1 /*
2 * Copyright (c) 2013, Kenneth MacKay
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met:
8 * * Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * * Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
15 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
16 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
17 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
18 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
19 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
20 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
24 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27 #include <linux/random.h>
28 #include <linux/slab.h>
29 #include <linux/swab.h>
30 #include <linux/fips.h>
31 #include <crypto/ecdh.h>
32 #include <crypto/rng.h>
33
34 #include "ecc.h"
35 #include "ecc_curve_defs.h"
36
37 typedef struct {
38 u64 m_low;
39 u64 m_high;
40 } uint128_t;
41
ecc_get_curve(unsigned int curve_id)42 static inline const struct ecc_curve *ecc_get_curve(unsigned int curve_id)
43 {
44 switch (curve_id) {
45 /* In FIPS mode only allow P256 and higher */
46 case ECC_CURVE_NIST_P192:
47 return fips_enabled ? NULL : &nist_p192;
48 case ECC_CURVE_NIST_P256:
49 return &nist_p256;
50 default:
51 return NULL;
52 }
53 }
54
ecc_alloc_digits_space(unsigned int ndigits)55 static u64 *ecc_alloc_digits_space(unsigned int ndigits)
56 {
57 size_t len = ndigits * sizeof(u64);
58
59 if (!len)
60 return NULL;
61
62 return kmalloc(len, GFP_KERNEL);
63 }
64
ecc_free_digits_space(u64 * space)65 static void ecc_free_digits_space(u64 *space)
66 {
67 kzfree(space);
68 }
69
ecc_alloc_point(unsigned int ndigits)70 static struct ecc_point *ecc_alloc_point(unsigned int ndigits)
71 {
72 struct ecc_point *p = kmalloc(sizeof(*p), GFP_KERNEL);
73
74 if (!p)
75 return NULL;
76
77 p->x = ecc_alloc_digits_space(ndigits);
78 if (!p->x)
79 goto err_alloc_x;
80
81 p->y = ecc_alloc_digits_space(ndigits);
82 if (!p->y)
83 goto err_alloc_y;
84
85 p->ndigits = ndigits;
86
87 return p;
88
89 err_alloc_y:
90 ecc_free_digits_space(p->x);
91 err_alloc_x:
92 kfree(p);
93 return NULL;
94 }
95
ecc_free_point(struct ecc_point * p)96 static void ecc_free_point(struct ecc_point *p)
97 {
98 if (!p)
99 return;
100
101 kzfree(p->x);
102 kzfree(p->y);
103 kzfree(p);
104 }
105
vli_clear(u64 * vli,unsigned int ndigits)106 static void vli_clear(u64 *vli, unsigned int ndigits)
107 {
108 int i;
109
110 for (i = 0; i < ndigits; i++)
111 vli[i] = 0;
112 }
113
114 /* Returns true if vli == 0, false otherwise. */
vli_is_zero(const u64 * vli,unsigned int ndigits)115 static bool vli_is_zero(const u64 *vli, unsigned int ndigits)
116 {
117 int i;
118
119 for (i = 0; i < ndigits; i++) {
120 if (vli[i])
121 return false;
122 }
123
124 return true;
125 }
126
127 /* Returns nonzero if bit bit of vli is set. */
vli_test_bit(const u64 * vli,unsigned int bit)128 static u64 vli_test_bit(const u64 *vli, unsigned int bit)
129 {
130 return (vli[bit / 64] & ((u64)1 << (bit % 64)));
131 }
132
133 /* Counts the number of 64-bit "digits" in vli. */
vli_num_digits(const u64 * vli,unsigned int ndigits)134 static unsigned int vli_num_digits(const u64 *vli, unsigned int ndigits)
135 {
136 int i;
137
138 /* Search from the end until we find a non-zero digit.
139 * We do it in reverse because we expect that most digits will
140 * be nonzero.
141 */
142 for (i = ndigits - 1; i >= 0 && vli[i] == 0; i--);
143
144 return (i + 1);
145 }
146
147 /* Counts the number of bits required for vli. */
vli_num_bits(const u64 * vli,unsigned int ndigits)148 static unsigned int vli_num_bits(const u64 *vli, unsigned int ndigits)
149 {
150 unsigned int i, num_digits;
151 u64 digit;
152
153 num_digits = vli_num_digits(vli, ndigits);
154 if (num_digits == 0)
155 return 0;
156
157 digit = vli[num_digits - 1];
158 for (i = 0; digit; i++)
159 digit >>= 1;
160
161 return ((num_digits - 1) * 64 + i);
162 }
163
164 /* Sets dest = src. */
vli_set(u64 * dest,const u64 * src,unsigned int ndigits)165 static void vli_set(u64 *dest, const u64 *src, unsigned int ndigits)
166 {
167 int i;
168
169 for (i = 0; i < ndigits; i++)
170 dest[i] = src[i];
171 }
172
173 /* Returns sign of left - right. */
vli_cmp(const u64 * left,const u64 * right,unsigned int ndigits)174 static int vli_cmp(const u64 *left, const u64 *right, unsigned int ndigits)
175 {
176 int i;
177
178 for (i = ndigits - 1; i >= 0; i--) {
179 if (left[i] > right[i])
180 return 1;
181 else if (left[i] < right[i])
182 return -1;
183 }
184
185 return 0;
186 }
187
188 /* Computes result = in << c, returning carry. Can modify in place
189 * (if result == in). 0 < shift < 64.
