1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8 
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16 
17 #include <linux/ratelimit.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/security.h>
28 #include <linux/seqlock.h>
29 #include <linux/bootmem.h>
30 #include <linux/bit_spinlock.h>
31 #include <linux/rculist_bl.h>
32 #include <linux/list_lru.h>
33 #include "internal.h"
34 #include "mount.h"
35 
36 /*
37  * Usage:
38  * dcache->d_inode->i_lock protects:
39  *   - i_dentry, d_u.d_alias, d_inode of aliases
40  * dcache_hash_bucket lock protects:
41  *   - the dcache hash table
42  * s_roots bl list spinlock protects:
43  *   - the s_roots list (see __d_drop)
44  * dentry->d_sb->s_dentry_lru_lock protects:
45  *   - the dcache lru lists and counters
46  * d_lock protects:
47  *   - d_flags
48  *   - d_name
49  *   - d_lru
50  *   - d_count
51  *   - d_unhashed()
52  *   - d_parent and d_subdirs
53  *   - childrens' d_child and d_parent
54  *   - d_u.d_alias, d_inode
55  *
56  * Ordering:
57  * dentry->d_inode->i_lock
58  *   dentry->d_lock
59  *     dentry->d_sb->s_dentry_lru_lock
60  *     dcache_hash_bucket lock
61  *     s_roots lock
62  *
63  * If there is an ancestor relationship:
64  * dentry->d_parent->...->d_parent->d_lock
65  *   ...
66  *     dentry->d_parent->d_lock
67  *       dentry->d_lock
68  *
69  * If no ancestor relationship:
70  * arbitrary, since it's serialized on rename_lock
71  */
72 int sysctl_vfs_cache_pressure __read_mostly = 100;
73 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
74 
75 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
76 
77 EXPORT_SYMBOL(rename_lock);
78 
79 static struct kmem_cache *dentry_cache __read_mostly;
80 
81 const struct qstr empty_name = QSTR_INIT("", 0);
82 EXPORT_SYMBOL(empty_name);
83 const struct qstr slash_name = QSTR_INIT("/", 1);
84 EXPORT_SYMBOL(slash_name);
85 
86 /*
87  * This is the single most critical data structure when it comes
88  * to the dcache: the hashtable for lookups. Somebody should try
89  * to make this good - I've just made it work.
90  *
91  * This hash-function tries to avoid losing too many bits of hash
92  * information, yet avoid using a prime hash-size or similar.
93  */
94 
95 static unsigned int d_hash_shift __read_mostly;
96 
97 static struct hlist_bl_head *dentry_hashtable __read_mostly;
98 
d_hash(unsigned int hash)99 static inline struct hlist_bl_head *d_hash(unsigned int hash)
100 {
101 	return dentry_hashtable + (hash >> d_hash_shift);
102 }
103 
104 #define IN_LOOKUP_SHIFT 10
105 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
106 
in_lookup_hash(const struct dentry * parent,unsigned int hash)107 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
108 					unsigned int hash)
109 {
110 	hash += (unsigned long) parent / L1_CACHE_BYTES;
111 	return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
112 }
113 
114 
115 /* Statistics gathering. */
116 struct dentry_stat_t dentry_stat = {
117 	.age_limit = 45,
118 };
119 
120 static DEFINE_PER_CPU(long, nr_dentry);
121 static DEFINE_PER_CPU(long, nr_dentry_unused);
122 
123 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
124 
125 /*
126  * Here we resort to our own counters instead of using generic per-cpu counters
127  * for consistency with what the vfs inode code does. We are expected to harvest
128  * better code and performance by having our own specialized counters.
129  *
130  * Please note that the loop is done over all possible CPUs, not over all online
131  * CPUs. The reason for this is that we don't want to play games with CPUs going
132  * on and off. If one of them goes off, we will just keep their counters.
133  *
134  * glommer: See cffbc8a for details, and if you ever intend to change this,
135  * please update all vfs counters to match.
136  */
get_nr_dentry(void)137 static long get_nr_dentry(void)
138 {
139 	int i;
140 	long sum = 0;
141 	for_each_possible_cpu(i)
142 		sum += per_cpu(nr_dentry, i);
143 	return sum < 0 ? 0 : sum;
144 }
145 
get_nr_dentry_unused(void)146 static long get_nr_dentry_unused(void)
147 {
148 	int i;
149 	long sum = 0;
150 	for_each_possible_cpu(i)
151 		sum += per_cpu(nr_dentry_unused, i);
152 	return sum < 0 ? 0 : sum;
153 }
154 
proc_nr_dentry(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)155 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
156 		   size_t *lenp, loff_t *ppos)
157 {
158 	dentry_stat.nr_dentry = get_nr_dentry();
159 	dentry_stat.nr_unused = get_nr_dentry_unused();
160 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
161 }
162 #endif
163 
164 /*
165  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
166  * The strings are both count bytes long, and count is non-zero.
167  */
168 #ifdef CONFIG_DCACHE_WORD_ACCESS
169 
170 #include <asm/word-at-a-time.h>
171 /*
172  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
173  * aligned allocation for this particular component. We don't
174  * strictly need the load_unaligned_zeropad() safety, but it
175  * doesn't hurt either.
176  *
177  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
178  * need the careful unaligned handling.
179  */
dentry_string_cmp(const unsigned char * cs,const unsigned char * ct,unsigned tcount)180 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
181 {
182 	unsigned long a,b,mask;
183 
184 	for (;;) {
185 		a = read_word_at_a_time(cs);
186 		b = load_unaligned_zeropad(ct);
187 		if (tcount < sizeof(unsigned long))
188 			break;
189 		if (unlikely(a != b))
190 			return 1;
191 		cs += sizeof(unsigned long);
192 		ct += sizeof(unsigned long);
193 		tcount -= sizeof(unsigned long);
194 		if (!tcount)
195 			return 0;
196 	}
197 	mask = bytemask_from_count(tcount);
198 	return unlikely(!!((a ^ b) & mask));
199 }
200 
201 #else
202 
dentry_string_cmp(const unsigned char * cs,const unsigned char * ct,unsigned tcount)203 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
204 {
205 	do {
206 		if (*cs != *ct)
207 			return 1;
208 		cs++;
209 		ct++;
210 		tcount--;
211 	} while (tcount);
212 	return 0;
213 }
214 
215 #endif
216 
dentry_cmp(const struct dentry * dentry,const unsigned char * ct,unsigned tcount)217 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
218 {
219 	/*
220 	 * Be careful about RCU walk racing with rename:
221 	 * use 'READ_ONCE' to fetch the name pointer.
222 	 *
223 	 * NOTE! Even if a rename will mean that the length
224 	 * was not loaded atomically, we don't care. The
225 	 * RCU walk will check the sequence count eventually,
226 	 * and catch it. And we won't overrun the buffer,
227 	 * because we're reading the name pointer atomically,
228 	 * and a dentry name is guaranteed to be properly
229 	 * terminated with a NUL byte.
230 	 *
231 	 * End result: even if 'len' is wrong, we'll exit
232 	 * early because the data cannot match (there can
233 	 * be no NUL in the ct/tcount data)
234 	 */
235 	const unsigned char *cs = READ_ONCE(dentry->d_name.name);
236 
237 	return dentry_string_cmp(cs, ct, tcount);
238 }
239 
240 struct external_name {
241 	union {
242 		atomic_t count;
243 		struct rcu_head head;
244 	} u;
245 	unsigned char name[];
246 };
247 
external_name(struct dentry * dentry)248 static inline struct external_name *external_name(struct dentry *dentry)
249 {
250 	return container_of(dentry->d_name.name, struct external_name, name[0]);
251 }
252 
__d_free(struct rcu_head * head)253 static void __d_free(struct rcu_head *head)
254 {
255 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
256 
257 	kmem_cache_free(dentry_cache, dentry);
258 }
259 
__d_free_external_name(struct rcu_head * head)260 static void __d_free_external_name(struct rcu_head *head)
261 {
262 	struct external_name *name = container_of(head, struct external_name,
263 						  u.head);
264 
265 	mod_node_page_state(page_pgdat(virt_to_page(name)),
266 			    NR_INDIRECTLY_RECLAIMABLE_BYTES,
267 			    -ksize(name));
268 
269 	kfree(name);
270 }
271 
__d_free_external(struct rcu_head * head)272 static void __d_free_external(struct rcu_head *head)
273 {
274 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
275 
276 	__d_free_external_name(&external_name(dentry)->u.head);
277 
278 	kmem_cache_free(dentry_cache, dentry);
279 }
280 
dname_external(const struct dentry * dentry)281 static inline int dname_external(const struct dentry *dentry)
282 {
283 	return dentry->d_name.name != dentry->d_iname;
284 }
285 
take_dentry_name_snapshot(struct name_snapshot * name,struct dentry * dentry)286 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
287 {
288 	spin_lock(&dentry->d_lock);
289 	if (unlikely(dname_external(dentry))) {
290 		struct external_name *p = external_name(dentry);
291 		atomic_inc(&p->u.count);
292 		spin_unlock(&dentry->d_lock);
293 		name->name = p->name;
294 	} else {
295 		memcpy(name->inline_name, dentry->d_iname,
296 		       dentry->d_name.len + 1);
297 		spin_unlock(&dentry->d_lock);
298 		name->name = name->inline_name;
299 	}
300 }
301 EXPORT_SYMBOL(take_dentry_name_snapshot);
302 
release_dentry_name_snapshot(struct name_snapshot * name)303 void release_dentry_name_snapshot(struct name_snapshot *name)
304 {
305 	if (unlikely(name->name != name->inline_name)) {
306 		struct external_name *p;
307 		p = container_of(name->name, struct external_name, name[0]);
308 		if (unlikely(atomic_dec_and_test(&p->u.count)))
309 			call_rcu(&p->u.head, __d_free_external_name);
310 	}
311 }
312 EXPORT_SYMBOL(release_dentry_name_snapshot);
313 
__d_set_inode_and_type(struct dentry * dentry,struct inode * inode,unsigned type_flags)314 static inline void __d_set_inode_and_type(struct dentry *dentry,
315 					  struct inode *inode,
316 					  unsigned type_flags)
317 {
318 	unsigned flags;
319 
320 	dentry->d_inode = inode;
321 	flags = READ_ONCE(dentry->d_flags);
322 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
323 	flags |= type_flags;
324 	WRITE_ONCE(dentry->d_flags, flags);
325 }
326 
__d_clear_type_and_inode(struct dentry * dentry)327 static inline void __d_clear_type_and_inode(struct dentry *dentry)
328 {
329 	unsigned flags = READ_ONCE(dentry->d_flags);
330 
331 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
332 	WRITE_ONCE(dentry->d_flags, flags);
333 	dentry->d_inode = NULL;
334 }
335 
dentry_free(struct dentry * dentry)336 static void dentry_free(struct dentry *dentry)
337 {
338 	WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
339 	if (unlikely(dname_external(dentry))) {
340 		struct external_name *p = external_name(dentry);
341 		if (likely(atomic_dec_and_test(&p->u.count))) {
342 			call_rcu(&dentry->d_u.d_rcu, __d_free_external);
343 			return;
344 		}
345 	}
346 	/* if dentry was never visible to RCU, immediate free is OK */
347 	if (dentry->d_flags & DCACHE_NORCU)
348 		__d_free(&dentry->d_u.d_rcu);
349 	else
350 		call_rcu(&dentry->d_u.d_rcu, __d_free);
351 }
352 
353 /*
354  * Release the dentry's inode, using the filesystem
355  * d_iput() operation if defined.
356  */
dentry_unlink_inode(struct dentry * dentry)357 static void dentry_unlink_inode(struct dentry * dentry)
358 	__releases(dentry->d_lock)
359 	__releases(dentry->d_inode->i_lock)
360 {
361 	struct inode *inode = dentry->d_inode;
362 
363 	raw_write_seqcount_begin(&dentry->d_seq);
364 	__d_clear_type_and_inode(dentry);
365 	hlist_del_init(&dentry->d_u.d_alias);
366 	raw_write_seqcount_end(&dentry->d_seq);
367 	spin_unlock(&dentry->d_lock);
368 	spin_unlock(&inode->i_lock);
369 	if (!inode->i_nlink)
370 		fsnotify_inoderemove(inode);
371 	if (dentry->d_op && dentry->d_op->d_iput)
372 		dentry->d_op->d_iput(dentry, inode);
373 	else
374 		iput(inode);
375 }
376 
377 /*
378  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
379  * is in use - which includes both the "real" per-superblock
380  * LRU list _and_ the DCACHE_SHRINK_LIST use.
381  *
382  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
383  * on the shrink list (ie not on the superblock LRU list).
384  *
385  * The per-cpu "nr_dentry_unused" counters are updated with
386  * the DCACHE_LRU_LIST bit.
387  *
388  * These helper functions make sure we always follow the
389  * rules. d_lock must be held by the caller.
390  */
391 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
d_lru_add(struct dentry * dentry)392 static void d_lru_add(struct dentry *dentry)
393 {
394 	D_FLAG_VERIFY(dentry, 0);
395 	dentry->d_flags |= DCACHE_LRU_LIST;
396 	this_cpu_inc(nr_dentry_unused);
397 	WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
398 }
399 
d_lru_del(struct dentry * dentry)400 static void d_lru_del(struct dentry *dentry)
401 {
402 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
403 	dentry->d_flags &= ~DCACHE_LRU_LIST;
404 	this_cpu_dec(nr_dentry_unused);
405 	WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
406 }
407 
d_shrink_del(struct dentry * dentry)408 static void d_shrink_del(struct dentry *dentry)
409 {
410 	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
411 	list_del_init(&dentry->d_lru);
412 	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
413 	this_cpu_dec(nr_dentry_unused);
414 }
415 
d_shrink_add(struct dentry * dentry,struct list_head * list)416 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
417 {
418 	D_FLAG_VERIFY(dentry, 0);
419 	list_add(&dentry->d_lru, list);
420 	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
421 	this_cpu_inc(nr_dentry_unused);
422 }
423 
424 /*
425  * These can only be called under the global LRU lock, ie during the
426  * callback for freeing the LRU list. "isolate" removes it from the
427  * LRU lists entirely, while shrink_move moves it to the indicated
428  * private list.
