1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18 
19 #include <linux/mman.h>
20 #include <linux/kvm_host.h>
21 #include <linux/io.h>
22 #include <linux/hugetlb.h>
23 #include <linux/sched/signal.h>
24 #include <trace/events/kvm.h>
25 #include <asm/pgalloc.h>
26 #include <asm/cacheflush.h>
27 #include <asm/kvm_arm.h>
28 #include <asm/kvm_mmu.h>
29 #include <asm/kvm_mmio.h>
30 #include <asm/kvm_asm.h>
31 #include <asm/kvm_emulate.h>
32 #include <asm/virt.h>
33 #include <asm/system_misc.h>
34 
35 #include "trace.h"
36 
37 static pgd_t *boot_hyp_pgd;
38 static pgd_t *hyp_pgd;
39 static pgd_t *merged_hyp_pgd;
40 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
41 
42 static unsigned long hyp_idmap_start;
43 static unsigned long hyp_idmap_end;
44 static phys_addr_t hyp_idmap_vector;
45 
46 static unsigned long io_map_base;
47 
48 #define S2_PGD_SIZE	(PTRS_PER_S2_PGD * sizeof(pgd_t))
49 #define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
50 
51 #define KVM_S2PTE_FLAG_IS_IOMAP		(1UL << 0)
52 #define KVM_S2_FLAG_LOGGING_ACTIVE	(1UL << 1)
53 
memslot_is_logging(struct kvm_memory_slot * memslot)54 static bool memslot_is_logging(struct kvm_memory_slot *memslot)
55 {
56 	return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
57 }
58 
59 /**
60  * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
61  * @kvm:	pointer to kvm structure.
62  *
63  * Interface to HYP function to flush all VM TLB entries
64  */
kvm_flush_remote_tlbs(struct kvm * kvm)65 void kvm_flush_remote_tlbs(struct kvm *kvm)
66 {
67 	kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
68 }
69 
kvm_tlb_flush_vmid_ipa(struct kvm * kvm,phys_addr_t ipa)70 static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
71 {
72 	kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
73 }
74 
75 /*
76  * D-Cache management functions. They take the page table entries by
77  * value, as they are flushing the cache using the kernel mapping (or
78  * kmap on 32bit).
79  */
kvm_flush_dcache_pte(pte_t pte)80 static void kvm_flush_dcache_pte(pte_t pte)
81 {
82 	__kvm_flush_dcache_pte(pte);
83 }
84 
kvm_flush_dcache_pmd(pmd_t pmd)85 static void kvm_flush_dcache_pmd(pmd_t pmd)
86 {
87 	__kvm_flush_dcache_pmd(pmd);
88 }
89 
kvm_flush_dcache_pud(pud_t pud)90 static void kvm_flush_dcache_pud(pud_t pud)
91 {
92 	__kvm_flush_dcache_pud(pud);
93 }
94 
kvm_is_device_pfn(unsigned long pfn)95 static bool kvm_is_device_pfn(unsigned long pfn)
96 {
97 	return !pfn_valid(pfn);
98 }
99 
100 /**
101  * stage2_dissolve_pmd() - clear and flush huge PMD entry
102  * @kvm:	pointer to kvm structure.
103  * @addr:	IPA
104  * @pmd:	pmd pointer for IPA
105  *
106  * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. Marks all
107  * pages in the range dirty.
108  */
stage2_dissolve_pmd(struct kvm * kvm,phys_addr_t addr,pmd_t * pmd)109 static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
110 {
111 	if (!pmd_thp_or_huge(*pmd))
112 		return;
113 
114 	pmd_clear(pmd);
115 	kvm_tlb_flush_vmid_ipa(kvm, addr);
116 	put_page(virt_to_page(pmd));
117 }
118 
mmu_topup_memory_cache(struct kvm_mmu_memory_cache * cache,int min,int max)119 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
120 				  int min, int max)
121 {
122 	void *page;
123 
124 	BUG_ON(max > KVM_NR_MEM_OBJS);
125 	if (cache->nobjs >= min)
126 		return 0;
127 	while (cache->nobjs < max) {
128 		page = (void *)__get_free_page(PGALLOC_GFP);
129 		if (!page)
130 			return -ENOMEM;
131 		cache->objects[cache->nobjs++] = page;
132 	}
133 	return 0;
134 }
135 
mmu_free_memory_cache(struct kvm_mmu_memory_cache * mc)136 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
137 {
138 	while (mc->nobjs)
139 		free_page((unsigned long)mc->objects[--mc->nobjs]);
140 }
141 
mmu_memory_cache_alloc(struct kvm_mmu_memory_cache * mc)142 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
143 {
144 	void *p;
145 
146 	BUG_ON(!mc || !mc->nobjs);
147 	p = mc->objects[--mc->nobjs];
148 	return p;
149 }
150 
clear_stage2_pgd_entry(struct kvm * kvm,pgd_t * pgd,phys_addr_t addr)151 static void clear_stage2_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
152 {
153 	pud_t *pud_table __maybe_unused = stage2_pud_offset(pgd, 0UL);
154 	stage2_pgd_clear(pgd);
155 	kvm_tlb_flush_vmid_ipa(kvm, addr);
156 	stage2_pud_free(pud_table);
157 	put_page(virt_to_page(pgd));
158 }
159 
clear_stage2_pud_entry(struct kvm * kvm,pud_t * pud,phys_addr_t addr)160 static void clear_stage2_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
161 {
162 	pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(pud, 0);
163 	VM_BUG_ON(stage2_pud_huge(*pud));
164 	stage2_pud_clear(pud);
165 	kvm_tlb_flush_vmid_ipa(kvm, addr);
166 	stage2_pmd_free(pmd_table);
167 	put_page(virt_to_page(pud));
168 }
169 
clear_stage2_pmd_entry(struct kvm * kvm,pmd_t * pmd,phys_addr_t addr)170 static void clear_stage2_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
171 {
172 	pte_t *pte_table = pte_offset_kernel(pmd, 0);
173 	VM_BUG_ON(pmd_thp_or_huge(*pmd));
174 	pmd_clear(pmd);
175 	kvm_tlb_flush_vmid_ipa(kvm, addr);
176 	pte_free_kernel(NULL, pte_table);
177 	put_page(virt_to_page(pmd));
178 }
179 
kvm_set_pte(pte_t * ptep,pte_t new_pte)180 static inline void kvm_set_pte(pte_t *ptep, pte_t new_pte)
181 {
182 	WRITE_ONCE(*ptep, new_pte);
183 	dsb(ishst);
184 }
185 
kvm_set_pmd(pmd_t * pmdp,pmd_t new_pmd)186 static inline void kvm_set_pmd(pmd_t *pmdp, pmd_t new_pmd)
187 {
188 	WRITE_ONCE(*pmdp, new_pmd);
189 	dsb(ishst);
190 }
191 
kvm_pmd_populate(pmd_t * pmdp,pte_t * ptep)192 static inline void kvm_pmd_populate(pmd_t *pmdp, pte_t *ptep)
193 {
194 	kvm_set_pmd(pmdp, kvm_mk_pmd(ptep));
195 }
196 
kvm_pud_populate(pud_t * pudp,pmd_t * pmdp)197 static inline void kvm_pud_populate(pud_t *pudp, pmd_t *pmdp)
198 {
199 	WRITE_ONCE(*pudp, kvm_mk_pud(pmdp));
200 	dsb(ishst);
201 }
202 
kvm_pgd_populate(pgd_t * pgdp,pud_t * pudp)203 static inline void kvm_pgd_populate(pgd_t *pgdp, pud_t *pudp)
204 {
205 	WRITE_ONCE(*pgdp, kvm_mk_pgd(pudp));
206 	dsb(ishst);
207 }
208 
209 /*
210  * Unmapping vs dcache management:
211  *
212  * If a guest maps certain memory pages as uncached, all writes will
213  * bypass the data cache and go directly to RAM.  However, the CPUs
214  * can still speculate reads (not writes) and fill cache lines with
215  * data.
216  *
217  * Those cache lines will be *clean* cache lines though, so a
218  * clean+invalidate operation is equivalent to an invalidate
219  * operation, because no cache lines are marked dirty.
220  *
221  * Those clean cache lines could be filled prior to an uncached write
222  * by the guest, and the cache coherent IO subsystem would therefore
223  * end up writing old data to disk.
224  *
225  * This is why right after unmapping a page/section and invalidating
226  * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
227  * the IO subsystem will never hit in the cache.
228  *
229  * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
230  * we then fully enforce cacheability of RAM, no matter what the guest
231  * does.
232  */
unmap_stage2_ptes(struct kvm * kvm,pmd_t * pmd,phys_addr_t addr,phys_addr_t end)233 static void unmap_stage2_ptes(struct kvm *kvm, pmd_t *pmd,
234 		       phys_addr_t addr, phys_addr_t end)
235 {
236 	phys_addr_t start_addr = addr;
237 	pte_t *pte, *start_pte;
238 
239 	start_pte = pte = pte_offset_kernel(pmd, addr);
240 	do {
241 		if (!pte_none(*pte)) {
242 			pte_t old_pte = *pte;
243 
244 			kvm_set_pte(pte, __pte(0));
245 			kvm_tlb_flush_vmid_ipa(kvm, addr);
246 
247 			/* No need to invalidate the cache for device mappings */
248 			if (!kvm_is_device_pfn(pte_pfn(old_pte)))
249 				kvm_flush_dcache_pte(old_pte);
250 
251 			put_page(virt_to_page(pte));
252 		}
253 	} while (pte++, addr += PAGE_SIZE, addr != end);
254 
255 	if (stage2_pte_table_empty(start_pte))
256 		clear_stage2_pmd_entry(kvm, pmd, start_addr);
257 }
258 
unmap_stage2_pmds(struct kvm * kvm,pud_t * pud,phys_addr_t addr,phys_addr_t end)259 static void unmap_stage2_pmds(struct kvm *kvm, pud_t *pud,
260 		       phys_addr_t addr, phys_addr_t end)
261 {
262 	phys_addr_t next, start_addr = addr;
263 	pmd_t *pmd, *start_pmd;
264 
265 	start_pmd = pmd = stage2_pmd_offset(pud, addr);
266 	do {
267 		next = stage2_pmd_addr_end(addr, end);
268 		if (!pmd_none(*pmd)) {
269 			if (pmd_thp_or_huge(*pmd)) {
270 				pmd_t old_pmd = *pmd;
271 
272 				pmd_clear(pmd);
273 				kvm_tlb_flush_vmid_ipa(kvm, addr);
274 
275 				kvm_flush_dcache_pmd(old_pmd);
276 
277 				put_page(virt_to_page(pmd));
278 			} else {
279 				unmap_stage2_ptes(kvm, pmd, addr, next);
280 			}
281 		}
282 	} while (pmd++, addr = next, addr != end);
283 
284 	if (stage2_pmd_table_empty(start_pmd))
285 		clear_stage2_pud_entry(kvm, pud, start_addr);
286 }
287 
unmap_stage2_puds(struct kvm * kvm,pgd_t * pgd,phys_addr_t addr,phys_addr_t end)288 static void unmap_stage2_puds(struct kvm *kvm, pgd_t *pgd,
289 		       phys_addr_t addr, phys_addr_t end)
290 {
291 	phys_addr_t next, start_addr = addr;
292 	pud_t *pud, *start_pud;
293 
294 	start_pud = pud = stage2_pud_offset(pgd, addr);
295 	do {
296 		next = stage2_pud_addr_end(addr, end);
297 		if (!stage2_pud_none(*pud)) {
298 			if (stage2_pud_huge(*pud)) {
299 				pud_t old_pud = *pud;
300 
301 				stage2_pud_clear(pud);
302 				kvm_tlb_flush_vmid_ipa(kvm, addr);
303 				kvm_flush_dcache_pud(old_pud);
304 				put_page(virt_to_page(pud));
305 			} else {
306 				unmap_stage2_pmds(kvm, pud, addr, next);
307 			}
308 		}
309 	} while (pud++, addr = next, addr != end);
310 
311 	if (stage2_pud_table_empty(start_pud))
312 		clear_stage2_pgd_entry(kvm, pgd, start_addr);
313 }
314 
315 /**
316  * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
317  * @kvm:   The VM pointer
318  * @start: The intermediate physical base address of the range to unmap
319  * @size:  The size of the area to unmap
320  *
321  * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
322  * be called while holding mmu_lock (unless for freeing the stage2 pgd before
323  * destroying the VM), otherwise another faulting VCPU may come in and mess
324  * with things behind our backs.
