1 /*
2  *   Copyright (C) International Business Machines Corp., 2000-2004
3  *   Portions Copyright (C) Tino Reichardt, 2012
4  *
5  *   This program is free software;  you can redistribute it and/or modify
6  *   it under the terms of the GNU General Public License as published by
7  *   the Free Software Foundation; either version 2 of the License, or
8  *   (at your option) any later version.
9  *
10  *   This program is distributed in the hope that it will be useful,
11  *   but WITHOUT ANY WARRANTY;  without even the implied warranty of
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See
13  *   the GNU General Public License for more details.
14  *
15  *   You should have received a copy of the GNU General Public License
16  *   along with this program;  if not, write to the Free Software
17  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18  */
19 
20 #include <linux/fs.h>
21 #include <linux/slab.h>
22 #include "jfs_incore.h"
23 #include "jfs_superblock.h"
24 #include "jfs_dmap.h"
25 #include "jfs_imap.h"
26 #include "jfs_lock.h"
27 #include "jfs_metapage.h"
28 #include "jfs_debug.h"
29 #include "jfs_discard.h"
30 
31 /*
32  *	SERIALIZATION of the Block Allocation Map.
33  *
34  *	the working state of the block allocation map is accessed in
35  *	two directions:
36  *
37  *	1) allocation and free requests that start at the dmap
38  *	   level and move up through the dmap control pages (i.e.
39  *	   the vast majority of requests).
40  *
41  *	2) allocation requests that start at dmap control page
42  *	   level and work down towards the dmaps.
43  *
44  *	the serialization scheme used here is as follows.
45  *
46  *	requests which start at the bottom are serialized against each
47  *	other through buffers and each requests holds onto its buffers
48  *	as it works it way up from a single dmap to the required level
49  *	of dmap control page.
50  *	requests that start at the top are serialized against each other
51  *	and request that start from the bottom by the multiple read/single
52  *	write inode lock of the bmap inode. requests starting at the top
53  *	take this lock in write mode while request starting at the bottom
54  *	take the lock in read mode.  a single top-down request may proceed
55  *	exclusively while multiple bottoms-up requests may proceed
56  *	simultaneously (under the protection of busy buffers).
57  *
58  *	in addition to information found in dmaps and dmap control pages,
59  *	the working state of the block allocation map also includes read/
60  *	write information maintained in the bmap descriptor (i.e. total
61  *	free block count, allocation group level free block counts).
62  *	a single exclusive lock (BMAP_LOCK) is used to guard this information
63  *	in the face of multiple-bottoms up requests.
64  *	(lock ordering: IREAD_LOCK, BMAP_LOCK);
65  *
66  *	accesses to the persistent state of the block allocation map (limited
67  *	to the persistent bitmaps in dmaps) is guarded by (busy) buffers.
68  */
69 
70 #define BMAP_LOCK_INIT(bmp)	mutex_init(&bmp->db_bmaplock)
71 #define BMAP_LOCK(bmp)		mutex_lock(&bmp->db_bmaplock)
72 #define BMAP_UNLOCK(bmp)	mutex_unlock(&bmp->db_bmaplock)
73 
74 /*
75  * forward references
76  */
77 static void dbAllocBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
78 			int nblocks);
79 static void dbSplit(dmtree_t * tp, int leafno, int splitsz, int newval);
80 static int dbBackSplit(dmtree_t * tp, int leafno);
81 static int dbJoin(dmtree_t * tp, int leafno, int newval);
82 static void dbAdjTree(dmtree_t * tp, int leafno, int newval);
83 static int dbAdjCtl(struct bmap * bmp, s64 blkno, int newval, int alloc,
84 		    int level);
85 static int dbAllocAny(struct bmap * bmp, s64 nblocks, int l2nb, s64 * results);
86 static int dbAllocNext(struct bmap * bmp, struct dmap * dp, s64 blkno,
87 		       int nblocks);
88 static int dbAllocNear(struct bmap * bmp, struct dmap * dp, s64 blkno,
89 		       int nblocks,
90 		       int l2nb, s64 * results);
91 static int dbAllocDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
92 		       int nblocks);
93 static int dbAllocDmapLev(struct bmap * bmp, struct dmap * dp, int nblocks,
94 			  int l2nb,
95 			  s64 * results);
96 static int dbAllocAG(struct bmap * bmp, int agno, s64 nblocks, int l2nb,
97 		     s64 * results);
98 static int dbAllocCtl(struct bmap * bmp, s64 nblocks, int l2nb, s64 blkno,
99 		      s64 * results);
100 static int dbExtend(struct inode *ip, s64 blkno, s64 nblocks, s64 addnblocks);
101 static int dbFindBits(u32 word, int l2nb);
102 static int dbFindCtl(struct bmap * bmp, int l2nb, int level, s64 * blkno);
103 static int dbFindLeaf(dmtree_t * tp, int l2nb, int *leafidx);
104 static int dbFreeBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
105 		      int nblocks);
106 static int dbFreeDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
107 		      int nblocks);
108 static int dbMaxBud(u8 * cp);
109 static int blkstol2(s64 nb);
110 
111 static int cntlz(u32 value);
112 static int cnttz(u32 word);
113 
114 static int dbAllocDmapBU(struct bmap * bmp, struct dmap * dp, s64 blkno,
115 			 int nblocks);
116 static int dbInitDmap(struct dmap * dp, s64 blkno, int nblocks);
117 static int dbInitDmapTree(struct dmap * dp);
118 static int dbInitTree(struct dmaptree * dtp);
119 static int dbInitDmapCtl(struct dmapctl * dcp, int level, int i);
120 static int dbGetL2AGSize(s64 nblocks);
121 
122 /*
123  *	buddy table
124  *
125  * table used for determining buddy sizes within characters of
126  * dmap bitmap words.  the characters themselves serve as indexes
127  * into the table, with the table elements yielding the maximum
128  * binary buddy of free bits within the character.
129  */
130 static const s8 budtab[256] = {
131 	3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
132 	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
133 	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
134 	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
135 	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
136 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
137 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
138 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
139 	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
140 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
141 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
142 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
143 	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
144 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
145 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
146 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, -1
147 };
148 
149 /*
150  * NAME:	dbMount()
151  *
152  * FUNCTION:	initializate the block allocation map.
153  *
154  *		memory is allocated for the in-core bmap descriptor and
155  *		the in-core descriptor is initialized from disk.
156  *
157  * PARAMETERS:
158  *	ipbmap	- pointer to in-core inode for the block map.
159  *
160  * RETURN VALUES:
161  *	0	- success
162  *	-ENOMEM	- insufficient memory
163  *	-EIO	- i/o error
164  *	-EINVAL - wrong bmap data
165  */
dbMount(struct inode * ipbmap)166 int dbMount(struct inode *ipbmap)
167 {
168 	struct bmap *bmp;
169 	struct dbmap_disk *dbmp_le;
170 	struct metapage *mp;
171 	int i, err;
172 
173 	/*
174 	 * allocate/initialize the in-memory bmap descriptor
175 	 */
176 	/* allocate memory for the in-memory bmap descriptor */
177 	bmp = kmalloc(sizeof(struct bmap), GFP_KERNEL);
178 	if (bmp == NULL)
179 		return -ENOMEM;
180 
181 	/* read the on-disk bmap descriptor. */
182 	mp = read_metapage(ipbmap,
183 			   BMAPBLKNO << JFS_SBI(ipbmap->i_sb)->l2nbperpage,
184 			   PSIZE, 0);
185 	if (mp == NULL) {
186 		err = -EIO;
187 		goto err_kfree_bmp;
188 	}
189 
190 	/* copy the on-disk bmap descriptor to its in-memory version. */
191 	dbmp_le = (struct dbmap_disk *) mp->data;
192 	bmp->db_mapsize = le64_to_cpu(dbmp_le->dn_mapsize);
193 	bmp->db_nfree = le64_to_cpu(dbmp_le->dn_nfree);
194 
195 	bmp->db_l2nbperpage = le32_to_cpu(dbmp_le->dn_l2nbperpage);
196 	if (bmp->db_l2nbperpage > L2PSIZE - L2MINBLOCKSIZE) {
197 		err = -EINVAL;
198 		goto err_release_metapage;
199 	}
200 
201 	bmp->db_numag = le32_to_cpu(dbmp_le->dn_numag);
202 	if (!bmp->db_numag) {
203 		err = -EINVAL;
204 		goto err_release_metapage;
205 	}
206 
207 	bmp->db_maxlevel = le32_to_cpu(dbmp_le->dn_maxlevel);
208 	bmp->db_maxag = le32_to_cpu(dbmp_le->dn_maxag);
209 	bmp->db_agpref = le32_to_cpu(dbmp_le->dn_agpref);
210 	bmp->db_aglevel = le32_to_cpu(dbmp_le->dn_aglevel);
211 	bmp->db_agheight = le32_to_cpu(dbmp_le->dn_agheight);
212 	bmp->db_agwidth = le32_to_cpu(dbmp_le->dn_agwidth);
213 	bmp->db_agstart = le32_to_cpu(dbmp_le->dn_agstart);
214 	bmp->db_agl2size = le32_to_cpu(dbmp_le->dn_agl2size);
215 	if (bmp->db_agl2size > L2MAXL2SIZE - L2MAXAG ||
216 	    bmp->db_agl2size < 0) {
217 		err = -EINVAL;
218 		goto err_release_metapage;
219 	}
220 
221 	if (((bmp->db_mapsize - 1) >> bmp->db_agl2size) > MAXAG) {
222 		err = -EINVAL;
223 		goto err_release_metapage;
224 	}
225 
226 	for (i = 0; i < MAXAG; i++)
227 		bmp->db_agfree[i] = le64_to_cpu(dbmp_le->dn_agfree[i]);
228 	bmp->db_agsize = le64_to_cpu(dbmp_le->dn_agsize);
229 	bmp->db_maxfreebud = dbmp_le->dn_maxfreebud;
230 
231 	/* release the buffer. */
232 	release_metapage(mp);
233 
234 	/* bind the bmap inode and the bmap descriptor to each other. */
235 	bmp->db_ipbmap = ipbmap;
236 	JFS_SBI(ipbmap->i_sb)->bmap = bmp;
237 
238 	memset(bmp->db_active, 0, sizeof(bmp->db_active));
239 
240 	/*
241 	 * allocate/initialize the bmap lock
242 	 */
243 	BMAP_LOCK_INIT(bmp);
244 
245 	return (0);
246 
247 err_release_metapage:
248 	release_metapage(mp);
249 err_kfree_bmp:
250 	kfree(bmp);
251 	return err;
252 }
253 
254 
255 /*
256  * NAME:	dbUnmount()
257  *
258  * FUNCTION:	terminate the block allocation map in preparation for
259  *		file system unmount.
260  *
261  *		the in-core bmap descriptor is written to disk and
262  *		the memory for this descriptor is freed.
263  *
264  * PARAMETERS:
265  *	ipbmap	- pointer to in-core inode for the block map.
266  *
267  * RETURN VALUES:
268  *	0	- success
269  *	-EIO	- i/o error
270  */
dbUnmount(struct inode * ipbmap,int mounterror)271 int dbUnmount(struct inode *ipbmap, int mounterror)
272 {
273 	struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
274 
275 	if (!(mounterror || isReadOnly(ipbmap)))
276 		dbSync(ipbmap);
277 
278 	/*
279 	 * Invalidate the page cache buffers
280 	 */
281 	truncate_inode_pages(ipbmap->i_mapping, 0);
282 
283 	/* free the memory for the in-memory bmap. */
284 	kfree(bmp);
285 	JFS_SBI(ipbmap->i_sb)->bmap = NULL;
286 
287 	return (0);
288 }
289 
290 /*
291  *	dbSync()
292  */
dbSync(struct inode * ipbmap)293 int dbSync(struct inode *ipbmap)
294 {
295 	struct dbmap_disk *dbmp_le;
296 	struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
297 	struct metapage *mp;
298 	int i;
299 
300 	/*
301 	 * write bmap global control page
302 	 */
303 	/* get the buffer for the on-disk bmap descriptor. */
304 	mp = read_metapage(ipbmap,
305 			   BMAPBLKNO << JFS_SBI(ipbmap->i_sb)->l2nbperpage,
306 			   PSIZE, 0);
307 	if (mp == NULL) {
308 		jfs_err("dbSync: read_metapage failed!");
309 		return -EIO;
310 	}
311 	/* copy the in-memory version of the bmap to the on-disk version */
312 	dbmp_le = (struct dbmap_disk *) mp->data;
313 	dbmp_le->dn_mapsize = cpu_to_le64(bmp->db_mapsize);
314 	dbmp_le->dn_nfree = cpu_to_le64(bmp->db_nfree);
315 	dbmp_le->dn_l2nbperpage = cpu_to_le32(bmp->db_l2nbperpage);
316 	dbmp_le->dn_numag = cpu_to_le32(bmp->db_numag);
317 	dbmp_le->dn_maxlevel = cpu_to_le32(bmp->db_maxlevel);
318 	dbmp_le->dn_maxag = cpu_to_le32(bmp->db_maxag);
319 	dbmp_le->dn_agpref = cpu_to_le32(bmp->db_agpref);
320 	dbmp_le->dn_aglevel = cpu_to_le32(bmp->db_aglevel);
321 	dbmp_le->dn_agheight = cpu_to_le32(bmp->db_agheight);
322 	dbmp_le->dn_agwidth = cpu_to_le32(bmp->db_agwidth);
323 	dbmp_le->dn_agstart = cpu_to_le32(bmp->db_agstart);
324 	dbmp_le->dn_agl2size = cpu_to_le32(bmp->db_agl2size);
325 	for (i = 0; i < MAXAG; i++)
326 		dbmp_le->dn_agfree[i] = cpu_to_le64(bmp->db_agfree[i]);
327 	dbmp_le->dn_agsize = cpu_to_le64(bmp->db_agsize);
328 	dbmp_le->dn_maxfreebud = bmp->db_maxfreebud;
329 
330 	/* write the buffer */
331 	write_metapage(mp);
332 
333 	/*
334 	 * write out dirty pages of bmap
335 	 */
336 	filemap_write_and_wait(ipbmap->i_mapping);
337 
338 	diWriteSpecial(ipbmap, 0);
339 
340 	return (0);
341 }
342 
343 /*
344  * NAME:	dbFree()
345  *
346  * FUNCTION:	free the specified block range from the working block
347  *		allocation map.
348  *
349  *		the blocks will be free from the working map one dmap
350  *		at a time.
351  *
352  * PARAMETERS:
353  *	ip	- pointer to in-core inode;
354  *	blkno	- starting block number to be freed.
355  *	nblocks	- number of blocks to be freed.
356  *
357  * RETURN VALUES:
358  *	0	- success
359  *	-EIO	- i/o error
360  */
dbFree(struct inode * ip,s64 blkno,s64 nblocks)361 int dbFree(struct inode *ip, s64 blkno, s64 nblocks)
362 {
363 	struct metapage *mp;
364 	struct dmap *dp;
365 	int nb, rc;
366 	s64 lblkno, rem;
367 	struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
368 	struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
369 	struct super_block *sb = ipbmap->i_sb;
370 
371 	IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
372 
373 	/* block to be freed better be within the mapsize. */
374 	if (unlikely((blkno == 0) || (blkno + nblocks > bmp->db_mapsize))) {
375 		IREAD_UNLOCK(ipbmap);
376 		printk(KERN_ERR "blkno = %Lx, nblocks = %Lx\n",
377 		       (unsigned long long) blkno,
378 		       (unsigned long long) nblocks);
379 		jfs_error(ip->i_sb, "block to be freed is outside the map\n");
380 		return -EIO;
381 	}
382 
383 	/**
384 	 * TRIM the blocks, when mounted with discard option
385 	 */
386 	if (JFS_SBI(sb)->flag & JFS_DISCARD)
387 		if (JFS_SBI(sb)->minblks_trim <= nblocks)
388 			jfs_issue_discard(ipbmap, blkno, nblocks);
389 
390 	/*
391 	 * free the blocks a dmap at a time.
392 	 */
393 	mp = NULL;
394 	for (rem = nblocks; rem > 0; rem -= nb, blkno += nb) {
395 		/* release previous dmap if any */
396 		if (mp) {
397 			write_metapage(mp);
398 		}
399 
400 		/* get the buffer for the current dmap. */
401 		lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
402 		mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
403 		if (mp == NULL) {
404 			IREAD_UNLOCK(ipbmap);
405 			return -EIO;
406 		}
407 		dp = (struct dmap *) mp->data;
408 
409 		/* determine the number of blocks to be freed from
410 		 * this dmap.
411 		 */
412 		nb = min(rem, BPERDMAP - (blkno & (BPERDMAP - 1)));
413 
414 		/* free the blocks. */
415 		if ((rc = dbFreeDmap(bmp, dp, blkno, nb))) {
416 			jfs_error(ip->i_sb, "error in block map\n");
417 			release_metapage(mp);
418 			IREAD_UNLOCK(ipbmap);
419 			return (rc);
420 		}
421 	}
422 
423 	/* write the last buffer. */
424 	if (mp)
425 		write_metapage(mp);
426 
427 	IREAD_UNLOCK(ipbmap);
428 
429 	return (0);
430 }
431 
432 
433 /*
434  * NAME:	dbUpdatePMap()
435  *
436  * FUNCTION:	update the allocation state (free or allocate) of the
437  *		specified block range in the persistent block allocation map.
438  *
439  *		the blocks will be updated in the persistent map one
440  *		dmap at a time.
441  *
442  * PARAMETERS:
443  *	ipbmap	- pointer to in-core inode for the block map.
444  *	free	- 'true' if block range is to be freed from the persistent
445  *		  map; 'false' if it is to be allocated.
446  *	blkno	- starting block number of the range.
447  *	nblocks	- number of contiguous blocks in the range.
448  *	tblk	- transaction block;
449  *
450  * RETURN VALUES:
451  *	0	- success
452  *	-EIO	- i/o error
453  */
454 int
dbUpdatePMap(struct inode * ipbmap,int free,s64 blkno,s64 nblocks,struct tblock * tblk)455 dbUpdatePMap(struct inode *ipbmap,
456 	     int free, s64 blkno, s64 nblocks, struct tblock * tblk)
457 {
458 	int nblks, dbitno, wbitno, rbits;
459 	int word, nbits, nwords;
460 	struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
461 	s64 lblkno, rem, lastlblkno;
462 	u32 mask;
463 	struct dmap *dp;
464 	struct metapage *mp;
465 	struct jfs_log *log;
466 	int lsn, difft, diffp;
467 	unsigned long flags;
468 
469 	/* the blocks better be within the mapsize. */
470 	if (blkno + nblocks > bmp->db_mapsize) {
471 		printk(KERN_ERR "blkno = %Lx, nblocks = %Lx\n",
472 		       (unsigned long long) blkno,
473 		       (unsigned long long) nblocks);
474 		jfs_error(ipbmap->i_sb, "blocks are outside the map\n");
475 		return -EIO;
476 	}
477 
478 	/* compute delta of transaction lsn from log syncpt */
479 	lsn = tblk->lsn;
480 	log = (struct jfs_log *) JFS_SBI(tblk->sb)->log;
481 	logdiff(difft, lsn, log);
482 
483 	/*
484 	 * update the block state a dmap at a time.
485 	 */
486 	mp = NULL;
487 	lastlblkno = 0;
488 	for (rem = nblocks; rem > 0; rem -= nblks, blkno += nblks) {
489 		/* get the buffer for the current dmap. */
490 		lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
491 		if (lblkno != lastlblkno) {
492 			if (mp) {
493 				write_metapage(mp);
494 			}
495 
496 			mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE,
497 					   0);
498 			if (mp == NULL)
499 				return -EIO;
500 			metapage_wait_for_io(mp);
501 		}
502 		dp = (struct dmap *) mp->data;
503 
504 		/* determine the bit number and word within the dmap of
505 		 * the starting block.  also determine how many blocks
506 		 * are to be updated within this dmap.