429  */
d_lru_isolate(struct list_lru_one * lru,struct dentry * dentry)430 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
431 {
432 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
433 	dentry->d_flags &= ~DCACHE_LRU_LIST;
434 	this_cpu_dec(nr_dentry_unused);
435 	list_lru_isolate(lru, &dentry->d_lru);
436 }
437 
d_lru_shrink_move(struct list_lru_one * lru,struct dentry * dentry,struct list_head * list)438 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
439 			      struct list_head *list)
440 {
441 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
442 	dentry->d_flags |= DCACHE_SHRINK_LIST;
443 	list_lru_isolate_move(lru, &dentry->d_lru, list);
444 }
445 
446 /**
447  * d_drop - drop a dentry
448  * @dentry: dentry to drop
449  *
450  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
451  * be found through a VFS lookup any more. Note that this is different from
452  * deleting the dentry - d_delete will try to mark the dentry negative if
453  * possible, giving a successful _negative_ lookup, while d_drop will
454  * just make the cache lookup fail.
455  *
456  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
457  * reason (NFS timeouts or autofs deletes).
458  *
459  * __d_drop requires dentry->d_lock
460  * ___d_drop doesn't mark dentry as "unhashed"
461  *   (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
462  */
___d_drop(struct dentry * dentry)463 static void ___d_drop(struct dentry *dentry)
464 {
465 	struct hlist_bl_head *b;
466 	/*
467 	 * Hashed dentries are normally on the dentry hashtable,
468 	 * with the exception of those newly allocated by
469 	 * d_obtain_root, which are always IS_ROOT:
470 	 */
471 	if (unlikely(IS_ROOT(dentry)))
472 		b = &dentry->d_sb->s_roots;
473 	else
474 		b = d_hash(dentry->d_name.hash);
475 
476 	hlist_bl_lock(b);
477 	__hlist_bl_del(&dentry->d_hash);
478 	hlist_bl_unlock(b);
479 }
480 
__d_drop(struct dentry * dentry)481 void __d_drop(struct dentry *dentry)
482 {
483 	if (!d_unhashed(dentry)) {
484 		___d_drop(dentry);
485 		dentry->d_hash.pprev = NULL;
486 		write_seqcount_invalidate(&dentry->d_seq);
487 	}
488 }
489 EXPORT_SYMBOL(__d_drop);
490 
d_drop(struct dentry * dentry)491 void d_drop(struct dentry *dentry)
492 {
493 	spin_lock(&dentry->d_lock);
494 	__d_drop(dentry);
495 	spin_unlock(&dentry->d_lock);
496 }
497 EXPORT_SYMBOL(d_drop);
498 
dentry_unlist(struct dentry * dentry,struct dentry * parent)499 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
500 {
501 	struct dentry *next;
502 	/*
503 	 * Inform d_walk() and shrink_dentry_list() that we are no longer
504 	 * attached to the dentry tree
505 	 */
506 	dentry->d_flags |= DCACHE_DENTRY_KILLED;
507 	if (unlikely(list_empty(&dentry->d_child)))
508 		return;
509 	__list_del_entry(&dentry->d_child);
510 	/*
511 	 * Cursors can move around the list of children.  While we'd been
512 	 * a normal list member, it didn't matter - ->d_child.next would've
513 	 * been updated.  However, from now on it won't be and for the
514 	 * things like d_walk() it might end up with a nasty surprise.
515 	 * Normally d_walk() doesn't care about cursors moving around -
516 	 * ->d_lock on parent prevents that and since a cursor has no children
517 	 * of its own, we get through it without ever unlocking the parent.
518 	 * There is one exception, though - if we ascend from a child that
519 	 * gets killed as soon as we unlock it, the next sibling is found
520 	 * using the value left in its ->d_child.next.  And if _that_
521 	 * pointed to a cursor, and cursor got moved (e.g. by lseek())
522 	 * before d_walk() regains parent->d_lock, we'll end up skipping
523 	 * everything the cursor had been moved past.
524 	 *
525 	 * Solution: make sure that the pointer left behind in ->d_child.next
526 	 * points to something that won't be moving around.  I.e. skip the
527 	 * cursors.
528 	 */
529 	while (dentry->d_child.next != &parent->d_subdirs) {
530 		next = list_entry(dentry->d_child.next, struct dentry, d_child);
531 		if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
532 			break;
533 		dentry->d_child.next = next->d_child.next;
534 	}
535 }
536 
__dentry_kill(struct dentry * dentry)537 static void __dentry_kill(struct dentry *dentry)
538 {
539 	struct dentry *parent = NULL;
540 	bool can_free = true;
541 	if (!IS_ROOT(dentry))
542 		parent = dentry->d_parent;
543 
544 	/*
545 	 * The dentry is now unrecoverably dead to the world.
546 	 */
547 	lockref_mark_dead(&dentry->d_lockref);
548 
549 	/*
550 	 * inform the fs via d_prune that this dentry is about to be
551 	 * unhashed and destroyed.
552 	 */
553 	if (dentry->d_flags & DCACHE_OP_PRUNE)
554 		dentry->d_op->d_prune(dentry);
555 
556 	if (dentry->d_flags & DCACHE_LRU_LIST) {
557 		if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
558 			d_lru_del(dentry);
559 	}
560 	/* if it was on the hash then remove it */
561 	__d_drop(dentry);
562 	dentry_unlist(dentry, parent);
563 	if (parent)
564 		spin_unlock(&parent->d_lock);
565 	if (dentry->d_inode)
566 		dentry_unlink_inode(dentry);
567 	else
568 		spin_unlock(&dentry->d_lock);
569 	this_cpu_dec(nr_dentry);
570 	if (dentry->d_op && dentry->d_op->d_release)
571 		dentry->d_op->d_release(dentry);
572 
573 	spin_lock(&dentry->d_lock);
574 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
575 		dentry->d_flags |= DCACHE_MAY_FREE;
576 		can_free = false;
577 	}
578 	spin_unlock(&dentry->d_lock);
579 	if (likely(can_free))
580 		dentry_free(dentry);
581 	cond_resched();
582 }
583 
__lock_parent(struct dentry * dentry)584 static struct dentry *__lock_parent(struct dentry *dentry)
585 {
586 	struct dentry *parent;
587 	rcu_read_lock();
588 	spin_unlock(&dentry->d_lock);
589 again:
590 	parent = READ_ONCE(dentry->d_parent);
591 	spin_lock(&parent->d_lock);
592 	/*
593 	 * We can't blindly lock dentry until we are sure
594 	 * that we won't violate the locking order.
595 	 * Any changes of dentry->d_parent must have
596 	 * been done with parent->d_lock held, so
597 	 * spin_lock() above is enough of a barrier
598 	 * for checking if it's still our child.
599 	 */
600 	if (unlikely(parent != dentry->d_parent)) {
601 		spin_unlock(&parent->d_lock);
602 		goto again;
603 	}
604 	rcu_read_unlock();
605 	if (parent != dentry)
606 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
607 	else
608 		parent = NULL;
609 	return parent;
610 }
611 
lock_parent(struct dentry * dentry)612 static inline struct dentry *lock_parent(struct dentry *dentry)
613 {
614 	struct dentry *parent = dentry->d_parent;
615 	if (IS_ROOT(dentry))
616 		return NULL;
617 	if (likely(spin_trylock(&parent->d_lock)))
618 		return parent;
619 	return __lock_parent(dentry);
620 }
621 
retain_dentry(struct dentry * dentry)622 static inline bool retain_dentry(struct dentry *dentry)
623 {
624 	WARN_ON(d_in_lookup(dentry));
625 
626 	/* Unreachable? Get rid of it */
627 	if (unlikely(d_unhashed(dentry)))
628 		return false;
629 
630 	if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
631 		return false;
632 
633 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
634 		if (dentry->d_op->d_delete(dentry))
635 			return false;
636 	}
637 	/* retain; LRU fodder */
638 	dentry->d_lockref.count--;
639 	if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
640 		d_lru_add(dentry);
641 	else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
642 		dentry->d_flags |= DCACHE_REFERENCED;
643 	return true;
644 }
645 
646 /*
647  * Finish off a dentry we've decided to kill.
648  * dentry->d_lock must be held, returns with it unlocked.
649  * Returns dentry requiring refcount drop, or NULL if we're done.
650  */
dentry_kill(struct dentry * dentry)651 static struct dentry *dentry_kill(struct dentry *dentry)
652 	__releases(dentry->d_lock)
653 {
654 	struct inode *inode = dentry->d_inode;
655 	struct dentry *parent = NULL;
656 
657 	if (inode && unlikely(!spin_trylock(&inode->i_lock)))
658 		goto slow_positive;
659 
660 	if (!IS_ROOT(dentry)) {
661 		parent = dentry->d_parent;
662 		if (unlikely(!spin_trylock(&parent->d_lock))) {
663 			parent = __lock_parent(dentry);
664 			if (likely(inode || !dentry->d_inode))
665 				goto got_locks;
666 			/* negative that became positive */
667 			if (parent)
668 				spin_unlock(&parent->d_lock);
669 			inode = dentry->d_inode;
670 			goto slow_positive;
671 		}
672 	}
673 	__dentry_kill(dentry);
674 	return parent;
675 
676 slow_positive:
677 	spin_unlock(&dentry->d_lock);
678 	spin_lock(&inode->i_lock);
679 	spin_lock(&dentry->d_lock);
680 	parent = lock_parent(dentry);
681 got_locks:
682 	if (unlikely(dentry->d_lockref.count != 1)) {
683 		dentry->d_lockref.count--;
684 	} else if (likely(!retain_dentry(dentry))) {
685 		__dentry_kill(dentry);
686 		return parent;
687 	}
688 	/* we are keeping it, after all */
689 	if (inode)
690 		spin_unlock(&inode->i_lock);
691 	if (parent)
692 		spin_unlock(&parent->d_lock);
693 	spin_unlock(&dentry->d_lock);
694 	return NULL;
695 }
696 
697 /*
698  * Try to do a lockless dput(), and return whether that was successful.
699  *
700  * If unsuccessful, we return false, having already taken the dentry lock.
701  *
702  * The caller needs to hold the RCU read lock, so that the dentry is
703  * guaranteed to stay around even if the refcount goes down to zero!
704  */
fast_dput(struct dentry * dentry)705 static inline bool fast_dput(struct dentry *dentry)
706 {
707 	int ret;
708 	unsigned int d_flags;
709 
710 	/*
711 	 * If we have a d_op->d_delete() operation, we sould not
712 	 * let the dentry count go to zero, so use "put_or_lock".
713 	 */
714 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
715 		return lockref_put_or_lock(&dentry->d_lockref);
716 
717 	/*
718 	 * .. otherwise, we can try to just decrement the
719 	 * lockref optimistically.
720 	 */
721 	ret = lockref_put_return(&dentry->d_lockref);
722 
723 	/*
724 	 * If the lockref_put_return() failed due to the lock being held
725 	 * by somebody else, the fast path has failed. We will need to
726 	 * get the lock, and then check the count again.
727 	 */
728 	if (unlikely(ret < 0)) {
729 		spin_lock(&dentry->d_lock);
730 		if (dentry->d_lockref.count > 1) {
731 			dentry->d_lockref.count--;
732 			spin_unlock(&dentry->d_lock);
733 			return true;
734 		}
735 		return false;
736 	}
737 
738 	/*
739 	 * If we weren't the last ref, we're done.
740 	 */
741 	if (ret)
742 		return true;
743 
744 	/*
745 	 * Careful, careful. The reference count went down
746 	 * to zero, but we don't hold the dentry lock, so
747 	 * somebody else could get it again, and do another
748 	 * dput(), and we need to not race with that.
749 	 *
750 	 * However, there is a very special and common case
751 	 * where we don't care, because there is nothing to
752 	 * do: the dentry is still hashed, it does not have
753 	 * a 'delete' op, and it's referenced and already on
754 	 * the LRU list.
755 	 *
756 	 * NOTE! Since we aren't locked, these values are
757 	 * not "stable". However, it is sufficient that at
758 	 * some point after we dropped the reference the
759 	 * dentry was hashed and the flags had the proper
760 	 * value. Other dentry users may have re-gotten
761 	 * a reference to the dentry and change that, but
762 	 * our work is done - we can leave the dentry
763 	 * around with a zero refcount.
764 	 */
765 	smp_rmb();
766 	d_flags = READ_ONCE(dentry->d_flags);
767 	d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
768 
769 	/* Nothing to do? Dropping the reference was all we needed? */
770 	if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
771 		return true;
772 
773 	/*
774 	 * Not the fast normal case? Get the lock. We've already decremented
775 	 * the refcount, but we'll need to re-check the situation after
776 	 * getting the lock.
777 	 */
778 	spin_lock(&dentry->d_lock);
779 
780 	/*
781 	 * Did somebody else grab a reference to it in the meantime, and
782 	 * we're no longer the last user after all? Alternatively, somebody
783 	 * else could have killed it and marked it dead. Either way, we
784 	 * don't need to do anything else.
785 	 */
786 	if (dentry->d_lockref.count) {
787 		spin_unlock(&dentry->d_lock);
788 		return true;
789 	}
790 
791 	/*
792 	 * Re-get the reference we optimistically dropped. We hold the
793 	 * lock, and we just tested that it was zero, so we can just
794 	 * set it to 1.
795 	 */
796 	dentry->d_lockref.count = 1;
797 	return false;
798 }
799 
800 
801 /*
802  * This is dput
803  *
804  * This is complicated by the fact that we do not want to put
805  * dentries that are no longer on any hash chain on the unused
806  * list: we'd much rather just get rid of them immediately.
807  *
808  * However, that implies that we have to traverse the dentry
809  * tree upwards to the parents which might _also_ now be
810  * scheduled for deletion (it may have been only waiting for
811  * its last child to go away).