325  */
__unmap_stage2_range(struct kvm * kvm,phys_addr_t start,u64 size,bool may_block)326 static void __unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size,
327 				 bool may_block)
328 {
329 	pgd_t *pgd;
330 	phys_addr_t addr = start, end = start + size;
331 	phys_addr_t next;
332 
333 	assert_spin_locked(&kvm->mmu_lock);
334 	WARN_ON(size & ~PAGE_MASK);
335 
336 	pgd = kvm->arch.pgd + stage2_pgd_index(addr);
337 	do {
338 		/*
339 		 * Make sure the page table is still active, as another thread
340 		 * could have possibly freed the page table, while we released
341 		 * the lock.
342 		 */
343 		if (!READ_ONCE(kvm->arch.pgd))
344 			break;
345 		next = stage2_pgd_addr_end(addr, end);
346 		if (!stage2_pgd_none(*pgd))
347 			unmap_stage2_puds(kvm, pgd, addr, next);
348 		/*
349 		 * If the range is too large, release the kvm->mmu_lock
350 		 * to prevent starvation and lockup detector warnings.
351 		 */
352 		if (may_block && next != end)
353 			cond_resched_lock(&kvm->mmu_lock);
354 	} while (pgd++, addr = next, addr != end);
355 }
356 
unmap_stage2_range(struct kvm * kvm,phys_addr_t start,u64 size)357 static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
358 {
359 	__unmap_stage2_range(kvm, start, size, true);
360 }
361 
stage2_flush_ptes(struct kvm * kvm,pmd_t * pmd,phys_addr_t addr,phys_addr_t end)362 static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
363 			      phys_addr_t addr, phys_addr_t end)
364 {
365 	pte_t *pte;
366 
367 	pte = pte_offset_kernel(pmd, addr);
368 	do {
369 		if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
370 			kvm_flush_dcache_pte(*pte);
371 	} while (pte++, addr += PAGE_SIZE, addr != end);
372 }
373 
stage2_flush_pmds(struct kvm * kvm,pud_t * pud,phys_addr_t addr,phys_addr_t end)374 static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
375 			      phys_addr_t addr, phys_addr_t end)
376 {
377 	pmd_t *pmd;
378 	phys_addr_t next;
379 
380 	pmd = stage2_pmd_offset(pud, addr);
381 	do {
382 		next = stage2_pmd_addr_end(addr, end);
383 		if (!pmd_none(*pmd)) {
384 			if (pmd_thp_or_huge(*pmd))
385 				kvm_flush_dcache_pmd(*pmd);
386 			else
387 				stage2_flush_ptes(kvm, pmd, addr, next);
388 		}
389 	} while (pmd++, addr = next, addr != end);
390 }
391 
stage2_flush_puds(struct kvm * kvm,pgd_t * pgd,phys_addr_t addr,phys_addr_t end)392 static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
393 			      phys_addr_t addr, phys_addr_t end)
394 {
395 	pud_t *pud;
396 	phys_addr_t next;
397 
398 	pud = stage2_pud_offset(pgd, addr);
399 	do {
400 		next = stage2_pud_addr_end(addr, end);
401 		if (!stage2_pud_none(*pud)) {
402 			if (stage2_pud_huge(*pud))
403 				kvm_flush_dcache_pud(*pud);
404 			else
405 				stage2_flush_pmds(kvm, pud, addr, next);
406 		}
407 	} while (pud++, addr = next, addr != end);
408 }
409 
stage2_flush_memslot(struct kvm * kvm,struct kvm_memory_slot * memslot)410 static void stage2_flush_memslot(struct kvm *kvm,
411 				 struct kvm_memory_slot *memslot)
412 {
413 	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
414 	phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
415 	phys_addr_t next;
416 	pgd_t *pgd;
417 
418 	pgd = kvm->arch.pgd + stage2_pgd_index(addr);
419 	do {
420 		next = stage2_pgd_addr_end(addr, end);
421 		if (!stage2_pgd_none(*pgd))
422 			stage2_flush_puds(kvm, pgd, addr, next);
423 	} while (pgd++, addr = next, addr != end);
424 }
425 
426 /**
427  * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
428  * @kvm: The struct kvm pointer
429  *
430  * Go through the stage 2 page tables and invalidate any cache lines
431  * backing memory already mapped to the VM.
432  */
stage2_flush_vm(struct kvm * kvm)433 static void stage2_flush_vm(struct kvm *kvm)
434 {
435 	struct kvm_memslots *slots;
436 	struct kvm_memory_slot *memslot;
437 	int idx;
438 
439 	idx = srcu_read_lock(&kvm->srcu);
440 	spin_lock(&kvm->mmu_lock);
441 
442 	slots = kvm_memslots(kvm);
443 	kvm_for_each_memslot(memslot, slots)
444 		stage2_flush_memslot(kvm, memslot);
445 
446 	spin_unlock(&kvm->mmu_lock);
447 	srcu_read_unlock(&kvm->srcu, idx);
448 }
449 
clear_hyp_pgd_entry(pgd_t * pgd)450 static void clear_hyp_pgd_entry(pgd_t *pgd)
451 {
452 	pud_t *pud_table __maybe_unused = pud_offset(pgd, 0UL);
453 	pgd_clear(pgd);
454 	pud_free(NULL, pud_table);
455 	put_page(virt_to_page(pgd));
456 }
457 
clear_hyp_pud_entry(pud_t * pud)458 static void clear_hyp_pud_entry(pud_t *pud)
459 {
460 	pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0);
461 	VM_BUG_ON(pud_huge(*pud));
462 	pud_clear(pud);
463 	pmd_free(NULL, pmd_table);
464 	put_page(virt_to_page(pud));
465 }
466 
clear_hyp_pmd_entry(pmd_t * pmd)467 static void clear_hyp_pmd_entry(pmd_t *pmd)
468 {
469 	pte_t *pte_table = pte_offset_kernel(pmd, 0);
470 	VM_BUG_ON(pmd_thp_or_huge(*pmd));
471 	pmd_clear(pmd);
472 	pte_free_kernel(NULL, pte_table);
473 	put_page(virt_to_page(pmd));
474 }
475 
unmap_hyp_ptes(pmd_t * pmd,phys_addr_t addr,phys_addr_t end)476 static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
477 {
478 	pte_t *pte, *start_pte;
479 
480 	start_pte = pte = pte_offset_kernel(pmd, addr);
481 	do {
482 		if (!pte_none(*pte)) {
483 			kvm_set_pte(pte, __pte(0));
484 			put_page(virt_to_page(pte));
485 		}
486 	} while (pte++, addr += PAGE_SIZE, addr != end);
487 
488 	if (hyp_pte_table_empty(start_pte))
489 		clear_hyp_pmd_entry(pmd);
490 }
491 
unmap_hyp_pmds(pud_t * pud,phys_addr_t addr,phys_addr_t end)492 static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
493 {
494 	phys_addr_t next;
495 	pmd_t *pmd, *start_pmd;
496 
497 	start_pmd = pmd = pmd_offset(pud, addr);
498 	do {
499 		next = pmd_addr_end(addr, end);
500 		/* Hyp doesn't use huge pmds */
501 		if (!pmd_none(*pmd))
502 			unmap_hyp_ptes(pmd, addr, next);
503 	} while (pmd++, addr = next, addr != end);
504 
505 	if (hyp_pmd_table_empty(start_pmd))
506 		clear_hyp_pud_entry(pud);
507 }
508 
unmap_hyp_puds(pgd_t * pgd,phys_addr_t addr,phys_addr_t end)509 static void unmap_hyp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
510 {
511 	phys_addr_t next;
512 	pud_t *pud, *start_pud;
513 
514 	start_pud = pud = pud_offset(pgd, addr);
515 	do {
516 		next = pud_addr_end(addr, end);
517 		/* Hyp doesn't use huge puds */
518 		if (!pud_none(*pud))
519 			unmap_hyp_pmds(pud, addr, next);
520 	} while (pud++, addr = next, addr != end);
521 
522 	if (hyp_pud_table_empty(start_pud))
523 		clear_hyp_pgd_entry(pgd);
524 }
525 
kvm_pgd_index(unsigned long addr,unsigned int ptrs_per_pgd)526 static unsigned int kvm_pgd_index(unsigned long addr, unsigned int ptrs_per_pgd)
527 {
528 	return (addr >> PGDIR_SHIFT) & (ptrs_per_pgd - 1);
529 }
530 
__unmap_hyp_range(pgd_t * pgdp,unsigned long ptrs_per_pgd,phys_addr_t start,u64 size)531 static void __unmap_hyp_range(pgd_t *pgdp, unsigned long ptrs_per_pgd,
532 			      phys_addr_t start, u64 size)
533 {
534 	pgd_t *pgd;
535 	phys_addr_t addr = start, end = start + size;
536 	phys_addr_t next;
537 
538 	/*
539 	 * We don't unmap anything from HYP, except at the hyp tear down.
540 	 * Hence, we don't have to invalidate the TLBs here.