190 */
vli_lshift(u64 * result,const u64 * in,unsigned int shift,unsigned int ndigits)191 static u64 vli_lshift(u64 *result, const u64 *in, unsigned int shift,
192 unsigned int ndigits)
193 {
194 u64 carry = 0;
195 int i;
196
197 for (i = 0; i < ndigits; i++) {
198 u64 temp = in[i];
199
200 result[i] = (temp << shift) | carry;
201 carry = temp >> (64 - shift);
202 }
203
204 return carry;
205 }
206
207 /* Computes vli = vli >> 1. */
vli_rshift1(u64 * vli,unsigned int ndigits)208 static void vli_rshift1(u64 *vli, unsigned int ndigits)
209 {
210 u64 *end = vli;
211 u64 carry = 0;
212
213 vli += ndigits;
214
215 while (vli-- > end) {
216 u64 temp = *vli;
217 *vli = (temp >> 1) | carry;
218 carry = temp << 63;
219 }
220 }
221
222 /* Computes result = left + right, returning carry. Can modify in place. */
vli_add(u64 * result,const u64 * left,const u64 * right,unsigned int ndigits)223 static u64 vli_add(u64 *result, const u64 *left, const u64 *right,
224 unsigned int ndigits)
225 {
226 u64 carry = 0;
227 int i;
228
229 for (i = 0; i < ndigits; i++) {
230 u64 sum;
231
232 sum = left[i] + right[i] + carry;
233 if (sum != left[i])
234 carry = (sum < left[i]);
235
236 result[i] = sum;
237 }
238
239 return carry;
240 }
241
242 /* Computes result = left - right, returning borrow. Can modify in place. */
vli_sub(u64 * result,const u64 * left,const u64 * right,unsigned int ndigits)243 static u64 vli_sub(u64 *result, const u64 *left, const u64 *right,
244 unsigned int ndigits)
245 {
246 u64 borrow = 0;
247 int i;
248
249 for (i = 0; i < ndigits; i++) {
250 u64 diff;
251
252 diff = left[i] - right[i] - borrow;
253 if (diff != left[i])
254 borrow = (diff > left[i]);
255
256 result[i] = diff;
257 }
258
259 return borrow;
260 }
261
mul_64_64(u64 left,u64 right)262 static uint128_t mul_64_64(u64 left, u64 right)
263 {
264 u64 a0 = left & 0xffffffffull;
265 u64 a1 = left >> 32;
266 u64 b0 = right & 0xffffffffull;
267 u64 b1 = right >> 32;
268 u64 m0 = a0 * b0;
269 u64 m1 = a0 * b1;
270 u64 m2 = a1 * b0;
271 u64 m3 = a1 * b1;
272 uint128_t result;
273
274 m2 += (m0 >> 32);
275 m2 += m1;
276
277 /* Overflow */
278 if (m2 < m1)
279 m3 += 0x100000000ull;
280
281 result.m_low = (m0 & 0xffffffffull) | (m2 << 32);
282 result.m_high = m3 + (m2 >> 32);
283
284 return result;
285 }
286
add_128_128(uint128_t a,uint128_t b)287 static uint128_t add_128_128(uint128_t a, uint128_t b)
288 {
289 uint128_t result;
290
291 result.m_low = a.m_low + b.m_low;
292 result.m_high = a.m_high + b.m_high + (result.m_low < a.m_low);
293
294 return result;
295 }
296
vli_mult(u64 * result,const u64 * left,const u64 * right,unsigned int ndigits)297 static void vli_mult(u64 *result, const u64 *left, const u64 *right,
298 unsigned int ndigits)
299 {
300 uint128_t r01 = { 0, 0 };
301 u64 r2 = 0;
302 unsigned int i, k;
303
304 /* Compute each digit of result in sequence, maintaining the
305 * carries.
306 */
307 for (k = 0; k < ndigits * 2 - 1; k++) {
308 unsigned int min;
309
310 if (k < ndigits)
311 min = 0;
312 else
313 min = (k + 1) - ndigits;
314
315 for (i = min; i <= k && i < ndigits; i++) {
316 uint128_t product;
317
318 product = mul_64_64(left[i], right[k - i]);
319
320 r01 = add_128_128(r01, product);
321 r2 += (r01.m_high < product.m_high);
322 }
323
324 result[k] = r01.m_low;
325 r01.m_low = r01.m_high;
326 r01.m_high = r2;
327 r2 = 0;
328 }
329
330 result[ndigits * 2 - 1] = r01.m_low;
331 }
332
vli_square(u64 * result,const u64 * left,unsigned int ndigits)333 static void vli_square(u64 *result, const u64 *left, unsigned int ndigits)
334 {
335 uint128_t r01 = { 0, 0 };
336 u64 r2 = 0;
337 int i, k;
338
339 for (k = 0; k < ndigits * 2 - 1; k++) {
340 unsigned int min;
341
342 if (k < ndigits)
343 min = 0;
344 else
345 min = (k + 1) - ndigits;
346
347 for (i = min; i <= k && i <= k - i; i++) {
348 uint128_t product;
349
350 product = mul_64_64(left[i], left[k - i]);
351
352 if (i < k - i) {
353 r2 += product.m_high >> 63;
354 product.m_high = (product.m_high << 1) |
355 (product.m_low >> 63);
356 product.m_low <<= 1;
357 }
358
359 r01 = add_128_128(r01, product);
360 r2 += (r01.m_high < product.m_high);
361 }
362
363 result[k] = r01.m_low;
364 r01.m_low = r01.m_high;
365 r01.m_high = r2;
366 r2 = 0;
367 }
368
369 result[ndigits * 2 - 1] = r01.m_low;
370 }
371
372 /* Computes result = (left + right) % mod.
373 * Assumes that left < mod and right < mod, result != mod.
