1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/core.c - core driver model code (device registration, etc)
4  *
5  * Copyright (c) 2002-3 Patrick Mochel
6  * Copyright (c) 2002-3 Open Source Development Labs
7  * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8  * Copyright (c) 2006 Novell, Inc.
9  */
10 
11 #include <linux/cpufreq.h>
12 #include <linux/device.h>
13 #include <linux/err.h>
14 #include <linux/fwnode.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/string.h>
19 #include <linux/kdev_t.h>
20 #include <linux/notifier.h>
21 #include <linux/of.h>
22 #include <linux/of_device.h>
23 #include <linux/genhd.h>
24 #include <linux/mutex.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/netdevice.h>
27 #include <linux/sched/signal.h>
28 #include <linux/sysfs.h>
29 
30 #include "base.h"
31 #include "power/power.h"
32 
33 #ifdef CONFIG_SYSFS_DEPRECATED
34 #ifdef CONFIG_SYSFS_DEPRECATED_V2
35 long sysfs_deprecated = 1;
36 #else
37 long sysfs_deprecated = 0;
38 #endif
sysfs_deprecated_setup(char * arg)39 static int __init sysfs_deprecated_setup(char *arg)
40 {
41 	return kstrtol(arg, 10, &sysfs_deprecated);
42 }
43 early_param("sysfs.deprecated", sysfs_deprecated_setup);
44 #endif
45 
46 /* Device links support. */
47 
48 #ifdef CONFIG_SRCU
49 static DEFINE_MUTEX(device_links_lock);
50 DEFINE_STATIC_SRCU(device_links_srcu);
51 
device_links_write_lock(void)52 static inline void device_links_write_lock(void)
53 {
54 	mutex_lock(&device_links_lock);
55 }
56 
device_links_write_unlock(void)57 static inline void device_links_write_unlock(void)
58 {
59 	mutex_unlock(&device_links_lock);
60 }
61 
device_links_read_lock(void)62 int device_links_read_lock(void)
63 {
64 	return srcu_read_lock(&device_links_srcu);
65 }
66 
device_links_read_unlock(int idx)67 void device_links_read_unlock(int idx)
68 {
69 	srcu_read_unlock(&device_links_srcu, idx);
70 }
71 #else /* !CONFIG_SRCU */
72 static DECLARE_RWSEM(device_links_lock);
73 
device_links_write_lock(void)74 static inline void device_links_write_lock(void)
75 {
76 	down_write(&device_links_lock);
77 }
78 
device_links_write_unlock(void)79 static inline void device_links_write_unlock(void)
80 {
81 	up_write(&device_links_lock);
82 }
83 
device_links_read_lock(void)84 int device_links_read_lock(void)
85 {
86 	down_read(&device_links_lock);
87 	return 0;
88 }
89 
device_links_read_unlock(int not_used)90 void device_links_read_unlock(int not_used)
91 {
92 	up_read(&device_links_lock);
93 }
94 #endif /* !CONFIG_SRCU */
95 
device_is_ancestor(struct device * dev,struct device * target)96 static bool device_is_ancestor(struct device *dev, struct device *target)
97 {
98 	while (target->parent) {
99 		target = target->parent;
100 		if (dev == target)
101 			return true;
102 	}
103 	return false;
104 }
105 
106 /**
107  * device_is_dependent - Check if one device depends on another one
108  * @dev: Device to check dependencies for.
109  * @target: Device to check against.
110  *
111  * Check if @target depends on @dev or any device dependent on it (its child or
112  * its consumer etc).  Return 1 if that is the case or 0 otherwise.
113  */
device_is_dependent(struct device * dev,void * target)114 static int device_is_dependent(struct device *dev, void *target)
115 {
116 	struct device_link *link;
117 	int ret;
118 
119 	/*
120 	 * The "ancestors" check is needed to catch the case when the target
121 	 * device has not been completely initialized yet and it is still
122 	 * missing from the list of children of its parent device.
123 	 */
124 	if (dev == target || device_is_ancestor(dev, target))
125 		return 1;
126 
127 	ret = device_for_each_child(dev, target, device_is_dependent);
128 	if (ret)
129 		return ret;
130 
131 	list_for_each_entry(link, &dev->links.consumers, s_node) {
132 		if (link->consumer == target)
133 			return 1;
134 
135 		ret = device_is_dependent(link->consumer, target);
136 		if (ret)
137 			break;
138 	}
139 	return ret;
140 }
141 
device_link_init_status(struct device_link * link,struct device * consumer,struct device * supplier)142 static void device_link_init_status(struct device_link *link,
143 				    struct device *consumer,
144 				    struct device *supplier)
145 {
146 	switch (supplier->links.status) {
147 	case DL_DEV_PROBING:
148 		switch (consumer->links.status) {
149 		case DL_DEV_PROBING:
150 			/*
151 			 * A consumer driver can create a link to a supplier
152 			 * that has not completed its probing yet as long as it
153 			 * knows that the supplier is already functional (for
154 			 * example, it has just acquired some resources from the
155 			 * supplier).
156 			 */
157 			link->status = DL_STATE_CONSUMER_PROBE;
158 			break;
159 		default:
160 			link->status = DL_STATE_DORMANT;
161 			break;
162 		}
163 		break;
164 	case DL_DEV_DRIVER_BOUND:
165 		switch (consumer->links.status) {
166 		case DL_DEV_PROBING:
167 			link->status = DL_STATE_CONSUMER_PROBE;
168 			break;
169 		case DL_DEV_DRIVER_BOUND:
170 			link->status = DL_STATE_ACTIVE;
171 			break;
172 		default:
173 			link->status = DL_STATE_AVAILABLE;
174 			break;
175 		}
176 		break;
177 	case DL_DEV_UNBINDING:
178 		link->status = DL_STATE_SUPPLIER_UNBIND;
179 		break;
180 	default:
181 		link->status = DL_STATE_DORMANT;
182 		break;
183 	}
184 }
185 
device_reorder_to_tail(struct device * dev,void * not_used)186 static int device_reorder_to_tail(struct device *dev, void *not_used)
187 {
188 	struct device_link *link;
189 
190 	/*
191 	 * Devices that have not been registered yet will be put to the ends
192 	 * of the lists during the registration, so skip them here.
193 	 */
194 	if (device_is_registered(dev))
195 		devices_kset_move_last(dev);
196 
197 	if (device_pm_initialized(dev))
198 		device_pm_move_last(dev);
199 
200 	device_for_each_child(dev, NULL, device_reorder_to_tail);
201 	list_for_each_entry(link, &dev->links.consumers, s_node)
202 		device_reorder_to_tail(link->consumer, NULL);
203 
204 	return 0;
205 }
206 
207 /**
208  * device_pm_move_to_tail - Move set of devices to the end of device lists
209  * @dev: Device to move
210  *
211  * This is a device_reorder_to_tail() wrapper taking the requisite locks.
212  *
213  * It moves the @dev along with all of its children and all of its consumers
214  * to the ends of the device_kset and dpm_list, recursively.
215  */
device_pm_move_to_tail(struct device * dev)216 void device_pm_move_to_tail(struct device *dev)
217 {
218 	int idx;
219 
220 	idx = device_links_read_lock();
221 	device_pm_lock();
222 	device_reorder_to_tail(dev, NULL);
223 	device_pm_unlock();
224 	device_links_read_unlock(idx);
225 }
226 
227 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
228 			       DL_FLAG_AUTOREMOVE_SUPPLIER | \
229 			       DL_FLAG_AUTOPROBE_CONSUMER)
230 
231 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
232 			    DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
233 
234 /**
235  * device_link_add - Create a link between two devices.
236  * @consumer: Consumer end of the link.
237  * @supplier: Supplier end of the link.
238  * @flags: Link flags.
239  *
240  * The caller is responsible for the proper synchronization of the link creation
241  * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
242  * runtime PM framework to take the link into account.  Second, if the
243  * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
244  * be forced into the active metastate and reference-counted upon the creation
245  * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
246  * ignored.
247  *
248  * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
249  * expected to release the link returned by it directly with the help of either
250  * device_link_del() or device_link_remove().
251  *
252  * If that flag is not set, however, the caller of this function is handing the
253  * management of the link over to the driver core entirely and its return value
254  * can only be used to check whether or not the link is present.  In that case,
255  * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
256  * flags can be used to indicate to the driver core when the link can be safely
257  * deleted.  Namely, setting one of them in @flags indicates to the driver core
258  * that the link is not going to be used (by the given caller of this function)
259  * after unbinding the consumer or supplier driver, respectively, from its
260  * device, so the link can be deleted at that point.  If none of them is set,
261  * the link will be maintained until one of the devices pointed to by it (either
262  * the consumer or the supplier) is unregistered.
263  *
264  * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
265  * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
266  * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
267  * be used to request the driver core to automaticall probe for a consmer
268  * driver after successfully binding a driver to the supplier device.
269  *
270  * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
271  * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
272  * the same time is invalid and will cause NULL to be returned upfront.
273  * However, if a device link between the given @consumer and @supplier pair
274  * exists already when this function is called for them, the existing link will
275  * be returned regardless of its current type and status (the link's flags may
276  * be modified then).  The caller of this function is then expected to treat
277  * the link as though it has just been created, so (in particular) if
278  * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
279  * explicitly when not needed any more (as stated above).
280  *
281  * A side effect of the link creation is re-ordering of dpm_list and the
282  * devices_kset list by moving the consumer device and all devices depending
283  * on it to the ends of these lists (that does not happen to devices that have
284  * not been registered when this function is called).
285  *
286  * The supplier device is required to be registered when this function is called
287  * and NULL will be returned if that is not the case.  The consumer device need
288  * not be registered, however.
289  */
device_link_add(struct device * consumer,struct device * supplier,u32 flags)290 struct device_link *device_link_add(struct device *consumer,
291 				    struct device *supplier, u32 flags)
292 {
293 	struct device_link *link;
294 
295 	if (!consumer || !supplier || flags & ~DL_ADD_VALID_FLAGS ||
296 	    (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
297 	    (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
298 	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
299 		      DL_FLAG_AUTOREMOVE_SUPPLIER)))
300 		return NULL;
301 
302 	if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
303 		if (pm_runtime_get_sync(supplier) < 0) {
304 			pm_runtime_put_noidle(supplier);
305 			return NULL;
306 		}
307 	}
308 
309 	if (!(flags & DL_FLAG_STATELESS))
310 		flags |= DL_FLAG_MANAGED;
311 
312 	device_links_write_lock();
313 	device_pm_lock();
314 
315 	/*
316 	 * If the supplier has not been fully registered yet or there is a
317 	 * reverse dependency between the consumer and the supplier already in
318 	 * the graph, return NULL.
319 	 */
320 	if (!device_pm_initialized(supplier)
321 	    || device_is_dependent(consumer, supplier)) {
322 		link = NULL;
323 		goto out;
324 	}
325 
326 	/*
327 	 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
328 	 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
329 	 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
330 	 */
331 	if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
332 		flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
333 
334 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
335 		if (link->consumer != consumer)
336 			continue;
337 
338 		if (flags & DL_FLAG_PM_RUNTIME) {
339 			if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
340 				pm_runtime_new_link(consumer);
341 				link->flags |= DL_FLAG_PM_RUNTIME;
342 			}
343 			if (flags & DL_FLAG_RPM_ACTIVE)
344 				refcount_inc(&link->rpm_active);
345 		}
346 
347 		if (flags & DL_FLAG_STATELESS) {
348 			link->flags |= DL_FLAG_STATELESS;
349 			kref_get(&link->kref);
350 			goto out;
351 		}
352 
353 		/*
354 		 * If the life time of the link following from the new flags is
355 		 * longer than indicated by the flags of the existing link,
356 		 * update the existing link to stay around longer.
357 		 */
358 		if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
359 			if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
360 				link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
361 				link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
362 			}
363 		} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
364 			link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
365 					 DL_FLAG_AUTOREMOVE_SUPPLIER);
366 		}
367 		if (!(link->flags & DL_FLAG_MANAGED)) {
368 			kref_get(&link->kref);
369 			link->flags |= DL_FLAG_MANAGED;
370 			device_link_init_status(link, consumer, supplier);
371 		}
372 		goto out;
373 	}
374 
375 	link = kzalloc(sizeof(*link), GFP_KERNEL);
376 	if (!link)
377 		goto out;
378 
379 	refcount_set(&link->rpm_active, 1);
380 
381 	if (flags & DL_FLAG_PM_RUNTIME) {
382 		if (flags & DL_FLAG_RPM_ACTIVE)
383 			refcount_inc(&link->rpm_active);
384 
385 		pm_runtime_new_link(consumer);
386 	}
387 
388 	get_device(supplier);
389 	link->supplier = supplier;
390 	INIT_LIST_HEAD(&link->s_node);
391 	get_device(consumer);
392 	link->consumer = consumer;
393 	INIT_LIST_HEAD(&link->c_node);
394 	link->flags = flags;
395 	kref_init(&link->kref);
396 
397 	/* Determine the initial link state. */
398 	if (flags & DL_FLAG_STATELESS)
399 		link->status = DL_STATE_NONE;
400 	else
401 		device_link_init_status(link, consumer, supplier);
402 
403 	/*
404 	 * Some callers expect the link creation during consumer driver probe to
405 	 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
406 	 */
407 	if (link->status == DL_STATE_CONSUMER_PROBE &&
408 	    flags & DL_FLAG_PM_RUNTIME)
409 		pm_runtime_resume(supplier);
410 
411 	/*
412 	 * Move the consumer and all of the devices depending on it to the end
413 	 * of dpm_list and the devices_kset list.
414 	 *
415 	 * It is necessary to hold dpm_list locked throughout all that or else
416 	 * we may end up suspending with a wrong ordering of it.