812  *
813  * This tail recursion is done by hand as we don't want to depend
814  * on the compiler to always get this right (gcc generally doesn't).
815  * Real recursion would eat up our stack space.
816  */
817 
818 /*
819  * dput - release a dentry
820  * @dentry: dentry to release
821  *
822  * Release a dentry. This will drop the usage count and if appropriate
823  * call the dentry unlink method as well as removing it from the queues and
824  * releasing its resources. If the parent dentries were scheduled for release
825  * they too may now get deleted.
826  */
dput(struct dentry * dentry)827 void dput(struct dentry *dentry)
828 {
829 	while (dentry) {
830 		might_sleep();
831 
832 		rcu_read_lock();
833 		if (likely(fast_dput(dentry))) {
834 			rcu_read_unlock();
835 			return;
836 		}
837 
838 		/* Slow case: now with the dentry lock held */
839 		rcu_read_unlock();
840 
841 		if (likely(retain_dentry(dentry))) {
842 			spin_unlock(&dentry->d_lock);
843 			return;
844 		}
845 
846 		dentry = dentry_kill(dentry);
847 	}
848 }
849 EXPORT_SYMBOL(dput);
850 
851 
852 /* This must be called with d_lock held */
__dget_dlock(struct dentry * dentry)853 static inline void __dget_dlock(struct dentry *dentry)
854 {
855 	dentry->d_lockref.count++;
856 }
857 
__dget(struct dentry * dentry)858 static inline void __dget(struct dentry *dentry)
859 {
860 	lockref_get(&dentry->d_lockref);
861 }
862 
dget_parent(struct dentry * dentry)863 struct dentry *dget_parent(struct dentry *dentry)
864 {
865 	int gotref;
866 	struct dentry *ret;
867 	unsigned seq;
868 
869 	/*
870 	 * Do optimistic parent lookup without any
871 	 * locking.
872 	 */
873 	rcu_read_lock();
874 	seq = raw_seqcount_begin(&dentry->d_seq);
875 	ret = READ_ONCE(dentry->d_parent);
876 	gotref = lockref_get_not_zero(&ret->d_lockref);
877 	rcu_read_unlock();
878 	if (likely(gotref)) {
879 		if (!read_seqcount_retry(&dentry->d_seq, seq))
880 			return ret;
881 		dput(ret);
882 	}
883 
884 repeat:
885 	/*
886 	 * Don't need rcu_dereference because we re-check it was correct under
887 	 * the lock.
888 	 */
889 	rcu_read_lock();
890 	ret = dentry->d_parent;
891 	spin_lock(&ret->d_lock);
892 	if (unlikely(ret != dentry->d_parent)) {
893 		spin_unlock(&ret->d_lock);
894 		rcu_read_unlock();
895 		goto repeat;
896 	}
897 	rcu_read_unlock();
898 	BUG_ON(!ret->d_lockref.count);
899 	ret->d_lockref.count++;
900 	spin_unlock(&ret->d_lock);
901 	return ret;
902 }
903 EXPORT_SYMBOL(dget_parent);
904 
__d_find_any_alias(struct inode * inode)905 static struct dentry * __d_find_any_alias(struct inode *inode)
906 {
907 	struct dentry *alias;
908 
909 	if (hlist_empty(&inode->i_dentry))
910 		return NULL;
911 	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
912 	__dget(alias);
913 	return alias;
914 }
915 
916 /**
917  * d_find_any_alias - find any alias for a given inode
918  * @inode: inode to find an alias for
919  *
920  * If any aliases exist for the given inode, take and return a
921  * reference for one of them.  If no aliases exist, return %NULL.
922  */
d_find_any_alias(struct inode * inode)923 struct dentry *d_find_any_alias(struct inode *inode)
924 {
925 	struct dentry *de;
926 
927 	spin_lock(&inode->i_lock);
928 	de = __d_find_any_alias(inode);
929 	spin_unlock(&inode->i_lock);
930 	return de;
931 }
932 EXPORT_SYMBOL(d_find_any_alias);
933 
934 /**
935  * d_find_alias - grab a hashed alias of inode
936  * @inode: inode in question
937  *
938  * If inode has a hashed alias, or is a directory and has any alias,
939  * acquire the reference to alias and return it. Otherwise return NULL.
940  * Notice that if inode is a directory there can be only one alias and
941  * it can be unhashed only if it has no children, or if it is the root
942  * of a filesystem, or if the directory was renamed and d_revalidate
943  * was the first vfs operation to notice.
944  *
945  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
946  * any other hashed alias over that one.
947  */
__d_find_alias(struct inode * inode)948 static struct dentry *__d_find_alias(struct inode *inode)
949 {
950 	struct dentry *alias;
951 
952 	if (S_ISDIR(inode->i_mode))
953 		return __d_find_any_alias(inode);
954 
955 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
956 		spin_lock(&alias->d_lock);
957  		if (!d_unhashed(alias)) {
958 			__dget_dlock(alias);
959 			spin_unlock(&alias->d_lock);
960 			return alias;
961 		}
962 		spin_unlock(&alias->d_lock);
963 	}
964 	return NULL;
965 }
966 
d_find_alias(struct inode * inode)967 struct dentry *d_find_alias(struct inode *inode)
968 {
969 	struct dentry *de = NULL;
970 
971 	if (!hlist_empty(&inode->i_dentry)) {
972 		spin_lock(&inode->i_lock);
973 		de = __d_find_alias(inode);
974 		spin_unlock(&inode->i_lock);
975 	}
976 	return de;
977 }
978 EXPORT_SYMBOL(d_find_alias);
979 
980 /*
981  *	Try to kill dentries associated with this inode.
982  * WARNING: you must own a reference to inode.
983  */
d_prune_aliases(struct inode * inode)984 void d_prune_aliases(struct inode *inode)
985 {
986 	struct dentry *dentry;
987 restart:
988 	spin_lock(&inode->i_lock);
989 	hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
990 		spin_lock(&dentry->d_lock);
991 		if (!dentry->d_lockref.count) {
992 			struct dentry *parent = lock_parent(dentry);
993 			if (likely(!dentry->d_lockref.count)) {
994 				__dentry_kill(dentry);
995 				dput(parent);
996 				goto restart;
997 			}
998 			if (parent)
999 				spin_unlock(&parent->d_lock);
1000 		}
1001 		spin_unlock(&dentry->d_lock);
1002 	}
1003 	spin_unlock(&inode->i_lock);
1004 }
1005 EXPORT_SYMBOL(d_prune_aliases);
1006 
1007 /*
1008  * Lock a dentry from shrink list.
1009  * Called under rcu_read_lock() and dentry->d_lock; the former
1010  * guarantees that nothing we access will be freed under us.
1011  * Note that dentry is *not* protected from concurrent dentry_kill(),
1012  * d_delete(), etc.
1013  *
1014  * Return false if dentry has been disrupted or grabbed, leaving
1015  * the caller to kick it off-list.  Otherwise, return true and have
1016  * that dentry's inode and parent both locked.
1017  */
shrink_lock_dentry(struct dentry * dentry)1018 static bool shrink_lock_dentry(struct dentry *dentry)
1019 {
1020 	struct inode *inode;
1021 	struct dentry *parent;
1022 
1023 	if (dentry->d_lockref.count)
1024 		return false;
1025 
1026 	inode = dentry->d_inode;
1027 	if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1028 		spin_unlock(&dentry->d_lock);
1029 		spin_lock(&inode->i_lock);
1030 		spin_lock(&dentry->d_lock);
1031 		if (unlikely(dentry->d_lockref.count))
1032 			goto out;
1033 		/* changed inode means that somebody had grabbed it */
1034 		if (unlikely(inode != dentry->d_inode))
1035 			goto out;
1036 	}
1037 
1038 	parent = dentry->d_parent;
1039 	if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1040 		return true;
1041 
1042 	spin_unlock(&dentry->d_lock);
1043 	spin_lock(&parent->d_lock);
1044 	if (unlikely(parent != dentry->d_parent)) {
1045 		spin_unlock(&parent->d_lock);
1046 		spin_lock(&dentry->d_lock);
1047 		goto out;
1048 	}
1049 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1050 	if (likely(!dentry->d_lockref.count))
1051 		return true;
1052 	spin_unlock(&parent->d_lock);
1053 out:
1054 	if (inode)
1055 		spin_unlock(&inode->i_lock);
1056 	return false;
1057 }
1058 
shrink_dentry_list(struct list_head * list)1059 static void shrink_dentry_list(struct list_head *list)
1060 {
1061 	while (!list_empty(list)) {
1062 		struct dentry *dentry, *parent;
1063 
1064 		dentry = list_entry(list->prev, struct dentry, d_lru);
1065 		spin_lock(&dentry->d_lock);
1066 		rcu_read_lock();
1067 		if (!shrink_lock_dentry(dentry)) {
1068 			bool can_free = false;
1069 			rcu_read_unlock();
1070 			d_shrink_del(dentry);
1071 			if (dentry->d_lockref.count < 0)
1072 				can_free = dentry->d_flags & DCACHE_MAY_FREE;
1073 			spin_unlock(&dentry->d_lock);
1074 			if (can_free)
1075 				dentry_free(dentry);
1076 			continue;
1077 		}
1078 		rcu_read_unlock();
1079 		d_shrink_del(dentry);
1080 		parent = dentry->d_parent;
1081 		__dentry_kill(dentry);
1082 		if (parent == dentry)
1083 			continue;
1084 		/*
1085 		 * We need to prune ancestors too. This is necessary to prevent
1086 		 * quadratic behavior of shrink_dcache_parent(), but is also
1087 		 * expected to be beneficial in reducing dentry cache
1088 		 * fragmentation.
1089 		 */
1090 		dentry = parent;
1091 		while (dentry && !lockref_put_or_lock(&dentry->d_lockref))
1092 			dentry = dentry_kill(dentry);
1093 	}
1094 }
1095 
dentry_lru_isolate(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)1096 static enum lru_status dentry_lru_isolate(struct list_head *item,
1097 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1098 {
1099 	struct list_head *freeable = arg;
1100 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1101 
1102 
1103 	/*
1104 	 * we are inverting the lru lock/dentry->d_lock here,
1105 	 * so use a trylock. If we fail to get the lock, just skip
1106 	 * it
1107 	 */
1108 	if (!spin_trylock(&dentry->d_lock))
1109 		return LRU_SKIP;
1110 
1111 	/*
1112 	 * Referenced dentries are still in use. If they have active
1113 	 * counts, just remove them from the LRU. Otherwise give them
1114 	 * another pass through the LRU.
1115 	 */
1116 	if (dentry->d_lockref.count) {
1117 		d_lru_isolate(lru, dentry);
1118 		spin_unlock(&dentry->d_lock);
1119 		return LRU_REMOVED;
1120 	}
1121 
1122 	if (dentry->d_flags & DCACHE_REFERENCED) {
1123 		dentry->d_flags &= ~DCACHE_REFERENCED;
1124 		spin_unlock(&dentry->d_lock);
1125 
1126 		/*
1127 		 * The list move itself will be made by the common LRU code. At
1128 		 * this point, we've dropped the dentry->d_lock but keep the
1129 		 * lru lock. This is safe to do, since every list movement is
1130 		 * protected by the lru lock even if both locks are held.
1131 		 *
1132 		 * This is guaranteed by the fact that all LRU management
1133 		 * functions are intermediated by the LRU API calls like
1134 		 * list_lru_add and list_lru_del. List movement in this file
1135 		 * only ever occur through this functions or through callbacks
1136 		 * like this one, that are called from the LRU API.
1137 		 *
1138 		 * The only exceptions to this are functions like
1139 		 * shrink_dentry_list, and code that first checks for the
1140 		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1141 		 * operating only with stack provided lists after they are
1142 		 * properly isolated from the main list.  It is thus, always a
1143 		 * local access.
1144 		 */
1145 		return LRU_ROTATE;
1146 	}
1147 
1148 	d_lru_shrink_move(lru, dentry, freeable);
1149 	spin_unlock(&dentry->d_lock);
1150 
1151 	return LRU_REMOVED;
1152 }
1153 
1154 /**
1155  * prune_dcache_sb - shrink the dcache
1156  * @sb: superblock
1157  * @sc: shrink control, passed to list_lru_shrink_walk()
1158  *
1159  * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1160  * is done when we need more memory and called from the superblock shrinker
1161  * function.
1162  *
1163  * This function may fail to free any resources if all the dentries are in
1164  * use.
1165  */
prune_dcache_sb(struct super_block * sb,struct shrink_control * sc)1166 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1167 {
1168 	LIST_HEAD(dispose);
1169 	long freed;
1170 
1171 	freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1172 				     dentry_lru_isolate, &dispose);
1173 	shrink_dentry_list(&dispose);
1174 	return freed;
1175 }
1176 
dentry_lru_isolate_shrink(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)1177 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1178 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1179 {
1180 	struct list_head *freeable = arg;
1181 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1182 
1183 	/*
1184 	 * we are inverting the lru lock/dentry->d_lock here,
1185 	 * so use a trylock. If we fail to get the lock, just skip
1186 	 * it
1187 	 */
1188 	if (!spin_trylock(&dentry->d_lock))
1189 		return LRU_SKIP;
1190 
1191 	d_lru_shrink_move(lru, dentry, freeable);
1192 	spin_unlock(&dentry->d_lock);
1193 
1194 	return LRU_REMOVED;
1195 }
1196 
1197 
1198 /**
1199  * shrink_dcache_sb - shrink dcache for a superblock
1200  * @sb: superblock
1201  *
1202  * Shrink the dcache for the specified super block. This is used to free
1203  * the dcache before unmounting a file system.