541 	 */
542 	pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd);
543 	do {
544 		next = pgd_addr_end(addr, end);
545 		if (!pgd_none(*pgd))
546 			unmap_hyp_puds(pgd, addr, next);
547 	} while (pgd++, addr = next, addr != end);
548 }
549 
unmap_hyp_range(pgd_t * pgdp,phys_addr_t start,u64 size)550 static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size)
551 {
552 	__unmap_hyp_range(pgdp, PTRS_PER_PGD, start, size);
553 }
554 
unmap_hyp_idmap_range(pgd_t * pgdp,phys_addr_t start,u64 size)555 static void unmap_hyp_idmap_range(pgd_t *pgdp, phys_addr_t start, u64 size)
556 {
557 	__unmap_hyp_range(pgdp, __kvm_idmap_ptrs_per_pgd(), start, size);
558 }
559 
560 /**
561  * free_hyp_pgds - free Hyp-mode page tables
562  *
563  * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
564  * therefore contains either mappings in the kernel memory area (above
565  * PAGE_OFFSET), or device mappings in the idmap range.
566  *
567  * boot_hyp_pgd should only map the idmap range, and is only used in
568  * the extended idmap case.
569  */
free_hyp_pgds(void)570 void free_hyp_pgds(void)
571 {
572 	pgd_t *id_pgd;
573 
574 	mutex_lock(&kvm_hyp_pgd_mutex);
575 
576 	id_pgd = boot_hyp_pgd ? boot_hyp_pgd : hyp_pgd;
577 
578 	if (id_pgd) {
579 		/* In case we never called hyp_mmu_init() */
580 		if (!io_map_base)
581 			io_map_base = hyp_idmap_start;
582 		unmap_hyp_idmap_range(id_pgd, io_map_base,
583 				      hyp_idmap_start + PAGE_SIZE - io_map_base);
584 	}
585 
586 	if (boot_hyp_pgd) {
587 		free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
588 		boot_hyp_pgd = NULL;
589 	}
590 
591 	if (hyp_pgd) {
592 		unmap_hyp_range(hyp_pgd, kern_hyp_va(PAGE_OFFSET),
593 				(uintptr_t)high_memory - PAGE_OFFSET);
594 
595 		free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
596 		hyp_pgd = NULL;
597 	}
598 	if (merged_hyp_pgd) {
599 		clear_page(merged_hyp_pgd);
600 		free_page((unsigned long)merged_hyp_pgd);
601 		merged_hyp_pgd = NULL;
602 	}
603 
604 	mutex_unlock(&kvm_hyp_pgd_mutex);
605 }
606 
create_hyp_pte_mappings(pmd_t * pmd,unsigned long start,unsigned long end,unsigned long pfn,pgprot_t prot)607 static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
608 				    unsigned long end, unsigned long pfn,
609 				    pgprot_t prot)
610 {
611 	pte_t *pte;
612 	unsigned long addr;
613 
614 	addr = start;
615 	do {
616 		pte = pte_offset_kernel(pmd, addr);
617 		kvm_set_pte(pte, pfn_pte(pfn, prot));
618 		get_page(virt_to_page(pte));
619 		pfn++;
620 	} while (addr += PAGE_SIZE, addr != end);
621 }
622 
create_hyp_pmd_mappings(pud_t * pud,unsigned long start,unsigned long end,unsigned long pfn,pgprot_t prot)623 static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
624 				   unsigned long end, unsigned long pfn,
625 				   pgprot_t prot)
626 {
627 	pmd_t *pmd;
628 	pte_t *pte;
629 	unsigned long addr, next;
630 
631 	addr = start;
632 	do {
633 		pmd = pmd_offset(pud, addr);
634 
635 		BUG_ON(pmd_sect(*pmd));
636 
637 		if (pmd_none(*pmd)) {
638 			pte = pte_alloc_one_kernel(NULL, addr);
639 			if (!pte) {
640 				kvm_err("Cannot allocate Hyp pte\n");
641 				return -ENOMEM;
642 			}
643 			kvm_pmd_populate(pmd, pte);
644 			get_page(virt_to_page(pmd));
645 		}
646 
647 		next = pmd_addr_end(addr, end);
648 
649 		create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
650 		pfn += (next - addr) >> PAGE_SHIFT;
651 	} while (addr = next, addr != end);
652 
653 	return 0;
654 }
655 
create_hyp_pud_mappings(pgd_t * pgd,unsigned long start,unsigned long end,unsigned long pfn,pgprot_t prot)656 static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
657 				   unsigned long end, unsigned long pfn,
658 				   pgprot_t prot)
659 {
660 	pud_t *pud;
661 	pmd_t *pmd;
662 	unsigned long addr, next;
663 	int ret;
664 
665 	addr = start;
666 	do {
667 		pud = pud_offset(pgd, addr);
668 
669 		if (pud_none_or_clear_bad(pud)) {
670 			pmd = pmd_alloc_one(NULL, addr);
671 			if (!pmd) {
672 				kvm_err("Cannot allocate Hyp pmd\n");
673 				return -ENOMEM;
674 			}
675 			kvm_pud_populate(pud, pmd);
676 			get_page(virt_to_page(pud));
677 		}
678 
679 		next = pud_addr_end(addr, end);
680 		ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
681 		if (ret)
682 			return ret;
683 		pfn += (next - addr) >> PAGE_SHIFT;
684 	} while (addr = next, addr != end);
685 
686 	return 0;
687 }
688 
__create_hyp_mappings(pgd_t * pgdp,unsigned long ptrs_per_pgd,unsigned long start,unsigned long end,unsigned long pfn,pgprot_t prot)689 static int __create_hyp_mappings(pgd_t *pgdp, unsigned long ptrs_per_pgd,
690 				 unsigned long start, unsigned long end,
691 				 unsigned long pfn, pgprot_t prot)
692 {
693 	pgd_t *pgd;
694 	pud_t *pud;
695 	unsigned long addr, next;
696 	int err = 0;
697 
698 	mutex_lock(&kvm_hyp_pgd_mutex);
699 	addr = start & PAGE_MASK;
700 	end = PAGE_ALIGN(end);
701 	do {
702 		pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd);
703 
704 		if (pgd_none(*pgd)) {
705 			pud = pud_alloc_one(NULL, addr);
706 			if (!pud) {
707 				kvm_err("Cannot allocate Hyp pud\n");
708 				err = -ENOMEM;
709 				goto out;
710 			}
711 			kvm_pgd_populate(pgd, pud);
712 			get_page(virt_to_page(pgd));
713 		}
714 
715 		next = pgd_addr_end(addr, end);
716 		err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
717 		if (err)
718 			goto out;
719 		pfn += (next - addr) >> PAGE_SHIFT;
720 	} while (addr = next, addr != end);
721 out:
722 	mutex_unlock(&kvm_hyp_pgd_mutex);
723 	return err;
724 }
725 
kvm_kaddr_to_phys(void * kaddr)726 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
727 {
728 	if (!is_vmalloc_addr(kaddr)) {
729 		BUG_ON(!virt_addr_valid(kaddr));
730 		return __pa(kaddr);
731 	} else {
732 		return page_to_phys(vmalloc_to_page(kaddr)) +
733 		       offset_in_page(kaddr);
734 	}
735 }
736 
737 /**
738  * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
739  * @from:	The virtual kernel start address of the range
740  * @to:		The virtual kernel end address of the range (exclusive)
741  * @prot:	The protection to be applied to this range
742  *
743  * The same virtual address as the kernel virtual address is also used
744  * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
745  * physical pages.
746  */
create_hyp_mappings(void * from,void * to,pgprot_t prot)747 int create_hyp_mappings(void *from, void *to, pgprot_t prot)
748 {
749 	phys_addr_t phys_addr;
750 	unsigned long virt_addr;
751 	unsigned long start = kern_hyp_va((unsigned long)from);
752 	unsigned long end = kern_hyp_va((unsigned long)to);
753 
754 	if (is_kernel_in_hyp_mode())
755 		return 0;
756 
757 	start = start & PAGE_MASK;
758 	end = PAGE_ALIGN(end);
759 
760 	for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
761 		int err;
762 
763 		phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
764 		err = __create_hyp_mappings(hyp_pgd, PTRS_PER_PGD,
765 					    virt_addr, virt_addr + PAGE_SIZE,
766 					    __phys_to_pfn(phys_addr),
767 					    prot);
768 		if (err)
769 			return err;
770 	}
771 
772 	return 0;
773 }
774 
__create_hyp_private_mapping(phys_addr_t phys_addr,size_t size,unsigned long * haddr,pgprot_t prot)775 static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
776 					unsigned long *haddr, pgprot_t prot)
777 {
778 	pgd_t *pgd = hyp_pgd;
779 	unsigned long base;
780 	int ret = 0;
781 
782 	mutex_lock(&kvm_hyp_pgd_mutex);
783 
784 	/*
785 	 * This assumes that we we have enough space below the idmap
786 	 * page to allocate our VAs. If not, the check below will
787 	 * kick. A potential alternative would be to detect that
788 	 * overflow and switch to an allocation above the idmap.
789 	 *
790 	 * The allocated size is always a multiple of PAGE_SIZE.
791 	 */
792 	size = PAGE_ALIGN(size + offset_in_page(phys_addr));
793 	base = io_map_base - size;
794 
795 	/*
796 	 * Verify that BIT(VA_BITS - 1) hasn't been flipped by
797 	 * allocating the new area, as it would indicate we've
798 	 * overflowed the idmap/IO address range.
799 	 */
800 	if ((base ^ io_map_base) & BIT(VA_BITS - 1))
801 		ret = -ENOMEM;
802 	else
803 		io_map_base = base;
804 
805 	mutex_unlock(&kvm_hyp_pgd_mutex);
806 
807 	if (ret)
808 		goto out;
809 
810 	if (__kvm_cpu_uses_extended_idmap())
811 		pgd = boot_hyp_pgd;
812 
813 	ret = __create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
814 				    base, base + size,
815 				    __phys_to_pfn(phys_addr), prot);
816 	if (ret)
817 		goto out;
818 
819 	*haddr = base + offset_in_page(phys_addr);
820 
821 out:
822 	return ret;
823 }
824 
825 /**
826  * create_hyp_io_mappings - Map IO into both kernel and HYP
827  * @phys_addr:	The physical start address which gets mapped
828  * @size:	Size of the region being mapped
829  * @kaddr:	Kernel VA for this mapping
830  * @haddr:	HYP VA for this mapping
831  */
create_hyp_io_mappings(phys_addr_t phys_addr,size_t size,void __iomem ** kaddr,void __iomem ** haddr)832 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
833 			   void __iomem **kaddr,
834 			   void __iomem **haddr)
835 {
836 	unsigned long addr;
837 	int ret;
838 
839 	*kaddr = ioremap(phys_addr, size);
840 	if (!*kaddr)
841 		return -ENOMEM;
842 
843 	if (is_kernel_in_hyp_mode()) {
844 		*haddr = *kaddr;
845 		return 0;
846 	}
847 
848 	ret = __create_hyp_private_mapping(phys_addr, size,
849 					   &addr, PAGE_HYP_DEVICE);
850 	if (ret) {
851 		iounmap(*kaddr);
852 		*kaddr = NULL;
853 		*haddr = NULL;
854 		return ret;
855 	}
856 
857 	*haddr = (void __iomem *)addr;
858 	return 0;
859 }
860 
861 /**
862  * create_hyp_exec_mappings - Map an executable range into HYP
863  * @phys_addr:	The physical start address which gets mapped
864  * @size:	Size of the region being mapped
865  * @haddr:	HYP VA for this mapping
866  */
create_hyp_exec_mappings(phys_addr_t phys_addr,size_t size,void ** haddr)867 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
868 			     void **haddr)
869 {
870 	unsigned long addr;
871 	int ret;
872 
873 	BUG_ON(is_kernel_in_hyp_mode());
874 
875 	ret = __create_hyp_private_mapping(phys_addr, size,
876 					   &addr, PAGE_HYP_EXEC);
877 	if (ret) {
878 		*haddr = NULL;
879 		return ret;
880 	}
881 
882 	*haddr = (void *)addr;
883 	return 0;
884 }
885 
886 /**
887  * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
888  * @kvm:	The KVM struct pointer for the VM.