507 		 */
508 		dbitno = blkno & (BPERDMAP - 1);
509 		word = dbitno >> L2DBWORD;
510 		nblks = min(rem, (s64)BPERDMAP - dbitno);
511 
512 		/* update the bits of the dmap words. the first and last
513 		 * words may only have a subset of their bits updated. if
514 		 * this is the case, we'll work against that word (i.e.
515 		 * partial first and/or last) only in a single pass.  a
516 		 * single pass will also be used to update all words that
517 		 * are to have all their bits updated.
518 		 */
519 		for (rbits = nblks; rbits > 0;
520 		     rbits -= nbits, dbitno += nbits) {
521 			/* determine the bit number within the word and
522 			 * the number of bits within the word.
523 			 */
524 			wbitno = dbitno & (DBWORD - 1);
525 			nbits = min(rbits, DBWORD - wbitno);
526 
527 			/* check if only part of the word is to be updated. */
528 			if (nbits < DBWORD) {
529 				/* update (free or allocate) the bits
530 				 * in this word.
531 				 */
532 				mask =
533 				    (ONES << (DBWORD - nbits) >> wbitno);
534 				if (free)
535 					dp->pmap[word] &=
536 					    cpu_to_le32(~mask);
537 				else
538 					dp->pmap[word] |=
539 					    cpu_to_le32(mask);
540 
541 				word += 1;
542 			} else {
543 				/* one or more words are to have all
544 				 * their bits updated.  determine how
545 				 * many words and how many bits.
546 				 */
547 				nwords = rbits >> L2DBWORD;
548 				nbits = nwords << L2DBWORD;
549 
550 				/* update (free or allocate) the bits
551 				 * in these words.
552 				 */
553 				if (free)
554 					memset(&dp->pmap[word], 0,
555 					       nwords * 4);
556 				else
557 					memset(&dp->pmap[word], (int) ONES,
558 					       nwords * 4);
559 
560 				word += nwords;
561 			}
562 		}
563 
564 		/*
565 		 * update dmap lsn
566 		 */
567 		if (lblkno == lastlblkno)
568 			continue;
569 
570 		lastlblkno = lblkno;
571 
572 		LOGSYNC_LOCK(log, flags);
573 		if (mp->lsn != 0) {
574 			/* inherit older/smaller lsn */
575 			logdiff(diffp, mp->lsn, log);
576 			if (difft < diffp) {
577 				mp->lsn = lsn;
578 
579 				/* move bp after tblock in logsync list */
580 				list_move(&mp->synclist, &tblk->synclist);
581 			}
582 
583 			/* inherit younger/larger clsn */
584 			logdiff(difft, tblk->clsn, log);
585 			logdiff(diffp, mp->clsn, log);
586 			if (difft > diffp)
587 				mp->clsn = tblk->clsn;
588 		} else {
589 			mp->log = log;
590 			mp->lsn = lsn;
591 
592 			/* insert bp after tblock in logsync list */
593 			log->count++;
594 			list_add(&mp->synclist, &tblk->synclist);
595 
596 			mp->clsn = tblk->clsn;
597 		}
598 		LOGSYNC_UNLOCK(log, flags);
599 	}
600 
601 	/* write the last buffer. */
602 	if (mp) {
603 		write_metapage(mp);
604 	}
605 
606 	return (0);
607 }
608 
609 
610 /*
611  * NAME:	dbNextAG()
612  *
613  * FUNCTION:	find the preferred allocation group for new allocations.
614  *
615  *		Within the allocation groups, we maintain a preferred
616  *		allocation group which consists of a group with at least
617  *		average free space.  It is the preferred group that we target
618  *		new inode allocation towards.  The tie-in between inode
619  *		allocation and block allocation occurs as we allocate the
620  *		first (data) block of an inode and specify the inode (block)
621  *		as the allocation hint for this block.
622  *
623  *		We try to avoid having more than one open file growing in
624  *		an allocation group, as this will lead to fragmentation.
625  *		This differs from the old OS/2 method of trying to keep
626  *		empty ags around for large allocations.
627  *
628  * PARAMETERS:
629  *	ipbmap	- pointer to in-core inode for the block map.
630  *
631  * RETURN VALUES:
632  *	the preferred allocation group number.
633  */
dbNextAG(struct inode * ipbmap)634 int dbNextAG(struct inode *ipbmap)
635 {
636 	s64 avgfree;
637 	int agpref;
638 	s64 hwm = 0;
639 	int i;
640 	int next_best = -1;
641 	struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
642 
643 	BMAP_LOCK(bmp);
644 
645 	/* determine the average number of free blocks within the ags. */
646 	avgfree = (u32)bmp->db_nfree / bmp->db_numag;
647 
648 	/*
649 	 * if the current preferred ag does not have an active allocator
650 	 * and has at least average freespace, return it
651 	 */
652 	agpref = bmp->db_agpref;
653 	if ((atomic_read(&bmp->db_active[agpref]) == 0) &&
654 	    (bmp->db_agfree[agpref] >= avgfree))
655 		goto unlock;
656 
657 	/* From the last preferred ag, find the next one with at least
658 	 * average free space.
659 	 */
660 	for (i = 0 ; i < bmp->db_numag; i++, agpref++) {
661 		if (agpref == bmp->db_numag)
662 			agpref = 0;
663 
664 		if (atomic_read(&bmp->db_active[agpref]))
665 			/* open file is currently growing in this ag */
666 			continue;
667 		if (bmp->db_agfree[agpref] >= avgfree) {
668 			/* Return this one */
669 			bmp->db_agpref = agpref;
670 			goto unlock;
671 		} else if (bmp->db_agfree[agpref] > hwm) {
672 			/* Less than avg. freespace, but best so far */
673 			hwm = bmp->db_agfree[agpref];
674 			next_best = agpref;
675 		}
676 	}
677 
678 	/*
679 	 * If no inactive ag was found with average freespace, use the
680 	 * next best
681 	 */
682 	if (next_best != -1)
683 		bmp->db_agpref = next_best;
684 	/* else leave db_agpref unchanged */
685 unlock:
686 	BMAP_UNLOCK(bmp);
687 
688 	/* return the preferred group.
689 	 */
690 	return (bmp->db_agpref);
691 }
692 
693 /*
694  * NAME:	dbAlloc()
695  *
696  * FUNCTION:	attempt to allocate a specified number of contiguous free
697  *		blocks from the working allocation block map.
698  *
699  *		the block allocation policy uses hints and a multi-step
700  *		approach.
701  *
702  *		for allocation requests smaller than the number of blocks
703  *		per dmap, we first try to allocate the new blocks
704  *		immediately following the hint.  if these blocks are not
705  *		available, we try to allocate blocks near the hint.  if
706  *		no blocks near the hint are available, we next try to
707  *		allocate within the same dmap as contains the hint.
708  *
709  *		if no blocks are available in the dmap or the allocation
710  *		request is larger than the dmap size, we try to allocate
711  *		within the same allocation group as contains the hint. if
712  *		this does not succeed, we finally try to allocate anywhere
713  *		within the aggregate.
714  *
715  *		we also try to allocate anywhere within the aggregate for
716  *		for allocation requests larger than the allocation group
717  *		size or requests that specify no hint value.
718  *
719  * PARAMETERS:
720  *	ip	- pointer to in-core inode;
721  *	hint	- allocation hint.
722  *	nblocks	- number of contiguous blocks in the range.
723  *	results	- on successful return, set to the starting block number
724  *		  of the newly allocated contiguous range.
725  *
726  * RETURN VALUES:
727  *	0	- success
728  *	-ENOSPC	- insufficient disk resources
729  *	-EIO	- i/o error
730  */
dbAlloc(struct inode * ip,s64 hint,s64 nblocks,s64 * results)731 int dbAlloc(struct inode *ip, s64 hint, s64 nblocks, s64 * results)
732 {
733 	int rc, agno;
734 	struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
735 	struct bmap *bmp;
736 	struct metapage *mp;
737 	s64 lblkno, blkno;
738 	struct dmap *dp;
739 	int l2nb;
740 	s64 mapSize;
741 	int writers;
742 
743 	/* assert that nblocks is valid */
744 	assert(nblocks > 0);
745 
746 	/* get the log2 number of blocks to be allocated.
747 	 * if the number of blocks is not a log2 multiple,
748 	 * it will be rounded up to the next log2 multiple.
749 	 */
750 	l2nb = BLKSTOL2(nblocks);
751 
752 	bmp = JFS_SBI(ip->i_sb)->bmap;
753 
754 	mapSize = bmp->db_mapsize;
755 
756 	/* the hint should be within the map */
757 	if (hint >= mapSize) {
758 		jfs_error(ip->i_sb, "the hint is outside the map\n");
759 		return -EIO;
760 	}
761 
762 	/* if the number of blocks to be allocated is greater than the
763 	 * allocation group size, try to allocate anywhere.
764 	 */
765 	if (l2nb > bmp->db_agl2size) {
766 		IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
767 
768 		rc = dbAllocAny(bmp, nblocks, l2nb, results);
769 
770 		goto write_unlock;
771 	}
772 
773 	/*
774 	 * If no hint, let dbNextAG recommend an allocation group
775 	 */
776 	if (hint == 0)
777 		goto pref_ag;
778 
779 	/* we would like to allocate close to the hint.  adjust the
780 	 * hint to the block following the hint since the allocators
781 	 * will start looking for free space starting at this point.
782 	 */
783 	blkno = hint + 1;
784 
785 	if (blkno >= bmp->db_mapsize)
786 		goto pref_ag;
787 
788 	agno = blkno >> bmp->db_agl2size;
789 
790 	/* check if blkno crosses over into a new allocation group.
791 	 * if so, check if we should allow allocations within this
792 	 * allocation group.
793 	 */
794 	if ((blkno & (bmp->db_agsize - 1)) == 0)
795 		/* check if the AG is currently being written to.
796 		 * if so, call dbNextAG() to find a non-busy
797 		 * AG with sufficient free space.
798 		 */
799 		if (atomic_read(&bmp->db_active[agno]))
800 			goto pref_ag;
801 
802 	/* check if the allocation request size can be satisfied from a
803 	 * single dmap.  if so, try to allocate from the dmap containing
804 	 * the hint using a tiered strategy.
805 	 */
806 	if (nblocks <= BPERDMAP) {
807 		IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
808 
809 		/* get the buffer for the dmap containing the hint.
810 		 */
811 		rc = -EIO;
812 		lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
813 		mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
814 		if (mp == NULL)
815 			goto read_unlock;
816 
817 		dp = (struct dmap *) mp->data;
818 
819 		/* first, try to satisfy the allocation request with the
820 		 * blocks beginning at the hint.
821 		 */
822 		if ((rc = dbAllocNext(bmp, dp, blkno, (int) nblocks))
823 		    != -ENOSPC) {
824 			if (rc == 0) {
825 				*results = blkno;
826 				mark_metapage_dirty(mp);
827 			}
828 
829 			release_metapage(mp);
830 			goto read_unlock;
831 		}
832 
833 		writers = atomic_read(&bmp->db_active[agno]);
834 		if ((writers > 1) ||
835 		    ((writers == 1) && (JFS_IP(ip)->active_ag != agno))) {
836 			/*
837 			 * Someone else is writing in this allocation
838 			 * group.  To avoid fragmenting, try another ag
839 			 */
840 			release_metapage(mp);
841 			IREAD_UNLOCK(ipbmap);
842 			goto pref_ag;
843 		}
844 
845 		/* next, try to satisfy the allocation request with blocks
846 		 * near the hint.
847 		 */
848 		if ((rc =
849 		     dbAllocNear(bmp, dp, blkno, (int) nblocks, l2nb, results))
850 		    != -ENOSPC) {
851 			if (rc == 0)
852 				mark_metapage_dirty(mp);
853 
854 			release_metapage(mp);
855 			goto read_unlock;
856 		}
857 
858 		/* try to satisfy the allocation request with blocks within
859 		 * the same dmap as the hint.
860 		 */
861 		if ((rc = dbAllocDmapLev(bmp, dp, (int) nblocks, l2nb, results))
862 		    != -ENOSPC) {
863 			if (rc == 0)
864 				mark_metapage_dirty(mp);
865 
866 			release_metapage(mp);
867 			goto read_unlock;
868 		}
869 
870 		release_metapage(mp);
871 		IREAD_UNLOCK(ipbmap);
872 	}
873 
874 	/* try to satisfy the allocation request with blocks within
875 	 * the same allocation group as the hint.
876 	 */
877 	IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
878 	if ((rc = dbAllocAG(bmp, agno, nblocks, l2nb, results)) != -ENOSPC)
879 		goto write_unlock;
880 
881 	IWRITE_UNLOCK(ipbmap);
882 
883 
884       pref_ag:
885 	/*
886 	 * Let dbNextAG recommend a preferred allocation group
887 	 */
888 	agno = dbNextAG(ipbmap);
889 	IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
890 
891 	/* Try to allocate within this allocation group.  if that fails, try to
892 	 * allocate anywhere in the map.
893 	 */
894 	if ((rc = dbAllocAG(bmp, agno, nblocks, l2nb, results)) == -ENOSPC)
895 		rc = dbAllocAny(bmp, nblocks, l2nb, results);
896 
897       write_unlock:
898 	IWRITE_UNLOCK(ipbmap);
899 
900 	return (rc);
901 
902       read_unlock:
903 	IREAD_UNLOCK(ipbmap);
904 
905 	return (rc);
906 }
907 
908 #ifdef _NOTYET
909 /*
910  * NAME:	dbAllocExact()
911  *
912  * FUNCTION:	try to allocate the requested extent;
913  *
914  * PARAMETERS:
915  *	ip	- pointer to in-core inode;
916  *	blkno	- extent address;
917  *	nblocks	- extent length;
918  *
919  * RETURN VALUES:
920  *	0	- success
921  *	-ENOSPC	- insufficient disk resources
922  *	-EIO	- i/o error
923  */
dbAllocExact(struct inode * ip,s64 blkno,int nblocks)924 int dbAllocExact(struct inode *ip, s64 blkno, int nblocks)
925 {
926 	int rc;
927 	struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
928 	struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
929 	struct dmap *dp;
930 	s64 lblkno;
931 	struct metapage *mp;
932 
933 	IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
934 
935 	/*
936 	 * validate extent request:
937 	 *
938 	 * note: defragfs policy:
939 	 *  max 64 blocks will be moved.
940 	 *  allocation request size must be satisfied from a single dmap.
941 	 */
942 	if (nblocks <= 0 || nblocks > BPERDMAP || blkno >= bmp->db_mapsize) {
943 		IREAD_UNLOCK(ipbmap);
944 		return -EINVAL;
945 	}
946 
947 	if (nblocks > ((s64) 1 << bmp->db_maxfreebud)) {
948 		/* the free space is no longer available */
949 		IREAD_UNLOCK(ipbmap);
950 		return -ENOSPC;
951 	}
952 
953 	/* read in the dmap covering the extent */
954 	lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
955 	mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
956 	if (mp == NULL) {
957 		IREAD_UNLOCK(ipbmap);
958 		return -EIO;
959 	}
960 	dp = (struct dmap *) mp->data;
961 
962 	/* try to allocate the requested extent */
963 	rc = dbAllocNext(bmp, dp, blkno, nblocks);
964 
965 	IREAD_UNLOCK(ipbmap);
966 
967 	if (rc == 0)
968 		mark_metapage_dirty(mp);
969 
970 	release_metapage(mp);
971 
972 	return (rc);
973 }
974 #endif /* _NOTYET */
975 
976 /*
977  * NAME:	dbReAlloc()
978  *
979  * FUNCTION:	attempt to extend a current allocation by a specified
980  *		number of blocks.
981  *
982  *		this routine attempts to satisfy the allocation request
983  *		by first trying to extend the existing allocation in
984  *		place by allocating the additional blocks as the blocks
985  *		immediately following the current allocation.  if these
986  *		blocks are not available, this routine will attempt to
987  *		allocate a new set of contiguous blocks large enough
988  *		to cover the existing allocation plus the additional
989  *		number of blocks required.
990  *
991  * PARAMETERS:
992  *	ip	    -  pointer to in-core inode requiring allocation.
993  *	blkno	    -  starting block of the current allocation.
994  *	nblocks	    -  number of contiguous blocks within the current
995  *		       allocation.
996  *	addnblocks  -  number of blocks to add to the allocation.
997  *	results	-      on successful return, set to the starting block number
998  *		       of the existing allocation if the existing allocation
999  *		       was extended in place or to a newly allocated contiguous
1000  *		       range if the existing allocation could not be extended
1001  *		       in place.
1002  *
1003  * RETURN VALUES:
1004  *	0	- success
1005  *	-ENOSPC	- insufficient disk resources
1006  *	-EIO	- i/o error
1007  */
1008 int
dbReAlloc(struct inode * ip,s64 blkno,s64 nblocks,s64 addnblocks,s64 * results)1009 dbReAlloc(struct inode *ip,
1010 	  s64 blkno, s64 nblocks, s64 addnblocks, s64 * results)
1011 {
1012 	int rc;
1013 
1014 	/* try to extend the allocation in place.
1015 	 */
1016 	if ((rc = dbExtend(ip, blkno, nblocks, addnblocks)) == 0) {
1017 		*results = blkno;
1018 		return (0);
1019 	} else {
1020 		if (rc != -ENOSPC)
1021 			return (rc);
1022 	}
1023 
1024 	/* could not extend the allocation in place, so allocate a
1025 	 * new set of blocks for the entire request (i.e. try to get
1026 	 * a range of contiguous blocks large enough to cover the
1027 	 * existing allocation plus the additional blocks.)
1028 	 */
1029 	return (dbAlloc
1030 		(ip, blkno + nblocks - 1, addnblocks + nblocks, results));
1031 }
1032 
1033 
1034 /*
1035  * NAME:	dbExtend()
1036  *
1037  * FUNCTION:	attempt to extend a current allocation by a specified
1038  *		number of blocks.
1039  *
1040  *		this routine attempts to satisfy the allocation request
1041  *		by first trying to extend the existing allocation in
1042  *		place by allocating the additional blocks as the blocks
1043  *		immediately following the current allocation.
1044  *
1045  * PARAMETERS:
1046  *	ip	    -  pointer to in-core inode requiring allocation.
1047  *	blkno	    -  starting block of the current allocation.
1048  *	nblocks	    -  number of contiguous blocks within the current
1049  *		       allocation.
1050  *	addnblocks  -  number of blocks to add to the allocation.
1051  *
1052  * RETURN VALUES:
1053  *	0	- success
1054  *	-ENOSPC	- insufficient disk resources
1055  *	-EIO	- i/o error
1056  */
dbExtend(struct inode * ip,s64 blkno,s64 nblocks,s64 addnblocks)1057 static int dbExtend(struct inode *ip, s64 blkno, s64 nblocks, s64 addnblocks)
1058 {
1059 	struct jfs_sb_info *sbi = JFS_SBI(ip->i_sb);
1060 	s64 lblkno, lastblkno, extblkno;
1061 	uint rel_block;
1062 	struct metapage *mp;
1063 	struct dmap *dp;
1064 	int rc;
1065 	struct inode *ipbmap = sbi->ipbmap;
1066 	struct bmap *bmp;
1067 
1068 	/*
1069 	 * We don't want a non-aligned extent to cross a page boundary
1070 	 */
1071 	if (((rel_block = blkno & (sbi->nbperpage - 1))) &&
1072 	    (rel_block + nblocks + addnblocks > sbi->nbperpage))
1073 		return -ENOSPC;
1074 
1075 	/* get the last block of the current allocation */
1076 	lastblkno = blkno + nblocks - 1;
1077 
1078 	/* determine the block number of the block following
1079 	 * the existing allocation.