1204  */
shrink_dcache_sb(struct super_block * sb)1205 void shrink_dcache_sb(struct super_block *sb)
1206 {
1207 	do {
1208 		LIST_HEAD(dispose);
1209 
1210 		list_lru_walk(&sb->s_dentry_lru,
1211 			dentry_lru_isolate_shrink, &dispose, 1024);
1212 		shrink_dentry_list(&dispose);
1213 	} while (list_lru_count(&sb->s_dentry_lru) > 0);
1214 }
1215 EXPORT_SYMBOL(shrink_dcache_sb);
1216 
1217 /**
1218  * enum d_walk_ret - action to talke during tree walk
1219  * @D_WALK_CONTINUE:	contrinue walk
1220  * @D_WALK_QUIT:	quit walk
1221  * @D_WALK_NORETRY:	quit when retry is needed
1222  * @D_WALK_SKIP:	skip this dentry and its children
1223  */
1224 enum d_walk_ret {
1225 	D_WALK_CONTINUE,
1226 	D_WALK_QUIT,
1227 	D_WALK_NORETRY,
1228 	D_WALK_SKIP,
1229 };
1230 
1231 /**
1232  * d_walk - walk the dentry tree
1233  * @parent:	start of walk
1234  * @data:	data passed to @enter() and @finish()
1235  * @enter:	callback when first entering the dentry
1236  *
1237  * The @enter() callbacks are called with d_lock held.
1238  */
d_walk(struct dentry * parent,void * data,enum d_walk_ret (* enter)(void *,struct dentry *))1239 static void d_walk(struct dentry *parent, void *data,
1240 		   enum d_walk_ret (*enter)(void *, struct dentry *))
1241 {
1242 	struct dentry *this_parent;
1243 	struct list_head *next;
1244 	unsigned seq = 0;
1245 	enum d_walk_ret ret;
1246 	bool retry = true;
1247 
1248 again:
1249 	read_seqbegin_or_lock(&rename_lock, &seq);
1250 	this_parent = parent;
1251 	spin_lock(&this_parent->d_lock);
1252 
1253 	ret = enter(data, this_parent);
1254 	switch (ret) {
1255 	case D_WALK_CONTINUE:
1256 		break;
1257 	case D_WALK_QUIT:
1258 	case D_WALK_SKIP:
1259 		goto out_unlock;
1260 	case D_WALK_NORETRY:
1261 		retry = false;
1262 		break;
1263 	}
1264 repeat:
1265 	next = this_parent->d_subdirs.next;
1266 resume:
1267 	while (next != &this_parent->d_subdirs) {
1268 		struct list_head *tmp = next;
1269 		struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1270 		next = tmp->next;
1271 
1272 		if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1273 			continue;
1274 
1275 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1276 
1277 		ret = enter(data, dentry);
1278 		switch (ret) {
1279 		case D_WALK_CONTINUE:
1280 			break;
1281 		case D_WALK_QUIT:
1282 			spin_unlock(&dentry->d_lock);
1283 			goto out_unlock;
1284 		case D_WALK_NORETRY:
1285 			retry = false;
1286 			break;
1287 		case D_WALK_SKIP:
1288 			spin_unlock(&dentry->d_lock);
1289 			continue;
1290 		}
1291 
1292 		if (!list_empty(&dentry->d_subdirs)) {
1293 			spin_unlock(&this_parent->d_lock);
1294 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1295 			this_parent = dentry;
1296 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1297 			goto repeat;
1298 		}
1299 		spin_unlock(&dentry->d_lock);
1300 	}
1301 	/*
1302 	 * All done at this level ... ascend and resume the search.
1303 	 */
1304 	rcu_read_lock();
1305 ascend:
1306 	if (this_parent != parent) {
1307 		struct dentry *child = this_parent;
1308 		this_parent = child->d_parent;
1309 
1310 		spin_unlock(&child->d_lock);
1311 		spin_lock(&this_parent->d_lock);
1312 
1313 		/* might go back up the wrong parent if we have had a rename. */
1314 		if (need_seqretry(&rename_lock, seq))
1315 			goto rename_retry;
1316 		/* go into the first sibling still alive */
1317 		do {
1318 			next = child->d_child.next;
1319 			if (next == &this_parent->d_subdirs)
1320 				goto ascend;
1321 			child = list_entry(next, struct dentry, d_child);
1322 		} while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1323 		rcu_read_unlock();
1324 		goto resume;
1325 	}
1326 	if (need_seqretry(&rename_lock, seq))
1327 		goto rename_retry;
1328 	rcu_read_unlock();
1329 
1330 out_unlock:
1331 	spin_unlock(&this_parent->d_lock);
1332 	done_seqretry(&rename_lock, seq);
1333 	return;
1334 
1335 rename_retry:
1336 	spin_unlock(&this_parent->d_lock);
1337 	rcu_read_unlock();
1338 	BUG_ON(seq & 1);
1339 	if (!retry)
1340 		return;
1341 	seq = 1;
1342 	goto again;
1343 }
1344 
1345 struct check_mount {
1346 	struct vfsmount *mnt;
1347 	unsigned int mounted;
1348 };
1349 
path_check_mount(void * data,struct dentry * dentry)1350 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1351 {
1352 	struct check_mount *info = data;
1353 	struct path path = { .mnt = info->mnt, .dentry = dentry };
1354 
1355 	if (likely(!d_mountpoint(dentry)))
1356 		return D_WALK_CONTINUE;
1357 	if (__path_is_mountpoint(&path)) {
1358 		info->mounted = 1;
1359 		return D_WALK_QUIT;
1360 	}
1361 	return D_WALK_CONTINUE;
1362 }
1363 
1364 /**
1365  * path_has_submounts - check for mounts over a dentry in the
1366  *                      current namespace.
1367  * @parent: path to check.
1368  *
1369  * Return true if the parent or its subdirectories contain
1370  * a mount point in the current namespace.
1371  */
path_has_submounts(const struct path * parent)1372 int path_has_submounts(const struct path *parent)
1373 {
1374 	struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1375 
1376 	read_seqlock_excl(&mount_lock);
1377 	d_walk(parent->dentry, &data, path_check_mount);
1378 	read_sequnlock_excl(&mount_lock);
1379 
1380 	return data.mounted;
1381 }
1382 EXPORT_SYMBOL(path_has_submounts);
1383 
1384 /*
1385  * Called by mount code to set a mountpoint and check if the mountpoint is
1386  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1387  * subtree can become unreachable).
1388  *
1389  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1390  * this reason take rename_lock and d_lock on dentry and ancestors.
1391  */
d_set_mounted(struct dentry * dentry)1392 int d_set_mounted(struct dentry *dentry)
1393 {
1394 	struct dentry *p;
1395 	int ret = -ENOENT;
1396 	write_seqlock(&rename_lock);
1397 	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1398 		/* Need exclusion wrt. d_invalidate() */
1399 		spin_lock(&p->d_lock);
1400 		if (unlikely(d_unhashed(p))) {
1401 			spin_unlock(&p->d_lock);
1402 			goto out;
1403 		}
1404 		spin_unlock(&p->d_lock);
1405 	}
1406 	spin_lock(&dentry->d_lock);
1407 	if (!d_unlinked(dentry)) {
1408 		ret = -EBUSY;
1409 		if (!d_mountpoint(dentry)) {
1410 			dentry->d_flags |= DCACHE_MOUNTED;
1411 			ret = 0;
1412 		}
1413 	}
1414  	spin_unlock(&dentry->d_lock);
1415 out:
1416 	write_sequnlock(&rename_lock);
1417 	return ret;
1418 }
1419 
1420 /*
1421  * Search the dentry child list of the specified parent,
1422  * and move any unused dentries to the end of the unused
1423  * list for prune_dcache(). We descend to the next level
1424  * whenever the d_subdirs list is non-empty and continue
1425  * searching.
1426  *
1427  * It returns zero iff there are no unused children,
1428  * otherwise  it returns the number of children moved to
1429  * the end of the unused list. This may not be the total
1430  * number of unused children, because select_parent can
1431  * drop the lock and return early due to latency
1432  * constraints.
1433  */
1434 
1435 struct select_data {
1436 	struct dentry *start;
1437 	struct list_head dispose;
1438 	int found;
1439 };
1440 
select_collect(void * _data,struct dentry * dentry)1441 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1442 {
1443 	struct select_data *data = _data;
1444 	enum d_walk_ret ret = D_WALK_CONTINUE;
1445 
1446 	if (data->start == dentry)
1447 		goto out;
1448 
1449 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1450 		data->found++;
1451 	} else {
1452 		if (dentry->d_flags & DCACHE_LRU_LIST)
1453 			d_lru_del(dentry);
1454 		if (!dentry->d_lockref.count) {
1455 			d_shrink_add(dentry, &data->dispose);
1456 			data->found++;
1457 		}
1458 	}
1459 	/*
1460 	 * We can return to the caller if we have found some (this
1461 	 * ensures forward progress). We'll be coming back to find
1462 	 * the rest.
1463 	 */
1464 	if (!list_empty(&data->dispose))
1465 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1466 out:
1467 	return ret;
1468 }
1469 
1470 /**
1471  * shrink_dcache_parent - prune dcache
1472  * @parent: parent of entries to prune
1473  *
1474  * Prune the dcache to remove unused children of the parent dentry.
1475  */
shrink_dcache_parent(struct dentry * parent)1476 void shrink_dcache_parent(struct dentry *parent)
1477 {
1478 	for (;;) {
1479 		struct select_data data;
1480 
1481 		INIT_LIST_HEAD(&data.dispose);
1482 		data.start = parent;
1483 		data.found = 0;
1484 
1485 		d_walk(parent, &data, select_collect);
1486 
1487 		if (!list_empty(&data.dispose)) {
1488 			shrink_dentry_list(&data.dispose);
1489 			continue;
1490 		}
1491 
1492 		cond_resched();
1493 		if (!data.found)
1494 			break;
1495 	}
1496 }
1497 EXPORT_SYMBOL(shrink_dcache_parent);
1498 
umount_check(void * _data,struct dentry * dentry)1499 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1500 {
1501 	/* it has busy descendents; complain about those instead */
1502 	if (!list_empty(&dentry->d_subdirs))
1503 		return D_WALK_CONTINUE;
1504 
1505 	/* root with refcount 1 is fine */
1506 	if (dentry == _data && dentry->d_lockref.count == 1)
1507 		return D_WALK_CONTINUE;
1508 
1509 	printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1510 			" still in use (%d) [unmount of %s %s]\n",
1511 		       dentry,
1512 		       dentry->d_inode ?
1513 		       dentry->d_inode->i_ino : 0UL,
1514 		       dentry,
1515 		       dentry->d_lockref.count,
1516 		       dentry->d_sb->s_type->name,
1517 		       dentry->d_sb->s_id);
1518 	WARN_ON(1);
1519 	return D_WALK_CONTINUE;
1520 }
1521 
do_one_tree(struct dentry * dentry)1522 static void do_one_tree(struct dentry *dentry)
1523 {
1524 	shrink_dcache_parent(dentry);
1525 	d_walk(dentry, dentry, umount_check);
1526 	d_drop(dentry);
1527 	dput(dentry);
1528 }
1529 
1530 /*
1531  * destroy the dentries attached to a superblock on unmounting
1532  */
shrink_dcache_for_umount(struct super_block * sb)1533 void shrink_dcache_for_umount(struct super_block *sb)
1534 {
1535 	struct dentry *dentry;
1536 
1537 	WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1538 
1539 	dentry = sb->s_root;
1540 	sb->s_root = NULL;
1541 	do_one_tree(dentry);
1542 
1543 	while (!hlist_bl_empty(&sb->s_roots)) {
1544 		dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1545 		do_one_tree(dentry);
1546 	}
1547 }
1548 
find_submount(void * _data,struct dentry * dentry)1549 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1550 {
1551 	struct dentry **victim = _data;
1552 	if (d_mountpoint(dentry)) {
1553 		__dget_dlock(dentry);
1554 		*victim = dentry;
1555 		return D_WALK_QUIT;
1556 	}
1557 	return D_WALK_CONTINUE;
1558 }
1559 
1560 /**
1561  * d_invalidate - detach submounts, prune dcache, and drop
1562  * @dentry: dentry to invalidate (aka detach, prune and drop)
1563  */
d_invalidate(struct dentry * dentry)1564 void d_invalidate(struct dentry *dentry)
1565 {
1566 	bool had_submounts = false;
1567 	spin_lock(&dentry->d_lock);
1568 	if (d_unhashed(dentry)) {
1569 		spin_unlock(&dentry->d_lock);
1570 		return;
1571 	}
1572 	__d_drop(dentry);
1573 	spin_unlock(&dentry->d_lock);
1574 
1575 	/* Negative dentries can be dropped without further checks */
1576 	if (!dentry->d_inode)
1577 		return;
1578 
1579 	shrink_dcache_parent(dentry);
1580 	for (;;) {
1581 		struct dentry *victim = NULL;
1582 		d_walk(dentry, &victim, find_submount);
1583 		if (!victim) {
1584 			if (had_submounts)
1585 				shrink_dcache_parent(dentry);
1586 			return;
1587 		}
1588 		had_submounts = true;
1589 		detach_mounts(victim);
1590 		dput(victim);
1591 	}
1592 }
1593 EXPORT_SYMBOL(d_invalidate);
1594 
1595 /**
1596  * __d_alloc	-	allocate a dcache entry
1597  * @sb: filesystem it will belong to
1598  * @name: qstr of the name
1599  *
1600  * Allocates a dentry. It returns %NULL if there is insufficient memory
1601  * available. On a success the dentry is returned. The name passed in is
1602  * copied and the copy passed in may be reused after this call.
1603  */
1604 
__d_alloc(struct super_block * sb,const struct qstr * name)1605 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1606 {
1607 	struct external_name *ext = NULL;
1608 	struct dentry *dentry;
1609 	char *dname;
1610 	int err;
1611 
1612 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1613 	if (!dentry)
1614 		return NULL;
1615 
1616 	/*
1617 	 * We guarantee that the inline name is always NUL-terminated.