417 	 */
418 	device_reorder_to_tail(consumer, NULL);
419 
420 	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
421 	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
422 
423 	dev_info(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
424 
425  out:
426 	device_pm_unlock();
427 	device_links_write_unlock();
428 
429 	if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
430 		pm_runtime_put(supplier);
431 
432 	return link;
433 }
434 EXPORT_SYMBOL_GPL(device_link_add);
435 
device_link_free(struct device_link * link)436 static void device_link_free(struct device_link *link)
437 {
438 	while (refcount_dec_not_one(&link->rpm_active))
439 		pm_runtime_put(link->supplier);
440 
441 	put_device(link->consumer);
442 	put_device(link->supplier);
443 	kfree(link);
444 }
445 
446 #ifdef CONFIG_SRCU
__device_link_free_srcu(struct rcu_head * rhead)447 static void __device_link_free_srcu(struct rcu_head *rhead)
448 {
449 	device_link_free(container_of(rhead, struct device_link, rcu_head));
450 }
451 
__device_link_del(struct kref * kref)452 static void __device_link_del(struct kref *kref)
453 {
454 	struct device_link *link = container_of(kref, struct device_link, kref);
455 
456 	dev_info(link->consumer, "Dropping the link to %s\n",
457 		 dev_name(link->supplier));
458 
459 	if (link->flags & DL_FLAG_PM_RUNTIME)
460 		pm_runtime_drop_link(link->consumer);
461 
462 	list_del_rcu(&link->s_node);
463 	list_del_rcu(&link->c_node);
464 	call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu);
465 }
466 #else /* !CONFIG_SRCU */
__device_link_del(struct kref * kref)467 static void __device_link_del(struct kref *kref)
468 {
469 	struct device_link *link = container_of(kref, struct device_link, kref);
470 
471 	dev_info(link->consumer, "Dropping the link to %s\n",
472 		 dev_name(link->supplier));
473 
474 	if (link->flags & DL_FLAG_PM_RUNTIME)
475 		pm_runtime_drop_link(link->consumer);
476 
477 	list_del(&link->s_node);
478 	list_del(&link->c_node);
479 	device_link_free(link);
480 }
481 #endif /* !CONFIG_SRCU */
482 
device_link_put_kref(struct device_link * link)483 static void device_link_put_kref(struct device_link *link)
484 {
485 	if (link->flags & DL_FLAG_STATELESS)
486 		kref_put(&link->kref, __device_link_del);
487 	else
488 		WARN(1, "Unable to drop a managed device link reference\n");
489 }
490 
491 /**
492  * device_link_del - Delete a stateless link between two devices.
493  * @link: Device link to delete.
494  *
495  * The caller must ensure proper synchronization of this function with runtime
496  * PM.  If the link was added multiple times, it needs to be deleted as often.
497  * Care is required for hotplugged devices:  Their links are purged on removal
498  * and calling device_link_del() is then no longer allowed.
499  */
device_link_del(struct device_link * link)500 void device_link_del(struct device_link *link)
501 {
502 	device_links_write_lock();
503 	device_pm_lock();
504 	device_link_put_kref(link);
505 	device_pm_unlock();
506 	device_links_write_unlock();
507 }
508 EXPORT_SYMBOL_GPL(device_link_del);
509 
510 /**
511  * device_link_remove - Delete a stateless link between two devices.
512  * @consumer: Consumer end of the link.
513  * @supplier: Supplier end of the link.
514  *
515  * The caller must ensure proper synchronization of this function with runtime
516  * PM.
517  */
device_link_remove(void * consumer,struct device * supplier)518 void device_link_remove(void *consumer, struct device *supplier)
519 {
520 	struct device_link *link;
521 
522 	if (WARN_ON(consumer == supplier))
523 		return;
524 
525 	device_links_write_lock();
526 	device_pm_lock();
527 
528 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
529 		if (link->consumer == consumer) {
530 			device_link_put_kref(link);
531 			break;
532 		}
533 	}
534 
535 	device_pm_unlock();
536 	device_links_write_unlock();
537 }
538 EXPORT_SYMBOL_GPL(device_link_remove);
539 
device_links_missing_supplier(struct device * dev)540 static void device_links_missing_supplier(struct device *dev)
541 {
542 	struct device_link *link;
543 
544 	list_for_each_entry(link, &dev->links.suppliers, c_node)
545 		if (link->status == DL_STATE_CONSUMER_PROBE)
546 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
547 }
548 
549 /**
550  * device_links_check_suppliers - Check presence of supplier drivers.
551  * @dev: Consumer device.
552  *
553  * Check links from this device to any suppliers.  Walk the list of the device's
554  * links to suppliers and see if all of them are available.  If not, simply
555  * return -EPROBE_DEFER.
556  *
557  * We need to guarantee that the supplier will not go away after the check has
558  * been positive here.  It only can go away in __device_release_driver() and
559  * that function  checks the device's links to consumers.  This means we need to
560  * mark the link as "consumer probe in progress" to make the supplier removal
561  * wait for us to complete (or bad things may happen).
562  *
563  * Links without the DL_FLAG_MANAGED flag set are ignored.
564  */
device_links_check_suppliers(struct device * dev)565 int device_links_check_suppliers(struct device *dev)
566 {
567 	struct device_link *link;
568 	int ret = 0;
569 
570 	device_links_write_lock();
571 
572 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
573 		if (!(link->flags & DL_FLAG_MANAGED))
574 			continue;
575 
576 		if (link->status != DL_STATE_AVAILABLE) {
577 			device_links_missing_supplier(dev);
578 			ret = -EPROBE_DEFER;
579 			break;
580 		}
581 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
582 	}
583 	dev->links.status = DL_DEV_PROBING;
584 
585 	device_links_write_unlock();
586 	return ret;
587 }
588 
589 /**
590  * device_links_driver_bound - Update device links after probing its driver.
591  * @dev: Device to update the links for.
592  *
593  * The probe has been successful, so update links from this device to any
594  * consumers by changing their status to "available".
595  *
596  * Also change the status of @dev's links to suppliers to "active".
597  *
598  * Links without the DL_FLAG_MANAGED flag set are ignored.
599  */
device_links_driver_bound(struct device * dev)600 void device_links_driver_bound(struct device *dev)
601 {
602 	struct device_link *link;
603 
604 	device_links_write_lock();
605 
606 	list_for_each_entry(link, &dev->links.consumers, s_node) {
607 		if (!(link->flags & DL_FLAG_MANAGED))
608 			continue;
609 
610 		/*
611 		 * Links created during consumer probe may be in the "consumer
612 		 * probe" state to start with if the supplier is still probing
613 		 * when they are created and they may become "active" if the
614 		 * consumer probe returns first.  Skip them here.
615 		 */
616 		if (link->status == DL_STATE_CONSUMER_PROBE ||
617 		    link->status == DL_STATE_ACTIVE)
618 			continue;
619 
620 		WARN_ON(link->status != DL_STATE_DORMANT);
621 		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
622 
623 		if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
624 			driver_deferred_probe_add(link->consumer);
625 	}
626 
627 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
628 		if (!(link->flags & DL_FLAG_MANAGED))
629 			continue;
630 
631 		WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
632 		WRITE_ONCE(link->status, DL_STATE_ACTIVE);
633 	}
634 
635 	dev->links.status = DL_DEV_DRIVER_BOUND;
636 
637 	device_links_write_unlock();
638 }
639 
device_link_drop_managed(struct device_link * link)640 static void device_link_drop_managed(struct device_link *link)
641 {
642 	link->flags &= ~DL_FLAG_MANAGED;
643 	WRITE_ONCE(link->status, DL_STATE_NONE);
644 	kref_put(&link->kref, __device_link_del);
645 }
646 
647 /**
648  * __device_links_no_driver - Update links of a device without a driver.
649  * @dev: Device without a drvier.
650  *
651  * Delete all non-persistent links from this device to any suppliers.
652  *
653  * Persistent links stay around, but their status is changed to "available",
654  * unless they already are in the "supplier unbind in progress" state in which
655  * case they need not be updated.
656  *
657  * Links without the DL_FLAG_MANAGED flag set are ignored.
658  */
__device_links_no_driver(struct device * dev)659 static void __device_links_no_driver(struct device *dev)
660 {
661 	struct device_link *link, *ln;
662 
663 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
664 		if (!(link->flags & DL_FLAG_MANAGED))
665 			continue;
666 
667 		if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
668 			device_link_drop_managed(link);
669 		else if (link->status == DL_STATE_CONSUMER_PROBE ||
670 			 link->status == DL_STATE_ACTIVE)
671 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
672 	}
673 
674 	dev->links.status = DL_DEV_NO_DRIVER;
675 }
676 
677 /**
678  * device_links_no_driver - Update links after failing driver probe.
679  * @dev: Device whose driver has just failed to probe.
680  *
681  * Clean up leftover links to consumers for @dev and invoke
682  * %__device_links_no_driver() to update links to suppliers for it as
683  * appropriate.
684  *
685  * Links without the DL_FLAG_MANAGED flag set are ignored.
686  */
device_links_no_driver(struct device * dev)687 void device_links_no_driver(struct device *dev)
688 {
689 	struct device_link *link;
690 
691 	device_links_write_lock();
692 
693 	list_for_each_entry(link, &dev->links.consumers, s_node) {
694 		if (!(link->flags & DL_FLAG_MANAGED))
695 			continue;
696 
697 		/*
698 		 * The probe has failed, so if the status of the link is
699 		 * "consumer probe" or "active", it must have been added by
700 		 * a probing consumer while this device was still probing.
701 		 * Change its state to "dormant", as it represents a valid
702 		 * relationship, but it is not functionally meaningful.
703 		 */
704 		if (link->status == DL_STATE_CONSUMER_PROBE ||
705 		    link->status == DL_STATE_ACTIVE)
706 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
707 	}
708 
709 	__device_links_no_driver(dev);
710 
711 	device_links_write_unlock();
712 }
713 
714 /**
715  * device_links_driver_cleanup - Update links after driver removal.
716  * @dev: Device whose driver has just gone away.
717  *
718  * Update links to consumers for @dev by changing their status to "dormant" and
719  * invoke %__device_links_no_driver() to update links to suppliers for it as
720  * appropriate.
721  *
722  * Links without the DL_FLAG_MANAGED flag set are ignored.
723  */
device_links_driver_cleanup(struct device * dev)724 void device_links_driver_cleanup(struct device *dev)
725 {
726 	struct device_link *link, *ln;
727 
728 	device_links_write_lock();
729 
730 	list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
731 		if (!(link->flags & DL_FLAG_MANAGED))
732 			continue;
733 
734 		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
735 		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
736 
737 		/*
738 		 * autoremove the links between this @dev and its consumer
739 		 * devices that are not active, i.e. where the link state
740 		 * has moved to DL_STATE_SUPPLIER_UNBIND.
741 		 */
742 		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
743 		    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
744 			device_link_drop_managed(link);
745 
746 		WRITE_ONCE(link->status, DL_STATE_DORMANT);
747 	}
748 
749 	__device_links_no_driver(dev);
750 
751 	device_links_write_unlock();
752 }
753 
754 /**
755  * device_links_busy - Check if there are any busy links to consumers.
756  * @dev: Device to check.
757  *
758  * Check each consumer of the device and return 'true' if its link's status
759  * is one of "consumer probe" or "active" (meaning that the given consumer is
760  * probing right now or its driver is present).  Otherwise, change the link
761  * state to "supplier unbind" to prevent the consumer from being probed
762  * successfully going forward.
763  *
764  * Return 'false' if there are no probing or active consumers.
765  *
766  * Links without the DL_FLAG_MANAGED flag set are ignored.
767  */
device_links_busy(struct device * dev)768 bool device_links_busy(struct device *dev)
769 {
770 	struct device_link *link;
771 	bool ret = false;
772 
773 	device_links_write_lock();
774 
775 	list_for_each_entry(link, &dev->links.consumers, s_node) {
776 		if (!(link->flags & DL_FLAG_MANAGED))
777 			continue;
778 
779 		if (link->status == DL_STATE_CONSUMER_PROBE
780 		    || link->status == DL_STATE_ACTIVE) {
781 			ret = true;
782 			break;
783 		}
784 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
785 	}
786 
787 	dev->links.status = DL_DEV_UNBINDING;
788 
789 	device_links_write_unlock();
790 	return ret;
791 }
792 
793 /**
794  * device_links_unbind_consumers - Force unbind consumers of the given device.
795  * @dev: Device to unbind the consumers of.
796  *
797  * Walk the list of links to consumers for @dev and if any of them is in the
798  * "consumer probe" state, wait for all device probes in progress to complete
799  * and start over.
800  *
801  * If that's not the case, change the status of the link to "supplier unbind"
802  * and check if the link was in the "active" state.  If so, force the consumer
803  * driver to unbind and start over (the consumer will not re-probe as we have
804  * changed the state of the link already).
805  *
806  * Links without the DL_FLAG_MANAGED flag set are ignored.
807  */
device_links_unbind_consumers(struct device * dev)808 void device_links_unbind_consumers(struct device *dev)
809 {
810 	struct device_link *link;
811 
812  start:
813 	device_links_write_lock();
814 
815 	list_for_each_entry(link, &dev->links.consumers, s_node) {
816 		enum device_link_state status;
817 
818 		if (!(link->flags & DL_FLAG_MANAGED))
819 			continue;
820 
821 		status = link->status;
822 		if (status == DL_STATE_CONSUMER_PROBE) {
823 			device_links_write_unlock();
824 
825 			wait_for_device_probe();
826 			goto start;
827 		}
828 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
829 		if (status == DL_STATE_ACTIVE) {
830 			struct device *consumer = link->consumer;
831 
832 			get_device(consumer);
833 
834 			device_links_write_unlock();
835 
836 			device_release_driver_internal(consumer, NULL,
837 						       consumer->parent);
838 			put_device(consumer);
839 			goto start;
840 		}
841 	}
842 
843 	device_links_write_unlock();
844 }
845 
846 /**
847  * device_links_purge - Delete existing links to other devices.
848  * @dev: Target device.
849  */
device_links_purge(struct device * dev)850 static void device_links_purge(struct device *dev)
851 {
852 	struct device_link *link, *ln;
853 
854 	/*
855 	 * Delete all of the remaining links from this device to any other
856 	 * devices (either consumers or suppliers).
857 	 */
858 	device_links_write_lock();
859 
860 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
861 		WARN_ON(link->status == DL_STATE_ACTIVE);
862 		__device_link_del(&link->kref);
863 	}
864 
865 	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
866 		WARN_ON(link->status != DL_STATE_DORMANT &&
867 			link->status != DL_STATE_NONE);
868 		__device_link_del(&link->kref);
869 	}
870 
871 	device_links_write_unlock();
872 }
873 
874 /* Device links support end. */
875 
876 int (*platform_notify)(struct device *dev) = NULL;
877 int (*platform_notify_remove)(struct device *dev) = NULL;
878 static struct kobject *dev_kobj;
879 struct kobject *sysfs_dev_char_kobj;
880 struct kobject *sysfs_dev_block_kobj;
881 
882 static DEFINE_MUTEX(device_hotplug_lock);
883 
lock_device_hotplug(void)884 void lock_device_hotplug(void)
885 {
886 	mutex_lock(&device_hotplug_lock);
887 }
888 
unlock_device_hotplug(void)889 void unlock_device_hotplug(void)
890 {
891 	mutex_unlock(&device_hotplug_lock);
892 }
893 
lock_device_hotplug_sysfs(void)894 int lock_device_hotplug_sysfs(void)
895 {
896 	if (mutex_trylock(&device_hotplug_lock))
897 		return 0;
898 
899 	/* Avoid busy looping (5 ms of sleep should do). */
900 	msleep(5);
901 	return restart_syscall();
902 }
903 
904 #ifdef CONFIG_BLOCK
device_is_not_partition(struct device * dev)905 static inline int device_is_not_partition(struct device *dev)
906 {
907 	return !(dev->type == &part_type);
908 }
909 #else
device_is_not_partition(struct device * dev)910 static inline int device_is_not_partition(struct device *dev)
911 {
912 	return 1;
913 }
914 #endif
915 
916 /**
917  * dev_driver_string - Return a device's driver name, if at all possible
918  * @dev: struct device to get the name of
919  *
920  * Will return the device's driver's name if it is bound to a device.  If
921  * the device is not bound to a driver, it will return the name of the bus
922  * it is attached to.  If it is not attached to a bus either, an empty
923  * string will be returned.