1080 	 */
1081 	extblkno = lastblkno + 1;
1082 
1083 	IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
1084 
1085 	/* better be within the file system */
1086 	bmp = sbi->bmap;
1087 	if (lastblkno < 0 || lastblkno >= bmp->db_mapsize) {
1088 		IREAD_UNLOCK(ipbmap);
1089 		jfs_error(ip->i_sb, "the block is outside the filesystem\n");
1090 		return -EIO;
1091 	}
1092 
1093 	/* we'll attempt to extend the current allocation in place by
1094 	 * allocating the additional blocks as the blocks immediately
1095 	 * following the current allocation.  we only try to extend the
1096 	 * current allocation in place if the number of additional blocks
1097 	 * can fit into a dmap, the last block of the current allocation
1098 	 * is not the last block of the file system, and the start of the
1099 	 * inplace extension is not on an allocation group boundary.
1100 	 */
1101 	if (addnblocks > BPERDMAP || extblkno >= bmp->db_mapsize ||
1102 	    (extblkno & (bmp->db_agsize - 1)) == 0) {
1103 		IREAD_UNLOCK(ipbmap);
1104 		return -ENOSPC;
1105 	}
1106 
1107 	/* get the buffer for the dmap containing the first block
1108 	 * of the extension.
1109 	 */
1110 	lblkno = BLKTODMAP(extblkno, bmp->db_l2nbperpage);
1111 	mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
1112 	if (mp == NULL) {
1113 		IREAD_UNLOCK(ipbmap);
1114 		return -EIO;
1115 	}
1116 
1117 	dp = (struct dmap *) mp->data;
1118 
1119 	/* try to allocate the blocks immediately following the
1120 	 * current allocation.
1121 	 */
1122 	rc = dbAllocNext(bmp, dp, extblkno, (int) addnblocks);
1123 
1124 	IREAD_UNLOCK(ipbmap);
1125 
1126 	/* were we successful ? */
1127 	if (rc == 0)
1128 		write_metapage(mp);
1129 	else
1130 		/* we were not successful */
1131 		release_metapage(mp);
1132 
1133 	return (rc);
1134 }
1135 
1136 
1137 /*
1138  * NAME:	dbAllocNext()
1139  *
1140  * FUNCTION:	attempt to allocate the blocks of the specified block
1141  *		range within a dmap.
1142  *
1143  * PARAMETERS:
1144  *	bmp	-  pointer to bmap descriptor
1145  *	dp	-  pointer to dmap.
1146  *	blkno	-  starting block number of the range.
1147  *	nblocks	-  number of contiguous free blocks of the range.
1148  *
1149  * RETURN VALUES:
1150  *	0	- success
1151  *	-ENOSPC	- insufficient disk resources
1152  *	-EIO	- i/o error
1153  *
1154  * serialization: IREAD_LOCK(ipbmap) held on entry/exit;
1155  */
dbAllocNext(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks)1156 static int dbAllocNext(struct bmap * bmp, struct dmap * dp, s64 blkno,
1157 		       int nblocks)
1158 {
1159 	int dbitno, word, rembits, nb, nwords, wbitno, nw;
1160 	int l2size;
1161 	s8 *leaf;
1162 	u32 mask;
1163 
1164 	if (dp->tree.leafidx != cpu_to_le32(LEAFIND)) {
1165 		jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmap page\n");
1166 		return -EIO;
1167 	}
1168 
1169 	/* pick up a pointer to the leaves of the dmap tree.
1170 	 */
1171 	leaf = dp->tree.stree + le32_to_cpu(dp->tree.leafidx);
1172 
1173 	/* determine the bit number and word within the dmap of the
1174 	 * starting block.
1175 	 */
1176 	dbitno = blkno & (BPERDMAP - 1);
1177 	word = dbitno >> L2DBWORD;
1178 
1179 	/* check if the specified block range is contained within
1180 	 * this dmap.
1181 	 */
1182 	if (dbitno + nblocks > BPERDMAP)
1183 		return -ENOSPC;
1184 
1185 	/* check if the starting leaf indicates that anything
1186 	 * is free.
1187 	 */
1188 	if (leaf[word] == NOFREE)
1189 		return -ENOSPC;
1190 
1191 	/* check the dmaps words corresponding to block range to see
1192 	 * if the block range is free.  not all bits of the first and
1193 	 * last words may be contained within the block range.  if this
1194 	 * is the case, we'll work against those words (i.e. partial first
1195 	 * and/or last) on an individual basis (a single pass) and examine
1196 	 * the actual bits to determine if they are free.  a single pass
1197 	 * will be used for all dmap words fully contained within the
1198 	 * specified range.  within this pass, the leaves of the dmap
1199 	 * tree will be examined to determine if the blocks are free. a
1200 	 * single leaf may describe the free space of multiple dmap
1201 	 * words, so we may visit only a subset of the actual leaves
1202 	 * corresponding to the dmap words of the block range.
1203 	 */
1204 	for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
1205 		/* determine the bit number within the word and
1206 		 * the number of bits within the word.
1207 		 */
1208 		wbitno = dbitno & (DBWORD - 1);
1209 		nb = min(rembits, DBWORD - wbitno);
1210 
1211 		/* check if only part of the word is to be examined.
1212 		 */
1213 		if (nb < DBWORD) {
1214 			/* check if the bits are free.
1215 			 */
1216 			mask = (ONES << (DBWORD - nb) >> wbitno);
1217 			if ((mask & ~le32_to_cpu(dp->wmap[word])) != mask)
1218 				return -ENOSPC;
1219 
1220 			word += 1;
1221 		} else {
1222 			/* one or more dmap words are fully contained
1223 			 * within the block range.  determine how many
1224 			 * words and how many bits.
1225 			 */
1226 			nwords = rembits >> L2DBWORD;
1227 			nb = nwords << L2DBWORD;
1228 
1229 			/* now examine the appropriate leaves to determine
1230 			 * if the blocks are free.
1231 			 */
1232 			while (nwords > 0) {
1233 				/* does the leaf describe any free space ?
1234 				 */
1235 				if (leaf[word] < BUDMIN)
1236 					return -ENOSPC;
1237 
1238 				/* determine the l2 number of bits provided
1239 				 * by this leaf.
1240 				 */
1241 				l2size =
1242 				    min_t(int, leaf[word], NLSTOL2BSZ(nwords));
1243 
1244 				/* determine how many words were handled.
1245 				 */
1246 				nw = BUDSIZE(l2size, BUDMIN);
1247 
1248 				nwords -= nw;
1249 				word += nw;
1250 			}
1251 		}
1252 	}
1253 
1254 	/* allocate the blocks.
1255 	 */
1256 	return (dbAllocDmap(bmp, dp, blkno, nblocks));
1257 }
1258 
1259 
1260 /*
1261  * NAME:	dbAllocNear()
1262  *
1263  * FUNCTION:	attempt to allocate a number of contiguous free blocks near
1264  *		a specified block (hint) within a dmap.
1265  *
1266  *		starting with the dmap leaf that covers the hint, we'll
1267  *		check the next four contiguous leaves for sufficient free
1268  *		space.  if sufficient free space is found, we'll allocate
1269  *		the desired free space.
1270  *
1271  * PARAMETERS:
1272  *	bmp	-  pointer to bmap descriptor
1273  *	dp	-  pointer to dmap.
1274  *	blkno	-  block number to allocate near.
1275  *	nblocks	-  actual number of contiguous free blocks desired.
1276  *	l2nb	-  log2 number of contiguous free blocks desired.
1277  *	results	-  on successful return, set to the starting block number
1278  *		   of the newly allocated range.
1279  *
1280  * RETURN VALUES:
1281  *	0	- success
1282  *	-ENOSPC	- insufficient disk resources
1283  *	-EIO	- i/o error
1284  *
1285  * serialization: IREAD_LOCK(ipbmap) held on entry/exit;
1286  */
1287 static int
dbAllocNear(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks,int l2nb,s64 * results)1288 dbAllocNear(struct bmap * bmp,
1289 	    struct dmap * dp, s64 blkno, int nblocks, int l2nb, s64 * results)
1290 {
1291 	int word, lword, rc;
1292 	s8 *leaf;
1293 
1294 	if (dp->tree.leafidx != cpu_to_le32(LEAFIND)) {
1295 		jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmap page\n");
1296 		return -EIO;
1297 	}
1298 
1299 	leaf = dp->tree.stree + le32_to_cpu(dp->tree.leafidx);
1300 
1301 	/* determine the word within the dmap that holds the hint
1302 	 * (i.e. blkno).  also, determine the last word in the dmap
1303 	 * that we'll include in our examination.
1304 	 */
1305 	word = (blkno & (BPERDMAP - 1)) >> L2DBWORD;
1306 	lword = min(word + 4, LPERDMAP);
1307 
1308 	/* examine the leaves for sufficient free space.
1309 	 */
1310 	for (; word < lword; word++) {
1311 		/* does the leaf describe sufficient free space ?
1312 		 */
1313 		if (leaf[word] < l2nb)
1314 			continue;
1315 
1316 		/* determine the block number within the file system
1317 		 * of the first block described by this dmap word.
1318 		 */
1319 		blkno = le64_to_cpu(dp->start) + (word << L2DBWORD);
1320 
1321 		/* if not all bits of the dmap word are free, get the
1322 		 * starting bit number within the dmap word of the required
1323 		 * string of free bits and adjust the block number with the
1324 		 * value.
1325 		 */
1326 		if (leaf[word] < BUDMIN)
1327 			blkno +=
1328 			    dbFindBits(le32_to_cpu(dp->wmap[word]), l2nb);
1329 
1330 		/* allocate the blocks.
1331 		 */
1332 		if ((rc = dbAllocDmap(bmp, dp, blkno, nblocks)) == 0)
1333 			*results = blkno;
1334 
1335 		return (rc);
1336 	}
1337 
1338 	return -ENOSPC;
1339 }
1340 
1341 
1342 /*
1343  * NAME:	dbAllocAG()
1344  *
1345  * FUNCTION:	attempt to allocate the specified number of contiguous
1346  *		free blocks within the specified allocation group.
1347  *
1348  *		unless the allocation group size is equal to the number
1349  *		of blocks per dmap, the dmap control pages will be used to
1350  *		find the required free space, if available.  we start the
1351  *		search at the highest dmap control page level which
1352  *		distinctly describes the allocation group's free space
1353  *		(i.e. the highest level at which the allocation group's
1354  *		free space is not mixed in with that of any other group).
1355  *		in addition, we start the search within this level at a
1356  *		height of the dmapctl dmtree at which the nodes distinctly
1357  *		describe the allocation group's free space.  at this height,
1358  *		the allocation group's free space may be represented by 1
1359  *		or two sub-trees, depending on the allocation group size.
1360  *		we search the top nodes of these subtrees left to right for
1361  *		sufficient free space.  if sufficient free space is found,
1362  *		the subtree is searched to find the leftmost leaf that
1363  *		has free space.  once we have made it to the leaf, we
1364  *		move the search to the next lower level dmap control page
1365  *		corresponding to this leaf.  we continue down the dmap control
1366  *		pages until we find the dmap that contains or starts the
1367  *		sufficient free space and we allocate at this dmap.
1368  *
1369  *		if the allocation group size is equal to the dmap size,
1370  *		we'll start at the dmap corresponding to the allocation
1371  *		group and attempt the allocation at this level.
1372  *
1373  *		the dmap control page search is also not performed if the
1374  *		allocation group is completely free and we go to the first
1375  *		dmap of the allocation group to do the allocation.  this is
1376  *		done because the allocation group may be part (not the first
1377  *		part) of a larger binary buddy system, causing the dmap
1378  *		control pages to indicate no free space (NOFREE) within
1379  *		the allocation group.
1380  *
1381  * PARAMETERS:
1382  *	bmp	-  pointer to bmap descriptor
1383  *	agno	- allocation group number.
1384  *	nblocks	-  actual number of contiguous free blocks desired.
1385  *	l2nb	-  log2 number of contiguous free blocks desired.
1386  *	results	-  on successful return, set to the starting block number
1387  *		   of the newly allocated range.
1388  *
1389  * RETURN VALUES:
1390  *	0	- success
1391  *	-ENOSPC	- insufficient disk resources
1392  *	-EIO	- i/o error
1393  *
1394  * note: IWRITE_LOCK(ipmap) held on entry/exit;
1395  */
1396 static int
dbAllocAG(struct bmap * bmp,int agno,s64 nblocks,int l2nb,s64 * results)1397 dbAllocAG(struct bmap * bmp, int agno, s64 nblocks, int l2nb, s64 * results)
1398 {
1399 	struct metapage *mp;
1400 	struct dmapctl *dcp;
1401 	int rc, ti, i, k, m, n, agperlev;
1402 	s64 blkno, lblkno;
1403 	int budmin;
1404 
1405 	/* allocation request should not be for more than the
1406 	 * allocation group size.
1407 	 */
1408 	if (l2nb > bmp->db_agl2size) {
1409 		jfs_error(bmp->db_ipbmap->i_sb,
1410 			  "allocation request is larger than the allocation group size\n");
1411 		return -EIO;
1412 	}
1413 
1414 	/* determine the starting block number of the allocation
1415 	 * group.
1416 	 */
1417 	blkno = (s64) agno << bmp->db_agl2size;
1418 
1419 	/* check if the allocation group size is the minimum allocation
1420 	 * group size or if the allocation group is completely free. if
1421 	 * the allocation group size is the minimum size of BPERDMAP (i.e.
1422 	 * 1 dmap), there is no need to search the dmap control page (below)
1423 	 * that fully describes the allocation group since the allocation
1424 	 * group is already fully described by a dmap.  in this case, we
1425 	 * just call dbAllocCtl() to search the dmap tree and allocate the
1426 	 * required space if available.
1427 	 *
1428 	 * if the allocation group is completely free, dbAllocCtl() is
1429 	 * also called to allocate the required space.  this is done for
1430 	 * two reasons.  first, it makes no sense searching the dmap control
1431 	 * pages for free space when we know that free space exists.  second,
1432 	 * the dmap control pages may indicate that the allocation group
1433 	 * has no free space if the allocation group is part (not the first
1434 	 * part) of a larger binary buddy system.
1435 	 */
1436 	if (bmp->db_agsize == BPERDMAP
1437 	    || bmp->db_agfree[agno] == bmp->db_agsize) {
1438 		rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1439 		if ((rc == -ENOSPC) &&
1440 		    (bmp->db_agfree[agno] == bmp->db_agsize)) {
1441 			printk(KERN_ERR "blkno = %Lx, blocks = %Lx\n",
1442 			       (unsigned long long) blkno,
1443 			       (unsigned long long) nblocks);
1444 			jfs_error(bmp->db_ipbmap->i_sb,
1445 				  "dbAllocCtl failed in free AG\n");
1446 		}
1447 		return (rc);
1448 	}
1449 
1450 	/* the buffer for the dmap control page that fully describes the
1451 	 * allocation group.
1452 	 */
1453 	lblkno = BLKTOCTL(blkno, bmp->db_l2nbperpage, bmp->db_aglevel);
1454 	mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1455 	if (mp == NULL)
1456 		return -EIO;
1457 	dcp = (struct dmapctl *) mp->data;
1458 	budmin = dcp->budmin;
1459 
1460 	if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
1461 		jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmapctl page\n");
1462 		release_metapage(mp);
1463 		return -EIO;
1464 	}
1465 
1466 	/* search the subtree(s) of the dmap control page that describes
1467 	 * the allocation group, looking for sufficient free space.  to begin,
1468 	 * determine how many allocation groups are represented in a dmap
1469 	 * control page at the control page level (i.e. L0, L1, L2) that
1470 	 * fully describes an allocation group. next, determine the starting
1471 	 * tree index of this allocation group within the control page.
1472 	 */
1473 	agperlev =
1474 	    (1 << (L2LPERCTL - (bmp->db_agheight << 1))) / bmp->db_agwidth;
1475 	ti = bmp->db_agstart + bmp->db_agwidth * (agno & (agperlev - 1));
1476 
1477 	/* dmap control page trees fan-out by 4 and a single allocation
1478 	 * group may be described by 1 or 2 subtrees within the ag level
1479 	 * dmap control page, depending upon the ag size. examine the ag's
1480 	 * subtrees for sufficient free space, starting with the leftmost
1481 	 * subtree.
1482 	 */
1483 	for (i = 0; i < bmp->db_agwidth; i++, ti++) {
1484 		/* is there sufficient free space ?
1485 		 */
1486 		if (l2nb > dcp->stree[ti])
1487 			continue;
1488 
1489 		/* sufficient free space found in a subtree. now search down
1490 		 * the subtree to find the leftmost leaf that describes this
1491 		 * free space.
1492 		 */
1493 		for (k = bmp->db_agheight; k > 0; k--) {
1494 			for (n = 0, m = (ti << 2) + 1; n < 4; n++) {
1495 				if (l2nb <= dcp->stree[m + n]) {
1496 					ti = m + n;
1497 					break;
1498 				}
1499 			}
1500 			if (n == 4) {
1501 				jfs_error(bmp->db_ipbmap->i_sb,
1502 					  "failed descending stree\n");
1503 				release_metapage(mp);
1504 				return -EIO;
1505 			}
1506 		}
1507 
1508 		/* determine the block number within the file system
1509 		 * that corresponds to this leaf.
1510 		 */
1511 		if (bmp->db_aglevel == 2)
1512 			blkno = 0;
1513 		else if (bmp->db_aglevel == 1)
1514 			blkno &= ~(MAXL1SIZE - 1);
1515 		else		/* bmp->db_aglevel == 0 */
1516 			blkno &= ~(MAXL0SIZE - 1);
1517 
1518 		blkno +=
1519 		    ((s64) (ti - le32_to_cpu(dcp->leafidx))) << budmin;
1520 
1521 		/* release the buffer in preparation for going down
1522 		 * the next level of dmap control pages.
1523 		 */
1524 		release_metapage(mp);
1525 
1526 		/* check if we need to continue to search down the lower
1527 		 * level dmap control pages.  we need to if the number of
1528 		 * blocks required is less than maximum number of blocks
1529 		 * described at the next lower level.
1530 		 */
1531 		if (l2nb < budmin) {
1532 
1533 			/* search the lower level dmap control pages to get
1534 			 * the starting block number of the dmap that
1535 			 * contains or starts off the free space.
1536 			 */
1537 			if ((rc =
1538 			     dbFindCtl(bmp, l2nb, bmp->db_aglevel - 1,
1539 				       &blkno))) {
1540 				if (rc == -ENOSPC) {
1541 					jfs_error(bmp->db_ipbmap->i_sb,
1542 						  "control page inconsistent\n");
1543 					return -EIO;
1544 				}
1545 				return (rc);
1546 			}
1547 		}
1548 
1549 		/* allocate the blocks.
1550 		 */
1551 		rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1552 		if (rc == -ENOSPC) {
1553 			jfs_error(bmp->db_ipbmap->i_sb,
1554 				  "unable to allocate blocks\n");
1555 			rc = -EIO;
1556 		}
1557 		return (rc);
1558 	}
1559 
1560 	/* no space in the allocation group.  release the buffer and
1561 	 * return -ENOSPC.
1562 	 */
1563 	release_metapage(mp);
1564 
1565 	return -ENOSPC;
1566 }
1567 
1568 
1569 /*
1570  * NAME:	dbAllocAny()
1571  *
1572  * FUNCTION:	attempt to allocate the specified number of contiguous
1573  *		free blocks anywhere in the file system.