1618 	 * This way the memcpy() done by the name switching in rename
1619 	 * will still always have a NUL at the end, even if we might
1620 	 * be overwriting an internal NUL character
1621 	 */
1622 	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1623 	if (unlikely(!name)) {
1624 		name = &slash_name;
1625 		dname = dentry->d_iname;
1626 	} else if (name->len > DNAME_INLINE_LEN-1) {
1627 		size_t size = offsetof(struct external_name, name[1]);
1628 
1629 		ext = kmalloc(size + name->len, GFP_KERNEL_ACCOUNT);
1630 		if (!ext) {
1631 			kmem_cache_free(dentry_cache, dentry);
1632 			return NULL;
1633 		}
1634 		atomic_set(&ext->u.count, 1);
1635 		dname = ext->name;
1636 	} else  {
1637 		dname = dentry->d_iname;
1638 	}
1639 
1640 	dentry->d_name.len = name->len;
1641 	dentry->d_name.hash = name->hash;
1642 	memcpy(dname, name->name, name->len);
1643 	dname[name->len] = 0;
1644 
1645 	/* Make sure we always see the terminating NUL character */
1646 	smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1647 
1648 	dentry->d_lockref.count = 1;
1649 	dentry->d_flags = 0;
1650 	spin_lock_init(&dentry->d_lock);
1651 	seqcount_init(&dentry->d_seq);
1652 	dentry->d_inode = NULL;
1653 	dentry->d_parent = dentry;
1654 	dentry->d_sb = sb;
1655 	dentry->d_op = NULL;
1656 	dentry->d_fsdata = NULL;
1657 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1658 	INIT_LIST_HEAD(&dentry->d_lru);
1659 	INIT_LIST_HEAD(&dentry->d_subdirs);
1660 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
1661 	INIT_LIST_HEAD(&dentry->d_child);
1662 	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1663 
1664 	if (dentry->d_op && dentry->d_op->d_init) {
1665 		err = dentry->d_op->d_init(dentry);
1666 		if (err) {
1667 			if (dname_external(dentry))
1668 				kfree(external_name(dentry));
1669 			kmem_cache_free(dentry_cache, dentry);
1670 			return NULL;
1671 		}
1672 	}
1673 
1674 	if (unlikely(ext)) {
1675 		pg_data_t *pgdat = page_pgdat(virt_to_page(ext));
1676 		mod_node_page_state(pgdat, NR_INDIRECTLY_RECLAIMABLE_BYTES,
1677 				    ksize(ext));
1678 	}
1679 
1680 	this_cpu_inc(nr_dentry);
1681 
1682 	return dentry;
1683 }
1684 
1685 /**
1686  * d_alloc	-	allocate a dcache entry
1687  * @parent: parent of entry to allocate
1688  * @name: qstr of the name
1689  *
1690  * Allocates a dentry. It returns %NULL if there is insufficient memory
1691  * available. On a success the dentry is returned. The name passed in is
1692  * copied and the copy passed in may be reused after this call.
1693  */
d_alloc(struct dentry * parent,const struct qstr * name)1694 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1695 {
1696 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1697 	if (!dentry)
1698 		return NULL;
1699 	spin_lock(&parent->d_lock);
1700 	/*
1701 	 * don't need child lock because it is not subject
1702 	 * to concurrency here
1703 	 */
1704 	__dget_dlock(parent);
1705 	dentry->d_parent = parent;
1706 	list_add(&dentry->d_child, &parent->d_subdirs);
1707 	spin_unlock(&parent->d_lock);
1708 
1709 	return dentry;
1710 }
1711 EXPORT_SYMBOL(d_alloc);
1712 
d_alloc_anon(struct super_block * sb)1713 struct dentry *d_alloc_anon(struct super_block *sb)
1714 {
1715 	return __d_alloc(sb, NULL);
1716 }
1717 EXPORT_SYMBOL(d_alloc_anon);
1718 
d_alloc_cursor(struct dentry * parent)1719 struct dentry *d_alloc_cursor(struct dentry * parent)
1720 {
1721 	struct dentry *dentry = d_alloc_anon(parent->d_sb);
1722 	if (dentry) {
1723 		dentry->d_flags |= DCACHE_DENTRY_CURSOR;
1724 		dentry->d_parent = dget(parent);
1725 	}
1726 	return dentry;
1727 }
1728 
1729 /**
1730  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1731  * @sb: the superblock
1732  * @name: qstr of the name
1733  *
1734  * For a filesystem that just pins its dentries in memory and never
1735  * performs lookups at all, return an unhashed IS_ROOT dentry.
1736  * This is used for pipes, sockets et.al. - the stuff that should
1737  * never be anyone's children or parents.  Unlike all other
1738  * dentries, these will not have RCU delay between dropping the
1739  * last reference and freeing them.
1740  */
d_alloc_pseudo(struct super_block * sb,const struct qstr * name)1741 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1742 {
1743 	struct dentry *dentry = __d_alloc(sb, name);
1744 	if (likely(dentry))
1745 		dentry->d_flags |= DCACHE_NORCU;
1746 	return dentry;
1747 }
1748 EXPORT_SYMBOL(d_alloc_pseudo);
1749 
d_alloc_name(struct dentry * parent,const char * name)1750 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1751 {
1752 	struct qstr q;
1753 
1754 	q.name = name;
1755 	q.hash_len = hashlen_string(parent, name);
1756 	return d_alloc(parent, &q);
1757 }
1758 EXPORT_SYMBOL(d_alloc_name);
1759 
d_set_d_op(struct dentry * dentry,const struct dentry_operations * op)1760 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1761 {
1762 	WARN_ON_ONCE(dentry->d_op);
1763 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1764 				DCACHE_OP_COMPARE	|
1765 				DCACHE_OP_REVALIDATE	|
1766 				DCACHE_OP_WEAK_REVALIDATE	|
1767 				DCACHE_OP_DELETE	|
1768 				DCACHE_OP_REAL));
1769 	dentry->d_op = op;
1770 	if (!op)
1771 		return;
1772 	if (op->d_hash)
1773 		dentry->d_flags |= DCACHE_OP_HASH;
1774 	if (op->d_compare)
1775 		dentry->d_flags |= DCACHE_OP_COMPARE;
1776 	if (op->d_revalidate)
1777 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1778 	if (op->d_weak_revalidate)
1779 		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1780 	if (op->d_delete)
1781 		dentry->d_flags |= DCACHE_OP_DELETE;
1782 	if (op->d_prune)
1783 		dentry->d_flags |= DCACHE_OP_PRUNE;
1784 	if (op->d_real)
1785 		dentry->d_flags |= DCACHE_OP_REAL;
1786 
1787 }
1788 EXPORT_SYMBOL(d_set_d_op);
1789 
1790 
1791 /*
1792  * d_set_fallthru - Mark a dentry as falling through to a lower layer
1793  * @dentry - The dentry to mark
1794  *
1795  * Mark a dentry as falling through to the lower layer (as set with
1796  * d_pin_lower()).  This flag may be recorded on the medium.
1797  */
d_set_fallthru(struct dentry * dentry)1798 void d_set_fallthru(struct dentry *dentry)
1799 {
1800 	spin_lock(&dentry->d_lock);
1801 	dentry->d_flags |= DCACHE_FALLTHRU;
1802 	spin_unlock(&dentry->d_lock);
1803 }
1804 EXPORT_SYMBOL(d_set_fallthru);
1805 
d_flags_for_inode(struct inode * inode)1806 static unsigned d_flags_for_inode(struct inode *inode)
1807 {
1808 	unsigned add_flags = DCACHE_REGULAR_TYPE;
1809 
1810 	if (!inode)
1811 		return DCACHE_MISS_TYPE;
1812 
1813 	if (S_ISDIR(inode->i_mode)) {
1814 		add_flags = DCACHE_DIRECTORY_TYPE;
1815 		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1816 			if (unlikely(!inode->i_op->lookup))
1817 				add_flags = DCACHE_AUTODIR_TYPE;
1818 			else
1819 				inode->i_opflags |= IOP_LOOKUP;
1820 		}
1821 		goto type_determined;
1822 	}
1823 
1824 	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1825 		if (unlikely(inode->i_op->get_link)) {
1826 			add_flags = DCACHE_SYMLINK_TYPE;
1827 			goto type_determined;
1828 		}
1829 		inode->i_opflags |= IOP_NOFOLLOW;
1830 	}
1831 
1832 	if (unlikely(!S_ISREG(inode->i_mode)))
1833 		add_flags = DCACHE_SPECIAL_TYPE;
1834 
1835 type_determined:
1836 	if (unlikely(IS_AUTOMOUNT(inode)))
1837 		add_flags |= DCACHE_NEED_AUTOMOUNT;
1838 	return add_flags;
1839 }
1840 
__d_instantiate(struct dentry * dentry,struct inode * inode)1841 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1842 {
1843 	unsigned add_flags = d_flags_for_inode(inode);
1844 	WARN_ON(d_in_lookup(dentry));
1845 
1846 	spin_lock(&dentry->d_lock);
1847 	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1848 	raw_write_seqcount_begin(&dentry->d_seq);
1849 	__d_set_inode_and_type(dentry, inode, add_flags);
1850 	raw_write_seqcount_end(&dentry->d_seq);
1851 	fsnotify_update_flags(dentry);
1852 	spin_unlock(&dentry->d_lock);
1853 }
1854 
1855 /**
1856  * d_instantiate - fill in inode information for a dentry
1857  * @entry: dentry to complete
1858  * @inode: inode to attach to this dentry
1859  *
1860  * Fill in inode information in the entry.
1861  *
1862  * This turns negative dentries into productive full members
1863  * of society.
1864  *
1865  * NOTE! This assumes that the inode count has been incremented
1866  * (or otherwise set) by the caller to indicate that it is now
1867  * in use by the dcache.
1868  */
1869 
d_instantiate(struct dentry * entry,struct inode * inode)1870 void d_instantiate(struct dentry *entry, struct inode * inode)
1871 {
1872 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1873 	if (inode) {
1874 		security_d_instantiate(entry, inode);
1875 		spin_lock(&inode->i_lock);
1876 		__d_instantiate(entry, inode);
1877 		spin_unlock(&inode->i_lock);
1878 	}
1879 }
1880 EXPORT_SYMBOL(d_instantiate);
1881 
1882 /*
1883  * This should be equivalent to d_instantiate() + unlock_new_inode(),
1884  * with lockdep-related part of unlock_new_inode() done before
1885  * anything else.  Use that instead of open-coding d_instantiate()/
1886  * unlock_new_inode() combinations.
1887  */
d_instantiate_new(struct dentry * entry,struct inode * inode)1888 void d_instantiate_new(struct dentry *entry, struct inode *inode)
1889 {
1890 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1891 	BUG_ON(!inode);
1892 	lockdep_annotate_inode_mutex_key(inode);
1893 	security_d_instantiate(entry, inode);
1894 	spin_lock(&inode->i_lock);
1895 	__d_instantiate(entry, inode);
1896 	WARN_ON(!(inode->i_state & I_NEW));
1897 	inode->i_state &= ~I_NEW & ~I_CREATING;
1898 	smp_mb();
1899 	wake_up_bit(&inode->i_state, __I_NEW);
1900 	spin_unlock(&inode->i_lock);
1901 }
1902 EXPORT_SYMBOL(d_instantiate_new);
1903 
d_make_root(struct inode * root_inode)1904 struct dentry *d_make_root(struct inode *root_inode)
1905 {
1906 	struct dentry *res = NULL;
1907 
1908 	if (root_inode) {
1909 		res = d_alloc_anon(root_inode->i_sb);
1910 		if (res)
1911 			d_instantiate(res, root_inode);
1912 		else
1913 			iput(root_inode);
1914 	}
1915 	return res;
1916 }
1917 EXPORT_SYMBOL(d_make_root);
1918 
__d_instantiate_anon(struct dentry * dentry,struct inode * inode,bool disconnected)1919 static struct dentry *__d_instantiate_anon(struct dentry *dentry,
1920 					   struct inode *inode,
1921 					   bool disconnected)
1922 {
1923 	struct dentry *res;
1924 	unsigned add_flags;
1925 
1926 	security_d_instantiate(dentry, inode);
1927 	spin_lock(&inode->i_lock);
1928 	res = __d_find_any_alias(inode);
1929 	if (res) {
1930 		spin_unlock(&inode->i_lock);
1931 		dput(dentry);
1932 		goto out_iput;
1933 	}
1934 
1935 	/* attach a disconnected dentry */
1936 	add_flags = d_flags_for_inode(inode);
1937 
1938 	if (disconnected)
1939 		add_flags |= DCACHE_DISCONNECTED;
1940 
1941 	spin_lock(&dentry->d_lock);
1942 	__d_set_inode_and_type(dentry, inode, add_flags);
1943 	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1944 	if (!disconnected) {
1945 		hlist_bl_lock(&dentry->d_sb->s_roots);
1946 		hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
1947 		hlist_bl_unlock(&dentry->d_sb->s_roots);
1948 	}
1949 	spin_unlock(&dentry->d_lock);
1950 	spin_unlock(&inode->i_lock);
1951 
1952 	return dentry;
1953 
1954  out_iput:
1955 	iput(inode);
1956 	return res;
1957 }
1958 
d_instantiate_anon(struct dentry * dentry,struct inode * inode)1959 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
1960 {
1961 	return __d_instantiate_anon(dentry, inode, true);
1962 }
1963 EXPORT_SYMBOL(d_instantiate_anon);
1964 
__d_obtain_alias(struct inode * inode,bool disconnected)1965 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
1966 {
1967 	struct dentry *tmp;
1968 	struct dentry *res;
1969 
1970 	if (!inode)
1971 		return ERR_PTR(-ESTALE);
1972 	if (IS_ERR(inode))
1973 		return ERR_CAST(inode);
1974 
1975 	res = d_find_any_alias(inode);
1976 	if (res)
1977 		goto out_iput;
1978 
1979 	tmp = d_alloc_anon(inode->i_sb);
1980 	if (!tmp) {
1981 		res = ERR_PTR(-ENOMEM);
1982 		goto out_iput;
1983 	}
1984 
1985 	return __d_instantiate_anon(tmp, inode, disconnected);
1986 
1987 out_iput:
1988 	iput(inode);
1989 	return res;
1990 }
1991 
1992 /**
1993  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1994  * @inode: inode to allocate the dentry for
1995  *
1996  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1997  * similar open by handle operations.  The returned dentry may be anonymous,
1998  * or may have a full name (if the inode was already in the cache).
