updated to as the minimum of the l2 number
2294 * of bits being allocated and the l2 number
2295 * of bits currently described by this leaf.
2296 */
2297 size = min_t(int, leaf[word],
2298 NLSTOL2BSZ(nwords));
2299
2300 /* update the leaf to reflect the allocation.
2301 * in addition to setting the leaf value to
2302 * NOFREE, dbSplit() will split the binary
2303 * system of the leaves to reflect the current
2304 * allocation (size).
2305 */
2306 dbSplit(tp, word, size, NOFREE);
2307
2308 /* get the number of dmap words handled */
2309 nw = BUDSIZE(size, BUDMIN);
2310 word += nw;
2311 }
2312 }
2313 }
2314
2315 /* update the free count for this dmap */
2316 le32_add_cpu(&dp->nfree, -nblocks);
2317
2318 BMAP_LOCK(bmp);
2319
2320 /* if this allocation group is completely free,
2321 * update the maximum allocation group number if this allocation
2322 * group is the new max.
2323 */
2324 agno = blkno >> bmp->db_agl2size;
2325 if (agno > bmp->db_maxag)
2326 bmp->db_maxag = agno;
2327
2328 /* update the free count for the allocation group and map */
2329 bmp->db_agfree[agno] -= nblocks;
2330 bmp->db_nfree -= nblocks;
2331
2332 BMAP_UNLOCK(bmp);
2333 }
2334
2335
2336 /*
2337 * NAME: dbFreeBits()
2338 *
2339 * FUNCTION: free a specified block range from a dmap.
2340 *
2341 * this routine updates the dmap to reflect the working
2342 * state allocation of the specified block range. it directly
2343 * updates the bits of the working map and causes the adjustment
2344 * of the binary buddy system described by the dmap's dmtree
2345 * leaves to reflect the bits freed. it also causes the dmap's
2346 * dmtree, as a whole, to reflect the deallocated range.
2347 *
2348 * PARAMETERS:
2349 * bmp - pointer to bmap descriptor
2350 * dp - pointer to dmap to free bits from.
2351 * blkno - starting block number of the bits to be freed.
2352 * nblocks - number of bits to be freed.
2353 *
2354 * RETURN VALUES: 0 for success
2355 *
2356 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2357 */
dbFreeBits(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks)2358 static int dbFreeBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
2359 int nblocks)
2360 {
2361 int dbitno, word, rembits, nb, nwords, wbitno, nw, agno;
2362 dmtree_t *tp = (dmtree_t *) & dp->tree;
2363 int rc = 0;
2364 int size;
2365
2366 /* determine the bit number and word within the dmap of the
2367 * starting block.
2368 */
2369 dbitno = blkno & (BPERDMAP - 1);
2370 word = dbitno >> L2DBWORD;
2371
2372 /* block range better be within the dmap.
2373 */
2374 assert(dbitno + nblocks <= BPERDMAP);
2375
2376 /* free the bits of the dmaps words corresponding to the block range.
2377 * not all bits of the first and last words may be contained within
2378 * the block range. if this is the case, we'll work against those
2379 * words (i.e. partial first and/or last) on an individual basis
2380 * (a single pass), freeing the bits of interest by hand and updating
2381 * the leaf corresponding to the dmap word. a single pass will be used
2382 * for all dmap words fully contained within the specified range.
2383 * within this pass, the bits of all fully contained dmap words will
2384 * be marked as free in a single shot and the leaves will be updated. a
2385 * single leaf may describe the free space of multiple dmap words,
2386 * so we may update only a subset of the actual leaves corresponding
2387 * to the dmap words of the block range.
2388 *
2389 * dbJoin() is used to update leaf values and will join the binary
2390 * buddy system of the leaves if the new leaf values indicate this
2391 * should be done.
2392 */
2393 for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
2394 /* determine the bit number within the word and
2395 * the number of bits within the word.
2396 */
2397 wbitno = dbitno & (DBWORD - 1);
2398 nb = min(rembits, DBWORD - wbitno);
2399
2400 /* check if only part of a word is to be freed.
2401 */
2402 if (nb < DBWORD) {
2403 /* free (zero) the appropriate bits within this
2404 * dmap word.
2405 */
2406 dp->wmap[word] &=
2407 cpu_to_le32(~(ONES << (DBWORD - nb)
2408 >> wbitno));
2409
2410 /* update the leaf for this dmap word.
2411 */
2412 rc = dbJoin(tp, word,
2413 dbMaxBud((u8 *) & dp->wmap[word]));
2414 if (rc)
2415 return rc;
2416
2417 word += 1;
2418 } else {
2419 /* one or more dmap words are fully contained
2420 * within the block range. determine how many
2421 * words and free (zero) the bits of these words.
2422 */
2423 nwords = rembits >> L2DBWORD;
2424 memset(&dp->wmap[word], 0, nwords * 4);
2425
2426 /* determine how many bits.
2427 */
2428 nb = nwords << L2DBWORD;
2429
2430 /* now update the appropriate leaves to reflect
2431 * the freed words.
2432 */
2433 for (; nwords > 0; nwords -= nw) {
2434 /* determine what the leaf value should be
2435 * updated to as the minimum of the l2 number
2436 * of bits being freed and the l2 (max) number
2437 * of bits that can be described by this leaf.
2438 */
2439 size =
2440 min(LITOL2BSZ
2441 (word, L2LPERDMAP, BUDMIN),
2442 NLSTOL2BSZ(nwords));
2443
2444 /* update the leaf.
2445 */
2446 rc = dbJoin(tp, word, size);
2447 if (rc)
2448 return rc;
2449
2450 /* get the number of dmap words handled.
2451 */
2452 nw = BUDSIZE(size, BUDMIN);
2453 word += nw;
2454 }
2455 }
2456 }
2457
2458 /* update the free count for this dmap.
2459 */
2460 le32_add_cpu(&dp->nfree, nblocks);
2461
2462 BMAP_LOCK(bmp);
2463
2464 /* update the free count for the allocation group and
2465 * map.
2466 */
2467 agno = blkno >> bmp->db_agl2size;
2468 bmp->db_nfree += nblocks;
2469 bmp->db_agfree[agno] += nblocks;
2470
2471 /* check if this allocation group is not completely free and
2472 * if it is currently the maximum (rightmost) allocation group.
2473 * if so, establish the new maximum allocation group number by
2474 * searching left for the first allocation group with allocation.
2475 */
2476 if ((bmp->db_agfree[agno] == bmp->db_agsize && agno == bmp->db_maxag) ||
2477 (agno == bmp->db_numag - 1 &&
2478 bmp->db_agfree[agno] == (bmp-> db_mapsize & (BPERDMAP - 1)))) {
2479 while (bmp->db_maxag > 0) {
2480 bmp->db_maxag -= 1;
2481 if (bmp->db_agfree[bmp->db_maxag] !=
2482 bmp->db_agsize)
2483 break;
2484 }
2485
2486 /* re-establish the allocation group preference if the
2487 * current preference is right of the maximum allocation
2488 * group.
2489 */
2490 if (bmp->db_agpref > bmp->db_maxag)
2491 bmp->db_agpref = bmp->db_maxag;
2492 }
2493
2494 BMAP_UNLOCK(bmp);
2495
2496 return 0;
2497 }
2498
2499
2500 /*
2501 * NAME: dbAdjCtl()
2502 *
2503 * FUNCTION: adjust a dmap control page at a specified level to reflect
2504 * the change in a lower level dmap or dmap control page's
2505 * maximum string of free blocks (i.e. a change in the root
2506 * of the lower level object's dmtree) due to the allocation
2507 * or deallocation of a range of blocks with a single dmap.
2508 *
2509 * on entry, this routine is provided with the new value of
2510 * the lower level dmap or dmap control page root and the
2511 * starting block number of the block range whose allocation
2512 * or deallocation resulted in the root change. this range
2513 * is respresented by a single leaf of the current dmapctl
2514 * and the leaf will be updated with this value, possibly
2515 * causing a binary buddy system within the leaves to be
2516 * split or joined. the update may also cause the dmapctl's
2517 * dmtree to be updated.
2518 *
2519 * if the adjustment of the dmap control page, itself, causes its
2520 * root to change, this change will be bubbled up to the next dmap
2521 * control level by a recursive call to this routine, specifying
2522 * the new root value and the next dmap control page level to
2523 * be adjusted.