924  */
dev_driver_string(const struct device * dev)925 const char *dev_driver_string(const struct device *dev)
926 {
927 	struct device_driver *drv;
928 
929 	/* dev->driver can change to NULL underneath us because of unbinding,
930 	 * so be careful about accessing it.  dev->bus and dev->class should
931 	 * never change once they are set, so they don't need special care.
932 	 */
933 	drv = READ_ONCE(dev->driver);
934 	return drv ? drv->name :
935 			(dev->bus ? dev->bus->name :
936 			(dev->class ? dev->class->name : ""));
937 }
938 EXPORT_SYMBOL(dev_driver_string);
939 
940 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
941 
dev_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)942 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
943 			     char *buf)
944 {
945 	struct device_attribute *dev_attr = to_dev_attr(attr);
946 	struct device *dev = kobj_to_dev(kobj);
947 	ssize_t ret = -EIO;
948 
949 	if (dev_attr->show)
950 		ret = dev_attr->show(dev, dev_attr, buf);
951 	if (ret >= (ssize_t)PAGE_SIZE) {
952 		printk("dev_attr_show: %pS returned bad count\n",
953 				dev_attr->show);
954 	}
955 	return ret;
956 }
957 
dev_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)958 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
959 			      const char *buf, size_t count)
960 {
961 	struct device_attribute *dev_attr = to_dev_attr(attr);
962 	struct device *dev = kobj_to_dev(kobj);
963 	ssize_t ret = -EIO;
964 
965 	if (dev_attr->store)
966 		ret = dev_attr->store(dev, dev_attr, buf, count);
967 	return ret;
968 }
969 
970 static const struct sysfs_ops dev_sysfs_ops = {
971 	.show	= dev_attr_show,
972 	.store	= dev_attr_store,
973 };
974 
975 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
976 
device_store_ulong(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)977 ssize_t device_store_ulong(struct device *dev,
978 			   struct device_attribute *attr,
979 			   const char *buf, size_t size)
980 {
981 	struct dev_ext_attribute *ea = to_ext_attr(attr);
982 	char *end;
983 	unsigned long new = simple_strtoul(buf, &end, 0);
984 	if (end == buf)
985 		return -EINVAL;
986 	*(unsigned long *)(ea->var) = new;
987 	/* Always return full write size even if we didn't consume all */
988 	return size;
989 }
990 EXPORT_SYMBOL_GPL(device_store_ulong);
991 
device_show_ulong(struct device * dev,struct device_attribute * attr,char * buf)992 ssize_t device_show_ulong(struct device *dev,
993 			  struct device_attribute *attr,
994 			  char *buf)
995 {
996 	struct dev_ext_attribute *ea = to_ext_attr(attr);
997 	return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var));
998 }
999 EXPORT_SYMBOL_GPL(device_show_ulong);
1000 
device_store_int(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)1001 ssize_t device_store_int(struct device *dev,
1002 			 struct device_attribute *attr,
1003 			 const char *buf, size_t size)
1004 {
1005 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1006 	char *end;
1007 	long new = simple_strtol(buf, &end, 0);
1008 	if (end == buf || new > INT_MAX || new < INT_MIN)
1009 		return -EINVAL;
1010 	*(int *)(ea->var) = new;
1011 	/* Always return full write size even if we didn't consume all */
1012 	return size;
1013 }
1014 EXPORT_SYMBOL_GPL(device_store_int);
1015 
device_show_int(struct device * dev,struct device_attribute * attr,char * buf)1016 ssize_t device_show_int(struct device *dev,
1017 			struct device_attribute *attr,
1018 			char *buf)
1019 {
1020 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1021 
1022 	return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var));
1023 }
1024 EXPORT_SYMBOL_GPL(device_show_int);
1025 
device_store_bool(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)1026 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
1027 			  const char *buf, size_t size)
1028 {
1029 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1030 
1031 	if (strtobool(buf, ea->var) < 0)
1032 		return -EINVAL;
1033 
1034 	return size;
1035 }
1036 EXPORT_SYMBOL_GPL(device_store_bool);
1037 
device_show_bool(struct device * dev,struct device_attribute * attr,char * buf)1038 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
1039 			 char *buf)
1040 {
1041 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1042 
1043 	return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var));
1044 }
1045 EXPORT_SYMBOL_GPL(device_show_bool);
1046 
1047 /**
1048  * device_release - free device structure.
1049  * @kobj: device's kobject.
1050  *
1051  * This is called once the reference count for the object
1052  * reaches 0. We forward the call to the device's release
1053  * method, which should handle actually freeing the structure.
1054  */
device_release(struct kobject * kobj)1055 static void device_release(struct kobject *kobj)
1056 {
1057 	struct device *dev = kobj_to_dev(kobj);
1058 	struct device_private *p = dev->p;
1059 
1060 	/*
1061 	 * Some platform devices are driven without driver attached
1062 	 * and managed resources may have been acquired.  Make sure
1063 	 * all resources are released.
1064 	 *
1065 	 * Drivers still can add resources into device after device
1066 	 * is deleted but alive, so release devres here to avoid
1067 	 * possible memory leak.
1068 	 */
1069 	devres_release_all(dev);
1070 
1071 	if (dev->release)
1072 		dev->release(dev);
1073 	else if (dev->type && dev->type->release)
1074 		dev->type->release(dev);
1075 	else if (dev->class && dev->class->dev_release)
1076 		dev->class->dev_release(dev);
1077 	else
1078 		WARN(1, KERN_ERR "Device '%s' does not have a release() "
1079 			"function, it is broken and must be fixed.\n",
1080 			dev_name(dev));
1081 	kfree(p);
1082 }
1083 
device_namespace(struct kobject * kobj)1084 static const void *device_namespace(struct kobject *kobj)
1085 {
1086 	struct device *dev = kobj_to_dev(kobj);
1087 	const void *ns = NULL;
1088 
1089 	if (dev->class && dev->class->ns_type)
1090 		ns = dev->class->namespace(dev);
1091 
1092 	return ns;
1093 }
1094 
device_get_ownership(struct kobject * kobj,kuid_t * uid,kgid_t * gid)1095 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
1096 {
1097 	struct device *dev = kobj_to_dev(kobj);
1098 
1099 	if (dev->class && dev->class->get_ownership)
1100 		dev->class->get_ownership(dev, uid, gid);
1101 }
1102 
1103 static struct kobj_type device_ktype = {
1104 	.release	= device_release,
1105 	.sysfs_ops	= &dev_sysfs_ops,
1106 	.namespace	= device_namespace,
1107 	.get_ownership	= device_get_ownership,
1108 };
1109 
1110 
dev_uevent_filter(struct kset * kset,struct kobject * kobj)1111 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
1112 {
1113 	struct kobj_type *ktype = get_ktype(kobj);
1114 
1115 	if (ktype == &device_ktype) {
1116 		struct device *dev = kobj_to_dev(kobj);
1117 		if (dev->bus)
1118 			return 1;
1119 		if (dev->class)
1120 			return 1;
1121 	}
1122 	return 0;
1123 }
1124 
dev_uevent_name(struct kset * kset,struct kobject * kobj)1125 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
1126 {
1127 	struct device *dev = kobj_to_dev(kobj);
1128 
1129 	if (dev->bus)
1130 		return dev->bus->name;
1131 	if (dev->class)
1132 		return dev->class->name;
1133 	return NULL;
1134 }
1135 
dev_uevent(struct kset * kset,struct kobject * kobj,struct kobj_uevent_env * env)1136 static int dev_uevent(struct kset *kset, struct kobject *kobj,
1137 		      struct kobj_uevent_env *env)
1138 {
1139 	struct device *dev = kobj_to_dev(kobj);
1140 	int retval = 0;
1141 
1142 	/* add device node properties if present */
1143 	if (MAJOR(dev->devt)) {
1144 		const char *tmp;
1145 		const char *name;
1146 		umode_t mode = 0;
1147 		kuid_t uid = GLOBAL_ROOT_UID;
1148 		kgid_t gid = GLOBAL_ROOT_GID;
1149 
1150 		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
1151 		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
1152 		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
1153 		if (name) {
1154 			add_uevent_var(env, "DEVNAME=%s", name);
1155 			if (mode)
1156 				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
1157 			if (!uid_eq(uid, GLOBAL_ROOT_UID))
1158 				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
1159 			if (!gid_eq(gid, GLOBAL_ROOT_GID))
1160 				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
1161 			kfree(tmp);
1162 		}
1163 	}
1164 
1165 	if (dev->type && dev->type->name)
1166 		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
1167 
1168 	if (dev->driver)
1169 		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
1170 
1171 	/* Add common DT information about the device */
1172 	of_device_uevent(dev, env);
1173 
1174 	/* have the bus specific function add its stuff */
1175 	if (dev->bus && dev->bus->uevent) {
1176 		retval = dev->bus->uevent(dev, env);
1177 		if (retval)
1178 			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
1179 				 dev_name(dev), __func__, retval);
1180 	}
1181 
1182 	/* have the class specific function add its stuff */
1183 	if (dev->class && dev->class->dev_uevent) {
1184 		retval = dev->class->dev_uevent(dev, env);
1185 		if (retval)
1186 			pr_debug("device: '%s': %s: class uevent() "
1187 				 "returned %d\n", dev_name(dev),
1188 				 __func__, retval);
1189 	}
1190 
1191 	/* have the device type specific function add its stuff */
1192 	if (dev->type && dev->type->uevent) {
1193 		retval = dev->type->uevent(dev, env);
1194 		if (retval)
1195 			pr_debug("device: '%s': %s: dev_type uevent() "
1196 				 "returned %d\n", dev_name(dev),
1197 				 __func__, retval);
1198 	}
1199 
1200 	return retval;
1201 }
1202 
1203 static const struct kset_uevent_ops device_uevent_ops = {
1204 	.filter =	dev_uevent_filter,
1205 	.name =		dev_uevent_name,
1206 	.uevent =	dev_uevent,
1207 };
1208 
uevent_show(struct device * dev,struct device_attribute * attr,char * buf)1209 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
1210 			   char *buf)
1211 {
1212 	struct kobject *top_kobj;
1213 	struct kset *kset;
1214 	struct kobj_uevent_env *env = NULL;
1215 	int i;
1216 	size_t count = 0;
1217 	int retval;
1218 
1219 	/* search the kset, the device belongs to */
1220 	top_kobj = &dev->kobj;
1221 	while (!top_kobj->kset && top_kobj->parent)
1222 		top_kobj = top_kobj->parent;
1223 	if (!top_kobj->kset)
1224 		goto out;
1225 
1226 	kset = top_kobj->kset;
1227 	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
1228 		goto out;
1229 
1230 	/* respect filter */
1231 	if (kset->uevent_ops && kset->uevent_ops->filter)
1232 		if (!kset->uevent_ops->filter(kset, &dev->kobj))
1233 			goto out;
1234 
1235 	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
1236 	if (!env)
1237 		return -ENOMEM;
1238 
1239 	/* let the kset specific function add its keys */
1240 	retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
1241 	if (retval)
1242 		goto out;
1243 
1244 	/* copy keys to file */
1245 	for (i = 0; i < env->envp_idx; i++)
1246 		count += sprintf(&buf[count], "%s\n", env->envp[i]);
1247 out:
1248 	kfree(env);
1249 	return count;
1250 }
1251 
uevent_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1252 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
1253 			    const char *buf, size_t count)
1254 {
1255 	int rc;
1256 
1257 	rc = kobject_synth_uevent(&dev->kobj, buf, count);
1258 
1259 	if (rc) {
1260 		dev_err(dev, "uevent: failed to send synthetic uevent\n");
1261 		return rc;
1262 	}
1263 
1264 	return count;
1265 }
1266 static DEVICE_ATTR_RW(uevent);
1267 
online_show(struct device * dev,struct device_attribute * attr,char * buf)1268 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
1269 			   char *buf)
1270 {
1271 	bool val;
1272 
1273 	device_lock(dev);
1274 	val = !dev->offline;
1275 	device_unlock(dev);
1276 	return sprintf(buf, "%u\n", val);
1277 }
1278 
online_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1279 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
1280 			    const char *buf, size_t count)
1281 {
1282 	bool val;
1283 	int ret;
1284 
1285 	ret = strtobool(buf, &val);
1286 	if (ret < 0)
1287 		return ret;
1288 
1289 	ret = lock_device_hotplug_sysfs();
1290 	if (ret)
1291 		return ret;
1292 
1293 	ret = val ? device_online(dev) : device_offline(dev);
1294 	unlock_device_hotplug();
1295 	return ret < 0 ? ret : count;
1296 }
1297 static DEVICE_ATTR_RW(online);
1298 
device_add_groups(struct device * dev,const struct attribute_group ** groups)1299 int device_add_groups(struct device *dev, const struct attribute_group **groups)
1300 {
1301 	return sysfs_create_groups(&dev->kobj, groups);
1302 }
1303 EXPORT_SYMBOL_GPL(device_add_groups);
1304 
device_remove_groups(struct device * dev,const struct attribute_group ** groups)1305 void device_remove_groups(struct device *dev,
1306 			  const struct attribute_group **groups)
1307 {
1308 	sysfs_remove_groups(&dev->kobj, groups);
1309 }
1310 EXPORT_SYMBOL_GPL(device_remove_groups);
1311 
1312 union device_attr_group_devres {
1313 	const struct attribute_group *group;
1314 	const struct attribute_group **groups;
1315 };
1316 
devm_attr_group_match(struct device * dev,void * res,void * data)1317 static int devm_attr_group_match(struct device *dev, void *res, void *data)
1318 {
1319 	return ((union device_attr_group_devres *)res)->group == data;
1320 }
1321 
devm_attr_group_remove(struct device * dev,void * res)1322 static void devm_attr_group_remove(struct device *dev, void *res)
1323 {
1324 	union device_attr_group_devres *devres = res;
1325 	const struct attribute_group *group = devres->group;
1326 
1327 	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
1328 	sysfs_remove_group(&dev->kobj, group);
1329 }
1330 
devm_attr_groups_remove(struct device * dev,void * res)1331 static void devm_attr_groups_remove(struct device *dev, void *res)
1332 {
1333 	union device_attr_group_devres *devres = res;
1334 	const struct attribute_group **groups = devres->groups;
1335 
1336 	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
1337 	sysfs_remove_groups(&dev->kobj, groups);
1338 }
1339 
1340 /**
1341  * devm_device_add_group - given a device, create a managed attribute group
1342  * @dev:	The device to create the group for
1343  * @grp:	The attribute group to create
1344  *
1345  * This function creates a group for the first time.  It will explicitly
1346  * warn and error if any of the attribute files being created already exist.