374 */
vli_mod_add(u64 * result,const u64 * left,const u64 * right,const u64 * mod,unsigned int ndigits)375 static void vli_mod_add(u64 *result, const u64 *left, const u64 *right,
376 const u64 *mod, unsigned int ndigits)
377 {
378 u64 carry;
379
380 carry = vli_add(result, left, right, ndigits);
381
382 /* result > mod (result = mod + remainder), so subtract mod to
383 * get remainder.
384 */
385 if (carry || vli_cmp(result, mod, ndigits) >= 0)
386 vli_sub(result, result, mod, ndigits);
387 }
388
389 /* Computes result = (left - right) % mod.
390 * Assumes that left < mod and right < mod, result != mod.
391 */
vli_mod_sub(u64 * result,const u64 * left,const u64 * right,const u64 * mod,unsigned int ndigits)392 static void vli_mod_sub(u64 *result, const u64 *left, const u64 *right,
393 const u64 *mod, unsigned int ndigits)
394 {
395 u64 borrow = vli_sub(result, left, right, ndigits);
396
397 /* In this case, p_result == -diff == (max int) - diff.
398 * Since -x % d == d - x, we can get the correct result from
399 * result + mod (with overflow).
400 */
401 if (borrow)
402 vli_add(result, result, mod, ndigits);
403 }
404
405 /* Computes p_result = p_product % curve_p.
406 * See algorithm 5 and 6 from
407 * http://www.isys.uni-klu.ac.at/PDF/2001-0126-MT.pdf
408 */
vli_mmod_fast_192(u64 * result,const u64 * product,const u64 * curve_prime,u64 * tmp)409 static void vli_mmod_fast_192(u64 *result, const u64 *product,
410 const u64 *curve_prime, u64 *tmp)
411 {
412 const unsigned int ndigits = 3;
413 int carry;
414
415 vli_set(result, product, ndigits);
416
417 vli_set(tmp, &product[3], ndigits);
418 carry = vli_add(result, result, tmp, ndigits);
419
420 tmp[0] = 0;
421 tmp[1] = product[3];
422 tmp[2] = product[4];
423 carry += vli_add(result, result, tmp, ndigits);
424
425 tmp[0] = tmp[1] = product[5];
426 tmp[2] = 0;
427 carry += vli_add(result, result, tmp, ndigits);
428
429 while (carry || vli_cmp(curve_prime, result, ndigits) != 1)
430 carry -= vli_sub(result, result, curve_prime, ndigits);
431 }
432
433 /* Computes result = product % curve_prime
434 * from http://www.nsa.gov/ia/_files/nist-routines.pdf
435 */
vli_mmod_fast_256(u64 * result,const u64 * product,const u64 * curve_prime,u64 * tmp)436 static void vli_mmod_fast_256(u64 *result, const u64 *product,
437 const u64 *curve_prime, u64 *tmp)
438 {
439 int carry;
440 const unsigned int ndigits = 4;
441
442 /* t */
443 vli_set(result, product, ndigits);
444
445 /* s1 */
446 tmp[0] = 0;
447 tmp[1] = product[5] & 0xffffffff00000000ull;
448 tmp[2] = product[6];
449 tmp[3] = product[7];
450 carry = vli_lshift(tmp, tmp, 1, ndigits);
451 carry += vli_add(result, result, tmp, ndigits);
452
453 /* s2 */
454 tmp[1] = product[6] << 32;
455 tmp[2] = (product[6] >> 32) | (product[7] << 32);
456 tmp[3] = product[7] >> 32;
457 carry += vli_lshift(tmp, tmp, 1, ndigits);
458 carry += vli_add(result, result, tmp, ndigits);
459
460 /* s3 */
461 tmp[0] = product[4];
462 tmp[1] = product[5] & 0xffffffff;
463 tmp[2] = 0;
464 tmp[3] = product[7];
465 carry += vli_add(result, result, tmp, ndigits);
466
467 /* s4 */
468 tmp[0] = (product[4] >> 32) | (product[5] << 32);
469 tmp[1] = (product[5] >> 32) | (product[6] & 0xffffffff00000000ull);
470 tmp[2] = product[7];
471 tmp[3] = (product[6] >> 32) | (product[4] << 32);
472 carry += vli_add(result, result, tmp, ndigits);
473
474 /* d1 */
475 tmp[0] = (product[5] >> 32) | (product[6] << 32);
476 tmp[1] = (product[6] >> 32);
477 tmp[2] = 0;
478 tmp[3] = (product[4] & 0xffffffff) | (product[5] << 32);
479 carry -= vli_sub(result, result, tmp, ndigits);
480
481 /* d2 */
482 tmp[0] = product[6];
483 tmp[1] = product[7];
484 tmp[2] = 0;
485 tmp[3] = (product[4] >> 32) | (product[5] & 0xffffffff00000000ull);
486 carry -= vli_sub(result, result, tmp, ndigits);
487
488 /* d3 */
489 tmp[0] = (product[6] >> 32) | (product[7] << 32);
490 tmp[1] = (product[7] >> 32) | (product[4] << 32);
491 tmp[2] = (product[4] >> 32) | (product[5] << 32);
492 tmp[3] = (product[6] << 32);
493 carry -= vli_sub(result, result, tmp, ndigits);
494
495 /* d4 */
496 tmp[0] = product[7];