2524 * PARAMETERS:
2525 * bmp - pointer to bmap descriptor
2526 * blkno - the first block of a block range within a dmap. it is
2527 * the allocation or deallocation of this block range that
2528 * requires the dmap control page to be adjusted.
2529 * newval - the new value of the lower level dmap or dmap control
2530 * page root.
2531 * alloc - 'true' if adjustment is due to an allocation.
2532 * level - current level of dmap control page (i.e. L0, L1, L2) to
2533 * be adjusted.
2534 *
2535 * RETURN VALUES:
2536 * 0 - success
2537 * -EIO - i/o error
2538 *
2539 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2540 */
2541 static int
dbAdjCtl(struct bmap * bmp,s64 blkno,int newval,int alloc,int level)2542 dbAdjCtl(struct bmap * bmp, s64 blkno, int newval, int alloc, int level)
2543 {
2544 struct metapage *mp;
2545 s8 oldroot;
2546 int oldval;
2547 s64 lblkno;
2548 struct dmapctl *dcp;
2549 int rc, leafno, ti;
2550
2551 /* get the buffer for the dmap control page for the specified
2552 * block number and control page level.
2553 */
2554 lblkno = BLKTOCTL(blkno, bmp->db_l2nbperpage, level);
2555 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
2556 if (mp == NULL)
2557 return -EIO;
2558 dcp = (struct dmapctl *) mp->data;
2559
2560 if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
2561 jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmapctl page\n");
2562 release_metapage(mp);
2563 return -EIO;
2564 }
2565
2566 /* determine the leaf number corresponding to the block and
2567 * the index within the dmap control tree.
2568 */
2569 leafno = BLKTOCTLLEAF(blkno, dcp->budmin);
2570 ti = leafno + le32_to_cpu(dcp->leafidx);
2571
2572 /* save the current leaf value and the current root level (i.e.
2573 * maximum l2 free string described by this dmapctl).
2574 */
2575 oldval = dcp->stree[ti];
2576 oldroot = dcp->stree[ROOT];
2577
2578 /* check if this is a control page update for an allocation.
2579 * if so, update the leaf to reflect the new leaf value using
2580 * dbSplit(); otherwise (deallocation), use dbJoin() to update
2581 * the leaf with the new value. in addition to updating the
2582 * leaf, dbSplit() will also split the binary buddy system of
2583 * the leaves, if required, and bubble new values within the
2584 * dmapctl tree, if required. similarly, dbJoin() will join
2585 * the binary buddy system of leaves and bubble new values up
2586 * the dmapctl tree as required by the new leaf value.
2587 */
2588 if (alloc) {
2589 /* check if we are in the middle of a binary buddy
2590 * system. this happens when we are performing the
2591 * first allocation out of an allocation group that
2592 * is part (not the first part) of a larger binary
2593 * buddy system. if we are in the middle, back split
2594 * the system prior to calling dbSplit() which assumes
2595 * that it is at the front of a binary buddy system.
2596 */
2597 if (oldval == NOFREE) {
2598 rc = dbBackSplit((dmtree_t *) dcp, leafno);
2599 if (rc)
2600 return rc;
2601 oldval = dcp->stree[ti];
2602 }
2603 dbSplit((dmtree_t *) dcp, leafno, dcp->budmin, newval);
2604 } else {
2605 rc = dbJoin((dmtree_t *) dcp, leafno, newval);
2606 if (rc)
2607 return rc;
2608 }
2609
2610 /* check if the root of the current dmap control page changed due
2611 * to the update and if the current dmap control page is not at
2612 * the current top level (i.e. L0, L1, L2) of the map. if so (i.e.
2613 * root changed and this is not the top level), call this routine
2614 * again (recursion) for the next higher level of the mapping to
2615 * reflect the change in root for the current dmap control page.
2616 */
2617 if (dcp->stree[ROOT] != oldroot) {
2618 /* are we below the top level of the map. if so,
2619 * bubble the root up to the next higher level.
2620 */
2621 if (level < bmp->db_maxlevel) {
2622 /* bubble up the new root of this dmap control page to
2623 * the next level.
2624 */
2625 if ((rc =
2626 dbAdjCtl(bmp, blkno, dcp->stree[ROOT], alloc,
2627 level + 1))) {
2628 /* something went wrong in bubbling up the new
2629 * root value, so backout the changes to the
2630 * current dmap control page.
2631 */
2632 if (alloc) {
2633 dbJoin((dmtree_t *) dcp, leafno,
2634 oldval);
2635 } else {
2636 /* the dbJoin() above might have
2637 * caused a larger binary buddy system
2638 * to form and we may now be in the
2639 * middle of it. if this is the case,
2640 * back split the buddies.
2641 */
2642 if (dcp->stree[ti] == NOFREE)
2643 dbBackSplit((dmtree_t *)
2644 dcp, leafno);
2645 dbSplit((dmtree_t *) dcp, leafno,
2646 dcp->budmin, oldval);
2647 }
2648
2649 /* release the buffer and return the error.
2650 */
2651 release_metapage(mp);
2652 return (rc);
2653 }
2654 } else {
2655 /* we're at the top level of the map. update
2656 * the bmap control page to reflect the size
2657 * of the maximum free buddy system.
2658 */
2659 assert(level == bmp->db_maxlevel);
2660 if (bmp->db_maxfreebud != oldroot) {
2661 jfs_error(bmp->db_ipbmap->i_sb,
2662 "the maximum free buddy is not the old root\n");
2663 }
2664 bmp->db_maxfreebud = dcp->stree[ROOT];
2665 }
2666 }
2667
2668 /* write the buffer.
2669 */
2670 write_metapage(mp);
2671
2672 return (0);
2673 }
2674
2675
2676 /*
2677 * NAME: dbSplit()
2678 *
2679 * FUNCTION: update the leaf of a dmtree with a new value, splitting
2680 * the leaf from the binary buddy system of the dmtree's
2681 * leaves, as required.
2682 *
2683 * PARAMETERS:
2684 * tp - pointer to the tree containing the leaf.
2685 * leafno - the number of the leaf to be updated.
2686 * splitsz - the size the binary buddy system starting at the leaf
2687 * must be split to, specified as the log2 number of blocks.
2688 * newval - the new value for the leaf.
2689 *
2690 * RETURN VALUES: none
2691 *
2692 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2693 */
dbSplit(dmtree_t * tp,int leafno,int splitsz,int newval)2694 static void dbSplit(dmtree_t * tp, int leafno, int splitsz, int newval)
2695 {
2696 int budsz;
2697 int cursz;
2698 s8 *leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2699
2700 /* check if the leaf needs to be split.
2701 */
2702 if (leaf[leafno] > tp->dmt_budmin) {
2703 /* the split occurs by cutting the buddy system in half
2704 * at the specified leaf until we reach the specified
2705 * size. pick up the starting split size (current size
2706 * - 1 in l2) and the corresponding buddy size.
2707 */
2708 cursz = leaf[leafno] - 1;
2709 budsz = BUDSIZE(cursz, tp->dmt_budmin);
2710
2711 /* split until we reach the specified size.
2712 */
2713 while (cursz >= splitsz) {
2714 /* update the buddy's leaf with its new value.
2715 */
2716 dbAdjTree(tp, leafno ^ budsz, cursz);
2717
2718 /* on to the next size and buddy.
2719 */
2720 cursz -= 1;
2721 budsz >>= 1;
2722 }
2723 }
2724
2725 /* adjust the dmap tree to reflect the specified leaf's new
2726 * value.
2727 */
2728 dbAdjTree(tp, leafno, newval);
2729 }
2730
2731
2732 /*
2733 * NAME: dbBackSplit()
2734 *
2735 * FUNCTION: back split the binary buddy system of dmtree leaves
2736 * that hold a specified leaf until the specified leaf
2737 * starts its own binary buddy system.
2738 *
2739 * the allocators typically perform allocations at the start
2740 * of binary buddy systems and dbSplit() is used to accomplish
2741 * any required splits. in some cases, however, allocation
2742 * may occur in the middle of a binary system and requires a
2743 * back split, with the split proceeding out from the middle of
2744 * the system (less efficient) rather than the start of the
2745 * system (more efficient). the cases in which a back split
2746 * is required are rare and are limited to the first allocation
2747 * within an allocation group which is a part (not first part)
2748 * of a larger binary buddy system and a few exception cases
2749 * in which a previous join operation must be backed out.