1347  *
1348  * Returns 0 on success or error code on failure.
1349  */
devm_device_add_group(struct device * dev,const struct attribute_group * grp)1350 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
1351 {
1352 	union device_attr_group_devres *devres;
1353 	int error;
1354 
1355 	devres = devres_alloc(devm_attr_group_remove,
1356 			      sizeof(*devres), GFP_KERNEL);
1357 	if (!devres)
1358 		return -ENOMEM;
1359 
1360 	error = sysfs_create_group(&dev->kobj, grp);
1361 	if (error) {
1362 		devres_free(devres);
1363 		return error;
1364 	}
1365 
1366 	devres->group = grp;
1367 	devres_add(dev, devres);
1368 	return 0;
1369 }
1370 EXPORT_SYMBOL_GPL(devm_device_add_group);
1371 
1372 /**
1373  * devm_device_remove_group: remove a managed group from a device
1374  * @dev:	device to remove the group from
1375  * @grp:	group to remove
1376  *
1377  * This function removes a group of attributes from a device. The attributes
1378  * previously have to have been created for this group, otherwise it will fail.
1379  */
devm_device_remove_group(struct device * dev,const struct attribute_group * grp)1380 void devm_device_remove_group(struct device *dev,
1381 			      const struct attribute_group *grp)
1382 {
1383 	WARN_ON(devres_release(dev, devm_attr_group_remove,
1384 			       devm_attr_group_match,
1385 			       /* cast away const */ (void *)grp));
1386 }
1387 EXPORT_SYMBOL_GPL(devm_device_remove_group);
1388 
1389 /**
1390  * devm_device_add_groups - create a bunch of managed attribute groups
1391  * @dev:	The device to create the group for
1392  * @groups:	The attribute groups to create, NULL terminated
1393  *
1394  * This function creates a bunch of managed attribute groups.  If an error
1395  * occurs when creating a group, all previously created groups will be
1396  * removed, unwinding everything back to the original state when this
1397  * function was called.  It will explicitly warn and error if any of the
1398  * attribute files being created already exist.
1399  *
1400  * Returns 0 on success or error code from sysfs_create_group on failure.
1401  */
devm_device_add_groups(struct device * dev,const struct attribute_group ** groups)1402 int devm_device_add_groups(struct device *dev,
1403 			   const struct attribute_group **groups)
1404 {
1405 	union device_attr_group_devres *devres;
1406 	int error;
1407 
1408 	devres = devres_alloc(devm_attr_groups_remove,
1409 			      sizeof(*devres), GFP_KERNEL);
1410 	if (!devres)
1411 		return -ENOMEM;
1412 
1413 	error = sysfs_create_groups(&dev->kobj, groups);
1414 	if (error) {
1415 		devres_free(devres);
1416 		return error;
1417 	}
1418 
1419 	devres->groups = groups;
1420 	devres_add(dev, devres);
1421 	return 0;
1422 }
1423 EXPORT_SYMBOL_GPL(devm_device_add_groups);
1424 
1425 /**
1426  * devm_device_remove_groups - remove a list of managed groups
1427  *
1428  * @dev:	The device for the groups to be removed from
1429  * @groups:	NULL terminated list of groups to be removed
1430  *
1431  * If groups is not NULL, remove the specified groups from the device.
1432  */
devm_device_remove_groups(struct device * dev,const struct attribute_group ** groups)1433 void devm_device_remove_groups(struct device *dev,
1434 			       const struct attribute_group **groups)
1435 {
1436 	WARN_ON(devres_release(dev, devm_attr_groups_remove,
1437 			       devm_attr_group_match,
1438 			       /* cast away const */ (void *)groups));
1439 }
1440 EXPORT_SYMBOL_GPL(devm_device_remove_groups);
1441 
device_add_attrs(struct device * dev)1442 static int device_add_attrs(struct device *dev)
1443 {
1444 	struct class *class = dev->class;
1445 	const struct device_type *type = dev->type;
1446 	int error;
1447 
1448 	if (class) {
1449 		error = device_add_groups(dev, class->dev_groups);
1450 		if (error)
1451 			return error;
1452 	}
1453 
1454 	if (type) {
1455 		error = device_add_groups(dev, type->groups);
1456 		if (error)
1457 			goto err_remove_class_groups;
1458 	}
1459 
1460 	error = device_add_groups(dev, dev->groups);
1461 	if (error)
1462 		goto err_remove_type_groups;
1463 
1464 	if (device_supports_offline(dev) && !dev->offline_disabled) {
1465 		error = device_create_file(dev, &dev_attr_online);
1466 		if (error)
1467 			goto err_remove_dev_groups;
1468 	}
1469 
1470 	return 0;
1471 
1472  err_remove_dev_groups:
1473 	device_remove_groups(dev, dev->groups);
1474  err_remove_type_groups:
1475 	if (type)
1476 		device_remove_groups(dev, type->groups);
1477  err_remove_class_groups:
1478 	if (class)
1479 		device_remove_groups(dev, class->dev_groups);
1480 
1481 	return error;
1482 }
1483 
device_remove_attrs(struct device * dev)1484 static void device_remove_attrs(struct device *dev)
1485 {
1486 	struct class *class = dev->class;
1487 	const struct device_type *type = dev->type;
1488 
1489 	device_remove_file(dev, &dev_attr_online);
1490 	device_remove_groups(dev, dev->groups);
1491 
1492 	if (type)
1493 		device_remove_groups(dev, type->groups);
1494 
1495 	if (class)
1496 		device_remove_groups(dev, class->dev_groups);
1497 }
1498 
dev_show(struct device * dev,struct device_attribute * attr,char * buf)1499 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
1500 			char *buf)
1501 {
1502 	return print_dev_t(buf, dev->devt);
1503 }
1504 static DEVICE_ATTR_RO(dev);
1505 
1506 /* /sys/devices/ */
1507 struct kset *devices_kset;
1508 
1509 /**
1510  * devices_kset_move_before - Move device in the devices_kset's list.
1511  * @deva: Device to move.
1512  * @devb: Device @deva should come before.
1513  */
devices_kset_move_before(struct device * deva,struct device * devb)1514 static void devices_kset_move_before(struct device *deva, struct device *devb)
1515 {
1516 	if (!devices_kset)
1517 		return;
1518 	pr_debug("devices_kset: Moving %s before %s\n",
1519 		 dev_name(deva), dev_name(devb));
1520 	spin_lock(&devices_kset->list_lock);
1521 	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
1522 	spin_unlock(&devices_kset->list_lock);
1523 }
1524 
1525 /**
1526  * devices_kset_move_after - Move device in the devices_kset's list.
1527  * @deva: Device to move
1528  * @devb: Device @deva should come after.
1529  */
devices_kset_move_after(struct device * deva,struct device * devb)1530 static void devices_kset_move_after(struct device *deva, struct device *devb)
1531 {
1532 	if (!devices_kset)
1533 		return;
1534 	pr_debug("devices_kset: Moving %s after %s\n",
1535 		 dev_name(deva), dev_name(devb));
1536 	spin_lock(&devices_kset->list_lock);
1537 	list_move(&deva->kobj.entry, &devb->kobj.entry);
1538 	spin_unlock(&devices_kset->list_lock);
1539 }
1540 
1541 /**
1542  * devices_kset_move_last - move the device to the end of devices_kset's list.
1543  * @dev: device to move
1544  */
devices_kset_move_last(struct device * dev)1545 void devices_kset_move_last(struct device *dev)
1546 {
1547 	if (!devices_kset)
1548 		return;
1549 	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
1550 	spin_lock(&devices_kset->list_lock);
1551 	list_move_tail(&dev->kobj.entry, &devices_kset->list);
1552 	spin_unlock(&devices_kset->list_lock);
1553 }
1554 
1555 /**
1556  * device_create_file - create sysfs attribute file for device.
1557  * @dev: device.
1558  * @attr: device attribute descriptor.
1559  */
device_create_file(struct device * dev,const struct device_attribute * attr)1560 int device_create_file(struct device *dev,
1561 		       const struct device_attribute *attr)
1562 {
1563 	int error = 0;
1564 
1565 	if (dev) {
1566 		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
1567 			"Attribute %s: write permission without 'store'\n",
1568 			attr->attr.name);
1569 		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
1570 			"Attribute %s: read permission without 'show'\n",
1571 			attr->attr.name);
1572 		error = sysfs_create_file(&dev->kobj, &attr->attr);
1573 	}
1574 
1575 	return error;
1576 }
1577 EXPORT_SYMBOL_GPL(device_create_file);
1578 
1579 /**
1580  * device_remove_file - remove sysfs attribute file.
1581  * @dev: device.
1582  * @attr: device attribute descriptor.
1583  */
device_remove_file(struct device * dev,const struct device_attribute * attr)1584 void device_remove_file(struct device *dev,
1585 			const struct device_attribute *attr)
1586 {
1587 	if (dev)
1588 		sysfs_remove_file(&dev->kobj, &attr->attr);
1589 }
1590 EXPORT_SYMBOL_GPL(device_remove_file);
1591 
1592 /**
1593  * device_remove_file_self - remove sysfs attribute file from its own method.
1594  * @dev: device.
1595  * @attr: device attribute descriptor.
1596  *
1597  * See kernfs_remove_self() for details.
1598  */
device_remove_file_self(struct device * dev,const struct device_attribute * attr)1599 bool device_remove_file_self(struct device *dev,
1600 			     const struct device_attribute *attr)
1601 {
1602 	if (dev)
1603 		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
1604 	else
1605 		return false;
1606 }
1607 EXPORT_SYMBOL_GPL(device_remove_file_self);
1608 
1609 /**
1610  * device_create_bin_file - create sysfs binary attribute file for device.
1611  * @dev: device.
1612  * @attr: device binary attribute descriptor.
1613  */
device_create_bin_file(struct device * dev,const struct bin_attribute * attr)1614 int device_create_bin_file(struct device *dev,
1615 			   const struct bin_attribute *attr)
1616 {
1617 	int error = -EINVAL;
1618 	if (dev)
1619 		error = sysfs_create_bin_file(&dev->kobj, attr);
1620 	return error;
1621 }
1622 EXPORT_SYMBOL_GPL(device_create_bin_file);
1623 
1624 /**
1625  * device_remove_bin_file - remove sysfs binary attribute file
1626  * @dev: device.
1627  * @attr: device binary attribute descriptor.
1628  */
device_remove_bin_file(struct device * dev,const struct bin_attribute * attr)1629 void device_remove_bin_file(struct device *dev,
1630 			    const struct bin_attribute *attr)
1631 {
1632 	if (dev)
1633 		sysfs_remove_bin_file(&dev->kobj, attr);
1634 }
1635 EXPORT_SYMBOL_GPL(device_remove_bin_file);
1636 
klist_children_get(struct klist_node * n)1637 static void klist_children_get(struct klist_node *n)
1638 {
1639 	struct device_private *p = to_device_private_parent(n);
1640 	struct device *dev = p->device;
1641 
1642 	get_device(dev);
1643 }
1644 
klist_children_put(struct klist_node * n)1645 static void klist_children_put(struct klist_node *n)
1646 {
1647 	struct device_private *p = to_device_private_parent(n);
1648 	struct device *dev = p->device;
1649 
1650 	put_device(dev);
1651 }
1652 
1653 /**
1654  * device_initialize - init device structure.
1655  * @dev: device.
1656  *
1657  * This prepares the device for use by other layers by initializing
1658  * its fields.
1659  * It is the first half of device_register(), if called by
1660  * that function, though it can also be called separately, so one
1661  * may use @dev's fields. In particular, get_device()/put_device()
1662  * may be used for reference counting of @dev after calling this
1663  * function.
1664  *
1665  * All fields in @dev must be initialized by the caller to 0, except
1666  * for those explicitly set to some other value.  The simplest
1667  * approach is to use kzalloc() to allocate the structure containing
1668  * @dev.
1669  *
1670  * NOTE: Use put_device() to give up your reference instead of freeing
1671  * @dev directly once you have called this function.
1672  */
device_initialize(struct device * dev)1673 void device_initialize(struct device *dev)
1674 {
1675 	dev->kobj.kset = devices_kset;
1676 	kobject_init(&dev->kobj, &device_ktype);
1677 	INIT_LIST_HEAD(&dev->dma_pools);
1678 	mutex_init(&dev->mutex);
1679 	lockdep_set_novalidate_class(&dev->mutex);
1680 	spin_lock_init(&dev->devres_lock);
1681 	INIT_LIST_HEAD(&dev->devres_head);
1682 	device_pm_init(dev);
1683 	set_dev_node(dev, -1);
1684 #ifdef CONFIG_GENERIC_MSI_IRQ
1685 	raw_spin_lock_init(&dev->msi_lock);
1686 	INIT_LIST_HEAD(&dev->msi_list);
1687 #endif
1688 	INIT_LIST_HEAD(&dev->links.consumers);
1689 	INIT_LIST_HEAD(&dev->links.suppliers);
1690 	dev->links.status = DL_DEV_NO_DRIVER;
1691 }
1692 EXPORT_SYMBOL_GPL(device_initialize);
1693 
virtual_device_parent(struct device * dev)1694 struct kobject *virtual_device_parent(struct device *dev)
1695 {
1696 	static struct kobject *virtual_dir = NULL;
1697 
1698 	if (!virtual_dir)
1699 		virtual_dir = kobject_create_and_add("virtual",
1700 						     &devices_kset->kobj);
1701 
1702 	return virtual_dir;
1703 }
1704 
1705 struct class_dir {
1706 	struct kobject kobj;
1707 	struct class *class;
1708 };
1709 
1710 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
1711 
class_dir_release(struct kobject * kobj)1712 static void class_dir_release(struct kobject *kobj)
1713 {
1714 	struct class_dir *dir = to_class_dir(kobj);
1715 	kfree(dir);
1716 }
1717 
1718 static const
class_dir_child_ns_type(struct kobject * kobj)1719 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
1720 {
1721 	struct class_dir *dir = to_class_dir(kobj);
1722 	return dir->class->ns_type;
1723 }
1724 
1725 static struct kobj_type class_dir_ktype = {
1726 	.release	= class_dir_release,
1727 	.sysfs_ops	= &kobj_sysfs_ops,
1728 	.child_ns_type	= class_dir_child_ns_type
1729 };
1730 
1731 static struct kobject *
class_dir_create_and_add(struct class * class,struct kobject * parent_kobj)1732 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
1733 {
1734 	struct class_dir *dir;
1735 	int retval;
1736 
1737 	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
1738 	if (!dir)
1739 		return ERR_PTR(-ENOMEM);
1740 
1741 	dir->class = class;
1742 	kobject_init(&dir->kobj, &class_dir_ktype);
1743 
1744 	dir->kobj.kset = &class->p->glue_dirs;
1745 
1746 	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
1747 	if (retval < 0) {
1748 		kobject_put(&dir->kobj);
1749 		return ERR_PTR(retval);
1750 	}
1751 	return &dir->kobj;
1752 }
1753 
1754 static DEFINE_MUTEX(gdp_mutex);
1755 
get_device_parent(struct device * dev,struct device * parent)1756 static struct kobject *get_device_parent(struct device *dev,
1757 					 struct device *parent)
1758 {
1759 	if (dev->class) {
1760 		struct kobject *kobj = NULL;
1761 		struct kobject *parent_kobj;
1762 		struct kobject *k;
1763 
1764 #ifdef CONFIG_BLOCK
1765 		/* block disks show up in /sys/block */
1766 		if (sysfs_deprecated && dev->class == &block_class) {
1767 			if (parent && parent->class == &block_class)
1768 				return &parent->kobj;
1769 			return &block_class.p->subsys.kobj;
1770 		}
1771 #endif
1772 
1773 		/*
1774 		 * If we have no parent, we live in "virtual".