1574  *
1575  *		dbAllocAny() attempts to find the sufficient free space by
1576  *		searching down the dmap control pages, starting with the
1577  *		highest level (i.e. L0, L1, L2) control page.  if free space
1578  *		large enough to satisfy the desired free space is found, the
1579  *		desired free space is allocated.
1580  *
1581  * PARAMETERS:
1582  *	bmp	-  pointer to bmap descriptor
1583  *	nblocks	 -  actual number of contiguous free blocks desired.
1584  *	l2nb	 -  log2 number of contiguous free blocks desired.
1585  *	results	-  on successful return, set to the starting block number
1586  *		   of the newly allocated range.
1587  *
1588  * RETURN VALUES:
1589  *	0	- success
1590  *	-ENOSPC	- insufficient disk resources
1591  *	-EIO	- i/o error
1592  *
1593  * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1594  */
dbAllocAny(struct bmap * bmp,s64 nblocks,int l2nb,s64 * results)1595 static int dbAllocAny(struct bmap * bmp, s64 nblocks, int l2nb, s64 * results)
1596 {
1597 	int rc;
1598 	s64 blkno = 0;
1599 
1600 	/* starting with the top level dmap control page, search
1601 	 * down the dmap control levels for sufficient free space.
1602 	 * if free space is found, dbFindCtl() returns the starting
1603 	 * block number of the dmap that contains or starts off the
1604 	 * range of free space.
1605 	 */
1606 	if ((rc = dbFindCtl(bmp, l2nb, bmp->db_maxlevel, &blkno)))
1607 		return (rc);
1608 
1609 	/* allocate the blocks.
1610 	 */
1611 	rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1612 	if (rc == -ENOSPC) {
1613 		jfs_error(bmp->db_ipbmap->i_sb, "unable to allocate blocks\n");
1614 		return -EIO;
1615 	}
1616 	return (rc);
1617 }
1618 
1619 
1620 /*
1621  * NAME:	dbDiscardAG()
1622  *
1623  * FUNCTION:	attempt to discard (TRIM) all free blocks of specific AG
1624  *
1625  *		algorithm:
1626  *		1) allocate blocks, as large as possible and save them
1627  *		   while holding IWRITE_LOCK on ipbmap
1628  *		2) trim all these saved block/length values
1629  *		3) mark the blocks free again
1630  *
1631  *		benefit:
1632  *		- we work only on one ag at some time, minimizing how long we
1633  *		  need to lock ipbmap
1634  *		- reading / writing the fs is possible most time, even on
1635  *		  trimming
1636  *
1637  *		downside:
1638  *		- we write two times to the dmapctl and dmap pages
1639  *		- but for me, this seems the best way, better ideas?
1640  *		/TR 2012
1641  *
1642  * PARAMETERS:
1643  *	ip	- pointer to in-core inode
1644  *	agno	- ag to trim
1645  *	minlen	- minimum value of contiguous blocks
1646  *
1647  * RETURN VALUES:
1648  *	s64	- actual number of blocks trimmed
1649  */
dbDiscardAG(struct inode * ip,int agno,s64 minlen)1650 s64 dbDiscardAG(struct inode *ip, int agno, s64 minlen)
1651 {
1652 	struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
1653 	struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
1654 	s64 nblocks, blkno;
1655 	u64 trimmed = 0;
1656 	int rc, l2nb;
1657 	struct super_block *sb = ipbmap->i_sb;
1658 
1659 	struct range2trim {
1660 		u64 blkno;
1661 		u64 nblocks;
1662 	} *totrim, *tt;
1663 
1664 	/* max blkno / nblocks pairs to trim */
1665 	int count = 0, range_cnt;
1666 	u64 max_ranges;
1667 
1668 	/* prevent others from writing new stuff here, while trimming */
1669 	IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
1670 
1671 	nblocks = bmp->db_agfree[agno];
1672 	max_ranges = nblocks;
1673 	do_div(max_ranges, minlen);
1674 	range_cnt = min_t(u64, max_ranges + 1, 32 * 1024);
1675 	totrim = kmalloc_array(range_cnt, sizeof(struct range2trim), GFP_NOFS);
1676 	if (totrim == NULL) {
1677 		jfs_error(bmp->db_ipbmap->i_sb, "no memory for trim array\n");
1678 		IWRITE_UNLOCK(ipbmap);
1679 		return 0;
1680 	}
1681 
1682 	tt = totrim;
1683 	while (nblocks >= minlen) {
1684 		l2nb = BLKSTOL2(nblocks);
1685 
1686 		/* 0 = okay, -EIO = fatal, -ENOSPC -> try smaller block */
1687 		rc = dbAllocAG(bmp, agno, nblocks, l2nb, &blkno);
1688 		if (rc == 0) {
1689 			tt->blkno = blkno;
1690 			tt->nblocks = nblocks;
1691 			tt++; count++;
1692 
1693 			/* the whole ag is free, trim now */
1694 			if (bmp->db_agfree[agno] == 0)
1695 				break;
1696 
1697 			/* give a hint for the next while */
1698 			nblocks = bmp->db_agfree[agno];
1699 			continue;
1700 		} else if (rc == -ENOSPC) {
1701 			/* search for next smaller log2 block */
1702 			l2nb = BLKSTOL2(nblocks) - 1;
1703 			nblocks = 1LL << l2nb;
1704 		} else {
1705 			/* Trim any already allocated blocks */
1706 			jfs_error(bmp->db_ipbmap->i_sb, "-EIO\n");
1707 			break;
1708 		}
1709 
1710 		/* check, if our trim array is full */
1711 		if (unlikely(count >= range_cnt - 1))
1712 			break;
1713 	}
1714 	IWRITE_UNLOCK(ipbmap);
1715 
1716 	tt->nblocks = 0; /* mark the current end */
1717 	for (tt = totrim; tt->nblocks != 0; tt++) {
1718 		/* when mounted with online discard, dbFree() will
1719 		 * call jfs_issue_discard() itself */
1720 		if (!(JFS_SBI(sb)->flag & JFS_DISCARD))
1721 			jfs_issue_discard(ip, tt->blkno, tt->nblocks);
1722 		dbFree(ip, tt->blkno, tt->nblocks);
1723 		trimmed += tt->nblocks;
1724 	}
1725 	kfree(totrim);
1726 
1727 	return trimmed;
1728 }
1729 
1730 /*
1731  * NAME:	dbFindCtl()
1732  *
1733  * FUNCTION:	starting at a specified dmap control page level and block
1734  *		number, search down the dmap control levels for a range of
1735  *		contiguous free blocks large enough to satisfy an allocation
1736  *		request for the specified number of free blocks.
1737  *
1738  *		if sufficient contiguous free blocks are found, this routine
1739  *		returns the starting block number within a dmap page that
1740  *		contains or starts a range of contiqious free blocks that
1741  *		is sufficient in size.
1742  *
1743  * PARAMETERS:
1744  *	bmp	-  pointer to bmap descriptor
1745  *	level	-  starting dmap control page level.
1746  *	l2nb	-  log2 number of contiguous free blocks desired.
1747  *	*blkno	-  on entry, starting block number for conducting the search.
1748  *		   on successful return, the first block within a dmap page
1749  *		   that contains or starts a range of contiguous free blocks.
1750  *
1751  * RETURN VALUES:
1752  *	0	- success
1753  *	-ENOSPC	- insufficient disk resources
1754  *	-EIO	- i/o error
1755  *
1756  * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1757  */
dbFindCtl(struct bmap * bmp,int l2nb,int level,s64 * blkno)1758 static int dbFindCtl(struct bmap * bmp, int l2nb, int level, s64 * blkno)
1759 {
1760 	int rc, leafidx, lev;
1761 	s64 b, lblkno;
1762 	struct dmapctl *dcp;
1763 	int budmin;
1764 	struct metapage *mp;
1765 
1766 	/* starting at the specified dmap control page level and block
1767 	 * number, search down the dmap control levels for the starting
1768 	 * block number of a dmap page that contains or starts off
1769 	 * sufficient free blocks.
1770 	 */
1771 	for (lev = level, b = *blkno; lev >= 0; lev--) {
1772 		/* get the buffer of the dmap control page for the block
1773 		 * number and level (i.e. L0, L1, L2).
1774 		 */
1775 		lblkno = BLKTOCTL(b, bmp->db_l2nbperpage, lev);
1776 		mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1777 		if (mp == NULL)
1778 			return -EIO;
1779 		dcp = (struct dmapctl *) mp->data;
1780 		budmin = dcp->budmin;
1781 
1782 		if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
1783 			jfs_error(bmp->db_ipbmap->i_sb,
1784 				  "Corrupt dmapctl page\n");
1785 			release_metapage(mp);
1786 			return -EIO;
1787 		}
1788 
1789 		/* search the tree within the dmap control page for
1790 		 * sufficient free space.  if sufficient free space is found,
1791 		 * dbFindLeaf() returns the index of the leaf at which
1792 		 * free space was found.
1793 		 */
1794 		rc = dbFindLeaf((dmtree_t *) dcp, l2nb, &leafidx);
1795 
1796 		/* release the buffer.
1797 		 */
1798 		release_metapage(mp);
1799 
1800 		/* space found ?
1801 		 */
1802 		if (rc) {
1803 			if (lev != level) {
1804 				jfs_error(bmp->db_ipbmap->i_sb,
1805 					  "dmap inconsistent\n");
1806 				return -EIO;
1807 			}
1808 			return -ENOSPC;
1809 		}
1810 
1811 		/* adjust the block number to reflect the location within
1812 		 * the dmap control page (i.e. the leaf) at which free
1813 		 * space was found.
1814 		 */
1815 		b += (((s64) leafidx) << budmin);
1816 
1817 		/* we stop the search at this dmap control page level if
1818 		 * the number of blocks required is greater than or equal
1819 		 * to the maximum number of blocks described at the next
1820 		 * (lower) level.
1821 		 */
1822 		if (l2nb >= budmin)
1823 			break;
1824 	}
1825 
1826 	*blkno = b;
1827 	return (0);
1828 }
1829 
1830 
1831 /*
1832  * NAME:	dbAllocCtl()
1833  *
1834  * FUNCTION:	attempt to allocate a specified number of contiguous
1835  *		blocks starting within a specific dmap.
1836  *
1837  *		this routine is called by higher level routines that search
1838  *		the dmap control pages above the actual dmaps for contiguous
1839  *		free space.  the result of successful searches by these
1840  *		routines are the starting block numbers within dmaps, with
1841  *		the dmaps themselves containing the desired contiguous free
1842  *		space or starting a contiguous free space of desired size
1843  *		that is made up of the blocks of one or more dmaps. these
1844  *		calls should not fail due to insufficent resources.
1845  *
1846  *		this routine is called in some cases where it is not known
1847  *		whether it will fail due to insufficient resources.  more
1848  *		specifically, this occurs when allocating from an allocation
1849  *		group whose size is equal to the number of blocks per dmap.
1850  *		in this case, the dmap control pages are not examined prior
1851  *		to calling this routine (to save pathlength) and the call
1852  *		might fail.
1853  *
1854  *		for a request size that fits within a dmap, this routine relies
1855  *		upon the dmap's dmtree to find the requested contiguous free
1856  *		space.  for request sizes that are larger than a dmap, the
1857  *		requested free space will start at the first block of the
1858  *		first dmap (i.e. blkno).
1859  *
1860  * PARAMETERS:
1861  *	bmp	-  pointer to bmap descriptor
1862  *	nblocks	 -  actual number of contiguous free blocks to allocate.
1863  *	l2nb	 -  log2 number of contiguous free blocks to allocate.
1864  *	blkno	 -  starting block number of the dmap to start the allocation
1865  *		    from.
1866  *	results	-  on successful return, set to the starting block number
1867  *		   of the newly allocated range.
1868  *
1869  * RETURN VALUES:
1870  *	0	- success
1871  *	-ENOSPC	- insufficient disk resources
1872  *	-EIO	- i/o error
1873  *
1874  * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1875  */
1876 static int
dbAllocCtl(struct bmap * bmp,s64 nblocks,int l2nb,s64 blkno,s64 * results)1877 dbAllocCtl(struct bmap * bmp, s64 nblocks, int l2nb, s64 blkno, s64 * results)
1878 {
1879 	int rc, nb;
1880 	s64 b, lblkno, n;
1881 	struct metapage *mp;
1882 	struct dmap *dp;
1883 
1884 	/* check if the allocation request is confined to a single dmap.
1885 	 */
1886 	if (l2nb <= L2BPERDMAP) {
1887 		/* get the buffer for the dmap.
1888 		 */
1889 		lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
1890 		mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1891 		if (mp == NULL)
1892 			return -EIO;
1893 		dp = (struct dmap *) mp->data;
1894 
1895 		/* try to allocate the blocks.
1896 		 */
1897 		rc = dbAllocDmapLev(bmp, dp, (int) nblocks, l2nb, results);
1898 		if (rc == 0)
1899 			mark_metapage_dirty(mp);
1900 
1901 		release_metapage(mp);
1902 
1903 		return (rc);
1904 	}
1905 
1906 	/* allocation request involving multiple dmaps. it must start on
1907 	 * a dmap boundary.
1908 	 */
1909 	assert((blkno & (BPERDMAP - 1)) == 0);
1910 
1911 	/* allocate the blocks dmap by dmap.
1912 	 */
1913 	for (n = nblocks, b = blkno; n > 0; n -= nb, b += nb) {
1914 		/* get the buffer for the dmap.
1915 		 */
1916 		lblkno = BLKTODMAP(b, bmp->db_l2nbperpage);
1917 		mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1918 		if (mp == NULL) {
1919 			rc = -EIO;
1920 			goto backout;
1921 		}
1922 		dp = (struct dmap *) mp->data;
1923 
1924 		/* the dmap better be all free.
1925 		 */
1926 		if (dp->tree.stree[ROOT] != L2BPERDMAP) {
1927 			release_metapage(mp);
1928 			jfs_error(bmp->db_ipbmap->i_sb,
1929 				  "the dmap is not all free\n");
1930 			rc = -EIO;
1931 			goto backout;
1932 		}
1933 
1934 		/* determine how many blocks to allocate from this dmap.
1935 		 */
1936 		nb = min_t(s64, n, BPERDMAP);
1937 
1938 		/* allocate the blocks from the dmap.
1939 		 */
1940 		if ((rc = dbAllocDmap(bmp, dp, b, nb))) {
1941 			release_metapage(mp);
1942 			goto backout;
1943 		}
1944 
1945 		/* write the buffer.
1946 		 */
1947 		write_metapage(mp);
1948 	}
1949 
1950 	/* set the results (starting block number) and return.
1951 	 */
1952 	*results = blkno;
1953 	return (0);
1954 
1955 	/* something failed in handling an allocation request involving
1956 	 * multiple dmaps.  we'll try to clean up by backing out any
1957 	 * allocation that has already happened for this request.  if
1958 	 * we fail in backing out the allocation, we'll mark the file
1959 	 * system to indicate that blocks have been leaked.
1960 	 */
1961       backout:
1962 
1963 	/* try to backout the allocations dmap by dmap.
1964 	 */
1965 	for (n = nblocks - n, b = blkno; n > 0;
1966 	     n -= BPERDMAP, b += BPERDMAP) {
1967 		/* get the buffer for this dmap.
1968 		 */
1969 		lblkno = BLKTODMAP(b, bmp->db_l2nbperpage);
1970 		mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1971 		if (mp == NULL) {
1972 			/* could not back out.  mark the file system
1973 			 * to indicate that we have leaked blocks.
1974 			 */
1975 			jfs_error(bmp->db_ipbmap->i_sb,
1976 				  "I/O Error: Block Leakage\n");
1977 			continue;
1978 		}
1979 		dp = (struct dmap *) mp->data;
1980 
1981 		/* free the blocks is this dmap.
1982 		 */
1983 		if (dbFreeDmap(bmp, dp, b, BPERDMAP)) {
1984 			/* could not back out.  mark the file system
1985 			 * to indicate that we have leaked blocks.
1986 			 */
1987 			release_metapage(mp);
1988 			jfs_error(bmp->db_ipbmap->i_sb, "Block Leakage\n");
1989 			continue;
1990 		}
1991 
1992 		/* write the buffer.
1993 		 */
1994 		write_metapage(mp);
1995 	}
1996 
1997 	return (rc);
1998 }
1999 
2000 
2001 /*
2002  * NAME:	dbAllocDmapLev()
2003  *
2004  * FUNCTION:	attempt to allocate a specified number of contiguous blocks
2005  *		from a specified dmap.
2006  *
2007  *		this routine checks if the contiguous blocks are available.
2008  *		if so, nblocks of blocks are allocated; otherwise, ENOSPC is
2009  *		returned.
2010  *
2011  * PARAMETERS:
2012  *	mp	-  pointer to bmap descriptor
2013  *	dp	-  pointer to dmap to attempt to allocate blocks from.
2014  *	l2nb	-  log2 number of contiguous block desired.
2015  *	nblocks	-  actual number of contiguous block desired.
2016  *	results	-  on successful return, set to the starting block number
2017  *		   of the newly allocated range.
2018  *
2019  * RETURN VALUES:
2020  *	0	- success
2021  *	-ENOSPC	- insufficient disk resources
2022  *	-EIO	- i/o error
2023  *
2024  * serialization: IREAD_LOCK(ipbmap), e.g., from dbAlloc(), or
2025  *	IWRITE_LOCK(ipbmap), e.g., dbAllocCtl(), held on entry/exit;
2026  */
2027 static int
dbAllocDmapLev(struct bmap * bmp,struct dmap * dp,int nblocks,int l2nb,s64 * results)2028 dbAllocDmapLev(struct bmap * bmp,
2029 	       struct dmap * dp, int nblocks, int l2nb, s64 * results)
2030 {
2031 	s64 blkno;
2032 	int leafidx, rc;
2033 
2034 	/* can't be more than a dmaps worth of blocks */
2035 	assert(l2nb <= L2BPERDMAP);
2036 
2037 	/* search the tree within the dmap page for sufficient
2038 	 * free space.  if sufficient free space is found, dbFindLeaf()
2039 	 * returns the index of the leaf at which free space was found.
2040 	 */
2041 	if (dbFindLeaf((dmtree_t *) & dp->tree, l2nb, &leafidx))
2042 		return -ENOSPC;
2043 
2044 	if (leafidx < 0)
2045 		return -EIO;
2046 
2047 	/* determine the block number within the file system corresponding
2048 	 * to the leaf at which free space was found.
2049 	 */
2050 	blkno = le64_to_cpu(dp->start) + (leafidx << L2DBWORD);
2051 
2052 	/* if not all bits of the dmap word are free, get the starting
2053 	 * bit number within the dmap word of the required string of free
2054 	 * bits and adjust the block number with this value.
2055 	 */
2056 	if (dp->tree.stree[leafidx + LEAFIND] < BUDMIN)
2057 		blkno += dbFindBits(le32_to_cpu(dp->wmap[leafidx]), l2nb);
2058 
2059 	/* allocate the blocks */
2060 	if ((rc = dbAllocDmap(bmp, dp, blkno, nblocks)) == 0)
2061 		*results = blkno;
2062 
2063 	return (rc);
2064 }
2065 
2066 
2067 /*
2068  * NAME:	dbAllocDmap()
2069  *
2070  * FUNCTION:	adjust the disk allocation map to reflect the allocation
2071  *		of a specified block range within a dmap.
2072  *
2073  *		this routine allocates the specified blocks from the dmap
2074  *		through a call to dbAllocBits(). if the allocation of the
2075  *		block range causes the maximum string of free blocks within
2076  *		the dmap to change (i.e. the value of the root of the dmap's
2077  *		dmtree), this routine will cause this change to be reflected
2078  *		up through the appropriate levels of the dmap control pages
2079  *		by a call to dbAdjCtl() for the L0 dmap control page that
2080  *		covers this dmap.