2750 *
2751 * PARAMETERS:
2752 * tp - pointer to the tree containing the leaf.
2753 * leafno - the number of the leaf to be updated.
2754 *
2755 * RETURN VALUES: none
2756 *
2757 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2758 */
dbBackSplit(dmtree_t * tp,int leafno)2759 static int dbBackSplit(dmtree_t * tp, int leafno)
2760 {
2761 int budsz, bud, w, bsz, size;
2762 int cursz;
2763 s8 *leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2764
2765 /* leaf should be part (not first part) of a binary
2766 * buddy system.
2767 */
2768 assert(leaf[leafno] == NOFREE);
2769
2770 /* the back split is accomplished by iteratively finding the leaf
2771 * that starts the buddy system that contains the specified leaf and
2772 * splitting that system in two. this iteration continues until
2773 * the specified leaf becomes the start of a buddy system.
2774 *
2775 * determine maximum possible l2 size for the specified leaf.
2776 */
2777 size =
2778 LITOL2BSZ(leafno, le32_to_cpu(tp->dmt_l2nleafs),
2779 tp->dmt_budmin);
2780
2781 /* determine the number of leaves covered by this size. this
2782 * is the buddy size that we will start with as we search for
2783 * the buddy system that contains the specified leaf.
2784 */
2785 budsz = BUDSIZE(size, tp->dmt_budmin);
2786
2787 /* back split.
2788 */
2789 while (leaf[leafno] == NOFREE) {
2790 /* find the leftmost buddy leaf.
2791 */
2792 for (w = leafno, bsz = budsz;; bsz <<= 1,
2793 w = (w < bud) ? w : bud) {
2794 if (bsz >= le32_to_cpu(tp->dmt_nleafs)) {
2795 jfs_err("JFS: block map error in dbBackSplit");
2796 return -EIO;
2797 }
2798
2799 /* determine the buddy.
2800 */
2801 bud = w ^ bsz;
2802
2803 /* check if this buddy is the start of the system.
2804 */
2805 if (leaf[bud] != NOFREE) {
2806 /* split the leaf at the start of the
2807 * system in two.
2808 */
2809 cursz = leaf[bud] - 1;
2810 dbSplit(tp, bud, cursz, cursz);
2811 break;
2812 }
2813 }
2814 }
2815
2816 if (leaf[leafno] != size) {
2817 jfs_err("JFS: wrong leaf value in dbBackSplit");
2818 return -EIO;
2819 }
2820 return 0;
2821 }
2822
2823
2824 /*
2825 * NAME: dbJoin()
2826 *
2827 * FUNCTION: update the leaf of a dmtree with a new value, joining
2828 * the leaf with other leaves of the dmtree into a multi-leaf
2829 * binary buddy system, as required.
2830 *
2831 * PARAMETERS:
2832 * tp - pointer to the tree containing the leaf.
2833 * leafno - the number of the leaf to be updated.
2834 * newval - the new value for the leaf.
2835 *
2836 * RETURN VALUES: none
2837 */
dbJoin(dmtree_t * tp,int leafno,int newval)2838 static int dbJoin(dmtree_t * tp, int leafno, int newval)
2839 {
2840 int budsz, buddy;
2841 s8 *leaf;
2842
2843 /* can the new leaf value require a join with other leaves ?
2844 */
2845 if (newval >= tp->dmt_budmin) {
2846 /* pickup a pointer to the leaves of the tree.
2847 */
2848 leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2849
2850 /* try to join the specified leaf into a large binary
2851 * buddy system. the join proceeds by attempting to join
2852 * the specified leafno with its buddy (leaf) at new value.
2853 * if the join occurs, we attempt to join the left leaf
2854 * of the joined buddies with its buddy at new value + 1.
2855 * we continue to join until we find a buddy that cannot be
2856 * joined (does not have a value equal to the size of the
2857 * last join) or until all leaves have been joined into a
2858 * single system.
2859 *
2860 * get the buddy size (number of words covered) of
2861 * the new value.
2862 */
2863 budsz = BUDSIZE(newval, tp->dmt_budmin);
2864
2865 /* try to join.
2866 */
2867 while (budsz < le32_to_cpu(tp->dmt_nleafs)) {
2868 /* get the buddy leaf.
2869 */
2870 buddy = leafno ^ budsz;
2871
2872 /* if the leaf's new value is greater than its
2873 * buddy's value, we join no more.
2874 */
2875 if (newval > leaf[buddy])
2876 break;
2877
2878 /* It shouldn't be less */
2879 if (newval < leaf[buddy])
2880 return -EIO;
2881
2882 /* check which (leafno or buddy) is the left buddy.
2883 * the left buddy gets to claim the blocks resulting
2884 * from the join while the right gets to claim none.
2885 * the left buddy is also eligible to participate in
2886 * a join at the next higher level while the right
2887 * is not.
2888 *
2889 */
2890 if (leafno < buddy) {
2891 /* leafno is the left buddy.
2892 */
2893 dbAdjTree(tp, buddy, NOFREE);
2894 } else {
2895 /* buddy is the left buddy and becomes
2896 * leafno.
2897 */
2898 dbAdjTree(tp, leafno, NOFREE);
2899 leafno = buddy;
2900 }
2901
2902 /* on to try the next join.
2903 */
2904 newval += 1;
2905 budsz <<= 1;
2906 }
2907 }
2908
2909 /* update the leaf value.
2910 */
2911 dbAdjTree(tp, leafno, newval);
2912
2913 return 0;
2914 }
2915
2916
2917 /*
2918 * NAME: dbAdjTree()
2919 *
2920 * FUNCTION: update a leaf of a dmtree with a new value, adjusting
2921 * the dmtree, as required, to reflect the new leaf value.
2922 * the combination of any buddies must already be done before
2923 * this is called.
2924 *
2925 * PARAMETERS:
2926 * tp - pointer to the tree to be adjusted.
2927 * leafno - the number of the leaf to be updated.
2928 * newval - the new value for the leaf.
2929 *
2930 * RETURN VALUES: none
2931 */
dbAdjTree(dmtree_t * tp,int leafno,int newval)2932 static void dbAdjTree(dmtree_t * tp, int leafno, int newval)
2933 {
2934 int lp, pp, k;
2935 int max;
2936
2937 /* pick up the index of the leaf for this leafno.
2938 */
2939 lp = leafno + le32_to_cpu(tp->dmt_leafidx);
2940
2941 /* is the current value the same as the old value ? if so,
2942 * there is nothing to do.
2943 */
2944 if (tp->dmt_stree[lp] == newval)
2945 return;
2946
2947 /* set the new value.
2948 */
2949 tp->dmt_stree[lp] = newval;
2950
2951 /* bubble the new value up the tree as required.
2952 */
2953 for (k = 0; k < le32_to_cpu(tp->dmt_height); k++) {
2954 /* get the index of the first leaf of the 4 leaf
2955 * group containing the specified leaf (leafno).
2956 */
2957 lp = ((lp - 1) & ~0x03) + 1;
2958
2959 /* get the index of the parent of this 4 leaf group.
2960 */
2961 pp = (lp - 1) >> 2;
2962
2963 /* determine the maximum of the 4 leaves.
2964 */
2965 max = TREEMAX(&tp->dmt_stree[lp]);
2966
2967 /* if the maximum of the 4 is the same as the
2968 * parent's value, we're done.
2969 */
2970 if (tp->dmt_stree[pp] == max)
2971 break;
2972
2973 /* parent gets new value.
2974 */
2975 tp->dmt_stree[pp] = max;
2976
2977 /* parent becomes leaf for next go-round.
2978 */
2979 lp = pp;
2980 }
2981 }
2982
2983
2984 /*
2985 * NAME: dbFindLeaf()
2986 *
2987 * FUNCTION: search a dmtree_t for sufficient free blocks, returning
2988 * the index of a leaf describing the free blocks if
2989 * sufficient free blocks are found.
2990 *
2991 * the search starts at the top of the dmtree_t tree and
2992 * proceeds down the tree to the leftmost leaf with sufficient
2993 * free space.
2994 *
2995 * PARAMETERS:
2996 * tp - pointer to the tree to be searched.