889  *
890  * Allocates only the stage-2 HW PGD level table(s) (can support either full
891  * 40-bit input addresses or limited to 32-bit input addresses). Clears the
892  * allocated pages.
893  *
894  * Note we don't need locking here as this is only called when the VM is
895  * created, which can only be done once.
896  */
kvm_alloc_stage2_pgd(struct kvm * kvm)897 int kvm_alloc_stage2_pgd(struct kvm *kvm)
898 {
899 	pgd_t *pgd;
900 
901 	if (kvm->arch.pgd != NULL) {
902 		kvm_err("kvm_arch already initialized?\n");
903 		return -EINVAL;
904 	}
905 
906 	/* Allocate the HW PGD, making sure that each page gets its own refcount */
907 	pgd = alloc_pages_exact(S2_PGD_SIZE, GFP_KERNEL | __GFP_ZERO);
908 	if (!pgd)
909 		return -ENOMEM;
910 
911 	kvm->arch.pgd = pgd;
912 	return 0;
913 }
914 
stage2_unmap_memslot(struct kvm * kvm,struct kvm_memory_slot * memslot)915 static void stage2_unmap_memslot(struct kvm *kvm,
916 				 struct kvm_memory_slot *memslot)
917 {
918 	hva_t hva = memslot->userspace_addr;
919 	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
920 	phys_addr_t size = PAGE_SIZE * memslot->npages;
921 	hva_t reg_end = hva + size;
922 
923 	/*
924 	 * A memory region could potentially cover multiple VMAs, and any holes
925 	 * between them, so iterate over all of them to find out if we should
926 	 * unmap any of them.
927 	 *
928 	 *     +--------------------------------------------+
929 	 * +---------------+----------------+   +----------------+
930 	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
931 	 * +---------------+----------------+   +----------------+
932 	 *     |               memory region                |
933 	 *     +--------------------------------------------+
934 	 */
935 	do {
936 		struct vm_area_struct *vma = find_vma(current->mm, hva);
937 		hva_t vm_start, vm_end;
938 
939 		if (!vma || vma->vm_start >= reg_end)
940 			break;
941 
942 		/*
943 		 * Take the intersection of this VMA with the memory region
944 		 */
945 		vm_start = max(hva, vma->vm_start);
946 		vm_end = min(reg_end, vma->vm_end);
947 
948 		if (!(vma->vm_flags & VM_PFNMAP)) {
949 			gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
950 			unmap_stage2_range(kvm, gpa, vm_end - vm_start);
951 		}
952 		hva = vm_end;
953 	} while (hva < reg_end);
954 }
955 
956 /**
957  * stage2_unmap_vm - Unmap Stage-2 RAM mappings
958  * @kvm: The struct kvm pointer
959  *
960  * Go through the memregions and unmap any reguler RAM
961  * backing memory already mapped to the VM.
962  */
stage2_unmap_vm(struct kvm * kvm)963 void stage2_unmap_vm(struct kvm *kvm)
964 {
965 	struct kvm_memslots *slots;
966 	struct kvm_memory_slot *memslot;
967 	int idx;
968 
969 	idx = srcu_read_lock(&kvm->srcu);
970 	down_read(&current->mm->mmap_sem);
971 	spin_lock(&kvm->mmu_lock);
972 
973 	slots = kvm_memslots(kvm);
974 	kvm_for_each_memslot(memslot, slots)
975 		stage2_unmap_memslot(kvm, memslot);
976 
977 	spin_unlock(&kvm->mmu_lock);
978 	up_read(&current->mm->mmap_sem);
979 	srcu_read_unlock(&kvm->srcu, idx);
980 }
981 
982 /**
983  * kvm_free_stage2_pgd - free all stage-2 tables
984  * @kvm:	The KVM struct pointer for the VM.
985  *
986  * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
987  * underlying level-2 and level-3 tables before freeing the actual level-1 table
988  * and setting the struct pointer to NULL.
989  */
kvm_free_stage2_pgd(struct kvm * kvm)990 void kvm_free_stage2_pgd(struct kvm *kvm)
991 {
992 	void *pgd = NULL;
993 
994 	spin_lock(&kvm->mmu_lock);
995 	if (kvm->arch.pgd) {
996 		unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
997 		pgd = READ_ONCE(kvm->arch.pgd);
998 		kvm->arch.pgd = NULL;
999 	}
1000 	spin_unlock(&kvm->mmu_lock);
1001 
1002 	/* Free the HW pgd, one page at a time */
1003 	if (pgd)
1004 		free_pages_exact(pgd, S2_PGD_SIZE);
1005 }
1006 
stage2_get_pud(struct kvm * kvm,struct kvm_mmu_memory_cache * cache,phys_addr_t addr)1007 static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1008 			     phys_addr_t addr)
1009 {
1010 	pgd_t *pgd;
1011 	pud_t *pud;
1012 
1013 	pgd = kvm->arch.pgd + stage2_pgd_index(addr);
1014 	if (WARN_ON(stage2_pgd_none(*pgd))) {
1015 		if (!cache)
1016 			return NULL;
1017 		pud = mmu_memory_cache_alloc(cache);
1018 		stage2_pgd_populate(pgd, pud);
1019 		get_page(virt_to_page(pgd));
1020 	}
1021 
1022 	return stage2_pud_offset(pgd, addr);
1023 }
1024 
stage2_get_pmd(struct kvm * kvm,struct kvm_mmu_memory_cache * cache,phys_addr_t addr)1025 static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1026 			     phys_addr_t addr)
1027 {
1028 	pud_t *pud;
1029 	pmd_t *pmd;
1030 
1031 	pud = stage2_get_pud(kvm, cache, addr);
1032 	if (!pud)
1033 		return NULL;
1034 
1035 	if (stage2_pud_none(*pud)) {
1036 		if (!cache)
1037 			return NULL;
1038 		pmd = mmu_memory_cache_alloc(cache);
1039 		stage2_pud_populate(pud, pmd);
1040 		get_page(virt_to_page(pud));
1041 	}
1042 
1043 	return stage2_pmd_offset(pud, addr);
1044 }
1045 
stage2_set_pmd_huge(struct kvm * kvm,struct kvm_mmu_memory_cache * cache,phys_addr_t addr,const pmd_t * new_pmd)1046 static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
1047 			       *cache, phys_addr_t addr, const pmd_t *new_pmd)
1048 {
1049 	pmd_t *pmd, old_pmd;
1050 
1051 	pmd = stage2_get_pmd(kvm, cache, addr);
1052 	VM_BUG_ON(!pmd);
1053 
1054 	old_pmd = *pmd;
1055 	if (pmd_present(old_pmd)) {
1056 		/*
1057 		 * Multiple vcpus faulting on the same PMD entry, can
1058 		 * lead to them sequentially updating the PMD with the
1059 		 * same value. Following the break-before-make
1060 		 * (pmd_clear() followed by tlb_flush()) process can
1061 		 * hinder forward progress due to refaults generated
1062 		 * on missing translations.
1063 		 *
1064 		 * Skip updating the page table if the entry is
1065 		 * unchanged.
1066 		 */
1067 		if (pmd_val(old_pmd) == pmd_val(*new_pmd))
1068 			return 0;
1069 
1070 		/*
1071 		 * Mapping in huge pages should only happen through a
1072 		 * fault.  If a page is merged into a transparent huge
1073 		 * page, the individual subpages of that huge page
1074 		 * should be unmapped through MMU notifiers before we
1075 		 * get here.
1076 		 *
1077 		 * Merging of CompoundPages is not supported; they
1078 		 * should become splitting first, unmapped, merged,
1079 		 * and mapped back in on-demand.
1080 		 */
1081 		VM_BUG_ON(pmd_pfn(old_pmd) != pmd_pfn(*new_pmd));
1082 
1083 		pmd_clear(pmd);
1084 		kvm_tlb_flush_vmid_ipa(kvm, addr);
1085 	} else {
1086 		get_page(virt_to_page(pmd));
1087 	}
1088 
1089 	kvm_set_pmd(pmd, *new_pmd);
1090 	return 0;
1091 }
1092 
stage2_is_exec(struct kvm * kvm,phys_addr_t addr)1093 static bool stage2_is_exec(struct kvm *kvm, phys_addr_t addr)
1094 {
1095 	pmd_t *pmdp;
1096 	pte_t *ptep;
1097 
1098 	pmdp = stage2_get_pmd(kvm, NULL, addr);
1099 	if (!pmdp || pmd_none(*pmdp) || !pmd_present(*pmdp))
1100 		return false;
1101 
1102 	if (pmd_thp_or_huge(*pmdp))
1103 		return kvm_s2pmd_exec(pmdp);
1104 
1105 	ptep = pte_offset_kernel(pmdp, addr);
1106 	if (!ptep || pte_none(*ptep) || !pte_present(*ptep))
1107 		return false;
1108 
1109 	return kvm_s2pte_exec(ptep);
1110 }
1111 
stage2_set_pte(struct kvm * kvm,struct kvm_mmu_memory_cache * cache,phys_addr_t addr,const pte_t * new_pte,unsigned long flags)1112 static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1113 			  phys_addr_t addr, const pte_t *new_pte,
1114 			  unsigned long flags)
1115 {
1116 	pmd_t *pmd;
1117 	pte_t *pte, old_pte;
1118 	bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
1119 	bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;
1120 
1121 	VM_BUG_ON(logging_active && !cache);
1122 
1123 	/* Create stage-2 page table mapping - Levels 0 and 1 */
1124 	pmd = stage2_get_pmd(kvm, cache, addr);
1125 	if (!pmd) {
1126 		/*
1127 		 * Ignore calls from kvm_set_spte_hva for unallocated
1128 		 * address ranges.
1129 		 */
1130 		return 0;
1131 	}
1132 
1133 	/*
1134 	 * While dirty page logging - dissolve huge PMD, then continue on to
1135 	 * allocate page.