2081  *
2082  * PARAMETERS:
2083  *	bmp	-  pointer to bmap descriptor
2084  *	dp	-  pointer to dmap to allocate the block range from.
2085  *	blkno	-  starting block number of the block to be allocated.
2086  *	nblocks	-  number of blocks to be allocated.
2087  *
2088  * RETURN VALUES:
2089  *	0	- success
2090  *	-EIO	- i/o error
2091  *
2092  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2093  */
dbAllocDmap(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks)2094 static int dbAllocDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
2095 		       int nblocks)
2096 {
2097 	s8 oldroot;
2098 	int rc;
2099 
2100 	/* save the current value of the root (i.e. maximum free string)
2101 	 * of the dmap tree.
2102 	 */
2103 	oldroot = dp->tree.stree[ROOT];
2104 
2105 	/* allocate the specified (blocks) bits */
2106 	dbAllocBits(bmp, dp, blkno, nblocks);
2107 
2108 	/* if the root has not changed, done. */
2109 	if (dp->tree.stree[ROOT] == oldroot)
2110 		return (0);
2111 
2112 	/* root changed. bubble the change up to the dmap control pages.
2113 	 * if the adjustment of the upper level control pages fails,
2114 	 * backout the bit allocation (thus making everything consistent).
2115 	 */
2116 	if ((rc = dbAdjCtl(bmp, blkno, dp->tree.stree[ROOT], 1, 0)))
2117 		dbFreeBits(bmp, dp, blkno, nblocks);
2118 
2119 	return (rc);
2120 }
2121 
2122 
2123 /*
2124  * NAME:	dbFreeDmap()
2125  *
2126  * FUNCTION:	adjust the disk allocation map to reflect the allocation
2127  *		of a specified block range within a dmap.
2128  *
2129  *		this routine frees the specified blocks from the dmap through
2130  *		a call to dbFreeBits(). if the deallocation of the block range
2131  *		causes the maximum string of free blocks within the dmap to
2132  *		change (i.e. the value of the root of the dmap's dmtree), this
2133  *		routine will cause this change to be reflected up through the
2134  *		appropriate levels of the dmap control pages by a call to
2135  *		dbAdjCtl() for the L0 dmap control page that covers this dmap.
2136  *
2137  * PARAMETERS:
2138  *	bmp	-  pointer to bmap descriptor
2139  *	dp	-  pointer to dmap to free the block range from.
2140  *	blkno	-  starting block number of the block to be freed.
2141  *	nblocks	-  number of blocks to be freed.
2142  *
2143  * RETURN VALUES:
2144  *	0	- success
2145  *	-EIO	- i/o error
2146  *
2147  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2148  */
dbFreeDmap(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks)2149 static int dbFreeDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
2150 		      int nblocks)
2151 {
2152 	s8 oldroot;
2153 	int rc = 0, word;
2154 
2155 	/* save the current value of the root (i.e. maximum free string)
2156 	 * of the dmap tree.
2157 	 */
2158 	oldroot = dp->tree.stree[ROOT];
2159 
2160 	/* free the specified (blocks) bits */
2161 	rc = dbFreeBits(bmp, dp, blkno, nblocks);
2162 
2163 	/* if error or the root has not changed, done. */
2164 	if (rc || (dp->tree.stree[ROOT] == oldroot))
2165 		return (rc);
2166 
2167 	/* root changed. bubble the change up to the dmap control pages.
2168 	 * if the adjustment of the upper level control pages fails,
2169 	 * backout the deallocation.
2170 	 */
2171 	if ((rc = dbAdjCtl(bmp, blkno, dp->tree.stree[ROOT], 0, 0))) {
2172 		word = (blkno & (BPERDMAP - 1)) >> L2DBWORD;
2173 
2174 		/* as part of backing out the deallocation, we will have
2175 		 * to back split the dmap tree if the deallocation caused
2176 		 * the freed blocks to become part of a larger binary buddy
2177 		 * system.
2178 		 */
2179 		if (dp->tree.stree[word] == NOFREE)
2180 			dbBackSplit((dmtree_t *) & dp->tree, word);
2181 
2182 		dbAllocBits(bmp, dp, blkno, nblocks);
2183 	}
2184 
2185 	return (rc);
2186 }
2187 
2188 
2189 /*
2190  * NAME:	dbAllocBits()
2191  *
2192  * FUNCTION:	allocate a specified block range from a dmap.
2193  *
2194  *		this routine updates the dmap to reflect the working
2195  *		state allocation of the specified block range. it directly
2196  *		updates the bits of the working map and causes the adjustment
2197  *		of the binary buddy system described by the dmap's dmtree
2198  *		leaves to reflect the bits allocated.  it also causes the
2199  *		dmap's dmtree, as a whole, to reflect the allocated range.
2200  *
2201  * PARAMETERS:
2202  *	bmp	-  pointer to bmap descriptor
2203  *	dp	-  pointer to dmap to allocate bits from.
2204  *	blkno	-  starting block number of the bits to be allocated.
2205  *	nblocks	-  number of bits to be allocated.
2206  *
2207  * RETURN VALUES: none
2208  *
2209  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2210  */
dbAllocBits(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks)2211 static void dbAllocBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
2212 			int nblocks)
2213 {
2214 	int dbitno, word, rembits, nb, nwords, wbitno, nw, agno;
2215 	dmtree_t *tp = (dmtree_t *) & dp->tree;
2216 	int size;
2217 	s8 *leaf;
2218 
2219 	/* pick up a pointer to the leaves of the dmap tree */
2220 	leaf = dp->tree.stree + LEAFIND;
2221 
2222 	/* determine the bit number and word within the dmap of the
2223 	 * starting block.
2224 	 */
2225 	dbitno = blkno & (BPERDMAP - 1);
2226 	word = dbitno >> L2DBWORD;
2227 
2228 	/* block range better be within the dmap */
2229 	assert(dbitno + nblocks <= BPERDMAP);
2230 
2231 	/* allocate the bits of the dmap's words corresponding to the block
2232 	 * range. not all bits of the first and last words may be contained
2233 	 * within the block range.  if this is the case, we'll work against
2234 	 * those words (i.e. partial first and/or last) on an individual basis
2235 	 * (a single pass), allocating the bits of interest by hand and
2236 	 * updating the leaf corresponding to the dmap word. a single pass
2237 	 * will be used for all dmap words fully contained within the
2238 	 * specified range.  within this pass, the bits of all fully contained
2239 	 * dmap words will be marked as free in a single shot and the leaves
2240 	 * will be updated. a single leaf may describe the free space of
2241 	 * multiple dmap words, so we may update only a subset of the actual
2242 	 * leaves corresponding to the dmap words of the block range.
2243 	 */
2244 	for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
2245 		/* determine the bit number within the word and
2246 		 * the number of bits within the word.
2247 		 */
2248 		wbitno = dbitno & (DBWORD - 1);
2249 		nb = min(rembits, DBWORD - wbitno);
2250 
2251 		/* check if only part of a word is to be allocated.
2252 		 */
2253 		if (nb < DBWORD) {
2254 			/* allocate (set to 1) the appropriate bits within
2255 			 * this dmap word.
2256 			 */
2257 			dp->wmap[word] |= cpu_to_le32(ONES << (DBWORD - nb)
2258 						      >> wbitno);
2259 
2260 			/* update the leaf for this dmap word. in addition
2261 			 * to setting the leaf value to the binary buddy max
2262 			 * of the updated dmap word, dbSplit() will split
2263 			 * the binary system of the leaves if need be.
2264 			 */
2265 			dbSplit(tp, word, BUDMIN,
2266 				dbMaxBud((u8 *) & dp->wmap[word]));
2267 
2268 			word += 1;
2269 		} else {
2270 			/* one or more dmap words are fully contained
2271 			 * within the block range.  determine how many
2272 			 * words and allocate (set to 1) the bits of these
2273 			 * words.
2274 			 */
2275 			nwords = rembits >> L2DBWORD;
2276 			memset(&dp->wmap[word], (int) ONES, nwords * 4);
2277 
2278 			/* determine how many bits.
2279 			 */
2280 			nb = nwords << L2DBWORD;
2281 
2282 			/* now update the appropriate leaves to reflect
2283 			 * the allocated words.
2284 			 */
2285 			for (; nwords > 0; nwords -= nw) {
2286 				if (leaf[word] < BUDMIN) {
2287 					jfs_error(bmp->db_ipbmap->i_sb,
2288 						  "leaf page corrupt\n");
2289 					break;
2290 				}
2291 
2292 				/* determine what the leaf value should be
2293 				 * updated to as the minimum of the l2 number
2294 				 * of bits being allocated and the l2 number
2295 				 * of bits currently described by this leaf.
2296 				 */
2297 				size = min_t(int, leaf[word],
2298 					     NLSTOL2BSZ(nwords));
2299 
2300 				/* update the leaf to reflect the allocation.
2301 				 * in addition to setting the leaf value to
2302 				 * NOFREE, dbSplit() will split the binary
2303 				 * system of the leaves to reflect the current
2304 				 * allocation (size).
2305 				 */
2306 				dbSplit(tp, word, size, NOFREE);
2307 
2308 				/* get the number of dmap words handled */
2309 				nw = BUDSIZE(size, BUDMIN);
2310 				word += nw;
2311 			}
2312 		}
2313 	}
2314 
2315 	/* update the free count for this dmap */
2316 	le32_add_cpu(&dp->nfree, -nblocks);
2317 
2318 	BMAP_LOCK(bmp);
2319 
2320 	/* if this allocation group is completely free,
2321 	 * update the maximum allocation group number if this allocation
2322 	 * group is the new max.
2323 	 */
2324 	agno = blkno >> bmp->db_agl2size;
2325 	if (agno > bmp->db_maxag)
2326 		bmp->db_maxag = agno;
2327 
2328 	/* update the free count for the allocation group and map */
2329 	bmp->db_agfree[agno] -= nblocks;
2330 	bmp->db_nfree -= nblocks;
2331 
2332 	BMAP_UNLOCK(bmp);
2333 }
2334 
2335 
2336 /*
2337  * NAME:	dbFreeBits()
2338  *
2339  * FUNCTION:	free a specified block range from a dmap.
2340  *
2341  *		this routine updates the dmap to reflect the working
2342  *		state allocation of the specified block range. it directly
2343  *		updates the bits of the working map and causes the adjustment
2344  *		of the binary buddy system described by the dmap's dmtree
2345  *		leaves to reflect the bits freed.  it also causes the dmap's
2346  *		dmtree, as a whole, to reflect the deallocated range.
2347  *
2348  * PARAMETERS:
2349  *	bmp	-  pointer to bmap descriptor
2350  *	dp	-  pointer to dmap to free bits from.
2351  *	blkno	-  starting block number of the bits to be freed.
2352  *	nblocks	-  number of bits to be freed.
2353  *
2354  * RETURN VALUES: 0 for success
2355  *
2356  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2357  */
dbFreeBits(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks)2358 static int dbFreeBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
2359 		       int nblocks)
2360 {
2361 	int dbitno, word, rembits, nb, nwords, wbitno, nw, agno;
2362 	dmtree_t *tp = (dmtree_t *) & dp->tree;
2363 	int rc = 0;
2364 	int size;
2365 
2366 	/* determine the bit number and word within the dmap of the
2367 	 * starting block.
2368 	 */
2369 	dbitno = blkno & (BPERDMAP - 1);
2370 	word = dbitno >> L2DBWORD;
2371 
2372 	/* block range better be within the dmap.
2373 	 */
2374 	assert(dbitno + nblocks <= BPERDMAP);
2375 
2376 	/* free the bits of the dmaps words corresponding to the block range.
2377 	 * not all bits of the first and last words may be contained within
2378 	 * the block range.  if this is the case, we'll work against those
2379 	 * words (i.e. partial first and/or last) on an individual basis
2380 	 * (a single pass), freeing the bits of interest by hand and updating
2381 	 * the leaf corresponding to the dmap word. a single pass will be used
2382 	 * for all dmap words fully contained within the specified range.
2383 	 * within this pass, the bits of all fully contained dmap words will
2384 	 * be marked as free in a single shot and the leaves will be updated. a
2385 	 * single leaf may describe the free space of multiple dmap words,
2386 	 * so we may update only a subset of the actual leaves corresponding
2387 	 * to the dmap words of the block range.
2388 	 *
2389 	 * dbJoin() is used to update leaf values and will join the binary
2390 	 * buddy system of the leaves if the new leaf values indicate this
2391 	 * should be done.
2392 	 */
2393 	for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
2394 		/* determine the bit number within the word and
2395 		 * the number of bits within the word.
2396 		 */
2397 		wbitno = dbitno & (DBWORD - 1);
2398 		nb = min(rembits, DBWORD - wbitno);
2399 
2400 		/* check if only part of a word is to be freed.
2401 		 */
2402 		if (nb < DBWORD) {
2403 			/* free (zero) the appropriate bits within this
2404 			 * dmap word.
2405 			 */
2406 			dp->wmap[word] &=
2407 			    cpu_to_le32(~(ONES << (DBWORD - nb)
2408 					  >> wbitno));
2409 
2410 			/* update the leaf for this dmap word.
2411 			 */
2412 			rc = dbJoin(tp, word,
2413 				    dbMaxBud((u8 *) & dp->wmap[word]));
2414 			if (rc)
2415 				return rc;
2416 
2417 			word += 1;
2418 		} else {
2419 			/* one or more dmap words are fully contained
2420 			 * within the block range.  determine how many
2421 			 * words and free (zero) the bits of these words.
2422 			 */
2423 			nwords = rembits >> L2DBWORD;
2424 			memset(&dp->wmap[word], 0, nwords * 4);
2425 
2426 			/* determine how many bits.
2427 			 */
2428 			nb = nwords << L2DBWORD;
2429 
2430 			/* now update the appropriate leaves to reflect
2431 			 * the freed words.
2432 			 */
2433 			for (; nwords > 0; nwords -= nw) {
2434 				/* determine what the leaf value should be
2435 				 * updated to as the minimum of the l2 number
2436 				 * of bits being freed and the l2 (max) number
2437 				 * of bits that can be described by this leaf.
2438 				 */
2439 				size =
2440 				    min(LITOL2BSZ
2441 					(word, L2LPERDMAP, BUDMIN),
2442 					NLSTOL2BSZ(nwords));
2443 
2444 				/* update the leaf.
2445 				 */
2446 				rc = dbJoin(tp, word, size);
2447 				if (rc)
2448 					return rc;
2449 
2450 				/* get the number of dmap words handled.
2451 				 */
2452 				nw = BUDSIZE(size, BUDMIN);
2453 				word += nw;
2454 			}
2455 		}
2456 	}
2457 
2458 	/* update the free count for this dmap.
2459 	 */
2460 	le32_add_cpu(&dp->nfree, nblocks);
2461 
2462 	BMAP_LOCK(bmp);
2463 
2464 	/* update the free count for the allocation group and
2465 	 * map.
2466 	 */
2467 	agno = blkno >> bmp->db_agl2size;
2468 	bmp->db_nfree += nblocks;
2469 	bmp->db_agfree[agno] += nblocks;
2470 
2471 	/* check if this allocation group is not completely free and
2472 	 * if it is currently the maximum (rightmost) allocation group.
2473 	 * if so, establish the new maximum allocation group number by
2474 	 * searching left for the first allocation group with allocation.
2475 	 */
2476 	if ((bmp->db_agfree[agno] == bmp->db_agsize && agno == bmp->db_maxag) ||
2477 	    (agno == bmp->db_numag - 1 &&
2478 	     bmp->db_agfree[agno] == (bmp-> db_mapsize & (BPERDMAP - 1)))) {
2479 		while (bmp->db_maxag > 0) {
2480 			bmp->db_maxag -= 1;
2481 			if (bmp->db_agfree[bmp->db_maxag] !=
2482 			    bmp->db_agsize)
2483 				break;
2484 		}
2485 
2486 		/* re-establish the allocation group preference if the
2487 		 * current preference is right of the maximum allocation
2488 		 * group.
2489 		 */
2490 		if (bmp->db_agpref > bmp->db_maxag)
2491 			bmp->db_agpref = bmp->db_maxag;
2492 	}
2493 
2494 	BMAP_UNLOCK(bmp);
2495 
2496 	return 0;
2497 }
2498 
2499 
2500 /*
2501  * NAME:	dbAdjCtl()
2502  *
2503  * FUNCTION:	adjust a dmap control page at a specified level to reflect
2504  *		the change in a lower level dmap or dmap control page's
2505  *		maximum string of free blocks (i.e. a change in the root
2506  *		of the lower level object's dmtree) due to the allocation
2507  *		or deallocation of a range of blocks with a single dmap.
2508  *
2509  *		on entry, this routine is provided with the new value of
2510  *		the lower level dmap or dmap control page root and the
2511  *		starting block number of the block range whose allocation
2512  *		or deallocation resulted in the root change.  this range
2513  *		is respresented by a single leaf of the current dmapctl
2514  *		and the leaf will be updated with this value, possibly
2515  *		causing a binary buddy system within the leaves to be
2516  *		split or joined.  the update may also cause the dmapctl's
2517  *		dmtree to be updated.
2518  *
2519  *		if the adjustment of the dmap control page, itself, causes its
2520  *		root to change, this change will be bubbled up to the next dmap
2521  *		control level by a recursive call to this routine, specifying
2522  *		the new root value and the next dmap control page level to
2523  *		be adjusted.
2524  * PARAMETERS:
2525  *	bmp	-  pointer to bmap descriptor
2526  *	blkno	-  the first block of a block range within a dmap.  it is
2527  *		   the allocation or deallocation of this block range that
2528  *		   requires the dmap control page to be adjusted.
2529  *	newval	-  the new value of the lower level dmap or dmap control
2530  *		   page root.
2531  *	alloc	-  'true' if adjustment is due to an allocation.
2532  *	level	-  current level of dmap control page (i.e. L0, L1, L2) to
2533  *		   be adjusted.
2534  *
2535  * RETURN VALUES:
2536  *	0	- success
2537  *	-EIO	- i/o error
2538  *
2539  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2540  */
2541 static int
dbAdjCtl(struct bmap * bmp,s64 blkno,int newval,int alloc,int level)2542 dbAdjCtl(struct bmap * bmp, s64 blkno, int newval, int alloc, int level)
2543 {
2544 	struct metapage *mp;
2545 	s8 oldroot;
2546 	int oldval;
2547 	s64 lblkno;
2548 	struct dmapctl *dcp;
2549 	int rc, leafno, ti;
2550 
2551 	/* get the buffer for the dmap control page for the specified
2552 	 * block number and control page level.
2553 	 */
2554 	lblkno = BLKTOCTL(blkno, bmp->db_l2nbperpage, level);
2555 	mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
2556 	if (mp == NULL)
2557 		return -EIO;
2558 	dcp = (struct dmapctl *) mp->data;
2559 
2560 	if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
2561 		jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmapctl page\n");
2562 		release_metapage(mp);
2563 		return -EIO;
2564 	}
2565 
2566 	/* determine the leaf number corresponding to the block and
2567 	 * the index within the dmap control tree.
2568 	 */
2569 	leafno = BLKTOCTLLEAF(blkno, dcp->budmin);
2570 	ti = leafno + le32_to_cpu(dcp->leafidx);
2571 
2572 	/* save the current leaf value and the current root level (i.e.
2573 	 * maximum l2 free string described by this dmapctl).
2574 	 */
2575 	oldval = dcp->stree[ti];
2576 	oldroot = dcp->stree[ROOT];
2577 
2578 	/* check if this is a control page update for an allocation.