2997 * l2nb - log2 number of free blocks to search for.
2998 * leafidx - return pointer to be set to the index of the leaf
2999 * describing at least l2nb free blocks if sufficient
3000 * free blocks are found.
3001 *
3002 * RETURN VALUES:
3003 * 0 - success
3004 * -ENOSPC - insufficient free blocks.
3005 */
dbFindLeaf(dmtree_t * tp,int l2nb,int * leafidx)3006 static int dbFindLeaf(dmtree_t * tp, int l2nb, int *leafidx)
3007 {
3008 int ti, n = 0, k, x = 0;
3009
3010 /* first check the root of the tree to see if there is
3011 * sufficient free space.
3012 */
3013 if (l2nb > tp->dmt_stree[ROOT])
3014 return -ENOSPC;
3015
3016 /* sufficient free space available. now search down the tree
3017 * starting at the next level for the leftmost leaf that
3018 * describes sufficient free space.
3019 */
3020 for (k = le32_to_cpu(tp->dmt_height), ti = 1;
3021 k > 0; k--, ti = ((ti + n) << 2) + 1) {
3022 /* search the four nodes at this level, starting from
3023 * the left.
3024 */
3025 for (x = ti, n = 0; n < 4; n++) {
3026 /* sufficient free space found. move to the next
3027 * level (or quit if this is the last level).
3028 */
3029 if (l2nb <= tp->dmt_stree[x + n])
3030 break;
3031 }
3032
3033 /* better have found something since the higher
3034 * levels of the tree said it was here.
3035 */
3036 assert(n < 4);
3037 }
3038
3039 /* set the return to the leftmost leaf describing sufficient
3040 * free space.
3041 */
3042 *leafidx = x + n - le32_to_cpu(tp->dmt_leafidx);
3043
3044 return (0);
3045 }
3046
3047
3048 /*
3049 * NAME: dbFindBits()
3050 *
3051 * FUNCTION: find a specified number of binary buddy free bits within a
3052 * dmap bitmap word value.
3053 *
3054 * this routine searches the bitmap value for (1 << l2nb) free
3055 * bits at (1 << l2nb) alignments within the value.
3056 *
3057 * PARAMETERS:
3058 * word - dmap bitmap word value.
3059 * l2nb - number of free bits specified as a log2 number.
3060 *
3061 * RETURN VALUES:
3062 * starting bit number of free bits.
3063 */
dbFindBits(u32 word,int l2nb)3064 static int dbFindBits(u32 word, int l2nb)
3065 {
3066 int bitno, nb;
3067 u32 mask;
3068
3069 /* get the number of bits.
3070 */
3071 nb = 1 << l2nb;
3072 assert(nb <= DBWORD);
3073
3074 /* complement the word so we can use a mask (i.e. 0s represent
3075 * free bits) and compute the mask.
3076 */
3077 word = ~word;
3078 mask = ONES << (DBWORD - nb);
3079
3080 /* scan the word for nb free bits at nb alignments.
3081 */
3082 for (bitno = 0; mask != 0; bitno += nb, mask >>= nb) {
3083 if ((mask & word) == mask)
3084 break;
3085 }
3086
3087 ASSERT(bitno < 32);
3088
3089 /* return the bit number.
3090 */
3091 return (bitno);
3092 }
3093
3094
3095 /*
3096 * NAME: dbMaxBud(u8 *cp)
3097 *
3098 * FUNCTION: determine the largest binary buddy string of free
3099 * bits within 32-bits of the map.
3100 *
3101 * PARAMETERS:
3102 * cp - pointer to the 32-bit value.
3103 *
3104 * RETURN VALUES:
3105 * largest binary buddy of free bits within a dmap word.
3106 */
dbMaxBud(u8 * cp)3107 static int dbMaxBud(u8 * cp)
3108 {
3109 signed char tmp1, tmp2;
3110
3111 /* check if the wmap word is all free. if so, the
3112 * free buddy size is BUDMIN.
3113 */
3114 if (*((uint *) cp) == 0)
3115 return (BUDMIN);
3116
3117 /* check if the wmap word is half free. if so, the
3118 * free buddy size is BUDMIN-1.
3119 */
3120 if (*((u16 *) cp) == 0 || *((u16 *) cp + 1) == 0)
3121 return (BUDMIN - 1);
3122
3123 /* not all free or half free. determine the free buddy
3124 * size thru table lookup using quarters of the wmap word.
3125 */
3126 tmp1 = max(budtab[cp[2]], budtab[cp[3]]);
3127 tmp2 = max(budtab[cp[0]], budtab[cp[1]]);
3128 return (max(tmp1, tmp2));
3129 }
3130
3131
3132 /*
3133 * NAME: cnttz(uint word)
3134 *
3135 * FUNCTION: determine the number of trailing zeros within a 32-bit
3136 * value.
3137 *
3138 * PARAMETERS:
3139 * value - 32-bit value to be examined.
3140 *
3141 * RETURN VALUES:
3142 * count of trailing zeros
3143 */
cnttz(u32 word)3144 static int cnttz(u32 word)
3145 {
3146 int n;
3147
3148 for (n = 0; n < 32; n++, word >>= 1) {
3149 if (word & 0x01)
3150 break;
3151 }
3152
3153 return (n);
3154 }
3155
3156
3157 /*
3158 * NAME: cntlz(u32 value)
3159 *
3160 * FUNCTION: determine the number of leading zeros within a 32-bit
3161 * value.
3162 *
3163 * PARAMETERS:
3164 * value - 32-bit value to be examined.
3165 *
3166 * RETURN VALUES:
3167 * count of leading zeros
3168 */
cntlz(u32 value)3169 static int cntlz(u32 value)
3170 {
3171 int n;
3172
3173 for (n = 0; n < 32; n++, value <<= 1) {
3174 if (value & HIGHORDER)
3175 break;
3176 }
3177 return (n);
3178 }
3179
3180
3181 /*
3182 * NAME: blkstol2(s64 nb)
3183 *
3184 * FUNCTION: convert a block count to its log2 value. if the block
3185 * count is not a l2 multiple, it is rounded up to the next
3186 * larger l2 multiple.
3187 *
3188 * PARAMETERS:
3189 * nb - number of blocks
3190 *
3191 * RETURN VALUES:
3192 * log2 number of blocks
3193 */
blkstol2(s64 nb)3194 static int blkstol2(s64 nb)
3195 {
3196 int l2nb;
3197 s64 mask; /* meant to be signed */
3198
3199 mask = (s64) 1 << (64 - 1);
3200
3201 /* count the leading bits.
3202 */
3203 for (l2nb = 0; l2nb < 64; l2nb++, mask >>= 1) {
3204 /* leading bit found.
3205 */
3206 if (nb & mask) {
3207 /* determine the l2 value.
3208 */
3209 l2nb = (64 - 1) - l2nb;
3210
3211 /* check if we need to round up.
3212 */
3213 if (~mask & nb)
3214 l2nb++;
3215
3216 return (l2nb);
3217 }
3218 }
3219 assert(0);
3220 return 0; /* fix compiler warning */
3221 }
3222
3223
3224 /*
3225 * NAME: dbAllocBottomUp()
3226 *
3227 * FUNCTION: alloc the specified block range from the working block
3228 * allocation map.
3229 *
3230 * the blocks will be alloc from the working map one dmap
3231 * at a time.
3232 *
3233 * PARAMETERS:
3234 * ip - pointer to in-core inode;
3235 * blkno - starting block number to be freed.
3236 * nblocks - number of blocks to be freed.
3237 *
3238 * RETURN VALUES:
3239 * 0 - success
3240 * -EIO - i/o error
3241 */
dbAllocBottomUp(struct inode * ip,s64 blkno,s64 nblocks)3242 int dbAllocBottomUp(struct inode *ip, s64 blkno, s64 nblocks)
3243 {
3244 struct metapage *mp;
3245 struct dmap *dp;
3246 int nb, rc;
3247 s64 lblkno, rem;
3248 struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
3249 struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
3250
3251 IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
3252
3253 /* block to be allocated better be within the mapsize. */
3254 ASSERT(nblocks <= bmp->db_mapsize - blkno);
3255
3256 /*
3257 * allocate the blocks a dmap at a time.