1136 	 */
1137 	if (logging_active)
1138 		stage2_dissolve_pmd(kvm, addr, pmd);
1139 
1140 	/* Create stage-2 page mappings - Level 2 */
1141 	if (pmd_none(*pmd)) {
1142 		if (!cache)
1143 			return 0; /* ignore calls from kvm_set_spte_hva */
1144 		pte = mmu_memory_cache_alloc(cache);
1145 		kvm_pmd_populate(pmd, pte);
1146 		get_page(virt_to_page(pmd));
1147 	}
1148 
1149 	pte = pte_offset_kernel(pmd, addr);
1150 
1151 	if (iomap && pte_present(*pte))
1152 		return -EFAULT;
1153 
1154 	/* Create 2nd stage page table mapping - Level 3 */
1155 	old_pte = *pte;
1156 	if (pte_present(old_pte)) {
1157 		/* Skip page table update if there is no change */
1158 		if (pte_val(old_pte) == pte_val(*new_pte))
1159 			return 0;
1160 
1161 		kvm_set_pte(pte, __pte(0));
1162 		kvm_tlb_flush_vmid_ipa(kvm, addr);
1163 	} else {
1164 		get_page(virt_to_page(pte));
1165 	}
1166 
1167 	kvm_set_pte(pte, *new_pte);
1168 	return 0;
1169 }
1170 
1171 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
stage2_ptep_test_and_clear_young(pte_t * pte)1172 static int stage2_ptep_test_and_clear_young(pte_t *pte)
1173 {
1174 	if (pte_young(*pte)) {
1175 		*pte = pte_mkold(*pte);
1176 		return 1;
1177 	}
1178 	return 0;
1179 }
1180 #else
stage2_ptep_test_and_clear_young(pte_t * pte)1181 static int stage2_ptep_test_and_clear_young(pte_t *pte)
1182 {
1183 	return __ptep_test_and_clear_young(pte);
1184 }
1185 #endif
1186 
stage2_pmdp_test_and_clear_young(pmd_t * pmd)1187 static int stage2_pmdp_test_and_clear_young(pmd_t *pmd)
1188 {
1189 	return stage2_ptep_test_and_clear_young((pte_t *)pmd);
1190 }
1191 
1192 /**
1193  * kvm_phys_addr_ioremap - map a device range to guest IPA
1194  *
1195  * @kvm:	The KVM pointer
1196  * @guest_ipa:	The IPA at which to insert the mapping
1197  * @pa:		The physical address of the device
1198  * @size:	The size of the mapping
1199  */
kvm_phys_addr_ioremap(struct kvm * kvm,phys_addr_t guest_ipa,phys_addr_t pa,unsigned long size,bool writable)1200 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
1201 			  phys_addr_t pa, unsigned long size, bool writable)
1202 {
1203 	phys_addr_t addr, end;
1204 	int ret = 0;
1205 	unsigned long pfn;
1206 	struct kvm_mmu_memory_cache cache = { 0, };
1207 
1208 	end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
1209 	pfn = __phys_to_pfn(pa);
1210 
1211 	for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
1212 		pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
1213 
1214 		if (writable)
1215 			pte = kvm_s2pte_mkwrite(pte);
1216 
1217 		ret = mmu_topup_memory_cache(&cache, KVM_MMU_CACHE_MIN_PAGES,
1218 						KVM_NR_MEM_OBJS);
1219 		if (ret)
1220 			goto out;
1221 		spin_lock(&kvm->mmu_lock);
1222 		ret = stage2_set_pte(kvm, &cache, addr, &pte,
1223 						KVM_S2PTE_FLAG_IS_IOMAP);
1224 		spin_unlock(&kvm->mmu_lock);
1225 		if (ret)
1226 			goto out;
1227 
1228 		pfn++;
1229 	}
1230 
1231 out:
1232 	mmu_free_memory_cache(&cache);
1233 	return ret;
1234 }
1235 
transparent_hugepage_adjust(kvm_pfn_t * pfnp,phys_addr_t * ipap)1236 static bool transparent_hugepage_adjust(kvm_pfn_t *pfnp, phys_addr_t *ipap)
1237 {
1238 	kvm_pfn_t pfn = *pfnp;
1239 	gfn_t gfn = *ipap >> PAGE_SHIFT;
1240 	struct page *page = pfn_to_page(pfn);
1241 
1242 	/*
1243 	 * PageTransCompoungMap() returns true for THP and
1244 	 * hugetlbfs. Make sure the adjustment is done only for THP
1245 	 * pages.
1246 	 */
1247 	if (!PageHuge(page) && PageTransCompoundMap(page)) {
1248 		unsigned long mask;
1249 		/*
1250 		 * The address we faulted on is backed by a transparent huge
1251 		 * page.  However, because we map the compound huge page and
1252 		 * not the individual tail page, we need to transfer the
1253 		 * refcount to the head page.  We have to be careful that the
1254 		 * THP doesn't start to split while we are adjusting the
1255 		 * refcounts.
1256 		 *
1257 		 * We are sure this doesn't happen, because mmu_notifier_retry
1258 		 * was successful and we are holding the mmu_lock, so if this
1259 		 * THP is trying to split, it will be blocked in the mmu
1260 		 * notifier before touching any of the pages, specifically
1261 		 * before being able to call __split_huge_page_refcount().
1262 		 *
1263 		 * We can therefore safely transfer the refcount from PG_tail
1264 		 * to PG_head and switch the pfn from a tail page to the head
1265 		 * page accordingly.
1266 		 */
1267 		mask = PTRS_PER_PMD - 1;
1268 		VM_BUG_ON((gfn & mask) != (pfn & mask));
1269 		if (pfn & mask) {
1270 			*ipap &= PMD_MASK;
1271 			kvm_release_pfn_clean(pfn);
1272 			pfn &= ~mask;
1273 			kvm_get_pfn(pfn);
1274 			*pfnp = pfn;
1275 		}
1276 
1277 		return true;
1278 	}
1279 
1280 	return false;
1281 }
1282 
kvm_is_write_fault(struct kvm_vcpu * vcpu)1283 static bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
1284 {
1285 	if (kvm_vcpu_abt_iss1tw(vcpu))
1286 		return true;
1287 
1288 	if (kvm_vcpu_trap_is_iabt(vcpu))
1289 		return false;
1290 
1291 	return kvm_vcpu_dabt_iswrite(vcpu);
1292 }
1293 
1294 /**
1295  * stage2_wp_ptes - write protect PMD range
1296  * @pmd:	pointer to pmd entry
1297  * @addr:	range start address
1298  * @end:	range end address
1299  */
stage2_wp_ptes(pmd_t * pmd,phys_addr_t addr,phys_addr_t end)1300 static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
1301 {
1302 	pte_t *pte;
1303 
1304 	pte = pte_offset_kernel(pmd, addr);
1305 	do {
1306 		if (!pte_none(*pte)) {
1307 			if (!kvm_s2pte_readonly(pte))
1308 				kvm_set_s2pte_readonly(pte);
1309 		}
1310 	} while (pte++, addr += PAGE_SIZE, addr != end);
1311 }
1312 
1313 /**
1314  * stage2_wp_pmds - write protect PUD range
1315  * @pud:	pointer to pud entry
1316  * @addr:	range start address
1317  * @end:	range end address
1318  */
stage2_wp_pmds(pud_t * pud,phys_addr_t addr,phys_addr_t end)1319 static void stage2_wp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
1320 {
1321 	pmd_t *pmd;
1322 	phys_addr_t next;
1323 
1324 	pmd = stage2_pmd_offset(pud, addr);
1325 
1326 	do {
1327 		next = stage2_pmd_addr_end(addr, end);
1328 		if (!pmd_none(*pmd)) {
1329 			if (pmd_thp_or_huge(*pmd)) {
1330 				if (!kvm_s2pmd_readonly(pmd))
1331 					kvm_set_s2pmd_readonly(pmd);
1332 			} else {
1333 				stage2_wp_ptes(pmd, addr, next);
1334 			}
1335 		}
1336 	} while (pmd++, addr = next, addr != end);
1337 }
1338 
1339 /**
1340   * stage2_wp_puds - write protect PGD range
1341   * @pgd:	pointer to pgd entry
1342   * @addr:	range start address
1343   * @end:	range end address
1344   *
1345   * Process PUD entries, for a huge PUD we cause a panic.
1346   */
stage2_wp_puds(pgd_t * pgd,phys_addr_t addr,phys_addr_t end)1347 static void  stage2_wp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
1348 {
1349 	pud_t *pud;
1350 	phys_addr_t next;
1351 
1352 	pud = stage2_pud_offset(pgd, addr);
1353 	do {
1354 		next = stage2_pud_addr_end(addr, end);
1355 		if (!stage2_pud_none(*pud)) {
1356 			/* TODO:PUD not supported, revisit later if supported */
1357 			BUG_ON(stage2_pud_huge(*pud));
1358 			stage2_wp_pmds(pud, addr, next);
1359 		}
1360 	} while (pud++, addr = next, addr != end);
1361 }
1362 
1363 /**
1364  * stage2_wp_range() - write protect stage2 memory region range
1365  * @kvm:	The KVM pointer
1366  * @addr:	Start address of range
1367  * @end:	End address of range
1368  */
stage2_wp_range(struct kvm * kvm,phys_addr_t addr,phys_addr_t end)1369 static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
1370 {
1371 	pgd_t *pgd;
1372 	phys_addr_t next;
1373 
1374 	pgd = kvm->arch.pgd + stage2_pgd_index(addr);
1375 	do {
1376 		/*
1377 		 * Release kvm_mmu_lock periodically if the memory region is
1378 		 * large. Otherwise, we may see kernel panics with
1379 		 * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
1380 		 * CONFIG_LOCKDEP. Additionally, holding the lock too long
1381 		 * will also starve other vCPUs. We have to also make sure
1382 		 * that the page tables are not freed while we released
1383 		 * the lock.
1384 		 */
1385 		cond_resched_lock(&kvm->mmu_lock);
1386 		if (!READ_ONCE(kvm->arch.pgd))
1387 			break;
1388 		next = stage2_pgd_addr_end(addr, end);
1389 		if (stage2_pgd_present(*pgd))
1390 			stage2_wp_puds(pgd, addr, next);
1391 	} while (pgd++, addr = next, addr != end);
1392 }
1393 
1394 /**
1395  * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1396  * @kvm:	The KVM pointer
1397  * @slot:	The memory slot to write protect
1398  *
1399  * Called to start logging dirty pages after memory region
1400  * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1401  * all present PMD and PTEs are write protected in the memory region.
1402  * Afterwards read of dirty page log can be called.
1403  *
1404  * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1405  * serializing operations for VM memory regions.