1775 		 * Class-devices with a non class-device as parent, live
1776 		 * in a "glue" directory to prevent namespace collisions.
1777 		 */
1778 		if (parent == NULL)
1779 			parent_kobj = virtual_device_parent(dev);
1780 		else if (parent->class && !dev->class->ns_type)
1781 			return &parent->kobj;
1782 		else
1783 			parent_kobj = &parent->kobj;
1784 
1785 		mutex_lock(&gdp_mutex);
1786 
1787 		/* find our class-directory at the parent and reference it */
1788 		spin_lock(&dev->class->p->glue_dirs.list_lock);
1789 		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
1790 			if (k->parent == parent_kobj) {
1791 				kobj = kobject_get(k);
1792 				break;
1793 			}
1794 		spin_unlock(&dev->class->p->glue_dirs.list_lock);
1795 		if (kobj) {
1796 			mutex_unlock(&gdp_mutex);
1797 			return kobj;
1798 		}
1799 
1800 		/* or create a new class-directory at the parent device */
1801 		k = class_dir_create_and_add(dev->class, parent_kobj);
1802 		/* do not emit an uevent for this simple "glue" directory */
1803 		mutex_unlock(&gdp_mutex);
1804 		return k;
1805 	}
1806 
1807 	/* subsystems can specify a default root directory for their devices */
1808 	if (!parent && dev->bus && dev->bus->dev_root)
1809 		return &dev->bus->dev_root->kobj;
1810 
1811 	if (parent)
1812 		return &parent->kobj;
1813 	return NULL;
1814 }
1815 
live_in_glue_dir(struct kobject * kobj,struct device * dev)1816 static inline bool live_in_glue_dir(struct kobject *kobj,
1817 				    struct device *dev)
1818 {
1819 	if (!kobj || !dev->class ||
1820 	    kobj->kset != &dev->class->p->glue_dirs)
1821 		return false;
1822 	return true;
1823 }
1824 
get_glue_dir(struct device * dev)1825 static inline struct kobject *get_glue_dir(struct device *dev)
1826 {
1827 	return dev->kobj.parent;
1828 }
1829 
1830 /*
1831  * make sure cleaning up dir as the last step, we need to make
1832  * sure .release handler of kobject is run with holding the
1833  * global lock
1834  */
cleanup_glue_dir(struct device * dev,struct kobject * glue_dir)1835 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
1836 {
1837 	unsigned int ref;
1838 
1839 	/* see if we live in a "glue" directory */
1840 	if (!live_in_glue_dir(glue_dir, dev))
1841 		return;
1842 
1843 	mutex_lock(&gdp_mutex);
1844 	/**
1845 	 * There is a race condition between removing glue directory
1846 	 * and adding a new device under the glue directory.
1847 	 *
1848 	 * CPU1:                                         CPU2:
1849 	 *
1850 	 * device_add()
1851 	 *   get_device_parent()
1852 	 *     class_dir_create_and_add()
1853 	 *       kobject_add_internal()
1854 	 *         create_dir()    // create glue_dir
1855 	 *
1856 	 *                                               device_add()
1857 	 *                                                 get_device_parent()
1858 	 *                                                   kobject_get() // get glue_dir
1859 	 *
1860 	 * device_del()
1861 	 *   cleanup_glue_dir()
1862 	 *     kobject_del(glue_dir)
1863 	 *
1864 	 *                                               kobject_add()
1865 	 *                                                 kobject_add_internal()
1866 	 *                                                   create_dir() // in glue_dir
1867 	 *                                                     sysfs_create_dir_ns()
1868 	 *                                                       kernfs_create_dir_ns(sd)
1869 	 *
1870 	 *       sysfs_remove_dir() // glue_dir->sd=NULL
1871 	 *       sysfs_put()        // free glue_dir->sd
1872 	 *
1873 	 *                                                         // sd is freed
1874 	 *                                                         kernfs_new_node(sd)
1875 	 *                                                           kernfs_get(glue_dir)
1876 	 *                                                           kernfs_add_one()
1877 	 *                                                           kernfs_put()
1878 	 *
1879 	 * Before CPU1 remove last child device under glue dir, if CPU2 add
1880 	 * a new device under glue dir, the glue_dir kobject reference count
1881 	 * will be increase to 2 in kobject_get(k). And CPU2 has been called
1882 	 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
1883 	 * and sysfs_put(). This result in glue_dir->sd is freed.
1884 	 *
1885 	 * Then the CPU2 will see a stale "empty" but still potentially used
1886 	 * glue dir around in kernfs_new_node().
1887 	 *
1888 	 * In order to avoid this happening, we also should make sure that
1889 	 * kernfs_node for glue_dir is released in CPU1 only when refcount
1890 	 * for glue_dir kobj is 1.
1891 	 */
1892 	ref = kref_read(&glue_dir->kref);
1893 	if (!kobject_has_children(glue_dir) && !--ref)
1894 		kobject_del(glue_dir);
1895 	kobject_put(glue_dir);
1896 	mutex_unlock(&gdp_mutex);
1897 }
1898 
device_add_class_symlinks(struct device * dev)1899 static int device_add_class_symlinks(struct device *dev)
1900 {
1901 	struct device_node *of_node = dev_of_node(dev);
1902 	int error;
1903 
1904 	if (of_node) {
1905 		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
1906 		if (error)
1907 			dev_warn(dev, "Error %d creating of_node link\n",error);
1908 		/* An error here doesn't warrant bringing down the device */
1909 	}
1910 
1911 	if (!dev->class)
1912 		return 0;
1913 
1914 	error = sysfs_create_link(&dev->kobj,
1915 				  &dev->class->p->subsys.kobj,
1916 				  "subsystem");
1917 	if (error)
1918 		goto out_devnode;
1919 
1920 	if (dev->parent && device_is_not_partition(dev)) {
1921 		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
1922 					  "device");
1923 		if (error)
1924 			goto out_subsys;
1925 	}
1926 
1927 #ifdef CONFIG_BLOCK
1928 	/* /sys/block has directories and does not need symlinks */
1929 	if (sysfs_deprecated && dev->class == &block_class)
1930 		return 0;
1931 #endif
1932 
1933 	/* link in the class directory pointing to the device */
1934 	error = sysfs_create_link(&dev->class->p->subsys.kobj,
1935 				  &dev->kobj, dev_name(dev));
1936 	if (error)
1937 		goto out_device;
1938 
1939 	return 0;
1940 
1941 out_device:
1942 	sysfs_remove_link(&dev->kobj, "device");
1943 
1944 out_subsys:
1945 	sysfs_remove_link(&dev->kobj, "subsystem");
1946 out_devnode:
1947 	sysfs_remove_link(&dev->kobj, "of_node");
1948 	return error;
1949 }
1950 
device_remove_class_symlinks(struct device * dev)1951 static void device_remove_class_symlinks(struct device *dev)
1952 {
1953 	if (dev_of_node(dev))
1954 		sysfs_remove_link(&dev->kobj, "of_node");
1955 
1956 	if (!dev->class)
1957 		return;
1958 
1959 	if (dev->parent && device_is_not_partition(dev))
1960 		sysfs_remove_link(&dev->kobj, "device");
1961 	sysfs_remove_link(&dev->kobj, "subsystem");
1962 #ifdef CONFIG_BLOCK
1963 	if (sysfs_deprecated && dev->class == &block_class)
1964 		return;
1965 #endif
1966 	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
1967 }
1968 
1969 /**
1970  * dev_set_name - set a device name
1971  * @dev: device
1972  * @fmt: format string for the device's name
1973  */
dev_set_name(struct device * dev,const char * fmt,...)1974 int dev_set_name(struct device *dev, const char *fmt, ...)
1975 {
1976 	va_list vargs;
1977 	int err;
1978 
1979 	va_start(vargs, fmt);
1980 	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
1981 	va_end(vargs);
1982 	return err;
1983 }
1984 EXPORT_SYMBOL_GPL(dev_set_name);
1985 
1986 /**
1987  * device_to_dev_kobj - select a /sys/dev/ directory for the device
1988  * @dev: device
1989  *
1990  * By default we select char/ for new entries.  Setting class->dev_obj
1991  * to NULL prevents an entry from being created.  class->dev_kobj must
1992  * be set (or cleared) before any devices are registered to the class
1993  * otherwise device_create_sys_dev_entry() and
1994  * device_remove_sys_dev_entry() will disagree about the presence of
1995  * the link.
1996  */
device_to_dev_kobj(struct device * dev)1997 static struct kobject *device_to_dev_kobj(struct device *dev)
1998 {
1999 	struct kobject *kobj;
2000 
2001 	if (dev->class)
2002 		kobj = dev->class->dev_kobj;
2003 	else
2004 		kobj = sysfs_dev_char_kobj;
2005 
2006 	return kobj;
2007 }
2008 
device_create_sys_dev_entry(struct device * dev)2009 static int device_create_sys_dev_entry(struct device *dev)
2010 {
2011 	struct kobject *kobj = device_to_dev_kobj(dev);
2012 	int error = 0;
2013 	char devt_str[15];
2014 
2015 	if (kobj) {
2016 		format_dev_t(devt_str, dev->devt);
2017 		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
2018 	}
2019 
2020 	return error;
2021 }
2022 
device_remove_sys_dev_entry(struct device * dev)2023 static void device_remove_sys_dev_entry(struct device *dev)
2024 {
2025 	struct kobject *kobj = device_to_dev_kobj(dev);
2026 	char devt_str[15];
2027 
2028 	if (kobj) {
2029 		format_dev_t(devt_str, dev->devt);
2030 		sysfs_remove_link(kobj, devt_str);
2031 	}
2032 }
2033 
device_private_init(struct device * dev)2034 static int device_private_init(struct device *dev)
2035 {
2036 	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
2037 	if (!dev->p)
2038 		return -ENOMEM;
2039 	dev->p->device = dev;
2040 	klist_init(&dev->p->klist_children, klist_children_get,
2041 		   klist_children_put);
2042 	INIT_LIST_HEAD(&dev->p->deferred_probe);
2043 	return 0;
2044 }
2045 
2046 /**
2047  * device_add - add device to device hierarchy.
2048  * @dev: device.
2049  *
2050  * This is part 2 of device_register(), though may be called
2051  * separately _iff_ device_initialize() has been called separately.
2052  *
2053  * This adds @dev to the kobject hierarchy via kobject_add(), adds it
2054  * to the global and sibling lists for the device, then
2055  * adds it to the other relevant subsystems of the driver model.
2056  *
2057  * Do not call this routine or device_register() more than once for
2058  * any device structure.  The driver model core is not designed to work
2059  * with devices that get unregistered and then spring back to life.
2060  * (Among other things, it's very hard to guarantee that all references
2061  * to the previous incarnation of @dev have been dropped.)  Allocate
2062  * and register a fresh new struct device instead.
2063  *
2064  * NOTE: _Never_ directly free @dev after calling this function, even
2065  * if it returned an error! Always use put_device() to give up your
2066  * reference instead.
2067  */
device_add(struct device * dev)2068 int device_add(struct device *dev)
2069 {
2070 	struct device *parent;
2071 	struct kobject *kobj;
2072 	struct class_interface *class_intf;
2073 	int error = -EINVAL;
2074 	struct kobject *glue_dir = NULL;
2075 
2076 	dev = get_device(dev);
2077 	if (!dev)
2078 		goto done;
2079 
2080 	if (!dev->p) {
2081 		error = device_private_init(dev);
2082 		if (error)
2083 			goto done;
2084 	}
2085 
2086 	/*
2087 	 * for statically allocated devices, which should all be converted
2088 	 * some day, we need to initialize the name. We prevent reading back
2089 	 * the name, and force the use of dev_name()
2090 	 */
2091 	if (dev->init_name) {
2092 		dev_set_name(dev, "%s", dev->init_name);
2093 		dev->init_name = NULL;
2094 	}
2095 
2096 	/* subsystems can specify simple device enumeration */
2097 	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
2098 		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
2099 
2100 	if (!dev_name(dev)) {
2101 		error = -EINVAL;
2102 		goto name_error;
2103 	}
2104 
2105 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2106 
2107 	parent = get_device(dev->parent);
2108 	kobj = get_device_parent(dev, parent);
2109 	if (IS_ERR(kobj)) {
2110 		error = PTR_ERR(kobj);
2111 		goto parent_error;
2112 	}
2113 	if (kobj)
2114 		dev->kobj.parent = kobj;
2115 
2116 	/* use parent numa_node */
2117 	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
2118 		set_dev_node(dev, dev_to_node(parent));
2119 
2120 	/* first, register with generic layer. */
2121 	/* we require the name to be set before, and pass NULL */
2122 	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
2123 	if (error) {
2124 		glue_dir = get_glue_dir(dev);
2125 		goto Error;
2126 	}
2127 
2128 	/* notify platform of device entry */
2129 	if (platform_notify)
2130 		platform_notify(dev);
2131 
2132 	error = device_create_file(dev, &dev_attr_uevent);
2133 	if (error)
2134 		goto attrError;
2135 
2136 	error = device_add_class_symlinks(dev);
2137 	if (error)
2138 		goto SymlinkError;
2139 	error = device_add_attrs(dev);
2140 	if (error)
2141 		goto AttrsError;
2142 	error = bus_add_device(dev);
2143 	if (error)
2144 		goto BusError;
2145 	error = dpm_sysfs_add(dev);
2146 	if (error)
2147 		goto DPMError;
2148 	device_pm_add(dev);
2149 
2150 	if (MAJOR(dev->devt)) {
2151 		error = device_create_file(dev, &dev_attr_dev);
2152 		if (error)
2153 			goto DevAttrError;
2154 
2155 		error = device_create_sys_dev_entry(dev);
2156 		if (error)
2157 			goto SysEntryError;
2158 
2159 		devtmpfs_create_node(dev);
2160 	}
2161 
2162 	/* Notify clients of device addition.  This call must come
2163 	 * after dpm_sysfs_add() and before kobject_uevent().