3258 */
3259 mp = NULL;
3260 for (rem = nblocks; rem > 0; rem -= nb, blkno += nb) {
3261 /* release previous dmap if any */
3262 if (mp) {
3263 write_metapage(mp);
3264 }
3265
3266 /* get the buffer for the current dmap. */
3267 lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
3268 mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
3269 if (mp == NULL) {
3270 IREAD_UNLOCK(ipbmap);
3271 return -EIO;
3272 }
3273 dp = (struct dmap *) mp->data;
3274
3275 /* determine the number of blocks to be allocated from
3276 * this dmap.
3277 */
3278 nb = min(rem, BPERDMAP - (blkno & (BPERDMAP - 1)));
3279
3280 /* allocate the blocks. */
3281 if ((rc = dbAllocDmapBU(bmp, dp, blkno, nb))) {
3282 release_metapage(mp);
3283 IREAD_UNLOCK(ipbmap);
3284 return (rc);
3285 }
3286 }
3287
3288 /* write the last buffer. */
3289 write_metapage(mp);
3290
3291 IREAD_UNLOCK(ipbmap);
3292
3293 return (0);
3294 }
3295
3296
dbAllocDmapBU(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks)3297 static int dbAllocDmapBU(struct bmap * bmp, struct dmap * dp, s64 blkno,
3298 int nblocks)
3299 {
3300 int rc;
3301 int dbitno, word, rembits, nb, nwords, wbitno, agno;
3302 s8 oldroot;
3303 struct dmaptree *tp = (struct dmaptree *) & dp->tree;
3304
3305 /* save the current value of the root (i.e. maximum free string)
3306 * of the dmap tree.
3307 */
3308 oldroot = tp->stree[ROOT];
3309
3310 /* determine the bit number and word within the dmap of the
3311 * starting block.
3312 */
3313 dbitno = blkno & (BPERDMAP - 1);
3314 word = dbitno >> L2DBWORD;
3315
3316 /* block range better be within the dmap */
3317 assert(dbitno + nblocks <= BPERDMAP);
3318
3319 /* allocate the bits of the dmap's words corresponding to the block
3320 * range. not all bits of the first and last words may be contained
3321 * within the block range. if this is the case, we'll work against
3322 * those words (i.e. partial first and/or last) on an individual basis
3323 * (a single pass), allocating the bits of interest by hand and
3324 * updating the leaf corresponding to the dmap word. a single pass
3325 * will be used for all dmap words fully contained within the
3326 * specified range. within this pass, the bits of all fully contained
3327 * dmap words will be marked as free in a single shot and the leaves
3328 * will be updated. a single leaf may describe the free space of
3329 * multiple dmap words, so we may update only a subset of the actual
3330 * leaves corresponding to the dmap words of the block range.
3331 */
3332 for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
3333 /* determine the bit number within the word and
3334 * the number of bits within the word.
3335 */
3336 wbitno = dbitno & (DBWORD - 1);
3337 nb = min(rembits, DBWORD - wbitno);
3338
3339 /* check if only part of a word is to be allocated.
3340 */
3341 if (nb < DBWORD) {
3342 /* allocate (set to 1) the appropriate bits within
3343 * this dmap word.
3344 */
3345 dp->wmap[word] |= cpu_to_le32(ONES << (DBWORD - nb)
3346 >> wbitno);
3347
3348 word++;
3349 } else {
3350 /* one or more dmap words are fully contained
3351 * within the block range. determine how many
3352 * words and allocate (set to 1) the bits of these
3353 * words.
3354 */
3355 nwords = rembits >> L2DBWORD;
3356 memset(&dp->wmap[word], (int) ONES, nwords * 4);
3357
3358 /* determine how many bits */
3359 nb = nwords << L2DBWORD;
3360 word += nwords;
3361 }
3362 }
3363
3364 /* update the free count for this dmap */
3365 le32_add_cpu(&dp->nfree, -nblocks);
3366
3367 /* reconstruct summary tree */
3368 dbInitDmapTree(dp);
3369
3370 BMAP_LOCK(bmp);
3371
3372 /* if this allocation group is completely free,
3373 * update the highest active allocation group number
3374 * if this allocation group is the new max.
3375 */
3376 agno = blkno >> bmp->db_agl2size;
3377 if (agno > bmp->db_maxag)
3378 bmp->db_maxag = agno;
3379
3380 /* update the free count for the allocation group and map */
3381 bmp->db_agfree[agno] -= nblocks;
3382 bmp->db_nfree -= nblocks;
3383
3384 BMAP_UNLOCK(bmp);
3385
3386 /* if the root has not changed, done. */
3387 if (tp->stree[ROOT] == oldroot)
3388 return (0);
3389
3390 /* root changed. bubble the change up to the dmap control pages.
3391 * if the adjustment of the upper level control pages fails,
3392 * backout the bit allocation (thus making everything consistent).
3393 */
3394 if ((rc = dbAdjCtl(bmp, blkno, tp->stree[ROOT], 1, 0)))
3395 dbFreeBits(bmp, dp, blkno, nblocks);
3396
3397 return (rc);
3398 }
3399
3400
3401 /*
3402 * NAME: dbExtendFS()
3403 *
3404 * FUNCTION: extend bmap from blkno for nblocks;
3405 * dbExtendFS() updates bmap ready for dbAllocBottomUp();
3406 *
3407 * L2
3408 * |
3409 * L1---------------------------------L1
3410 * | |
3411 * L0---------L0---------L0 L0---------L0---------L0
3412 * | | | | | |
3413 * d0,...,dn d0,...,dn d0,...,dn d0,...,dn d0,...,dn d0,.,dm;
3414 * L2L1L0d0,...,dnL0d0,...,dnL0d0,...,dnL1L0d0,...,dnL0d0,...,dnL0d0,..dm
3415 *
3416 * <---old---><----------------------------extend----------------------->
3417 */
dbExtendFS(struct inode * ipbmap,s64 blkno,s64 nblocks)3418 int dbExtendFS(struct inode *ipbmap, s64 blkno, s64 nblocks)
3419 {
3420 struct jfs_sb_info *sbi = JFS_SBI(ipbmap->i_sb);
3421 int nbperpage = sbi->nbperpage;
3422 int i, i0 = true, j, j0 = true, k, n;
3423 s64 newsize;
3424 s64 p;
3425 struct metapage *mp, *l2mp, *l1mp = NULL, *l0mp = NULL;
3426 struct dmapctl *l2dcp, *l1dcp, *l0dcp;
3427 struct dmap *dp;
3428 s8 *l0leaf, *l1leaf, *l2leaf;
3429 struct bmap *bmp = sbi->bmap;
3430 int agno, l2agsize, oldl2agsize;
3431 s64 ag_rem;
3432
3433 newsize = blkno + nblocks;
3434
3435 jfs_info("dbExtendFS: blkno:%Ld nblocks:%Ld newsize:%Ld",
3436 (long long) blkno, (long long) nblocks, (long long) newsize);
3437
3438 /*
3439 * initialize bmap control page.
3440 *
3441 * all the data in bmap control page should exclude
3442 * the mkfs hidden dmap page.
3443 */
3444
3445 /* update mapsize */
3446 bmp->db_mapsize = newsize;
3447 bmp->db_maxlevel = BMAPSZTOLEV(bmp->db_mapsize);
3448
3449 /* compute new AG size */
3450 l2agsize = dbGetL2AGSize(newsize);
3451 oldl2agsize = bmp->db_agl2size;
3452
3453 bmp->db_agl2size = l2agsize;
3454 bmp->db_agsize = 1 << l2agsize;
3455
3456 /* compute new number of AG */
3457 agno = bmp->db_numag;
3458 bmp->db_numag = newsize >> l2agsize;
3459 bmp->db_numag += ((u32) newsize % (u32) bmp->db_agsize) ? 1 : 0;
3460
3461 /*
3462 * reconfigure db_agfree[]
3463 * from old AG configuration to new AG configuration;
3464 *
3465 * coalesce contiguous k (newAGSize/oldAGSize) AGs;
3466 * i.e., (AGi, ..., AGj) where i = k*n and j = k*(n+1) - 1 to AGn;
3467 * note: new AG size = old AG size * (2**x).