2579 	 * if so, update the leaf to reflect the new leaf value using
2580 	 * dbSplit(); otherwise (deallocation), use dbJoin() to update
2581 	 * the leaf with the new value.  in addition to updating the
2582 	 * leaf, dbSplit() will also split the binary buddy system of
2583 	 * the leaves, if required, and bubble new values within the
2584 	 * dmapctl tree, if required.  similarly, dbJoin() will join
2585 	 * the binary buddy system of leaves and bubble new values up
2586 	 * the dmapctl tree as required by the new leaf value.
2587 	 */
2588 	if (alloc) {
2589 		/* check if we are in the middle of a binary buddy
2590 		 * system.  this happens when we are performing the
2591 		 * first allocation out of an allocation group that
2592 		 * is part (not the first part) of a larger binary
2593 		 * buddy system.  if we are in the middle, back split
2594 		 * the system prior to calling dbSplit() which assumes
2595 		 * that it is at the front of a binary buddy system.
2596 		 */
2597 		if (oldval == NOFREE) {
2598 			rc = dbBackSplit((dmtree_t *) dcp, leafno);
2599 			if (rc)
2600 				return rc;
2601 			oldval = dcp->stree[ti];
2602 		}
2603 		dbSplit((dmtree_t *) dcp, leafno, dcp->budmin, newval);
2604 	} else {
2605 		rc = dbJoin((dmtree_t *) dcp, leafno, newval);
2606 		if (rc)
2607 			return rc;
2608 	}
2609 
2610 	/* check if the root of the current dmap control page changed due
2611 	 * to the update and if the current dmap control page is not at
2612 	 * the current top level (i.e. L0, L1, L2) of the map.  if so (i.e.
2613 	 * root changed and this is not the top level), call this routine
2614 	 * again (recursion) for the next higher level of the mapping to
2615 	 * reflect the change in root for the current dmap control page.
2616 	 */
2617 	if (dcp->stree[ROOT] != oldroot) {
2618 		/* are we below the top level of the map.  if so,
2619 		 * bubble the root up to the next higher level.
2620 		 */
2621 		if (level < bmp->db_maxlevel) {
2622 			/* bubble up the new root of this dmap control page to
2623 			 * the next level.
2624 			 */
2625 			if ((rc =
2626 			     dbAdjCtl(bmp, blkno, dcp->stree[ROOT], alloc,
2627 				      level + 1))) {
2628 				/* something went wrong in bubbling up the new
2629 				 * root value, so backout the changes to the
2630 				 * current dmap control page.
2631 				 */
2632 				if (alloc) {
2633 					dbJoin((dmtree_t *) dcp, leafno,
2634 					       oldval);
2635 				} else {
2636 					/* the dbJoin() above might have
2637 					 * caused a larger binary buddy system
2638 					 * to form and we may now be in the
2639 					 * middle of it.  if this is the case,
2640 					 * back split the buddies.
2641 					 */
2642 					if (dcp->stree[ti] == NOFREE)
2643 						dbBackSplit((dmtree_t *)
2644 							    dcp, leafno);
2645 					dbSplit((dmtree_t *) dcp, leafno,
2646 						dcp->budmin, oldval);
2647 				}
2648 
2649 				/* release the buffer and return the error.
2650 				 */
2651 				release_metapage(mp);
2652 				return (rc);
2653 			}
2654 		} else {
2655 			/* we're at the top level of the map. update
2656 			 * the bmap control page to reflect the size
2657 			 * of the maximum free buddy system.
2658 			 */
2659 			assert(level == bmp->db_maxlevel);
2660 			if (bmp->db_maxfreebud != oldroot) {
2661 				jfs_error(bmp->db_ipbmap->i_sb,
2662 					  "the maximum free buddy is not the old root\n");
2663 			}
2664 			bmp->db_maxfreebud = dcp->stree[ROOT];
2665 		}
2666 	}
2667 
2668 	/* write the buffer.
2669 	 */
2670 	write_metapage(mp);
2671 
2672 	return (0);
2673 }
2674 
2675 
2676 /*
2677  * NAME:	dbSplit()
2678  *
2679  * FUNCTION:	update the leaf of a dmtree with a new value, splitting
2680  *		the leaf from the binary buddy system of the dmtree's
2681  *		leaves, as required.
2682  *
2683  * PARAMETERS:
2684  *	tp	- pointer to the tree containing the leaf.
2685  *	leafno	- the number of the leaf to be updated.
2686  *	splitsz	- the size the binary buddy system starting at the leaf
2687  *		  must be split to, specified as the log2 number of blocks.
2688  *	newval	- the new value for the leaf.
2689  *
2690  * RETURN VALUES: none
2691  *
2692  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2693  */
dbSplit(dmtree_t * tp,int leafno,int splitsz,int newval)2694 static void dbSplit(dmtree_t * tp, int leafno, int splitsz, int newval)
2695 {
2696 	int budsz;
2697 	int cursz;
2698 	s8 *leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2699 
2700 	/* check if the leaf needs to be split.
2701 	 */
2702 	if (leaf[leafno] > tp->dmt_budmin) {
2703 		/* the split occurs by cutting the buddy system in half
2704 		 * at the specified leaf until we reach the specified
2705 		 * size.  pick up the starting split size (current size
2706 		 * - 1 in l2) and the corresponding buddy size.
2707 		 */
2708 		cursz = leaf[leafno] - 1;
2709 		budsz = BUDSIZE(cursz, tp->dmt_budmin);
2710 
2711 		/* split until we reach the specified size.
2712 		 */
2713 		while (cursz >= splitsz) {
2714 			/* update the buddy's leaf with its new value.
2715 			 */
2716 			dbAdjTree(tp, leafno ^ budsz, cursz);
2717 
2718 			/* on to the next size and buddy.
2719 			 */
2720 			cursz -= 1;
2721 			budsz >>= 1;
2722 		}
2723 	}
2724 
2725 	/* adjust the dmap tree to reflect the specified leaf's new
2726 	 * value.
2727 	 */
2728 	dbAdjTree(tp, leafno, newval);
2729 }
2730 
2731 
2732 /*
2733  * NAME:	dbBackSplit()
2734  *
2735  * FUNCTION:	back split the binary buddy system of dmtree leaves
2736  *		that hold a specified leaf until the specified leaf
2737  *		starts its own binary buddy system.
2738  *
2739  *		the allocators typically perform allocations at the start
2740  *		of binary buddy systems and dbSplit() is used to accomplish
2741  *		any required splits.  in some cases, however, allocation
2742  *		may occur in the middle of a binary system and requires a
2743  *		back split, with the split proceeding out from the middle of
2744  *		the system (less efficient) rather than the start of the
2745  *		system (more efficient).  the cases in which a back split
2746  *		is required are rare and are limited to the first allocation
2747  *		within an allocation group which is a part (not first part)
2748  *		of a larger binary buddy system and a few exception cases
2749  *		in which a previous join operation must be backed out.
2750  *
2751  * PARAMETERS:
2752  *	tp	- pointer to the tree containing the leaf.
2753  *	leafno	- the number of the leaf to be updated.
2754  *
2755  * RETURN VALUES: none
2756  *
2757  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2758  */
dbBackSplit(dmtree_t * tp,int leafno)2759 static int dbBackSplit(dmtree_t * tp, int leafno)
2760 {
2761 	int budsz, bud, w, bsz, size;
2762 	int cursz;
2763 	s8 *leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2764 
2765 	/* leaf should be part (not first part) of a binary
2766 	 * buddy system.
2767 	 */
2768 	assert(leaf[leafno] == NOFREE);
2769 
2770 	/* the back split is accomplished by iteratively finding the leaf
2771 	 * that starts the buddy system that contains the specified leaf and
2772 	 * splitting that system in two.  this iteration continues until
2773 	 * the specified leaf becomes the start of a buddy system.
2774 	 *
2775 	 * determine maximum possible l2 size for the specified leaf.
2776 	 */
2777 	size =
2778 	    LITOL2BSZ(leafno, le32_to_cpu(tp->dmt_l2nleafs),
2779 		      tp->dmt_budmin);
2780 
2781 	/* determine the number of leaves covered by this size.  this
2782 	 * is the buddy size that we will start with as we search for
2783 	 * the buddy system that contains the specified leaf.
2784 	 */
2785 	budsz = BUDSIZE(size, tp->dmt_budmin);
2786 
2787 	/* back split.
2788 	 */
2789 	while (leaf[leafno] == NOFREE) {
2790 		/* find the leftmost buddy leaf.
2791 		 */
2792 		for (w = leafno, bsz = budsz;; bsz <<= 1,
2793 		     w = (w < bud) ? w : bud) {
2794 			if (bsz >= le32_to_cpu(tp->dmt_nleafs)) {
2795 				jfs_err("JFS: block map error in dbBackSplit");
2796 				return -EIO;
2797 			}
2798 
2799 			/* determine the buddy.
2800 			 */
2801 			bud = w ^ bsz;
2802 
2803 			/* check if this buddy is the start of the system.
2804 			 */
2805 			if (leaf[bud] != NOFREE) {
2806 				/* split the leaf at the start of the
2807 				 * system in two.
2808 				 */
2809 				cursz = leaf[bud] - 1;
2810 				dbSplit(tp, bud, cursz, cursz);
2811 				break;
2812 			}
2813 		}
2814 	}
2815 
2816 	if (leaf[leafno] != size) {
2817 		jfs_err("JFS: wrong leaf value in dbBackSplit");
2818 		return -EIO;
2819 	}
2820 	return 0;
2821 }
2822 
2823 
2824 /*
2825  * NAME:	dbJoin()
2826  *
2827  * FUNCTION:	update the leaf of a dmtree with a new value, joining
2828  *		the leaf with other leaves of the dmtree into a multi-leaf
2829  *		binary buddy system, as required.
2830  *
2831  * PARAMETERS:
2832  *	tp	- pointer to the tree containing the leaf.
2833  *	leafno	- the number of the leaf to be updated.
2834  *	newval	- the new value for the leaf.
2835  *
2836  * RETURN VALUES: none
2837  */
dbJoin(dmtree_t * tp,int leafno,int newval)2838 static int dbJoin(dmtree_t * tp, int leafno, int newval)
2839 {
2840 	int budsz, buddy;
2841 	s8 *leaf;
2842 
2843 	/* can the new leaf value require a join with other leaves ?
2844 	 */
2845 	if (newval >= tp->dmt_budmin) {
2846 		/* pickup a pointer to the leaves of the tree.
2847 		 */
2848 		leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2849 
2850 		/* try to join the specified leaf into a large binary
2851 		 * buddy system.  the join proceeds by attempting to join
2852 		 * the specified leafno with its buddy (leaf) at new value.
2853 		 * if the join occurs, we attempt to join the left leaf
2854 		 * of the joined buddies with its buddy at new value + 1.
2855 		 * we continue to join until we find a buddy that cannot be
2856 		 * joined (does not have a value equal to the size of the
2857 		 * last join) or until all leaves have been joined into a
2858 		 * single system.
2859 		 *
2860 		 * get the buddy size (number of words covered) of
2861 		 * the new value.
2862 		 */
2863 		budsz = BUDSIZE(newval, tp->dmt_budmin);
2864 
2865 		/* try to join.
2866 		 */
2867 		while (budsz < le32_to_cpu(tp->dmt_nleafs)) {
2868 			/* get the buddy leaf.
2869 			 */
2870 			buddy = leafno ^ budsz;
2871 
2872 			/* if the leaf's new value is greater than its
2873 			 * buddy's value, we join no more.
2874 			 */
2875 			if (newval > leaf[buddy])
2876 				break;
2877 
2878 			/* It shouldn't be less */
2879 			if (newval < leaf[buddy])
2880 				return -EIO;
2881 
2882 			/* check which (leafno or buddy) is the left buddy.
2883 			 * the left buddy gets to claim the blocks resulting
2884 			 * from the join while the right gets to claim none.
2885 			 * the left buddy is also eligible to participate in
2886 			 * a join at the next higher level while the right
2887 			 * is not.
2888 			 *
2889 			 */
2890 			if (leafno < buddy) {
2891 				/* leafno is the left buddy.
2892 				 */
2893 				dbAdjTree(tp, buddy, NOFREE);
2894 			} else {
2895 				/* buddy is the left buddy and becomes
2896 				 * leafno.
2897 				 */
2898 				dbAdjTree(tp, leafno, NOFREE);
2899 				leafno = buddy;
2900 			}
2901 
2902 			/* on to try the next join.
2903 			 */
2904 			newval += 1;
2905 			budsz <<= 1;
2906 		}
2907 	}
2908 
2909 	/* update the leaf value.
2910 	 */
2911 	dbAdjTree(tp, leafno, newval);
2912 
2913 	return 0;
2914 }
2915 
2916 
2917 /*
2918  * NAME:	dbAdjTree()
2919  *
2920  * FUNCTION:	update a leaf of a dmtree with a new value, adjusting
2921  *		the dmtree, as required, to reflect the new leaf value.
2922  *		the combination of any buddies must already be done before
2923  *		this is called.
2924  *
2925  * PARAMETERS:
2926  *	tp	- pointer to the tree to be adjusted.
2927  *	leafno	- the number of the leaf to be updated.
2928  *	newval	- the new value for the leaf.
2929  *
2930  * RETURN VALUES: none
2931  */
dbAdjTree(dmtree_t * tp,int leafno,int newval)2932 static void dbAdjTree(dmtree_t * tp, int leafno, int newval)
2933 {
2934 	int lp, pp, k;
2935 	int max;
2936 
2937 	/* pick up the index of the leaf for this leafno.
2938 	 */
2939 	lp = leafno + le32_to_cpu(tp->dmt_leafidx);
2940 
2941 	/* is the current value the same as the old value ?  if so,
2942 	 * there is nothing to do.
2943 	 */
2944 	if (tp->dmt_stree[lp] == newval)
2945 		return;
2946 
2947 	/* set the new value.
2948 	 */
2949 	tp->dmt_stree[lp] = newval;
2950 
2951 	/* bubble the new value up the tree as required.
2952 	 */
2953 	for (k = 0; k < le32_to_cpu(tp->dmt_height); k++) {
2954 		/* get the index of the first leaf of the 4 leaf
2955 		 * group containing the specified leaf (leafno).
2956 		 */
2957 		lp = ((lp - 1) & ~0x03) + 1;
2958 
2959 		/* get the index of the parent of this 4 leaf group.
2960 		 */
2961 		pp = (lp - 1) >> 2;
2962 
2963 		/* determine the maximum of the 4 leaves.
2964 		 */
2965 		max = TREEMAX(&tp->dmt_stree[lp]);
2966 
2967 		/* if the maximum of the 4 is the same as the
2968 		 * parent's value, we're done.
2969 		 */
2970 		if (tp->dmt_stree[pp] == max)
2971 			break;
2972 
2973 		/* parent gets new value.
2974 		 */
2975 		tp->dmt_stree[pp] = max;
2976 
2977 		/* parent becomes leaf for next go-round.
2978 		 */
2979 		lp = pp;
2980 	}
2981 }
2982 
2983 
2984 /*
2985  * NAME:	dbFindLeaf()
2986  *
2987  * FUNCTION:	search a dmtree_t for sufficient free blocks, returning
2988  *		the index of a leaf describing the free blocks if
2989  *		sufficient free blocks are found.
2990  *
2991  *		the search starts at the top of the dmtree_t tree and
2992  *		proceeds down the tree to the leftmost leaf with sufficient
2993  *		free space.
2994  *
2995  * PARAMETERS:
2996  *	tp	- pointer to the tree to be searched.
2997  *	l2nb	- log2 number of free blocks to search for.
2998  *	leafidx	- return pointer to be set to the index of the leaf
2999  *		  describing at least l2nb free blocks if sufficient
3000  *		  free blocks are found.
3001  *
3002  * RETURN VALUES:
3003  *	0	- success
3004  *	-ENOSPC	- insufficient free blocks.
3005  */
dbFindLeaf(dmtree_t * tp,int l2nb,int * leafidx)3006 static int dbFindLeaf(dmtree_t * tp, int l2nb, int *leafidx)
3007 {
3008 	int ti, n = 0, k, x = 0;
3009 
3010 	/* first check the root of the tree to see if there is
3011 	 * sufficient free space.
3012 	 */
3013 	if (l2nb > tp->dmt_stree[ROOT])
3014 		return -ENOSPC;
3015 
3016 	/* sufficient free space available. now search down the tree
3017 	 * starting at the next level for the leftmost leaf that
3018 	 * describes sufficient free space.
3019 	 */
3020 	for (k = le32_to_cpu(tp->dmt_height), ti = 1;
3021 	     k > 0; k--, ti = ((ti + n) << 2) + 1) {
3022 		/* search the four nodes at this level, starting from
3023 		 * the left.
3024 		 */
3025 		for (x = ti, n = 0; n < 4; n++) {
3026 			/* sufficient free space found.  move to the next
3027 			 * level (or quit if this is the last level).
3028 			 */
3029 			if (l2nb <= tp->dmt_stree[x + n])
3030 				break;
3031 		}
3032 
3033 		/* better have found something since the higher
3034 		 * levels of the tree said it was here.
3035 		 */
3036 		assert(n < 4);
3037 	}
3038 
3039 	/* set the return to the leftmost leaf describing sufficient
3040 	 * free space.
3041 	 */
3042 	*leafidx = x + n - le32_to_cpu(tp->dmt_leafidx);
3043 
3044 	return (0);
3045 }
3046 
3047 
3048 /*
3049  * NAME:	dbFindBits()
3050  *
3051  * FUNCTION:	find a specified number of binary buddy free bits within a
3052  *		dmap bitmap word value.
3053  *
3054  *		this routine searches the bitmap value for (1 << l2nb) free
3055  *		bits at (1 << l2nb) alignments within the value.
3056  *
3057  * PARAMETERS:
3058  *	word	-  dmap bitmap word value.
3059  *	l2nb	-  number of free bits specified as a log2 number.
3060  *
3061  * RETURN VALUES:
3062  *	starting bit number of free bits.
3063  */
dbFindBits(u32 word,int l2nb)3064 static int dbFindBits(u32 word, int l2nb)
3065 {
3066 	int bitno, nb;
3067 	u32 mask;
3068 
3069 	/* get the number of bits.
3070 	 */
3071 	nb = 1 << l2nb;
3072 	assert(nb <= DBWORD);
3073 
3074 	/* complement the word so we can use a mask (i.e. 0s represent
3075 	 * free bits) and compute the mask.
3076 	 */
3077 	word = ~word;
3078 	mask = ONES << (DBWORD - nb);
3079 
3080 	/* scan the word for nb free bits at nb alignments.
3081 	 */
3082 	for (bitno = 0; mask != 0; bitno += nb, mask >>= nb) {
3083 		if ((mask & word) == mask)
3084 			break;
3085 	}
3086 
3087 	ASSERT(bitno < 32);
3088 
3089 	/* return the bit number.
3090 	 */
3091 	return (bitno);
3092 }
3093 
3094 
3095 /*
3096  * NAME:	dbMaxBud(u8 *cp)
3097  *
3098  * FUNCTION:	determine the largest binary buddy string of free
3099  *		bits within 32-bits of the map.
3100  *
3101  * PARAMETERS:
3102  *	cp	-  pointer to the 32-bit value.
3103  *
3104  * RETURN VALUES:
3105  *	largest binary buddy of free bits within a dmap word.
3106  */
dbMaxBud(u8 * cp)3107 static int dbMaxBud(u8 * cp)
3108 {
3109 	signed char tmp1, tmp2;
3110 
3111 	/* check if the wmap word is all free. if so, the
3112 	 * free buddy size is BUDMIN.
3113 	 */
3114 	if (*((uint *) cp) == 0)
3115 		return (BUDMIN);
3116 
3117 	/* check if the wmap word is half free. if so, the
3118 	 * free buddy size is BUDMIN-1.