2164 	 */
2165 	if (dev->bus)
2166 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2167 					     BUS_NOTIFY_ADD_DEVICE, dev);
2168 
2169 	kobject_uevent(&dev->kobj, KOBJ_ADD);
2170 	bus_probe_device(dev);
2171 	if (parent)
2172 		klist_add_tail(&dev->p->knode_parent,
2173 			       &parent->p->klist_children);
2174 
2175 	if (dev->class) {
2176 		mutex_lock(&dev->class->p->mutex);
2177 		/* tie the class to the device */
2178 		klist_add_tail(&dev->knode_class,
2179 			       &dev->class->p->klist_devices);
2180 
2181 		/* notify any interfaces that the device is here */
2182 		list_for_each_entry(class_intf,
2183 				    &dev->class->p->interfaces, node)
2184 			if (class_intf->add_dev)
2185 				class_intf->add_dev(dev, class_intf);
2186 		mutex_unlock(&dev->class->p->mutex);
2187 	}
2188 done:
2189 	put_device(dev);
2190 	return error;
2191  SysEntryError:
2192 	if (MAJOR(dev->devt))
2193 		device_remove_file(dev, &dev_attr_dev);
2194  DevAttrError:
2195 	device_pm_remove(dev);
2196 	dpm_sysfs_remove(dev);
2197  DPMError:
2198 	bus_remove_device(dev);
2199  BusError:
2200 	device_remove_attrs(dev);
2201  AttrsError:
2202 	device_remove_class_symlinks(dev);
2203  SymlinkError:
2204 	device_remove_file(dev, &dev_attr_uevent);
2205  attrError:
2206 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2207 	glue_dir = get_glue_dir(dev);
2208 	kobject_del(&dev->kobj);
2209  Error:
2210 	cleanup_glue_dir(dev, glue_dir);
2211 parent_error:
2212 	put_device(parent);
2213 name_error:
2214 	kfree(dev->p);
2215 	dev->p = NULL;
2216 	goto done;
2217 }
2218 EXPORT_SYMBOL_GPL(device_add);
2219 
2220 /**
2221  * device_register - register a device with the system.
2222  * @dev: pointer to the device structure
2223  *
2224  * This happens in two clean steps - initialize the device
2225  * and add it to the system. The two steps can be called
2226  * separately, but this is the easiest and most common.
2227  * I.e. you should only call the two helpers separately if
2228  * have a clearly defined need to use and refcount the device
2229  * before it is added to the hierarchy.
2230  *
2231  * For more information, see the kerneldoc for device_initialize()
2232  * and device_add().
2233  *
2234  * NOTE: _Never_ directly free @dev after calling this function, even
2235  * if it returned an error! Always use put_device() to give up the
2236  * reference initialized in this function instead.
2237  */
device_register(struct device * dev)2238 int device_register(struct device *dev)
2239 {
2240 	device_initialize(dev);
2241 	return device_add(dev);
2242 }
2243 EXPORT_SYMBOL_GPL(device_register);
2244 
2245 /**
2246  * get_device - increment reference count for device.
2247  * @dev: device.
2248  *
2249  * This simply forwards the call to kobject_get(), though
2250  * we do take care to provide for the case that we get a NULL
2251  * pointer passed in.
2252  */
get_device(struct device * dev)2253 struct device *get_device(struct device *dev)
2254 {
2255 	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
2256 }
2257 EXPORT_SYMBOL_GPL(get_device);
2258 
2259 /**
2260  * put_device - decrement reference count.
2261  * @dev: device in question.
2262  */
put_device(struct device * dev)2263 void put_device(struct device *dev)
2264 {
2265 	/* might_sleep(); */
2266 	if (dev)
2267 		kobject_put(&dev->kobj);
2268 }
2269 EXPORT_SYMBOL_GPL(put_device);
2270 
kill_device(struct device * dev)2271 bool kill_device(struct device *dev)
2272 {
2273 	/*
2274 	 * Require the device lock and set the "dead" flag to guarantee that
2275 	 * the update behavior is consistent with the other bitfields near
2276 	 * it and that we cannot have an asynchronous probe routine trying
2277 	 * to run while we are tearing out the bus/class/sysfs from
2278 	 * underneath the device.
2279 	 */
2280 	lockdep_assert_held(&dev->mutex);
2281 
2282 	if (dev->p->dead)
2283 		return false;
2284 	dev->p->dead = true;
2285 	return true;
2286 }
2287 EXPORT_SYMBOL_GPL(kill_device);
2288 
2289 /**
2290  * device_del - delete device from system.
2291  * @dev: device.
2292  *
2293  * This is the first part of the device unregistration
2294  * sequence. This removes the device from the lists we control
2295  * from here, has it removed from the other driver model
2296  * subsystems it was added to in device_add(), and removes it
2297  * from the kobject hierarchy.
2298  *
2299  * NOTE: this should be called manually _iff_ device_add() was
2300  * also called manually.
2301  */
device_del(struct device * dev)2302 void device_del(struct device *dev)
2303 {
2304 	struct device *parent = dev->parent;
2305 	struct kobject *glue_dir = NULL;
2306 	struct class_interface *class_intf;
2307 
2308 	device_lock(dev);
2309 	kill_device(dev);
2310 	device_unlock(dev);
2311 
2312 	/* Notify clients of device removal.  This call must come
2313 	 * before dpm_sysfs_remove().
2314 	 */
2315 	if (dev->bus)
2316 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2317 					     BUS_NOTIFY_DEL_DEVICE, dev);
2318 
2319 	dpm_sysfs_remove(dev);
2320 	if (parent)
2321 		klist_del(&dev->p->knode_parent);
2322 	if (MAJOR(dev->devt)) {
2323 		devtmpfs_delete_node(dev);
2324 		device_remove_sys_dev_entry(dev);
2325 		device_remove_file(dev, &dev_attr_dev);
2326 	}
2327 	if (dev->class) {
2328 		device_remove_class_symlinks(dev);
2329 
2330 		mutex_lock(&dev->class->p->mutex);
2331 		/* notify any interfaces that the device is now gone */
2332 		list_for_each_entry(class_intf,
2333 				    &dev->class->p->interfaces, node)
2334 			if (class_intf->remove_dev)
2335 				class_intf->remove_dev(dev, class_intf);
2336 		/* remove the device from the class list */
2337 		klist_del(&dev->knode_class);
2338 		mutex_unlock(&dev->class->p->mutex);
2339 	}
2340 	device_remove_file(dev, &dev_attr_uevent);
2341 	device_remove_attrs(dev);
2342 	bus_remove_device(dev);
2343 	device_pm_remove(dev);
2344 	driver_deferred_probe_del(dev);
2345 	device_remove_properties(dev);
2346 	device_links_purge(dev);
2347 
2348 	/* Notify the platform of the removal, in case they
2349 	 * need to do anything...
2350 	 */
2351 	if (platform_notify_remove)
2352 		platform_notify_remove(dev);
2353 	if (dev->bus)
2354 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2355 					     BUS_NOTIFY_REMOVED_DEVICE, dev);
2356 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2357 	glue_dir = get_glue_dir(dev);
2358 	kobject_del(&dev->kobj);
2359 	cleanup_glue_dir(dev, glue_dir);
2360 	put_device(parent);
2361 }
2362 EXPORT_SYMBOL_GPL(device_del);
2363 
2364 /**
2365  * device_unregister - unregister device from system.
2366  * @dev: device going away.
2367  *
2368  * We do this in two parts, like we do device_register(). First,
2369  * we remove it from all the subsystems with device_del(), then
2370  * we decrement the reference count via put_device(). If that
2371  * is the final reference count, the device will be cleaned up
2372  * via device_release() above. Otherwise, the structure will
2373  * stick around until the final reference to the device is dropped.
2374  */
device_unregister(struct device * dev)2375 void device_unregister(struct device *dev)
2376 {
2377 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2378 	device_del(dev);
2379 	put_device(dev);
2380 }
2381 EXPORT_SYMBOL_GPL(device_unregister);
2382 
prev_device(struct klist_iter * i)2383 static struct device *prev_device(struct klist_iter *i)
2384 {
2385 	struct klist_node *n = klist_prev(i);
2386 	struct device *dev = NULL;
2387 	struct device_private *p;
2388 
2389 	if (n) {
2390 		p = to_device_private_parent(n);
2391 		dev = p->device;
2392 	}
2393 	return dev;
2394 }
2395 
next_device(struct klist_iter * i)2396 static struct device *next_device(struct klist_iter *i)
2397 {
2398 	struct klist_node *n = klist_next(i);
2399 	struct device *dev = NULL;
2400 	struct device_private *p;
2401 
2402 	if (n) {
2403 		p = to_device_private_parent(n);
2404 		dev = p->device;
2405 	}
2406 	return dev;
2407 }
2408 
2409 /**
2410  * device_get_devnode - path of device node file
2411  * @dev: device
2412  * @mode: returned file access mode
2413  * @uid: returned file owner
2414  * @gid: returned file group
2415  * @tmp: possibly allocated string
2416  *
2417  * Return the relative path of a possible device node.
2418  * Non-default names may need to allocate a memory to compose
2419  * a name. This memory is returned in tmp and needs to be
2420  * freed by the caller.
2421  */
device_get_devnode(struct device * dev,umode_t * mode,kuid_t * uid,kgid_t * gid,const char ** tmp)2422 const char *device_get_devnode(struct device *dev,
2423 			       umode_t *mode, kuid_t *uid, kgid_t *gid,
2424 			       const char **tmp)
2425 {
2426 	char *s;
2427 
2428 	*tmp = NULL;
2429 
2430 	/* the device type may provide a specific name */
2431 	if (dev->type && dev->type->devnode)
2432 		*tmp = dev->type->devnode(dev, mode, uid, gid);
2433 	if (*tmp)
2434 		return *tmp;
2435 
2436 	/* the class may provide a specific name */
2437 	if (dev->class && dev->class->devnode)
2438 		*tmp = dev->class->devnode(dev, mode);
2439 	if (*tmp)
2440 		return *tmp;
2441 
2442 	/* return name without allocation, tmp == NULL */
2443 	if (strchr(dev_name(dev), '!') == NULL)
2444 		return dev_name(dev);
2445 
2446 	/* replace '!' in the name with '/' */
2447 	s = kstrdup(dev_name(dev), GFP_KERNEL);
2448 	if (!s)
2449 		return NULL;
2450 	strreplace(s, '!', '/');
2451 	return *tmp = s;
2452 }
2453 
2454 /**
2455  * device_for_each_child - device child iterator.
2456  * @parent: parent struct device.
2457  * @fn: function to be called for each device.
2458  * @data: data for the callback.
2459  *
2460  * Iterate over @parent's child devices, and call @fn for each,
2461  * passing it @data.
2462  *
2463  * We check the return of @fn each time. If it returns anything
2464  * other than 0, we break out and return that value.
2465  */
device_for_each_child(struct device * parent,void * data,int (* fn)(struct device * dev,void * data))2466 int device_for_each_child(struct device *parent, void *data,
2467 			  int (*fn)(struct device *dev, void *data))
2468 {
2469 	struct klist_iter i;
2470 	struct device *child;
2471 	int error = 0;
2472 
2473 	if (!parent->p)
2474 		return 0;
2475 
2476 	klist_iter_init(&parent->p->klist_children, &i);
2477 	while (!error && (child = next_device(&i)))
2478 		error = fn(child, data);
2479 	klist_iter_exit(&i);
2480 	return error;
2481 }
2482 EXPORT_SYMBOL_GPL(device_for_each_child);
2483 
2484 /**
2485  * device_for_each_child_reverse - device child iterator in reversed order.
2486  * @parent: parent struct device.
2487  * @fn: function to be called for each device.
2488  * @data: data for the callback.
2489  *
2490  * Iterate over @parent's child devices, and call @fn for each,
2491  * passing it @data.
2492  *
2493  * We check the return of @fn each time. If it returns anything
2494  * other than 0, we break out and return that value.
2495  */
device_for_each_child_reverse(struct device * parent,void * data,int (* fn)(struct device * dev,void * data))2496 int device_for_each_child_reverse(struct device *parent, void *data,
2497 				  int (*fn)(struct device *dev, void *data))
2498 {
2499 	struct klist_iter i;
2500 	struct device *child;
2501 	int error = 0;
2502 
2503 	if (!parent->p)
2504 		return 0;
2505 
2506 	klist_iter_init(&parent->p->klist_children, &i);
2507 	while ((child = prev_device(&i)) && !error)
2508 		error = fn(child, data);
2509 	klist_iter_exit(&i);
2510 	return error;
2511 }
2512 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
2513 
2514 /**
2515  * device_find_child - device iterator for locating a particular device.
2516  * @parent: parent struct device
2517  * @match: Callback function to check device
2518  * @data: Data to pass to match function
2519  *
2520  * This is similar to the device_for_each_child() function above, but it
2521  * returns a reference to a device that is 'found' for later use, as
2522  * determined by the @match callback.
2523  *
2524  * The callback should return 0 if the device doesn't match and non-zero
2525  * if it does.  If the callback returns non-zero and a reference to the
2526  * current device can be obtained, this function will return to the caller
2527  * and not iterate over any more devices.
2528  *
2529  * NOTE: you will need to drop the reference with put_device() after use.
2530  */
device_find_child(struct device * parent,void * data,int (* match)(struct device * dev,void * data))2531 struct device *device_find_child(struct device *parent, void *data,
2532 				 int (*match)(struct device *dev, void *data))
2533 {
2534 	struct klist_iter i;
2535 	struct device *child;
2536 
2537 	if (!parent)
2538 		return NULL;
2539 
2540 	klist_iter_init(&parent->p->klist_children, &i);
2541 	while ((child = next_device(&i)))
2542 		if (match(child, data) && get_device(child))
2543 			break;
2544 	klist_iter_exit(&i);
2545 	return child;
2546 }
2547 EXPORT_SYMBOL_GPL(device_find_child);
2548 
devices_init(void)2549 int __init devices_init(void)
2550 {
2551 	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
2552 	if (!devices_kset)
2553 		return -ENOMEM;
2554 	dev_kobj = kobject_create_and_add("dev", NULL);
2555 	if (!dev_kobj)
2556 		goto dev_kobj_err;
2557 	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
2558 	if (!sysfs_dev_block_kobj)
2559 		goto block_kobj_err;
2560 	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
2561 	if (!sysfs_dev_char_kobj)
2562 		goto char_kobj_err;
2563 
2564 	return 0;
2565 
2566  char_kobj_err:
2567 	kobject_put(sysfs_dev_block_kobj);
2568  block_kobj_err:
2569 	kobject_put(dev_kobj);
2570  dev_kobj_err:
2571 	kset_unregister(devices_kset);
2572 	return -ENOMEM;
2573 }
2574 
device_check_offline(struct device * dev,void * not_used)2575 static int device_check_offline(struct device *dev, void *not_used)
2576 {
2577 	int ret;
2578 
2579 	ret = device_for_each_child(dev, NULL, device_check_offline);
2580 	if (ret)
2581 		return ret;
2582 
2583 	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
2584 }
2585 
2586 /**
2587  * device_offline - Prepare the device for hot-removal.