1406  */
kvm_mmu_wp_memory_region(struct kvm * kvm,int slot)1407 void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1408 {
1409 	struct kvm_memslots *slots = kvm_memslots(kvm);
1410 	struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1411 	phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
1412 	phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1413 
1414 	spin_lock(&kvm->mmu_lock);
1415 	stage2_wp_range(kvm, start, end);
1416 	spin_unlock(&kvm->mmu_lock);
1417 	kvm_flush_remote_tlbs(kvm);
1418 }
1419 
1420 /**
1421  * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
1422  * @kvm:	The KVM pointer
1423  * @slot:	The memory slot associated with mask
1424  * @gfn_offset:	The gfn offset in memory slot
1425  * @mask:	The mask of dirty pages at offset 'gfn_offset' in this memory
1426  *		slot to be write protected
1427  *
1428  * Walks bits set in mask write protects the associated pte's. Caller must
1429  * acquire kvm_mmu_lock.
1430  */
kvm_mmu_write_protect_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1431 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1432 		struct kvm_memory_slot *slot,
1433 		gfn_t gfn_offset, unsigned long mask)
1434 {
1435 	phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1436 	phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
1437 	phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
1438 
1439 	stage2_wp_range(kvm, start, end);
1440 }
1441 
1442 /*
1443  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1444  * dirty pages.
1445  *
1446  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1447  * enable dirty logging for them.
1448  */
kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1449 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1450 		struct kvm_memory_slot *slot,
1451 		gfn_t gfn_offset, unsigned long mask)
1452 {
1453 	kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1454 }
1455 
clean_dcache_guest_page(kvm_pfn_t pfn,unsigned long size)1456 static void clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
1457 {
1458 	__clean_dcache_guest_page(pfn, size);
1459 }
1460 
invalidate_icache_guest_page(kvm_pfn_t pfn,unsigned long size)1461 static void invalidate_icache_guest_page(kvm_pfn_t pfn, unsigned long size)
1462 {
1463 	__invalidate_icache_guest_page(pfn, size);
1464 }
1465 
kvm_send_hwpoison_signal(unsigned long address,struct vm_area_struct * vma)1466 static void kvm_send_hwpoison_signal(unsigned long address,
1467 				     struct vm_area_struct *vma)
1468 {
1469 	siginfo_t info;
1470 
1471 	clear_siginfo(&info);
1472 	info.si_signo   = SIGBUS;
1473 	info.si_errno   = 0;
1474 	info.si_code    = BUS_MCEERR_AR;
1475 	info.si_addr    = (void __user *)address;
1476 
1477 	if (is_vm_hugetlb_page(vma))
1478 		info.si_addr_lsb = huge_page_shift(hstate_vma(vma));
1479 	else
1480 		info.si_addr_lsb = PAGE_SHIFT;
1481 
1482 	send_sig_info(SIGBUS, &info, current);
1483 }
1484 
user_mem_abort(struct kvm_vcpu * vcpu,phys_addr_t fault_ipa,struct kvm_memory_slot * memslot,unsigned long hva,unsigned long fault_status)1485 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1486 			  struct kvm_memory_slot *memslot, unsigned long hva,
1487 			  unsigned long fault_status)
1488 {
1489 	int ret;
1490 	bool write_fault, exec_fault, writable, hugetlb = false, force_pte = false;
1491 	unsigned long mmu_seq;
1492 	gfn_t gfn = fault_ipa >> PAGE_SHIFT;
1493 	struct kvm *kvm = vcpu->kvm;
1494 	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1495 	struct vm_area_struct *vma;
1496 	kvm_pfn_t pfn;
1497 	pgprot_t mem_type = PAGE_S2;
1498 	bool logging_active = memslot_is_logging(memslot);
1499 	unsigned long flags = 0;
1500 
1501 	write_fault = kvm_is_write_fault(vcpu);
1502 	exec_fault = kvm_vcpu_trap_is_exec_fault(vcpu);
1503 	VM_BUG_ON(write_fault && exec_fault);
1504 
1505 	if (fault_status == FSC_PERM && !write_fault && !exec_fault) {
1506 		kvm_err("Unexpected L2 read permission error\n");
1507 		return -EFAULT;
1508 	}
1509 
1510 	/* Let's check if we will get back a huge page backed by hugetlbfs */
1511 	down_read(&current->mm->mmap_sem);
1512 	vma = find_vma_intersection(current->mm, hva, hva + 1);
1513 	if (unlikely(!vma)) {
1514 		kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1515 		up_read(&current->mm->mmap_sem);
1516 		return -EFAULT;
1517 	}
1518 
1519 	if (vma_kernel_pagesize(vma) == PMD_SIZE && !logging_active) {
1520 		hugetlb = true;
1521 		gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
1522 	} else {
1523 		/*
1524 		 * Pages belonging to memslots that don't have the same
1525 		 * alignment for userspace and IPA cannot be mapped using
1526 		 * block descriptors even if the pages belong to a THP for
1527 		 * the process, because the stage-2 block descriptor will
1528 		 * cover more than a single THP and we loose atomicity for
1529 		 * unmapping, updates, and splits of the THP or other pages
1530 		 * in the stage-2 block range.
1531 		 */
1532 		if ((memslot->userspace_addr & ~PMD_MASK) !=
1533 		    ((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK))
1534 			force_pte = true;
1535 	}
1536 	up_read(&current->mm->mmap_sem);
1537 
1538 	/* We need minimum second+third level pages */
1539 	ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
1540 				     KVM_NR_MEM_OBJS);
1541 	if (ret)
1542 		return ret;
1543 
1544 	mmu_seq = vcpu->kvm->mmu_notifier_seq;
1545 	/*
1546 	 * Ensure the read of mmu_notifier_seq happens before we call
1547 	 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1548 	 * the page we just got a reference to gets unmapped before we have a
1549 	 * chance to grab the mmu_lock, which ensure that if the page gets
1550 	 * unmapped afterwards, the call to kvm_unmap_hva will take it away
1551 	 * from us again properly. This smp_rmb() interacts with the smp_wmb()
1552 	 * in kvm_mmu_notifier_invalidate_<page|range_end>.
1553 	 */
1554 	smp_rmb();
1555 
1556 	pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
1557 	if (pfn == KVM_PFN_ERR_HWPOISON) {
1558 		kvm_send_hwpoison_signal(hva, vma);
1559 		return 0;
1560 	}
1561 	if (is_error_noslot_pfn(pfn))
1562 		return -EFAULT;
1563 
1564 	if (kvm_is_device_pfn(pfn)) {
1565 		mem_type = PAGE_S2_DEVICE;
1566 		flags |= KVM_S2PTE_FLAG_IS_IOMAP;
1567 	} else if (logging_active) {
1568 		/*
1569 		 * Faults on pages in a memslot with logging enabled
1570 		 * should not be mapped with huge pages (it introduces churn
1571 		 * and performance degradation), so force a pte mapping.
1572 		 */
1573 		force_pte = true;
1574 		flags |= KVM_S2_FLAG_LOGGING_ACTIVE;
1575 
1576 		/*
1577 		 * Only actually map the page as writable if this was a write
1578 		 * fault.
1579 		 */
1580 		if (!write_fault)
1581 			writable = false;
1582 	}
1583 
1584 	spin_lock(&kvm->mmu_lock);
1585 	if (mmu_notifier_retry(kvm, mmu_seq))
1586 		goto out_unlock;
1587 
1588 	if (!hugetlb && !force_pte)
1589 		hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
1590 
1591 	if (hugetlb) {
1592 		pmd_t new_pmd = pfn_pmd(pfn, mem_type);
1593 		new_pmd = pmd_mkhuge(new_pmd);
1594 		if (writable) {
1595 			new_pmd = kvm_s2pmd_mkwrite(new_pmd);
1596 			kvm_set_pfn_dirty(pfn);
1597 		}
1598 
1599 		if (fault_status != FSC_PERM)
1600 			clean_dcache_guest_page(pfn, PMD_SIZE);
1601 
1602 		if (exec_fault) {
1603 			new_pmd = kvm_s2pmd_mkexec(new_pmd);
1604 			invalidate_icache_guest_page(pfn, PMD_SIZE);
1605 		} else if (fault_status == FSC_PERM) {
1606 			/* Preserve execute if XN was already cleared */
1607 			if (stage2_is_exec(kvm, fault_ipa))
1608 				new_pmd = kvm_s2pmd_mkexec(new_pmd);
1609 		}
1610 
1611 		ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
1612 	} else {
1613 		pte_t new_pte = pfn_pte(pfn, mem_type);
1614 
1615 		if (writable) {
1616 			new_pte = kvm_s2pte_mkwrite(new_pte);
1617 			kvm_set_pfn_dirty(pfn);
1618 			mark_page_dirty(kvm, gfn);
1619 		}
1620 
1621 		if (fault_status != FSC_PERM)
1622 			clean_dcache_guest_page(pfn, PAGE_SIZE);
1623 
1624 		if (exec_fault) {
1625 			new_pte = kvm_s2pte_mkexec(new_pte);
1626 			invalidate_icache_guest_page(pfn, PAGE_SIZE);
1627 		} else if (fault_status == FSC_PERM) {
1628 			/* Preserve execute if XN was already cleared */
1629 			if (stage2_is_exec(kvm, fault_ipa))
1630 				new_pte = kvm_s2pte_mkexec(new_pte);
1631 		}
1632 
1633 		ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
1634 	}
1635 
1636 out_unlock:
1637 	spin_unlock(&kvm->mmu_lock);
1638 	kvm_set_pfn_accessed(pfn);
1639 	kvm_release_pfn_clean(pfn);
1640 	return ret;
1641 }
1642 
1643 /*
1644  * Resolve the access fault by making the page young again.
1645  * Note that because the faulting entry is guaranteed not to be
1646  * cached in the TLB, we don't need to invalidate anything.
1647  * Only the HW Access Flag updates are supported for Stage 2 (no DBM),
1648  * so there is no need for atomic (pte|pmd)_mkyoung operations.
1649  */
handle_access_fault(struct kvm_vcpu * vcpu,phys_addr_t fault_ipa)1650 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1651 {
1652 	pmd_t *pmd;
1653 	pte_t *pte;
1654 	kvm_pfn_t pfn;
1655 	bool pfn_valid = false;
1656 
1657 	trace_kvm_access_fault(fault_ipa);
1658 
1659 	spin_lock(&vcpu->kvm->mmu_lock);
1660 
1661 	pmd = stage2_get_pmd(vcpu->kvm, NULL, fault_ipa);
1662 	if (!pmd || pmd_none(*pmd))	/* Nothing there */
1663 		goto out;
1664 
1665 	if (pmd_thp_or_huge(*pmd)) {	/* THP, HugeTLB */
1666 		*pmd = pmd_mkyoung(*pmd);
1667 		pfn = pmd_pfn(*pmd);
1668 		pfn_valid = true;
1669 		goto out;
1670 	}
1671 
1672 	pte = pte_offset_kernel(pmd, fault_ipa);
1673 	if (pte_none(*pte))		/* Nothing there either */
1674 		goto out;
1675 
1676 	*pte = pte_mkyoung(*pte);	/* Just a page... */
1677 	pfn = pte_pfn(*pte);
1678 	pfn_valid = true;
1679 out:
1680 	spin_unlock(&vcpu->kvm->mmu_lock);
1681 	if (pfn_valid)
1682 		kvm_set_pfn_accessed(pfn);
1683 }
1684 
1685 /**
1686  * kvm_handle_guest_abort - handles all 2nd stage aborts
1687  * @vcpu:	the VCPU pointer
1688  * @run:	the kvm_run structure
1689  *
1690  * Any abort that gets to the host is almost guaranteed to be caused by a
1691  * missing second stage translation table entry, which can mean that either the
1692  * guest simply needs more memory and we must allocate an appropriate page or it
1693  * can mean that the guest tried to access I/O memory, which is emulated by user
1694  * space. The distinction is based on the IPA causing the fault and whether this
1695  * memory region has been registered as standard RAM by user space.