497 tmp[1] = product[4] & 0xffffffff00000000ull;
498 tmp[2] = product[5];
499 tmp[3] = product[6] & 0xffffffff00000000ull;
500 carry -= vli_sub(result, result, tmp, ndigits);
501
502 if (carry < 0) {
503 do {
504 carry += vli_add(result, result, curve_prime, ndigits);
505 } while (carry < 0);
506 } else {
507 while (carry || vli_cmp(curve_prime, result, ndigits) != 1)
508 carry -= vli_sub(result, result, curve_prime, ndigits);
509 }
510 }
511
512 /* Computes result = product % curve_prime
513 * from http://www.nsa.gov/ia/_files/nist-routines.pdf
514 */
vli_mmod_fast(u64 * result,u64 * product,const u64 * curve_prime,unsigned int ndigits)515 static bool vli_mmod_fast(u64 *result, u64 *product,
516 const u64 *curve_prime, unsigned int ndigits)
517 {
518 u64 tmp[2 * ECC_MAX_DIGITS];
519
520 switch (ndigits) {
521 case 3:
522 vli_mmod_fast_192(result, product, curve_prime, tmp);
523 break;
524 case 4:
525 vli_mmod_fast_256(result, product, curve_prime, tmp);
526 break;
527 default:
528 pr_err("unsupports digits size!\n");
529 return false;
530 }
531
532 return true;
533 }
534
535 /* Computes result = (left * right) % curve_prime. */
vli_mod_mult_fast(u64 * result,const u64 * left,const u64 * right,const u64 * curve_prime,unsigned int ndigits)536 static void vli_mod_mult_fast(u64 *result, const u64 *left, const u64 *right,
537 const u64 *curve_prime, unsigned int ndigits)
538 {
539 u64 product[2 * ECC_MAX_DIGITS];
540
541 vli_mult(product, left, right, ndigits);
542 vli_mmod_fast(result, product, curve_prime, ndigits);
543 }
544
545 /* Computes result = left^2 % curve_prime. */
vli_mod_square_fast(u64 * result,const u64 * left,const u64 * curve_prime,unsigned int ndigits)546 static void vli_mod_square_fast(u64 *result, const u64 *left,
547 const u64 *curve_prime, unsigned int ndigits)
548 {
549 u64 product[2 * ECC_MAX_DIGITS];
550
551 vli_square(product, left, ndigits);
552 vli_mmod_fast(result, product, curve_prime, ndigits);
553 }
554
555 #define EVEN(vli) (!(vli[0] & 1))
556 /* Computes result = (1 / p_input) % mod. All VLIs are the same size.
557 * See "From Euclid's GCD to Montgomery Multiplication to the Great Divide"
558 * https://labs.oracle.com/techrep/2001/smli_tr-2001-95.pdf
559 */
vli_mod_inv(u64 * result,const u64 * input,const u64 * mod,unsigned int ndigits)560 static void vli_mod_inv(u64 *result, const u64 *input, const u64 *mod,
561 unsigned int ndigits)
562 {
563 u64 a[ECC_MAX_DIGITS], b[ECC_MAX_DIGITS];
564 u64 u[ECC_MAX_DIGITS], v[ECC_MAX_DIGITS];
565 u64 carry;
566 int cmp_result;
567
568 if (vli_is_zero(input, ndigits)) {
569 vli_clear(result, ndigits);
570 return;
571 }
572
573 vli_set(a, input, ndigits);
574 vli_set(b, mod, ndigits);
575 vli_clear(u, ndigits);
576 u[0] = 1;
577 vli_clear(v, ndigits);
578
579 while ((cmp_result = vli_cmp(a, b, ndigits)) != 0) {
580 carry = 0;
581
582 if (EVEN(a)) {
583 vli_rshift1(a, ndigits);
584
585 if (!EVEN(u))
586 carry = vli_add(u, u, mod, ndigits);
587
588 vli_rshift1(u, ndigits);
589 if (carry)
590 u[ndigits - 1] |= 0x8000000000000000ull;
591 } else if (EVEN(b)) {
592 vli_rshift1(b, ndigits);
593
594 if (!EVEN(v))
595 carry = vli_add(v, v, mod, ndigits);
596
597 vli_rshift1(v, ndigits);
598 if (carry)
599 v[ndigits - 1] |= 0x8000000000000000ull;
600 } else if (cmp_result > 0) {
601 vli_sub(a, a, b, ndigits);
602 vli_rshift1(a, ndigits);
603
604 if (vli_cmp(u, v, ndigits) < 0)
605 vli_add(u, u, mod, ndigits);
606
607 vli_sub(u, u, v, ndigits);
608 if (!EVEN(u))
609 carry = vli_add(u, u, mod, ndigits);
610
611 vli_rshift1(u, ndigits);
612 if (carry)
613 u[ndigits - 1] |= 0x8000000000000000ull;
614 } else {
615 vli_sub(b, b, a, ndigits);
616 vli_rshift1(b, ndigits);
617
618 if (vli_cmp(v, u, ndigits) < 0)
619 vli_add(v, v, mod, ndigits);
620
621 vli_sub(v, v, u, ndigits);
622 if (!EVEN(v))
623 carry = vli_add(v, v, mod, ndigits);
624
625 vli_rshift1(v, ndigits);
626 if (carry)
627 v[ndigits - 1] |= 0x8000000000000000ull;
628 }
629 }
630
631 vli_set(result, u, ndigits);
632 }
633
634 /* ------ Point operations ------ */
635
636 /* Returns true if p_point is the point at infinity, false otherwise. */