2588  * @dev: Device to be put offline.
2589  *
2590  * Execute the device bus type's .offline() callback, if present, to prepare
2591  * the device for a subsequent hot-removal.  If that succeeds, the device must
2592  * not be used until either it is removed or its bus type's .online() callback
2593  * is executed.
2594  *
2595  * Call under device_hotplug_lock.
2596  */
device_offline(struct device * dev)2597 int device_offline(struct device *dev)
2598 {
2599 	int ret;
2600 
2601 	if (dev->offline_disabled)
2602 		return -EPERM;
2603 
2604 	ret = device_for_each_child(dev, NULL, device_check_offline);
2605 	if (ret)
2606 		return ret;
2607 
2608 	device_lock(dev);
2609 	if (device_supports_offline(dev)) {
2610 		if (dev->offline) {
2611 			ret = 1;
2612 		} else {
2613 			ret = dev->bus->offline(dev);
2614 			if (!ret) {
2615 				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2616 				dev->offline = true;
2617 			}
2618 		}
2619 	}
2620 	device_unlock(dev);
2621 
2622 	return ret;
2623 }
2624 
2625 /**
2626  * device_online - Put the device back online after successful device_offline().
2627  * @dev: Device to be put back online.
2628  *
2629  * If device_offline() has been successfully executed for @dev, but the device
2630  * has not been removed subsequently, execute its bus type's .online() callback
2631  * to indicate that the device can be used again.
2632  *
2633  * Call under device_hotplug_lock.
2634  */
device_online(struct device * dev)2635 int device_online(struct device *dev)
2636 {
2637 	int ret = 0;
2638 
2639 	device_lock(dev);
2640 	if (device_supports_offline(dev)) {
2641 		if (dev->offline) {
2642 			ret = dev->bus->online(dev);
2643 			if (!ret) {
2644 				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2645 				dev->offline = false;
2646 			}
2647 		} else {
2648 			ret = 1;
2649 		}
2650 	}
2651 	device_unlock(dev);
2652 
2653 	return ret;
2654 }
2655 
2656 struct root_device {
2657 	struct device dev;
2658 	struct module *owner;
2659 };
2660 
to_root_device(struct device * d)2661 static inline struct root_device *to_root_device(struct device *d)
2662 {
2663 	return container_of(d, struct root_device, dev);
2664 }
2665 
root_device_release(struct device * dev)2666 static void root_device_release(struct device *dev)
2667 {
2668 	kfree(to_root_device(dev));
2669 }
2670 
2671 /**
2672  * __root_device_register - allocate and register a root device
2673  * @name: root device name
2674  * @owner: owner module of the root device, usually THIS_MODULE
2675  *
2676  * This function allocates a root device and registers it
2677  * using device_register(). In order to free the returned
2678  * device, use root_device_unregister().
2679  *
2680  * Root devices are dummy devices which allow other devices
2681  * to be grouped under /sys/devices. Use this function to
2682  * allocate a root device and then use it as the parent of
2683  * any device which should appear under /sys/devices/{name}
2684  *
2685  * The /sys/devices/{name} directory will also contain a
2686  * 'module' symlink which points to the @owner directory
2687  * in sysfs.
2688  *
2689  * Returns &struct device pointer on success, or ERR_PTR() on error.
2690  *
2691  * Note: You probably want to use root_device_register().
2692  */
__root_device_register(const char * name,struct module * owner)2693 struct device *__root_device_register(const char *name, struct module *owner)
2694 {
2695 	struct root_device *root;
2696 	int err = -ENOMEM;
2697 
2698 	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
2699 	if (!root)
2700 		return ERR_PTR(err);
2701 
2702 	err = dev_set_name(&root->dev, "%s", name);
2703 	if (err) {
2704 		kfree(root);
2705 		return ERR_PTR(err);
2706 	}
2707 
2708 	root->dev.release = root_device_release;
2709 
2710 	err = device_register(&root->dev);
2711 	if (err) {
2712 		put_device(&root->dev);
2713 		return ERR_PTR(err);
2714 	}
2715 
2716 #ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
2717 	if (owner) {
2718 		struct module_kobject *mk = &owner->mkobj;
2719 
2720 		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
2721 		if (err) {
2722 			device_unregister(&root->dev);
2723 			return ERR_PTR(err);
2724 		}
2725 		root->owner = owner;
2726 	}
2727 #endif
2728 
2729 	return &root->dev;
2730 }
2731 EXPORT_SYMBOL_GPL(__root_device_register);
2732 
2733 /**
2734  * root_device_unregister - unregister and free a root device
2735  * @dev: device going away
2736  *
2737  * This function unregisters and cleans up a device that was created by
2738  * root_device_register().
2739  */
root_device_unregister(struct device * dev)2740 void root_device_unregister(struct device *dev)
2741 {
2742 	struct root_device *root = to_root_device(dev);
2743 
2744 	if (root->owner)
2745 		sysfs_remove_link(&root->dev.kobj, "module");
2746 
2747 	device_unregister(dev);
2748 }
2749 EXPORT_SYMBOL_GPL(root_device_unregister);
2750 
2751 
device_create_release(struct device * dev)2752 static void device_create_release(struct device *dev)
2753 {
2754 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2755 	kfree(dev);
2756 }
2757 
2758 static __printf(6, 0) struct device *
device_create_groups_vargs(struct class * class,struct device * parent,dev_t devt,void * drvdata,const struct attribute_group ** groups,const char * fmt,va_list args)2759 device_create_groups_vargs(struct class *class, struct device *parent,
2760 			   dev_t devt, void *drvdata,
2761 			   const struct attribute_group **groups,
2762 			   const char *fmt, va_list args)
2763 {
2764 	struct device *dev = NULL;
2765 	int retval = -ENODEV;
2766 
2767 	if (class == NULL || IS_ERR(class))
2768 		goto error;
2769 
2770 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2771 	if (!dev) {
2772 		retval = -ENOMEM;
2773 		goto error;
2774 	}
2775 
2776 	device_initialize(dev);
2777 	dev->devt = devt;
2778 	dev->class = class;
2779 	dev->parent = parent;
2780 	dev->groups = groups;
2781 	dev->release = device_create_release;
2782 	dev_set_drvdata(dev, drvdata);
2783 
2784 	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
2785 	if (retval)
2786 		goto error;
2787 
2788 	retval = device_add(dev);
2789 	if (retval)
2790 		goto error;
2791 
2792 	return dev;
2793 
2794 error:
2795 	put_device(dev);
2796 	return ERR_PTR(retval);
2797 }
2798 
2799 /**
2800  * device_create_vargs - creates a device and registers it with sysfs
2801  * @class: pointer to the struct class that this device should be registered to
2802  * @parent: pointer to the parent struct device of this new device, if any
2803  * @devt: the dev_t for the char device to be added
2804  * @drvdata: the data to be added to the device for callbacks
2805  * @fmt: string for the device's name
2806  * @args: va_list for the device's name
2807  *
2808  * This function can be used by char device classes.  A struct device
2809  * will be created in sysfs, registered to the specified class.
2810  *
2811  * A "dev" file will be created, showing the dev_t for the device, if
2812  * the dev_t is not 0,0.
2813  * If a pointer to a parent struct device is passed in, the newly created
2814  * struct device will be a child of that device in sysfs.
2815  * The pointer to the struct device will be returned from the call.
2816  * Any further sysfs files that might be required can be created using this
2817  * pointer.
2818  *
2819  * Returns &struct device pointer on success, or ERR_PTR() on error.
2820  *
2821  * Note: the struct class passed to this function must have previously
2822  * been created with a call to class_create().
2823  */
device_create_vargs(struct class * class,struct device * parent,dev_t devt,void * drvdata,const char * fmt,va_list args)2824 struct device *device_create_vargs(struct class *class, struct device *parent,
2825 				   dev_t devt, void *drvdata, const char *fmt,
2826 				   va_list args)
2827 {
2828 	return device_create_groups_vargs(class, parent, devt, drvdata, NULL,
2829 					  fmt, args);
2830 }
2831 EXPORT_SYMBOL_GPL(device_create_vargs);
2832 
2833 /**
2834  * device_create - creates a device and registers it with sysfs
2835  * @class: pointer to the struct class that this device should be registered to
2836  * @parent: pointer to the parent struct device of this new device, if any
2837  * @devt: the dev_t for the char device to be added
2838  * @drvdata: the data to be added to the device for callbacks
2839  * @fmt: string for the device's name
2840  *
2841  * This function can be used by char device classes.  A struct device
2842  * will be created in sysfs, registered to the specified class.
2843  *
2844  * A "dev" file will be created, showing the dev_t for the device, if
2845  * the dev_t is not 0,0.
2846  * If a pointer to a parent struct device is passed in, the newly created
2847  * struct device will be a child of that device in sysfs.
2848  * The pointer to the struct device will be returned from the call.
2849  * Any further sysfs files that might be required can be created using this
2850  * pointer.
2851  *
2852  * Returns &struct device pointer on success, or ERR_PTR() on error.
2853  *
2854  * Note: the struct class passed to this function must have previously
2855  * been created with a call to class_create().
2856  */
device_create(struct class * class,struct device * parent,dev_t devt,void * drvdata,const char * fmt,...)2857 struct device *device_create(struct class *class, struct device *parent,
2858 			     dev_t devt, void *drvdata, const char *fmt, ...)
2859 {
2860 	va_list vargs;
2861 	struct device *dev;
2862 
2863 	va_start(vargs, fmt);
2864 	dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs);
2865 	va_end(vargs);
2866 	return dev;
2867 }
2868 EXPORT_SYMBOL_GPL(device_create);
2869 
2870 /**
2871  * device_create_with_groups - creates a device and registers it with sysfs
2872  * @class: pointer to the struct class that this device should be registered to
2873  * @parent: pointer to the parent struct device of this new device, if any
2874  * @devt: the dev_t for the char device to be added
2875  * @drvdata: the data to be added to the device for callbacks
2876  * @groups: NULL-terminated list of attribute groups to be created
2877  * @fmt: string for the device's name
2878  *
2879  * This function can be used by char device classes.  A struct device
2880  * will be created in sysfs, registered to the specified class.
2881  * Additional attributes specified in the groups parameter will also
2882  * be created automatically.
2883  *
2884  * A "dev" file will be created, showing the dev_t for the device, if
2885  * the dev_t is not 0,0.
2886  * If a pointer to a parent struct device is passed in, the newly created
2887  * struct device will be a child of that device in sysfs.
2888  * The pointer to the struct device will be returned from the call.
2889  * Any further sysfs files that might be required can be created using this
2890  * pointer.
2891  *
2892  * Returns &struct device pointer on success, or ERR_PTR() on error.
2893  *
2894  * Note: the struct class passed to this function must have previously
2895  * been created with a call to class_create().
2896  */
device_create_with_groups(struct class * class,struct device * parent,dev_t devt,void * drvdata,const struct attribute_group ** groups,const char * fmt,...)2897 struct device *device_create_with_groups(struct class *class,
2898 					 struct device *parent, dev_t devt,
2899 					 void *drvdata,
2900 					 const struct attribute_group **groups,
2901 					 const char *fmt, ...)
2902 {
2903 	va_list vargs;
2904 	struct device *dev;
2905 
2906 	va_start(vargs, fmt);
2907 	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
2908 					 fmt, vargs);
2909 	va_end(vargs);
2910 	return dev;
2911 }
2912 EXPORT_SYMBOL_GPL(device_create_with_groups);
2913 
__match_devt(struct device * dev,const void * data)2914 static int __match_devt(struct device *dev, const void *data)
2915 {
2916 	const dev_t *devt = data;
2917 
2918 	return dev->devt == *devt;
2919 }
2920 
2921 /**
2922  * device_destroy - removes a device that was created with device_create()
2923  * @class: pointer to the struct class that this device was registered with
2924  * @devt: the dev_t of the device that was previously registered
2925  *
2926  * This call unregisters and cleans up a device that was created with a
2927  * call to device_create().
2928  */
device_destroy(struct class * class,dev_t devt)2929 void device_destroy(struct class *class, dev_t devt)
2930 {
2931 	struct device *dev;
2932 
2933 	dev = class_find_device(class, NULL, &devt, __match_devt);
2934 	if (dev) {
2935 		put_device(dev);
2936 		device_unregister(dev);
2937 	}
2938 }
2939 EXPORT_SYMBOL_GPL(device_destroy);
2940 
2941 /**
2942  * device_rename - renames a device
2943  * @dev: the pointer to the struct device to be renamed
2944  * @new_name: the new name of the device
2945  *
2946  * It is the responsibility of the caller to provide mutual
2947  * exclusion between two different calls of device_rename
2948  * on the same device to ensure that new_name is valid and
2949  * won't conflict with other devices.
2950  *
2951  * Note: Don't call this function.  Currently, the networking layer calls this
2952  * function, but that will change.  The following text from Kay Sievers offers
2953  * some insight:
2954  *
2955  * Renaming devices is racy at many levels, symlinks and other stuff are not
2956  * replaced atomically, and you get a "move" uevent, but it's not easy to
2957  * connect the event to the old and new device. Device nodes are not renamed at
2958  * all, there isn't even support for that in the kernel now.
2959  *
2960  * In the meantime, during renaming, your target name might be taken by another
2961  * driver, creating conflicts. Or the old name is taken directly after you
2962  * renamed it -- then you get events for the same DEVPATH, before you even see
2963  * the "move" event. It's just a mess, and nothing new should ever rely on
2964  * kernel device renaming. Besides that, it's not even implemented now for
2965  * other things than (driver-core wise very simple) network devices.
2966  *
2967  * We are currently about to change network renaming in udev to completely
2968  * disallow renaming of devices in the same namespace as the kernel uses,
2969  * because we can't solve the problems properly, that arise with swapping names
2970  * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
2971  * be allowed to some other name than eth[0-9]*, for the aforementioned
2972  * reasons.