3119 	 */
3120 	if (*((u16 *) cp) == 0 || *((u16 *) cp + 1) == 0)
3121 		return (BUDMIN - 1);
3122 
3123 	/* not all free or half free. determine the free buddy
3124 	 * size thru table lookup using quarters of the wmap word.
3125 	 */
3126 	tmp1 = max(budtab[cp[2]], budtab[cp[3]]);
3127 	tmp2 = max(budtab[cp[0]], budtab[cp[1]]);
3128 	return (max(tmp1, tmp2));
3129 }
3130 
3131 
3132 /*
3133  * NAME:	cnttz(uint word)
3134  *
3135  * FUNCTION:	determine the number of trailing zeros within a 32-bit
3136  *		value.
3137  *
3138  * PARAMETERS:
3139  *	value	-  32-bit value to be examined.
3140  *
3141  * RETURN VALUES:
3142  *	count of trailing zeros
3143  */
cnttz(u32 word)3144 static int cnttz(u32 word)
3145 {
3146 	int n;
3147 
3148 	for (n = 0; n < 32; n++, word >>= 1) {
3149 		if (word & 0x01)
3150 			break;
3151 	}
3152 
3153 	return (n);
3154 }
3155 
3156 
3157 /*
3158  * NAME:	cntlz(u32 value)
3159  *
3160  * FUNCTION:	determine the number of leading zeros within a 32-bit
3161  *		value.
3162  *
3163  * PARAMETERS:
3164  *	value	-  32-bit value to be examined.
3165  *
3166  * RETURN VALUES:
3167  *	count of leading zeros
3168  */
cntlz(u32 value)3169 static int cntlz(u32 value)
3170 {
3171 	int n;
3172 
3173 	for (n = 0; n < 32; n++, value <<= 1) {
3174 		if (value & HIGHORDER)
3175 			break;
3176 	}
3177 	return (n);
3178 }
3179 
3180 
3181 /*
3182  * NAME:	blkstol2(s64 nb)
3183  *
3184  * FUNCTION:	convert a block count to its log2 value. if the block
3185  *		count is not a l2 multiple, it is rounded up to the next
3186  *		larger l2 multiple.
3187  *
3188  * PARAMETERS:
3189  *	nb	-  number of blocks
3190  *
3191  * RETURN VALUES:
3192  *	log2 number of blocks
3193  */
blkstol2(s64 nb)3194 static int blkstol2(s64 nb)
3195 {
3196 	int l2nb;
3197 	s64 mask;		/* meant to be signed */
3198 
3199 	mask = (s64) 1 << (64 - 1);
3200 
3201 	/* count the leading bits.
3202 	 */
3203 	for (l2nb = 0; l2nb < 64; l2nb++, mask >>= 1) {
3204 		/* leading bit found.
3205 		 */
3206 		if (nb & mask) {
3207 			/* determine the l2 value.
3208 			 */
3209 			l2nb = (64 - 1) - l2nb;
3210 
3211 			/* check if we need to round up.
3212 			 */
3213 			if (~mask & nb)
3214 				l2nb++;
3215 
3216 			return (l2nb);
3217 		}
3218 	}
3219 	assert(0);
3220 	return 0;		/* fix compiler warning */
3221 }
3222 
3223 
3224 /*
3225  * NAME:	dbAllocBottomUp()
3226  *
3227  * FUNCTION:	alloc the specified block range from the working block
3228  *		allocation map.
3229  *
3230  *		the blocks will be alloc from the working map one dmap
3231  *		at a time.
3232  *
3233  * PARAMETERS:
3234  *	ip	-  pointer to in-core inode;
3235  *	blkno	-  starting block number to be freed.
3236  *	nblocks	-  number of blocks to be freed.
3237  *
3238  * RETURN VALUES:
3239  *	0	- success
3240  *	-EIO	- i/o error
3241  */
dbAllocBottomUp(struct inode * ip,s64 blkno,s64 nblocks)3242 int dbAllocBottomUp(struct inode *ip, s64 blkno, s64 nblocks)
3243 {
3244 	struct metapage *mp;
3245 	struct dmap *dp;
3246 	int nb, rc;
3247 	s64 lblkno, rem;
3248 	struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
3249 	struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
3250 
3251 	IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
3252 
3253 	/* block to be allocated better be within the mapsize. */
3254 	ASSERT(nblocks <= bmp->db_mapsize - blkno);
3255 
3256 	/*
3257 	 * allocate the blocks a dmap at a time.
3258 	 */
3259 	mp = NULL;
3260 	for (rem = nblocks; rem > 0; rem -= nb, blkno += nb) {
3261 		/* release previous dmap if any */
3262 		if (mp) {
3263 			write_metapage(mp);
3264 		}
3265 
3266 		/* get the buffer for the current dmap. */
3267 		lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
3268 		mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
3269 		if (mp == NULL) {
3270 			IREAD_UNLOCK(ipbmap);
3271 			return -EIO;
3272 		}
3273 		dp = (struct dmap *) mp->data;
3274 
3275 		/* determine the number of blocks to be allocated from
3276 		 * this dmap.
3277 		 */
3278 		nb = min(rem, BPERDMAP - (blkno & (BPERDMAP - 1)));
3279 
3280 		/* allocate the blocks. */
3281 		if ((rc = dbAllocDmapBU(bmp, dp, blkno, nb))) {
3282 			release_metapage(mp);
3283 			IREAD_UNLOCK(ipbmap);
3284 			return (rc);
3285 		}
3286 	}
3287 
3288 	/* write the last buffer. */
3289 	write_metapage(mp);
3290 
3291 	IREAD_UNLOCK(ipbmap);
3292 
3293 	return (0);
3294 }
3295 
3296 
dbAllocDmapBU(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks)3297 static int dbAllocDmapBU(struct bmap * bmp, struct dmap * dp, s64 blkno,
3298 			 int nblocks)
3299 {
3300 	int rc;
3301 	int dbitno, word, rembits, nb, nwords, wbitno, agno;
3302 	s8 oldroot;
3303 	struct dmaptree *tp = (struct dmaptree *) & dp->tree;
3304 
3305 	/* save the current value of the root (i.e. maximum free string)
3306 	 * of the dmap tree.
3307 	 */
3308 	oldroot = tp->stree[ROOT];
3309 
3310 	/* determine the bit number and word within the dmap of the
3311 	 * starting block.
3312 	 */
3313 	dbitno = blkno & (BPERDMAP - 1);
3314 	word = dbitno >> L2DBWORD;
3315 
3316 	/* block range better be within the dmap */
3317 	assert(dbitno + nblocks <= BPERDMAP);
3318 
3319 	/* allocate the bits of the dmap's words corresponding to the block
3320 	 * range. not all bits of the first and last words may be contained
3321 	 * within the block range.  if this is the case, we'll work against
3322 	 * those words (i.e. partial first and/or last) on an individual basis
3323 	 * (a single pass), allocating the bits of interest by hand and
3324 	 * updating the leaf corresponding to the dmap word. a single pass
3325 	 * will be used for all dmap words fully contained within the
3326 	 * specified range.  within this pass, the bits of all fully contained
3327 	 * dmap words will be marked as free in a single shot and the leaves
3328 	 * will be updated. a single leaf may describe the free space of
3329 	 * multiple dmap words, so we may update only a subset of the actual
3330 	 * leaves corresponding to the dmap words of the block range.
3331 	 */
3332 	for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
3333 		/* determine the bit number within the word and
3334 		 * the number of bits within the word.
3335 		 */
3336 		wbitno = dbitno & (DBWORD - 1);
3337 		nb = min(rembits, DBWORD - wbitno);
3338 
3339 		/* check if only part of a word is to be allocated.
3340 		 */
3341 		if (nb < DBWORD) {
3342 			/* allocate (set to 1) the appropriate bits within
3343 			 * this dmap word.
3344 			 */
3345 			dp->wmap[word] |= cpu_to_le32(ONES << (DBWORD - nb)
3346 						      >> wbitno);
3347 
3348 			word++;
3349 		} else {
3350 			/* one or more dmap words are fully contained
3351 			 * within the block range.  determine how many
3352 			 * words and allocate (set to 1) the bits of these
3353 			 * words.
3354 			 */
3355 			nwords = rembits >> L2DBWORD;
3356 			memset(&dp->wmap[word], (int) ONES, nwords * 4);
3357 
3358 			/* determine how many bits */
3359 			nb = nwords << L2DBWORD;
3360 			word += nwords;
3361 		}
3362 	}
3363 
3364 	/* update the free count for this dmap */
3365 	le32_add_cpu(&dp->nfree, -nblocks);
3366 
3367 	/* reconstruct summary tree */
3368 	dbInitDmapTree(dp);
3369 
3370 	BMAP_LOCK(bmp);
3371 
3372 	/* if this allocation group is completely free,
3373 	 * update the highest active allocation group number
3374 	 * if this allocation group is the new max.
3375 	 */
3376 	agno = blkno >> bmp->db_agl2size;
3377 	if (agno > bmp->db_maxag)
3378 		bmp->db_maxag = agno;
3379 
3380 	/* update the free count for the allocation group and map */
3381 	bmp->db_agfree[agno] -= nblocks;
3382 	bmp->db_nfree -= nblocks;
3383 
3384 	BMAP_UNLOCK(bmp);
3385 
3386 	/* if the root has not changed, done. */
3387 	if (tp->stree[ROOT] == oldroot)
3388 		return (0);
3389 
3390 	/* root changed. bubble the change up to the dmap control pages.
3391 	 * if the adjustment of the upper level control pages fails,
3392 	 * backout the bit allocation (thus making everything consistent).
3393 	 */
3394 	if ((rc = dbAdjCtl(bmp, blkno, tp->stree[ROOT], 1, 0)))
3395 		dbFreeBits(bmp, dp, blkno, nblocks);
3396 
3397 	return (rc);
3398 }
3399 
3400 
3401 /*
3402  * NAME:	dbExtendFS()
3403  *
3404  * FUNCTION:	extend bmap from blkno for nblocks;
3405  *		dbExtendFS() updates bmap ready for dbAllocBottomUp();
3406  *
3407  * L2
3408  *  |
3409  *   L1---------------------------------L1
3410  *    |					 |
3411  *     L0---------L0---------L0		  L0---------L0---------L0
3412  *      |	   |	      |		   |	      |		 |
3413  *	 d0,...,dn  d0,...,dn  d0,...,dn    d0,...,dn  d0,...,dn  d0,.,dm;
3414  * L2L1L0d0,...,dnL0d0,...,dnL0d0,...,dnL1L0d0,...,dnL0d0,...,dnL0d0,..dm
3415  *
3416  * <---old---><----------------------------extend----------------------->
3417  */
dbExtendFS(struct inode * ipbmap,s64 blkno,s64 nblocks)3418 int dbExtendFS(struct inode *ipbmap, s64 blkno,	s64 nblocks)
3419 {
3420 	struct jfs_sb_info *sbi = JFS_SBI(ipbmap->i_sb);
3421 	int nbperpage = sbi->nbperpage;
3422 	int i, i0 = true, j, j0 = true, k, n;
3423 	s64 newsize;
3424 	s64 p;
3425 	struct metapage *mp, *l2mp, *l1mp = NULL, *l0mp = NULL;
3426 	struct dmapctl *l2dcp, *l1dcp, *l0dcp;
3427 	struct dmap *dp;
3428 	s8 *l0leaf, *l1leaf, *l2leaf;
3429 	struct bmap *bmp = sbi->bmap;
3430 	int agno, l2agsize, oldl2agsize;
3431 	s64 ag_rem;
3432 
3433 	newsize = blkno + nblocks;
3434 
3435 	jfs_info("dbExtendFS: blkno:%Ld nblocks:%Ld newsize:%Ld",
3436 		 (long long) blkno, (long long) nblocks, (long long) newsize);
3437 
3438 	/*
3439 	 *	initialize bmap control page.
3440 	 *
3441 	 * all the data in bmap control page should exclude
3442 	 * the mkfs hidden dmap page.
3443 	 */
3444 
3445 	/* update mapsize */
3446 	bmp->db_mapsize = newsize;
3447 	bmp->db_maxlevel = BMAPSZTOLEV(bmp->db_mapsize);
3448 
3449 	/* compute new AG size */
3450 	l2agsize = dbGetL2AGSize(newsize);
3451 	oldl2agsize = bmp->db_agl2size;
3452 
3453 	bmp->db_agl2size = l2agsize;
3454 	bmp->db_agsize = 1 << l2agsize;
3455 
3456 	/* compute new number of AG */
3457 	agno = bmp->db_numag;
3458 	bmp->db_numag = newsize >> l2agsize;
3459 	bmp->db_numag += ((u32) newsize % (u32) bmp->db_agsize) ? 1 : 0;
3460 
3461 	/*
3462 	 *	reconfigure db_agfree[]
3463 	 * from old AG configuration to new AG configuration;
3464 	 *
3465 	 * coalesce contiguous k (newAGSize/oldAGSize) AGs;
3466 	 * i.e., (AGi, ..., AGj) where i = k*n and j = k*(n+1) - 1 to AGn;
3467 	 * note: new AG size = old AG size * (2**x).
3468 	 */
3469 	if (l2agsize == oldl2agsize)
3470 		goto extend;
3471 	k = 1 << (l2agsize - oldl2agsize);
3472 	ag_rem = bmp->db_agfree[0];	/* save agfree[0] */
3473 	for (i = 0, n = 0; i < agno; n++) {
3474 		bmp->db_agfree[n] = 0;	/* init collection point */
3475 
3476 		/* coalesce contiguous k AGs; */
3477 		for (j = 0; j < k && i < agno; j++, i++) {
3478 			/* merge AGi to AGn */
3479 			bmp->db_agfree[n] += bmp->db_agfree[i];
3480 		}
3481 	}
3482 	bmp->db_agfree[0] += ag_rem;	/* restore agfree[0] */
3483 
3484 	for (; n < MAXAG; n++)
3485 		bmp->db_agfree[n] = 0;
3486 
3487 	/*
3488 	 * update highest active ag number
3489 	 */
3490 
3491 	bmp->db_maxag = bmp->db_maxag / k;
3492 
3493 	/*
3494 	 *	extend bmap
3495 	 *
3496 	 * update bit maps and corresponding level control pages;
3497 	 * global control page db_nfree, db_agfree[agno], db_maxfreebud;
3498 	 */
3499       extend:
3500 	/* get L2 page */
3501 	p = BMAPBLKNO + nbperpage;	/* L2 page */
3502 	l2mp = read_metapage(ipbmap, p, PSIZE, 0);
3503 	if (!l2mp) {
3504 		jfs_error(ipbmap->i_sb, "L2 page could not be read\n");
3505 		return -EIO;
3506 	}
3507 	l2dcp = (struct dmapctl *) l2mp->data;
3508 
3509 	/* compute start L1 */
3510 	k = blkno >> L2MAXL1SIZE;
3511 	l2leaf = l2dcp->stree + CTLLEAFIND + k;
3512 	p = BLKTOL1(blkno, sbi->l2nbperpage);	/* L1 page */
3513 
3514 	/*
3515 	 * extend each L1 in L2
3516 	 */
3517 	for (; k < LPERCTL; k++, p += nbperpage) {
3518 		/* get L1 page */
3519 		if (j0) {
3520 			/* read in L1 page: (blkno & (MAXL1SIZE - 1)) */
3521 			l1mp = read_metapage(ipbmap, p, PSIZE, 0);
3522 			if (l1mp == NULL)
3523 				goto errout;
3524 			l1dcp = (struct dmapctl *) l1mp->data;
3525 
3526 			/* compute start L0 */
3527 			j = (blkno & (MAXL1SIZE - 1)) >> L2MAXL0SIZE;
3528 			l1leaf = l1dcp->stree + CTLLEAFIND + j;
3529 			p = BLKTOL0(blkno, sbi->l2nbperpage);
3530 			j0 = false;
3531 		} else {
3532 			/* assign/init L1 page */
3533 			l1mp = get_metapage(ipbmap, p, PSIZE, 0);
3534 			if (l1mp == NULL)
3535 				goto errout;
3536 
3537 			l1dcp = (struct dmapctl *) l1mp->data;
3538 
3539 			/* compute start L0 */
3540 			j = 0;
3541 			l1leaf = l1dcp->stree + CTLLEAFIND;
3542 			p += nbperpage;	/* 1st L0 of L1.k */
3543 		}
3544 
3545 		/*
3546 		 * extend each L0 in L1
3547 		 */
3548 		for (; j < LPERCTL; j++) {
3549 			/* get L0 page */
3550 			if (i0) {
3551 				/* read in L0 page: (blkno & (MAXL0SIZE - 1)) */
3552 
3553 				l0mp = read_metapage(ipbmap, p, PSIZE, 0);
3554 				if (l0mp == NULL)
3555 					goto errout;
3556 				l0dcp = (struct dmapctl *) l0mp->data;
3557 
3558 				/* compute start dmap */
3559 				i = (blkno & (MAXL0SIZE - 1)) >>
3560 				    L2BPERDMAP;
3561 				l0leaf = l0dcp->stree + CTLLEAFIND + i;
3562 				p = BLKTODMAP(blkno,
3563 					      sbi->l2nbperpage);
3564 				i0 = false;
3565 			} else {
3566 				/* assign/init L0 page */
3567 				l0mp = get_metapage(ipbmap, p, PSIZE, 0);
3568 				if (l0mp == NULL)
3569 					goto errout;
3570 
3571 				l0dcp = (struct dmapctl *) l0mp->data;
3572 
3573 				/* compute start dmap */
3574 				i = 0;
3575 				l0leaf = l0dcp->stree + CTLLEAFIND;
3576 				p += nbperpage;	/* 1st dmap of L0.j */
3577 			}
3578 
3579 			/*
3580 			 * extend each dmap in L0
3581 			 */
3582 			for (; i < LPERCTL; i++) {
3583 				/*
3584 				 * reconstruct the dmap page, and
3585 				 * initialize corresponding parent L0 leaf
3586 				 */
3587 				if ((n = blkno & (BPERDMAP - 1))) {
3588 					/* read in dmap page: */
3589 					mp = read_metapage(ipbmap, p,
3590 							   PSIZE, 0);
3591 					if (mp == NULL)
3592 						goto errout;
3593 					n = min(nblocks, (s64)BPERDMAP - n);
3594 				} else {
3595 					/* assign/init dmap page */
3596 					mp = read_metapage(ipbmap, p,
3597 							   PSIZE, 0);
3598 					if (mp == NULL)
3599 						goto errout;
3600 
3601 					n = min_t(s64, nblocks, BPERDMAP);
3602 				}
3603 
3604 				dp = (struct dmap *) mp->data;
3605 				*l0leaf = dbInitDmap(dp, blkno, n);
3606 
3607 				bmp->db_nfree += n;
3608 				agno = le64_to_cpu(dp->start) >> l2agsize;
3609 				bmp->db_agfree[agno] += n;
3610 
3611 				write_metapage(mp);
3612 
3613 				l0leaf++;
3614 				p += nbperpage;
3615 
3616 				blkno += n;
3617 				nblocks -= n;
3618 				if (nblocks == 0)
3619 					break;
3620 			}	/* for each dmap in a L0 */
3621 
3622 			/*
3623 			 * build current L0 page from its leaves, and
3624 			 * initialize corresponding parent L1 leaf
3625 			 */
3626 			*l1leaf = dbInitDmapCtl(l0dcp, 0, ++i);
3627 			write_metapage(l0mp);
3628 			l0mp = NULL;
3629 
3630 			if (nblocks)
3631 				l1leaf++;	/* continue for next L0 */
3632 			else {
3633 				/* more than 1 L0 ? */
3634 				if (j > 0)
3635 					break;	/* build L1 page */
3636 				else {
3637 					/* summarize in global bmap page */
3638 					bmp->db_maxfreebud = *l1leaf;
3639 					release_metapage(l1mp);
3640 					release_metapage(l2mp);
3641 					goto finalize;
3642 				}
3643 			}
3644 		}		/* for each L0 in a L1 */
3645 
3646 		/*
3647 		 * build current L1 page from its leaves, and
3648 		 * initialize corresponding parent L2 leaf
3649 		 */
3650 		*l2leaf = dbInitDmapCtl(l1dcp, 1, ++j);
3651 		write_metapage(l1mp);
3652 		l1mp = NULL;
3653 
3654 		if (nblocks)
3655 			l2leaf++;	/* continue for next L1 */
3656 		else {
3657 			/* more than 1 L1 ? */
3658 			if (k > 0)
3659 				break;	/* build L2 page */
3660 			else {
3661 				/* summarize in global bmap page */
3662 				bmp->db_maxfreebud = *l2leaf;
3663 				release_metapage(l2mp);
3664 				goto finalize;
3665 			}
3666 		}
3667 	}			/* for each L1 in a L2 */
3668 
3669 	jfs_error(ipbmap->i_sb, "function has not returned as expected\n");
3670 errout:
3671 	if (l0mp)
3672 		release_metapage(l0mp);
3673 	if (l1mp)
3674 		release_metapage(l1mp);
3675 	release_metapage(l2mp);
3676 	return -EIO;
3677 
3678 	/*
3679 	 *	finalize bmap control page
3680 	 */
3681 finalize:
3682 
3683 	return 0;
3684 }
3685 
3686 
3687 /*
3688  *	dbFinalizeBmap()
3689  */
dbFinalizeBmap(struct inode * ipbmap)3690 void dbFinalizeBmap(struct inode *ipbmap)
3691 {
3692 	struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
3693 	int actags, inactags, l2nl;
3694 	s64 ag_rem, actfree, inactfree, avgfree;
3695 	int i, n;
3696 
3697 	/*
3698 	 *	finalize bmap control page
3699 	 */
3700 //finalize:
3701 	/*
3702 	 * compute db_agpref: preferred ag to allocate from
3703 	 * (the leftmost ag with average free space in it);
3704 	 */
3705 //agpref:
3706 	/* get the number of active ags and inacitve ags */
3707 	actags = bmp->db_maxag + 1;
3708 	inactags = bmp->db_numag - actags;
3709 	ag_rem = bmp->db_mapsize & (bmp->db_agsize - 1);	/* ??? */
3710 
3711 	/* determine how many blocks are in the inactive allocation
3712 	 * groups. in doing this, we must account for the fact that
3713 	 * the rightmost group might be a partial group (i.e. file
3714 	 * system size is not a multiple of the group size).