1999  *
2000  * When called on a directory inode, we must ensure that the inode only ever
2001  * has one dentry.  If a dentry is found, that is returned instead of
2002  * allocating a new one.
2003  *
2004  * On successful return, the reference to the inode has been transferred
2005  * to the dentry.  In case of an error the reference on the inode is released.
2006  * To make it easier to use in export operations a %NULL or IS_ERR inode may
2007  * be passed in and the error will be propagated to the return value,
2008  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2009  */
d_obtain_alias(struct inode * inode)2010 struct dentry *d_obtain_alias(struct inode *inode)
2011 {
2012 	return __d_obtain_alias(inode, true);
2013 }
2014 EXPORT_SYMBOL(d_obtain_alias);
2015 
2016 /**
2017  * d_obtain_root - find or allocate a dentry for a given inode
2018  * @inode: inode to allocate the dentry for
2019  *
2020  * Obtain an IS_ROOT dentry for the root of a filesystem.
2021  *
2022  * We must ensure that directory inodes only ever have one dentry.  If a
2023  * dentry is found, that is returned instead of allocating a new one.
2024  *
2025  * On successful return, the reference to the inode has been transferred
2026  * to the dentry.  In case of an error the reference on the inode is
2027  * released.  A %NULL or IS_ERR inode may be passed in and will be the
2028  * error will be propagate to the return value, with a %NULL @inode
2029  * replaced by ERR_PTR(-ESTALE).
2030  */
d_obtain_root(struct inode * inode)2031 struct dentry *d_obtain_root(struct inode *inode)
2032 {
2033 	return __d_obtain_alias(inode, false);
2034 }
2035 EXPORT_SYMBOL(d_obtain_root);
2036 
2037 /**
2038  * d_add_ci - lookup or allocate new dentry with case-exact name
2039  * @inode:  the inode case-insensitive lookup has found
2040  * @dentry: the negative dentry that was passed to the parent's lookup func
2041  * @name:   the case-exact name to be associated with the returned dentry
2042  *
2043  * This is to avoid filling the dcache with case-insensitive names to the
2044  * same inode, only the actual correct case is stored in the dcache for
2045  * case-insensitive filesystems.
2046  *
2047  * For a case-insensitive lookup match and if the the case-exact dentry
2048  * already exists in in the dcache, use it and return it.
2049  *
2050  * If no entry exists with the exact case name, allocate new dentry with
2051  * the exact case, and return the spliced entry.
2052  */
d_add_ci(struct dentry * dentry,struct inode * inode,struct qstr * name)2053 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2054 			struct qstr *name)
2055 {
2056 	struct dentry *found, *res;
2057 
2058 	/*
2059 	 * First check if a dentry matching the name already exists,
2060 	 * if not go ahead and create it now.
2061 	 */
2062 	found = d_hash_and_lookup(dentry->d_parent, name);
2063 	if (found) {
2064 		iput(inode);
2065 		return found;
2066 	}
2067 	if (d_in_lookup(dentry)) {
2068 		found = d_alloc_parallel(dentry->d_parent, name,
2069 					dentry->d_wait);
2070 		if (IS_ERR(found) || !d_in_lookup(found)) {
2071 			iput(inode);
2072 			return found;
2073 		}
2074 	} else {
2075 		found = d_alloc(dentry->d_parent, name);
2076 		if (!found) {
2077 			iput(inode);
2078 			return ERR_PTR(-ENOMEM);
2079 		}
2080 	}
2081 	res = d_splice_alias(inode, found);
2082 	if (res) {
2083 		dput(found);
2084 		return res;
2085 	}
2086 	return found;
2087 }
2088 EXPORT_SYMBOL(d_add_ci);
2089 
2090 
d_same_name(const struct dentry * dentry,const struct dentry * parent,const struct qstr * name)2091 static inline bool d_same_name(const struct dentry *dentry,
2092 				const struct dentry *parent,
2093 				const struct qstr *name)
2094 {
2095 	if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2096 		if (dentry->d_name.len != name->len)
2097 			return false;
2098 		return dentry_cmp(dentry, name->name, name->len) == 0;
2099 	}
2100 	return parent->d_op->d_compare(dentry,
2101 				       dentry->d_name.len, dentry->d_name.name,
2102 				       name) == 0;
2103 }
2104 
2105 /**
2106  * __d_lookup_rcu - search for a dentry (racy, store-free)
2107  * @parent: parent dentry
2108  * @name: qstr of name we wish to find
2109  * @seqp: returns d_seq value at the point where the dentry was found
2110  * Returns: dentry, or NULL
2111  *
2112  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2113  * resolution (store-free path walking) design described in
2114  * Documentation/filesystems/path-lookup.txt.
2115  *
2116  * This is not to be used outside core vfs.
2117  *
2118  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2119  * held, and rcu_read_lock held. The returned dentry must not be stored into
2120  * without taking d_lock and checking d_seq sequence count against @seq
2121  * returned here.
2122  *
2123  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2124  * function.
2125  *
2126  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2127  * the returned dentry, so long as its parent's seqlock is checked after the
2128  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2129  * is formed, giving integrity down the path walk.
2130  *
2131  * NOTE! The caller *has* to check the resulting dentry against the sequence
2132  * number we've returned before using any of the resulting dentry state!
2133  */
__d_lookup_rcu(const struct dentry * parent,const struct qstr * name,unsigned * seqp)2134 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2135 				const struct qstr *name,
2136 				unsigned *seqp)
2137 {
2138 	u64 hashlen = name->hash_len;
2139 	const unsigned char *str = name->name;
2140 	struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2141 	struct hlist_bl_node *node;
2142 	struct dentry *dentry;
2143 
2144 	/*
2145 	 * Note: There is significant duplication with __d_lookup_rcu which is
2146 	 * required to prevent single threaded performance regressions
2147 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2148 	 * Keep the two functions in sync.
2149 	 */
2150 
2151 	/*
2152 	 * The hash list is protected using RCU.
2153 	 *
2154 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
2155 	 * races with d_move().
2156 	 *
2157 	 * It is possible that concurrent renames can mess up our list
2158 	 * walk here and result in missing our dentry, resulting in the
2159 	 * false-negative result. d_lookup() protects against concurrent
2160 	 * renames using rename_lock seqlock.
2161 	 *
2162 	 * See Documentation/filesystems/path-lookup.txt for more details.
2163 	 */
2164 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2165 		unsigned seq;
2166 
2167 seqretry:
2168 		/*
2169 		 * The dentry sequence count protects us from concurrent
2170 		 * renames, and thus protects parent and name fields.
2171 		 *
2172 		 * The caller must perform a seqcount check in order
2173 		 * to do anything useful with the returned dentry.
2174 		 *
2175 		 * NOTE! We do a "raw" seqcount_begin here. That means that
2176 		 * we don't wait for the sequence count to stabilize if it
2177 		 * is in the middle of a sequence change. If we do the slow
2178 		 * dentry compare, we will do seqretries until it is stable,
2179 		 * and if we end up with a successful lookup, we actually
2180 		 * want to exit RCU lookup anyway.
2181 		 *
2182 		 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2183 		 * we are still guaranteed NUL-termination of ->d_name.name.
2184 		 */
2185 		seq = raw_seqcount_begin(&dentry->d_seq);
2186 		if (dentry->d_parent != parent)
2187 			continue;
2188 		if (d_unhashed(dentry))
2189 			continue;
2190 
2191 		if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2192 			int tlen;
2193 			const char *tname;
2194 			if (dentry->d_name.hash != hashlen_hash(hashlen))
2195 				continue;
2196 			tlen = dentry->d_name.len;
2197 			tname = dentry->d_name.name;
2198 			/* we want a consistent (name,len) pair */
2199 			if (read_seqcount_retry(&dentry->d_seq, seq)) {
2200 				cpu_relax();
2201 				goto seqretry;
2202 			}
2203 			if (parent->d_op->d_compare(dentry,
2204 						    tlen, tname, name) != 0)
2205 				continue;
2206 		} else {
2207 			if (dentry->d_name.hash_len != hashlen)
2208 				continue;
2209 			if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2210 				continue;
2211 		}
2212 		*seqp = seq;
2213 		return dentry;
2214 	}
2215 	return NULL;
2216 }
2217 
2218 /**
2219  * d_lookup - search for a dentry
2220  * @parent: parent dentry
2221  * @name: qstr of name we wish to find
2222  * Returns: dentry, or NULL
2223  *
2224  * d_lookup searches the children of the parent dentry for the name in
2225  * question. If the dentry is found its reference count is incremented and the
2226  * dentry is returned. The caller must use dput to free the entry when it has
2227  * finished using it. %NULL is returned if the dentry does not exist.
2228  */
d_lookup(const struct dentry * parent,const struct qstr * name)2229 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2230 {
2231 	struct dentry *dentry;
2232 	unsigned seq;
2233 
2234 	do {
2235 		seq = read_seqbegin(&rename_lock);
2236 		dentry = __d_lookup(parent, name);
2237 		if (dentry)
2238 			break;
2239 	} while (read_seqretry(&rename_lock, seq));
2240 	return dentry;
2241 }
2242 EXPORT_SYMBOL(d_lookup);
2243 
2244 /**
2245  * __d_lookup - search for a dentry (racy)
2246  * @parent: parent dentry
2247  * @name: qstr of name we wish to find
2248  * Returns: dentry, or NULL
2249  *
2250  * __d_lookup is like d_lookup, however it may (rarely) return a
2251  * false-negative result due to unrelated rename activity.
2252  *
2253  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2254  * however it must be used carefully, eg. with a following d_lookup in
2255  * the case of failure.
2256  *
2257  * __d_lookup callers must be commented.
2258  */
__d_lookup(const struct dentry * parent,const struct qstr * name)2259 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2260 {
2261 	unsigned int hash = name->hash;
2262 	struct hlist_bl_head *b = d_hash(hash);
2263 	struct hlist_bl_node *node;
2264 	struct dentry *found = NULL;
2265 	struct dentry *dentry;
2266 
2267 	/*
2268 	 * Note: There is significant duplication with __d_lookup_rcu which is
2269 	 * required to prevent single threaded performance regressions
2270 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2271 	 * Keep the two functions in sync.
2272 	 */
2273 
2274 	/*
2275 	 * The hash list is protected using RCU.
2276 	 *
2277 	 * Take d_lock when comparing a candidate dentry, to avoid races
2278 	 * with d_move().
2279 	 *
2280 	 * It is possible that concurrent renames can mess up our list
2281 	 * walk here and result in missing our dentry, resulting in the
2282 	 * false-negative result. d_lookup() protects against concurrent
2283 	 * renames using rename_lock seqlock.
2284 	 *
2285 	 * See Documentation/filesystems/path-lookup.txt for more details.
2286 	 */
2287 	rcu_read_lock();
2288 
2289 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2290 
2291 		if (dentry->d_name.hash != hash)
2292 			continue;
2293 
2294 		spin_lock(&dentry->d_lock);
2295 		if (dentry->d_parent != parent)
2296 			goto next;
2297 		if (d_unhashed(dentry))
2298 			goto next;
2299 
2300 		if (!d_same_name(dentry, parent, name))
2301 			goto next;
2302 
2303 		dentry->d_lockref.count++;
2304 		found = dentry;
2305 		spin_unlock(&dentry->d_lock);
2306 		break;
2307 next:
2308 		spin_unlock(&dentry->d_lock);
2309  	}
2310  	rcu_read_unlock();
2311 
2312  	return found;
2313 }
2314 
2315 /**
2316  * d_hash_and_lookup - hash the qstr then search for a dentry
2317  * @dir: Directory to search in
2318  * @name: qstr of name we wish to find
2319  *
2320  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2321  */
d_hash_and_lookup(struct dentry * dir,struct qstr * name)2322 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2323 {
2324 	/*
2325 	 * Check for a fs-specific hash function. Note that we must
2326 	 * calculate the standard hash first, as the d_op->d_hash()
2327 	 * routine may choose to leave the hash value unchanged.
2328 	 */
2329 	name->hash = full_name_hash(dir, name->name, name->len);
2330 	if (dir->d_flags & DCACHE_OP_HASH) {
2331 		int err = dir->d_op->d_hash(dir, name);
2332 		if (unlikely(err < 0))
2333 			return ERR_PTR(err);
2334 	}
2335 	return d_lookup(dir, name);
2336 }
2337 EXPORT_SYMBOL(d_hash_and_lookup);
2338 
2339 /*
2340  * When a file is deleted, we have two options:
2341  * - turn this dentry into a negative dentry
2342  * - unhash this dentry and free it.
2343  *
2344  * Usually, we want to just turn this into
2345  * a negative dentry, but if anybody else is
2346  * currently using the dentry or the inode
2347  * we can't do that and we fall back on removing
2348  * it from the hash queues and waiting for
2349  * it to be deleted later when it has no users
2350  */
2351 
2352 /**
2353  * d_delete - delete a dentry
2354  * @dentry: The dentry to delete
2355  *
2356  * Turn the dentry into a negative dentry if possible, otherwise
2357  * remove it from the hash queues so it can be deleted later
2358  */
2359 
d_delete(struct dentry * dentry)2360 void d_delete(struct dentry * dentry)
2361 {
2362 	struct inode *inode = dentry->d_inode;
2363 	int isdir = d_is_dir(dentry);
2364 
2365 	spin_lock(&inode->i_lock);
2366 	spin_lock(&dentry->d_lock);
2367 	/*
2368 	 * Are we the only user?
2369 	 */
2370 	if (dentry->d_lockref.count == 1) {
2371 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2372 		dentry_unlink_inode(dentry);
2373 	} else {
2374 		__d_drop(dentry);
2375 		spin_unlock(&dentry->d_lock);
2376 		spin_unlock(&inode->i_lock);
2377 	}
2378 	fsnotify_nameremove(dentry, isdir);
2379 }
2380 EXPORT_SYMBOL(d_delete);
2381 
__d_rehash(struct dentry * entry)2382 static void __d_rehash(struct dentry *entry)
2383 {
2384 	struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2385 
2386 	hlist_bl_lock(b);
2387 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2388 	hlist_bl_unlock(b);
2389 }
2390 
2391 /**
2392  * d_rehash	- add an entry back to the hash
2393  * @entry: dentry to add to the hash
2394  *
2395  * Adds a dentry to the hash according to its name.