3468 */
3469 if (l2agsize == oldl2agsize)
3470 goto extend;
3471 k = 1 << (l2agsize - oldl2agsize);
3472 ag_rem = bmp->db_agfree[0]; /* save agfree[0] */
3473 for (i = 0, n = 0; i < agno; n++) {
3474 bmp->db_agfree[n] = 0; /* init collection point */
3475
3476 /* coalesce contiguous k AGs; */
3477 for (j = 0; j < k && i < agno; j++, i++) {
3478 /* merge AGi to AGn */
3479 bmp->db_agfree[n] += bmp->db_agfree[i];
3480 }
3481 }
3482 bmp->db_agfree[0] += ag_rem; /* restore agfree[0] */
3483
3484 for (; n < MAXAG; n++)
3485 bmp->db_agfree[n] = 0;
3486
3487 /*
3488 * update highest active ag number
3489 */
3490
3491 bmp->db_maxag = bmp->db_maxag / k;
3492
3493 /*
3494 * extend bmap
3495 *
3496 * update bit maps and corresponding level control pages;
3497 * global control page db_nfree, db_agfree[agno], db_maxfreebud;
3498 */
3499 extend:
3500 /* get L2 page */
3501 p = BMAPBLKNO + nbperpage; /* L2 page */
3502 l2mp = read_metapage(ipbmap, p, PSIZE, 0);
3503 if (!l2mp) {
3504 jfs_error(ipbmap->i_sb, "L2 page could not be read\n");
3505 return -EIO;
3506 }
3507 l2dcp = (struct dmapctl *) l2mp->data;
3508
3509 /* compute start L1 */
3510 k = blkno >> L2MAXL1SIZE;
3511 l2leaf = l2dcp->stree + CTLLEAFIND + k;
3512 p = BLKTOL1(blkno, sbi->l2nbperpage); /* L1 page */
3513
3514 /*
3515 * extend each L1 in L2
3516 */
3517 for (; k < LPERCTL; k++, p += nbperpage) {
3518 /* get L1 page */
3519 if (j0) {
3520 /* read in L1 page: (blkno & (MAXL1SIZE - 1)) */
3521 l1mp = read_metapage(ipbmap, p, PSIZE, 0);
3522 if (l1mp == NULL)
3523 goto errout;
3524 l1dcp = (struct dmapctl *) l1mp->data;
3525
3526 /* compute start L0 */
3527 j = (blkno & (MAXL1SIZE - 1)) >> L2MAXL0SIZE;
3528 l1leaf = l1dcp->stree + CTLLEAFIND + j;
3529 p = BLKTOL0(blkno, sbi->l2nbperpage);
3530 j0 = false;
3531 } else {
3532 /* assign/init L1 page */
3533 l1mp = get_metapage(ipbmap, p, PSIZE, 0);
3534 if (l1mp == NULL)
3535 goto errout;
3536
3537 l1dcp = (struct dmapctl *) l1mp->data;
3538
3539 /* compute start L0 */
3540 j = 0;
3541 l1leaf = l1dcp->stree + CTLLEAFIND;
3542 p += nbperpage; /* 1st L0 of L1.k */
3543 }
3544
3545 /*
3546 * extend each L0 in L1
3547 */
3548 for (; j < LPERCTL; j++) {
3549 /* get L0 page */
3550 if (i0) {
3551 /* read in L0 page: (blkno & (MAXL0SIZE - 1)) */
3552
3553 l0mp = read_metapage(ipbmap, p, PSIZE, 0);
3554 if (l0mp == NULL)
3555 goto errout;
3556 l0dcp = (struct dmapctl *) l0mp->data;
3557
3558 /* compute start dmap */
3559 i = (blkno & (MAXL0SIZE - 1)) >>
3560 L2BPERDMAP;
3561 l0leaf = l0dcp->stree + CTLLEAFIND + i;
3562 p = BLKTODMAP(blkno,
3563 sbi->l2nbperpage);
3564 i0 = false;
3565 } else {
3566 /* assign/init L0 page */
3567 l0mp = get_metapage(ipbmap, p, PSIZE, 0);
3568 if (l0mp == NULL)
3569 goto errout;
3570
3571 l0dcp = (struct dmapctl *) l0mp->data;
3572
3573 /* compute start dmap */
3574 i = 0;
3575 l0leaf = l0dcp->stree + CTLLEAFIND;
3576 p += nbperpage; /* 1st dmap of L0.j */
3577 }
3578
3579 /*
3580 * extend each dmap in L0
3581 */
3582 for (; i < LPERCTL; i++) {
3583 /*
3584 * reconstruct the dmap page, and
3585 * initialize corresponding parent L0 leaf
3586 */
3587 if ((n = blkno & (BPERDMAP - 1))) {
3588 /* read in dmap page: */
3589 mp = read_metapage(ipbmap, p,
3590 PSIZE, 0);
3591 if (mp == NULL)
3592 goto errout;
3593 n = min(nblocks, (s64)BPERDMAP - n);
3594 } else {
3595 /* assign/init dmap page */
3596 mp = read_metapage(ipbmap, p,
3597 PSIZE, 0);
3598 if (mp == NULL)
3599 goto errout;
3600
3601 n = min_t(s64, nblocks, BPERDMAP);
3602 }
3603
3604 dp = (struct dmap *) mp->data;
3605 *l0leaf = dbInitDmap(dp, blkno, n);
3606
3607 bmp->db_nfree += n;
3608 agno = le64_to_cpu(dp->start) >> l2agsize;
3609 bmp->db_agfree[agno] += n;
3610
3611 write_metapage(mp);
3612
3613 l0leaf++;
3614 p += nbperpage;
3615
3616 blkno += n;
3617 nblocks -= n;
3618 if (nblocks == 0)
3619 break;
3620 } /* for each dmap in a L0 */
3621
3622 /*
3623 * build current L0 page from its leaves, and
3624 * initialize corresponding parent L1 leaf
3625 */
3626 *l1leaf = dbInitDmapCtl(l0dcp, 0, ++i);
3627 write_metapage(l0mp);
3628 l0mp = NULL;
3629
3630 if (nblocks)
3631 l1leaf++; /* continue for next L0 */
3632 else {
3633 /* more than 1 L0 ? */
3634 if (j > 0)
3635 break; /* build L1 page */
3636 else {
3637 /* summarize in global bmap page */
3638 bmp->db_maxfreebud = *l1leaf;
3639 release_metapage(l1mp);
3640 release_metapage(l2mp);
3641 goto finalize;
3642 }
3643 }
3644 } /* for each L0 in a L1 */
3645
3646 /*
3647 * build current L1 page from its leaves, and
3648 * initialize corresponding parent L2 leaf
3649 */
3650 *l2leaf = dbInitDmapCtl(l1dcp, 1, ++j);
3651 write_metapage(l1mp);
3652 l1mp = NULL;
3653
3654 if (nblocks)
3655 l2leaf++; /* continue for next L1 */
3656 else {
3657 /* more than 1 L1 ? */
3658 if (k > 0)
3659 break; /* build L2 page */
3660 else {
3661 /* summarize in global bmap page */
3662 bmp->db_maxfreebud = *l2leaf;
3663 release_metapage(l2mp);
3664 goto finalize;
3665 }
3666 }
3667 } /* for each L1 in a L2 */
3668
3669 jfs_error(ipbmap->i_sb, "function has not returned as expected\n");
3670 errout:
3671 if (l0mp)
3672 release_metapage(l0mp);
3673 if (l1mp)
3674 release_metapage(l1mp);
3675 release_metapage(l2mp);
3676 return -EIO;
3677
3678 /*
3679 * finalize bmap control page
3680 */
3681 finalize:
3682
3683 return 0;
3684 }
3685
3686
3687 /*
3688 * dbFinalizeBmap()
3689 */
dbFinalizeBmap(struct inode * ipbmap)3690 void dbFinalizeBmap(struct inode *ipbmap)
3691 {
3692 struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
3693 int actags, inactags, l2nl;
3694 s64 ag_rem, actfree, inactfree, avgfree;
3695 int i, n;
3696
3697 /*
3698 * finalize bmap control page
3699 */
3700 //finalize:
3701 /*
3702 * compute db_agpref: preferred ag to allocate from
3703 * (the leftmost ag with average free space in it);
3704 */
3705 //agpref:
3706 /* get the number of active ags and inacitve ags */
3707 actags = bmp->db_maxag + 1;
3708 inactags = bmp->db_numag - actags;
3709 ag_rem = bmp->db_mapsize & (bmp->db_agsize - 1); /* ??? */
3710
3711 /* determine how many blocks are in the inactive allocation
3712 * groups. in doing this, we must account for the fact that
3713 * the rightmost group might be a partial group (i.e. file
3714 * system size is not a multiple of the group size).