ecc_point_is_zero(const struct ecc_point * point)637 static bool ecc_point_is_zero(const struct ecc_point *point)
638 {
639 return (vli_is_zero(point->x, point->ndigits) &&
640 vli_is_zero(point->y, point->ndigits));
641 }
642
643 /* Point multiplication algorithm using Montgomery's ladder with co-Z
644 * coordinates. From http://eprint.iacr.org/2011/338.pdf
645 */
646
647 /* Double in place */
ecc_point_double_jacobian(u64 * x1,u64 * y1,u64 * z1,u64 * curve_prime,unsigned int ndigits)648 static void ecc_point_double_jacobian(u64 *x1, u64 *y1, u64 *z1,
649 u64 *curve_prime, unsigned int ndigits)
650 {
651 /* t1 = x, t2 = y, t3 = z */
652 u64 t4[ECC_MAX_DIGITS];
653 u64 t5[ECC_MAX_DIGITS];
654
655 if (vli_is_zero(z1, ndigits))
656 return;
657
658 /* t4 = y1^2 */
659 vli_mod_square_fast(t4, y1, curve_prime, ndigits);
660 /* t5 = x1*y1^2 = A */
661 vli_mod_mult_fast(t5, x1, t4, curve_prime, ndigits);
662 /* t4 = y1^4 */
663 vli_mod_square_fast(t4, t4, curve_prime, ndigits);
664 /* t2 = y1*z1 = z3 */
665 vli_mod_mult_fast(y1, y1, z1, curve_prime, ndigits);
666 /* t3 = z1^2 */
667 vli_mod_square_fast(z1, z1, curve_prime, ndigits);
668
669 /* t1 = x1 + z1^2 */
670 vli_mod_add(x1, x1, z1, curve_prime, ndigits);
671 /* t3 = 2*z1^2 */
672 vli_mod_add(z1, z1, z1, curve_prime, ndigits);
673 /* t3 = x1 - z1^2 */
674 vli_mod_sub(z1, x1, z1, curve_prime, ndigits);
675 /* t1 = x1^2 - z1^4 */
676 vli_mod_mult_fast(x1, x1, z1, curve_prime, ndigits);
677
678 /* t3 = 2*(x1^2 - z1^4) */
679 vli_mod_add(z1, x1, x1, curve_prime, ndigits);
680 /* t1 = 3*(x1^2 - z1^4) */
681 vli_mod_add(x1, x1, z1, curve_prime, ndigits);
682 if (vli_test_bit(x1, 0)) {
683 u64 carry = vli_add(x1, x1, curve_prime, ndigits);
684
685 vli_rshift1(x1, ndigits);
686 x1[ndigits - 1] |= carry << 63;
687 } else {
688 vli_rshift1(x1, ndigits);
689 }
690 /* t1 = 3/2*(x1^2 - z1^4) = B */
691
692 /* t3 = B^2 */
693 vli_mod_square_fast(z1, x1, curve_prime, ndigits);
694 /* t3 = B^2 - A */
695 vli_mod_sub(z1, z1, t5, curve_prime, ndigits);
696 /* t3 = B^2 - 2A = x3 */
697 vli_mod_sub(z1, z1, t5, curve_prime, ndigits);
698 /* t5 = A - x3 */
699 vli_mod_sub(t5, t5, z1, curve_prime, ndigits);
700 /* t1 = B * (A - x3) */
701 vli_mod_mult_fast(x1, x1, t5, curve_prime, ndigits);
702 /* t4 = B * (A - x3) - y1^4 = y3 */
703 vli_mod_sub(t4, x1, t4, curve_prime, ndigits);
704
705 vli_set(x1, z1, ndigits);
706 vli_set(z1, y1, ndigits);
707 vli_set(y1, t4, ndigits);
708 }
709
710 /* Modify (x1, y1) => (x1 * z^2, y1 * z^3) */
apply_z(u64 * x1,u64 * y1,u64 * z,u64 * curve_prime,unsigned int ndigits)711 static void apply_z(u64 *x1, u64 *y1, u64 *z, u64 *curve_prime,
712 unsigned int ndigits)
713 {
714 u64 t1[ECC_MAX_DIGITS];
715
716 vli_mod_square_fast(t1, z, curve_prime, ndigits); /* z^2 */
717 vli_mod_mult_fast(x1, x1, t1, curve_prime, ndigits); /* x1 * z^2 */
718 vli_mod_mult_fast(t1, t1, z, curve_prime, ndigits); /* z^3 */
719 vli_mod_mult_fast(y1, y1, t1, curve_prime, ndigits); /* y1 * z^3 */
720 }
721
722 /* P = (x1, y1) => 2P, (x2, y2) => P' */
xycz_initial_double(u64 * x1,u64 * y1,u64 * x2,u64 * y2,u64 * p_initial_z,u64 * curve_prime,unsigned int ndigits)723 static void xycz_initial_double(u64 *x1, u64 *y1, u64 *x2, u64 *y2,
724 u64 *p_initial_z, u64 *curve_prime,
725 unsigned int ndigits)
726 {
727 u64 z[ECC_MAX_DIGITS];
728
729 vli_set(x2, x1, ndigits);
730 vli_set(y2, y1, ndigits);
731
732 vli_clear(z, ndigits);
733 z[0] = 1;
734
735 if (p_initial_z)
736 vli_set(z, p_initial_z, ndigits);
737
738 apply_z(x1, y1, z, curve_prime, ndigits);
739
740 ecc_point_double_jacobian(x1, y1, z, curve_prime, ndigits);
741
742 apply_z(x2, y2, z, curve_prime, ndigits);
743 }
744
745 /* Input P = (x1, y1, Z), Q = (x2, y2, Z)
746 * Output P' = (x1', y1', Z3), P + Q = (x3, y3, Z3)
747 * or P => P', Q => P + Q
748 */
xycz_add(u64 * x1,u64 * y1,u64 * x2,u64 * y2,u64 * curve_prime,unsigned int ndigits)749 static void xycz_add(u64 *x1, u64 *y1, u64 *x2, u64 *y2, u64 *curve_prime,
750 unsigned int ndigits)
751 {
752 /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
753 u64 t5[ECC_MAX_DIGITS];