2973  *
2974  * Make up a "real" name in the driver before you register anything, or add
2975  * some other attributes for userspace to find the device, or use udev to add
2976  * symlinks -- but never rename kernel devices later, it's a complete mess. We
2977  * don't even want to get into that and try to implement the missing pieces in
2978  * the core. We really have other pieces to fix in the driver core mess. :)
2979  */
device_rename(struct device * dev,const char * new_name)2980 int device_rename(struct device *dev, const char *new_name)
2981 {
2982 	struct kobject *kobj = &dev->kobj;
2983 	char *old_device_name = NULL;
2984 	int error;
2985 
2986 	dev = get_device(dev);
2987 	if (!dev)
2988 		return -EINVAL;
2989 
2990 	dev_dbg(dev, "renaming to %s\n", new_name);
2991 
2992 	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
2993 	if (!old_device_name) {
2994 		error = -ENOMEM;
2995 		goto out;
2996 	}
2997 
2998 	if (dev->class) {
2999 		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
3000 					     kobj, old_device_name,
3001 					     new_name, kobject_namespace(kobj));
3002 		if (error)
3003 			goto out;
3004 	}
3005 
3006 	error = kobject_rename(kobj, new_name);
3007 	if (error)
3008 		goto out;
3009 
3010 out:
3011 	put_device(dev);
3012 
3013 	kfree(old_device_name);
3014 
3015 	return error;
3016 }
3017 EXPORT_SYMBOL_GPL(device_rename);
3018 
device_move_class_links(struct device * dev,struct device * old_parent,struct device * new_parent)3019 static int device_move_class_links(struct device *dev,
3020 				   struct device *old_parent,
3021 				   struct device *new_parent)
3022 {
3023 	int error = 0;
3024 
3025 	if (old_parent)
3026 		sysfs_remove_link(&dev->kobj, "device");
3027 	if (new_parent)
3028 		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
3029 					  "device");
3030 	return error;
3031 }
3032 
3033 /**
3034  * device_move - moves a device to a new parent
3035  * @dev: the pointer to the struct device to be moved
3036  * @new_parent: the new parent of the device (can be NULL)
3037  * @dpm_order: how to reorder the dpm_list
3038  */
device_move(struct device * dev,struct device * new_parent,enum dpm_order dpm_order)3039 int device_move(struct device *dev, struct device *new_parent,
3040 		enum dpm_order dpm_order)
3041 {
3042 	int error;
3043 	struct device *old_parent;
3044 	struct kobject *new_parent_kobj;
3045 
3046 	dev = get_device(dev);
3047 	if (!dev)
3048 		return -EINVAL;
3049 
3050 	device_pm_lock();
3051 	new_parent = get_device(new_parent);
3052 	new_parent_kobj = get_device_parent(dev, new_parent);
3053 	if (IS_ERR(new_parent_kobj)) {
3054 		error = PTR_ERR(new_parent_kobj);
3055 		put_device(new_parent);
3056 		goto out;
3057 	}
3058 
3059 	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
3060 		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
3061 	error = kobject_move(&dev->kobj, new_parent_kobj);
3062 	if (error) {
3063 		cleanup_glue_dir(dev, new_parent_kobj);
3064 		put_device(new_parent);
3065 		goto out;
3066 	}
3067 	old_parent = dev->parent;
3068 	dev->parent = new_parent;
3069 	if (old_parent)
3070 		klist_remove(&dev->p->knode_parent);
3071 	if (new_parent) {
3072 		klist_add_tail(&dev->p->knode_parent,
3073 			       &new_parent->p->klist_children);
3074 		set_dev_node(dev, dev_to_node(new_parent));
3075 	}
3076 
3077 	if (dev->class) {
3078 		error = device_move_class_links(dev, old_parent, new_parent);
3079 		if (error) {
3080 			/* We ignore errors on cleanup since we're hosed anyway... */
3081 			device_move_class_links(dev, new_parent, old_parent);
3082 			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
3083 				if (new_parent)
3084 					klist_remove(&dev->p->knode_parent);
3085 				dev->parent = old_parent;
3086 				if (old_parent) {
3087 					klist_add_tail(&dev->p->knode_parent,
3088 						       &old_parent->p->klist_children);
3089 					set_dev_node(dev, dev_to_node(old_parent));
3090 				}
3091 			}
3092 			cleanup_glue_dir(dev, new_parent_kobj);
3093 			put_device(new_parent);
3094 			goto out;
3095 		}
3096 	}
3097 	switch (dpm_order) {
3098 	case DPM_ORDER_NONE:
3099 		break;
3100 	case DPM_ORDER_DEV_AFTER_PARENT:
3101 		device_pm_move_after(dev, new_parent);
3102 		devices_kset_move_after(dev, new_parent);
3103 		break;
3104 	case DPM_ORDER_PARENT_BEFORE_DEV:
3105 		device_pm_move_before(new_parent, dev);
3106 		devices_kset_move_before(new_parent, dev);
3107 		break;
3108 	case DPM_ORDER_DEV_LAST:
3109 		device_pm_move_last(dev);
3110 		devices_kset_move_last(dev);
3111 		break;
3112 	}
3113 
3114 	put_device(old_parent);
3115 out:
3116 	device_pm_unlock();
3117 	put_device(dev);
3118 	return error;
3119 }
3120 EXPORT_SYMBOL_GPL(device_move);
3121 
3122 /**
3123  * device_shutdown - call ->shutdown() on each device to shutdown.
3124  */
device_shutdown(void)3125 void device_shutdown(void)
3126 {
3127 	struct device *dev, *parent;
3128 
3129 	wait_for_device_probe();
3130 	device_block_probing();
3131 
3132 	cpufreq_suspend();
3133 
3134 	spin_lock(&devices_kset->list_lock);
3135 	/*
3136 	 * Walk the devices list backward, shutting down each in turn.
3137 	 * Beware that device unplug events may also start pulling
3138 	 * devices offline, even as the system is shutting down.
3139 	 */
3140 	while (!list_empty(&devices_kset->list)) {
3141 		dev = list_entry(devices_kset->list.prev, struct device,
3142 				kobj.entry);
3143 
3144 		/*
3145 		 * hold reference count of device's parent to
3146 		 * prevent it from being freed because parent's
3147 		 * lock is to be held
3148 		 */
3149 		parent = get_device(dev->parent);
3150 		get_device(dev);
3151 		/*
3152 		 * Make sure the device is off the kset list, in the
3153 		 * event that dev->*->shutdown() doesn't remove it.
3154 		 */
3155 		list_del_init(&dev->kobj.entry);
3156 		spin_unlock(&devices_kset->list_lock);
3157 
3158 		/* hold lock to avoid race with probe/release */
3159 		if (parent)
3160 			device_lock(parent);
3161 		device_lock(dev);
3162 
3163 		/* Don't allow any more runtime suspends */
3164 		pm_runtime_get_noresume(dev);
3165 		pm_runtime_barrier(dev);
3166 
3167 		if (dev->class && dev->class->shutdown_pre) {
3168 			if (initcall_debug)
3169 				dev_info(dev, "shutdown_pre\n");
3170 			dev->class->shutdown_pre(dev);
3171 		}
3172 		if (dev->bus && dev->bus->shutdown) {
3173 			if (initcall_debug)
3174 				dev_info(dev, "shutdown\n");
3175 			dev->bus->shutdown(dev);
3176 		} else if (dev->driver && dev->driver->shutdown) {
3177 			if (initcall_debug)
3178 				dev_info(dev, "shutdown\n");
3179 			dev->driver->shutdown(dev);
3180 		}
3181 
3182 		device_unlock(dev);
3183 		if (parent)
3184 			device_unlock(parent);
3185 
3186 		put_device(dev);
3187 		put_device(parent);
3188 
3189 		spin_lock(&devices_kset->list_lock);
3190 	}
3191 	spin_unlock(&devices_kset->list_lock);
3192 }
3193 
3194 /*
3195  * Device logging functions
3196  */
3197 
3198 #ifdef CONFIG_PRINTK
3199 static int
create_syslog_header(const struct device * dev,char * hdr,size_t hdrlen)3200 create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen)
3201 {
3202 	const char *subsys;
3203 	size_t pos = 0;
3204 
3205 	if (dev->class)
3206 		subsys = dev->class->name;
3207 	else if (dev->bus)
3208 		subsys = dev->bus->name;
3209 	else
3210 		return 0;
3211 
3212 	pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys);
3213 	if (pos >= hdrlen)
3214 		goto overflow;
3215 
3216 	/*
3217 	 * Add device identifier DEVICE=:
3218 	 *   b12:8         block dev_t
3219 	 *   c127:3        char dev_t
3220 	 *   n8            netdev ifindex
3221 	 *   +sound:card0  subsystem:devname
3222 	 */
3223 	if (MAJOR(dev->devt)) {
3224 		char c;
3225 
3226 		if (strcmp(subsys, "block") == 0)
3227 			c = 'b';
3228 		else
3229 			c = 'c';
3230 		pos++;
3231 		pos += snprintf(hdr + pos, hdrlen - pos,
3232 				"DEVICE=%c%u:%u",
3233 				c, MAJOR(dev->devt), MINOR(dev->devt));
3234 	} else if (strcmp(subsys, "net") == 0) {
3235 		struct net_device *net = to_net_dev(dev);
3236 
3237 		pos++;
3238 		pos += snprintf(hdr + pos, hdrlen - pos,
3239 				"DEVICE=n%u", net->ifindex);
3240 	} else {
3241 		pos++;
3242 		pos += snprintf(hdr + pos, hdrlen - pos,
3243 				"DEVICE=+%s:%s", subsys, dev_name(dev));
3244 	}
3245 
3246 	if (pos >= hdrlen)
3247 		goto overflow;
3248 
3249 	return pos;
3250 
3251 overflow:
3252 	dev_WARN(dev, "device/subsystem name too long");
3253 	return 0;
3254 }
3255 
dev_vprintk_emit(int level,const struct device * dev,const char * fmt,va_list args)3256 int dev_vprintk_emit(int level, const struct device *dev,
3257 		     const char *fmt, va_list args)
3258 {
3259 	char hdr[128];
3260 	size_t hdrlen;
3261 
3262 	hdrlen = create_syslog_header(dev, hdr, sizeof(hdr));
3263 
3264 	return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args);
3265 }
3266 EXPORT_SYMBOL(dev_vprintk_emit);
3267 
dev_printk_emit(int level,const struct device * dev,const char * fmt,...)3268 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
3269 {
3270 	va_list args;
3271 	int r;
3272 
3273 	va_start(args, fmt);
3274 
3275 	r = dev_vprintk_emit(level, dev, fmt, args);
3276 
3277 	va_end(args);
3278 
3279 	return r;
3280 }
3281 EXPORT_SYMBOL(dev_printk_emit);
3282 
__dev_printk(const char * level,const struct device * dev,struct va_format * vaf)3283 static void __dev_printk(const char *level, const struct device *dev,
3284 			struct va_format *vaf)
3285 {
3286 	if (dev)
3287 		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
3288 				dev_driver_string(dev), dev_name(dev), vaf);
3289 	else
3290 		printk("%s(NULL device *): %pV", level, vaf);
3291 }
3292 
dev_printk(const char * level,const struct device * dev,const char * fmt,...)3293 void dev_printk(const char *level, const struct device *dev,
3294 		const char *fmt, ...)
3295 {
3296 	struct va_format vaf;
3297 	va_list args;
3298 
3299 	va_start(args, fmt);
3300 
3301 	vaf.fmt = fmt;
3302 	vaf.va = &args;
3303 
3304 	__dev_printk(level, dev, &vaf);
3305 
3306 	va_end(args);
3307 }
3308 EXPORT_SYMBOL(dev_printk);
3309 
3310 #define define_dev_printk_level(func, kern_level)		\
3311 void func(const struct device *dev, const char *fmt, ...)	\
3312 {								\
3313 	struct va_format vaf;					\
3314 	va_list args;						\
3315 								\
3316 	va_start(args, fmt);					\
3317 								\
3318 	vaf.fmt = fmt;						\
3319 	vaf.va = &args;						\
3320 								\
3321 	__dev_printk(kern_level, dev, &vaf);			\
3322 								\
3323 	va_end(args);						\
3324 }								\
3325 EXPORT_SYMBOL(func);
3326 
3327 define_dev_printk_level(_dev_emerg, KERN_EMERG);
3328 define_dev_printk_level(_dev_alert, KERN_ALERT);
3329 define_dev_printk_level(_dev_crit, KERN_CRIT);
3330 define_dev_printk_level(_dev_err, KERN_ERR);
3331 define_dev_printk_level(_dev_warn, KERN_WARNING);
3332 define_dev_printk_level(_dev_notice, KERN_NOTICE);
3333 define_dev_printk_level(_dev_info, KERN_INFO);
3334 
3335 #endif
3336 
fwnode_is_primary(struct fwnode_handle * fwnode)3337 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
3338 {
3339 	return fwnode && !IS_ERR(fwnode->secondary);
3340 }
3341 
3342 /**
3343  * set_primary_fwnode - Change the primary firmware node of a given device.
3344  * @dev: Device to handle.
3345  * @fwnode: New primary firmware node of the device.
3346  *
3347  * Set the device's firmware node pointer to @fwnode, but if a secondary
3348  * firmware node of the device is present, preserve it.
3349  */
set_primary_fwnode(struct device * dev,struct fwnode_handle * fwnode)3350 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3351 {
3352 	struct device *parent = dev->parent;
3353 	struct fwnode_handle *fn = dev->fwnode;
3354 
3355 	if (fwnode) {
3356 		if (fwnode_is_primary(fn))
3357 			fn = fn->secondary;
3358 
3359 		if (fn) {
3360 			WARN_ON(fwnode->secondary);
3361 			fwnode->secondary = fn;
3362 		}
3363 		dev->fwnode = fwnode;
3364 	} else {
3365 		if (fwnode_is_primary(fn)) {
3366 			dev->fwnode = fn->secondary;
3367 			if (!(parent && fn == parent->fwnode))
3368 				fn->secondary = NULL;
3369 		} else {
3370 			dev->fwnode = NULL;
3371 		}
3372 	}
3373 }
3374 EXPORT_SYMBOL_GPL(set_primary_fwnode);
3375 
3376 /**
3377  * set_secondary_fwnode - Change the secondary firmware node of a given device.
3378  * @dev: Device to handle.
3379  * @fwnode: New secondary firmware node of the device.
3380  *
3381  * If a primary firmware node of the device is present, set its secondary
3382  * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
3383  * @fwnode.
3384  */
set_secondary_fwnode(struct device * dev,struct fwnode_handle * fwnode)3385 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3386 {
3387 	if (fwnode)
3388 		fwnode->secondary = ERR_PTR(-ENODEV);
3389 
3390 	if (fwnode_is_primary(dev->fwnode))
3391 		dev->fwnode->secondary = fwnode;
3392 	else
3393 		dev->fwnode = fwnode;
3394 }
3395 
3396 /**
3397  * device_set_of_node_from_dev - reuse device-tree node of another device
3398  * @dev: device whose device-tree node is being set
3399  * @dev2: device whose device-tree node is being reused
3400  *
3401  * Takes another reference to the new device-tree node after first dropping
3402  * any reference held to the old node.
3403  */
device_set_of_node_from_dev(struct device * dev,const struct device * dev2)3404 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
3405 {
3406 	of_node_put(dev->of_node);
3407 	dev->of_node = of_node_get(dev2->of_node);
3408 	dev->of_node_reused = true;
3409 }
3410 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
3411