3715 */
3716 inactfree = (inactags && ag_rem) ?
3717 ((inactags - 1) << bmp->db_agl2size) + ag_rem
3718 : inactags << bmp->db_agl2size;
3719
3720 /* determine how many free blocks are in the active
3721 * allocation groups plus the average number of free blocks
3722 * within the active ags.
3723 */
3724 actfree = bmp->db_nfree - inactfree;
3725 avgfree = (u32) actfree / (u32) actags;
3726
3727 /* if the preferred allocation group has not average free space.
3728 * re-establish the preferred group as the leftmost
3729 * group with average free space.
3730 */
3731 if (bmp->db_agfree[bmp->db_agpref] < avgfree) {
3732 for (bmp->db_agpref = 0; bmp->db_agpref < actags;
3733 bmp->db_agpref++) {
3734 if (bmp->db_agfree[bmp->db_agpref] >= avgfree)
3735 break;
3736 }
3737 if (bmp->db_agpref >= bmp->db_numag) {
3738 jfs_error(ipbmap->i_sb,
3739 "cannot find ag with average freespace\n");
3740 }
3741 }
3742
3743 /*
3744 * compute db_aglevel, db_agheight, db_width, db_agstart:
3745 * an ag is covered in aglevel dmapctl summary tree,
3746 * at agheight level height (from leaf) with agwidth number of nodes
3747 * each, which starts at agstart index node of the smmary tree node
3748 * array;
3749 */
3750 bmp->db_aglevel = BMAPSZTOLEV(bmp->db_agsize);
3751 l2nl =
3752 bmp->db_agl2size - (L2BPERDMAP + bmp->db_aglevel * L2LPERCTL);
3753 bmp->db_agheight = l2nl >> 1;
3754 bmp->db_agwidth = 1 << (l2nl - (bmp->db_agheight << 1));
3755 for (i = 5 - bmp->db_agheight, bmp->db_agstart = 0, n = 1; i > 0;
3756 i--) {
3757 bmp->db_agstart += n;
3758 n <<= 2;
3759 }
3760
3761 }
3762
3763
3764 /*
3765 * NAME: dbInitDmap()/ujfs_idmap_page()
3766 *
3767 * FUNCTION: initialize working/persistent bitmap of the dmap page
3768 * for the specified number of blocks:
3769 *
3770 * at entry, the bitmaps had been initialized as free (ZEROS);
3771 * The number of blocks will only account for the actually
3772 * existing blocks. Blocks which don't actually exist in
3773 * the aggregate will be marked as allocated (ONES);
3774 *
3775 * PARAMETERS:
3776 * dp - pointer to page of map
3777 * nblocks - number of blocks this page
3778 *
3779 * RETURNS: NONE
3780 */
dbInitDmap(struct dmap * dp,s64 Blkno,int nblocks)3781 static int dbInitDmap(struct dmap * dp, s64 Blkno, int nblocks)
3782 {
3783 int blkno, w, b, r, nw, nb, i;
3784
3785 /* starting block number within the dmap */
3786 blkno = Blkno & (BPERDMAP - 1);
3787
3788 if (blkno == 0) {
3789 dp->nblocks = dp->nfree = cpu_to_le32(nblocks);
3790 dp->start = cpu_to_le64(Blkno);
3791
3792 if (nblocks == BPERDMAP) {
3793 memset(&dp->wmap[0], 0, LPERDMAP * 4);
3794 memset(&dp->pmap[0], 0, LPERDMAP * 4);
3795 goto initTree;
3796 }
3797 } else {
3798 le32_add_cpu(&dp->nblocks, nblocks);
3799 le32_add_cpu(&dp->nfree, nblocks);
3800 }
3801
3802 /* word number containing start block number */
3803 w = blkno >> L2DBWORD;
3804
3805 /*
3806 * free the bits corresponding to the block range (ZEROS):
3807 * note: not all bits of the first and last words may be contained
3808 * within the block range.
3809 */
3810 for (r = nblocks; r > 0; r -= nb, blkno += nb) {
3811 /* number of bits preceding range to be freed in the word */
3812 b = blkno & (DBWORD - 1);
3813 /* number of bits to free in the word */
3814 nb = min(r, DBWORD - b);
3815
3816 /* is partial word to be freed ? */
3817 if (nb < DBWORD) {
3818 /* free (set to 0) from the bitmap word */
3819 dp->wmap[w] &= cpu_to_le32(~(ONES << (DBWORD - nb)
3820 >> b));
3821 dp->pmap[w] &= cpu_to_le32(~(ONES << (DBWORD - nb)
3822 >> b));
3823
3824 /* skip the word freed */
3825 w++;
3826 } else {
3827 /* free (set to 0) contiguous bitmap words */
3828 nw = r >> L2DBWORD;
3829 memset(&dp->wmap[w], 0, nw * 4);
3830 memset(&dp->pmap[w], 0, nw * 4);
3831
3832 /* skip the words freed */
3833 nb = nw << L2DBWORD;
3834 w += nw;
3835 }
3836 }
3837
3838 /*
3839 * mark bits following the range to be freed (non-existing
3840 * blocks) as allocated (ONES)
3841 */
3842
3843 if (blkno == BPERDMAP)
3844 goto initTree;
3845
3846 /* the first word beyond the end of existing blocks */
3847 w = blkno >> L2DBWORD;
3848
3849 /* does nblocks fall on a 32-bit boundary ? */
3850 b = blkno & (DBWORD - 1);
3851 if (b) {
3852 /* mark a partial word allocated */
3853 dp->wmap[w] = dp->pmap[w] = cpu_to_le32(ONES >> b);
3854 w++;
3855 }
3856
3857 /* set the rest of the words in the page to allocated (ONES) */
3858 for (i = w; i < LPERDMAP; i++)
3859 dp->pmap[i] = dp->wmap[i] = cpu_to_le32(ONES);
3860
3861 /*
3862 * init tree
3863 */
3864 initTree:
3865 return (dbInitDmapTree(dp));
3866 }
3867
3868
3869 /*
3870 * NAME: dbInitDmapTree()/ujfs_complete_dmap()
3871 *
3872 * FUNCTION: initialize summary tree of the specified dmap:
3873 *
3874 * at entry, bitmap of the dmap has been initialized;
3875 *
3876 * PARAMETERS:
3877 * dp - dmap to complete
3878 * blkno - starting block number for this dmap
3879 * treemax - will be filled in with max free for this dmap
3880 *
3881 * RETURNS: max free string at the root of the tree
3882 */
dbInitDmapTree(struct dmap * dp)3883 static int dbInitDmapTree(struct dmap * dp)
3884 {
3885 struct dmaptree *tp;
3886 s8 *cp;
3887 int i;
3888
3889 /* init fixed info of tree */
3890 tp = &dp->tree;
3891 tp->nleafs = cpu_to_le32(LPERDMAP);
3892 tp->l2nleafs = cpu_to_le32(L2LPERDMAP);
3893 tp->leafidx = cpu_to_le32(LEAFIND);
3894 tp->height = cpu_to_le32(4);
3895 tp->budmin = BUDMIN;
3896
3897 /* init each leaf from corresponding wmap word:
3898 * note: leaf is set to NOFREE(-1) if all blocks of corresponding
3899 * bitmap word are allocated.
3900 */
3901 cp = tp->stree + le32_to_cpu(tp->leafidx);
3902 for (i = 0; i < LPERDMAP; i++)
3903 *cp++ = dbMaxBud((u8 *) & dp->wmap[i]);
3904
3905 /* build the dmap's binary buddy summary tree */
3906 return (dbInitTree(tp));
3907 }
3908
3909
3910 /*
3911 * NAME: dbInitTree()/ujfs_adjtree()
3912 *
3913 * FUNCTION: initialize binary buddy summary tree of a dmap or dmapctl.
3914 *
3915 * at entry, the leaves of the tree has been initialized
3916 * from corresponding bitmap word or root of summary tree
3917 * of the child control page;
3918 * configure binary buddy system at the leaf level, then
3919 * bubble up the values of the leaf nodes up the tree.