754
755 /* t5 = x2 - x1 */
756 vli_mod_sub(t5, x2, x1, curve_prime, ndigits);
757 /* t5 = (x2 - x1)^2 = A */
758 vli_mod_square_fast(t5, t5, curve_prime, ndigits);
759 /* t1 = x1*A = B */
760 vli_mod_mult_fast(x1, x1, t5, curve_prime, ndigits);
761 /* t3 = x2*A = C */
762 vli_mod_mult_fast(x2, x2, t5, curve_prime, ndigits);
763 /* t4 = y2 - y1 */
764 vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
765 /* t5 = (y2 - y1)^2 = D */
766 vli_mod_square_fast(t5, y2, curve_prime, ndigits);
767
768 /* t5 = D - B */
769 vli_mod_sub(t5, t5, x1, curve_prime, ndigits);
770 /* t5 = D - B - C = x3 */
771 vli_mod_sub(t5, t5, x2, curve_prime, ndigits);
772 /* t3 = C - B */
773 vli_mod_sub(x2, x2, x1, curve_prime, ndigits);
774 /* t2 = y1*(C - B) */
775 vli_mod_mult_fast(y1, y1, x2, curve_prime, ndigits);
776 /* t3 = B - x3 */
777 vli_mod_sub(x2, x1, t5, curve_prime, ndigits);
778 /* t4 = (y2 - y1)*(B - x3) */
779 vli_mod_mult_fast(y2, y2, x2, curve_prime, ndigits);
780 /* t4 = y3 */
781 vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
782
783 vli_set(x2, t5, ndigits);
784 }
785
786 /* Input P = (x1, y1, Z), Q = (x2, y2, Z)
787 * Output P + Q = (x3, y3, Z3), P - Q = (x3', y3', Z3)
788 * or P => P - Q, Q => P + Q
789 */
xycz_add_c(u64 * x1,u64 * y1,u64 * x2,u64 * y2,u64 * curve_prime,unsigned int ndigits)790 static void xycz_add_c(u64 *x1, u64 *y1, u64 *x2, u64 *y2, u64 *curve_prime,
791 unsigned int ndigits)
792 {
793 /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
794 u64 t5[ECC_MAX_DIGITS];
795 u64 t6[ECC_MAX_DIGITS];
796 u64 t7[ECC_MAX_DIGITS];
797
798 /* t5 = x2 - x1 */
799 vli_mod_sub(t5, x2, x1, curve_prime, ndigits);
800 /* t5 = (x2 - x1)^2 = A */
801 vli_mod_square_fast(t5, t5, curve_prime, ndigits);
802 /* t1 = x1*A = B */
803 vli_mod_mult_fast(x1, x1, t5, curve_prime, ndigits);
804 /* t3 = x2*A = C */
805 vli_mod_mult_fast(x2, x2, t5, curve_prime, ndigits);
806 /* t4 = y2 + y1 */
807 vli_mod_add(t5, y2, y1, curve_prime, ndigits);
808 /* t4 = y2 - y1 */
809 vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
810
811 /* t6 = C - B */
812 vli_mod_sub(t6, x2, x1, curve_prime, ndigits);
813 /* t2 = y1 * (C - B) */
814 vli_mod_mult_fast(y1, y1, t6, curve_prime, ndigits);
815 /* t6 = B + C */
816 vli_mod_add(t6, x1, x2, curve_prime, ndigits);
817 /* t3 = (y2 - y1)^2 */
818 vli_mod_square_fast(x2, y2, curve_prime, ndigits);
819 /* t3 = x3 */
820 vli_mod_sub(x2, x2, t6, curve_prime, ndigits);
821
822 /* t7 = B - x3 */
823 vli_mod_sub(t7, x1, x2, curve_prime, ndigits);
824 /* t4 = (y2 - y1)*(B - x3) */
825 vli_mod_mult_fast(y2, y2, t7, curve_prime, ndigits);
826 /* t4 = y3 */
827 vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
828
829 /* t7 = (y2 + y1)^2 = F */
830 vli_mod_square_fast(t7, t5, curve_prime, ndigits);
831 /* t7 = x3' */
832 vli_mod_sub(t7, t7, t6, curve_prime, ndigits);
833 /* t6 = x3' - B */
834 vli_mod_sub(t6, t7, x1, curve_prime, ndigits);
835 /* t6 = (y2 + y1)*(x3' - B) */
836 vli_mod_mult_fast(t6, t6, t5, curve_prime, ndigits);
837 /* t2 = y3' */
838 vli_mod_sub(y1, t6, y1, curve_prime, ndigits);
839
840 vli_set(x1, t7, ndigits);
841 }
842
ecc_point_mult(struct ecc_point * result,const struct ecc_point * point,const u64 * scalar,u64 * initial_z,const struct ecc_curve * curve,unsigned int ndigits)843 static void ecc_point_mult(struct ecc_point *result,
844 const struct ecc_point *point, const u64 *scalar,
845 u64 *initial_z, const struct ecc_curve *curve,
846 unsigned int ndigits)
847 {
848 /* R0 and R1 */
849 u64 rx[2][ECC_MAX_DIGITS];
850 u64 ry[2][ECC_MAX_DIGITS];
851 u64 z[ECC_MAX_DIGITS];
852 u64 sk[2][ECC_MAX_DIGITS];
853 u64 *curve_prime = curve->p;
854 int i, nb;
855 int num_bits;
856 int carry;
857
858 carry = vli_add(sk[0], scalar, curve->n, ndigits);
859 vli_add(sk[1], sk[0], curve->n, ndigits);
860 scalar = sk[!carry];
861 num_bits = sizeof(u64) * ndigits * 8 + 1;
862
863 vli_set(rx[1], point->x, ndigits);
864 vli_set(ry[1], point->y, ndigits);
865
866 xycz_initial_double(rx[1], ry[1], rx[0], ry[0], initial_z, curve_prime,
867 ndigits);
868
869 for (i = num_bits - 2; i > 0; i--) {