1696  */
kvm_handle_guest_abort(struct kvm_vcpu * vcpu,struct kvm_run * run)1697 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
1698 {
1699 	unsigned long fault_status;
1700 	phys_addr_t fault_ipa;
1701 	struct kvm_memory_slot *memslot;
1702 	unsigned long hva;
1703 	bool is_iabt, write_fault, writable;
1704 	gfn_t gfn;
1705 	int ret, idx;
1706 
1707 	fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
1708 
1709 	fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1710 	is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1711 
1712 	/* Synchronous External Abort? */
1713 	if (kvm_vcpu_dabt_isextabt(vcpu)) {
1714 		/*
1715 		 * For RAS the host kernel may handle this abort.
1716 		 * There is no need to pass the error into the guest.
1717 		 */
1718 		if (!handle_guest_sea(fault_ipa, kvm_vcpu_get_hsr(vcpu)))
1719 			return 1;
1720 
1721 		if (unlikely(!is_iabt)) {
1722 			kvm_inject_vabt(vcpu);
1723 			return 1;
1724 		}
1725 	}
1726 
1727 	trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
1728 			      kvm_vcpu_get_hfar(vcpu), fault_ipa);
1729 
1730 	/* Check the stage-2 fault is trans. fault or write fault */
1731 	if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
1732 	    fault_status != FSC_ACCESS) {
1733 		kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1734 			kvm_vcpu_trap_get_class(vcpu),
1735 			(unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1736 			(unsigned long)kvm_vcpu_get_hsr(vcpu));
1737 		return -EFAULT;
1738 	}
1739 
1740 	idx = srcu_read_lock(&vcpu->kvm->srcu);
1741 
1742 	gfn = fault_ipa >> PAGE_SHIFT;
1743 	memslot = gfn_to_memslot(vcpu->kvm, gfn);
1744 	hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1745 	write_fault = kvm_is_write_fault(vcpu);
1746 	if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1747 		if (is_iabt) {
1748 			/* Prefetch Abort on I/O address */
1749 			kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1750 			ret = 1;
1751 			goto out_unlock;
1752 		}
1753 
1754 		/*
1755 		 * Check for a cache maintenance operation. Since we
1756 		 * ended-up here, we know it is outside of any memory
1757 		 * slot. But we can't find out if that is for a device,
1758 		 * or if the guest is just being stupid. The only thing
1759 		 * we know for sure is that this range cannot be cached.
1760 		 *
1761 		 * So let's assume that the guest is just being
1762 		 * cautious, and skip the instruction.
1763 		 */
1764 		if (kvm_vcpu_dabt_is_cm(vcpu)) {
1765 			kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1766 			ret = 1;
1767 			goto out_unlock;
1768 		}
1769 
1770 		/*
1771 		 * The IPA is reported as [MAX:12], so we need to
1772 		 * complement it with the bottom 12 bits from the
1773 		 * faulting VA. This is always 12 bits, irrespective
1774 		 * of the page size.
1775 		 */
1776 		fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
1777 		ret = io_mem_abort(vcpu, run, fault_ipa);
1778 		goto out_unlock;
1779 	}
1780 
1781 	/* Userspace should not be able to register out-of-bounds IPAs */
1782 	VM_BUG_ON(fault_ipa >= KVM_PHYS_SIZE);
1783 
1784 	if (fault_status == FSC_ACCESS) {
1785 		handle_access_fault(vcpu, fault_ipa);
1786 		ret = 1;
1787 		goto out_unlock;
1788 	}
1789 
1790 	ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1791 	if (ret == 0)
1792 		ret = 1;
1793 out_unlock:
1794 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1795 	return ret;
1796 }
1797 
handle_hva_to_gpa(struct kvm * kvm,unsigned long start,unsigned long end,int (* handler)(struct kvm * kvm,gpa_t gpa,u64 size,void * data),void * data)1798 static int handle_hva_to_gpa(struct kvm *kvm,
1799 			     unsigned long start,
1800 			     unsigned long end,
1801 			     int (*handler)(struct kvm *kvm,
1802 					    gpa_t gpa, u64 size,
1803 					    void *data),
1804 			     void *data)
1805 {
1806 	struct kvm_memslots *slots;
1807 	struct kvm_memory_slot *memslot;
1808 	int ret = 0;
1809 
1810 	slots = kvm_memslots(kvm);
1811 
1812 	/* we only care about the pages that the guest sees */
1813 	kvm_for_each_memslot(memslot, slots) {
1814 		unsigned long hva_start, hva_end;
1815 		gfn_t gpa;
1816 
1817 		hva_start = max(start, memslot->userspace_addr);
1818 		hva_end = min(end, memslot->userspace_addr +
1819 					(memslot->npages << PAGE_SHIFT));
1820 		if (hva_start >= hva_end)
1821 			continue;
1822 
1823 		gpa = hva_to_gfn_memslot(hva_start, memslot) << PAGE_SHIFT;
1824 		ret |= handler(kvm, gpa, (u64)(hva_end - hva_start), data);
1825 	}
1826 
1827 	return ret;
1828 }
1829 
kvm_unmap_hva_handler(struct kvm * kvm,gpa_t gpa,u64 size,void * data)1830 static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1831 {
1832 	bool may_block = *(bool *)data;
1833 
1834 	__unmap_stage2_range(kvm, gpa, size, may_block);
1835 	return 0;
1836 }
1837 
kvm_unmap_hva_range(struct kvm * kvm,unsigned long start,unsigned long end,bool blockable)1838 int kvm_unmap_hva_range(struct kvm *kvm,
1839 			unsigned long start, unsigned long end, bool blockable)
1840 {
1841 	if (!kvm->arch.pgd)
1842 		return 0;
1843 
1844 	trace_kvm_unmap_hva_range(start, end);
1845 	handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, &blockable);
1846 	return 0;
1847 }
1848 
kvm_set_spte_handler(struct kvm * kvm,gpa_t gpa,u64 size,void * data)1849 static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1850 {
1851 	pte_t *pte = (pte_t *)data;
1852 
1853 	WARN_ON(size != PAGE_SIZE);
1854 	/*
1855 	 * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
1856 	 * flag clear because MMU notifiers will have unmapped a huge PMD before
1857 	 * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
1858 	 * therefore stage2_set_pte() never needs to clear out a huge PMD
1859 	 * through this calling path.
1860 	 */
1861 	stage2_set_pte(kvm, NULL, gpa, pte, 0);
1862 	return 0;
1863 }
1864 
1865 
kvm_set_spte_hva(struct kvm * kvm,unsigned long hva,pte_t pte)1866 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1867 {
1868 	unsigned long end = hva + PAGE_SIZE;
1869 	kvm_pfn_t pfn = pte_pfn(pte);
1870 	pte_t stage2_pte;
1871 
1872 	if (!kvm->arch.pgd)
1873 		return;
1874 
1875 	trace_kvm_set_spte_hva(hva);
1876 
1877 	/*
1878 	 * We've moved a page around, probably through CoW, so let's treat it
1879 	 * just like a translation fault and clean the cache to the PoC.
1880 	 */
1881 	clean_dcache_guest_page(pfn, PAGE_SIZE);
1882 	stage2_pte = pfn_pte(pfn, PAGE_S2);
1883 	handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
1884 }
1885 
kvm_age_hva_handler(struct kvm * kvm,gpa_t gpa,u64 size,void * data)1886 static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1887 {
1888 	pmd_t *pmd;
1889 	pte_t *pte;
1890 
1891 	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE);
1892 	pmd = stage2_get_pmd(kvm, NULL, gpa);
1893 	if (!pmd || pmd_none(*pmd))	/* Nothing there */
1894 		return 0;
1895 
1896 	if (pmd_thp_or_huge(*pmd))	/* THP, HugeTLB */
1897 		return stage2_pmdp_test_and_clear_young(pmd);
1898 
1899 	pte = pte_offset_kernel(pmd, gpa);
1900 	if (pte_none(*pte))
1901 		return 0;
1902 
1903 	return stage2_ptep_test_and_clear_young(pte);
1904 }
1905 
kvm_test_age_hva_handler(struct kvm * kvm,gpa_t gpa,u64 size,void * data)1906 static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1907 {
1908 	pmd_t *pmd;
1909 	pte_t *pte;
1910 
1911 	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE);
1912 	pmd = stage2_get_pmd(kvm, NULL, gpa);
1913 	if (!pmd || pmd_none(*pmd))	/* Nothing there */
1914 		return 0;
1915 
1916 	if (pmd_thp_or_huge(*pmd))		/* THP, HugeTLB */
1917 		return pmd_young(*pmd);
1918 
1919 	pte = pte_offset_kernel(pmd, gpa);
1920 	if (!pte_none(*pte))		/* Just a page... */
1921 		return pte_young(*pte);
1922 
1923 	return 0;
1924 }
1925 
kvm_age_hva(struct kvm * kvm,unsigned long start,unsigned long end)1926 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1927 {
1928 	if (!kvm->arch.pgd)
1929 		return 0;
1930 	trace_kvm_age_hva(start, end);
1931 	return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
1932 }
1933 
kvm_test_age_hva(struct kvm * kvm,unsigned long hva)1934 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1935 {
1936 	if (!kvm->arch.pgd)
1937 		return 0;
1938 	trace_kvm_test_age_hva(hva);
1939 	return handle_hva_to_gpa(kvm, hva, hva + PAGE_SIZE,
1940 				 kvm_test_age_hva_handler, NULL);
1941 }
1942 
kvm_mmu_free_memory_caches(struct kvm_vcpu * vcpu)1943 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1944 {
1945 	mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
1946 }
1947 
kvm_mmu_get_httbr(void)1948 phys_addr_t kvm_mmu_get_httbr(void)
1949 {
1950 	if (__kvm_cpu_uses_extended_idmap())
1951 		return virt_to_phys(merged_hyp_pgd);
1952 	else
1953 		return virt_to_phys(hyp_pgd);
1954 }
1955 
kvm_get_idmap_vector(void)1956 phys_addr_t kvm_get_idmap_vector(void)
1957 {
1958 	return hyp_idmap_vector;
1959 }
1960 
kvm_map_idmap_text(pgd_t * pgd)1961 static int kvm_map_idmap_text(pgd_t *pgd)
1962 {
1963 	int err;
1964 
1965 	/* Create the idmap in the boot page tables */
1966 	err = 	__create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
1967 				      hyp_idmap_start, hyp_idmap_end,
1968 				      __phys_to_pfn(hyp_idmap_start),
1969 				      PAGE_HYP_EXEC);
1970 	if (err)
1971 		kvm_err("Failed to idmap %lx-%lx\n",
1972 			hyp_idmap_start, hyp_idmap_end);
1973 
1974 	return err;
1975 }
1976 
kvm_mmu_init(void)1977 int kvm_mmu_init(void)
1978 {
1979 	int err;
1980 
1981 	hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
1982 	hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
1983 	hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
1984 	hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
1985 	hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
1986 
1987 	/*
1988 	 * We rely on the linker script to ensure at build time that the HYP
1989 	 * init code does not cross a page boundary.