2396  */
2397 
d_rehash(struct dentry * entry)2398 void d_rehash(struct dentry * entry)
2399 {
2400 	spin_lock(&entry->d_lock);
2401 	__d_rehash(entry);
2402 	spin_unlock(&entry->d_lock);
2403 }
2404 EXPORT_SYMBOL(d_rehash);
2405 
start_dir_add(struct inode * dir)2406 static inline unsigned start_dir_add(struct inode *dir)
2407 {
2408 
2409 	for (;;) {
2410 		unsigned n = dir->i_dir_seq;
2411 		if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2412 			return n;
2413 		cpu_relax();
2414 	}
2415 }
2416 
end_dir_add(struct inode * dir,unsigned n)2417 static inline void end_dir_add(struct inode *dir, unsigned n)
2418 {
2419 	smp_store_release(&dir->i_dir_seq, n + 2);
2420 }
2421 
d_wait_lookup(struct dentry * dentry)2422 static void d_wait_lookup(struct dentry *dentry)
2423 {
2424 	if (d_in_lookup(dentry)) {
2425 		DECLARE_WAITQUEUE(wait, current);
2426 		add_wait_queue(dentry->d_wait, &wait);
2427 		do {
2428 			set_current_state(TASK_UNINTERRUPTIBLE);
2429 			spin_unlock(&dentry->d_lock);
2430 			schedule();
2431 			spin_lock(&dentry->d_lock);
2432 		} while (d_in_lookup(dentry));
2433 	}
2434 }
2435 
d_alloc_parallel(struct dentry * parent,const struct qstr * name,wait_queue_head_t * wq)2436 struct dentry *d_alloc_parallel(struct dentry *parent,
2437 				const struct qstr *name,
2438 				wait_queue_head_t *wq)
2439 {
2440 	unsigned int hash = name->hash;
2441 	struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2442 	struct hlist_bl_node *node;
2443 	struct dentry *new = d_alloc(parent, name);
2444 	struct dentry *dentry;
2445 	unsigned seq, r_seq, d_seq;
2446 
2447 	if (unlikely(!new))
2448 		return ERR_PTR(-ENOMEM);
2449 
2450 retry:
2451 	rcu_read_lock();
2452 	seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2453 	r_seq = read_seqbegin(&rename_lock);
2454 	dentry = __d_lookup_rcu(parent, name, &d_seq);
2455 	if (unlikely(dentry)) {
2456 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2457 			rcu_read_unlock();
2458 			goto retry;
2459 		}
2460 		if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2461 			rcu_read_unlock();
2462 			dput(dentry);
2463 			goto retry;
2464 		}
2465 		rcu_read_unlock();
2466 		dput(new);
2467 		return dentry;
2468 	}
2469 	if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2470 		rcu_read_unlock();
2471 		goto retry;
2472 	}
2473 
2474 	if (unlikely(seq & 1)) {
2475 		rcu_read_unlock();
2476 		goto retry;
2477 	}
2478 
2479 	hlist_bl_lock(b);
2480 	if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2481 		hlist_bl_unlock(b);
2482 		rcu_read_unlock();
2483 		goto retry;
2484 	}
2485 	/*
2486 	 * No changes for the parent since the beginning of d_lookup().
2487 	 * Since all removals from the chain happen with hlist_bl_lock(),
2488 	 * any potential in-lookup matches are going to stay here until
2489 	 * we unlock the chain.  All fields are stable in everything
2490 	 * we encounter.
2491 	 */
2492 	hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2493 		if (dentry->d_name.hash != hash)
2494 			continue;
2495 		if (dentry->d_parent != parent)
2496 			continue;
2497 		if (!d_same_name(dentry, parent, name))
2498 			continue;
2499 		hlist_bl_unlock(b);
2500 		/* now we can try to grab a reference */
2501 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2502 			rcu_read_unlock();
2503 			goto retry;
2504 		}
2505 
2506 		rcu_read_unlock();
2507 		/*
2508 		 * somebody is likely to be still doing lookup for it;
2509 		 * wait for them to finish
2510 		 */
2511 		spin_lock(&dentry->d_lock);
2512 		d_wait_lookup(dentry);
2513 		/*
2514 		 * it's not in-lookup anymore; in principle we should repeat
2515 		 * everything from dcache lookup, but it's likely to be what
2516 		 * d_lookup() would've found anyway.  If it is, just return it;
2517 		 * otherwise we really have to repeat the whole thing.
2518 		 */
2519 		if (unlikely(dentry->d_name.hash != hash))
2520 			goto mismatch;
2521 		if (unlikely(dentry->d_parent != parent))
2522 			goto mismatch;
2523 		if (unlikely(d_unhashed(dentry)))
2524 			goto mismatch;
2525 		if (unlikely(!d_same_name(dentry, parent, name)))
2526 			goto mismatch;
2527 		/* OK, it *is* a hashed match; return it */
2528 		spin_unlock(&dentry->d_lock);
2529 		dput(new);
2530 		return dentry;
2531 	}
2532 	rcu_read_unlock();
2533 	/* we can't take ->d_lock here; it's OK, though. */
2534 	new->d_flags |= DCACHE_PAR_LOOKUP;
2535 	new->d_wait = wq;
2536 	hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2537 	hlist_bl_unlock(b);
2538 	return new;
2539 mismatch:
2540 	spin_unlock(&dentry->d_lock);
2541 	dput(dentry);
2542 	goto retry;
2543 }
2544 EXPORT_SYMBOL(d_alloc_parallel);
2545 
__d_lookup_done(struct dentry * dentry)2546 void __d_lookup_done(struct dentry *dentry)
2547 {
2548 	struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2549 						 dentry->d_name.hash);
2550 	hlist_bl_lock(b);
2551 	dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2552 	__hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2553 	wake_up_all(dentry->d_wait);
2554 	dentry->d_wait = NULL;
2555 	hlist_bl_unlock(b);
2556 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
2557 	INIT_LIST_HEAD(&dentry->d_lru);
2558 }
2559 EXPORT_SYMBOL(__d_lookup_done);
2560 
2561 /* inode->i_lock held if inode is non-NULL */
2562 
__d_add(struct dentry * dentry,struct inode * inode)2563 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2564 {
2565 	struct inode *dir = NULL;
2566 	unsigned n;
2567 	spin_lock(&dentry->d_lock);
2568 	if (unlikely(d_in_lookup(dentry))) {
2569 		dir = dentry->d_parent->d_inode;
2570 		n = start_dir_add(dir);
2571 		__d_lookup_done(dentry);
2572 	}
2573 	if (inode) {
2574 		unsigned add_flags = d_flags_for_inode(inode);
2575 		hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2576 		raw_write_seqcount_begin(&dentry->d_seq);
2577 		__d_set_inode_and_type(dentry, inode, add_flags);
2578 		raw_write_seqcount_end(&dentry->d_seq);
2579 		fsnotify_update_flags(dentry);
2580 	}
2581 	__d_rehash(dentry);
2582 	if (dir)
2583 		end_dir_add(dir, n);
2584 	spin_unlock(&dentry->d_lock);
2585 	if (inode)
2586 		spin_unlock(&inode->i_lock);
2587 }
2588 
2589 /**
2590  * d_add - add dentry to hash queues
2591  * @entry: dentry to add
2592  * @inode: The inode to attach to this dentry
2593  *
2594  * This adds the entry to the hash queues and initializes @inode.
2595  * The entry was actually filled in earlier during d_alloc().
2596  */
2597 
d_add(struct dentry * entry,struct inode * inode)2598 void d_add(struct dentry *entry, struct inode *inode)
2599 {
2600 	if (inode) {
2601 		security_d_instantiate(entry, inode);
2602 		spin_lock(&inode->i_lock);
2603 	}
2604 	__d_add(entry, inode);
2605 }
2606 EXPORT_SYMBOL(d_add);
2607 
2608 /**
2609  * d_exact_alias - find and hash an exact unhashed alias
2610  * @entry: dentry to add
2611  * @inode: The inode to go with this dentry
2612  *
2613  * If an unhashed dentry with the same name/parent and desired
2614  * inode already exists, hash and return it.  Otherwise, return
2615  * NULL.
2616  *
2617  * Parent directory should be locked.
2618  */
d_exact_alias(struct dentry * entry,struct inode * inode)2619 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2620 {
2621 	struct dentry *alias;
2622 	unsigned int hash = entry->d_name.hash;
2623 
2624 	spin_lock(&inode->i_lock);
2625 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2626 		/*
2627 		 * Don't need alias->d_lock here, because aliases with
2628 		 * d_parent == entry->d_parent are not subject to name or
2629 		 * parent changes, because the parent inode i_mutex is held.
2630 		 */
2631 		if (alias->d_name.hash != hash)
2632 			continue;
2633 		if (alias->d_parent != entry->d_parent)
2634 			continue;
2635 		if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2636 			continue;
2637 		spin_lock(&alias->d_lock);
2638 		if (!d_unhashed(alias)) {
2639 			spin_unlock(&alias->d_lock);
2640 			alias = NULL;
2641 		} else {
2642 			__dget_dlock(alias);
2643 			__d_rehash(alias);
2644 			spin_unlock(&alias->d_lock);
2645 		}
2646 		spin_unlock(&inode->i_lock);
2647 		return alias;
2648 	}
2649 	spin_unlock(&inode->i_lock);
2650 	return NULL;
2651 }
2652 EXPORT_SYMBOL(d_exact_alias);
2653 
swap_names(struct dentry * dentry,struct dentry * target)2654 static void swap_names(struct dentry *dentry, struct dentry *target)
2655 {
2656 	if (unlikely(dname_external(target))) {
2657 		if (unlikely(dname_external(dentry))) {
2658 			/*
2659 			 * Both external: swap the pointers
2660 			 */
2661 			swap(target->d_name.name, dentry->d_name.name);
2662 		} else {
2663 			/*
2664 			 * dentry:internal, target:external.  Steal target's
2665 			 * storage and make target internal.
2666 			 */
2667 			memcpy(target->d_iname, dentry->d_name.name,
2668 					dentry->d_name.len + 1);
2669 			dentry->d_name.name = target->d_name.name;
2670 			target->d_name.name = target->d_iname;
2671 		}
2672 	} else {
2673 		if (unlikely(dname_external(dentry))) {
2674 			/*
2675 			 * dentry:external, target:internal.  Give dentry's
2676 			 * storage to target and make dentry internal
2677 			 */
2678 			memcpy(dentry->d_iname, target->d_name.name,
2679 					target->d_name.len + 1);
2680 			target->d_name.name = dentry->d_name.name;
2681 			dentry->d_name.name = dentry->d_iname;
2682 		} else {
2683 			/*
2684 			 * Both are internal.
2685 			 */
2686 			unsigned int i;
2687 			BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2688 			for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2689 				swap(((long *) &dentry->d_iname)[i],
2690 				     ((long *) &target->d_iname)[i]);
2691 			}
2692 		}
2693 	}
2694 	swap(dentry->d_name.hash_len, target->d_name.hash_len);
2695 }
2696 
copy_name(struct dentry * dentry,struct dentry * target)2697 static void copy_name(struct dentry *dentry, struct dentry *target)
2698 {
2699 	struct external_name *old_name = NULL;
2700 	if (unlikely(dname_external(dentry)))
2701 		old_name = external_name(dentry);
2702 	if (unlikely(dname_external(target))) {
2703 		atomic_inc(&external_name(target)->u.count);
2704 		dentry->d_name = target->d_name;
2705 	} else {
2706 		memcpy(dentry->d_iname, target->d_name.name,
2707 				target->d_name.len + 1);
2708 		dentry->d_name.name = dentry->d_iname;
2709 		dentry->d_name.hash_len = target->d_name.hash_len;
2710 	}
2711 	if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2712 		call_rcu(&old_name->u.head, __d_free_external_name);
2713 }
2714 
2715 /*
2716  * When d_splice_alias() moves a directory's encrypted alias to its decrypted
2717  * alias as a result of the encryption key being added, DCACHE_ENCRYPTED_NAME
2718  * must be cleared.  Note that we don't have to support arbitrary moves of this
2719  * flag because fscrypt doesn't allow encrypted aliases to be the source or
2720  * target of a rename().