870 nb = !vli_test_bit(scalar, i);
871 xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve_prime,
872 ndigits);
873 xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve_prime,
874 ndigits);
875 }
876
877 nb = !vli_test_bit(scalar, 0);
878 xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve_prime,
879 ndigits);
880
881 /* Find final 1/Z value. */
882 /* X1 - X0 */
883 vli_mod_sub(z, rx[1], rx[0], curve_prime, ndigits);
884 /* Yb * (X1 - X0) */
885 vli_mod_mult_fast(z, z, ry[1 - nb], curve_prime, ndigits);
886 /* xP * Yb * (X1 - X0) */
887 vli_mod_mult_fast(z, z, point->x, curve_prime, ndigits);
888
889 /* 1 / (xP * Yb * (X1 - X0)) */
890 vli_mod_inv(z, z, curve_prime, point->ndigits);
891
892 /* yP / (xP * Yb * (X1 - X0)) */
893 vli_mod_mult_fast(z, z, point->y, curve_prime, ndigits);
894 /* Xb * yP / (xP * Yb * (X1 - X0)) */
895 vli_mod_mult_fast(z, z, rx[1 - nb], curve_prime, ndigits);
896 /* End 1/Z calculation */
897
898 xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve_prime, ndigits);
899
900 apply_z(rx[0], ry[0], z, curve_prime, ndigits);
901
902 vli_set(result->x, rx[0], ndigits);
903 vli_set(result->y, ry[0], ndigits);
904 }
905
ecc_swap_digits(const u64 * in,u64 * out,unsigned int ndigits)906 static inline void ecc_swap_digits(const u64 *in, u64 *out,
907 unsigned int ndigits)
908 {
909 const __be64 *src = (__force __be64 *)in;
910 int i;
911
912 for (i = 0; i < ndigits; i++)
913 out[i] = be64_to_cpu(src[ndigits - 1 - i]);
914 }
915
__ecc_is_key_valid(const struct ecc_curve * curve,const u64 * private_key,unsigned int ndigits)916 static int __ecc_is_key_valid(const struct ecc_curve *curve,
917 const u64 *private_key, unsigned int ndigits)
918 {
919 u64 one[ECC_MAX_DIGITS] = { 1, };
920 u64 res[ECC_MAX_DIGITS];
921
922 if (!private_key)
923 return -EINVAL;
924
925 if (curve->g.ndigits != ndigits)
926 return -EINVAL;
927
928 /* Make sure the private key is in the range [2, n-3]. */
929 if (vli_cmp(one, private_key, ndigits) != -1)
930 return -EINVAL;
931 vli_sub(res, curve->n, one, ndigits);
932 vli_sub(res, res, one, ndigits);
933 if (vli_cmp(res, private_key, ndigits) != 1)
934 return -EINVAL;
935
936 return 0;
937 }
938
ecc_is_key_valid(unsigned int curve_id,unsigned int ndigits,const u64 * private_key,unsigned int private_key_len)939 int ecc_is_key_valid(unsigned int curve_id, unsigned int ndigits,
940 const u64 *private_key, unsigned int private_key_len)
941 {
942 int nbytes;
943 const struct ecc_curve *curve = ecc_get_curve(curve_id);
944
945 nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
946
947 if (private_key_len != nbytes)
948 return -EINVAL;
949
950 return __ecc_is_key_valid(curve, private_key, ndigits);
951 }
952
953 /*
954 * ECC private keys are generated using the method of extra random bits,
955 * equivalent to that described in FIPS 186-4, Appendix B.4.1.
956 *
957 * d = (c mod(n–1)) + 1 where c is a string of random bits, 64 bits longer
958 * than requested
959 * 0 <= c mod(n-1) <= n-2 and implies that
960 * 1 <= d <= n-1
961 *
962 * This method generates a private key uniformly distributed in the range
963 * [1, n-1].
964 */
ecc_gen_privkey(unsigned int curve_id,unsigned int ndigits,u64 * privkey)965 int ecc_gen_privkey(unsigned int curve_id, unsigned int ndigits, u64 *privkey)
966 {
967 const struct ecc_curve *curve = ecc_get_curve(curve_id);
968 u64 priv[ECC_MAX_DIGITS];
969 unsigned int nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
970 unsigned int nbits = vli_num_bits(curve->n, ndigits);
971 int err;
972
973 /* Check that N is included in Table 1 of FIPS 186-4, section 6.1.1 */
974 if (nbits < 160 || ndigits > ARRAY_SIZE(priv))
975 return -EINVAL;
976
977 /*
978 * FIPS 186-4 recommends that the private key should be obtained from a
979 * RBG with a security strength equal to or greater than the security
980 * strength associated with N.
981 *
982 * The maximum security strength identified by NIST SP800-57pt1r4 for
983 * ECC is 256 (N >= 512).
984 *
985 * This condition is met by the default RNG because it selects a favored
986 * DRBG with a security strength of 256.