3715 	 */
3716 	inactfree = (inactags && ag_rem) ?
3717 	    ((inactags - 1) << bmp->db_agl2size) + ag_rem
3718 	    : inactags << bmp->db_agl2size;
3719 
3720 	/* determine how many free blocks are in the active
3721 	 * allocation groups plus the average number of free blocks
3722 	 * within the active ags.
3723 	 */
3724 	actfree = bmp->db_nfree - inactfree;
3725 	avgfree = (u32) actfree / (u32) actags;
3726 
3727 	/* if the preferred allocation group has not average free space.
3728 	 * re-establish the preferred group as the leftmost
3729 	 * group with average free space.
3730 	 */
3731 	if (bmp->db_agfree[bmp->db_agpref] < avgfree) {
3732 		for (bmp->db_agpref = 0; bmp->db_agpref < actags;
3733 		     bmp->db_agpref++) {
3734 			if (bmp->db_agfree[bmp->db_agpref] >= avgfree)
3735 				break;
3736 		}
3737 		if (bmp->db_agpref >= bmp->db_numag) {
3738 			jfs_error(ipbmap->i_sb,
3739 				  "cannot find ag with average freespace\n");
3740 		}
3741 	}
3742 
3743 	/*
3744 	 * compute db_aglevel, db_agheight, db_width, db_agstart:
3745 	 * an ag is covered in aglevel dmapctl summary tree,
3746 	 * at agheight level height (from leaf) with agwidth number of nodes
3747 	 * each, which starts at agstart index node of the smmary tree node
3748 	 * array;
3749 	 */
3750 	bmp->db_aglevel = BMAPSZTOLEV(bmp->db_agsize);
3751 	l2nl =
3752 	    bmp->db_agl2size - (L2BPERDMAP + bmp->db_aglevel * L2LPERCTL);
3753 	bmp->db_agheight = l2nl >> 1;
3754 	bmp->db_agwidth = 1 << (l2nl - (bmp->db_agheight << 1));
3755 	for (i = 5 - bmp->db_agheight, bmp->db_agstart = 0, n = 1; i > 0;
3756 	     i--) {
3757 		bmp->db_agstart += n;
3758 		n <<= 2;
3759 	}
3760 
3761 }
3762 
3763 
3764 /*
3765  * NAME:	dbInitDmap()/ujfs_idmap_page()
3766  *
3767  * FUNCTION:	initialize working/persistent bitmap of the dmap page
3768  *		for the specified number of blocks:
3769  *
3770  *		at entry, the bitmaps had been initialized as free (ZEROS);
3771  *		The number of blocks will only account for the actually
3772  *		existing blocks. Blocks which don't actually exist in
3773  *		the aggregate will be marked as allocated (ONES);
3774  *
3775  * PARAMETERS:
3776  *	dp	- pointer to page of map
3777  *	nblocks	- number of blocks this page
3778  *
3779  * RETURNS: NONE
3780  */
dbInitDmap(struct dmap * dp,s64 Blkno,int nblocks)3781 static int dbInitDmap(struct dmap * dp, s64 Blkno, int nblocks)
3782 {
3783 	int blkno, w, b, r, nw, nb, i;
3784 
3785 	/* starting block number within the dmap */
3786 	blkno = Blkno & (BPERDMAP - 1);
3787 
3788 	if (blkno == 0) {
3789 		dp->nblocks = dp->nfree = cpu_to_le32(nblocks);
3790 		dp->start = cpu_to_le64(Blkno);
3791 
3792 		if (nblocks == BPERDMAP) {
3793 			memset(&dp->wmap[0], 0, LPERDMAP * 4);
3794 			memset(&dp->pmap[0], 0, LPERDMAP * 4);
3795 			goto initTree;
3796 		}
3797 	} else {
3798 		le32_add_cpu(&dp->nblocks, nblocks);
3799 		le32_add_cpu(&dp->nfree, nblocks);
3800 	}
3801 
3802 	/* word number containing start block number */
3803 	w = blkno >> L2DBWORD;
3804 
3805 	/*
3806 	 * free the bits corresponding to the block range (ZEROS):
3807 	 * note: not all bits of the first and last words may be contained
3808 	 * within the block range.
3809 	 */
3810 	for (r = nblocks; r > 0; r -= nb, blkno += nb) {
3811 		/* number of bits preceding range to be freed in the word */
3812 		b = blkno & (DBWORD - 1);
3813 		/* number of bits to free in the word */
3814 		nb = min(r, DBWORD - b);
3815 
3816 		/* is partial word to be freed ? */
3817 		if (nb < DBWORD) {
3818 			/* free (set to 0) from the bitmap word */
3819 			dp->wmap[w] &= cpu_to_le32(~(ONES << (DBWORD - nb)
3820 						     >> b));
3821 			dp->pmap[w] &= cpu_to_le32(~(ONES << (DBWORD - nb)
3822 						     >> b));
3823 
3824 			/* skip the word freed */
3825 			w++;
3826 		} else {
3827 			/* free (set to 0) contiguous bitmap words */
3828 			nw = r >> L2DBWORD;
3829 			memset(&dp->wmap[w], 0, nw * 4);
3830 			memset(&dp->pmap[w], 0, nw * 4);
3831 
3832 			/* skip the words freed */
3833 			nb = nw << L2DBWORD;
3834 			w += nw;
3835 		}
3836 	}
3837 
3838 	/*
3839 	 * mark bits following the range to be freed (non-existing
3840 	 * blocks) as allocated (ONES)
3841 	 */
3842 
3843 	if (blkno == BPERDMAP)
3844 		goto initTree;
3845 
3846 	/* the first word beyond the end of existing blocks */
3847 	w = blkno >> L2DBWORD;
3848 
3849 	/* does nblocks fall on a 32-bit boundary ? */
3850 	b = blkno & (DBWORD - 1);
3851 	if (b) {
3852 		/* mark a partial word allocated */
3853 		dp->wmap[w] = dp->pmap[w] = cpu_to_le32(ONES >> b);
3854 		w++;
3855 	}
3856 
3857 	/* set the rest of the words in the page to allocated (ONES) */
3858 	for (i = w; i < LPERDMAP; i++)
3859 		dp->pmap[i] = dp->wmap[i] = cpu_to_le32(ONES);
3860 
3861 	/*
3862 	 * init tree
3863 	 */
3864       initTree:
3865 	return (dbInitDmapTree(dp));
3866 }
3867 
3868 
3869 /*
3870  * NAME:	dbInitDmapTree()/ujfs_complete_dmap()
3871  *
3872  * FUNCTION:	initialize summary tree of the specified dmap:
3873  *
3874  *		at entry, bitmap of the dmap has been initialized;
3875  *
3876  * PARAMETERS:
3877  *	dp	- dmap to complete
3878  *	blkno	- starting block number for this dmap
3879  *	treemax	- will be filled in with max free for this dmap
3880  *
3881  * RETURNS:	max free string at the root of the tree
3882  */
dbInitDmapTree(struct dmap * dp)3883 static int dbInitDmapTree(struct dmap * dp)
3884 {
3885 	struct dmaptree *tp;
3886 	s8 *cp;
3887 	int i;
3888 
3889 	/* init fixed info of tree */
3890 	tp = &dp->tree;
3891 	tp->nleafs = cpu_to_le32(LPERDMAP);
3892 	tp->l2nleafs = cpu_to_le32(L2LPERDMAP);
3893 	tp->leafidx = cpu_to_le32(LEAFIND);
3894 	tp->height = cpu_to_le32(4);
3895 	tp->budmin = BUDMIN;
3896 
3897 	/* init each leaf from corresponding wmap word:
3898 	 * note: leaf is set to NOFREE(-1) if all blocks of corresponding
3899 	 * bitmap word are allocated.
3900 	 */
3901 	cp = tp->stree + le32_to_cpu(tp->leafidx);
3902 	for (i = 0; i < LPERDMAP; i++)
3903 		*cp++ = dbMaxBud((u8 *) & dp->wmap[i]);
3904 
3905 	/* build the dmap's binary buddy summary tree */
3906 	return (dbInitTree(tp));
3907 }
3908 
3909 
3910 /*
3911  * NAME:	dbInitTree()/ujfs_adjtree()
3912  *
3913  * FUNCTION:	initialize binary buddy summary tree of a dmap or dmapctl.
3914  *
3915  *		at entry, the leaves of the tree has been initialized
3916  *		from corresponding bitmap word or root of summary tree
3917  *		of the child control page;
3918  *		configure binary buddy system at the leaf level, then
3919  *		bubble up the values of the leaf nodes up the tree.
3920  *
3921  * PARAMETERS:
3922  *	cp	- Pointer to the root of the tree
3923  *	l2leaves- Number of leaf nodes as a power of 2
3924  *	l2min	- Number of blocks that can be covered by a leaf
3925  *		  as a power of 2
3926  *
3927  * RETURNS: max free string at the root of the tree
3928  */
dbInitTree(struct dmaptree * dtp)3929 static int dbInitTree(struct dmaptree * dtp)
3930 {
3931 	int l2max, l2free, bsize, nextb, i;
3932 	int child, parent, nparent;
3933 	s8 *tp, *cp, *cp1;
3934 
3935 	tp = dtp->stree;
3936 
3937 	/* Determine the maximum free string possible for the leaves */
3938 	l2max = le32_to_cpu(dtp->l2nleafs) + dtp->budmin;
3939 
3940 	/*
3941 	 * configure the leaf levevl into binary buddy system
3942 	 *
3943 	 * Try to combine buddies starting with a buddy size of 1
3944 	 * (i.e. two leaves). At a buddy size of 1 two buddy leaves
3945 	 * can be combined if both buddies have a maximum free of l2min;
3946 	 * the combination will result in the left-most buddy leaf having
3947 	 * a maximum free of l2min+1.
3948 	 * After processing all buddies for a given size, process buddies
3949 	 * at the next higher buddy size (i.e. current size * 2) and
3950 	 * the next maximum free (current free + 1).
3951 	 * This continues until the maximum possible buddy combination
3952 	 * yields maximum free.
3953 	 */
3954 	for (l2free = dtp->budmin, bsize = 1; l2free < l2max;
3955 	     l2free++, bsize = nextb) {
3956 		/* get next buddy size == current buddy pair size */
3957 		nextb = bsize << 1;
3958 
3959 		/* scan each adjacent buddy pair at current buddy size */
3960 		for (i = 0, cp = tp + le32_to_cpu(dtp->leafidx);
3961 		     i < le32_to_cpu(dtp->nleafs);
3962 		     i += nextb, cp += nextb) {
3963 			/* coalesce if both adjacent buddies are max free */
3964 			if (*cp == l2free && *(cp + bsize) == l2free) {
3965 				*cp = l2free + 1;	/* left take right */
3966 				*(cp + bsize) = -1;	/* right give left */
3967 			}
3968 		}
3969 	}
3970 
3971 	/*
3972 	 * bubble summary information of leaves up the tree.
3973 	 *
3974 	 * Starting at the leaf node level, the four nodes described by
3975 	 * the higher level parent node are compared for a maximum free and
3976 	 * this maximum becomes the value of the parent node.
3977 	 * when all lower level nodes are processed in this fashion then
3978 	 * move up to the next level (parent becomes a lower level node) and
3979 	 * continue the process for that level.
3980 	 */
3981 	for (child = le32_to_cpu(dtp->leafidx),
3982 	     nparent = le32_to_cpu(dtp->nleafs) >> 2;
3983 	     nparent > 0; nparent >>= 2, child = parent) {
3984 		/* get index of 1st node of parent level */
3985 		parent = (child - 1) >> 2;
3986 
3987 		/* set the value of the parent node as the maximum
3988 		 * of the four nodes of the current level.
3989 		 */
3990 		for (i = 0, cp = tp + child, cp1 = tp + parent;
3991 		     i < nparent; i++, cp += 4, cp1++)
3992 			*cp1 = TREEMAX(cp);
3993 	}
3994 
3995 	return (*tp);
3996 }
3997 
3998 
3999 /*
4000  *	dbInitDmapCtl()
4001  *
4002  * function: initialize dmapctl page
4003  */
dbInitDmapCtl(struct dmapctl * dcp,int level,int i)4004 static int dbInitDmapCtl(struct dmapctl * dcp, int level, int i)
4005 {				/* start leaf index not covered by range */
4006 	s8 *cp;
4007 
4008 	dcp->nleafs = cpu_to_le32(LPERCTL);
4009 	dcp->l2nleafs = cpu_to_le32(L2LPERCTL);
4010 	dcp->leafidx = cpu_to_le32(CTLLEAFIND);
4011 	dcp->height = cpu_to_le32(5);
4012 	dcp->budmin = L2BPERDMAP + L2LPERCTL * level;
4013 
4014 	/*
4015 	 * initialize the leaves of current level that were not covered
4016 	 * by the specified input block range (i.e. the leaves have no
4017 	 * low level dmapctl or dmap).
4018 	 */
4019 	cp = &dcp->stree[CTLLEAFIND + i];
4020 	for (; i < LPERCTL; i++)
4021 		*cp++ = NOFREE;
4022 
4023 	/* build the dmap's binary buddy summary tree */
4024 	return (dbInitTree((struct dmaptree *) dcp));
4025 }
4026 
4027 
4028 /*
4029  * NAME:	dbGetL2AGSize()/ujfs_getagl2size()
4030  *
4031  * FUNCTION:	Determine log2(allocation group size) from aggregate size
4032  *
4033  * PARAMETERS:
4034  *	nblocks	- Number of blocks in aggregate
4035  *
4036  * RETURNS: log2(allocation group size) in aggregate blocks
4037  */
dbGetL2AGSize(s64 nblocks)4038 static int dbGetL2AGSize(s64 nblocks)
4039 {
4040 	s64 sz;
4041 	s64 m;
4042 	int l2sz;
4043 
4044 	if (nblocks < BPERDMAP * MAXAG)
4045 		return (L2BPERDMAP);
4046 
4047 	/* round up aggregate size to power of 2 */
4048 	m = ((u64) 1 << (64 - 1));
4049 	for (l2sz = 64; l2sz >= 0; l2sz--, m >>= 1) {
4050 		if (m & nblocks)
4051 			break;
4052 	}
4053 
4054 	sz = (s64) 1 << l2sz;
4055 	if (sz < nblocks)
4056 		l2sz += 1;
4057 
4058 	/* agsize = roundupSize/max_number_of_ag */
4059 	return (l2sz - L2MAXAG);
4060 }
4061 
4062 
4063 /*
4064  * NAME:	dbMapFileSizeToMapSize()
4065  *
4066  * FUNCTION:	compute number of blocks the block allocation map file
4067  *		can cover from the map file size;
4068  *
4069  * RETURNS:	Number of blocks which can be covered by this block map file;
4070  */
4071 
4072 /*
4073  * maximum number of map pages at each level including control pages
4074  */
4075 #define MAXL0PAGES	(1 + LPERCTL)
4076 #define MAXL1PAGES	(1 + LPERCTL * MAXL0PAGES)
4077 #define MAXL2PAGES	(1 + LPERCTL * MAXL1PAGES)
4078 
4079 /*
4080  * convert number of map pages to the zero origin top dmapctl level
4081  */
4082 #define BMAPPGTOLEV(npages)	\
4083 	(((npages) <= 3 + MAXL0PAGES) ? 0 : \
4084 	 ((npages) <= 2 + MAXL1PAGES) ? 1 : 2)
4085 
dbMapFileSizeToMapSize(struct inode * ipbmap)4086 s64 dbMapFileSizeToMapSize(struct inode * ipbmap)
4087 {
4088 	struct super_block *sb = ipbmap->i_sb;
4089 	s64 nblocks;
4090 	s64 npages, ndmaps;
4091 	int level, i;
4092 	int complete, factor;
4093 
4094 	nblocks = ipbmap->i_size >> JFS_SBI(sb)->l2bsize;
4095 	npages = nblocks >> JFS_SBI(sb)->l2nbperpage;
4096 	level = BMAPPGTOLEV(npages);
4097 
4098 	/* At each level, accumulate the number of dmap pages covered by
4099 	 * the number of full child levels below it;
4100 	 * repeat for the last incomplete child level.
4101 	 */
4102 	ndmaps = 0;
4103 	npages--;		/* skip the first global control page */
4104 	/* skip higher level control pages above top level covered by map */
4105 	npages -= (2 - level);
4106 	npages--;		/* skip top level's control page */
4107 	for (i = level; i >= 0; i--) {
4108 		factor =
4109 		    (i == 2) ? MAXL1PAGES : ((i == 1) ? MAXL0PAGES : 1);
4110 		complete = (u32) npages / factor;
4111 		ndmaps += complete * ((i == 2) ? LPERCTL * LPERCTL :
4112 				      ((i == 1) ? LPERCTL : 1));
4113 
4114 		/* pages in last/incomplete child */
4115 		npages = (u32) npages % factor;
4116 		/* skip incomplete child's level control page */
4117 		npages--;
4118 	}
4119 
4120 	/* convert the number of dmaps into the number of blocks
4121 	 * which can be covered by the dmaps;
4122 	 */
4123 	nblocks = ndmaps << L2BPERDMAP;
4124 
4125 	return (nblocks);
4126 }
4127