2721  */
fscrypt_handle_d_move(struct dentry * dentry)2722 static inline void fscrypt_handle_d_move(struct dentry *dentry)
2723 {
2724 #if IS_ENABLED(CONFIG_FS_ENCRYPTION)
2725 	dentry->d_flags &= ~DCACHE_ENCRYPTED_NAME;
2726 #endif
2727 }
2728 
2729 /*
2730  * __d_move - move a dentry
2731  * @dentry: entry to move
2732  * @target: new dentry
2733  * @exchange: exchange the two dentries
2734  *
2735  * Update the dcache to reflect the move of a file name. Negative
2736  * dcache entries should not be moved in this way. Caller must hold
2737  * rename_lock, the i_mutex of the source and target directories,
2738  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2739  */
__d_move(struct dentry * dentry,struct dentry * target,bool exchange)2740 static void __d_move(struct dentry *dentry, struct dentry *target,
2741 		     bool exchange)
2742 {
2743 	struct dentry *old_parent, *p;
2744 	struct inode *dir = NULL;
2745 	unsigned n;
2746 
2747 	WARN_ON(!dentry->d_inode);
2748 	if (WARN_ON(dentry == target))
2749 		return;
2750 
2751 	BUG_ON(d_ancestor(target, dentry));
2752 	old_parent = dentry->d_parent;
2753 	p = d_ancestor(old_parent, target);
2754 	if (IS_ROOT(dentry)) {
2755 		BUG_ON(p);
2756 		spin_lock(&target->d_parent->d_lock);
2757 	} else if (!p) {
2758 		/* target is not a descendent of dentry->d_parent */
2759 		spin_lock(&target->d_parent->d_lock);
2760 		spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2761 	} else {
2762 		BUG_ON(p == dentry);
2763 		spin_lock(&old_parent->d_lock);
2764 		if (p != target)
2765 			spin_lock_nested(&target->d_parent->d_lock,
2766 					DENTRY_D_LOCK_NESTED);
2767 	}
2768 	spin_lock_nested(&dentry->d_lock, 2);
2769 	spin_lock_nested(&target->d_lock, 3);
2770 
2771 	if (unlikely(d_in_lookup(target))) {
2772 		dir = target->d_parent->d_inode;
2773 		n = start_dir_add(dir);
2774 		__d_lookup_done(target);
2775 	}
2776 
2777 	write_seqcount_begin(&dentry->d_seq);
2778 	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2779 
2780 	/* unhash both */
2781 	if (!d_unhashed(dentry))
2782 		___d_drop(dentry);
2783 	if (!d_unhashed(target))
2784 		___d_drop(target);
2785 
2786 	/* ... and switch them in the tree */
2787 	dentry->d_parent = target->d_parent;
2788 	if (!exchange) {
2789 		copy_name(dentry, target);
2790 		target->d_hash.pprev = NULL;
2791 		dentry->d_parent->d_lockref.count++;
2792 		if (dentry != old_parent) /* wasn't IS_ROOT */
2793 			WARN_ON(!--old_parent->d_lockref.count);
2794 	} else {
2795 		target->d_parent = old_parent;
2796 		swap_names(dentry, target);
2797 		list_move(&target->d_child, &target->d_parent->d_subdirs);
2798 		__d_rehash(target);
2799 		fsnotify_update_flags(target);
2800 	}
2801 	list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2802 	__d_rehash(dentry);
2803 	fsnotify_update_flags(dentry);
2804 	fscrypt_handle_d_move(dentry);
2805 
2806 	write_seqcount_end(&target->d_seq);
2807 	write_seqcount_end(&dentry->d_seq);
2808 
2809 	if (dir)
2810 		end_dir_add(dir, n);
2811 
2812 	if (dentry->d_parent != old_parent)
2813 		spin_unlock(&dentry->d_parent->d_lock);
2814 	if (dentry != old_parent)
2815 		spin_unlock(&old_parent->d_lock);
2816 	spin_unlock(&target->d_lock);
2817 	spin_unlock(&dentry->d_lock);
2818 }
2819 
2820 /*
2821  * d_move - move a dentry
2822  * @dentry: entry to move
2823  * @target: new dentry
2824  *
2825  * Update the dcache to reflect the move of a file name. Negative
2826  * dcache entries should not be moved in this way. See the locking
2827  * requirements for __d_move.
2828  */
d_move(struct dentry * dentry,struct dentry * target)2829 void d_move(struct dentry *dentry, struct dentry *target)
2830 {
2831 	write_seqlock(&rename_lock);
2832 	__d_move(dentry, target, false);
2833 	write_sequnlock(&rename_lock);
2834 }
2835 EXPORT_SYMBOL(d_move);
2836 
2837 /*
2838  * d_exchange - exchange two dentries
2839  * @dentry1: first dentry
2840  * @dentry2: second dentry
2841  */
d_exchange(struct dentry * dentry1,struct dentry * dentry2)2842 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2843 {
2844 	write_seqlock(&rename_lock);
2845 
2846 	WARN_ON(!dentry1->d_inode);
2847 	WARN_ON(!dentry2->d_inode);
2848 	WARN_ON(IS_ROOT(dentry1));
2849 	WARN_ON(IS_ROOT(dentry2));
2850 
2851 	__d_move(dentry1, dentry2, true);
2852 
2853 	write_sequnlock(&rename_lock);
2854 }
2855 
2856 /**
2857  * d_ancestor - search for an ancestor
2858  * @p1: ancestor dentry
2859  * @p2: child dentry
2860  *
2861  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2862  * an ancestor of p2, else NULL.
2863  */
d_ancestor(struct dentry * p1,struct dentry * p2)2864 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2865 {
2866 	struct dentry *p;
2867 
2868 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2869 		if (p->d_parent == p1)
2870 			return p;
2871 	}
2872 	return NULL;
2873 }
2874 
2875 /*
2876  * This helper attempts to cope with remotely renamed directories
2877  *
2878  * It assumes that the caller is already holding
2879  * dentry->d_parent->d_inode->i_mutex, and rename_lock
2880  *
2881  * Note: If ever the locking in lock_rename() changes, then please
2882  * remember to update this too...
2883  */
__d_unalias(struct inode * inode,struct dentry * dentry,struct dentry * alias)2884 static int __d_unalias(struct inode *inode,
2885 		struct dentry *dentry, struct dentry *alias)
2886 {
2887 	struct mutex *m1 = NULL;
2888 	struct rw_semaphore *m2 = NULL;
2889 	int ret = -ESTALE;
2890 
2891 	/* If alias and dentry share a parent, then no extra locks required */
2892 	if (alias->d_parent == dentry->d_parent)
2893 		goto out_unalias;
2894 
2895 	/* See lock_rename() */
2896 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2897 		goto out_err;
2898 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2899 	if (!inode_trylock_shared(alias->d_parent->d_inode))
2900 		goto out_err;
2901 	m2 = &alias->d_parent->d_inode->i_rwsem;
2902 out_unalias:
2903 	__d_move(alias, dentry, false);
2904 	ret = 0;
2905 out_err:
2906 	if (m2)
2907 		up_read(m2);
2908 	if (m1)
2909 		mutex_unlock(m1);
2910 	return ret;
2911 }
2912 
2913 /**
2914  * d_splice_alias - splice a disconnected dentry into the tree if one exists
2915  * @inode:  the inode which may have a disconnected dentry
2916  * @dentry: a negative dentry which we want to point to the inode.
2917  *
2918  * If inode is a directory and has an IS_ROOT alias, then d_move that in
2919  * place of the given dentry and return it, else simply d_add the inode
2920  * to the dentry and return NULL.
2921  *
2922  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2923  * we should error out: directories can't have multiple aliases.
2924  *
2925  * This is needed in the lookup routine of any filesystem that is exportable
2926  * (via knfsd) so that we can build dcache paths to directories effectively.
2927  *
2928  * If a dentry was found and moved, then it is returned.  Otherwise NULL
2929  * is returned.  This matches the expected return value of ->lookup.
2930  *
2931  * Cluster filesystems may call this function with a negative, hashed dentry.
2932  * In that case, we know that the inode will be a regular file, and also this
2933  * will only occur during atomic_open. So we need to check for the dentry
2934  * being already hashed only in the final case.
2935  */
d_splice_alias(struct inode * inode,struct dentry * dentry)2936 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2937 {
2938 	if (IS_ERR(inode))
2939 		return ERR_CAST(inode);
2940 
2941 	BUG_ON(!d_unhashed(dentry));
2942 
2943 	if (!inode)
2944 		goto out;
2945 
2946 	security_d_instantiate(dentry, inode);
2947 	spin_lock(&inode->i_lock);
2948 	if (S_ISDIR(inode->i_mode)) {
2949 		struct dentry *new = __d_find_any_alias(inode);
2950 		if (unlikely(new)) {
2951 			/* The reference to new ensures it remains an alias */
2952 			spin_unlock(&inode->i_lock);
2953 			write_seqlock(&rename_lock);
2954 			if (unlikely(d_ancestor(new, dentry))) {
2955 				write_sequnlock(&rename_lock);
2956 				dput(new);
2957 				new = ERR_PTR(-ELOOP);
2958 				pr_warn_ratelimited(
2959 					"VFS: Lookup of '%s' in %s %s"
2960 					" would have caused loop\n",
2961 					dentry->d_name.name,
2962 					inode->i_sb->s_type->name,
2963 					inode->i_sb->s_id);
2964 			} else if (!IS_ROOT(new)) {
2965 				struct dentry *old_parent = dget(new->d_parent);
2966 				int err = __d_unalias(inode, dentry, new);
2967 				write_sequnlock(&rename_lock);
2968 				if (err) {
2969 					dput(new);
2970 					new = ERR_PTR(err);
2971 				}
2972 				dput(old_parent);
2973 			} else {
2974 				__d_move(new, dentry, false);
2975 				write_sequnlock(&rename_lock);
2976 			}
2977 			iput(inode);
2978 			return new;
2979 		}
2980 	}
2981 out:
2982 	__d_add(dentry, inode);
2983 	return NULL;
2984 }
2985 EXPORT_SYMBOL(d_splice_alias);
2986 
2987 /*
2988  * Test whether new_dentry is a subdirectory of old_dentry.
2989  *
2990  * Trivially implemented using the dcache structure
2991  */
2992 
2993 /**
2994  * is_subdir - is new dentry a subdirectory of old_dentry
2995  * @new_dentry: new dentry
2996  * @old_dentry: old dentry
2997  *
2998  * Returns true if new_dentry is a subdirectory of the parent (at any depth).
2999  * Returns false otherwise.
3000  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3001  */
3002 
is_subdir(struct dentry * new_dentry,struct dentry * old_dentry)3003 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3004 {
3005 	bool result;
3006 	unsigned seq;
3007 
3008 	if (new_dentry == old_dentry)
3009 		return true;
3010 
3011 	do {
3012 		/* for restarting inner loop in case of seq retry */
3013 		seq = read_seqbegin(&rename_lock);
3014 		/*
3015 		 * Need rcu_readlock to protect against the d_parent trashing
3016 		 * due to d_move
3017 		 */
3018 		rcu_read_lock();
3019 		if (d_ancestor(old_dentry, new_dentry))
3020 			result = true;
3021 		else
3022 			result = false;
3023 		rcu_read_unlock();
3024 	} while (read_seqretry(&rename_lock, seq));
3025 
3026 	return result;
3027 }
3028 EXPORT_SYMBOL(is_subdir);
3029 
d_genocide_kill(void * data,struct dentry * dentry)3030 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3031 {
3032 	struct dentry *root = data;
3033 	if (dentry != root) {
3034 		if (d_unhashed(dentry) || !dentry->d_inode)
3035 			return D_WALK_SKIP;
3036 
3037 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3038 			dentry->d_flags |= DCACHE_GENOCIDE;
3039 			dentry->d_lockref.count--;
3040 		}
3041 	}
3042 	return D_WALK_CONTINUE;
3043 }
3044 
d_genocide(struct dentry * parent)3045 void d_genocide(struct dentry *parent)
3046 {
3047 	d_walk(parent, parent, d_genocide_kill);
3048 }
3049 
3050 EXPORT_SYMBOL(d_genocide);
3051 
d_tmpfile(struct dentry * dentry,struct inode * inode)3052 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3053 {
3054 	inode_dec_link_count(inode);
3055 	BUG_ON(dentry->d_name.name != dentry->d_iname ||
3056 		!hlist_unhashed(&dentry->d_u.d_alias) ||
3057 		!d_unlinked(dentry));
3058 	spin_lock(&dentry->d_parent->d_lock);
3059 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3060 	dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3061 				(unsigned long long)inode->i_ino);
3062 	spin_unlock(&dentry->d_lock);
3063 	spin_unlock(&dentry->d_parent->d_lock);
3064 	d_instantiate(dentry, inode);
3065 }
3066 EXPORT_SYMBOL(d_tmpfile);
3067 
3068 static __initdata unsigned long dhash_entries;
set_dhash_entries(char * str)3069 static int __init set_dhash_entries(char *str)
3070 {
3071 	if (!str)
3072 		return 0;
3073 	dhash_entries = simple_strtoul(str, &str, 0);
3074 	return 1;
3075 }
3076 __setup("dhash_entries=", set_dhash_entries);
3077 
dcache_init_early(void)3078 static void __init dcache_init_early(void)
3079 {
3080 	/* If hashes are distributed across NUMA nodes, defer
3081 	 * hash allocation until vmalloc space is available.
3082 	 */
3083 	if (hashdist)
3084 		return;
3085 
3086 	dentry_hashtable =
3087 		alloc_large_system_hash("Dentry cache",
3088 					sizeof(struct hlist_bl_head),
3089 					dhash_entries,
3090 					13,
3091 					HASH_EARLY | HASH_ZERO,
3092 					&d_hash_shift,
3093 					NULL,
3094 					0,
3095 					0);
3096 	d_hash_shift = 32 - d_hash_shift;
3097 }
3098 
dcache_init(void)3099 static void __init dcache_init(void)
3100 {
3101 	/*
3102 	 * A constructor could be added for stable state like the lists,
3103 	 * but it is probably not worth it because of the cache nature
3104 	 * of the dcache.
3105 	 */
3106 	dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3107 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3108 		d_iname);
3109 
3110 	/* Hash may have been set up in dcache_init_early */
3111 	if (!hashdist)
3112 		return;
3113 
3114 	dentry_hashtable =
3115 		alloc_large_system_hash("Dentry cache",
3116 					sizeof(struct hlist_bl_head),
3117 					dhash_entries,
3118 					13,
3119 					HASH_ZERO,
3120 					&d_hash_shift,
3121 					NULL,
3122 					0,
3123 					0);
3124 	d_hash_shift = 32 - d_hash_shift;
3125 }
3126 
3127 /* SLAB cache for __getname() consumers */
3128 struct kmem_cache *names_cachep __read_mostly;
3129 EXPORT_SYMBOL(names_cachep);
3130 
vfs_caches_init_early(void)3131 void __init vfs_caches_init_early(void)
3132 {
3133 	int i;
3134 
3135 	for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3136 		INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3137 
3138 	dcache_init_early();
3139 	inode_init_early();
3140 }
3141 
vfs_caches_init(void)3142 void __init vfs_caches_init(void)
3143 {
3144 	names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3145 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3146 
3147 	dcache_init();
3148 	inode_init();
3149 	files_init();
3150 	files_maxfiles_init();
3151 	mnt_init();
3152 	bdev_cache_init();
3153 	chrdev_init();
3154 }
3155