987 */
988 if (crypto_get_default_rng())
989 return -EFAULT;
990
991 err = crypto_rng_get_bytes(crypto_default_rng, (u8 *)priv, nbytes);
992 crypto_put_default_rng();
993 if (err)
994 return err;
995
996 /* Make sure the private key is in the valid range. */
997 if (__ecc_is_key_valid(curve, priv, ndigits))
998 return -EINVAL;
999
1000 ecc_swap_digits(priv, privkey, ndigits);
1001
1002 return 0;
1003 }
1004
ecc_make_pub_key(unsigned int curve_id,unsigned int ndigits,const u64 * private_key,u64 * public_key)1005 int ecc_make_pub_key(unsigned int curve_id, unsigned int ndigits,
1006 const u64 *private_key, u64 *public_key)
1007 {
1008 int ret = 0;
1009 struct ecc_point *pk;
1010 u64 priv[ECC_MAX_DIGITS];
1011 const struct ecc_curve *curve = ecc_get_curve(curve_id);
1012
1013 if (!private_key || !curve || ndigits > ARRAY_SIZE(priv)) {
1014 ret = -EINVAL;
1015 goto out;
1016 }
1017
1018 ecc_swap_digits(private_key, priv, ndigits);
1019
1020 pk = ecc_alloc_point(ndigits);
1021 if (!pk) {
1022 ret = -ENOMEM;
1023 goto out;
1024 }
1025
1026 ecc_point_mult(pk, &curve->g, priv, NULL, curve, ndigits);
1027 if (ecc_point_is_zero(pk)) {
1028 ret = -EAGAIN;
1029 goto err_free_point;
1030 }
1031
1032 ecc_swap_digits(pk->x, public_key, ndigits);
1033 ecc_swap_digits(pk->y, &public_key[ndigits], ndigits);
1034
1035 err_free_point:
1036 ecc_free_point(pk);
1037 out:
1038 return ret;
1039 }
1040
1041 /* SP800-56A section 5.6.2.3.4 partial verification: ephemeral keys only */
ecc_is_pubkey_valid_partial(const struct ecc_curve * curve,struct ecc_point * pk)1042 static int ecc_is_pubkey_valid_partial(const struct ecc_curve *curve,
1043 struct ecc_point *pk)
1044 {
1045 u64 yy[ECC_MAX_DIGITS], xxx[ECC_MAX_DIGITS], w[ECC_MAX_DIGITS];
1046
1047 /* Check 1: Verify key is not the zero point. */
1048 if (ecc_point_is_zero(pk))
1049 return -EINVAL;
1050
1051 /* Check 2: Verify key is in the range [1, p-1]. */
1052 if (vli_cmp(curve->p, pk->x, pk->ndigits) != 1)
1053 return -EINVAL;
1054 if (vli_cmp(curve->p, pk->y, pk->ndigits) != 1)
1055 return -EINVAL;
1056
1057 /* Check 3: Verify that y^2 == (x^3 + a·x + b) mod p */
1058 vli_mod_square_fast(yy, pk->y, curve->p, pk->ndigits); /* y^2 */
1059 vli_mod_square_fast(xxx, pk->x, curve->p, pk->ndigits); /* x^2 */
1060 vli_mod_mult_fast(xxx, xxx, pk->x, curve->p, pk->ndigits); /* x^3 */
1061 vli_mod_mult_fast(w, curve->a, pk->x, curve->p, pk->ndigits); /* a·x */
1062 vli_mod_add(w, w, curve->b, curve->p, pk->ndigits); /* a·x + b */
1063 vli_mod_add(w, w, xxx, curve->p, pk->ndigits); /* x^3 + a·x + b */
1064 if (vli_cmp(yy, w, pk->ndigits) != 0) /* Equation */
1065 return -EINVAL;
1066
1067 return 0;
1068
1069 }
1070
crypto_ecdh_shared_secret(unsigned int curve_id,unsigned int ndigits,const u64 * private_key,const u64 * public_key,u64 * secret)1071 int crypto_ecdh_shared_secret(unsigned int curve_id, unsigned int ndigits,
1072 const u64 *private_key, const u64 *public_key,
1073 u64 *secret)
1074 {
1075 int ret = 0;
1076 struct ecc_point *product, *pk;
1077 u64 priv[ECC_MAX_DIGITS];
1078 u64 rand_z[ECC_MAX_DIGITS];
1079 unsigned int nbytes;
1080 const struct ecc_curve *curve = ecc_get_curve(curve_id);
1081
1082 if (!private_key || !public_key || !curve ||
1083 ndigits > ARRAY_SIZE(priv) || ndigits > ARRAY_SIZE(rand_z)) {
1084 ret = -EINVAL;
1085 goto out;
1086 }
1087
1088 nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
1089
1090 get_random_bytes(rand_z, nbytes);
1091
1092 pk = ecc_alloc_point(ndigits);
1093 if (!pk) {
1094 ret = -ENOMEM;
1095 goto out;
1096 }
1097
1098 ecc_swap_digits(public_key, pk->x, ndigits);
1099 ecc_swap_digits(&public_key[ndigits], pk->y, ndigits);
1100 ret = ecc_is_pubkey_valid_partial(curve, pk);
1101 if (ret)
1102 goto err_alloc_product;
1103
1104 ecc_swap_digits(private_key, priv, ndigits);
1105
1106 product = ecc_alloc_point(ndigits);
1107 if (!product) {
1108 ret = -ENOMEM;
1109 goto err_alloc_product;
1110 }
1111
1112 ecc_point_mult(product, pk, priv, rand_z, curve, ndigits);
1113
1114 ecc_swap_digits(product->x, secret, ndigits);
1115
1116 if (ecc_point_is_zero(product))
1117 ret = -EFAULT;
1118
1119 ecc_free_point(product);
1120 err_alloc_product:
1121 ecc_free_point(pk);
1122 out:
1123 return ret;
1124 }
1125