3920 *
3921 * PARAMETERS:
3922 * cp - Pointer to the root of the tree
3923 * l2leaves- Number of leaf nodes as a power of 2
3924 * l2min - Number of blocks that can be covered by a leaf
3925 * as a power of 2
3926 *
3927 * RETURNS: max free string at the root of the tree
3928 */
dbInitTree(struct dmaptree * dtp)3929 static int dbInitTree(struct dmaptree * dtp)
3930 {
3931 int l2max, l2free, bsize, nextb, i;
3932 int child, parent, nparent;
3933 s8 *tp, *cp, *cp1;
3934
3935 tp = dtp->stree;
3936
3937 /* Determine the maximum free string possible for the leaves */
3938 l2max = le32_to_cpu(dtp->l2nleafs) + dtp->budmin;
3939
3940 /*
3941 * configure the leaf levevl into binary buddy system
3942 *
3943 * Try to combine buddies starting with a buddy size of 1
3944 * (i.e. two leaves). At a buddy size of 1 two buddy leaves
3945 * can be combined if both buddies have a maximum free of l2min;
3946 * the combination will result in the left-most buddy leaf having
3947 * a maximum free of l2min+1.
3948 * After processing all buddies for a given size, process buddies
3949 * at the next higher buddy size (i.e. current size * 2) and
3950 * the next maximum free (current free + 1).
3951 * This continues until the maximum possible buddy combination
3952 * yields maximum free.
3953 */
3954 for (l2free = dtp->budmin, bsize = 1; l2free < l2max;
3955 l2free++, bsize = nextb) {
3956 /* get next buddy size == current buddy pair size */
3957 nextb = bsize << 1;
3958
3959 /* scan each adjacent buddy pair at current buddy size */
3960 for (i = 0, cp = tp + le32_to_cpu(dtp->leafidx);
3961 i < le32_to_cpu(dtp->nleafs);
3962 i += nextb, cp += nextb) {
3963 /* coalesce if both adjacent buddies are max free */
3964 if (*cp == l2free && *(cp + bsize) == l2free) {
3965 *cp = l2free + 1; /* left take right */
3966 *(cp + bsize) = -1; /* right give left */
3967 }
3968 }
3969 }
3970
3971 /*
3972 * bubble summary information of leaves up the tree.
3973 *
3974 * Starting at the leaf node level, the four nodes described by
3975 * the higher level parent node are compared for a maximum free and
3976 * this maximum becomes the value of the parent node.
3977 * when all lower level nodes are processed in this fashion then
3978 * move up to the next level (parent becomes a lower level node) and
3979 * continue the process for that level.
3980 */
3981 for (child = le32_to_cpu(dtp->leafidx),
3982 nparent = le32_to_cpu(dtp->nleafs) >> 2;
3983 nparent > 0; nparent >>= 2, child = parent) {
3984 /* get index of 1st node of parent level */
3985 parent = (child - 1) >> 2;
3986
3987 /* set the value of the parent node as the maximum
3988 * of the four nodes of the current level.
3989 */
3990 for (i = 0, cp = tp + child, cp1 = tp + parent;
3991 i < nparent; i++, cp += 4, cp1++)
3992 *cp1 = TREEMAX(cp);
3993 }
3994
3995 return (*tp);
3996 }
3997
3998
3999 /*
4000 * dbInitDmapCtl()
4001 *
4002 * function: initialize dmapctl page
4003 */
dbInitDmapCtl(struct dmapctl * dcp,int level,int i)4004 static int dbInitDmapCtl(struct dmapctl * dcp, int level, int i)
4005 { /* start leaf index not covered by range */
4006 s8 *cp;
4007
4008 dcp->nleafs = cpu_to_le32(LPERCTL);
4009 dcp->l2nleafs = cpu_to_le32(L2LPERCTL);
4010 dcp->leafidx = cpu_to_le32(CTLLEAFIND);
4011 dcp->height = cpu_to_le32(5);
4012 dcp->budmin = L2BPERDMAP + L2LPERCTL * level;
4013
4014 /*
4015 * initialize the leaves of current level that were not covered
4016 * by the specified input block range (i.e. the leaves have no
4017 * low level dmapctl or dmap).
4018 */
4019 cp = &dcp->stree[CTLLEAFIND + i];
4020 for (; i < LPERCTL; i++)
4021 *cp++ = NOFREE;
4022
4023 /* build the dmap's binary buddy summary tree */
4024 return (dbInitTree((struct dmaptree *) dcp));
4025 }
4026
4027
4028 /*
4029 * NAME: dbGetL2AGSize()/ujfs_getagl2size()
4030 *
4031 * FUNCTION: Determine log2(allocation group size) from aggregate size
4032 *
4033 * PARAMETERS:
4034 * nblocks - Number of blocks in aggregate
4035 *
4036 * RETURNS: log2(allocation group size) in aggregate blocks
4037 */
dbGetL2AGSize(s64 nblocks)4038 static int dbGetL2AGSize(s64 nblocks)
4039 {
4040 s64 sz;
4041 s64 m;
4042 int l2sz;
4043
4044 if (nblocks < BPERDMAP * MAXAG)
4045 return (L2BPERDMAP);
4046
4047 /* round up aggregate size to power of 2 */
4048 m = ((u64) 1 << (64 - 1));
4049 for (l2sz = 64; l2sz >= 0; l2sz--, m >>= 1) {
4050 if (m & nblocks)
4051 break;
4052 }
4053
4054 sz = (s64) 1 << l2sz;
4055 if (sz < nblocks)
4056 l2sz += 1;
4057
4058 /* agsize = roundupSize/max_number_of_ag */
4059 return (l2sz - L2MAXAG);
4060 }
4061
4062
4063 /*
4064 * NAME: dbMapFileSizeToMapSize()
4065 *
4066 * FUNCTION: compute number of blocks the block allocation map file
4067 * can cover from the map file size;
4068 *
4069 * RETURNS: Number of blocks which can be covered by this block map file;
4070 */
4071
4072 /*
4073 * maximum number of map pages at each level including control pages
4074 */
4075 #define MAXL0PAGES (1 + LPERCTL)
4076 #define MAXL1PAGES (1 + LPERCTL * MAXL0PAGES)
4077 #define MAXL2PAGES (1 + LPERCTL * MAXL1PAGES)
4078
4079 /*
4080 * convert number of map pages to the zero origin top dmapctl level
4081 */
4082 #define BMAPPGTOLEV(npages) \
4083 (((npages) <= 3 + MAXL0PAGES) ? 0 : \
4084 ((npages) <= 2 + MAXL1PAGES) ? 1 : 2)
4085
dbMapFileSizeToMapSize(struct inode * ipbmap)4086 s64 dbMapFileSizeToMapSize(struct inode * ipbmap)
4087 {
4088 struct super_block *sb = ipbmap->i_sb;
4089 s64 nblocks;
4090 s64 npages, ndmaps;
4091 int level, i;
4092 int complete, factor;
4093
4094 nblocks = ipbmap->i_size >> JFS_SBI(sb)->l2bsize;
4095 npages = nblocks >> JFS_SBI(sb)->l2nbperpage;
4096 level = BMAPPGTOLEV(npages);
4097
4098 /* At each level, accumulate the number of dmap pages covered by
4099 * the number of full child levels below it;
4100 * repeat for the last incomplete child level.
4101 */
4102 ndmaps = 0;
4103 npages--; /* skip the first global control page */
4104 /* skip higher level control pages above top level covered by map */
4105 npages -= (2 - level);
4106 npages--; /* skip top level's control page */
4107 for (i = level; i >= 0; i--) {
4108 factor =
4109 (i == 2) ? MAXL1PAGES : ((i == 1) ? MAXL0PAGES : 1);
4110 complete = (u32) npages / factor;
4111 ndmaps += complete * ((i == 2) ? LPERCTL * LPERCTL :
4112 ((i == 1) ? LPERCTL : 1));
4113
4114 /* pages in last/incomplete child */
4115 npages = (u32) npages % factor;
4116 /* skip incomplete child's level control page */
4117 npages--;
4118 }
4119
4120 /* convert the number of dmaps into the number of blocks
4121 * which can be covered by the dmaps;
4122 */
4123 nblocks = ndmaps << L2BPERDMAP;
4124
4125 return (nblocks);
4126 }
4127