1990 	 */
1991 	BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1992 
1993 	kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
1994 	kvm_debug("HYP VA range: %lx:%lx\n",
1995 		  kern_hyp_va(PAGE_OFFSET),
1996 		  kern_hyp_va((unsigned long)high_memory - 1));
1997 
1998 	if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
1999 	    hyp_idmap_start <  kern_hyp_va((unsigned long)high_memory - 1) &&
2000 	    hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
2001 		/*
2002 		 * The idmap page is intersecting with the VA space,
2003 		 * it is not safe to continue further.
2004 		 */
2005 		kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
2006 		err = -EINVAL;
2007 		goto out;
2008 	}
2009 
2010 	hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
2011 	if (!hyp_pgd) {
2012 		kvm_err("Hyp mode PGD not allocated\n");
2013 		err = -ENOMEM;
2014 		goto out;
2015 	}
2016 
2017 	if (__kvm_cpu_uses_extended_idmap()) {
2018 		boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
2019 							 hyp_pgd_order);
2020 		if (!boot_hyp_pgd) {
2021 			kvm_err("Hyp boot PGD not allocated\n");
2022 			err = -ENOMEM;
2023 			goto out;
2024 		}
2025 
2026 		err = kvm_map_idmap_text(boot_hyp_pgd);
2027 		if (err)
2028 			goto out;
2029 
2030 		merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
2031 		if (!merged_hyp_pgd) {
2032 			kvm_err("Failed to allocate extra HYP pgd\n");
2033 			goto out;
2034 		}
2035 		__kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
2036 				    hyp_idmap_start);
2037 	} else {
2038 		err = kvm_map_idmap_text(hyp_pgd);
2039 		if (err)
2040 			goto out;
2041 	}
2042 
2043 	io_map_base = hyp_idmap_start;
2044 	return 0;
2045 out:
2046 	free_hyp_pgds();
2047 	return err;
2048 }
2049 
kvm_arch_commit_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem,const struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)2050 void kvm_arch_commit_memory_region(struct kvm *kvm,
2051 				   const struct kvm_userspace_memory_region *mem,
2052 				   const struct kvm_memory_slot *old,
2053 				   const struct kvm_memory_slot *new,
2054 				   enum kvm_mr_change change)
2055 {
2056 	/*
2057 	 * At this point memslot has been committed and there is an
2058 	 * allocated dirty_bitmap[], dirty pages will be be tracked while the
2059 	 * memory slot is write protected.
2060 	 */
2061 	if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
2062 		kvm_mmu_wp_memory_region(kvm, mem->slot);
2063 }
2064 
kvm_arch_prepare_memory_region(struct kvm * kvm,struct kvm_memory_slot * memslot,const struct kvm_userspace_memory_region * mem,enum kvm_mr_change change)2065 int kvm_arch_prepare_memory_region(struct kvm *kvm,
2066 				   struct kvm_memory_slot *memslot,
2067 				   const struct kvm_userspace_memory_region *mem,
2068 				   enum kvm_mr_change change)
2069 {
2070 	hva_t hva = mem->userspace_addr;
2071 	hva_t reg_end = hva + mem->memory_size;
2072 	bool writable = !(mem->flags & KVM_MEM_READONLY);
2073 	int ret = 0;
2074 
2075 	if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
2076 			change != KVM_MR_FLAGS_ONLY)
2077 		return 0;
2078 
2079 	/*
2080 	 * Prevent userspace from creating a memory region outside of the IPA
2081 	 * space addressable by the KVM guest IPA space.
2082 	 */
2083 	if (memslot->base_gfn + memslot->npages >
2084 	    (KVM_PHYS_SIZE >> PAGE_SHIFT))
2085 		return -EFAULT;
2086 
2087 	down_read(&current->mm->mmap_sem);
2088 	/*
2089 	 * A memory region could potentially cover multiple VMAs, and any holes
2090 	 * between them, so iterate over all of them to find out if we can map
2091 	 * any of them right now.
2092 	 *
2093 	 *     +--------------------------------------------+
2094 	 * +---------------+----------------+   +----------------+
2095 	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
2096 	 * +---------------+----------------+   +----------------+
2097 	 *     |               memory region                |
2098 	 *     +--------------------------------------------+
2099 	 */
2100 	do {
2101 		struct vm_area_struct *vma = find_vma(current->mm, hva);
2102 		hva_t vm_start, vm_end;
2103 
2104 		if (!vma || vma->vm_start >= reg_end)
2105 			break;
2106 
2107 		/*
2108 		 * Mapping a read-only VMA is only allowed if the
2109 		 * memory region is configured as read-only.
2110 		 */
2111 		if (writable && !(vma->vm_flags & VM_WRITE)) {
2112 			ret = -EPERM;
2113 			break;
2114 		}
2115 
2116 		/*
2117 		 * Take the intersection of this VMA with the memory region
2118 		 */
2119 		vm_start = max(hva, vma->vm_start);
2120 		vm_end = min(reg_end, vma->vm_end);
2121 
2122 		if (vma->vm_flags & VM_PFNMAP) {
2123 			gpa_t gpa = mem->guest_phys_addr +
2124 				    (vm_start - mem->userspace_addr);
2125 			phys_addr_t pa;
2126 
2127 			pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
2128 			pa += vm_start - vma->vm_start;
2129 
2130 			/* IO region dirty page logging not allowed */
2131 			if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
2132 				ret = -EINVAL;
2133 				goto out;
2134 			}
2135 
2136 			ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
2137 						    vm_end - vm_start,
2138 						    writable);
2139 			if (ret)
2140 				break;
2141 		}
2142 		hva = vm_end;
2143 	} while (hva < reg_end);
2144 
2145 	if (change == KVM_MR_FLAGS_ONLY)
2146 		goto out;
2147 
2148 	spin_lock(&kvm->mmu_lock);
2149 	if (ret)
2150 		unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
2151 	else
2152 		stage2_flush_memslot(kvm, memslot);
2153 	spin_unlock(&kvm->mmu_lock);
2154 out:
2155 	up_read(&current->mm->mmap_sem);
2156 	return ret;
2157 }
2158 
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * free,struct kvm_memory_slot * dont)2159 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
2160 			   struct kvm_memory_slot *dont)
2161 {
2162 }
2163 
kvm_arch_create_memslot(struct kvm * kvm,struct kvm_memory_slot * slot,unsigned long npages)2164 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
2165 			    unsigned long npages)
2166 {
2167 	return 0;
2168 }
2169 
kvm_arch_memslots_updated(struct kvm * kvm,u64 gen)2170 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
2171 {
2172 }
2173 
kvm_arch_flush_shadow_all(struct kvm * kvm)2174 void kvm_arch_flush_shadow_all(struct kvm *kvm)
2175 {
2176 	kvm_free_stage2_pgd(kvm);
2177 }
2178 
kvm_arch_flush_shadow_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)2179 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
2180 				   struct kvm_memory_slot *slot)
2181 {
2182 	gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
2183 	phys_addr_t size = slot->npages << PAGE_SHIFT;
2184 
2185 	spin_lock(&kvm->mmu_lock);
2186 	unmap_stage2_range(kvm, gpa, size);
2187 	spin_unlock(&kvm->mmu_lock);
2188 }
2189 
2190 /*
2191  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
2192  *
2193  * Main problems:
2194  * - S/W ops are local to a CPU (not broadcast)
2195  * - We have line migration behind our back (speculation)
2196  * - System caches don't support S/W at all (damn!)
2197  *
2198  * In the face of the above, the best we can do is to try and convert
2199  * S/W ops to VA ops. Because the guest is not allowed to infer the
2200  * S/W to PA mapping, it can only use S/W to nuke the whole cache,
2201  * which is a rather good thing for us.
2202  *
2203  * Also, it is only used when turning caches on/off ("The expected
2204  * usage of the cache maintenance instructions that operate by set/way
2205  * is associated with the cache maintenance instructions associated
2206  * with the powerdown and powerup of caches, if this is required by
2207  * the implementation.").
2208  *
2209  * We use the following policy:
2210  *
2211  * - If we trap a S/W operation, we enable VM trapping to detect
2212  *   caches being turned on/off, and do a full clean.
2213  *
2214  * - We flush the caches on both caches being turned on and off.
2215  *
2216  * - Once the caches are enabled, we stop trapping VM ops.
2217  */
kvm_set_way_flush(struct kvm_vcpu * vcpu)2218 void kvm_set_way_flush(struct kvm_vcpu *vcpu)
2219 {
2220 	unsigned long hcr = *vcpu_hcr(vcpu);
2221 
2222 	/*
2223 	 * If this is the first time we do a S/W operation
2224 	 * (i.e. HCR_TVM not set) flush the whole memory, and set the
2225 	 * VM trapping.
2226 	 *
2227 	 * Otherwise, rely on the VM trapping to wait for the MMU +
2228 	 * Caches to be turned off. At that point, we'll be able to
2229 	 * clean the caches again.
2230 	 */
2231 	if (!(hcr & HCR_TVM)) {
2232 		trace_kvm_set_way_flush(*vcpu_pc(vcpu),
2233 					vcpu_has_cache_enabled(vcpu));
2234 		stage2_flush_vm(vcpu->kvm);
2235 		*vcpu_hcr(vcpu) = hcr | HCR_TVM;
2236 	}
2237 }
2238 
kvm_toggle_cache(struct kvm_vcpu * vcpu,bool was_enabled)2239 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
2240 {
2241 	bool now_enabled = vcpu_has_cache_enabled(vcpu);
2242 
2243 	/*
2244 	 * If switching the MMU+caches on, need to invalidate the caches.
2245 	 * If switching it off, need to clean the caches.
2246 	 * Clean + invalidate does the trick always.
2247 	 */
2248 	if (now_enabled != was_enabled)
2249 		stage2_flush_vm(vcpu->kvm);
2250 
2251 	/* Caches are now on, stop trapping VM ops (until a S/W op) */
2252 	if (now_enabled)
2253 		*vcpu_hcr(vcpu) &= ~HCR_TVM;
2254 
2255 	trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
2256 }
2257